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SUMMARY 

Natural spider silk fibers combine extraordinary properties such as strength and flexibility 

resulting in a toughness no other natural or synthetic fibrous material can accomplish, 

designating spider silk fibers as an interesting material for various applications in the 

textile, automotive and biomedical industry. However, the large amount and consistent 

quality needed for industrial applications cannot be obtained by harvesting spider silk webs 

or by farming and forcible spider silking. Therefore, the production of artificial spider silk 

fibers is a prerequisite in order to make spider silk fibers industrially available. Even 

though spider silk fibers and especially their outstanding mechanical properties have been 

in the focus of research for decades, the production of artificial fibers mimicking the 

mechanical properties of natural spider silk fibers is still unsuccessful.  

The main objective of this work was to produce fibers based on recombinant spider silk 

proteins possessing the same toughness as natural spider silk fibers. Firstly, eight 

recombinant spidroins, called eADF3, which are based on ADF3, one of the spidroins 

found in the dragline silk of the European garden spider A. diadematus, were engineered. 

Even though the tripartite structure of spidroins, comprising a highly repetitive core and 

non-repetitive amino- and carboxy-terminal domains, is well known, the influence of the 

terminal-domains on the mechanical properties is not yet understood. In order to get an 

insight into their function, the contribution of individual spidroin domains onto assembly 

and their influence on the mechanical properties of the spun fibers was analyzed. For this 

purpose, proteins comprising either the repetitive domain in varying lengths ((AQ)12 and 

(AQ)24), or additional terminal domains (N1L(AQ)12, N1L(AQ)24, (AQ)12NR3 and 

(AQ)24NR3) or both (N1L(AQ)12NR3 and N1L(AQ)24NR3) were investigated. 

The next step towards fiber production was the preparation of aqueous spinning dopes. In 

contrast to organic solutions, aqueous dopes enable protein self-assembly and prevent 

possible health risks when using artificial fibers for biomedical applications. Two aqueous 

spinning dopes were developed in this work: 1) a “classical” (CSD) and 2) a “biomimetic” 

spinning dope (BSD). To prepare a CSD, a solution with relatively low spidroin 

concentration (2-3 % (w/v)) was step-wise concentrated using dialysis against a 

polyethylene glycol (PEG) solution, yielding protein concentrations between 10-

17 % (w/v). In order to achieve a self-assembled spinning dope, diluted spidroin solutions 

were dialyzed against a phosphate-containing buffer. This self-assembly leads to a liquid-

liquid phase separation of the proteins into a low-density and a self-assembled high-density 
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phase, yielding concentrations between 10-15 % (w/v). Strikingly, only eADF3-variants 

comprising the carboxy-terminal domain self-assembled upon dialysis against a phosphate-

containing buffer. Even though both types of spinning dopes were suitable for wet-

spinning recombinant fibers from all proteins (if applicable), the mechanical properties of 

the spun fibers differed depending on the used type of dope. For fibers wet-spun from 

CSD, the highest toughness (111 MJ/m3) was achieved with N1L(AQ)12NR3 fibers that 

were post-stretched to 600 % of their initial length. Determining the mechanical properties 

of post-stretched (AQ)12NR3 and N1L(AQ)12NR3 fibers spun from BSD revealed a 

significant increase in extensibility and toughness compared to the corresponding fibers 

spun from CSD. The toughness was equal to ((AQ)12NR3, 171.6 MJ/m3) or even slightly 

exceeded (N1L(AQ)12NR3, 189.0 MJ/m3) that of natural spider silk fibers (167.0 MJ/m3).  

Structural analyses using SAXS measurements of (AQ)12NR3 fibers spun from CSD and 

BSD revealed a β-sheet crystal size of 7.1 nm, which corresponds to the reported size of 

these crystallites in natural spider silk fibers (5.5-7.3 nm). Another characteristic attribute 

of natural spider silk fibers is the strong orientation of the crystalline structures along the 

fiber axis. The orientation of these domains was analyzed using FTIR measurements. In 

comparison to the crystallites in natural spider silk fibers (S = 0.89), the crystallites in 

artificial spider silk fibers were less oriented along the axis (CSD: S = 0.32; BSD: 

S = 0.47). Similar results were obtained when analyzing the low orientation of the 

amorphous areas, even though the difference in orientation between natural (S = 0.17) and 

artificial (CSD: S = 0.10; BSD: S = 0.13) spider silk fibers was not as great. Interestingly, 

the effect of post-stretching on the molecular order in the fibers was higher in fibers spun 

from BSD than CSD, meaning the foundation for a high structural order is already laid in 

the spinning dope. The previously determined superior mechanical properties of fibers 

spun from BSD compared to those spun from CSD can clearly be ascribed to the increased 

alignment of the nanocrystals in the BSD fibers. 

These results indicate that the production of artificial fibers with the mechanical properties 

as seen in natural silk fibers requires a spinning process that integrates shear forces during 

formation of the fiber in order to obtain a high order as found in natural silk fibers. 
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ZUSAMMENFASSUNG 

Natürliche Spinnenseidenfasern besitzen außergewöhnliche Eigenschaften wie ihre 

Kombination aus Stabilität und Dehnbarkeit, die ihnen eine Belastbarkeit verleiht, die kein 

anderes natürliches oder synthetisches faserförmiges Material erreicht. Aufgrund dieser 

Eigenschaften stellen Spinnenseidenfasern ein interessantes Material für verschiedene 

Anwendungen in der Textil-, Automobil- und biomedizinischen Industrie dar. 

Die große Menge und gleichbleibende Qualität, die für industrielle Anwendungen benötigt 

werden, können jedoch nicht durch das Ernten von natürlichen Spinnenseidennetzen oder 

Spinnenfarmen erhalten werden. Daher ist die Produktion von artifiziellen 

Spinnenseidenfasern eine Voraussetzung um dieses Material für industrielle Anwendungen 

verfügbar machen zu können. Obwohl Spinnenseidenfasern und deren außergewöhnliche 

mechanische Eigenschaften seit Jahrzehnten im Fokus der Forschung stehen, blieb die 

Produktion von artifiziellen Fasern, die die mechanischen Eigenschaften der natürlichen 

Spinnenseidenfasern imitieren, bisher erfolglos.  

Das Ziel dieser Arbeit war die Produktion von Fasern basierend auf rekombinanten 

Spinnenseidenproteinen, die dieselbe Zähigkeit wie natürliche Spinnenseidenfasern 

besitzen. Zunächst wurden acht rekombinante Spinnenseidenproteine, genannt eADF3, 

konstruiert. Diese Proteine basieren auf ADF3, einem der Spinnenseidenproteine, aus 

denen der Abseilfaden der Gartenkreuzspinne A. diadematus besteht.  

Spinnenseidenproteine setzen sich aus einer Zentraldomäne mit repetitiven Sequenzen 

zusammen, die von kleinen nicht-repetitiven, amino- bzw. carboxyterminalen Domänen 

flankiert wird. Obwohl diese dreigeteilte Struktur bereits detailliert analysiert wurde, ist 

der Einfluss der terminalen Domänen auf die mechanischen Eigenschaften der 

Spinnenseidenfasern nicht vollständig erklärt. Durch Variation der nicht-repetitiven 

Domänen, sowie der Größe der repetitiven Kerndomäne, wurde deren Einfluss auf das 

Assemblierungsverhalten der Proteine und auf die mechanischen Eigenschaften der 

gesponnenen Fasern analysiert. Zu diesem Zweck wurden Proteine untersucht, die 

entweder die repetitive Domäne in unterschiedlichen Längen ((AQ)12 und (AQ)24), 

zusätzlich eine terminale Domäne (N1L(AQ)12, N1L(AQ)24, (AQ)12NR3 und (AQ)24NR3) 

oder beide terminale Domänen enthielten (N1L(AQ)12NR3 and N1L(AQ)24NR3).  

Als nächster Prozessschritt folgte die Herstellung von wässrigen Spinnlösungen. Im 

Gegensatz zu organischen Lösungen ermöglichen wässrige Spinnlösungen eine 

Selbstassemblierung der Proteine und beugen möglichen Gesundheitsrisiken vor, falls 
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artifizielle Fasern für biomedizinische Anwendungen eingesetzt werden sollen. In dieser 

Arbeit wurden zwei Arten von wässrigen Spinnlösungen entwickelt: 1) eine „klassische“ 

(classical spinning dope, CSD) und 2) eine „biomimetische“ Spinnlösung (biomimetic 

spinning dope, BSD). Zur Herstellung einer CSD wurde eine Lösung mit relativ geringem 

Spinnenseidenproteingehalt (2-3 % (m/V)) schrittweise konzentriert. Hierzu wurde die 

Proteinlösung gegen Polyethylenglykol (PEG) dialysiert und somit Proteinkonzentrationen 

im Bereich von 10-17 % (m/V) erreicht. Biomimetische Spinnlösungen wurden durch eine 

Dialyse der Proteinlösung gegen einen phosphathaltigen Puffer hergestellt. Der 

Phosphatgehalt des Puffers bewirkte eine flüssig-flüssig Phasenseparation der Proteine in 

eine Phase mit geringer Proteinkonzentration und einer Phase mit einer hohen 

Proteinkonzentration von 10-15 % (m/V). Diese Selbstassemblierung nach Dialyse gegen 

einen phosphathaltigen Puffer trat jedoch nur bei eADF3-Varianten auf, die die carboxy-

terminale Domäne enthielten. Obwohl sich beide Arten von Spinnlösungen zum 

Nassspinnen von artifiziellen Fasern aus allen rekombinanten eADF3-Varianten eigneten, 

variierten die mechanischen Eigenschaften der gesponnenen Fasern in Abhängigkeit von 

der eingesetzten Spinnlösung.  

Die größte Zähigkeit der Fasern die aus CSD gesponnen wurden (111 MJ/m3), wurde mit 

600 % nachgestreckten N1L(AQ)12NR3-Fasern erreicht. Im Vergleich zu den 

korrespondierenden Fasern, die aus CSD gesponnen wurden, zeigten nachgestreckte 

(AQ)12NR3- und N1L(AQ)12NR3-Fasern, die aus BSD gesponnen wurden eine signifikant 

erhöhte Extensibilität und Zähigkeit. Die Zähigkeit dieser Fasern entsprach ((AQ)12NR3, 

171.6 MJ/m3) oder überstieg sogar (N1L(AQ)12NR3, 189.0 MJ/m3) die der natürlichen 

Spinnenseidenfasern (167.0 MJ/m3).  

Strukturanalysen mittels SAXS-Messungen von (AQ)12NR3-Fasern die aus CSD und BSD 

gesponnen wurden, ergaben eine Größe der β-Faltblatt-Kristalle von 7.1 nm, die mit der 

berichteten Größe dieser Kristalle in natürlichen Spinnenseidenfasern (5.5-7.3 nm) 

übereinstimmt. Eine weitere charakteristische Eigenschaft natürlicher Spinnenseidenfasern 

ist die starke Ausrichtung der Kristallstrukturen entlang der Faserachse. Die Orientierung 

dieser Strukturen wurde mittels FTIR-Messungen analysiert. Im Vergleich zu der starken 

Ausrichtung der Kristallstrukturen der natürlichen Spinnenseidenfasern (S = 0.89), zeigten 

die Kristalle der artifiziellen Spinnenseidenfasern eine geringere Orientierung entlang der 

Faserachse (CSD: S = 0.32; BSD: S = 0.47).  
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Ähnliche Ergebnisse wurden bei der Analyse der weitestgehend unorientierten amorphen 

Bereiche erhalten, jedoch fiel der Unterschied der Orientierung dieser Bereiche zwischen 

natürlichen (S = 0.17) und artifiziellen (CSD: S = 0.10; BSD: S = 0.13) 

Spinnenseidenfasern geringer aus. Interessanterweise beeinflusste der Effekt des 

Nachstreckens die molekulare Ordnung der Faser, die aus BSD gesponnen wurden, stärker 

als die Fasern, die aus CSD gesponnen wurden. Dies weist darauf hin, dass die Grundlage 

für eine hohe strukturelle Ordnung bereits während der Entstehung der Spinnlösung gelegt 

wird.  

Die zuvor ermittelten, im Vergleich zu Fasern aus CSD gesponnenen, überlegenen 

mechanischen Eigenschaften der Fasern, die aus BSD gesponnen wurden, können 

eindeutig der erhöhten Ausrichtung der molekularen Strukturen zugewiesen werden. Diese 

Ergebnisse weisen darauf hin, dass die Produktion von artifiziellen Fasern mit 

naturähnlichen mechanischen Eigenschaften einen Spinnprozess benötigen, bei dem die 

Proteinlösung bereits während der Faserbildung Scherkräften ausgesetzt ist, um eine hohe 

strukturelle Ordnung wie in natürlichen Spinnenseidenfasern zu generieren.  
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1. INTRODUCTION 

1.1. Silk 

The term “silk” is used to describe protein fibers produced by the classes of arachnids, 

insects and myriapoda, all belonging to the phylum of arthropods (arthropoda).[1] Its wide 

diversity, given by the number of arthropod lineages and the fact that the ability to produce 

silk has evolved multiple times,[1] complicates a distinct definition.[2] Nevertheless, there 

are certain features which are common among all silks. Silks are fibers which consist of 

structural extracorporeal proteins with highly repetitive sequences.[3] In particular, these 

proteins are rich in alanine, serine, and/or glycine and fold into different secondary 

structures, resulting in a semicrystalline material.[3] Additionally, processing of silk 

proteins starts with an aqueous, concentrated solution, also referred to as spinning dope, 

which are stored in specialized glands. The spinning process involves a highly controlled 

phase transition of the aqueous, liquid solution to water insoluble solid fiber, which is 

initiated by shear forces.[4,5] 

 

1.1.1. Insect silk 

Many insect species, including dragonflies, crickets, lacewings, bees and moths produce 

silk for different purposes, such as protective sheltering, offspring protection and 

reproductive purposes.[1] Insect silk-producing glands are found in different parts of the 

insect’s body, of which labial (also called salivary) glands are the most common, followed 

by dermal glands and Malpighian tubules (part of the digestive tract). Life stages in which 

silk is produced also varies between insect types, ranging from silk production being 

limited to larval stages to producing silk in all life stages. Analyses of different silk 

producing insects revealed no obvious causal linkages between the gland that produces the 

silk, the structure of the proteins, and the function of the mature silk.[1] 

For the general public, the term “silk” denotes woven fabrics made of fibers produced by 

the silkworm Bombyx mori (B. mori), which is the most prominent insect producing silk. 

Due to the silk fiber’s shimmering appearance, it has always been used as a luxury raw 

material to produce highly valuable and sophisticated fabrics.[6] 

Silkworm silk production originated in China around 4000-3000 BC[7] and was confined to 

this territory until approx. 200 AD when the silk road enabled its trading. During the next 

millennium silkworm silk cultivation (sericulture) spread around the world and lead to the 

boom of the silk industry in Western Europe in the 12th century. However, due to the 
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industrial revolution and epidemics of silkworm diseases, sericulture in Europe declined, 

helping Japan and China to regain their role in the silk production. Nowadays, China again 

is the world’s largest producer of silkworm silk.[7] 

B. mori has been domesticated from the wild moth B. mandarina and is nowadays 

completely dependent on humans.[8,9] Silkworm larvae in their fifth instar (the stage 

between two successive molts) prepare to enter the pupal stage and therefore weave a 

cocoon to protect themselves during this vulnerable phase of their lifecycle. Before the 

silkworm pupae can undergo metamorphosis and moths emerge from the cocoons the latter 

are immersed in boiling water in order to kill the silkworm pupae. This procedure enables 

the harvest of the whole cocoon, which can weigh up to several grams, and allows 

unraveling of the silk as a single continuous thread, its length varying from 600 to 

1500 m.[10] The silk produced by B. mori silkworm larvae is also known as mulberry silk, 

since the silkworm larvae feed on the leaves of white mulberry trees. Due to its high 

durability, pure white color and individual long fibers, B. mori silk is considered superior 

in quality to other types of silk, such as wild silk from B. mandarina, whose color and 

texture is less homogenous. In contrast to B. mori silk production, wild silks are only 

harvested after the moths have cut themselves out of the cocoon, resulting in smaller fiber 

fragments. Wild silks are often tougher and rougher compared to silk produced by B. mori 

silkworms and impress with their attractive coloring.[6] 

In regards to other natural and synthetic fibrous materials, B. mori silk fibers display a 

moderate strength (0.6 GPa) and high extensibility (18 %), resulting in a high toughness 

(70 MJ/m3) (Table 1).  
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Table 1: The mechanical properties of A. diadematus dragline silk compared with other fibrous materials (adapted from 
[11-15]) 

Material 
Stiffness 

[GPa] 

Strength 

[GPa] 

Extensibility 

[%] 

Toughness 

[MJm-3] 

A. diadematus dragline 8 1.2 24 167 

B. mori cocoon 7 0.6 18 70 

elastin 0.001 0.002 15 2 

nylon 6.6 5 0.95 18 80 

kevlar 49 130 3.6 2.7 50 

steel 200 1.5 0.8 6 

carbon fiber 300 4 1.3 25 

 

B. mori silk is secreted as a double thread (10-25 µm in diameter)[16] from a pair of labial 

glands in the worms head and consists of the protein fibroin which is covered by glue-like 

glycoproteins called sericin.[17] Fibroin itself consists of 3 different components: heavy 

chain (H-chain, approx. 390 kDa), light chain (L-chain, approx. 25 kDa) and a 

glycoprotein called P25 (30 kDa)[18] with a molar ratio of 6:6:1 in mulberry silk.[19] The 

inner silk core is made up of bundles of nanofibrils,[20] which have a mean width of 90-

170 nm[21] and are oriented parallel to the long axis of the silk fiber. Sericin makes up 25-

30 % of weight of the silk protein[22,23] and its stickiness aids the cocoon formation and 

ensures a cohesion by glueing single silk threads together.[24] It is composed of 5 proteins 

with ranging molecular weights of 80 – 309 kDa and the preponderant amino acids were 

determined to be serine (30.7 ± 5.3 %), glycine (13.5 ± 2.4 %) and aspartic acid 

(13.9 ± 1.3 %).[25,26]  

Additionally, the sericin coating acts as a protective coating, shielding the silk thread from 

oxidation and UV radiation and serving as a fungicidal and bactericidal agent.[27] Besides 

its helpful properties, sericin has been associated to human’s immune response towards 

silk.[22] Apart from silkworms, spiders (Araneae) belong to the most prominent silk 

producers.[28]  
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1.1.2. Spider silk 

Due to their outstanding biomedical and mechanical properties, spider silk webs have been 

used by mankind since ancient times.[29] The ancient Greeks exploited the high 

biocompatibility and low immunogenicity of webs as they covered wounds to stop the 

bleeding.[30] Over two thousand years later, in 1710, first scientific studies were performed, 

showing that a spider’s web is capable of supporting the healing process.[22,31,32] Another 

two centuries later, in 1901, first investigations on natural spider silk fibers as suture 

materials for surgery were conducted.[33] Apart from its biomedical properties, spider silks 

mechanical properties have also been exploited throughout history. The fibers 

extraordinary toughness, a combination of moderate strength and a high extensibility, 

enabled Australian aborigines to use spider webs as fishing nets. Aside from fishing nets, 

New Guinea natives produced head gear and bags from spider silk webs.[30] Until today, 

the high toughness is still unmatched by all natural and modern synthetic fibers (Table 

1).[11] Despite the long history of spider silk use, intensive scientific research on spider silk 

fibers has only been conducted in the last decades. Spider silks mechanical performance, 

combined with a high biocompatibility, designates spider silk fibers as a highly desirable 

material for industrial applications, especially in the fields of biomedical applications and 

high-performance fibers.[34,35] Initial successes were achieved using natural spider silk 

fibers for biomedical applications. For example, functional recovery of nerve defects in 

rats and sheep was achieved by employing the fibers as a guiding material.[36,37] 

Additionally, spider dragline silk woven onto steel frames served as a matrix for three 

dimensional skin cell culture.[38] 

 

Female orb-weaving spiders produce up to six types of silk fibers and one glue, which they 

use for different purposes, such as catching prey with a complex web, prey wrapping and 

offspring protection. Each silk is produced in a specialized gland that provides the name of 

the corresponding silk type. The mechanical properties (Table 2) of each silk are adapted 

to their various uses (Figure 1).[39] Even though these glands predominately express one 

spidroin type, they may also produce small amounts of spidroins normally synthesized by 

other silk glands and one spidroin type can itself comprise different sub-types (see chapter 

1.2.2).[40]  
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Figure 1: Schematic presentation of the six different types of spider silk fibers and one glue. 

(modified from [14] by courtesy of the publisher Elsevier) 

 

The outer frame and the radii of a spider web are built up from major ampullate (MA) silk, 

which has a very high tensile strength.[11,41-47] The spider also uses this silk type as a 

lifeline, if it has to escape from a predator.[43,47,48] Among all silk types, MA silk fibers are 

the most intensely studied, because they exhibit a high toughness and are easily obtained 

by forced silking, since spiders constantly secure themselves using MA fibers. The 

outstanding mechanical properties of spider silk fibers are based on the hierarchical setup 

of the fiber and the spidroins (“spidroin” = spider fibroin)[49] involved. MA silk is made up 

of a core-skin structure (Figure 2). The core consists of proteinaceous fibrils which are 

oriented along the long axis of the fiber and can itself be divided into an outer and inner 

region, based on their spidroin content. These fibrils are made up of at least two major 

ampullate spidroins (MaSp), which have a molecular weight of 200-350 kDa (with an 

exception of MaSp1s from the dragline fiber of Cyrtophora moluccensis, 40 kDa). Two 

classes of MaSp proteins have been identified: one with a low (MaSp1) and one with a 

high proline content (MaSp2). Strikingly, in the inner core of MA fibers from N. clavipes 
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both classes of spidroins (MaSp1 and MaSp2) have been identified, whereas in the outer 

core area only MaSp1 was found.[50]  

 

 

Figure 2: Core-shell structure of the dragline silk (modified from [14]). The core of the fiber comprises fibrils that are 
oriented along the fiber axis. On a molecular level, these fibrils consist of crystalline areas that are embedded in an 
amorphous matrix, depending on the amino acid composition. The core is covered by a three-layered shell containing MI 
silk, glycoproteins, and lipids (By courtesy of the publisher Elsevier) 

 

The 150-250 nm thick three-layered skin[51] comprises minor ampullate (MI) silk, 

glycoproteins and lipids[50] and each layer serves distinct purposes. The outer lipid layer 

builds the coat of the fiber[50] and functions as a carrier for pheromones enabling sex and 

species recognition.[52] This 10-20 nm thick lipid layer is only loosely attached and does 

not contribute to the mechanical performance of the fiber.[50] In comparison, the 40-100 nm 

thick glycoprotein-layer[51] is attached more tightly than the lipid layer and thus protects 

the fiber more profoundly from microorganisms. Additionally, the glycoprotein-layer 

serves as a water balance regulator and thus influences the mechanical strength of the fiber 

indirectly, since the water content has a high impact on the contraction state of the fiber.[53] 

The inner layer of the skin consists of MI spidroins and has a thickness of 50-100 nm. 

Apart from protecting the fiber against environmental damage, such as microbial activity 

and chemical agents, this layer also supports the fiber mechanically, because of its 

plasticity.[50]  

MA silk fibers are characterized by their outstanding mechanical properties. Their 

moderate strength (1.2 GPa) combined with a high extensibility (25 %) result in an 

outstanding toughness (167 MJ/m3). The mechanical properties however, vary to a great 

extent between spider species, as well as in the same thread of one spider. Table 2 gives an 

overview of the mechanical properties of each silk type from a selection of spider species.  
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Table 2: Selection of mechanical properties of the different types of spider silk from different spiders (modified from [14,54]) 

  Real values Engineered values   

Silk Stiffness Strength Extensibility Strength Extensibility Toughness Source 
[GPa] [MPa] [%] [MPa] [%] [MJ/m3] 

Major ampullate       
 

 Araneus diadematus 8.0±2.0 1183±334 24±8 824±10 40±3 167±65 [55,56]  

 Araneus gemmoides - 4700±500 23±5 - - - [34] 

 Araneus sericatus 8.6± - 880± - 22±- 710± - 24± - 106± - [57] 

 Argiope argentata 8.0±0.8 1495±65 21±1 1217±56 23±1 136±7 [54] 

 Argiope trifasciata 6.9±0.4 - - 600±50 30±2 90±10 [58] 

 Caerostris darwini 11.5±2.6 1652±208 52±22 - - 354±93 [59] 

 Nephila clavipes 13.8± - 1215± - 17± - - - 111± - [60] 

        

Minor ampullate        

 Araneus diadematus - - - - 34± - - [61] 

 Araneus gemmoides - 1400±100 22±7 - - - [34] 

 Argiope argentata 10.6±1.2 923±154 33±3 669±113 40±5 137±22 [54] 

 Argiope trifasciata 8.9±0.5 - - 483±34 55.6±4 150±12 [62] 

       
 

Flagelliform       
 

 Araneus diadematus 0.003± - 500± - 270± - - - 150± - [11] 

 Araneus sericatus - 1270±45 119±5 296±10 329±32 150±9  

 Argiope argentata 0.001±0.0001 534±40 172±5 95±9 465±26 75±6 [54] 

 Caerostris darwini - 1400±423 101±14 - - 270±91 [59] 

       
 

Tubuliform       
 

 Araneus diadematus 8.7±0.1 - - 270±3 32±1 - [63] 

 Araneus gemmoides - 2300±200 19±2 - - - [34] 

 Argiope argentata 11.6±2.1 476±90 29±2 360±70 34±2 95±17 [54] 

 Argiope bruennichi 9.1± - 390±30 40±7 - - 129±27 [64] 

       
 

Aciniform       
 

 Argiope argentata 10.4±1.4 1052±120 40±2 636±78 51±4 230±31 [50] 

 Argiope trifasciata 9.8±1.1 - - 687±56 83±6 376±39 [62] 

-: no values reported 
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Additionally, the spider uses MI silk as an auxiliary spiral during web construction in order 

to stabilize the initial basic construct. This silk has similar mechanical properties as MA 

silk but its composition differs from MA silk (see chapter 1.2.2).[65-67] 

Another important component of an orb web is its capture spiral, which is based on 

prooteins of the flagelliform gland. Due to its high extensibility (up to 270 %), flagelliform 

silk is able to dissipate the high kinetic energy, which results from the impact of an insect 

in the web.[66,68-73] With its low stiffness of 0.003 GPa, this silk can be regarded as a 

rubber-like material. However, its strength of 500 MPa makes flagelliform silk 10 times 

stronger than other synthetic or natural rubbers. The combination of its high extensibility 

with a moderate strength gives flagelliform silk a toughness almost identical to that of MA 

silk.[11] In order to prevent prey from escaping the web, ecribellate spiders (e.g. black 

widow Latrodectus hesperus) use an aggregate silk, which consists of a mixture of small 

hygroscopic peptides and sticky glycoproteins to cover the capture spiral.[74-76] Cribellate 

spiders (e.g. from the Uloborus sp.) surround their capture spiral with 10 nm thick cribellar 

fibrils instead of a glue in order to prevent prey from escaping. These dry cribellar fibrils 

restrain the prey solely through a combination of hygroscopic and van der Waals 

forces.[77,78] 

Whereas major and minor ampullate and flagelliform silks serve as web scaffold, 

aggregate, pyriform, tubuliform and aciniform silks are produced for accessory functions. 

Pyriform silk serves as an attachment cement of different fibers among themselves, as well 

as an attachment of the orb web on various surfaces, such as trees or walls.[79,80] The spider 

produces these attachment discs by embedding small diameter fibers in a glue-like cement, 

which build a network with large diameter fibers, such as dragline silk threads.[81] The 

viscous liquid solidifies rapidly, producing a strong, adhesive material.[82] In order to 

protect its offspring against predators and parasites, female orb web spiders use tubuliform 

(also referred to as cylindriform) silk to build a tough case around their eggs.[40,83-88] 

Even though tubuliform and MI fibers show similar mechanical properties concerning their 

tensile strength and extensibility, this accessory silk differs significantly from other 

silks.[39] Apart from its low bending stiffness,[39] tubuliform silk is the only type, whose 

production is limited to a spider’s reproductive season.[89] Tubuliform glands are only 

found in female spiders and the synthesis of tubuliform proteins is induced at sexual 

maturation.[54] 

Aciniform silk is used for multiple purposes, such as prey wrapping and as reinforcement 

for pyriform silk, but also as a soft lining inside the egg case.[62,90-92] Strikingly, aciniform 
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silk fibers have the highest toughness out of all silk types. This high toughness, which is 

50 % greater than the highest values measured for major ampullate fibers, is based on 

aciniform’s great extensibility, which is increased fourfold, whereas its strength is only 

half of that of major ampullate fibers.[62] 

 

1.2. Natural silk proteins 

Despite the diversity of silk proteins from different organisms and silk types, these proteins 

contain common patterns. Generally, silkworm silk protein (fibroin) and spider silk protein 

(spidroin) comprise a highly repetitive core domain that contains alternating crystalline and 

amorphous regions strongly influencing the mechanical properties of the spun 

fibers.[11,93,94] Alanine-rich stretches, such as An or (GA)n, build up β-sheets, which are 

stacked into crystallites and are responsible for the high strength of the silk fiber. In 

contrast, glycine-rich amino acid motifs, such as (GGX)n (X = tyrosine, glutamine, 

leucine), fold into 31-helices, β-turns and β-spirals (Figure 3).[95,96] These glycine-rich 

stretches serve as an amorphous matrix for the crystallites and thus provide elasticity and 

flexibility to the fiber. Non-repetitive and highly conserved amino- and carboxy-terminal 

domains flank the repetitive core domain.[22,28,97] and play an important role during protein 

storage at high concentrations and in triggering protein assembly (see chapter 1.4).[98-104] 

 

1.2.1. Fibroin 

As mentioned above, fibroin consist of 3 different components: heavy chain, light chain 

and a glycoprotein called P25. Whereas H- and L-chain are linked together by a disulfide 

bond at the carboxy-terminus of both proteins,[24,105,106] P25 is non-covalently linked 

through hydrophobic interactions.[107] P25 is assumed to act as a chaperone and aids during 

the transport and secretion of the highly insoluble fibroin H-chain,[24,107] which is 

considered to determine the mechanical properties of the silk fibers. H-chain mainly 

consists of non-polar and hydrophobic glycine (45.9 %) and alanine (30.3 %) 

residues.[108,109] The much smaller fibroin L-chain on the other hand exhibits a more 

hydrophilic nature, due to a lower content of alanine (14 %) and glycine (9 %) residues.[110] 

Two crystalline polymorphs are usually distinguished for fibroin: Silk I and Silk II.[111-114] 

Whereas Silk I refers to the dissolved, metastable form during storage in the silk glands, 

Silk II relates to the solid fibroin detected in spun silk fibers.[115] While the detailed 

structure of Silk I is not fully understood and was described as lacking secondary structure, 
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or being partially disordered,[115-117] Silk II closely resembles the structure of spider silk 

spidroins. Similar to spider silk, the crystalline domains of silkworm fibers are also based 

on antiparallel β-sheets and the amorphous regions are made up of β-turns and –loops. 

However, in contrast to spidroins, the anti-parallel β-sheets of fibroin do not consist of 

poly-alanine stretches, but of (GX)n-repeats, where X predominately represents alanine, 

serine, tyrosine, valine or threonine residues.[108,118] Even though the crystalline domains 

constitute a higher total volume (40-50 %) of silkworm silk fibers compared to spider silk 

fibers (30-40 %), these domains are to a greater extent aligned in parallel to the fiber axis 

in spider silk fibers, emphasizing the influence of the alignment on the mechanical 

properties of the fiber.  

 

1.2.2. Spidroin 

One repeat of the repetitive core domain comprises 40-200 amino acids and theses amino 

acid motifs are repeated up to 100 times. Figure 3 shows an overview of structural motifs 

found in the different silk types of A. diadematus and N. clavipes.  

 

 

Figure 3: Structural motifs of various spider silk proteins from A. diadematus and N. clavipes. X: predominantly 
tyrosine, leucine, glutamine, alanine, and serine. aa = amino acid (taken from [14] by courtesy of the publisher Elsevier). 

 

These glycine-rich stretches serve as an amorphous matrix for the crystallites and thus 

provide elasticity and flexibility to the fiber. Contrary to the large repetitive core domain, 
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the terminal domains only consist of 100-150 amino acids and they are folded into α-

helical secondary structures, which are arranged in five helix bundles.[83,119-121] Apart from 

enabling spidroin storage at high concentrations, the terminal domains play an important 

role in triggering spidroin assembly (see chapter 1.4.2).[98-104] 

MI silk comprises two spidroins, MiSp1 and MiSp2, which have a molecular weight of 

approx. 250 kDa. Even though MI silk has similar mechanical properties as MA silk, their 

composition differs greatly. MI spidroins of N. clavipes contain almost no proline residues 

and their glutamic acid content is significantly reduced.[122] Similar to MA spidroins, the 

repetitive region of MI spidroins fold into crystalline and amorphous structures. Even 

though MI silk possesses a high tensile strength, NMR studies showed that only a small 

fraction of alanine residues take part in its β-sheet crystals. In contrast to MA silk, the 

crystallites in MI silk contain a significant amount of glycine, since the length of repeated 

alanine residues is as low as three and these regions are always flanked by GA-blocks. 

Whereas MiSp1 mainly consists of alternating GGXGGY (X = glutamine or alanine) and 

(GA)y(A)z (y = 3-6 and z = 2-5) motifs, the repeat unit of MiSp2 comprises alternating 

(GGX)n (X = tyrosine, glutamine, alanine; n = 1-3) and GAGA motifs.[123] The repetitive 

regions of the spidroin, which include the glycine-alanine crystalline β-sheet stacks, 

separated by amorphous α-helical GGX domains, alternate with 137 amino acid-long non-

repetitive serine-rich spacer regions. In MA silk, the additional hydrophobic interactions of 

the polyalanine-blocks (An) may account for the high tensile strength.[123] Due to its high 

glycine content, the strength of MI silk cannot solely be due to its β-sheet structures, and 

Dicko et al.[66] assumed that cross-linking combined with specific matrix properties 

different to those of MA spidroins have an impact on the high strength of MI silk.  

FTIR-measurements during stretching of MA and MI silk fibers showed significant 

differences in the structural behavior of the two silks. While the β-sheets in MA silk 

remained mostly unchanged, the disordered regions decreased and coiled structures 

became visible.[123] Conversely, in MI silk no conformational changes of the amorphous 

structures were visible, and only the changes of the β-sheet crystals were observed prior to 

breaking of the fiber. It is assumed that the GGX and spacer regions in MI silk cannot 

reversibly withstand the same axial tension as the β-turns in MA silk can.[123] The minor 

ampullate spidroin from A. diadematus ADF1 is similar to the MiSps of N. clavipes. This 

174 amino acid-long protein also comprises two repeating domains, namely (GA)y(A)z and 

GGYGQGY. However, compared to MiSps, tyrosines and glutamines in ADF1 are not as 

highly conserved, and the length of each repeat varies.[123] The gene sequence of the 
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carboxy-terminal domain of ADF1 on the other hand has a high sequence conservation 

with the N. clavipes MiSp gene and it even consists of a possible non-repetitive spacer 

region at the 5’ end of the gene, which is different to that of MiSps, but one stretch is 

identical coding for 13 amino acids.[123] 

In contrast to MA and MI silk, flagelliform silk is mainly composed of one 500 kDa 

protein, which contains more proline and valine and less alanine residues than the other 

two silk types.[122] Contrary to other silk proteins, X-ray diffraction measurements showed 

no crystalline fraction in flagelliform silk, which is attributed to the lack of β-sheet-

building structures such as polyalanine or (GA)n-sequences.[124] Flagelliform proteins of 

N. clavipes mostly contain (GGX)n and (GPGGX)2 motifs (X = serine or tyrosine), which 

build 31-helices and β-turn spirals, and are responsible for the high elasticity and flexibility 

of this silk.[68,73,125] More than 40 adjacent linked β-turns form spring-like spirals, 

presumably adding to the extraordinary extensibility (> 200 %) of the fiber.[126] 

Major and minor ampullate spidroins, as well as flagelliform spidroin, all consist of one or 

more of four amino acid motifs, An, (GA)n, (GGX)n and GPGXn, in different compositions 

and arrangements.[127] Furthermore, these types of silks are all involved in prey capture, 

and their functions are dependent on their outstanding mechanical properties. At the same 

time, the accessory role of pyriform, tubuliform and aciniform silks is also reflected in the 

composition of the respective protein. Since they hardly contain any of the typical amino 

acid motifs found in MaSps, MiSps and flag,[40,89] these motifs appear not to be crucial for 

silks not involved in prey capture.[89] Nevertheless, pyriform, aciniform and tubuliform 

proteins all contain highly-conserved carboxy-terminal domains.  

The protein component of the small diameter fibers found in attachment disc silk is called 

pyriform spidroin (PySp). PySp1 (pyriform spidroin of L. hesperus), apart from other 

spidroins, does not contain conventional subrepeat modules and it lacks glycine and 

proline residues within its repeat units.[81] Additionally, instead of long poly-alanine 

stretches, PySp1 only contains 3 consecutive alanine residues in a regular pattern.[81] Other 

aspects, setting pyriform spidroins apart from the spider silk protein family, are their high 

degree of polar and charged amino acid residues, as well as a high glutamine content.[81,82] 

These features are suspected to have evolved due to PySps distinctive feature of being spun 

into an aqueous matrix of the attachment discs.[81] Additionally, high glutamine content 

may aid protein aggregation which is necessary for a rapid solidification of the attachment 

discs.[82,128] 
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Tubuliform spidroin (TuSp) is the major component of tubuliform silk, which the spider 

uses to build the eggcase. Similar to PySps, the serine-rich and glycine-poor TuSps does 

not contain any of the typical amino acid motifs found in MaSps, MiSps and flag.[40,89]. 

Instead, TuSp comprises a series of new amino acid motifs such as Sn, (SA)n, (SQ)n and 

GX (X = glutamine, asparagine, isoleucine, leucine, alanine, valine, tyrosine, 

phenylalanine and aspartic acid).[89] The high content of large-side-chain amino acid likely 

accounts for twisted crystalline structures found during transmission electron microscopy 

(TEM) studies,[129] which may explain the lower stiffness of tubuliform silk fibers 

compared to minor ampullate silk fibers.[89,130] 

Similar to TuSps, poly-alanine and glycine-alanine stretches are also not present in AcSp1, 

the spidroin constituting aciniform silk fibers of the banded garden spider 

Argiope trifasciata.[62]
 In contrast to other spidroins, AcSp1 consists of over 200 amino 

acid long, complex repeats, which are virtually identical to each other.[62,131] Even the most 

common subrepeat, poly-serine, only accounts for 8.5 % of the repeat unit, and the amino 

acid motif TGPSG only occurs twice in one AcSp1 repeat unit.[62] Despite a similar 

alternation between hydrophobic and hydrophilic regions in AcSp1 compared to MaSps, 

the amino acid composition of AcSp1 is much more evenly distributed than in MaSps.[131] 

 

1.3. Evolution of silk 

As previously described araneoids produce different types of silk for distinguished 

purposes. Whereas MA silk excels in its toughness, the characteristics of MI silk are its 

high strength and flagelliform silk distinguishes itself due to its high elasticity. Sequencing 

of araneoid spidroin genes concluded that the repetitive regions of spider silk proteins can 

be reduced to variable arrangements and frequencies of four amino acid motifs: An, GA, 

GGX and GPG(X)n.
[126] DNA encoding the amino acid motifs An, GA and GGX were 

already found in the repetitive units of basal lineages of spiders, namely Haplogynae and 

Mygalomorphae. Strikingly, An motifs are present in each spidroin from these taxa and 

were found in all lineages of Araneae studied so far.[127] Since Mygalomorphae (tarantulas 

and close relatives) diverged from Araneomorphae at least 240 million years ago (Middle 

Triassic), An motifs have probably been maintained in spider silks since that time.[127] 

Whereas the motif GPG(X)n has only been found in silks produced by araneids, the motifs 

An, GA and GGX are also present in the silks and glues of Lepidopteran larvae, such as 

B. mori.[124] The fundamental differences of silk production between spiders (abdominal 

glands) and lepidopteran larvae (labial glands) indicate a convergent evolution of silks 
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from these taxa.[132] Additional distinctions, such as the number of silks, their gland 

morphology and the life stages in which silk is produced, suggest that different selective 

factors influenced the Lepidopteran and spider’s silk organization and function.[124] 

Nevertheless, all silk fibrous proteins among the Araneidae and Lepidoptera have been 

proposed to belong to the same gene family.[126,133,134] Even though the proteins encoded by 

these genes vary greatly in their structural organization, they are generally composed of β-

sheets (either tightly packed into crystallites or loosely attached), α-helices, β-turns and 

spacer-regions.[126,133,135-137] Due to their highly repetitive nature, all silk genes are 

susceptible to recombination errors and, additionally, they all show significant allelic 

variation, which is likely owed to unequal crossing over.[118,134,138,139] Regardless of all 

their differences, the organization of silk genes and proteins indicate that a dynamic 

evolutionary conflict between genetic processes and natural selection has played a role in 

silk evolution.[124,127,138] 

 

1.4. Natural spinning processes 

1.4.1. Natural silkworm spinning process 

Natural silk spinning is a highly complex process involving several parameters in a highly 

regulated environment. Fibroin and sericin proteins are both produced by cells lining the 

long tubular silk gland, which comprises 3 successive parts: 1) the thin posterior part, 2) 

the wider middle, and 3) the anterior part. In the posterior part of the gland, the main 

fibroin components (H- and L-chain fibroins and P25) are produced.[140] Afterwards, 

fibroin is transported into the middle region of the gland, where sericin is produced and 

where the proteins are stored at high concentrations (20-30 %)[141] During storage, 

aggregation of the highly insoluble fibroin H-chain is likely prevented due to P25 

stabilizing and enhancing hydration of the complex formed with fibroin L-chain. 

Association with P25, which is based on hydrophobic interactions,[18] likely allows an 

exposure of the hydrophilic parts to the surrounding aqueous environment.[24] The fiber 

assembly process starts by transfer of the fibroin and sericin through the gland with 

simultaneous changes in pH and ionic strength of the silk solution. The amino- and 

carboxy-terminal non-repetitive units of the fibroin H-chain may influence the general 

solubility of the protein, but they certainly play an important role in assembly of the 

proteins to a fiber. Due to the ionic changes occurring during passage through the gland, 

the hydrated fibroin complexes elongate, leading to an alignment and cross-linking of the 

proteins.[24] Removal of water and an increase in shear stress, inflicted by spinning, enable 
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the formation of a silk fiber. Silkworms increase the shear stress by moving their heads 

from side to side, which stretches the fiber and further aligns the molecules along the long 

fiber axis, increasing its strength. Sericin, covering both brins, dries more slowly, gluing 

the two threads together and aiding cocoon formation.  

 

1.4.2. Natural spider silk spinning process 

The natural B. mori and spider silk spinning processes are similar, however, there are some 

minor differences. The tail and ampulla of the major ampullate silk gland are covered with 

epithelial cells, which produce and secrete spidroins into the lumen of the gland (Figure 4).  

 

Figure 4: Overview of the natural spider silk spinning process (modified from [142] by courtesy of the publisher Springer 
Science and Business Media).  

 

The presence of chaotropic sodium and chloride ions in the lumen in combination with 

spidroin pre-assembly enables a storage of the spidroins at very high concentrations (up to 

50 % (w/v)).[143] From the ampulla, the spinning dope passes into an S-shaped tapered 

duct, where the transition from liquid to solid occurs. This process is explained by two 

theories, both of which are not mutually exclusive. The first theory regards the formation 

of micellar-like structures, which were detected during in vitro analysis of natural silk 

glands. The hydrophilic terminal domains of the spidroin form the interface of the 

micelles, shielding the hydrophobic areas from the surrounding aqueous 

environment.[15,100,144] However, in vivo analysis displayed a liquid crystal behavior of the 

spinning dope, providing the second theory.[45,55] In the spinning duct, the chaotropic 

sodium and chloride ions are replaced by the more kosmotropic potassium and phosphate 

ions, resulting in a salting-out of the spidroins.[145,146] Additionally, carbonic anhydrase[147] 



INTRODUCTION 

 
21 

causes an acidification from pH 7.2 to pH 5.7[148] along the duct, and this pH drop has 

contrary structural effects on the non-repetitive terminal domains of the spidroins. The 

glutamic acid residues of the amino-terminal domain are protonated sequentially, leading 

to a structural rearrangement resulting in the dimerization of this domain in an antiparallel 

manner.[149] Whereas the amino-terminal domain is stabilized by the acidification, the 

carboxy-terminal domain is destabilized. In combination with the addition of phosphate 

ions, this leads to an exposition of the hydrophobic areas within the carboxy-terminal 

domains enabling a parallel alignment of associated core domains.[100-102] The parallel 

(carboxy-terminal domain) and antiparallel (amino-terminal domain) orientation of the 

non-repetitive domains result in an endless spidroin network. The spinning duct is lined by 

the cuticular intima layer. Apart from supporting the spinning duct and protecting the 

epithelial cells, this layer is hypothesized to resemble a hollow fiber dialysis membrane 

and is responsible for the dehydration of the spinning dope.[150] Towards the end of the 

spinning process, excess water is resorbed by the cuticular intima layer and shear-stress is 

increased due to the tapering of the spinning duct and pulling of the fiber from the spider’s 

abdomen. Recent molecular dynamics simulations[151] showed that shear stress induces the 

transition of a largely disordered structure into β-sheet structures in the poly-alanine 

region. Additionally, increasing shear stress and water removal results in a final alignment 

of the spidroins followed by solidification of the fiber.[152,153] The spider pulls the solid 

fiber from the spinneret, controlling the reeling speed either by using its hind legs or its 

body weight. By influencing the size and orientation of the β-sheet crystals, the reeling 

speed determines the mechanical properties of the silk fiber.[154] Compared to the quick 

formation of the liquid crystalline phase, the solid crystalline phase is formed slowly,[155] 

depending on the initial concentration and supersaturation of the spidroin solution. 

Shearing and post-stretching result in an extension of the protein chains, bringing them 

closer to each other, increasing the local protein concentration and thus triggering crystal 

nucleation between the protein chains. Applying a high reeling speed leads to a high β-

sheet crystal nucleus density, resulting in fibers comprising smaller crystallites, but with an 

increased crystal proportion.[154] Additionally, a high reeling speed induces a stronger 

orientation of the β-sheet crystals along the fiber axis.[154,156] 

 

1.5. Structure vs. Function 

As mentioned above, the crystalline and amorphous regions strongly influence the 

mechanical properties of the spun fibers. A fraction of the amorphous protein chains 
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connecting the nanocrystals is pre-stressed,[157] causing a microscopic non-equilibrium 

state in the mature fiber, which has been suggested to be the cause for the effect of 

supercontraction[158,159] in major ampullate (MA) spider silk. Supercontraction is the ability 

of spider silk to shrink up to 50 % when exposed to humidity.[61] Experiments using FTIR-

spectroscopy in combination with mechanical forces (unidirectional stress or hydrostatic 

pressure) were used to demonstrate that this microscopic non-equilibrium state can be 

influenced through external stress. Stretching the fiber increases the stress on the protein 

chains, which results in a spectral red shift of the vibration peak corresponding to the β-

sheet nanocrystals, whereas hydrostatic pressure on the fiber reduces the pre-stress which 

can be observed in a blue shift of the vibration peak.[160] It has been suggested that the load 

applied to a fiber is transported through the amorphous matrix to the nanocrystals, where it 

is transferred between chains, reinforcing the fiber similar to cross-linked polymer 

networks.[146,161]  

The nanometer-size crystallites are made up of tightly stacked anti-parallel β-strands 

connected by hydrogen bonds, which contribute to the high strength of the 

nanocrystals.[57,162,163] Simulations revealed that under shear, these hydrogen bonds are 

considerably deformed in a small area of a few bonds. In this area, the hydrogen bonds act 

cooperatively, delocalizing the deformation and rupture of hydrogen bonds.[26,56,57,63] 

Through this cooperative deformation the weak, non-covalent hydrogen bonds resist to 

shear failure, essentially contributing to the strength of the nanocrystals. Keten et al.
[162] 

performed pull-out and bending simulations to determine the size-dependent lateral 

stiffness of β-sheet nanocrystals during lateral loading, which represents the key loading 

condition of silk nanocrystals.[162,164-166] In order to examine the deformation and fracture 

behavior of the β-sheets at large forces, the middle β-strand of a crystal was pulled out 

while the outermost strands were fixed in simulations. During bending experiments, one 

end of the nanocrystal stayed fixed while a constant lateral force was applied to the other 

end. This set-up was used, because deformations of small β-sheet crystals are controlled by 

shear, whereas large crystals are dominated by bending. Additionally to the cooperative 

deformation, if a loaded β-sheet is pulled out of the nanocrystal, its hydrogen bonds can 

reform after an initial fracture, an ability referred to as stick-slip mechanism which 

considerably increases the strength of the crystals. Using computational experiments, the 

breaking and reforming of the nanocrystals hydrogen bonds was displayed by peaks in a 

force-displacement profile, leading to a considerable increase of the total dissipated 

energy.[161,162] While the hydrogen bonds in small crystals deform cooperatively in order to 

resist shear load, in large crystals, the hydrogen bonds are in tension, preventing this 
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cooperation. The bending to shear transition length was determined at about 2.5 nm.[161,162] 

Pull-out simulations of crystals with different sizes revealed that small crystals show a 

strong and stiff reaction, requiring greater pull-out forces and, therefore, implying a higher 

strength. The crystal size where strength, resilience and toughness were maximized was 

defined as the critical nanoconfinement size. The maximum initial stiffness, breaking 

strength and toughness was determined for crystals of about 3 nm in length. Resilience, 

meaning the elastic energy storage before initial failure, was shown to increase with a 

decrease in crystal size. The critical crystal width, resembling the size of one β-strand, was 

determined to be about 1-2 nm. Larger crystals were shown to be brittle and fail at a lower 

load. In these crystals, a crack-like flaw occurred due to local failure of hydrogen bonds 

under tension.  

Even though the crystalline and amorphous areas were shown to be responsible for the 

strength and elasticity of the fiber, the spidroin secondary structure is not the only factor 

influencing the fibers mechanical properties. Based on MaSp2 of Argiope aurantia 

Brooks et al.
[167] and Albertson et al.

[168] designed three recombinant proteins with 

increasing elasticity (GPGXX) to strength (An) motif ratio, in order to determine the 

influence of these motifs on the mechanical properties of the spun fibers. It was 

hypothesized that fibers based on a spidroin with one motif each would be the strongest 

and least elastic of the fibers, while those containing a 3:1 ratio of elasticity to strength 

motif would yield the most elastic and least strong fibers. Surprisingly, the fibers 

containing the highest elasticity to strength ratio were shown to be the strongest 

(37.2 MPa), followed by fibers comprising the lowest elasticity to strength ratio 

(23.0 MPa). Since this behavior was not as expected, it was assumed that the mechanical 

properties are not only influenced by the primary and secondary structure of the proteins, 

but more importantly by the correct fiber assembly and alignment of the polyalanine motifs 

into β-sheets, in order to allow for the complex interaction of amorphous and crystalline 

areas (tertiary and quaternary structure).  

 

Stress-strain curves, which are used to analyze material properties upon stretching, are 

commonly used to determine the mechanical properties of spider silk fibers. The 

characteristic stress-strain curve of spider silk fibers demonstrates their non-linear behavior 

and can be divided into four sections (Figure 5).  
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Figure 5: Characteristic stress-strain curve of spider silk fibers. 1) initial stiffening phase, 2) softening phase, 3) 
stiffening phase, 4) rupture of the fiber. 

 

The first phase (1) is characterized by an initial stiff behavior of the fiber.[169] During this 

initial phase, the amorphous area of the composite is homogeneously stretched until a yield 

point is reached. At yield point, the hydrogen bonds of the 31-helices, β-turns and β-spirals 

forming the amorphous area break.[170,171] Next follows a softening phase (2), during which 

the amorphous phase unfolds along the stretching direction.[169] Due to the broken 

hydrogen bonds, the secondary structures unwind and reveal their hidden length.[170,171] 

During this phase, a decrease in β-turns along with an increase in β-strands was observed, 

meaning new hydrogen bonds were formed that build small β-sheet crystallites in the 

amorphous areas.[169,171] Raman analysis with simultaneously applied strain showed a 

perfect correlation between the wavenumber shift of hydrogen bonds under strain with the 

stress-strain behavior of the silk fibers.[172-174] This phase is followed by another stiffening 

phase (3) during which the load is transferred from the fully extended amorphous area to 

the β-sheet crystallites.[169,170] Additionally to the stick-slip (shear) failure, it was 

hypothesized that the stiffening behavior is caused by an unfolding of β-sheet crystals.[175] 

Using molecular dynamic calculations, the two mechanisms were compared and the 

following process was proposed: At first, failure of the β-sheet crystals occurs by the stick-

slip mechanism, leading to the formation of smaller crystals or the separation of one β-

sheet. If the failure strength of the newly build small crystal is greater than that of the 

original crystal, a stiffening behavior can be observed. Secondly, once the β-sheets are 

completely unfolded and stable, they function as a fiber reinforcing of the nanocomposite, 

leading to a secondary stiffening phase until the fiber ruptures (4).[162,170,176]  
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Summarizing, the nanoconfinement of β-sheet crystals plays an indispensable role in 

obtaining the great strength, extensibility and toughness of spider silk fibers. The 

cooperative deformation has been shown to be highly dependent on the size of the crystals 

and is absent once the crystals surpass a critical size. Given the plain amino acid sequence 

of β-sheet crystals, the mechanical properties do not arise from their chemical features 

(such as covalent bonds), but from the strict control over the structural arrangement. The 

combination of β-sheet crystals and an amorphous phase provides a great strength, 

extensibility and toughness to the silk fiber.  

 

1.6. Industrial demand for silk 

Due to the above mentioned outstanding mechanical and biomedical properties of silk 

fibers, there is a high demand to use silk fibers industrially, and great efforts have been 

made to achieve this goal.  

The process of farming the silkworm B. mori and harvesting its silk was well established 

and optimized to produce large amounts of silk with consistent quality. In the first stage of 

this process, a female silkworm lays 300-400 eggs and dies almost instantly afterwards.[6] 

These eggs are incubated for 10 days until the larvae hatch and begin their feeding period. 

For 6 weeks, a larva constantly eats mulberry leaves and molts 4 times until it reaches its 

fifth instar.[177] During this life stage, the larva spins silk fibers to build its cocoon, which 

protects it against microbial degradation and potential predators during its metamorphosis. 

Before the moth emerges from the cocoon, it’s killed by immersing it in boiling water, thus 

the whole cocoon can be unraveled as a continuous fiber. A cocoon weighing several 

grams yields a fiber with a length between 600 to 1500 m.[10] 

Because the mechanical properties of silkworm silk are inferior to that of spider silk fibers, 

an industrialization of spider silk production is highly desired. Farming of spiders is very 

time-consuming and cost-intensive, since spiders exhibit a territorial and cannibalistic 

behavior and cannot be kept in close quarters. Additionally, “forced silking”, a process 

where spider silk fibers are pulled from the spinneret of the spider and reeled up onto a 

substrate (e.g. a motorized cylinder), only yields a few mg per spider in one silking 

session.[178] Further, the mechanical properties of fibers obtained by forced silking of 

spiders held in captivity, displayed varying mechanical properties, depending on the 

current climate and ambience, the applied parameters during silking as well as the spider’s 

nutrition.[13,34,150,179-184] In general, mechanical properties of silk fibers vary, even for the 

same thread from the same spider.[185,186] In conclusion, to invest a great deal of time and 
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money in order to obtain low amounts of fibers with varying mechanical properties is not 

feasible for industrial application of spider silk fibers. One approach to avoid variations in 

quality was to dissolve natural spider silk fibers in varying solvents and to spin these 

reconstituted silks into fibers.  

 

1.6.1. Reconstituted spider silk 

Spinning dopes made from reconstituted insect and spider silk showed significant 

differences to natural silk dopes,[187] which is based on the harsh conditions needed to 

dissolve silk fibers. It has been shown that high temperatures and chaotropic agents caused 

severe degradation[188-190] and conformation changes[111,190] during dope preparation. 

Consequently, fibers spun from reconstituted silk dopes did neither have the structural 

integrity,[21] nor the mechanical properties[13,191-196] of natural silk fibers.  

Seidel et al.
[197,198] dissolved N. clavipes MA fibers in HFIP to a concentration of 

2.5 % (w/w) and used wet-spinning to produce reconstituted spider silk fibers. The 

spinning dope was extruded into an acetone bath and the formed fibers were either directly 

post-stretched in air or immersed in water prior to poststretching. In comparison to natural 

MA silk fibers, these fibers showed a much higher extensibility of 100 %, but a lower 

strength of 320 MPa and a Young’s modulus of 8 GPa.[197] In contrast, Shao et al.
[194] 

hand-drew fibers from reconstituted Nephila edulis MA silk, which exhibited a MA-silk 

like extensibility of 10-27 % and a Young’s modulus of 6 GPa, but a much inferior 

breaking strength of 100-140 MPa.[194] In this approach, the natural spider silk fibers were 

dissolved in buffered 8 M guanidinium chloride followed by removal of the solvent by gel 

filtration. From the obtained aqueous spinning dope, the group was able to hand-draw 

fibers.[194] Since reconstituted silk fibers are made from natural spider silk and access to the 

natural material is limited, producing artificial fibers from reconstituted silk dopes does not 

lead to the desired results. To get access to this outstanding material nevertheless, different 

approaches have been tested.  

1.6.2. Transgenic silkworms producing silkworm/spider silk composite fibers 

Another way to obtain large amounts of silk fibers with mechanical properties superior to 

that of the silkworm silk fibers, is to genetically modify silkworms to produce 

silkworm/spider silk composite fibers. Stable germline transformation of B. mori was 

achieved by using a piggyBac-derived vector, which is able to transpose chromosomes into 

B. mori and thus enables silkworm transformation with various genes.[199] Generally, to 
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create transgenic silkworms, genes are designed that encode synthetic spider silk-like 

sequences, as well as B. mori fibroin sequences and a B. mori promoter, which targets the 

protein production to the silk gland of the silkworm. These genes are then cloned into a 

piggyBac-vector, which is injected into B. mori eggs.  

As mentioned above, the fibroin H-chain is considered to determine the mechanical 

properties of the silkworm silk fibers and therefore in several approaches, the fibroin H-

chain genes were modified[200-202] to produce H-chain/spider silk protein, which dimerized 

with fibroin L-chain in the silk gland. Kuwana et al.
[200] used the gene coding for a MA 

spidroin of Araneus ventricosus to generate transgenic silkworms that produced cocoon 

silk comprising the fusion protein of the fibroin H-chain and MA spidroin. The achieved 

spidroin content ranged from 0.37 to 0.61 % (w/w) of the fusion protein. The best 

performing composite fibers showed a slight increase in strength (590 MPa) and 

extensibility (28 %), resulting in an improved toughness (120 MJ/m3) compared to the 

properties of the parental silkworm silk (520 MPa, 20 % and 80 MJ/m3, respectively). In a 

similar approach, Zhu et al.
[202] incorporated genes coding for MA silk of N. clavipes into 

the silkworms fibroin H-chain, achieving a fusion protein content in the composite fibers 

of 1-6 %. The best performing composite fiber showed a small increase in tensile strength 

(395 MPa), but no increase in extensibility (24 %) in comparison to the parental B. mori 

fiber (322 MPa, 22 %, respectively). [202] With a similar set-up, Teule et al.
[201] achieved a 

fusion protein content in the composite fibers of 2-5 %. The best mechanical performance 

was obtained with a single composite silk fiber from one silkworm showing a toughness of 

167.2 MJ/m3, even surpassing that of natural N. clavipes MA silk (138.7 MJ/m3).[201] In a 

different approach, Wen et al.
[203] used a sericin promoter to target the spider silk protein 

component based on the MA silk of N. clavata to the sericin layer of the silk fiber.[203] On 

average, the composite fibers showed an increased strength (660 MPa) and extensibility 

(18.5 %) when compared to the parental silkworm silk (564 MPa and 15.3 %, 

respectively).[203] 

In summary, the composite fibers showed an increase in breaking strain, breaking stress 

and toughness compared to the mechanical properties of natural silkworm silk. Despite 

reaching a breaking strain similar to that of MA silk fibers, the breaking stress and 

toughness of the composite fibers were still inferior (apart from a single outlier).[201] This 

performance lies in the nature of composite materials, which merge the properties of both 

employed materials and thus the mechanical properties of the composite fiber will always 

be inferior to those of natural spider MA silk fibers. Theoretically, a breaking stress of 
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cocoon silk equal to that of spider dragline silk could be obtained if a spidroin content of 

5-8 %[200] was achieved. To this day, the maximum amount of modified H-chain/spider silk 

protein against total fibroin in a cocoon spun from a transgenic silkworm has been 

2-5 %.[201] 

 

1.6.3. Recombinant production of spider silk proteins 

A third approach is to produce recombinant spider silk proteins biotechnologically 

followed by subsequent processing into fibers. Different host organisms, such as 

prokaryotes, eukaryotes, plants and even transgenic animals were used to produce 

recombinant spidroins, with varying success.  

The expression of partial cDNAs in different host organisms has only led to limited 

success (protein yields: 4-150 mg/L[14,98,204]) because large differences in codon usages 

between spiders and the used host organisms cause inefficient translations. Additionally, 

the highly repetitive nature of spider silk genes hinders its gene manipulation and 

amplification.[12,69] In order to overcome these difficulties, synthetic genes were designed 

that encode proteins which differ from the natural spidroins but possess their key features. 

The expression of synthetic genes in different host organisms resulted in varying yields, 

which were ranging from 2 mg/L[205] to 300 mg/L[206] to 3 g/L[207] and was summarized by 

Heidebrecht & Scheibel (2013).[14] Regardless of the used host organisms, common 

problems using synthetic genes for spidroin production include inefficient transcription[208] 

because of secondary structure of mRNA and limitations of the cells’ translational 

machinery, such as the depletion of tRNA pools[209] due to the highly repetitive nature of 

spider silk genes. With rising molecular weight of the proteins, heterologous proteins are 

produced due to truncations and gene instability.[191,210,211] Even though this problem is 

more pronounced using prokaryotes, it also occurs in eukaryotes. Compared to cytosolic 

production of spidroins, secretion of the spidroins to the extracellular environment 

simplifies the purification and results in higher spidroin yields. However, secretory 

production is more complex and thus more time-consuming and prone to errors.[212,213] 

 

1.6.4. Artificial spider silk fiber spinning 

1.6.4.1. Spinning dope preparation 

For the first steps towards artificial spider silk fibers, the produced spidroins have to be 

dissolved. Organic solvents exhibiting strong hydrogen bonding properties are therefore 
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commonly used, as they assure strong solvent-protein interactions and allow production of 

highly concentrated spinning dopes.[214] One commonly used solvent is 1,1,1,3,3,3-

hexafluoro-2-propanol (HFIP), whereby spinning dopes with spidroin concentrations of 

10-30 % (w/v) can easily be achieved.[167,211,215-218] Additionally, formic acid (FA) has been 

employed as a solvent of spidroins.[219] The highest concentration (30 %) was achieved by 

dissolving lyophilized spidroin overnight in either a mixture containing NaNCS and 

acetate in water or in a 10 % solution of LiCl in 90 % formic acid.[220] Despite these harsh 

conditions a part of the spidroin did not dissolve and had to be removed by 

centrifugation.[220] 

Despite high spidroin solubility, using organic solvents to produce spinning dopes has 

several disadvantages. Firstly, the putative toxicity of organic spinning dopes may cause 

adverse health effects, especially if the spun fibers are to be used for biomedical 

applications like as suture materials. Secondly, high spidroin solubility and, therefore, 

strong protein-solvent interactions may also prevent spidroin assembly. Thirdly, 

application of organic solvents for industrial-scale production is less favorable, due to high 

costs and strict regulations of organic waste disposal. For those reasons, employment of an 

aqueous spinning dope that allows spidroin self-assembly and does not inflict possible 

health risks of fibers spun for medical applications is desired.  

Although the advantages of using aqueous spinning dopes are evident, these dopes are 

difficult to prepare. Often, spidroins are purified using a precipitation step such as 

lyophilization or salting-out. While these steps increase the spidroins purity and prevent 

degradation during storage, resolving a precipitated spidroin poses a great challenge. 

Concentrations achieved for spidroins in aqueous solutions range from 10 to 28 %, by far 

not reaching that of natural spinning dopes.[144,191,220-222]  

Jones et al.
[222] added a solution containing propionic acid and imidazole to the spidroin 

and used sonication and heating the suspension to 130 °C for more than 48 hours to 

dissolve the spidroin, achieving concentrations below 12 % (w/v).[222] This indicates the 

high energy input that is necessary to resolve spidroins directly at high concentrations. In a 

different approach, the purified spidroins were not precipitated, but dialyzed into a buffer 

containing 1 M urea, 10 mM NaH2PO4, 1 mM Tris and 20 mM NaCl after purification.[221] 

This solution was then concentrated by ultrafiltration till concentrations up to 25 % of 

spidroin were reached.[221] Several research groups reported a spontaneous self-assembly 

of spidroins in aqueous buffers into fibers or films after purification.[144,218,223,224] Although 

exploiting the spidroins intrinsic ability to self-assemble in aqueous buffers seems to be a 
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promising approach, this process has to be controlled and adjustable to be able to produce 

fibers with mechanical properties similar to those formed in nature.  

 

1.6.4.2. Spinning methods and post-treatment 

Commonly used artificial spinning methods differ significantly from natural silk spinning 

processes. Generally, methods used for spinning out of solution are wet spinning, dry 

spinning and electrospinning. During wet spinning, a polymer or protein solution is 

extruded into a coagulation bath, where the polymer precipitates and a fiber is formed. In 

dry spinning and electrospinning, polymers or proteins are solved in a high volatile organic 

solvent and extruded into air. While fiber formation depends solely on the fast evaporation 

of the solvent during the dry spinning process, during electrospinning, the dope is extruded 

into an electrostatic field, which triggers repulsive forces in the extruded solution. This 

leads to an eruption of a thin jet that is stretched towards the counter electrode (e.g. a 

collector), during which time the solvent evaporates and a solid fiber is formed.[225,226] 

Depending on the used collector, the spun fiber is deposited randomly or oriented in a 

certain direction, yielding a nonwoven mat or oriented fiber bundle.[227] 

Theoretically, all three spinning methods are suitable for spider silk fiber spinning, because 

organic as well as aqueous spinning dopes can be used. Practically, however, attempts to 

dry-spin silk fibers have not been successful so far, since dry-spinning out of an organic 

solution results in mechanically unstable fibers.[15] Using an aqueous spinning dope for 

dry-spinning was not achieved so far, because this technique relies on a highly volatile 

solvent for fast fiber formation. Electrospinning and wet spinning, on the other hand, have 

successfully been used for producing artificial spider silk fibers. However, tensile testing 

of electrospun artificial fibers showed inferior mechanical properties compared to that of 

natural spider silk fibers.[220,228] Since electrospun fibers are commonly used as nonwoven 

meshes for filter[229] or biomedical applications[205,230-232] without the need of extraordinary 

mechanical properties, in this case, mechanical properties can be neglected. Therefore, of 

the commonly known spinning methods, only wet-spinning was employed successfully for 

producing artificial spider silk fibers with respectable mechanical properties.  

 

Spinning dope extrusion into coagulation baths, containing monohydric alcohols, such as 

methanol, ethanol, or isopropanol initiates fiber formation through dehydration of the 

spidroins, yielding single spidroin fibers with a diameter in the micrometer range. 
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Compared to other spinning techniques, wet spinning has the advantage of a rather “slow” 

fiber formation that enables a high degree of alignment of the spidroins during the spinning 

process. An alignment of the spidroins is a prerequisite to produce fibers with outstanding 

mechanical properties, since it allows the formation of a structural hierarchy of the 

spidroins. Another advantage is the variability of the wet spinning process. By changing 

the spinning dope and/or the composition of the coagulation bath, fiber properties are 

influenced, allowing the production of fibers with tunable mechanical properties. Apart 

from pure alcohols,[168,202,215,216,222] mixtures with water are often used as coagulation 

baths.[191,211,218,220,221] The presence of water slows down the coagulation rate of the 

spidroins, and, at the same time, works as a plasticizer for the spun fiber, reducing its 

brittleness and preventing a clogging of the spinneret.[217] Post-treatment of the spun fibers, 

such as washing and/or stretching by drawing them in air or inside a bath, removes the 

solvent or coagulation bath residues after spinning and improves the mechanical properties 

of the fibers. Post-stretching has been shown to cause a higher content of β-sheets[216] and 

to align the β-sheet crystals along the long fiber axis.[15] Using baths consisting of primary 

alcohols (e.g. methanol, ethanol) for post-stretching was shown to induce a higher strength 

and stiffness in fibers, whereas secondary alcohols (e.g. isopropanol) added to the fibers 

extensibility.[168] Unlike coagulation baths, post-stretching baths containing pure alcohols 

are not feasible for post-treatment of the fibers, since the absence of water results in brittle 

fibers. Water adds plasticity to the fibers, enabling the proteins to rearrange and align along 

the fiber axis. Further, the post-stretching bath can be heated in order to increase plasticity 

of the fiber. Although a range of parameters have been shown to work for a lot of fibers 

spun from different protein solutions (see chapter 1.6.4.3), the optimal combination of the 

different parameters, such as the type of bath, water content and temperature have to be 

tuned for each protein and type of spinning dope.  

 

1.6.4.3. Recombinant spider silk fibers produced by wet-spinning 

The majority of recombinant spider silk fibers were produced by wet-spinning from a 

HFIP-based spinning dope, and all of the recombinant proteins were produced by using 

E. coli as a host organism.  

An et al.
[216] used HFIP and recombinant spidroins based on MaSp1 of N. clavipes to 

produce a 30 % (w/v) spinning dope. After wet-spinning into 100 % isopropanol, the fibers 

were immersed in a bath containing a 75 % isopropanol/water mixture and were stretched 

to three times their initial length. Using these spinning and post-treatment parameters, the 
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recombinant fibers obtained a Young’s modulus (6 GPa) and extensibility (31 %) similar 

to that of natural MA silk fibers (8 GPa and 24 %, respectively), but showed a strength 

(233 MPa) and toughness (47 MJ/m3) far below that of the natural role model (1183 MPa 

and 167 MJ/m3) (Table 3). 
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Table 3: Overview of wet-spinning conditions used for producing recombinant spider silk fibers from organic spinning dopes including the mechanical properties of fibers. 

Wet-spinning conditions Mechanical Properties  

Spinning dope Max. protein 
concentration 

Coagulation 
bath 

Post-treatment Stiffness Strength Extensibility Toughness Source 

 [%]   [GPa] [MPa] [%] [MJm
-3

]  

HFIP 30 100 % IPA 75 % IPA 6.2± - 233.5± - 31.3± - 46.8± - 
[216]

 

HFIP (addition of 15 % 
water prior to spinning) 

30 90 % IPA N/A 0.8±0.5 28.6±17.2 3.2±1.2 0.5±0.3 
[218]

 

HFIP (5 % v/v added to 
dope prior to spinning) 

15 100 % IPA 80 % IPA - 150.6±31.3 84.5±37.8 89.1±23.9 
[215]

 

HFIP (evaporation of 
HFIP prior to spinning) 

60 100 % IPA 85 % IPA, 60 °C 1.8± - 34.4± - 302.7± - 35.4± - 
[168]

 

HFIP 12 IPA N/A 0.04±0.03 49.5±7.8 3.6±2.6 - 
[167]

 

HFIP 20 90 % MeOH 90 % MeOH 21±4 508±108 15±5 - 
[211]

 

HFIP 10 100 mM ZnCl2, 
1 mM FeCl3 in 
H2O  

1
st
 draw: air 

2
nd

 draw: 50-
70 % EtOH 

9.3±3 308±57 10.0± - - 
[217]

 

60 % NaNCS, 
20 % acetate solution, 
 mix ratio: 8:2 or 
10 % LiCl in 
90 % formic acid (FA) 

30 96 % EtOH 1
st
 draw: 92 % 

EtOH 

2
nd

 draw: 75 % 
EtOH 

- 100-150 5-15 - 
[220]

 

A. diadematus dragline N/A N/A N/A 8±2 1183±334 24±8 167±65 
[15]

 

MeOH: methanol; EtOH: ethanol; IPA: isopropyl alcohol; HFIP: 1,1,1,3,3,3-Hexafluoro-2-propanol; N/A:not applicable; -: values not reported 
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Teule et al.
[218] used a spinning dope containing 25-30 % (w/v) of a recombinant spidroin 

based on the flagelliform protein of N. clavipes dissolved in HFIP to produce fibers. Prior 

to wet-spinning into a 90 % isopropanol coagulation bath, 15 % (v/v) water were added to 

the spinning dope. Since no post-treatment of the spun fibers was performed, the 

mechanical properties of the obtained fibers were far below that of natural spider silk fibers 

(Table 3).[218] In order to improve the mechanical properties of the spun fibers, prior to 

spinning, 5 % (v/v) toluene was added to the spinning dope containing 15 % recombinant 

flag-like proteins dissolved in HFIP.[215] Instead of spinning into a 90 % isopropanol bath, 

a coagulation bath containing 100 % isopropanol was chosen. Importantly, the as-spun 

fibers were post-stretched in a bath containing an 80 % isopropanol/water mixture, which 

led to improved mechanical properties compared to the fibers produced without post-

stretching (Table 3).[215] 

As mentioned above, one research group produced three different proteins with varying 

motif ratios.[167,168] Even though the mechanical properties of the spun fibers varied 

depending on the post-stretching conditions applied, the best performing fibers were 

obtained by extruding a spinning dope containing the protein with the highest amorphous 

to crystallinity ratio into a 100 % isopropanol bath. After post-stretching the spun fibers in 

a 75 % isopropanol/water mixture, the fibers showed a strength of 28 MPa, a stiffness of 

1.8 GPa, an extensibility of 93 % and a toughness of 26 MJ/m3.[168] Even though the 

extensibility of these fibers is almost 4-fold that of natural spider silk fibers, the overall 

mechanical properties are far below that of the natural silk.  

By far the highest strength achieved for recombinant spider silk fibers was obtained by 

using a 285 kDa protein based on MaSp1 of N. clavipes.[211] This protein was solved in 

HFIP at a concentration of 20 % (w/v) and extruded into a coagulation bath containing a 

90 % methanol/water mixture. After spinning, the fibers were post-stretched in the same 

bath to five times their original length. Even though this method yielded fibers with a high 

strength of 508 MPa and outstanding stiffness of 21 GPa, the fibers showed a lower 

extensibility (15 %) compared to natural silk, resulting in a medium toughness of approx. 

70 MJ/m3.[211] 

Lin et al. [217] chose an inorganic aqueous coagulation bath containing 100 mM ZnCl2 and 

1 mM FeCl3 for solidification of a recombinant spidroin based on TuSp1 from 

N. antipodiana. For wet-spinning, a 10 % (w/v) protein solution in HFIP was used, and the 

as-spun fibers were post-stretched in air followed by an additional post-stretching in 50-

70 % (v/v) ethanol in water. The obtained fibers showed a higher strength (308 MPa) and 
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Young’s modulus (9 GPa) than the natural eggcase silk (230 MPa and 6 GPa), but a lower 

extensibility (10 %) compared to the template (63 %).[217] 

As mentioned above, a core issue of producing aqueous spinning dopes is the solubility of 

the recombinant spidroin. Purification of recombinant spidroins often includes a 

precipitation step such as lyophilization or salting-out and resolving a precipitated spidroin 

poses a great challenge.  

In order to circumvent this obstacle, Arcidiacono et al. [221] chose a strategy based on 

column chromatography without a precipitation step to purifiy their recombinant spidroins 

derived from MaSp1/2 of N. clavipes. The obtained spidroin solution contained 160 mM to 

1 M urea, 10 mM NaH2PO4, 1 mM Tris, 20 mM NaCl, and 10 to 100 mM glycine and was 

concentrated up to 25 % (w/v) protein by using ultrafiltration.[221] By extruding the 

spinning dope into a coagulation bath containing a methanol/water mixture, fibers were 

produced, but no post-treatment or characterization of the mechanical properties was 

performed (Table 4).  
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Table 4: Overview of wet-spinning conditions used for producing recombinant spider silk fibers from aqueous spinning dopes including the mechanical properties of fibers. 

Wet-spinning conditions Mechanical Properties  

Spinning dope 
Max. protein 
concentration 

Coagulation 
bath 

Post-treatment Stiffness Strength Extensibility Toughness Source 

 [%]   [GPa] [MPa] [%] [MJm
-3

]  

160 mM or 1 M urea, 
10 mM NaH2PO4, 
1 mM Tris, 
20 mM NaCl,  
10 mM or 100 mM 
 glycine, pH 5.0 

25  
(after 
ultrafiltration) 

MeOH/H2O 
mixture 

N/A - - - - 
[221]

 

0.1 % propionic acid, 
10 mM imidazole, 
microwaved 

12 100 % IPA 

1
st
 draw: 80 % 

IPA 

2
nd

 draw: 20 % 
IPA 

- 192.2±51.5 28.1±26.0 33.8±33.5 
[222]

 

PBS 28 
MeOH/H2O 
mixture 

1
st
 draw: MeOH 

2
nd

 draw: H2O 
4.9± - 219± - 59.6± - 103± - 

[191]
 

A. diadematus dragline 8±2 1183±334 24±8 167±65 
[15]

 

MeOH: methanol; EtOH: ethanol; IPA: isopropyl alcohol; PBS: phosphate buffered saline; N/A:not applicable; -: values not reported 
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Another approach to overcome the solubility issues was to use host organisms such as 

yeasts, plants, mammalian cells or transgenic goats to produce recombinant spidroins. 

Therefore, Bogush et al.
[220] used the yeast P. pastoris for the production of recombinant 

spidroins derived from MaSp1 of N. clavipes and MaSp2 of N. madagascariensis. After a 

column chromatography-based purification, the lyophilized protein was dissolved in an 8:2 

mixture of 60 % NaNCS in water with 20 % acetate solution or in a 10 % solution of LiCl 

in 90 % formic acid.[220] For wet-spinning, the targeted spidroin concentrations were 

20-30 % (w/v), however, after overnight incubation insoluble remnants had be removed by 

centrifugation resulting in lower concentrated spinning dopes. Extrusion into a 96 % 

ethanol/water bath yielded fibers that were post-stretched firstly in a bath containing a 

92 % ethanol/water mixture, followed by a 75 % ethanol/water mixture. Regarding the 

characterization of mechanical properties, only the strength (100-150 MPa) and 

extensibility (5-15 %) were reported.[220] 

Solving a spidroin in an aqueous solution at high concentration requires a high energy 

input as shown by Jones et al. [222] Here, the spidroin, which was based on MaSp1/2 of 

N. clavipes, was produced in transgenic goats.[222] After purification, it was mixed with 

0.1 % propionic acid and 10 mM imidazole in a glass vial and the mixture was sonicated 

and heated up to 130 °C for more than 48 h. This method yielded a spinning dope with a 

spidroin concentration of 12 % (w/v), and different ratios of recombinant MaSp1 and 2 

were tested for fiber production. As a coagulation bath, 100 % isopropanol was used, 

followed by a first post-stretching step in an 80/20 mixture of isopropanol/water and a 

second stretching step in a 20/80 mixture of isopropanol/water. The best performing fibers 

showed a strength of 192 ± 51 MPa and an extensibility of 28±26 %, which results in a 

toughness of 34 ± 34 MJ/m3.[222] The large variability of the fibers’ mechanical properties 

indicates the necessity of refining the spinning and processing conditions in order to 

guarantee a fiber production with reproducible mechanical properties.  

The highest toughness of wet-spun fibers from aqueous solutions was obtained by Lazaris 

et al.
[191] This research group used mammalian cells to secrete soluble spidroins based on 

ADF3 of A. diadematus directly in the culture media. Even after a precipitation with 15 to 

20 % ammonium sulfate, the spidroins were readily resolved in phosphate-buffered saline 

(PBS). This improved solubility was attributed to the presence of the carboxy-terminal 

domain. Extrusion of a spinning dope containing at least 23 % (w/v) of spidroin in PBS 

into an 80 % methanol/water mixture with subsequent post-stretching first in methanol and 

then in water, yielded fibers with the highest tensile properties. Spinning dopes with a 
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lower spidroin content and post-stretching with a lower draw ratio also yielded fibers but 

with inferior mechanical properties, emphasizing the strong influence of a highly 

concentrated spinning dope and optimal post-stretching conditions. The best performing 

fibers showed a strength of approx. 220 MPa, a stiffness of 5 GPa, an extensibility of 60 % 

and a toughness of 100 MJ/m3 (these values were converted from the original unit gram 

per denier (gpd) assuming a density of 1.3 kg/m3).[191]  

 

1.6.4.4. Other recombinant spider silk fiber production methods 

Apart from wet- and electrospinning, microfluidic devices were used to produce 

recombinant spider silk fibers.[233] One advantage of this process is the ability to mimic 

aspects of the natural spinning process, such as pH drop, ion exchange and elongational 

flow conditions.  

Exler et al.
[144] showed that the addition of potassium phosphate to aqueous eADF3 

solutions lead to spontaneous fiber formation. The recombinant spidroin eADF3 based on 

ADF3, a MaSp2 protein of A. diadematus, was produced using E. coli as a host organism. 

The feature of phosphate-induced self-assembly was used by Rammensee et al.
[233] in order 

to produce fibers using a microfluidic device. The recombinant spidroin was dissolved in 

6 M guanidinium thiocyanate, dialyzed against an aqueous buffer, and the obtained 

solution contained a spidroin concentration of 2 % (w/v). In the microfluidic device, a 

stream of this spidroin solution was mixed with two streams of varying potassium 

phosphate concentrations and pH values. Only upon applying a flow rate of 600 L/h, 

increasing the phosphate concentration to 500 mM and decreasing the pH to 6.0, eADF3 

fibers were formed.[233] Apart from the shear forces affecting the formation of fibers, no 

additional post-stretching or characterization of the mechanical properties was performed. 

Even though this spinning method includes aspects from the natural spinning process, the 

gained fibers showed similar mechanical properties as fibers produced by wet-spinning. 

However, by fine-tuning parameters within the microfluidic channels, these devices have 

the potential to achieve a more sophisticated spinning process in the future. 

Shear forces required for fiber formation can also be applied by hand-drawing fibers from 

aqueous, pre-assembled spidroin solutions.[144,218] Using the same process as Exler et 

al.
[144] with subsequent ultrafiltration, Keerl & Scheibel[163] prepared aqueous spinning 

dopes with concentrations between 11 and 20 % (w/v). After mixing this solution with an 

equal volume of a phosphate-containing buffer, viscous gel-like aggregates formed, that 
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were separated from the solution. The best performing fibers that were hand-drawn from 

this solution exhibited a strength of 143.4 MPa and an extensibility of 32.2 %.[163] 

After elution from a chromatography column, the recombinant spidroin purified by Teule 

et al.
[218] spontaneously formed an oily looking film at the surface of the solution. Using 

forceps, this film was pulled to form single fibers. Due to the lack of post-stretching, the 

obtained fibers showed a low strength of 49.64 ± 19.35 MPa, a low Young’s modulus of 

1.08 ± 1.00 GPa, a nature-like extensibility of 34.06 ± 25.30 % and a low toughness of 

10.6 ± 10.2 MJ/m3.[218] 

In a different approach, Stark et al. [223,224] used shear forces generated by gently shaking 

an aqueous solution for fiber formation. The recombinant spidroin based on a dragline 

protein of Euprosthenops australis was produced in a soluble form in E. coli using 

thioredoxin as fusion partner. Proteolytic release of the fusion partner after purification 

resulted in spontaneous fiber formation, and fibers were post-stretched two times in air. 

The obtained fibers appeared to be very stiff with a Young’s modulus of 7 GPa, a tensile 

strength of approx. 150 MPa and a low extensibility of 1 %.[223,224] 
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2. AIM 

The high toughness of natural spider silk fibers distinguishes them from other natural or 

man-made fibrous materials and designates spider silk fibers as an interesting material for 

various industrial applications in textile, automotive and biomedical fields. The large 

amount and consistent quality needed for industrial applications cannot be obtained by 

harvesting spider silk webs or by farming and forcible spider silking. Therefore, the 

production of artificial spider silk fibers is a prerequisite in order to make spider silk fibers 

industrially available.  

Even though spider silk fibers and especially their outstanding mechanical properties have 

been in the focus of research for decades, the production of artificial fibers mimicking the 

mechanical properties of natural spider silk fibers is still unsuccessful. The simple looking 

fiber spinning of spiders actually comprises highly complex processes, which cannot be 

easily mimicked by technological processes. Therefore, the main objective of this work 

was to develop the processing and spinning of recombinant spider silk proteins to produce 

fibers possessing the same toughness as that of natural spider silk fibers.  

 

For this work, eight recombinant spidroins based on ADF3, one of the spidroins found in 

the dragline silk of the European garden spider A. diadematus, were investigated. Even 

though the tripartite structure of spidroins, comprising a highly repetitive core and non-

repetitive amino- and carboxy-terminal domains, is well known, the function of the 

terminal-domains is not fully understood. In order to get an insight into their function, the 

contribution of individual spidroin domains to assembly and their influence on the 

mechanical properties of the spun fibers should be analyzed. For this purpose, proteins 

comprising either the repetitive domain in varying lengths ((AQ)12 and (AQ)24), or 

additional terminal domains (N1L(AQ)12, N1L(AQ)24, (AQ)12NR3 and (AQ)24NR3) or 

both (N1L(AQ)12NR3 and N1L(AQ)24NR3) were chosen. Using biotechnological 

processes, the recombinant spidroins were produced in large amounts and with consistent 

quality. The parameters during fermentation of the host organism E. coli and purification 

had to be adjusted to each of the eight spidroins.  

 

The next step towards fiber production is the preparation of spinning dopes. Organic 

solvents are often used for spidroin solving, due to their strong hydrogen bonding 

properties, which promote solvent-protein interactions and allow the production of highly 
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concentrated spinning dopes. However, high protein solubility and, therefore, good 

solvent-protein interactions may prevent protein assembly. Additionally, if the artificial 

fibers are supposed to be used for biomedical applications, health risks caused by toxic 

solvents have to be avoided. Therefore, in this work, highly concentrated biomimetic 

spinning dopes based on aqueous solutions should be developed. Since the recombinant 

spidroins eADF3 are only moderately soluble in aqueous solutions, the greatest challenge 

was to achieve a high spidroin concentration in aqueous solution while preventing 

aggregation of the protein. After developing a suitable spinning dope, it should be 

processed into fibers, using a wet-spinning process. During this process, the dope is 

extruded into a coagulation bath, where the spidroin precipitates and the solid fiber is 

formed. Advantages of wet-spinning over other spinning techniques are the ability to spin 

from different spinning dopes, allowing the use of any biopolymer, and the rather “slow” 

fiber formation, allowing a high degree of alignment of the spidroins during spinning, 

enabling the formation of fibers with superior mechanical properties.  

Following their production, the recombinant spidroin fibers should be analyzed concerning 

their mechanical properties, as well as the influence of post-stretching thereon, and the 

structure of the underlying proteins in the fiber, compared to the dragline silk of 

A. diadematus. The analysis of fibers spun from dopes made of eight different proteins 

under different spinning and post-stretching conditions should give information about the 

influence of the natural spidroin structure and its spinning process on the fibers mechanical 

and structural properties.  
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3. SYNOPSIS 

The present dissertation consists of four publications (shown in chapter 5), which each 

address development of one or more processes towards the production of artificial spider 

silk fibers. An overview of the whole processing steps including the corresponding 

publications is shown in Figure 6.  

 

Figure 6: Overview over the steps towards the production of artificial spider silk fibers. 
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Initially, an overview of different attempts to produce spidroins recombinantly is given 

(Publication III), covering the first step towards spinning artificial spider silk fibers. Here, 

the advantages and disadvantages of two approaches for recombinant spidroin production, 

namely the expression of partial cDNAs and the expression of synthetic genes in different 

host organisms, were reviewed and discussed. Using the gram-negative bacteria E. coli for 

cytosolic production of recombinant spidroins is the most promising approach, because 

E. coli can easily be modified genetically and has short generation times, enabling a fast 

adjustment of the production system and the produced spidroins. Based hereon, the 

expression of synthetic genes in the host organism E. coli was the system of choice for 

recombinant spidroin production. The production and purification of 

eADF3((AQ)12), -(AQ)24, -(AQ)12NR3, -(AQ)24NR3 and -N1L(AQ)12NR3 were already 

established before the beginning of this work, while the constructs 

eADF3(N1L(AQ)12), -N1L(AQ)24 and -N1L(AQ)24NR3 were not available at this point. 

After cloning of plasmid DNA encoding these constructs, their production and purification 

were developed and optimized. Following the production and purification of large amounts 

(several grams) of each spidroin, the next aim was to develop a suitable aqueous spinning 

dope for wet-spinning of recombinant spidroin fibers. To achieve this aim, two approaches 

towards aqueous spinning dopes were realized, one conservative approach by increasing 

the spidroin concentration manually and one approach based on the properties of the 

natural spinning dope (Publication I). All eight spidroins were used to produce both 

spinning dope types, revealing a high impact of the carboxy-terminal domain on the 

assembly and storage behavior of the recombinant spidroins (Publication I).  

 

After wet-spinning and post-stretching, if applicable, tensile testing of the fibers provided 

information about the influence of the terminal domains, the size of the repetitive domain 

and the impact of post-stretching on the mechanical properties of the spun fibers. The 

combination of eADF3 N1L(AQ)12NR3 used for the production of a ”biomimetic” 

spinning dope (BSD) and post-stretching the spun fibers at 600 % resulted in recombinant 

spidroin fibers with the same toughness (189.0 ± 33.4 MJ/m3) as its natural counterpart 

(167.0 ± 65.3 MJ/m3). Analysis of (AQ)12NR3-fibers revealed a structure of the artificial 

fibers similar to that of natural spider silk fibers on a molecular level (Publication II), 

concerning the size of the β-sheet crystallites, as well as the orientation of the crystalline 

and amorphous phases.  
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3.1. Production of nature-like spider silk proteins 

Since the yields of recombinant proteins decreases dramatically with increasing molecular 

weight, we abstained from the production of recombinant proteins with the same molecular 

weight as the natural spidroins (200-350 kDa), but instead focused on including all 

functional domains into the recombinant spidroins, namely a repetitive domain flanked by 

two different non-repetitive terminal domains (Figure 7). 

 

 

 

Figure 7: Scheme of the employed recombinant proteins, the sequences of the individual domains are derived from 
ADF3 (see the Supporting Information of Publication III), one of the two identified MaSp2 components of A. diadematus 
dragline silk. The theoretical molecular weight is shown (MW, calculated using the ProtParam tool: 
http://web.expasy.org/protparam/) of the respective recombinant proteins. *: Disulfide linked.[15] By courtesy of the 
publisher John Wiley and sons. 

 

One of the spidroins found in the dragline of the European garden spider A. diadematus, 

namely ADF3, was used a blueprint for the recombinant spidroins. As mentioned in 

chapter 1.2.2, the core domain of ADF3 contains several repetitive amino acid motifs, 

where poly-alanine blocks fold into antiparallel β-sheets, which form crystals upon 

assembly of natural spider silk fibers. These crystals are responsible for the strength of the 

fiber and they are embedded in an extensible amorphous matrix, which comprises glycine- 

and proline-rich amino acid motifs.  

Based on these motifs, consensus modules were developed containing a poly-alanine block 

(module A) and 4 repeats of the GPGQQ-sequence (module Q).[121] For the repetitive 

domain of the recombinant spidroins, a 12- and 24-mer of this AQ-module was used in 
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order to determine the influence of the molecular weight on the protein production, fiber 

spinning and mechanical properties. The amino- and carboxy-terminal domains, namely 

N1L and NR3, were added to the spidroins in order to determine their influence on 

handling, assembly and spinning of the spidroins into fibers. The carboxy-terminal domain 

NR3 corresponds to the native sequence in ADF3. Since the amino-terminal domains of 

natural spider silk proteins are highly conserved between spidroins and even between 

spider species, the amino acid sequence of the well-described amino-terminal domain 

NRN1 of Latrodectus hesperus including a linker-sequence was chosen.[98,102]  

 

3.2. Development of aqueous spinning dopes 

Apart from the used spidroins, the spinning dope has been shown to be a highly important 

factor for spinning.[221] As mentioned in chapter 1.4.2, natural spider silk spinning dopes 

are highly concentrated (up to 50 % (w/v)). In order to achieve a high spidroin 

concentration in an aqueous solution, different approaches have been used by scientists, 

and these can be assigned to three classes (as reviewed in publication IV):  

 

1) Spidroin self-assembly in aqueous buffers[15,144,218,223,224] 

2) Concentration of a diluted aqueous spidroin solution[15,221] 

3) Direct solvation at high spidroin concentrations[220,222] 

 

The aqueous spinning dopes developed in this work can be categorized to approach 1 and 2 

(Figure 8).[15] For both dope types, the strong denaturant guanidinium thiocyanate was 

initially used for spidroin solvation, followed by its removal using dialysis against a 

50 mM Tris/HCl buffer (pH 8.0). During the dialysis, 100 mM NaCl was added to the 

dialysis buffer in order to stabilize the spidroins in solution. Using this method, relatively 

low spidroin concentrations of 2-3 % (w/v) were achieved. By removal of excess water 

from the solution using a dialysis against a polyethylene glycol (PEG) solution, a step-wise 

concentration of the diluted spidroin solution was achieved. The resulting dope called 

“classical” spinning dope (CSD), yielded spidroin concentrations between 10-17 % (w/v). 

In order to achieve a self-assembled spinning dope, diluted spidroin solutions of eADF3-

variants comprising the carboxy-terminal domain NR3 were dialyzed against a phosphate-

containing buffer. The addition of phosphate ions to the spidroins causes a partial refolding 

of the carboxy-terminal domain NR3, which leads to spidroin assembly into micelles. This 
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self-assembly leads to a liquid-liquid phase separation of the spidroins into a low-density 

and a self-assembled high-density phase. Previous dynamic light scattering experiments 

showed that the low density phase only obtained dimeric spidroins, while in the high 

density phase, non-covalently associated spidroin oligomers were present 

(MW > 30 MDa).[144] The high-density phase yielded concentrations between 

10-15 % (w/v) and was named BSD, due to the self-assembly of the spidroins. In contrast 

to CSD, which gelled within a few hours due to nucleated fertilization of the 

spidroins,[234,235] BSD was stable for 3-5 days. Even though both types of spinning dopes 

were suitable to wet-spin recombinant fibers from all proteins (if applicable), the 

mechanical properties of the spun fibers differed depending on the type of dope used for 

wet-spinning (see chapter 3.3).  

 

 

Figure 8: Processing of recombinant spider silk proteins into (a) biomimetically and (b) classically concentrated spinning 
dopes. (a) Dialysis against a phosphate-containing buffer enables the formation of micellar-like structures[15,100,144] 
yielding a spinning dope with pre-oriented silk proteins. (b) Without pre-assembly of the proteins in the dope the formed 
network is weak yielding less stable fibers upon post-stretching (modified from [15] by courtesy of the publisher John 
Wiley and sons). 
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3.3. Mechanical properties of spun fibers 

During wet-spinning the spinning dope is extruded into a coagulation bath containing a 

mixture of isopropanol and water in which the spidroin precipitates and a fiber is formed. 

After wet-spinning from both BSD and CSD, the spun fibers were post-stretched in order 

to improve their mechanical properties. In nature, spiders use their hind legs to post-stretch 

the fiber directly when it leaves the spinneret. The size and orientation of the β-sheet 

crystals in the fiber change with the reeling speed and, thus, directly influence the 

mechanical properties of the fiber. Du et al.
[154] showed that a high reeling speed leads to a 

high β-sheet crystal nucleus density in natural silk, resulting in fibers containing smaller 

crystals but with an increased crystal proportion. In this work, the recombinant fibers were 

stretched up to 600 % of their initial length after spinning in order to align the spidroins. 

Tensile testing of all recombinant fibers showed that the post-stretching significantly 

improved the mechanical properties of the fibers (see table 1 in publication I). While 

recombinant fibers spun from CSD, resulted in mostly inhomogeneous and brittle fibers 

(Figure 9), especially when spun from dopes containing spidroins without the carboxy-

terminal domain NR3, wet-spinning of BSD led to very homogeneous and long fibers. 

Tensile testing revealed that a) the molecular set-up of the spidroins and b) the type of 

dope used for spinning had a great impact on the mechanical properties of the recombinant 

fibers.  
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Figure 9: A,B) Real stress–real strain curves of recombinant and natural spider silk fibers. A) As-spun (inset) and 600% 
post-stretched N1L(AQ)12 NR3-fibers, spun from “classical” (CSD) as well as “biomimetic” (BSD) spinning dopes (both 
10% (w/v)) and B) 600% post-stretched (AQ)12NR3- and N1L(AQ)12NR3-fibers from CSD as well as BSD in 
comparison to natural A. diadematus dragline silk fibers. C) Average toughness of natural dragline silk fibers (blue), 
fibers spun from CSD (red) and BSD (green).[15] By courtesy of the publisher John Wiley and sons. 

 

Post-stretching of (AQ)12-fibers spun from CSD was only possible up to 400 % of their 

initial length, and the fibers appeared very brittle. In comparison, fibers spun from CSD of 

N1L(AQ)12 and (AQ)12NR3, showed a higher extensibility and strength reaching a higher 

overall toughness than (AQ)12 fibers. For fibers wet-spun from CSD, the highest toughness 

(111 ± 33 MJ/m3) was achieved with N1L(AQ)12NR3 fibers that were post-stretched to 

600 % of their initial length. While post-stretched (AQ)12NR3 and N1L(AQ)12NR3 fibers 

had the same strength, N1L(AQ)12NR3 fibers showed an increase in extensibility and a 

lower stiffness than the (AQ)12NR3 fibers. Determining the mechanical properties of post-

stretched (AQ)12NR3 and N1L(AQ)12NR3 fibers spun from BSD revealed a significant 

increase in extensibility and toughness compared to the corresponding fibers spun from 

CSD. The toughness was equal to ((AQ)12NR3, 171.6 ± 52.7 MJ/m3) or even slightly 

exceeding (N1L(AQ)12NR3, 189.0 ± 33.4 MJ/m3) that of natural spider silk fibers 

(167.0 ± 65.3 MJ/m3) (Figure 9).  
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Since the mechanical properties of polymer fibers are strongly influenced by the molecular 

weight of the polymer,[236,237] the mechanical properties of fibers spun from (AQ)24-

variants were also determined, possessing almost twice the molecular weight of the 

corresponding (AQ)12-variants. As anticipated, (AQ)24-fibers spun from CSD showed 

improved mechanical properties compared to (AQ)12-fibers. Surprisingly, during the 

presence of one or both terminal domains N1L/NR3, the mechanical properties were no 

longer solely influenced by the molecular weight of the underlying core domain, but by 

their assembly process. N1L(AQ)24, (AQ)24NR3 and N1L(AQ)24NR3 fibers spun from 

CSD all revealed inferior mechanical properties in comparison to (AQ)24 fibers (see table 1 

in publication I). This indicates that spider silk proteins cannot solely be treated like 

polymers, but that their “protein” features have a considerable influence on fiber 

mechanics. Since the amino-terminal domain only dimerizes upon a pH drop in the 

spinning duct, it is still in its monomeric form in the spinning dope, preventing a correct 

alignment of the repetitive parts of the spidroins. This effect is even amplified during the 

absence of the carboxy-terminal domain, yielding brittle fibers (see table 2 in publication 

I). Corresponding to the discoveries with (AQ)12-variants, the mechanical properties of 

(AQ)24NR3 and N1L(AQ)24NR3 fibers spun from BSD showed a significant increase in 

strength and toughness when compared to those spun from CSD. Overall, fibers spun from 

both CSD and BSD of (AQ)24-variants comprising either one or both non-repetitive 

terminal domains showed inferior mechanical properties in comparison to that spun from 

the corresponding (AQ)12-variants. This indicates an entanglement of the large spidroin 

molecules once the assembly-controlling terminal domains are present, which cannot be 

straightened out when using the limited and non-biomimetic wet-spinning process.  

The highest mean toughness (189.0 ± 33.4 MJ/m3) was obtained with post-stretched 

N1L(AQ)12NR3-fibers spun from BSD. Even though the toughness of the recombinant 

fibers lies in the same range as that of natural spider silk fibers, it has to be noted that 

strength, extensibility and stiffness of the recombinant fibers differ significantly. The 

recombinant fibers are not as strong as the natural fibers, but are far more extensible. This 

may be due to two major discrepancies between the used set-up for this work and the 

natural role-model, namely 1) the application of only one spidroin and 2) the applied wet-

spinning process. As mentioned in chapter 1.2.2, natural spider dragline fibers contain at 

least two spidroins, which likely are both crucial in order to obtain outstanding mechanical 

properties. Accordingly, the highly complex natural spinning process (chapter 1.4.2) 

cannot possibly be mimicked by a simple wet-spinning process. The development of a 

biomimetic spinning technology, as well as the application of more than one recombinant 
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spidroin will likely achieve the production of recombinant fibers with mechanical 

properties superior to that of the natural role-model, opening up new possibilities for 

fibrous materials.  

 

3.4. Molecular structure of artificial spider silk fibers compared to natural ones 

In order to determine the molecular structure of the artificial fibers, especially similarities 

and differences to natural spider silk fibers, FTIR and SAXS measurements were 

performed. Using SAXS measurements, the size of the β-sheet crystallites of the artificial 

fibers was determined with 7.1 ± 0.1 nm (data not shown), which corresponds to the 

reported size of these crystallites in natural spider silk fibers (5.5-7.3 nm).[238-240] 

FTIR measurements of both, natural major ampullate spider silk of the gray cross spider 

Araneus sclopetarius and artificial (AQ)12NR3 fibers, revealed a similar orientation of the 

structural elements in both silks and enabled a refined assignment of absorption peaks to 

amino acid motifs (Figure 10). The fingerprint region of FTIR spectra of natural major 

ampullate spider silk fibers shows five distinct absorption peaks (Figure 10). The most 

dominant absorption peak when measuring in parallel to the long fiber axis, was identified 

as a combined stretching vibration within β-sheet crystallites formed by An motifs (� =9͸ͷ ��−1).[146,157,160,241] When measuring perpendicular to the fiber axis, another peak at � = ͳͲͷͷ ��−1 is more pronounced, which also arises from the An motif. These two 

peaks indicate an alignment of the β-sheet crystallites in parallel to the long fiber axis. The 

absorption peak at � = ͳͲͲͲ ��−1 has been assigned to (GA)n motifs,[146] which surround 

the An regions, whereas the peaks at � = ͳͲͳͷ ��−1 and � = ͳͲʹͷ ��−1 were together 

assigned to skeletal stretching vibrations of glycine—rich parts, which form β-turns, β-

spirals, 31 helices, or amorphous structures.[146,242,243] 
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Figure 10: FTIR spectra of (top) natural major ampullate spider silk, (middle) non-biomimetic (AQ)12NR3 CSD fibers 
600% post-stretched, and (bottom) biomimetic (AQ)12NR3 BSD fibers 600% post-stretched with the electric field of the 
incoming IR light in parallel (φ = 0°, black) and perpendicular to the fiber axis (φ = 90°, red). As evident from the amino 
acid sequence (Figure 1) vibrations at 965 cm-1, 1025 cm-1, and 1055 cm-1 arise from the polyalanine ((A)n) and the 
glycine-rich ((GPGXX)n) motifs.  

 

Concerning the artificial fibers, on the other hand, not all absorption peaks identified for 

the natural spider silk fibers are present. The recombinant spidroins do not contain any 

(GA)n motif and thus the absorption peak at � = ͳͲͲͲ ��−1 is not visible in the spectra of 

artificial fibers.[15] Additionally, (AQ)12NR3 only contains one GGX sequence (X = 

tyrosine), in next proximity to the An motif and, therefore, cannot take part in any other 

secondary structure. Due to the lack of GGX repeats in the recombinant spidroin, the two 

peaks assigned to glycine-rich parts in the natural spidroins can now be separated and the 

peaks at � = ͳͲͳͷ ��−1 and � = ͳͲʹͷ ��−1 can clearly be assigned to the GGX and 

GPGXX motifs, respectively.  

Another characteristic attribute of natural spider silk fibers is the orientation of the crystals 

and glycine-rich arrangements along the fiber axis, which gives rise to anisotropic 

absorption on a macroscopic scale (Figure 11a and b). In order to determine the degree of 

orientation of those assemblies in the artificial fibers, polar plots were created, and the 

order parameters were determined of molecular moieties located within the nanocrystals 

and the amorphous matrix. 
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Figure 11: Polar plots and order parameters of molecular moieties. (a) Polar plot of the integrated absorbance (area under 
the curve) of the (A)n vibration of ((AQ)12NR3 CSD 0% post-stretched: orange squares; (AQ)12NR3 CSD 600% post-
stretched: red squares; (AQ)12NR3 BSD 600% post-stretched: green triangles) fibers, as well as the natural major 
ampullate spider silk (black triangles). The solid lines represent fits of Equation 1 in publication II. The data points are 
normalized upon dividing them by the corresponding maximum value. (b) Polar plot of the (GPGXX)n vibration. (c) 
Change of the molecular order parameter with rising strain. While the molecular orientation in the natural fiber is hardly 
affected, the crystallites in the engineered fibers further align until the yield point is reached (CSD 600% post-stretched: 
S = 0.32 to 0.40; BSD 600% post-stretched: S = 0.47 to 0.54). At strains higher than the yield point the orientation of the 
amorphous matrix is significantly higher. 

 

For the IR transition moments (TMs) of the specific vibrations within the β-sheet An- and 

the helical/amorphous GPGXX motifs of the natural spider silk fibers, the molecular order 

parameter (Equation 3, chapter 6, part II) was determined at S = 0.89 ± 0.02 and 

S = 0.17 ± 0.02, respectively (Figure 11a and b). Assuming that the individual TMs are 

distributed along the fiber axis obeying a rotational symmetric Gaussian function the order 

parameter would result in a distribution width (Equation 4 in publication II) of 

ω = 11.3°±1.0° and ω = 46.7°±1.7.[244,245] 

 

After wet-spinning, the artificial fibers already contained the characteristic secondary 

structure elements, but without post-stretching, these elements did not show any 
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orientational order beyond the local coordination necessary to develop the protein 

secondary structure (S = 0.01 ± 0.02; Figure 11a and b).  

However, post-stretching of the wet fibers results in a macroscopic alignment of the 

nanocrystals and glycine-rich parts, which enhances their mechanical properties (Figure 

11c). For fibers spun from CSD that were post-stretched for 600 % a molecular order 

parameter of the nanocrystals of � = Ͳ.͵ʹ ± Ͳ.Ͳ͵ (� = ͵͸.͸° ± ͳ.͸°) was determined, 

which increased further to � = Ͳ.ͶͲ ± Ͳ.Ͳ͵ (� = ͵ʹ.͸° ± ͳ.Ͷ°) upon further straining the 

fibers. The order of the glycine-rich parts slightly increased from � = Ͳ.ͳͲ ± Ͳ.Ͳ͵ 

(� = ͷͶ.ͳ° ± Ͷ.ͳ°) to � = Ͳ.ͳͶ ± Ͳ.Ͳ͵ (� = Ͷ9.ͷ° ± Ͷ.ͳ°). Compared to fibers spun from 

CSD, post-stretched fibers spun from BSD showed an increased order of the crystallites 

with a molecular order parameter of � = Ͳ.Ͷ͹ ± Ͳ.Ͳ͵ (� = ʹ9.Ͷ° ± ͳ.͵°), which increased 

to � = Ͳ.ͷͶ ± Ͳ.Ͳ͵ (� = ʹ͸.ͷ° ± ͳ.Ͷ°) under further strain. The glycine-rich parts of these 

fibers were also more ordered compared to fibers spun from CSD (� = Ͳ.ͳ͵ ± Ͳ.Ͳ͵, � = ͷͲ.ͷ° ± ͵.͵°) and additionally aligned more quickly under strain reaching the value 

of natural dragline silk (� = Ͳ.ʹͲ ± Ͳ.Ͳ͵, � = ͶͶ.ʹ° ± ʹ.͵°).  

Post-stretched fibers spun from the “biomimetic” spinning dope (BSD) showed the best 

performance in absorbing load, while they exhibited the biggest molecular order of the 

artificial threads. The previously determined superior mechanical properties of fibers spun 

from BSD compared to that spun from CSD can clearly be ascribed to the increased 

alignment of the nanocrystals and amorphous structures in the BSD fibers (Figure 9).[15] 

The mechanical response of the artificial fibers to load is significantly influenced by the 

post-spinning treatment: fibers as-spun (CSD 0% and BSD 0%) appeared to be very brittle, 

while post-spinning elongation enhanced the elastic modulus and extensibility.[15] 

Moreover, the threads’ stress-strain characteristic was sustainably changed. As evident in 

Figure 2 of Heidebrecht et al. (2015)[15] as-spun fibers showed no yield point in stress-

strain experiments, whereas post-stretched samples did show a distinct yield point.[15] It is 

highly interesting that the presence or absence of a yield point for semi-crystalline 

polymers indicates an energy dissipation through oriented and ordered or unordered 

structures, respectively.[246,247] Accordingly, the applied load in case of the as-spun samples 

was applied predominantly to amorphous structures, whereas when the samples were post-

stretched the stress-strain curves indicate the involvement of ordered parts. The highest 

toughness (172 MPa), was achieved for (AQ)12NR3 fibers spun from BSD with 

600% post-strain, which was therefore used for the detailed further analysis.  
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A refined assessment on the interplay between nanocrystals and amorphous parts was 

provided by stress-dependent IR spectroscopy experiments. In the past, one exceptional 

characteristic of major (and minor) ampullate spider silk has been found, namely the load-

dependent and reversible shift of the alanine-specific IR absorption band at � =9͸ͷ cm−1.[146,157,160,241] Although the nanometer-sized alanine-rich crystals are embedded 

within a less ordered glycine-rich matrix, macroscopically applied stress affects vibrations 

on the molecular length scale inside those rigid crystallites. Consequently, a mechanism 

responsible for the stress transfer has to exist. It is believed that amorphous parts 

interconnecting the nanocrystals experienced shear forces during spinning that orient and 

elongate pre-aggregates.[34,248] This strain, and hence, stress is preserved while the thread is 

formed; the tendency to contract is counterbalanced by the surrounding layers of the fiber. 

Thus, the arising inherent non-equilibrium state of the pre-stressed morphology causes the 

transduction of the applied load from the macroscopic scale down to the molecular level, 

where the emerging energy affects the crystallites and is dissipated.[146,157,160,241] Exposing 

BSD 600% fibers to macroscopic stress induced a shift of the An-specific peak (� =9͸ͷ cm−1) (Figure 12).  

Figure 12: Microscopic response of a biotech fiber (BSD, 600 % post-stretched) to macroscopic load. (a) The frequency 
position of the (A)n peak is shifted to lower wavenumbers as a consequence of the applied force (and hence stress). (b) 
Similar to that of natural spider silk this frequency shift is linear with the applied stress (inset) with a slope 
of -4.9 cm-1GPa-1 being in full agreement with the literature.[146,157,160,241] The black squares correspond to the black curve 
in (a), the orange squares result from stretching the sample from 0% to 5% strain. The red squares correspond to the red 
curve in (a) and the blue squares represent the sample stretched to 10% strain. Since the (A)n vibration is exclusively 
located within in the crystallites,[146] it is demonstrated that the macroscopic load affects the crystalline parts of the 
protein chains, even though the nanocrystals are embedded in an amorphous matrix.  
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Furthermore, after the sample had been stressed and relaxed subsequently, the spectral 

displacement decreased in accordance to the lowered apparent force. This spectral shift 

was linearly dependent on the applied stress, as for natural dragline silk, and the slope of −Ͷ.9 cm−1GPa−1 corresponded to frequently derived values of spider silk,[146,241,249] it 

even fitted to the slope under hydrostatic pressure.[160] These results explicitly 

demonstrated that macroscopically applied stress is transferred through a less-ordered 

matrix and affects the crystalline parts of the biomimetic fibers. This mechanism is 

identical to that in natural major ampullate spider silk and is responsible for the exceptional 

ability of dissipating impinging energy. 

The results obtained in this work reveal that the approach of developing a biomimetic 

spinning dope points in the right direction of producing nature-like spider silk fibers. On a 

molecular level, artificial fibers already closely resemble natural spider silk fibers (Figure 

13).  

 

 

Figure 13: Schematic view of (a) a biotech fiber (AQ)12NR3 (CSD or BSD) and (b) a natural major ampullate spider silk 
thread. The former comprises a homogeneous distribution of polyalanine β-sheet crystallites embedded in a glycine rich, 
amorphous matrix, whereas the latter, in addition, exhibits a refined hierarchical structure composed of fibrils and a 
surrounding layered structure. In both samples the nanocrystals show a length of 7 nm. Post-stretching aligns the 
crystallites resulting in a significant increase in the molecular order parameter (CSD: S = 0.32; BSD: S = 0.47), and in 
enhanced mechanical properties.[15] The natural blueprint shows a molecular order parameter of S = 0.90. 

 

Both fibers contain 7 nm long crystals comprised of poly-alanine β-sheets, which are 

embedded in an amorphous matrix. Whereas the amorphous and crystalline areas of natural 

major ampullate silk fibers show a high order directly after spinning, this is not the case for 
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biotech fibers, which are only exposed to shear forces upon post-stretching, triggering an 

orientation of the structural areas in the fiber. Interestingly, the effect of post-stretching on 

the molecular order in the fibers was higher in fibers spun from BSD than CSD, meaning 

the foundation for a high structural order is already laid in the spinning dope. By further 

stretching these already post-stretched fibers, the molecular order parameter of the 

crystalline and amorphous areas is further increased, the latter (of fibers spun from BSD) 

even reaches the same order as found in natural spider silk fibers. These results indicate 

that the production of artificial fibers with the same mechanical properties as natural silk 

fibers requires a spinning process that integrates shear forces during formation of the fiber 

in order to obtain a high order as found in natural silk fibers. 
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The number of tandemly arrayed glycine/proline-rich motifs 
(GPGXX, X = predominantly tyrosine, leucine, glutamine) [ 4 ]  is 
directly connected to the extensibility of silks. MaSp2 has nine 
consecutive GPGXX-motifs in a single repeat unit, [ 4 ]  whereas 
fl agelliform silk has at least 43 of these motifs in one unit [ 10 ]  
and is the most extensible spider silk with 200% of elonga-
tion. [ 2 ]  Strikingly, the terminal domains are highly conserved 
between different spider species and even between silk types 
of individual spiders; they are composed of 100–150 amino 
acids and are folded into fi ve-helix bundles. [ 11,12 ]  The terminal 
domains are assembly triggers enabling the spidroin storage 
at high concentrations (up to 50% (w/v)) in the ampulla of the 
spinning gland (resembling the so-called spinning dope) and 
play an important role during initiation of fi ber assembly. [ 13–16 ]  

 It has been hypothesized that pre-assembly of spidroins 
in the gland is the cause for lyotropic liquid crystal behavior 
in vivo. [ 17,18 ]  Upon passage of the spinning dope through the 
tapered S-shaped spinning duct, sodium and chloride ions 
are replaced by potassium and more kosmotropic phosphate 
ions (inducing salting-out of the spidroins). [ 19,20 ]  In combina-
tion with shear-stress, emerging from pulling the fi bers from 
the spider’s abdomen, the spidroins assemble into a nematic 
phase, [ 17 ]  enabling formation and correct alignment of β-sheet-
rich structures. [ 16 ]  In vitro, during storage of the spidroins 
at pH 8.0 micellar-like structures can be detected, strictly 
depending on the presence of the carboxy-terminal domain [ 14 ]  
based on the fact that carboxy-terminal domains form disulfi de-
linked parallel dimers, [ 16 ]  while the amino-terminal domains 
are monomeric at neutral pH. [ 21 ]  Adding phosphate ions causes 
the nonrepetitive carboxy-terminal domain to partially refold 
and subsequently expose hydrophobic areas, [ 16 ]  necessary to ini-
tiate fi ber assembly. Further, upon decreasing the pH to ≈5.7, 
as found at the end of the spinning duct in vivo, [ 22 ]  dimeriza-
tion of the amino-terminal domain in an antiparallel manner 
is triggered in vitro, [ 22 ]  yielding head-to-tail dimers enabling the 
formation of an endless network connecting the nanocrytalline 
β-sheet structures. [ 14–16,21 ]  

 Even though plenty of artifi cial spider silk fi bers have been 
produced in the past using different recombinant or reconsti-
tuted spidroins and spinning-techniques, so far no fi bers have 
been obtained with mechanical properties, i.e., toughness, even 
getting close to that of natural spider silk fi bers. [ 23 ]  

 Here, we made use of previously established technologies to 
recombinantly produce spider silk-like proteins based on the 
sequence of garden spider ( A. diadematus ) MA spidroins.  A. 
diadematus  MA silk contains, in contrast to other investigated 
spider species, at least two MaSp2 proteins which are called  A. 
diadematus  fi broin 3 and 4 (ADF3 and ADF4). Here, based on 

  Spider dragline silk exhibits extraordinary mechanical proper-
ties combining a moderate strength with good extensibility 
resulting in a toughness exceeding that of all other natural or 
synthetic fi bers. Although spider silk has been in the focus of 
research since decades, the mechanical properties, especially 
the toughness, of reconstituted man-made fi bers have never 
reached those of natural spider silk. The properties are based 
on the underlying spider silk proteins (spidroins), their self-
assembly and their explicit processing. Here, two out of three 
pre-requisites for tough fi bers are tackled; the contribution of 
individual spidroin domains to assembly is analyzed, and pro-
cessing of recombinant spidroins into fi bers is shown. Fiber 
toughness upon processing equals and even slightly exceeds 
that of natural ones dependent on both the underlying proteins 
and preparation (biomimetic self-assembly) of the silk dope, 
although the overall strength is lower based on the used and 
simplifi ed single-protein set-up. 

 Spider dragline silk has for long been in the focus of mate-
rials’ research mainly due to a toughness no other fi ber can 
accomplish. Spider major ampullate (MA) silk fi bers, aka 
dragline silk, show a core-shell-structure, with the core com-
prising proteinaceous fi brils covered by a three-layered shell 
of minor ampullate (MI) silk, glycoproteins and lipids, with 
only a minor role for the mechanical properties of the fi bers. [ 1 ]  
The mechanics are mainly based on the protein fi brils com-
prising at least two proteins classifi ed as MaSp1 and MaSp2 
(MaSp, spidroin = spider fi broin), both of which are generally 
distinguished by their proline content, which is signifi cantly 
higher in MaSp2. [ 2–4 ]  MA spidroins have a molecular weight of 
200–350 kDa [ 5,6 ]  and are composed of a highly repetitive core 
domain fl anked by amino- and carboxy-terminal domains 
with a distinct sequence. The core domain contains repeated 
(up to 100 times) [ 4,5 ]  amino acid modules of 40–200 amino 
acids [ 3–5 ]  composed of polyalanine stretches and glycine/
proline-rich motifs. The strength of natural spider silk fi bers 
is based on the polyalanine stretches stacked into β-sheets [ 7 ]  
resembling nanocrystallites which are embedded in an amor-
phous matrix, [ 1,8 ]  based on the glycine/proline-rich areas and 
being responsible for the fi ber’s elasticity and fl exibility. [ 9 ]  
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consensus sequences of ADF3 (sequence accession number: 
AAC47010) eight engineered variants (eADF3) were designed 
for recombinant production in  E. coli , varying in length/
number of core repeats and presence/absence of the amino- 
and/or carboxy-terminal domains ( Figure    1  A), in order to inves-
tigate the impact of individual domains on storage, spinning 
dope conditions, assembly, and mechanical properties of fi bers 
upon spinning.  

 Previously, the spinning dope has been identifi ed as one 
highly important factor for spinning. [ 24 ]  In nature, spider silk 
spinning dopes are highly concentrated (up to 50% (w/v)). 
Technically, such high concentrations can be achieved by step-
wise concentrating solutions. “Classical” spinning dopes (CSD) 
were produced by simply removing excess water from the pro-
tein solution using dialysis against polyethylene glycol (PEG) 
yielding concentrations between 10% (w/v) to 17% (w/v). In 
order to prevent unspecifi c aggregation, 100 × 10 –3   M  NaCl was 
added to the buffered (50 × 10 –3   M  Tris/HCl, pH 8.0) solution 
prior to dialysis against PEG. Electrolytic conductivity measure-
ments (Table S1, Supporting Information) showed no detect-
able amounts of salt after PEG-dialysis. Further, structural 
analysis of recombinant spider silk solutions before and after 
dialysis against PEG showed no change in protein structure. [ 25 ]  

Dialysis of a solution with low protein concentration against 
a phosphate-containing buffer induced a liquid–liquid phase 
separation of eADF3 variants comprising the carboxy-terminal 
domain NR3 into a low density phase and a “self-concentrated” 
high density micellar phase [ 14 ]  yielding a dope named “bio-
mimetic” from now on. The addition of the phosphate ions 
induces a partial refolding of the carboxy-terminal domain, 
leading to initiation of protein assembly into micelles. Fur-
ther, the presence of the carboxy-terminal domain is an impor-
tant prerequisite for fi ber self-assembly. Dynamic light scat-
tering experiments on eADF3 high and low density phases 
revealed that the high density phase contains protein oligomers 
( M W   > 30 MDa), which were noncovalently associated, whereas 
the low density phase only showed dimeric proteins. [ 26 ]  

 While the phase-separated “biomimetic” spinning dopes 
(BSD) were stable for 3–5 days, the CSD gelled within a few 
hours due to nucleated fertilization of the proteins. [ 27,28 ]  

 Wet-spinning of CSD (before gelation started) by precipita-
tion of the spidroins in a coagulation bath containing a mixture 
of water and isopropanol, as used previously, [ 29 ]  typically yielded 
inhomogeneous fi bers (Figure S1, Supporting Information) 
and sometimes short fi ber fragments. The least homogeneous 
fi bers were obtained from dopes comprising spidroins without 
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 Figure 1.    A) Scheme of the employed recombinant proteins, the sequences of the individual domains are derived from ADF3 (see the Supporting 
Information), one of the two identifi ed MaSp2 components of  A. diadematus  dragline silk. The theoretical molecular weight ( M W  , calculated using the 
ProtParam tool: http://web.expasy.org/protparam/) of the respective recombinant proteins is shown. *: Disulfi de linked. B–D) Polarized FTIR spectra 
taken in parallel (0°, red) and perpendicular (90°, blue) to the fi ber axis. (Inset) Enlargement of the absorption between 1000 and 900 cm −1 . The arrows 
in the insets mark the specifi c (Ala)  n   absorbance at ≈963 cm −1 ; B)  A. diadematus  dragline silk, C) eADF3 (N1L(AQ) 12 NR3)-fi bers, 0% poststretched, 
D) eADF3 (N1L(AQ) 12 NR3)-fi bers, 600% poststretched.
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the carboxy-terminal domain ((AQ) 12 , (AQ) 24 , N1L(AQ) 12 , 
N1L(AQ) 24 ). In contrast, spinning from BSD generally resulted 
in very homogeneous and long fi bers. However, it was neces-
sary to improve the performance of the fi bers by poststretching. 
Du et al. [ 30 ]  detected that the protein network structure (pre-
dominantly size and orientation of β-sheet crystals) changes 
substantially with the silk reeling speed and thus determines 
the mechanical properties of the silk fi ber. In the natural spin-
ning process the spider can control the reeling speed with 
its hind legs, poststretching the fi ber as soon as it leaves the 
spinneret. While the formation of the liquid crystalline phase 
occurs quickly, the crystalline phase is formed slowly, [ 31 ]  and 
this phase transition depends on the initial concentration and 
supersaturation of the silk protein solution. Upon shearing as 
well as poststretching, the protein chains are extended and thus 
getting closer to each other. As the local protein concentration 
is increased, crystal nucleation between the protein chains is 
triggered. A high reeling speed results in a high β-sheet crystal 
nucleus density, leading to fi bers containing smaller crystal-
lites, but with an increased crystal proportion. [ 30 ]  Concerning 
the orientation of the β-sheet crystals, it was observed that a 
high reeling speed induces a better orientation of the β-sheet 
crystals along the thread axis. [ 30,32 ]  Therefore, reeling and 
poststretching of the spider’s silk fi ber defi nes its mechanical 
properties. Similar observations were made with fi bers from 
fl exible polymers, where drawing and postdraw stretching led 
to better mechanical properties (e.g., higher tenacity) due to 
better strain alignment. [ 33 ]  In our set-up, the recombinant fi bers 
were stretched up to 600% of their initial length directly after 

spinning to align the spidroins. The diameter of poststretched 
fi bers spun from BSD was uniform throughout each individual 
fi ber with a mean diameter variation <5%. Approximately 5% of 
fi bers spun from BSD were disposed due to defects or inhomo-
geneity, while poststretched fi bers which were spun from CSD 
contained approximately 15% inhomogeneous or defective 
fi bers. Polarized Fourier transformation infrared (FTIR) spec-
troscopy was used in parallel (0°) and perpendicular (90°) to the 
fi ber axis to determine the alignment of the β-sheet stacks in 
the fi bers (Figure  1 , B–D). The absorption peak at ≈963 cm −1  
corresponds to a highly specifi c coupled main- and side chain 
stretching (CH 3  rock, N–Cα stretch) [ 20 ]  of the β-sheet forming 
(Ala)  n   sequences. 

 The intensity of the (Ala)  n   peak at 963 cm −1  in  A. diade-
matus  dragline fi bers is signifi cantly higher in parallel than 
perpendicular to the fi ber axis, demonstrating the alignment 
of the (Ala)  n   β-sheet stacks along the fi ber axis. The polarized 
FTIR spectra of the recombinant spider silk fi bers showed a 
similar result, but only in poststretched ones, confi rming the 
impact of shear stress on structure alignment. Tensile testing 
of all recombinant spidroin fi bers showed that poststretching 
also signifi cantly improved the mechanical properties, while as-
spun fi bers without structural alignment (0% poststretching) 
appeared to be very brittle ( Figure    2  ).  

 The differences in mechanics upon stretching depended 
on a) the molecular set-up of the recombinant spidroins and, 
even more importantly, b) the dope preparation. (AQ) 12 -fi bers 
spun from CSD were very brittle and poststretching was only 
possible up to 400% of the initial length without breaking 
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 Figure 2.    A,B) Real stress–real strain curves of recombinant and natural spider silk fi bers. A) As-spun (inset) and 600% poststretched N1L(AQ) 12 NR3-
fi bers, spun from “classical” (CSD) as well as “biomimetic” (BSD) spinning dopes (both 10% (w/v)) and B) 600% poststretched (AQ) 12 NR3- and 
N1L(AQ) 12 NR3-fi bers from CSD as well as BSD in comparison to natural  A. diadematus  dragline silk fi bers. C) Average toughness of natural dragline 
silk fi bers (blue), fi bers spun from CSD (red) and BSD (green).
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of the fi bers. In contrast, N1L(AQ) 12 - and (AQ) 12 NR3-fi bers 
spun from CSD showed a higher extensibility and strength 
resulting in a higher toughness than the corresponding 
(AQ) 12 -fi bers ( Table    1  ). Like with (AQ) 12 -fi bers, poststretching 
of N1L(AQ) 12 -fi bers spun from CSD was only possible up to 
400% of the initial length, whereas (AQ) 12 NR3-fi bers spun 
from CSD could be poststretched up to 600% (Table  1 A). The 
strength and toughness of the poststretched N1L(AQ) 12 -fi bers 
increased more than 3-fold, and that of (AQ) 12 NR3-fi bers 
increased 4-fold in comparison to the poststretched (AQ) 12 -
fi bers (Figure  2 C). In that set of experiments, the highest 
toughness (111 MJ m −3 ) was obtained with poststretched 
N1L(AQ) 12 NR3-fi bers. While showing the same strength, 
N1L(AQ) 12 NR3-fi bers were signifi cantly more extensible 
( p  = 0.0030) and less stiff (lower young’s modulus ( p  = 0.0009)) 
than (AQ) 12 NR3-fi bers.   

 Next, fi bers were spun using self-assembled, phase-sep-
arated (biomimetic) spinning dopes (BSD). In this set-up, 
self-assembly determined the fi nal concentration of the spin-
ning dopes in a regime between 10%–15% (w/v). Poststretched 
“biomimetic” (AQ) 12 NR3-, and N1L(AQ) 12 NR3-fi bers showed 
a signifi cant increase in extensibility and toughness in com-
parison to the poststretched fi bers spun from CSD (Figure  2 C), 
yielding a toughness equal ((AQ) 12 NR3, 171.6 ± 51.7 MJ m −3 ) or 

even slightly superior (N1L(AQ) 12 NR3, 189.0 ± 33.4 MJ m −3 ) to 
natural spider silk fi bers (167.0 ± 65.3 MJ m −3 ). 

 Since typically the molecular weight infl uences the mechan-
ical properties of polymer fi bers, [ 34 ]  fi bers were also spun using 
(AQ) 24 -derivatives with a doubled molecular weight in com-
parison to (AQ) 12 -derivatives. As expected for a “plain” polymer, 
(AQ) 24 -fi bers spun from CSD showed improved mechanical 
properties in comparison to (AQ) 12 -fi bers, such as a 1.5-fold 
increase in extensibility and a 4-fold increase in strength, 
resulting in a 5-fold increase in toughness. However, in pres-
ence of the folded amino- or carboxy-terminal domains N1L/
NR3 the effects were no longer dominated by molecular weight 
of the underlying proteins but obviously by their assembly 
features. All fi bers spun from N1L(AQ) 24 , (AQ) 24 NR3, and 
N1L(AQ) 24 NR3 (CSD) revealed substantially inferior mechanical 
properties to the corresponding (AQ) 24 -fi bers (Table  1 A,B), 
indicating a substantial “protein”-infl uence on the silk polymer. 
N1L(AQ) 24 -fi bers were very brittle, and poststretching was only 
possible up to 300% of the initial length. As the aminoterminal 
domain of the spidroins only dimerizes upon a pH change 
during the spinning process, it is still in its monomeric form 
in the spinning dope, thus preventing a correct alignment of 
the repetitive part of the protein molecules, especially in the 
absence of the dimerized carboxy-terminal domain, resulting 
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  Table 1.    Mechanical properties of natural and recombinant spider silk fi bers. (A, B) CSD (all variants) and (C) BSD (variants with carboxy-terminal 
domain only). Tensile testing was performed at 30% rH.  

 A           

 Protein   (AQ) 12    (AQ) 24    N1L(AQ) 12    N1L(AQ) 24    

Stretching [%] 0 400 0 600 0 400 0 300  

Diameter [µm] 35 ± 7  15 ± 5 70 ± 7 22 ± 2 42 ± 6 15 ± 2 78 ± 21 55 ± 9  

Extensibility [%] 17 ± 9 38 ± 16 22 ± 3 65 ± 6   8 ± 1   51 ± 17 6 ± 2 10 ± 6  

Strength [MPa] 10 ± 2 66 ± 22 22 ± 4 280 ± 48 19 ± 3 212 ± 53 15 ± 3 24 ± 7  

Toughness [MJ m −3 ] 0.9 ± 0.4 20 ± 12   4 ± 1 110 ± 24      1 ± 0.4   72 ± 33 0.4 ± 0.2   2 ± 1  

Young’s modulus [GPa] 0.9 ± 0.4    2 ± 0.9   0.4 ± 0.1      4 ± 0.6   0.5 ± 0.1       4 ± 0.9 0.7 ± 0.2      1 ± 0.3  

 B  

 Protein  (AQ) 12 NR3  (AQ) 24 NR3  N1L(AQ) 12 NR3  N1L(AQ) 24 NR3  

Stretching [%] 0 600 0 600 0 600 0 600

Diameter [µm] 59 ± 8 23 ± 3 57 ± 0 30 ± 5 57 ± 3 24 ± 7 62 ± 8 27 ± 4

Extensibility [%] 10 ± 3 64 ± 11   5 ± 1   50 ± 12   4 ± 2   82 ± 13 8 ± 2   47 ± 14

Strength [MPa] 32 ± 12 244 ± 23 29 ± 2 161 ± 65 21 ± 8 251 ± 57 22 ± 3 180 ± 50

Toughness [MJ m −3 ] 2 ± 1.5 83 ± 10   0.6 ± 0.1   49 ± 26   0.4 ± 0.1 111 ± 33 0.8 ± 0.4   50 ± 13

Young's modulus [GPa] 2 ± 0.5    4 ± 0.4      1 ± 0.2       3 ± 0.7   0.9 ± 0.4      3 ± 0.5 0.8 ± 0.2      4 ± 0.5

 C  

 Protein  (AQ) 12 NR3  (AQ) 24 NR3  N1L(AQ) 12 NR3  N1L(AQ) 24 NR3  Natural dragline silk 

Stretching [%] 0 600 0 600 0 600 0 600 N/A a) 

Diameter [µm] 39 ± 6 26 ± 6 56 ± 1 21 ± 5 155 ± 8   27 ± 10 75 ± 14 20 ± 6      4 ± 0.4 b) 

Extensibility [%] 7 ± 2 95 ± 24   7 ± 3   44 ± 13 6 ± 1 110 ± 25 7 ± 2   54 ± 15 24 ± 8 b) 

Strength [MPa] 54 ± 16 383 ± 113 23 ± 4 355 ± 92 13 ± 2 370 ± 59 25 ± 5   308 ± 131 1183 ± 334 b) 

Toughness [MJ m −3 ]    2 ± 0.8 172 ± 52   0.7 ± 0.6    83 ± 18   0.3 ± 0.1 189 ± 33 0.8 ± 0.4   90 ± 29 167 ± 65

Young’s modulus [GPa]    2 ± 0.9 3 ± 2   0.8 ± 0.3   5 ± 2   0.5 ± 0.1   4 ± 1 0.9 ± 0.2   5 ± 2 8 ± 2

    a) Not applicable;  b) Values correspond to rupture of a single fi lament (not to the naturally occurring brin).   
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in brittle fi bers ( Table    2  ). In comparison to N1L(AQ) 24  fi bers, 
(AQ) 24 NR3 and N1L(AQ) 24 NR3 fi bers had a 5-fold increased 
extensibility and strength and a 30-fold increased toughness 
(Table  1 A,B). 

 Again, similar to the fi ndings with (AQ) 12 -derivatives, the 
mechanical properties of (AQ) 24 NR3-fi bers spun from BSD 
showed a signifi cant increase in strength and toughness 
compared to (AQ) 24 NR3-fi bers spun from CSD. Likewise, 
N1L(AQ) 24 NR3-fi bers spun from BSD showed a signifi cantly 
higher strength (307.5 MPa) and toughness (89.6 MJ m −3 ) 
than fi bers spun from the corresponding CSD (180.0 MPa, 
50.3 MJ m −3 ). Unexpectedly, the overall mechanical properties 
of the (AQ) 24 -derivatives containing either one or both terminal 
domains were much lower than that of the (AQ) 12 -derivatives 
from both CSD and BSD, likely due to incorrect higher order 
assembly of the individual chains in the spinning dope. It is 
likely that once the assembly-controlling terminal domains 
are present, the large repetitive unit of the (AQ) 24 -derivatives 
causes entanglement of the molecules. Additionally, inter-
molecular interactions of the nonrepetitive terminal domains 
in the micellar structures prevent a perfect alignment as it is 
known for classical polymers. These entanglements cannot be 
straightened out during the used limited and nonbiomimetic 
wet-spinning process. In the natural spinning process, the pre-
assembled proteins are gradually exposed to the pH drop as 
well as the shear forces, supporting their correct assembly into 
fi bers. Clearly, to overcome the entanglement of the repetitive 
unit, a biomimetic spinning process will have to be developed 
for future experiments, tackling the third of three prerequisites: 
i) underlying spidroins, ii) their self-assembly, and iii) their 
explicit processing for natural spider silk formation. 

 The obtained results underline that the domain-set-up as 
well as prestructuring/preassembly of spidroins in the spin-
ning dope (both resembling a “protein feature”) have a highly 
signifi cant impact on the mechanical properties of the spun 
fi bers. During wet-spinning their impact even supersedes that 
of the molecular weight of the protein (resembling a “polymer 
feature”). Phosphate-induced self-assembly/pre-structuring 
of recombinant spidroins in spinning dopes initiates the for-
mation of an extended intermolecular protein network neces-
sary for the extraordinary mechanical properties of the fi bers. 

Strikingly, the toughness of recombinant silk fi bers spun 
from (AQ) 12 NR3 and N1L(AQ) 12 NR3 BSD equals that of the 
so far unmatched natural spider silk fi bers. The highest mean 
toughness (189 MJ m −3 ) was obtained with poststretched 
fi bers wet-spun from biomimetic N1L(AQ) 12 NR3 spinning 
dopes, even slightly exceeding the toughness (on average) of 
natural spider silk fi bers. This toughness is based on the fact 
that the engineered fi bers are not as strong as natural fi bers, 
but far more extensible, which relies on the properties of the 
employed proline-rich MaSp2-analogue. Important differ-
ences between the used set-up and the natural blueprint are: 
i) the simple one-protein system (in nature the fi bers are com-
posed of at least two different major ampullate spidroins with 
different sequences and protein features), and ii) the simple 
wet-spinning process (in comparison to the complex natural 
spinning process). Combination of more than one recom-
binant spidroin, as well as the development of a biomimetic 
spinning technology will likely allow to achieve fi bers with 
mechanical properties superior to that of spiders in the future, 
opening routes to so far none achievable fi brous materials.  

  Experimental Section 

  Protein Production : The genes encoding recombinant spider silk 
proteins eADF3 (AQ) 12 , (AQ) 24 , (AQ) 12 NR3, (AQ) 24 NR3, N1L(AQ) 12 , 
and N1L(AQ) 24  were cloned, expressed, and the proteins were purifi ed 
as previously described. [ 12 ]  N1L(AQ) 12 NR3 and N1L(AQ) 24 NR3 
were produced using the SUMO system [ 35 ]  and purifi ed using nickel 
affi nity chromatography, followed by cleavage of the SUMO-TAG and 
ammonium sulfate precipitation. 

  Spinning Dope Preparation : The lyophilized proteins were dissolved 
in 6  M  GdmSCN and dialyzed against 50 × 10 –3   M  Tris/HCl, pH 8.0, 
100 × 10 –3   M  NaCl, using dialysis membranes with a molecular weight 
cut-off of 6000–8000 Da. CSD were prepared by dialysis against a 20% 
(w/v) PEG (35 kDa) solution, and BSD were prepared by dialysis against 
30 × 10 –3 –50 × 10 –3   M  sodium phosphate buffer, pH 7.2. 

  Fiber Production : Spinning dopes were extruded through a syringe 
into a large beaker fi lled with a coagulation bath. After fi ber formation 
the fi bers were taken out of the bath and manually poststretched in 
an additional bath. For wet-spinning and poststretching (if applicable) 
coagulation baths were used containing a mixture of water and 
isopropanol, as described previously. [ 29 ]   A. diadematus  (body weight: 
300–600 mg) were fed with blowfl ies, and fi bers were obtained by 
forcibly silking an adult  A. diadematus  at 160 mm s −1 . 

  Fiber Analysis : The fi bers were analyzed with an optical microscope 
(Leica DMI3000B), and fi bers showing defects were disposed. Fiber 
diameters were determined using 20×, 40×, and 100× object lenses and 
the software Leica V4.3. Birefringence was detected using polarizers 
at 0°, 45°, and 90° and pictures were obtained with the camera Leica 
DMC2900. For scanning electron microscopy (SEM, Zeiss LEO 
1530, 3 kV), fi ber samples and fi ber breaking edges were sputtered 
with a 2 nm platinum coating (Cressington 208HR high-resolution 
sputter coater) before imaging. Fourier transformation infrared (FTIR) 
spectroscopy measurements of the fi bers were performed using a Bruker 
Tensor 27 (Bruker Optics, Ettlingen, Germany) with a Hyperion 1000 
FTIR microscope. Alignment of the β-sheet crystals was analyzed using 
a 15× object lens with polarizing fi lters at 0° and 90° in transmission 
mode (IR polarizers supplied by Optometrics Corporation). Spectra were 
plotted using Origin 8.1G (OriginLab Corporation, Northampton, MA, 
USA). 

  Tensile Testing : For tensile testing fi ber pieces were mounted onto 
plastic sample holders with a 2 mm gap using superglue (UHU GmbH 
& Co. KG). Tensile testing was performed using a BOSE Electroforce 
3220 with a 0.49 N load cell and a pulling rate of 0.04 mm s −1  at 30% 
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  Table 2.    Roles of spidroins terminal domains.  

 Non-repetitive amino-terminal 

domain 

Non-repetitive carboxy-

terminal domain 

 Spinning 

dope 

High impact: monomeric during 

storage, folded domain inhibits 

protein aggregation; crucial in 

order to obtain an intermolecular 

protein network

High impact: dimerized/

assembled domain renders 

protein less prone to unspe-

cifi c aggregation; crucial for 

protein assembly into micellar 

structures and self-assembly 

to BSD

 Assembly High impact: dimerization occurs 

upon acidifi cation, step-wise 

initiation of fi ber assembly

High impact: initiation of fi ber 

assembly

 Mechanical 

properties 

of fi bers 

No direct impact: indirect infl u-

ence due to impact on assembly 

and spinning dope

No direct impact: only indirect 

infl uence due to high impact 

on assembly
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relative humidity. Mechanical data were calculated considering real 
stress and real strain data and using Microsoft Excel 2010 (Microsoft 
Corporation, Redmond, WA, USA). For statistical analysis an unpaired 
two-sided  t -test was performed for groups with similar variances and 
sample numbers were ≥10, except for poststretched N1L(AQ) 12 NR3 
fi bers spun from CSD ( n  = 7).  
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 Supporting Information is available from the Wiley Online Library or 
from the author.  
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Amino acid sequences: 
 
N1L 
  10  20  30  40  50 
 GQANTPWSSK ANADAFINSF ISAASNTGSF SQDQMEDMSL IGNTLMAAMD 
  60  70  80  90  100 
 NMGGRITPSK LQALDMAFAS SVAEIAASEG GDLGVTTNAI ADALTSAFYQ 
  110  120  130  140  150 
 TTGVVNSRFI SEIRSLIGMF AQASANDVYA SAGSGSGGGG YGASSASAAS 
  160  170  180 
 ASAAAPSGVA YQAPAQAQIS FTLRGQQPVS 
 
Module A 
  10  20 
 GPYGPGASAA AAAAGGYGPG  SGQQ 
 
Module Q 
  10  20 
 GPGQQGPGQQ GPGQQGPGQQ 
 
NR3 
  10  20  30  40  50 
 GAASAAVSVG GYGPQSSSAP VASAAASRLS SPAASSRVSS AVSSLVSSGP 
  60  70  80  90  100 
 TNQAALSNTI SSVVSQVSAS NPGLSGCDVL VQALLEVVSA LVSILGSSSI 
  110  120 
 GQINYGASAQ YTQMVGQSVA  QALAG 
 

 

Extended experimental section 

Protein production: 

The genes encoding recombinant spider silk proteins eADF3 (AQ)12, (AQ)24, (AQ)12NR3, 

(AQ)24NR3, N1L(AQ)12 and N1L(AQ)24 were cloned, expressed and the proteins were 

purified as previously described.
[12]

 N1L(AQ)12NR3 and N1L(AQ)24NR3 were produced 
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using the SUMO system
[35]

 and purified using nickel affinity chromatography, followed by 

cleavage of the SUMO-TAG and ammonium sulfate precipitation. Identity of proteins was 

confirmed by discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE, 12.5 % Tris-Glycine gels) followed by silver staining (Figure S3) and/or 

western blotting (not shown) as previously published.
[12]

 

Spinning dope preparation: 

The lyophilized proteins were dissolved in 6 M GdmSCN (at a calculated protein 

concentration of 20-25 mg/mL) and dialyzed over night at room temperature against 5 L of 50 

mM Tris/HCl, pH 8.0, 100 mM NaCl, using dialysis membranes with a molecular weight cut-

off of 6,000-8,000 Da. During the first dialysis, 10-40 % of the dissolved protein precipitated 

in the dialysis membrane. The precipitated protein was separated from the supernatant by 

centrifugation (8,500 rpm, 30 min, 20 °C), and subsequently the supernatant was again 

dialyzed against 50 mM Tris/HCl, pH 8.0, 100 mM NaCl. Buffers were changed after 5-6 

hours and a protein solution was dialyzed against 3 X 5 L of buffer prior to further processing. 

Preparation of “classical” spinning dopes (CSD) 

In order to obtain highly concentrated CSD, the protein solutions with a concentration of 

15-20 mg/mL were dialyzed against a 20 % (w/v) polyethylenglycol (PEG, 35 kDa) solution. 

Dialysis against a PEG solution removes water from the protein solution by osmotic stress 

and allows an accurate adjustment of protein concentration.
[27]

 Electrolytic conductivity 

measurements were performed using a FG3 conductivity meter (Mettler Toledo) with a 1 

point calibration using a conductivity standard with a conductivity of 12.88 mS/cm (Mettler 

Toledo). After reaching the desired concentration of the CSD (ranging between 100-

150 mg/mL, depending on the used protein) dialysis was stopped and the CSD (pH 7.8) was 

transferred into a syringe without drawing any air, and fiber production was started.  

Preparation of “biomimetic” spinning dopes (BSD) 
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BSD were prepared by dialysis over night at room temperature against 30-50 mM sodium 

phosphate buffer, pH 7.2. During the dialysis, phase separation occurs in the dialysis 

membrane, and the BSD sediments at the bottom of the dialysis membrane. In order to 

separate the BSD from the rest of the protein solution, the dialysis is stopped and the content 

of the dialysis membrane is centrifuged in a 50 mL reaction tube at 6,000 rpm, 20 °C for 

5 minutes. The upper phase (protein concentration: 10-15 mg/mL) was transferred into a 

separate 50 mL reaction tube. The protein concentrations in BSD were 90-110 mg/mL and 

after BSD were transferred into a syringe without drawing any air, the fiber production was 

started. 

Fiber production 

Spinning dopes were extruded through a syringe with an inner needle diameter of 0.8 mm at a 

spinning rate of 5 µL/min into a 3 L beaker filled with a coagulation bath. After fiber 

formation the fibers were taken out of the bath and manually post-stretched with a drawing 

rate of 5 mm/sec in an additional bath. For wet-spinning and post-stretching (if applicable) 

coagulation baths were used containing a mixture of water and isopropanol, as used 

previously,
[29]

 at pH 7.7. A. diadematus spiders (body weight: 300-600 mg) were fed with 

blowflies, and fibers were obtained by forcibly silking adult spiders at 160 mms
-1

. After 

spinning or post-stretching, the obtained fibers were stored in plastic petri dishes until they 

were mounted onto plastic sample holders. Variations in storage time (2 hours to 4 weeks) did 

not show an impact on the mechanical properties of the fibers. The fibers were not actively 

dried, but they were stored for at least 2 hours at room temperature (21-25 °C) and 30 % 

relative humidity before mounting on sample holders.  

Fiber analysis 

The fibers were analyzed with an optical microscope (Leica DMI3000B), and fibers showing 

defects were disposed (approx. 5 % of post-stretched fibers spun from BSD, approx. 15 % of 

post-stretched fibers spun from CSD). 
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Fiber diameters were determined using 20x, 40x and 100x object lenses and the software 

Leica V4.3. Birefringence was detected using polarizers at 0°, 45° and 90° and pictures were 

obtained with the camera Leica DMC2900. For scanning electron microscopy (SEM, Zeiss 

LEO 1530, 3 kV), fiber samples and fiber breaking edges were sputtered with a 2 nm 

platinum coating (Cressington 208HR high-resolution sputter coater) before imaging. Fourier 

transformation infrared (FTIR) spectroscopy measurements of the fibers were performed 

using a Bruker Tensor 27 (Bruker Optics) with a Hyperion 1000 FTIR microscope. Alignment 

of the β-sheet crystals was analyzed using a 15x object lens with polarizing filters at 0° and 

90° in transmission mode (IR polarizers supplied by Optometrics Corporation). Spectra were 

plotted using Origin 8.1G (OriginLab Corporation, Northampton, MA, USA).  

Tensile testing 

For tensile testing fiber pieces were mounted onto plastic sample holders with a 2 mm gap 

using superglue (UHU GmbH & Co. KG). Tensile testing was performed using a BOSE 

Electroforce 3220 with a 0.49 N load cell and a pulling rate of 0.04 mm/s at 30 % relative 

humidity. Mechanical data were calculated considering real stress and real strain data and 

using Microsoft Excel 2010 (Microsoft Corporation, Redmond, WA, USA). For statistical 

analysis an unpaired two-sided t-test was performed for groups with similar variances and 

sample numbers were ≥ 10, except for post-stretched N1L(AQ)12NR3 fibers spun from CSD 

(n = 7). 

 

Figure S1. (a, b) CSD (all variants) and (c) BSD (variants with carboxy-terminal domain 

only). SEM images show 600 % post-stretched fibers (I) and breaking edges thereof (II). (III) 

Natural spider silk fiber obtained by forced silking of A. diadematus 

 

Figure S2. Processing of recombinant spider silk proteins into (a) biomimetically and (b) 

classically concentrated spinning dopes. (a) Dialysis against a phosphate-containing buffer 
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enables the formation of micellar-like structures
[14]

 yielding a spinning dope with pre-oriented 

silk proteins. Importantly, this orientation/pre-structure formation is fully reversible. Upon 

fiber spinning β-sheet crystals are formed, and the non-repetitive amino-terminal domains are 

dimerized (upon shifting the pH from ~ 7.2 to ~ 5.7) leading to an intermolecular network 

responsible for extraordinary mechanical properties after post-stretching the fibers. (b) 

Without pre-assembly of the proteins in the dope the formed network is weak yielding less 

stable fibers upon post-stretching with properties similar to other polymer fibers, such as 

nylon, or previously reported wet-spun spider silks. 

 

Figure S3. Analysis of the purified proteins (a) N1L(AQ)12NR3 and (b) (AQ)12NR3 using 

discontinuous SDS-PAGE with subsequent silver staining (exemplary for all used proteins). 

Under reducing conditions the disulfide bonds of the carboxyterminal domains are “reduced” 

to thiol groups (monomeric state), in contrast to “not reduced” samples, whose 

carboxyterminal domains dimerize.
[16]

  

 

Table S1. Electrolytic conductivity measurements of solutions and buffers during PEG-

dialysis of a (AQ)12 solution. 

Solution or buffer Electrolytic conductivity / mScm
-1 

25 mM Tris/HCl, pH 8.0 1.49 

50 mM Tris/HCl, pH 8.0 2.98 

50 mM Tris/HCl, pH 8.0, 25 mM NaCl 5.52 

50 mM Tris/HCl, pH 8.0, 50 mM NaCl 8.02 

50 mM Tris/HCl, pH 8.0, 75 mM NaCl 10.28 

50 mM Tris/HCl, pH 8.0, 100 mM NaCl 12.68 

50 mM Tris/HCl, pH 8.0, 125 mM NaCl 15.10 

(AQ)12 solution before PEG-dialysis 12.20 

(AQ)12 solution after PEG-dialysis 1.53 
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Abstract 1 

Spider dragline silk is distinguished through the highest toughness of all fibre materials. In order 2 

to unravel its molecular foundation and to progress in manufacturing biomimetic analogues, the 3 

morphological and functional structure of recombinant fibres, that exhibit toughness similar to 4 

the natural template, is investigated: on the molecular scale by means of vibrational spectroscopy 5 

and on the mesoscale by small angle X-ray scattering. While the former ensures similar protein 6 

secondary structures in the natural as well as artificial silks, the latter reveals nanometre-sized 7 

crystallites. Thus, on the basis of a similar block-like peptide the same assembly –namely 8 

alanine-rich nanocrystals embedded in a glycine-rich matrix– is formed. Furthermore, a spectral 9 

red shift of a crystal-specific absorption band demonstrates that macroscopically applied stress is 10 

transferred without any threshold to the molecular scale, where it is finally dissipated. This 11 

mechanism works analogously to natural silk giving rise to the toughness of both materials.  12 

13 
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Introduction 1 

Major ampullate spider silk (or synonymously dragline silk) combines high tensile strength and 2 

great elasticity, which renders this fibre to be tougher than even modern synthetic materials and 3 

has brought it into the focus of research for decades
1-3

. Because the spiders’ territorial behaviour 4 

and cannibalism restricts the production of natural silk and especially of non-processed spider 5 

silk proteins (i.e. spidroins), the question for manufacturing recombinant silk in order to enable 6 

industrial scales arises. Even though the molecular structure of major ampullate fibres has been 7 

thoroughly studied and concepts for applications such as in drug delivery and as cell scaffold 8 

systems as well as optical and biosensor systems have been successfully established, artificial 9 

fibres have not achieved all the properties of the natural blueprint, yet
4-6

. 10 

The mechanical properties of major ampullate spider silk are based on the molecular structure of 11 

the constituent spider silk proteins (spidroins) but as well on their refined mesoscale architecture. 12 

A major ampullate thread consists mainly of two protein classes, major ampullate spidroin 1 13 

and 2 (MaSp1, MaSp2), which can be considered as block copolymers with a core of alternating 14 

alanine- and glycine-rich motifs surrounded by non-repetitive amino- and carboxy-terminal 15 

domains
7,8

. During spinning the highly concentrated protein solution (the spinning dope) 16 

experiences pH and ion exchange, water segregation, and shear forces
9,10

 in order to control the 17 

structural transition from the spidroins’ storage form into the assembly form, whilst those 18 

globules are elongated and aligned to establish fibrillary assemblies
11-14

. The resulting filaments 19 

(with a diameter of 20-150 nm
15

) build up the core of the mature spider silk thread (Figure 1a). 20 

Recently, the delicate interplay between protein-protein interactions and structural water in 21 

filaments comprising the core domain of MaSp2 has been proposed as origin of the filaments’ 22 
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extensibility and as prerequisite for the toughness of natural silk fibers (Lang et al, manuscript 1 

submitted).  2 

In natural dragline silk, the core is coated with layers of spridroin-like proteins, glycoproteins, 3 

and lipids, which gives rise to a final diameter of 2-7 mm
4,17-19

. 4 

On the basis of the spidroins’ primary structures the alanine-rich motifs (polyalanine An) form 5 

nanometre-sized crystals from -sheet stacks (white space) already present at the exit of the 6 

spigot
20-22

, whereas the glycine-rich motifs (GGX, GPGXX) form presumably -turns, -spirals, 7 

31-helices, and random structures
23,24

 representing the less-ordered (hereafter amorphous) matrix 8 

in which the crystallites are embedded (Figure 1b,d)
3
. The crystal volume fraction amounts to 9 

between 30 and 40% depending on the employed measurement technique and spider silk 10 

species
25-27 

. By means of X-ray scattering a crystal size in the direction along the fibre axis of 11 

5.5-7.3 nm and an orientational order of 0.97-0.99 (Herman’s orientation function)28,29
 has been 12 

determined, whereas the order may drop significantly to 0.68 for low reeling speed
30

. Simulations 13 

on the size and the orientation of nanocrystals with similar composition revealed that there is an 14 

optimal size of the confinement and an optimal orientation of the nanocrystals in regard to the 15 

toughness of silk
15,31,32

. 16 

Besides X-ray scattering
25,28-30

 and nuclear magnetic resonance
13,20,24,27

, the structure of spider 17 

dragline silk has been studied by other techniques as Raman
11,23,34

 or infrared (IR) 18 

spectroscopy
18,19,26,33,35-38

. Especially the latter in combination with mechanical fields provides 19 

detailed information on the functional organisation of spider silk and the proteins therein. On the 20 

basis of the load-dependent spectral shift of an IR-active molecular vibration (� = ͻ͸ͷ cm−ଵ) 21 

located exclusively within the nanocrystals, it has been concluded that a mechanism is 22 

mandatory, which transports the macroscopically applied load through the amorphous, and hence, 23 
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soft matrix so that it affects the much harder crystallites on the microscopic scale
36-38

. This 1 

mechanism can be explained solely by stretched amorphous protein chains, which are elongated 2 

during spinning and give rise to a microscopic non-equilibrium state in the mature fibre. Those 3 

pre-stressed chains have been successfully employed to resolve the macroscopic stress-strain-4 

curve solely based on microscopic properties
36,38

 as well as to reveal the origin of 5 

supercontraction and its impact
 
on the microscopic quantities in major ampullate (MA) spider 6 

silk
35

. It has been demonstrated that the microscopic non-equilibrium state can be influenced 7 

through macroscopic stress that increases the microscopic pre-stress and gives rise to a spectral 8 

red shift, whereas vice versa hydrostatic pressure reduces the pre-stress evident in a blue shift
19

. 9 

Furthermore, the thread’s mechanical properties can be reversibly tailored via supercontraction 10 

and subsequent stretching, which resets this non-equilibrium and establishes a customized state 11 

conditioned through the post-strain
39,40

. Apart from the stress-strain behaviour, a hypersonic 12 

phononic bandgap and negative dispersion relation due to the pre-stressed protein chains have 13 

recently been publish, which is the first report of a negative group velocity, negative refraction 14 

and potential focusing of hypersonic phonons in a natural material
41

. 15 

Concerning artificial silk fibres, the highest tenacity (508 MPa) and elastic modulus (21 GPa) has 16 

been achieved by wet-spinning of high molecular weight proteins (285 kDa) containing only 17 

amino acid motifs from the core domain of the natural spidroins
42

. However, these fibres reached  18 

only 48% of the natural tenacity (of 1.1 GPa
3
) and approximately 44% of the natural toughness 19 

(of 160 MPa
3
; toughness is calculated using the mean values: elongation 15%, tenacity 508 MPa 20 

and elastic modulus 21 GPa, whilst assuming a linear increase in stress due to strain up to the 21 

value of tenacity followed by a constant course up to 15% strain as indicated by the stress-strain 22 

curve in Figure 3 in Reference 
42

). Other artificial silk fibres showed 69% of the natural 23 

toughness with greater elongation but at the expense of lower tenacity
43

. On the basis of the 24 
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engineered MaSp2-derivative (AQ)12NR3 inspired from the sequence of ADF3 (araneus 1 

diadematus fibroin3) of the European garden spider Araneus diadematus, recently two different 2 

spinning dopes have been produced: a classical (CSD) and a biomimetic spinning dope (BSD, 3 

Figure 1c)
44

. To prepare CSD excess water has been removed by dialysis in order to achieve a 4 

high protein concentration (10-17% w/v). In the case of BSD, instead, spidroin self-assembly and 5 

phase separation (resulting in a concentration of 10-15% w/v) have been triggered in the presence 6 

of phosphate ions by the non-repetitive carboxy-terminal domain NR3
44

. Interestingly, wet spun 7 

fibres spun out of BSD have shown superior mechanical properties to that from CSD. Moreover, 8 

to the best of our knowledge as first artificial spider silk threads those BSD fibres have proven to 9 

accomplish a toughness (172 MPa
44

, Figure 1e) which is able to compete with that of natural 10 

spider silk fibres (160 MPa
3
 or 167 MPa

44
). 11 

In order to investigate the origin of the high toughness of the artificial fibres, small and wide 12 

angle X-ray scattering (SAXS and WAXS) and polarised Fourier-transform infrared spectroscopy 13 

(FTIR) experiments have been carried out. The former is suitable to obtain information about the 14 

size of the crystallites, whereas the latter provides detailed insight into the material’s 15 

organization; on the one hand concerning the protein secondary structure and on the other hand 16 

acting as molecular sensor of relative force variations within the β-sheet nanocrystals
19,36-38

. 17 

Thus, one is able to reveal how the morphology and the functional structure have to cooperate in 18 

order to realise energy dissipation.  19 
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Results and discussion 1 

Small angle X-ray scattering 2 

The diffraction patterns of the artificial fibres (CSD 0%, CSD 600%, BSD 0% and BSD 600%) 3 

appear isotropic in case the threads are macroscopically not-oriented (Figure 2a). In contrast, 4 

when they are macroscopically oriented, the scattering signal is biased (Figure 2b). This 5 

demonstrates the durable presence of ordered structures on the mesoscale, which have already 6 

been formed during the course of wet spinning. Furthermore, the magnitude of the q100-signal is 7 

deduced from the azimuthal integration of the scattering pattern and results in |�ଵ଴଴| =8 ሺͲ.ͺͻ ± Ͳ.Ͳͳሻ nm−ଵ (Figure 2c). This value corresponds to a periodic length of the scattering-9 

causative structures of � = ሺ͹.ͳ ± Ͳ.ͳሻ nm (� = ʹ�/|�ଵ଴଴|). Because the persistence of the 10 

crystal size as well as its integrity throughout stretching of wet fibres is well known for major 11 

ampullate silk,
45

 an effect of the post-spinning treatment on the crystallites apart from alignment 12 

is not reasonable. Furthermore, the determined periodic length is in full agreement with 13 

previously derived values for major ampullate spider silk (5.5-7.3 nm)
28,29

. Since the primary 14 

structure of the underlying recombinant silk-like protein (AQ)12NR3 consists of similar amino 15 

acid motifs as the natural ADF3 (Figure 1c)
44

 and is identical for all four kinds of artificial fibres  16 

Since the primary structure of the recombinant silk-like protein (AQ)12NR3 consists of similar 17 

amino acid motifs as the natural blueprint ADF3 (Figure 1c)
44

 and its fibre structure shows the 18 

same periodic length in SAXS experiments as major ampullate spider silk, we suspect that the 19 

molecular morphology of the biomimetic samples is highly similar to that of the natural template. 20 

This assumption is further consolidated by the findings from FTIR spectroscopy experiments. 21 
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FTIR Spectroscopy 1 

For all recombinant spider silk fibres absorption peaks are evident at � = ͻ͸ͷ cm−ଵ and � =2 ͳͲʹͷ cm−ଵ (Figure 3), which can be found as well in the fingerprint region of IR spectra of 3 

natural major ampullate spider silk
19,36-38

. The former frequency represents a combined stretching 4 

vibration within the -sheet crystallites formed by the An-motifs; the latter corresponds to 5 

GPGQQ in -turn, -spiral, 31-helix, or amorphous structures
37

. When comparing the spectra 6 

from the recombinant samples with that derived from natural silk, peaks at � = ͳͲͲͲ cm−ଵ and 7 � = ͳͲͳͷ cm−ଵare absent (Figure 3). The first missing peak arises from the (GA)n-motif
37

, 8 

which is part of certain natural spidroins and surrounds the An regions
8
, but it is not included 9 

in the recombinant protein
44

. In the case of the second peak, so far it was solely possible to assign 10 

this band together with that at � = ͳͲʹͷ cm−ଵ to skeletal stretching vibrations of glycine—rich 11 

parts. Now, With the information from the recombinant protein we are now able to separate those 12 

two peaks and address the peak at � = ͳͲͳͷ cm−ଵ to the GGX-motif, which is not present in 13 

(AQ)12NR3 but in other major ampullate spidroins
8
. 14 

Another characteristic attribute of natural major ampullate spider silk fibres is the orientation of 15 

the crystallites and glycine-rich arrangements along the fibre axis, which gives rise to anisotropic 16 

absorption on macroscopic scale (Figure 3a and 4a and b).The molecular order parameter 17 

(Equation 3) was � = Ͳ.ͺͻ ± Ͳ.Ͳʹ and � = Ͳ.ͳ͹ ± Ͳ.Ͳʹ, respectively, for the IR transition 18 

moments (TMs) of the specific vibrations within the aggregated -sheet An-motif and the 19 

helical/amorphous GPGXX-motif (Figure 4a and b). Assuming that the individual TMs are 20 

distributed along the fibre axis obeying a rotational symmetric Gaussian function the order 21 

parameter would result in a distribution width (Equation 4) of � = ͳͳ.͵° ± ͳ.Ͳ° and � =22 Ͷ͸.͹° ± ͳ.͹°, respectively
46

. 23 
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In the case of the biotech fibres, the characteristic secondary structure elements are present after 1 

wet-spinning, whereas they do not show any orientational order beyond that local coordination 2 

necessary to develop the protein secondary structure (� = Ͳ.Ͳͳ ± Ͳ.Ͳʹ; Figure 4a and b). 3 

However, post-spinning elongation of the wet threads, gives rise to a macroscopic alignment of 4 

the nanocrystals and glycine-rich parts. For fibres spun from from the CSD that have been post-5 

stretched to 600% of its initial length a molecular order parameter of the nanocrystals of � =6 Ͳ.͵ʹ ± Ͳ.Ͳ͵ (� = ͵͸.͸° ± ͳ.͸°) is determined, which increases further to � = Ͳ.ͶͲ ± Ͳ.Ͳ͵ 7 

(� = ͵ʹ.͸° ± ͳ.Ͷ°) when the threads are strained. The order of the glycine-rich parts slightly 8 

increases from � = Ͳ.ͳͲ ± Ͳ.Ͳ͵ (� = ͷͶ.ͳ° ± Ͷ.ͳ°) to � = Ͳ.ͳͶ ± Ͳ.Ͳ͵ (� = Ͷͻ.ͷ° ± Ͷ.ͳ°). 9 

Compared to fibres spun from CSD, post-stretched fibres spun from BSD show an increased 10 

order of the crystallites with a molecular order parameter of � = Ͳ.Ͷ͹ ± Ͳ.Ͳ͵ (� = ʹͻ.Ͷ° ±11 ͳ.͵°), which rises to � = Ͳ.ͷͶ ± Ͳ.Ͳ͵ (� = ʹ͸.ͷ° ± ͳ.Ͷ°) under further strain. The glycine-rich 12 

parts are also more ordered compared to that of samples spun from CSD (� = Ͳ.ͳ͵ ± Ͳ.Ͳ͵, 13 � = ͷͲ.ͷ° ± ͵.͵°) and additionally align more quickly under strain reaching the value of natural 14 

dragline silk (� = Ͳ.ʹͲ ± Ͳ.Ͳ͵, � = ͶͶ.ʹ° ± ʹ.͵°). 15 

Interestingly, the increase in alignment order is accompanied by a significant enhancement of the 16 

fibres’ mechanical properties (Figure 1)
44

. Previously, post-stretched fibres spun from the BSD 17 

have shown the best performance in absorbing load, and here they exhibited the biggest 18 

molecular order. Thus, the superior mechanical properties of the BSD-fibres over CSD ones can 19 

be ascribed to the increased alignment of the nanocrystals and amorphous structures. 20 

Response to External Load 21 

The mechanical response to load of the biotech fibres is significantly influenced by the post-22 

spinning treatment: fibres as-spun (CSD 0% and BSD 0%) appear to be brittle, whereas post-23 
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spinning elongation enhances the elastic modulus and extensibility
44

. Moreover, the threads’ 1 

stress-strain characteristic is sustainably changed. As evident in Figure 2 of Reference 
44

 fibres 2 

as-spun have shown no yield point in stress-strain experiments, whereas post-stretched samples, 3 

have evinced a distinct yield point
44

. In this context it is highly interesting that the presence or 4 

absence of a yield point for semi-crystalline polymers, to which spider silk can be assigned, 5 

indicates the energy dissipation through oriented and ordered or unordered structures, 6 

respectively
47,48

. Accordingly, the applied load in the case of the as-spun samples is applied 7 

predominantly to amorphous structures, whereas when the samples are post-streched the stress-8 

strain curves indicate the involvement of ordered parts. The highest toughness (172 MPa), which 9 

is able to compete with that of natural major ampullate spider silk (160 MPa
3
 or 167 MPa

44
, has 10 

been achieved for (AQ)12NR3 fibres spun from BSD with 600% post-strain. Therefore, we focus 11 

on sample BSD 600% hereafter. 12 

Orientational order of the TMs for both vibrations, An in the crystallites and GPGQQ in the 13 

amorphous matrix, is induced through elongation. Between 10 and 15% strain (for BSD 600%, 14 

for CSD 600% between 15 and 20%) the yield point is reached, at which the deformation changes 15 

from elastic to plastic. As a consequence, the molecular order parameter drops but recovers 16 

afterward. Its decrease is stronger for the crystallites than for the amorphous parts, but the 17 

increase after the yield point is pronounced for the latter. Thus, up to the yield point the 18 

nanocrystals are highly incorporated in dissipating the stress, whereas for greater strain the 19 

amorphous matrix is stronger involved. This finding is in accordance to a recent simulation study, 20 

in which the relative contribution of the crystals to the macroscopic deformation has dropped at 21 

the yield point, whereas that of the amorphous part has increased
49

. 22 



11 

 

A more refined assessment of the interplay between nanocrystals and amorphous parts is 1 

provided by stress-dependent IR spectroscopy experiments. In the past, one exceptional 2 

characteristic of major (and minor) ampullate spider silk has been found: the load-dependent and 3 

reversible spectral shift of the alanine-specific IR absorption band at � = ͻ͸ͷ cm−ଵ 
19,36-38

. 4 

Although the nanometre-sized alanine-rich crystals are embedded within a less ordered glycine-5 

rich matrix, macroscopically applied stress affects vibrations on the molecular length scale inside 6 

those rigid crystallites. Consequently, a mechanism responsible for the stress transfer has to exist. 7 

It is believed that amorphous parts interconnecting the nanocrystals experienced shear forces 8 

during spinning inducing orientation and elongation of pre-aggregates
10

. This strain, and hence, 9 

stress is preserved while the thread is formed; the tendency to contract is counterbalanced by the 10 

surrounding layers of the fibre. Thus, the arising inherent non-equilibrium state of the 11 

pre-stressed morphology causes the transduction of the applied load from the macroscopic scale 12 

down to the molecular level, where the emerging energy affects the crystallites and is 13 

dissipated
19,36-38

. 14 

In case sample BSD 600% is exposed to macroscopic stress a shift of this An-specific peak 15 

(� = ͸ͻͷ cm−ଵ) becomes evident (Figure 5a). Furthermore, after the sample has been stressed 16 

and relaxed, the spectral displacement decreases in accordance to the lowered apparent force. 17 

This spectral shift is linearly dependent on the applied stress, as for natural dragline silk. The 18 

slope of −Ͷ.ͻ cm−ଵGPa−ଵ corresponds to frequently derived values for spider silk
18,36,37

; it even 19 

fits to the slope under hydrostatic pressure
19

. These results explicitly demonstrate that 20 

macroscopically applied stress is transferred through the less-ordered matrix and affects the 21 

crystalline parts of the biomimetic fibres. This mechanism in the biotech fibres is identical to that 22 
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in natural major ampullate spider silk and responsible for the exceptional ability of dissipating 1 

impinging energy. 2 

  3 
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Conclusion 1 

On the basis of the recombinant protein (AQ)12NR3 four different types of biotech spider silk 2 

fibres (resulting from two distinct preparation techniques and post-treatment) have been 3 

investigated; on the mesoscale by small angle X-ray scattering and on the molecular scale by 4 

polarized and stress-dependent FTIR spectroscopy. It is demonstrated that alanine-rich 5 

nanometre-sized crystallites (7.1 nm) with comparable dimensions (5.5-7.3 nm) as found in 6 

natural major ampullate spider silk are formed in the course of wet spinning, whilst glycine-rich 7 

parts establish an amorphous matrix embedding those crystals. Thus, on a molecular level, 8 

biotech fibres already closely resemble natural fibres.  9 

Opposed to natural silk, in which crystalline and amorphous parts show a (high) order directly 10 

after spinning (� = Ͳ.ͺͻ and � = Ͳ.ͳ͹), no orientational order is evident on the macroscopic 11 

scale in the biotech fibres (due to the different spinning technique, � = Ͳ.Ͳͳ). Post-spinning 12 

elongation of the fibres aligns the crystalline parts as well as the glycine-rich structures and 13 

enhances their mechanical properties. This post-stretching effect on the molecular order is more 14 

pronounced in fibres spun from BSD than from CSD. Fibres, that are spun from the “biomimetic” 15 

spinning dope (BSD) and elongated afterward to 600 % of their initial length, show the best 16 

performance in absorbing load, while they exhibit at the same time the biggest molecular order of 17 

the artificial threads (� = Ͳ.Ͷ͹ and � = Ͳ.ͳ͵). When those fibres are exposed to stress, the 18 

molecular order parameters of the crystalline and amorphous regions are further increased 19 

reaching for the latter the same order as in natural spider silk fibres. 20 

In addition, under external stress an IR absorption peak specific for molecular vibrations within 21 

those crystallites is shifted linearly, which explicitly reveals that macroscopic stress is transferred 22 

through a less-ordered matrix and affects the crystalline parts of this composite. This mechanism 23 
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is identical to that in natural major ampullate spider silk and responsible for the exceptional 1 

ability of dissipating impinging energy present in both materials. 2 

Our results indicate that the production of biotech fibres having the same toughness as natural 3 

silk requires a well-defined dope preparation in combination with a spinning process which 4 

integrates shear forces during fibre formation in order to obtain the naturally high orientational 5 

order.  6 



15 

 

 1 

Figure 1: Principle morphology of major ampullate and recombinant spider silk along with the stress-strain 2 

dependence and resulting toughness. (a) One thread of the natural major ampullate silk is composed of fibrils which 3 

itself (b) comprise nanometre-sized crystallites (yellow) embedded in an amorphous matrix (blue). (c) The major 4 

ampullate spidroins (MaSp1 and 2) may be considered as block-copolymers with alanine- and glycine-rich motifs, 5 

which give rise to the crystalline and amorphous parts. (d) The natural amino acid sequences are partially employed 6 

as template for the repetitive core of the recombinant protein (AQ)12NR3, in order to obtain the distinct secondary 7 

structures. (e) In comparison, the elastic modulus of major ampullate silk is greater than that of the recombinant 8 

samples, whereas on the other hand, the artificial materials are more elastic. As a result the natural draglines as well 9 

as the recombinant (AQ)12NR3 silk absorb the same amount of energy per unit volume (toughness) (taken from 10 

Ref. 
44

 with permission) A: alanine, G: glycine, P: proline, Q: glutamine X: predominantly tyrosine, leucine, 11 

glutamine, alanine and serine residues, NTD: N-terminal domain, CTD: C-terminal domain. 12 

  13 
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 1 

Figure 2: Small angle X-ray scattering (SAXS) pattern of the recombinant (AQ)12NR3 fibres. When comparing the 2 

diffraction characteristics of (a) macroscopically not-oriented and (b) oriented fibres (CSD 0% post-strained) an 3 

anisotropic scattering emerges as a result of aligned structures on the mesoscale. (c) Azimuthally integrated 4 

scattering signal. The shoulder at 0.89 nm
-1

 (2/0.89 nm
-1

 = 7.1 nm) reflects the reduced/enhanced intensity as a 5 

result of the fibres’ orientation, and hence, the lack/excess of scattering structures at the particular azimuthal angle. 6 

The inset depicts an enlargement of the shoulder at 0.89 nm
-1

 along with the Fourier-filtered curves. 7 
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 1 

Figure 3: FTIR spectra of (top) major ampullate spider silk, (middle) recombinant (AQ)12NR3 CSD fibres 600% 2 

post-strained, and (bottom) (AQ)12NR3 BSD fibres 600% post-strained with the electric field of the incoming IR 3 

light in parallel to the fibre axis ( = 0°, black) and perpendicular to it ( = 90°, red). As evident from the amino acid 4 

sequence (Figure 1) vibrations at 965 cm
-1

, 1025 cm
-1

, and 1055 cm
-1

 arise from the polyalanine ((A)n) and the 5 

glycine-rich ((GPGXX)n) motifs. Peaks at 1000 cm
-1

 (GA) and 1015 cm
-1

 ((GGX)n) are absent, due to a lack of those 6 

motifs in the primary structure of (AQ)12NR3.   7 
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 1 

Figure 4: Polar plots and order parameters of molecular moieties located within the nanocrystals or the amorphous 2 

matrix. (a) Polar plot of the integrated absorbance (area under the curve) of the (A)n vibration of the recombinant 3 

fibres ((AQ)12NR3 CSD 0% post-strained: open black squares; (AQ)12NR3 CSD 600% post-strained: solid red 4 

squares; (AQ)12NR3 BSD 600% post-strained: solid green triangles) as well as the natural major ampullate spider 5 

silk threads (solid black triangles). The dashed, dashed-dotted, and solid lines represent fits of Equation 1. The data 6 

points are normalized through dividing by the corresponding maximum value. (b) Polar plot of the (GPGXX)n 7 

vibration. The decoding is identical to that of panel a. (c) Change of the molecular order parameter with rising strain. 8 

While the orientation in the natural sample is hardly affected, the crystallites in the recombinant fibres align further 9 

up to the yield point (CSD 600% post strain: S = 0.32 to 0.40; BSD 600% post strained: S = 0.47 to 0.54). For 10 

greater strain than the yield point the amorphous matrix orient significantly better. 11 

The dotted line separates the curves of the (A)n and the (GPGXX)n motifs.   12 
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 1 

Figure 5: Microscopic response of the recombinant sample to macroscopic load. (a) The frequency position of the 2 

(A)n peak is shifted to lower wavenumbers as a consequence of the applied force (and hence stress). (b) Similar to 3 

that of natural spider silk this frequency shift is linear with the applied stress (inset) with a slope of -4.9 cm
-1

GPa
-1

 4 

being in full agreement with the literature
19,36-38

. The black spares correspond to the black curve in panel a, the red 5 

squares with black frame result from stretching the sample from 0% to 5% strain. The red squares correspond to the 6 

red curve in a and the green squares with red frame represent the sample stretched to 10% strain. Since the (A)n 7 

vibration is exclusively located within in the crystallites
37

, it is demonstrated that the macroscopic load is transferred 8 

down the molecular scale, where it affects the crystalline parts of the peptide chains, even though the nanocrystals 9 

are embedded in an amorphous matrix.  10 
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 1 

Figure 6: Schematic of (a) a recombinant (AQ)12NR3 (CSD or BSD) and (b) a natural major ampullate spider silk 2 

thread. The former comprises a homogeneous compound of polyalanine -sheet crystallites embedded in a glycine 3 

rich, amorphous matrix, whereas the latter, in addition, exhibits a refined mesoscopic architecture composed of 4 

fibrils and a surrounding layered structure. In both samples the nanocrystals show a periodic length of about 7 nm. 5 

Stretching as post-spinning treatment aligns the crystallites resulting in a significant increase of the molecular order 6 

parameter (CSD: S = 0.32; BSD: S = 0.47), which gives rise to enhanced mechanical properties
44

, but does not reach 7 

the performance of the natural counterpart (S = 0.90).   8 
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Methods 1 

Fibre formation 2 

The recombinant spider silk proteins are produced and purified as reported previously
44

. The 3 

“classical” spinning dope (CSD) is obtained through removing excess water from the diluted 4 

spider silk protein solutions during dialysis against polyethylene glycol
50

. Dialysis of the protein 5 

solution against a phosphate-containing buffer, instead, yields the phase-separated, “biomimetic” 6 

spinning dope (BSD)
14

. Afterward, the fibres are formed by wet spinning from the CSD or BSD 7 

and are used either as such or after subsequent post-straining to 600% of their initial length 8 

(denoted as 0% and 600% post-strained, respectively)
44

. 9 

The natural major ampullate fibres are obtained by forced silking from adult female spiders of the 10 

species Nephila edulis. The spiders are fed with crickets and are not exposed to low temperature 11 

or CO2 atmosphere prior to silking. 12 

Infrared spectroscopy 13 

Polarized vibrational spectra are recorded by means of a mercury-cadmium-telluride detector 14 

(MCT, Kolmar Technologies, Germany) with a spectral resolution of 2 cm
-1

in transmission mode 15 

on a Bio-Rad FTS 6000 FTIR spectrometer equipped with a UMA500 IR microscope. In order to 16 

perform stress-dependent measurements one natural silk thread is wound around two parallel rods 17 

and glued onto them as described previously
19,36,37

. After the glue has set, one side of the so 18 

formed double-sided grating is removed. In case of the recombinant samples, pieces of fibres 19 

were glued in parallel onto those rods. Afterward, all fibres were wetted with paraffin oil (Fluka, 20 

Switzerland) to reduce light scattering. Former studies showed that this procedure does not alter 21 

the mechanical properties or spectral signature in the fingerprint region
37

. The samples were 22 

stretched by micrometre screws whilst the emerging force was recorded by a force sensor 23 
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(8411−50 or 8411−2,5, Burster GmbH, Germany). The data points depicted in Figure 5b resulted 1 

from tracing the apparent force and spectral position of the polyalanine peak during stretching 2 

and subsequent relaxation while the IR light is polarised parallel to the fibre axis. After the force 3 

has had decayed (it does not change during the time needed for the measurement) spectra were 4 

measured at different polarisations from 0° to 180° relative to the fibre axis in steps of 18°. The 5 

latter gives the polar dependence of the absorbance and the order parameters as provided in 6 

Figures 3 and 4. 7 

The integrated absorbance was determined through fitting a Gaussian function to the measured 8 

spectra after a straight baseline was subtracted (for An) or the adjacent band was modelled 9 

through an additional Gaussian (for GPGXX) as background. The polar-dependent absorbance is 10 

given by 11 

,�ሺܣ  �ሻ = − logଵ଴[ͳͲ−஺೘�ೣሺ�ሻ cosଶሺ� − �଴ሻ + ͳͲ−஺೘�೙ሺ�ሻ sinଶሺ� − �଴ሻ], (1) 12 

where ܣሺ�, �ሻ is the integrated absorbance depending on the wavenumber � and the polarisation 13 

of the light’s electric field �, �଴ is the polar angle at which the absorbance reaches its maximum, 14 

and ܣ௠�௫ሺ�ሻ and ܣ௠�௡ሺ�ሻ are the according maximum and minimum absorbance values. 15 

Afterward, the molecular order parameter �௫ was calculated with respect to the principle axis 16 ݔ 

(out of the set of principles axes {ݔ, ,ݕ  as follows 17 ({ݖ

 �௫ = ଵଶ (͵ ஺ೣሺ�ሻ஺ೣሺ�ሻ+஺೤ሺ�ሻ+஺೥ሺ�ሻ − ͳ), (2a) 18 

which is in case of a rotational symmetric distribution of the TMs as given for a fibre along the 19 ݔ-axis (ܣ௠�௫ሺ�ሻ = ௠�௡ሺ�ሻܣ ௫ሺ�ሻ andܣ = ௬ሺ�ሻܣ =  ௭ሺ�ሻ) identical with 20ܣ

 � = ஺೘�ೣሺ�ሻ−஺೘�೙ሺ�ሻ஺೘�ೣሺ�ሻ+ଶ஺೘�೙ሺ�ሻ. (2b) 21 

Furthermore, under the assumptions that all TMs are distributed obeying a Gaussian function 22 �ሺ�, �଴, �, ሻ and the maximum absorbance is centred at the fibre axis (�଴ܤ = Ͳ°), 23 



23 

 

 �ሺ�, �଴, �, ሻܤ = exp ܤ ቀ− ሺ�−�బሻమଶ�మ ቁ, (3) 1 

the molecular order parameter can be expressed via the width � of the Gaussian distribution, 2 

 �ሺ�ሻ = ଵଶ ቆ͵ ∫ �ሺ�,�,஻ሻ ୡ୭sమሺ�ሻ si୬ሺ�ሻభ8బ°బ ୢ�∫ �ሺ�,�,஻ሻభ8బ°బ si୬ሺ�ሻୢ� − ͳቇ. (4)  3 

The parameter ܤ, that represents measurement-dependent values as the strength of the electric 4 

field and of the dipole moment, is canceled out by calculating the ratio in Equation 4. 5 

Small-angle X-ray scattering 6 

Small-angle X-ray scattering (SAXS) experiments were accomplished at room temperature using 7 

a micro-focus source (AXO Nova, Germany; CuK  = 0.1542 nm), multilayer optics (Osmic, 8 

USA), and a Hi-Star 2D detector (Bruker, Germany) with a sample-to-detector distance of 9 

1580 mm. The threads were either rolled to a ball and place into the pinhole of the sample holder 10 

(denoted as macroscopically not oriented) or glued in parallel onto the holder’s surface covering 11 

the bore (macroscopically oriented).  12 
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Abstract

Natural spider silk fibers combine extraordinary properties such as stability and 

flexibility which results in a toughness superseding that of all other fiber materials.  

As the spider’s aggressive territorial behavior renders their farming not feasible, the 
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biotechnological production of spider silk proteins (spidroins) is essential in order to 

investigate and employ them for applications. In order to accomplish this task, two 

approaches have been tested: firstly, the expression of partial cDNAs, and secondly, 

the expression of synthetic genes in several host organisms, including bacteria, yeast, 

plants, insect cells, mammalian cells, and transgenic animals. The experienced prob-

lems include genetic instability, limitations of the translational and transcriptional 

machinery, and low solubility of the produced proteins. Here, an overview of attempts 

to recombinantly produce spidroins will be given, and advantages and disadvantages 

of the different approaches and host organisms will be discussed.

1.    INTRODUCTION

 The outstanding mechanical properties of spider silk fibers have 

impressed mankind since ancient times (Gerritsen, 2002). Its combination 

of stability and flexibility gives natural spider silk fibers a toughness no other 

natural or synthetic fiber can achieve (Gosline, Guerette, Ortlepp, & Sav-

age, 1999). Even compared to Kevlar, one of the strongest known synthetic 

fibrous materials (Table 4.1), spider silk fibers are superior, because they can 

absorb three times more energy before breaking (Römer & Scheibel, 2007). 

In addition, spider silk comprises antimicrobial and hypoallergenic properties 

suitable in applications, such as in wound dressings. A spider’s web has been 

reported to be able to stop bleeding and to support the healing process by 

isolating the wound from the surrounding air (Bon, 1710).

The outstanding mechanical properties of spider silk fibers are based on 

their hierarchical setup and the proteins involved. A spider silk fiber mainly 

consists of proteins, the so-called spidroins (“spidroin” = spider fibroin)

Table 4.1 The mechanical properties of A. diadematus dragline silk compared with 

other materials

Material

Young’s 

modulus  

[GPa]

Strength  

[MPa]

Extensibility  

[%]

Toughness 

[MJ/m3]

A. diadematus 
dragline

6 700 30 150

B. mori cocoon 7 600 18 70
Elastin 0.001 2 15 2
Nylon 6.6 5 950 18 80
Kevlar 49 130 3600 2.7 50
Steel 200 1500 0.8 6
Carbon fiber 300 4000 1.3 25

Adapted from Gosline et al., (1999); Heim et al., (2009); Madsen et al., (1999).
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(Hinman & Lewis, 1992). The spidroin’s secondary structure elements pro-

vide a combination of stability and flexibility that results in the outstanding 

toughness of the fiber.

However, in order to both investigate and employ spider silk for appli-

cations, a large-scale silk production is necessary. In contrast to farming 

of the silkworm Bombyx mori, farming of spiders is not feasible, because 

spiders are territorial and show a cannibalistic behavior (Fox, 1975). Addi-

tionally, it has been discovered that spiders held in captivity produce less 

silk and with a lower quality, as its amino acid content directly reflects the 

spider’s diet (Craig et al., 2000). In order to obtain silk proteins on a large 

scale, the main approach is the recombinant production of natural spidroins 

or of designed proteins which comprise essential features of natural spidro-

ins. The tested host organisms include bacteria, yeast, as well as insect cells, 

plants, mammalian cells, and even transgenic mammals. In this review, an 

overview of recombinantly produced spidroins will be given, and advan-

tages and disadvantages of the different approaches and host organisms will 

be discussed.

2.    SPIDERS AND SPIDER SILK

 Web spiders (Aranea), the best known order of the Arachnida, benefit 

from their silk every day. Some spiders, such as female orb-weavers, produce 

up to seven different types of silk and use them for a range of different 

applications, such as in a complex web for catching prey, for wrapping prey, 

and for protecting their offsprings. Each silk has unique mechanical proper-

ties, depending on their intended use (Stauffer, Coguill, & Lewis, 1994) and 

is named after the gland in which its proteins are produced (see below).

2.1.    The Different Types of Spider Silk and Their Properties

The different types of silk of a female orb web spider have mechanical 

 properties (Table 4.2) adapted to their tasks (Fig. 4.1).

2.1.1.    Major Ampullate (MA)/Dragline Silk

Spiders use MA silk with a very high tensile strength (Blackledge, Summers, 

& Hayashi, 2005; Gosline, Denny, & Demont, 1984; Gosline et al., 1994, 

1999, 2002; Thiel & Viney, 1996;  Viney, 1997;  Vollrath & Porter, 2006) for 

the outer frame as well as the radii of their web. MA silk also functions as a 

lifeline for the spider in case it has to escape from a predator (Aprhisiart & 

Vollrath, 1994).



Table 4.2 Mechanical properties of the diferent types of spider silk from diferent spiders

Silk

Young’s 

modulus 

[GPa]

Strength 

[MPa]

Extensibility 

[%]

Toughness 

[MJ/m3] Reference

MA
 Argiope 

trifasciata

9.3 1290 22 145 (Hayashi et al., 
2004)

MI
 Argiope 

trifasciata

8.5 342 54 148 (Hayashi et al., 
2004)

Flagelliform
 Araneus 

diadematus

0.003 500 270 150 (Gosline et al., 
1999)

Cylindriform
 Argiope 

bruennichi

9.1 390 40 128 (Zhao et al., 
2006)

Aciniform
 Argiope 

trifasciata

9.6 687 86 367 (Hayashi et al., 
2004)

Figure 4.1 Schematic presentation of the seven diferent types of spider silk. (For color 

version of this igure, the reader is referred to the online version of this book.)



Recombinant Production of Spider Silk Proteins 119

The core of the MA silk fiber consists of fibrils comprising at least 

two MA spidroins, with a molecular weight of 200–350 kDa (Ayoub, 

Garb, Tinghitella, Collin, & Hayashi, 2007; Candelas & Cintron, 1981; 

Jackson & O’Brien, 1995; O’Brien, Fahnestock, Termonia, & Gard-

ner, 1998). In principle, MA spidroins can be divided into two classes, 

one poor in proline residues (MaSp1) and one proline-rich (MaSp2).  

All MA spidroins consist of repetitive core sequences that are flanked 

by nonrepetitive, folded amino- and carboxy-terminal domains. Indi-

vidual amino acid motifs of the core sequences (see below) are repeated  

up to 100 times (Ayoub et al., 2007; Hinman & Lewis, 1992), and  

generally a motif contains 40–200 amino acids (Ayoub et al., 2007; 

Guerette, Ginzinger, Weber, & Gosline, 1996; Hayashi, Blackledge, & 

Lewis, 2004).

Strikingly, the proline content varies greatly between spider species, 

indicating a different ratio of MaSp1 and MaSp2 (Andersen, 1970; Lom-

bardi & Kaplan, 1990; Mello, Senecal, Yeung, Vouros, & Kaplan, 1994). Due 

to its molecular structure, a pyrrolidine ring, a proline residue inflicts steric  

constraints on the protein backbone, since it doesn’t supply an amide pro-

ton that can take part in hydrogen bonds (Hurley, Mason, & Matthews, 

1992; Vollrath & Porter, 2006). Thus, proline residues favor the forma-

tion of β-turn and γ-turn structures over α-helix and β-sheet structures 

(Hayashi, Shipley, & Lewis, 1999; Thiel, Guess, & Viney, 1997; Zhou, Wu, 

& Conticello, 2001). The proline-containing structured motifs, such as 

GPGXX, are not capable of forming crystalline structures, which result 

in a higher elasticity of the fiber (Hayashi et al., 1999;  Thiel et al., 1997). 

The supercontraction of a fiber, which is closely linked to its mechani-

cal properties, is also based on its proline content (Liu, Shao, & Vollrath, 

2005; Liu, Shao, et al., 2008). Silkworm and spider MI silk both contain 

only a small amount of proline and show almost no supercontraction 

(Colgin & Lewis, 1998; Ito et al., 1995; Jelinski et al., 1999;  Vollrath, 

1994), whereas the supercontraction of MA silks differs from species 

to species, since their proline content differs as well (Vollrath & Por-

ter, 2006). An intrinsic disorder in combination with hydration, as it is 

caused by proline- and glycine residues, is fundamental for an elasto-

meric function of silk fibers (Rauscher, Baud, Miao, Keeley, & Pomes, 

2006).

Strikingly, in the inner core of the MA silk fiber of Nephila clavipes, both 

MaSp1 and MaSp2 were found (Sponner et al., 2007), while the surround-

ing area contains only MaSp1, whose proline content is low.
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The repetitive domains of MA spidroins of Araneus diadematus and 

N. clavipes contain stretches of polyalanine, as well as motifs contain-

ing (GGX)n or GPGXX (X = tyrosine, leucine, glutamine) (Win-

kler & Kaplan, 2000). The alanine-rich areas form crystalline β-sheets 

(Thiel & Viney, 1996) and grant the high tensile strength of the spi-

der silk fibers (Simmons, Michal, & Jelinski, 1996). In contrast, the 

(GGX)n and GPGQQ (ADF3) or GPGXX (ADF4) sequences fold 

into 31-helices (Hijirida et al., 1996) and β-turn spirals, respectively. 

These glycine-rich areas provide an amorphous matrix for the crys-

talline β-sheets (Perez-Rigueiro, Elices, Plaza, & Guinea, 2007; Spon-

ner et al., 2007; Sponner, Unger, et al., 2005), and thus generate the 

elasticity and flexibility of the spider silk fiber as mentioned above 

(Brooks, Steinkraus, Nelson, & Lewis, 2005; Liu, Sponner, et al., 2008; 

Ohgo, Kawase, Ashida, & Asakura, 2006). The structural motifs of MA  

spidroins, as well as Minor ampullate (MI) spidroins and Flagelliform silk 

are shown in Fig. 4.2.

The nonrepetitive terminal domains comprise 100–150 amino acids and 

have α-helical secondary structures arranged in a five-helix bundle (Challis, 

Goodacre, & Hewitt, 2006; Hedhammar et al., 2008; Huemmerich, Helsen, 

et al., 2004; Rising, Hjalm, Engstrom, & Johansson, 2006). These terminal 

Figure 4.2 Structural motifs of various spider silk proteins from A. diadematus and N. cla-

vipes. X: predominantly tyrosine, leucine, glutamine, alanine, and serine. aa = amino acid. 

(For color version of this igure, the reader is referred to the online version of this book.)
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domains enable the storage of spidroins at high concentrations in the spin-

ning duct and play an important role during the initiation of fiber assem-

bly (Askarieh et al., 2010; Eisoldt, Hardy, Heim, & Scheibel, 2010; Eisoldt, 

Scheibel, & Smith, 2011; Eisoldt, Thamm, & Scheibel, 2012; Hagn, Thamm, 

et al., 2010).

2.1.2.    MI Silk

MI silk, which has similar properties as MA silk, is used by the spider 

as an auxiliary spiral to stabilize the scaffold during web construction 

(Dicko, Knight, Kenney, & Vollrath, 2004; Riekel & Vollrath, 2001; Till-

inghast & Townley, 1994). MI silks are mainly composed of two proteins, 

MiSp1 and MiSp2, which have molecular weights of approx. 250 kDa 

(Candelas & Cintron, 1981), and strikingly differ considerably from MA 

silk in their composition, as they contain almost no proline residues 

(Fig. 4.2). Further, their glutamic acid content is significantly reduced 

(Andersen, 1970). MiSp1 and MiSp2 of N. clavipes contain repetitive 

sequences that are composed of 10 repeat units. In the case of MiSp1, 

one repeat unit contains two motifs, GGXGGY (X = glutamine or ala-

nine) alternating with (GA)y(A)z (y = 3–6, z = 2–5) (Colgin & Lewis, 

1998). MiSp2 of N. clavipes comprises (GGX)n (X = tyrosine, glutamine 

or alanine, n = 1–3) blocks, alternating with GAGA. In contrast to MA 

spidroins, the repetitive regions of MI spidroins are disrupted by 137 

amino acid-long nonrepetitive serine-rich spacer regions being almost 

identical in MiSp1 and MiSp2. Comparable to MA spidroins, crystal-

line structures are embedded in an amorphous matrix (Colgin & Lewis, 

1998). However, NMR studies showed that in contrast to MA silk, only 

a small fraction of alanine residues contribute to crystalline β-sheets in 

MI silk. Thus, the high tensile strength of MI silk cannot solely be due 

to β-sheet structures, but must also be based on other structural features, 

and in this content it is assumed that cross-linking as well as specific 

matrix properties of MI proteins, different to those of MA proteins, have 

some impact thereon (Dicko et al., 2004).

2.1.3.    Flagelliform Silk

Flagelliform silk is highly elastic and is used as the capture spiral of an 

orb web, because it can absorb the high kinetic energy that results from 

the impact of an insect (Becker et al., 2003; Bini, Knight, & Kaplan, 2004; 

Brooks et al., 2005; Dicko et al., 2004; Ohgo et al., 2006; Scheibel, 2004; 

Winkler & Kaplan, 2000). Flagelliform silk, which is also called “viscid” 
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silk, mainly consists of one protein that has a molecular weight of approx. 

500 kDa and contains more proline and valine residues, whereas its  

alanine content is reduced in comparison to MA and MI silks (Andersen, 

1970). The N. clavipes flagelliform protein comprises blocks of (GGX)n and 

GPGXX, which build 31-helices and β-turn spirals, respectively. These sec-

ondary structural motifs are responsible for the high elasticity and flexibility 

of this type of silk (Brooks et al., 2005; Liu, Sponner, et al., 2008; Ohgo 

et al., 2006). (GPGGX)2 motifs (X = serine or tyrosine) form β-turns, and 

assemble a structure similar to a spring (Hayashi et al., 1999). Since flagel-

liform silk has more than 40 adjacent linked β-turns in spring-like spirals, it 

is likely that this structure adds to the extraordinary elasticity (200%) of the 

fiber (Hayashi & Lewis, 1998).

2.1.4.    Pyriform Silk

Pyriform silk is used by the spider to securely attach individual MA, MI, 

and Flagelliform silk fibers to each other as well as to a substrate, such as 

a tree branch or a wall (Hajer & Rehakova, 2003; Kovoor & Zylberberg, 

1980). Pyriform silk proteins of A. diadematus have a randomly coiled struc-

ture as they contain a low amount of small nonpolar amino acids as well as 

significant quantities of polar and charged amino acids, which are important 

for physical cross-linking (Andersen, 1970).

2.1.5.    Aggregate Silk

In order to prevent prey to escape the spider’s web, ecribellate spiders, such 

as Latrodectus hesperus, cover their capture spiral with an aggregate silk, which 

is a mixture of sticky glycoproteins and small highly hygroscopic peptides 

(Hu et al., 2007;  Vollrath, 2006;  Vollrath & Tillinghast, 1991). The aggregate 

silk proteins of L. hesperus (Hu et al., 2007) contain a low amount of small 

nonpolar amino acids, as well as significant amounts of proline residues, 

polar and charged amino acids (Andersen, 1970). In contrast to that, cribel-

late spiders, e.g. from the Uloborus sp., surround their capture spiral not with 

an aqueous sticky glue but with thin cribellar fibrils, which are 10 nm in 

diameter. The stickiness of these dry cribellar fibrils is accomplished through 

a combination of van der Waals and hygroscopic forces (Hawthorn & Opell, 

2002, 2003).

2.1.6.    Cylindriform/ Tubiliform Silk

Araneus diadematus cylindriform silk proteins are composed of polyalanine 

blocks in combination with (GGX)n (X = alanine, leucine, glutamine, or 
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tyrosine) motifs, which form β-sheet stacks (similar to N. clavipes MA silk) 

(Barghout, Thiel, & Viney, 1999), giving the cylindriform fibers a high 

strength. They are suitable to be used by the spider as a tough egg case in 

order to protect its offspring (Bittencourt et al., 2007; Garb & Hayashi, 

2005; Huang et al., 2006; Hu, Kohler, et al., 2005, 2006; Hu, Lawrence, et al., 

2005; Hu, Vasanthavada, et al., 2006; Kohler et al., 2005; Rising et al., 2006).

2.1.7.    Aciniform Silk

Female orb web spiders use aciniform silk for multiple purposes, such as a soft 

lining inside the egg case, as well as in order to reinforce the prey wrapping and 

the pyriform silk attachment cement (Blackledge & Hayashi, 2006; Hayashi 

et al., 2004; La Mattina et al., 2008; Vasanthavada et al., 2007). Even though 

the 300 kDa AcSp (L. hesperus (Vasanthavada et al., 2007)) contains (GGX)n 

domains, they differ greatly from other types of silk proteins (Andersen, 1970).

2.2.    Hierarchical Structure of MA Silk Fibers

MA threads of the orb-weaver N. clavipes show a core–shell structure  

(Fig. 4.3). Its proteinaceous core is composed of MA spidroin fibrils, which 

are oriented in direction of the fiber axis, and which itself can be divided 

into an inner and outer region, based on the protein content. The core 

is covered by a 150–250 nm-thick three-layer shell (Augsten, Muhlig, &  

Herrmann, 2000; Augsten, Weisshart, Sponner, & Unger, 1999), consisting 

of MI silk, glycoproteins, and lipids (Sponner et al., 2007).

Figure 4.3 Core–shell structure of the dragline silk of N. clavipes. The core of the iber 

comprises ibrils that are oriented along the iber axis. On a molecular level, these ibrils 

consist of crystalline areas that are embedded in an amorphous matrix, depending on 

the amino acid composition. The core is covered by a three-layer shell containing MI silk, 

glycoproteins, and lipids. (For color version of this igure, the reader is referred to the 

online version of this book.)
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A 10–20 nm-thick lipid layer builds the outer coat of the fiber (Sponner  

et al., 2007), and it fulfills a number of tasks, as it serves as a carrier for 

pheromones that play an important role in the sex and species recognition 

(Schulz, 2001).  As this coat is just loosely attached, it offers only limited 

protection from the surrounding environment and does not contribute to 

the mechanical properties of the fiber (Sponner et al., 2007). The under-

lying layer is about 40–100 nm thick and composed of glycoproteins 

(Augsten et al., 2000). This layer offers a more profound protection from 

microorganisms, since it is tighter attached than the lipid layer. Additionally, 

the glycoprotein coat indirectly influences the mechanical strength of the 

fiber, as it is able to regulate the water balance, which has an impact on the 

contraction state of the fiber (Liu et al., 2005). Even though the proteins in 

the glycoprotein layer differ from those in the skin and the core of the fiber, 

their molecular weights are comparable (Sponner et al., 2007). The inner 

layer of the fiber’s shell is 50–100 nm thick and comprises MI silk proteins. 

This layer plays a dual role: firstly, it protects the fiber from environmental 

damage inflicted by chemical agents and microbial activity, and, secondly, it 

mechanically supports the fiber as it adds plasticity (Sponner et al., 2007).

2.3.    Natural MA Spidroin Processing

The spider’s silk glands contain a highly concentrated protein solution (up 

to 50% (w/v) (Hijirida et al., 1996)), the so-called spinning dope. In the 

spinning gland, the protein solution is stored at a neutral pH and high 

salt concentration that prevents aggregation of the proteins. It is assumed 

that the proteins form supramolecular micelle-like structures (Eisoldt et al., 

2010; Exler, Hummerich, & Scheibel, 2007; Hagn, Eisoldt, et al., 2010; Lin, 

Huang, Zhang, Fan, & Yang, 2009), with the unfolded repeated sequences 

being inside of the micelle and the folded polar ends on its surface (Hagn, 

Thamm, et al., 2010).  At the beginning of the assembly process, the spinning 

dope is transferred to the spinning duct, where acidification, ion exchange, 

and extraction of water take place. Additionally, the proteins are arranged 

in the direction of strain and exposed to shear forces, due to the accelerat-

ing flow of the spinning dope (Hardy & Scheibel, 2009; Heim, Keerl, & 

Scheibel, 2009; Knight & Vollrath, 1999). The pH drop from 7.2 in the 

gland to 6.3 in the spinning duct causes dimerization of the amino-terminal 

domains of the proteins into antiparallel dimers (head-to-tail) (Askarieh 

et al., 2010; Eisoldt et al., 2010; Hagn, Thamm, et al., 2010). The lowering 

of the sodium chloride concentration (Knight & Vollrath, 2001; Tillinghast, 

Chase, & Townley, 1984) in combination with shear forces results in the 
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alignment of the protein chains parallel to the fiber axis (Eisoldt et al., 2010; 

van Beek, Hess, Vollrath, & Meier, 2002). During this assembly step, the 

carboxy-terminal domains control the correct orientation of the repetitive 

regions, and thus support the formation of β-sheet stacks, which strongly 

influence the mechanical properties of the spider silk fiber (Hagn, Eisoldt, 

et al., 2010). After being pulled from the spinneret, the excess water of the 

fibers evaporates, and fiber formation is completed.

2.4.    Artificial Fiber Formation

In order to use the outstanding mechanical properties of spider silk fibers 

for industrial purposes, many attempts have been made to spin reconstituted 

silk into fibers. For this purpose, natural silk fibers were dissolved in different 

solvents, and the artificial silk dopes were spun with several techniques, 

ranging from wet-spinning into alcohol baths (Matsumoto, Uejima, Iwasaki, 

Sano, & Sumino, 1996) (fiber formation by protein precipitation in a coagu-

lation bath) to electrospinning (Zarkoob et al., 2004) (solvent evaporation 

by accelerating the spinning solution in an electrical field). The reconsti-

tuted silk fibers did neither have the mechanical properties (Lazaris et al., 

2002; Liivak, Blye, Shah, & Jelinski, 1998; Madsen, Shao, & Vollrath, 1999; 

Marsano et al., 2005; Shao, Vollrath, Yang, & Thogersen, 2003; Xie, Zhang, 

Shao, & Hu, 2006; Yao, Masuda, Zhao, & Asakura, 2002) nor the structural 

integrity (Putthanarat, Stribeck, Fossey, Eby, & Adams, 2000) of natural silk 

fibers.

Further, the properties of natural and reconstituted silk dopes showed 

significant differences (Holland, Terry, Porter, & Vollrath, 2007). Due to the 

harsh conditions that are necessary to dissolve the silk fibers for dope prepa-

ration, high temperatures and chaotropic agents cause severe degradation of 

the silk proteins. It has been shown that the molecular weight of the pro-

teins (Iridag & Kazanci, 2006; Yamada, Nakao, Takasu, & Tsubouchi, 2001; 

Zuo, Dai, & Wu, 2006) as well as their conformation (Asakura, Kuzuhara, 

Tabeta, & Saito, 1985; Zuo et al., 2006) is significantly altered during the 

silk dope preparation.

3.    RECOMBINANT PRODUCTION OF SPIDER SILK 

PROTEINS

 As mentioned above, the livestock breeding and harvesting the silk 

fibers, like it is done with the mulberry silkworm B. mori (Yamada et al., 2001),  

is not possible with spiders. In contrast to B. mori, the spider’s aggressive 
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territorial behavior and its cannibalism render farming not feasible in large 

scale, hampering the accessibility to the raw material. Furthermore, spiders 

that are held in captivity produce silk with lower qualities, likely depending 

on their nutrition (Madsen et al., 1999; Vollrath, 1999). In order to overcome 

these difficulties, different approaches have been tested to produce recombi-

nant spider silk proteins in large quantities, followed by artificial processing 

similar to the attempts with regenerated silk proteins.

One tested route is the expression of natural spider silk genes in differ-

ent host organisms. Apart from prokaryotes and eukaryotes, even transgenic 

animals have been used as host organisms with varying results. An overview 

of the recombinantly produced proteins based on native silk genes in differ-

ent host organisms is given in Table 4.3.

Limited success has been achieved by expressing partial cDNAs in  

different host organisms, as differences in codon usage cause inefficient 

translations. Additionally, the highly repetitive nature of spider silk genes 

impedes their manipulation and amplification using polymerase chain reac-

tion (Heim et al., 2009; Scheibel, 2004).

In order to overcome these problems, synthetic genes were produced 

encoding proteins that differ from the natural spider silk proteins, but 

possess their key features. These synthetic mimics of spider silk genes 

were created by identifying relevant amino-acid sequence motifs of nat-

ural spidroins (see above) and subsequently back-translating these into 

DNA sequences considering the codon usage of the corresponding host 

organism (Huemmerich, Helsen, et al., 2004; Lewis, Hinman, Kothakota, 

& Fournier, 1996; Prince, Mcgrath, Digirolamo, & Kaplan, 1995). An 

overview of recombinantly produced spider silk proteins in bacterial host 

organisms using synthetic genes is given in Table 4.4, and in eukaryotic 

hosts in Table 4.5.

3.1.    Bacterial Expression Hosts Used for Spider Silk 
Production

3.1.1.    Escherichia coli

Escherichia coli is a gram-negative enterobacterium, which is often used as 

a host organism for recombinant protein production. Its relative simplicity, 

its well-known genetics, and the capability of fast high-density cultivation 

render it a suitable host organism for the fast and inexpensive large-scale 

production of recombinant proteins. The availability of different plasmids, 

fusion protein partners, and mutated strains are additional advantages 

(Sorensen & Mortensen, 2005).
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Table 4.3 Overview of natural spider silk genes expressed in diferent host organisms

Type of silk protein

Terminal 

domains*

MW**  

[kDa]

Yield** 

[mg/L] Spider Host organism References

MA silk

MaSp1 – 22, 25 N/A Euprosthenops sp. Mammalian cells 
(COS-1)

(Grip et al., 2006)

±NTD, ±CTD 10–28 25–150 Euprosthenops 

australis

Bacteria (Escherichia coli) (Askarieh et al., 
2010; Hedhammar 
et al., 2008; Stark 
et al., 2007)

+CTD 43 4 Nephila clavipes Bacteria (Escherichia coli) (Arcidiacono et al., 
1998)

MaSp1 (fibroin  
chimera)

– 83 N/A Nephila clavata Transgenic animals 
(Bombyx mori)

(Wen et al., 2010)

MaSp1 & MaSp2 ±CTD 12 N/A Nephila clavipes Bacteria (Escherichia coli) (Sponner, Vater, et al., 
2005)

+CTD 60–140 N/A Nephila clavipes Mammalian cells 
(MAC-T & BHK)†

(Lazaris et al., 2002)

– 31–66 8–12 Nephila clavipes Transgenic animals 
(mice)

(Xu et al., 2007)

– 33–39 N/A Nephila clavipes Yeast (Pichia pastoris) (Teule, Aube, Ellison, 
& Abbott, 2003)

MaSp1- & MaSp2-
collagen fusion 
protein

– 57–61 N/A Nephila clavipes Yeast (Pichia pastoris) (Teule et al., 2003)

Continued
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Type of silk protein

Terminal 

domains*

MW**  

[kDa]

Yield** 

[mg/L] Spider Host organism References

ADF3 +CTD 60–140 25–50 Araneus diadematus Mammalian cells 
(MAC-T & BHK† )

(Lazaris et al., 2002)

– 60 N/A Araneus diadematus Transgenic animals 
(goats)

(Karatzas et al., 1999)

ADF3 & ADF4 ±CTD 50–105 50 Araneus diadematus Insect cells (Spodoptera 

frugiperda)
(Ittah et al., 2006)

+CTD 35–56 N/A Araneus diadematus Insect cells (Spodoptera 

frugiperda)
(Huemmerich, 

Scheibel, et al., 
2004)

Flagelliform

Flag +CTD 28 N/A Araneus ventricosus Insect cells (Spodoptera 

frugiperda)
(Lee et al., 2007)

Polyhedron-Flag 
fusion protein

+CTD 61 N/A Araneus ventricosus Insect cells (Spodoptera 

frugiperda)
(Lee et al., 2007)

Tubiliform

TuSp1 ±NTD, ±CTD 12–15 N/A Nephila antipodiana Bacteria (Escherichia coli) (Lin et al., 2009)
TuSp1 ±CTD 33, 45 4.8–7.2 Latrodectus hesperus Bacteria (Escherichia coli) (Gnesa et al., 2012)

Pyriform

PySp2 ±CTD N/A N/A Latrodectus hesperus Bacteria (Escherichia coli) (Geurts et al., 2010)

*NTD: amino-terminal domain, CTD: carboxy-terminal domain.
**N/A: not applicable.
†MAC-T: bovine mammary epithelial alveolar cells, BHK: baby hamster kidney cells.

Table 4.3 Overview of natural spider silk genes expressed in diferent host organisms—cont’d
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Even though several work groups succeeded in producing recombinant 

spider silk-like proteins using E. coli as a host organism (Arcidiacono, Mello, 

Kaplan, Cheley, & Bayley, 1998, 2002; Bini et al., 2006; Brooks, Stricker, et al., 

2008; Cappello & Crissman, 1990; Fukushima, 1998; Huang, Wong, George, 

& Kaplan, 2007; Huemmerich, Slotta, & Scheibel, 2006; Slotta, Rammensee, 

Gorb, Scheibel, 2008; Slotta, Tammer, Kremer, Koelsch, & Scheibel, 2006; 

Stephens et al., 2005; Winkler, Wilson, & Kaplan, 2000; Zhou et al., 2001), 

limitations such as low protein yields (Arcidiacono et al., 1998; Prince et al., 

1995), heterologous proteins (Fahnestock & Irwin, 1997; Lazaris et al., 2002; 

Xia et al., 2010), and low protein solubility (Bini et al., 2006; Fukushima, 

1998; Mello, Soares, Arcidiacono, & Butlers, 2004; Szela et al., 2000; Winkler 

et al., 2000; Wong Po Foo et al., 2006) have been encountered. Translation 

limitations are caused by unwanted recombination events shortening the 

repetitive genes (Arcidiacono et al., 1998; Fahnestock & Irwin, 1997; Rising,  

Widhe, Johansson, & Hedhammar, 2011) and depletion of tRNA pools 

due to the guanine- and cytosine-rich genes (Rosenberg, Goldman, Dunn, 

Studier, & Zubay, 1993). Moreover, an overproduction of recombinant spi-

der silk proteins in E. coli can lead to the formation of inclusion bodies 

(Liebmann, Huemmerich, Scheibel, & Fehr, 2008), which comprise incor-

rect or incompletely folded proteins and which retard cell growth (Sorensen 

& Mortensen, 2005). Fairly good protein yields have been obtained for 

recombinant spider silk proteins with a molecular weight up to approx. 

100 kDa. With an increasing molecular weight of the recombinant spider 

silk proteins, the impact of these limitations increases greatly.

Escherichia coli is incapable of performing most eukaryotic posttransla-

tional modifications (PTMs), such as glycosylation and phosphorylation of 

proteins. The dragline silk of N. clavipes contains phosphorylated tyrosine 

and serine residues (Michal, Simmons, Chew, Zax, & Jelinski, 1996). Since 

the biological function and the correct folding of proteins are dependent on 

PTMs (Gellissen et al., 1992; Kukuruzinska & Lennon, 1998), it is suspected 

that the phosphorylated residues influence the processing of the spidroins 

into fibers, even though the impact on the physical properties has not yet 

been determined (Michal et al., 1996). However, as nowadays recombinant 

spidroins have successfully been produced in E. coli, the PTMs do not seem 

crucial at least for the protein production.

A native-sized recombinant spider silk protein (285 kDa) was produced 

using metabolically engineered E. coli (Xia et al., 2010). By analyzing the 

influence of the silk gene expression on the host protein synthesis, it was 

found that the silk gene expression causes stress to the host cells, since 
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0Table 4.4 Overview of synthetic spider silk genes expressed in bacterial host organisms

Type of silk 

protein**

Terminal 

domains*

MW** 

[kDa]

Yield**  

[mg/L] Spider** Host organism References

MA silk

MaSp1 – N/A N/A Latrodectus hesperus Salmonella 

typhimurium

(Widmaier & Voigt, 2010; Widmaier 
et al., 2009)

– 100–285 1.2 g/L Nephila clavipes Escherichia coli † (Xia et al., 2010)
– 15–26 16–95 Nephila clavipes Escherichia coli (Szela et al., 2000; Winkler et al., 

1999, 2000)
– 45–60 2.5–150 Nephila clavipes Escherichia coli (Bini et al., 2006; Huang et al., 2007; 

Wong Po Foo et al., 2006)
MaSp1 (Gly-rich 

repeats)
– 10–20 1.2–5.2 Nephila clavipes Escherichia coli (Fukushima, 1998)

MaSp2 – 63–71 N/A Argiope aurantia Escherichia coli (Brooks, Stricker, et al., 2008; Teule 
et al., 2009)

– 31–112 N/A N/A Escherichia coli (Lewis et al., 1996)
MaSp2/Flag – 58, 62 7–10 Nephila clavipes Escherichia coli (Teule, Furin, Cooper, Duncan, & 

Lewis, 2007)
MaSp1 & MaSp2 NTD 14 N/A Latrodectus hesperus Escherichia coli (Hagn, Thamm, et al., 2010)

±CTD 20–56 15–35 Nephila clavipes Escherichia coli (Arcidiacono et al., 2002; Mello 
et al., 2004)

– N/A N/A Nephila clavipes Bacillus subtilis (Fahnestock, 1994)
– 55, 67 N/A Nephila clavipes Escherichia coli (Brooks, Nelson, et al., 2008)
– 15–41 2–15 Nephila clavipes Escherichia coli (Prince et al., 1995)
– 65–163 N/A Nephila clavipes Escherichia coli (Fahnestock & Irwin, 1997)
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ADF3, ADF4 ±CTD 34–106 N/A Araneus diadematus Escherichia coli (Huemmerich, Helsen, et al., 2004; 
Schmidt, Romer, Strehle, & 
Scheibel, 2007)

ADF1, ADF2, 
ADF3, ADF4

– 25–56 N/A Araneus diadematus Salmonella 

typhimurium

(Widmaier & Voigt, 2010; Widmaier 
et al., 2009)

Flagelliform silk

Flag – N/A N/A Nephila clavipes Salmonella 

typhimurium

(Widmaier & Voigt, 2010; Widmaier 
et al., 2009)

Flag ±CTD 14–94 N/A Nephila clavipes Escherichia coli (Heim, Ackerschott, & Scheibel, 
2010)

Flag (Gly-rich 
repeats)

– 25 11.6 Nephila clavipes Escherichia coli (Zhou et al., 2001)

N/A

N/A – 76–89 N/A N/A Escherichia coli (Cappello et al., 1990)
Gly-rich repeats 

& Ala-blocks
– 18–36 21–41 N/A Escherichia coli (Yang & Asakura, 2005)

*NTD: amino-terminal domain, CTD: carboxy-terminal domain.
**N/A: not applicable.
†Metabolically engineered.
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Table 4.5 Overview of synthetic spider silk genes expressed in diferent eukaryotic host organisms

Type of silk 

protein**

Terminal* 

domains

MW**  

[kDa]

Yield** 

[mg/L] Spider** Host organism References

MA silk

MaSp1 – N/A ∼300 Nephila clavipes Yeast (Pichia pastoris) (Fahnestock & Bedzyk, 
1997)

– 94 N/A Nephila clavipes Yeast (Pichia pastoris) (Agapov et al., 2009; 
Bogush et al., 2009)

– 64, 127 N/A Nephila clavipes Plants (Arabidopsis thaliana) (Barr et al., 2004; Yang 
et al., 2005)

– 13–100 80 Nephila clavipes Plants (Tobacco: Nicotiana 

tabacum)
(Scheller & Conrad, 

2005; Scheller et al., 
2001, 2004)

– 13–100 80 Nephila clavipes Plants (Potato: Solanum 

tuberosum)
(Scheller & Conrad, 

2005; Scheller et al., 
2001, 2004)

– 70 N/A Nephila clavata Insect cells (Bombyx mori) (Zhang et al., 2008)
– 70 6† Nephila clavata Transgenic animals (Bombyx 

mori)
(Zhang et al., 2008)

MaSp2 – 113 N/A Nephila madagas-

cariensis

Yeast (Pichia pastoris) (Bogush et al., 2009)

+CTD 65 N/A Nephila clavipes Plants (Tobacco: Nicotiana 

tabacum)
(Patel et al., 2007)
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MaSp1 & 
MaSp2

+CTD 60 0.3–3‡ Nephila clavipes Plants (Tobacco: Nicotiana 

tabacum)
(Menassa et al., 2004)

– 50 N/A Nephila clavipes Transgenic animals (goat) (Perez-Rigueiro et al., 
2011)

Flagelliform

Flag – 37 13.3 Nephila clavipes Insect cells (Bombyx mori) (Miao et al., 2006)

N/A

Amphiphilic 
silk-like 
protein

– 28–32 1–3 g/L N/A Yeast (Pichia pastoris) (Werten et al., 2008)

*NTD: amino-terminal domain, CTD: carboxy-terminal domain.
**N/A: not applicable.
†6 mg/larva.
‡0.3–3 mg/kg of tissue.
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many stress-response proteins were upregulated. In order to increase the 

yield of large recombinant glycine-rich proteins (100–285 kDa), the over-

expression of glycyl-tRNA synthetase, as well as the elevation of meta-

bolic pools of tRNAGly and glycine, was tested. By elevating the tRNAGly 

pool, an increased production of the 147–285 kDa proteins as well as an 

enhanced cell growth by 30–50% was observed (Xia et al., 2010). Addi-

tionally, amongst addition of glycine to the expression medium, the inac-

tivation of the glycine cleavage system and a glyA overexpression only 

the latter increased the yield of the largest proteins 10- to 35-fold (Xia 

et al., 2010). The produced proteins were purified by acidic precipitation 

of the cell lysate, followed by a fractional ammonium sulfate precipitation. 

After solubilizing the precipitated protein, dialysis and freeze drying, 1.2 g  

protein with a purity of ∼90% was obtained from 1 L of cell suspension from 

a high cell-density cultivation (Xia et al., 2010). The purified proteins were 

dissolved in hexafluoroisopropanol (HFIP), and a 20% (w/v) solution was 

spun into fibers. The obtained fibers showed a tenacity (508 ± 108 MPa), 

elongation (15 ± 5%) and Young’s modulus (21 ± 4 GPa) similar to those 

of N. clavipes dragline silk fibers (740–1200 MPa; 18–27% and 11–14 GPa, 

respectively) (Xia et al., 2010). The attempt to spin fibers from a recombi-

nant 377 kDa protein using the stated process failed, because not only the 

target protein but also several truncated forms were obtained after purification. 

It is assumed that this is caused by a limitation of the E. coli translational 

machinery (Xia et al., 2010).

3.1.2.    Salmonella typhimurium

Apart from E. coli, other bacterial hosts have been tested for the recombinant 

silk production, as codon usage of different host organisms can be compared 

with increasing genomic’s knowledge (Terpe, 2006). Other bacterial hosts, 

such as the gram-negative bacteria S. typhimurium, have some advantages 

over E. coli, since S. typhimurium has the capability to secrete proteins, which 

simplifies the isolation of the target silk protein from foreign proteins. For 

the large-scale production of recombinant spider silk proteins, secretion of 

the target proteins into the extracellular environment seems to be the feasible 

way, as no production limitations will be reached due to the lack of intracel-

lular space of the host cells. In general, the secretion of recombinant proteins 

into the extracellular environment of gram-negative bacteria is difficult, as 

the proteins have to transfer through an inner and outer membrane. Further-

more, due to its complexity, the underlying mechanism has not yet been fully 

understood (Harvey et al., 2004; Lee, Tullman-Ercek, & Georgiou, 2006).
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Using Salmonella SPI-1 T3SS (Type III secretion system encoded on Sal-

monella Pathogenicity Island I), the secretion of recombinant proteins into 

the extracellular environment of the cells has been shown. SPI-1 T3SS forms 

needle-like structures that cross both the inner and outer membrane and 

allow secretion (Marlovits et al., 2006). The mechanism of the protein secre-

tion through the needle into the extracellular environment is highly complex. 

It requires the co-expression of an amino-terminal peptide TAG, which is not 

cleaved after secretion, as well as a corresponding chaperone that targets the 

proteins to the SPI-1 T3SS and a chaperone-binding domain (CBD) (Galan 

& Collmer, 1999). In order to be able to cleave the amino-terminal TAG 

after the protein production, an additional cleavage site has to be included 

within the protein. In order to be able to transfer through the needle, the pro-

teins must at least be partially unfolded due to the dimensions of the needle 

and have to refold outside of the cells (Widmaier et al., 2009). The amino-

terminal TAG, the co-expression of the chaperones and CBD and the partial 

folding of the target proteins, complicates subsequent purification processes.

Based on the A. diadematus proteins ADF1, ADF2, and ADF3, synthetic 

genes were created that encode proteins (25–56 kDa), which were secreted 

to the extracellular environment (Widmaier et al., 2009). A tobacco etch 

virus (TEV) protease site was included following the amino-terminal TAG. 

Using different TAG/chaperone pairs in combination with the differ-

ent recombinant proteins, the amount of totally secreted protein ranged 

between 0.7 and 14 mg/L after 8 h (Widmaier et al., 2009). A secretion 

efficiency of 7–14%, defined as the ratio of the secreted to the expressed 

protein, was obtained (Widmaier et al., 2009).

In an additional work, synthetic spider silk genes coding for fragments of 

B. mori cocoon silk proteins, N. clavipes flagelliform silk protein, A. diadematus 

ADF1, ADF2, ADF3 and ADF4 and L. hesperus MaSp1 were expressed using 

SPI-1 T3SS (Widmaier & Voigt, 2010). Whereas many of the tested proteins 

were produced, only a few were secreted into the extracellular environment. 

The degree of protein secretion was found to be dependent on the length 

of the recombinant silk protein. All proteins with less than 628 amino acids 

(including amino-terminal TAG and TEV-recognition site) were secreted, 

whereas only a fraction of proteins with up to 863 amino acids and no pro-

teins over 863 amino acids were secreted. (Widmaier & Voigt, 2010).

3.1.3.    Bacillus subtilis

The gram-positive bacteria B. subtilis was used for the recombinant produc-

tion of spidroins, as it is able to secrete large quantities of the target protein 
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into the medium, but its secretion system is much simpler than those of 

yeasts and filamentous fungi (Fahnestock, Yao, & Bedzyk, 2000).

The production of consensus sequences of the repeating units from 

MaSp1 and MaSp2 of N. clavipes in this host organism has been published 

in a patent (Fahnestock, 1994), but information concerning the produced 

proteins such as the molecular weight, the obtained yield, and purity has not 

been published so far.

3.2.    Yeast

The yeast Pichia pastoris is a promising alternative host organism to E. coli, 

because it is able to correctly process high molecular-weight proteins 

(Cregg, 2007). Proteins that could not be produced efficiently in bacte-

ria, Saccharomyces cerevisiae, or other host organisms, have been successfully 

produced in P. pastoris (Cereghino, Cereghino, Ilgen, & Cregg, 2002). Pichia 

pastoris is a methylotrophic yeast that can use methanol as the sole carbon 

and energy source. Additionally, this organism is able to grow to high cell 

densities (>100 g/L dry cell mass) (Cereghino et al., 2002). Importantly, 

P. pastoris allows cytosolic as well as secretory protein production (Macauley-

Patrick, Fazenda, McNeil, & Harvey, 2005).

Even upon the production of silk proteins in P. pastoris, a variety of 

protein sizes were obtained (Fahnestock & Bedzyk, 1997). This is due to 

P. pastoris’ ability to integrate multiple gene copies into its genome. Because 

of the highly repetitive sequence of the recombinant spider silk genes, it 

is likely that the second insertion of a gene occurs at the repetitive region 

of the first inserted gene (Clare, Rayment, Ballantine, Sreekrishna, &  

Romanos, 1991; Fahnestock & Bedzyk, 1997), which leads to genes and 

subsequently to proteins with varying sizes.

An amphiphilic silk-like polymer named EL28 ([(GA)3GE(GA)3GL]28; 

32.4 kDa) and a nonamphiphilic silk-like polymer named EE24 

([(GA)3GE(GA)3GE]24; 28.2 kDa) have been secreted using P. pastoris. These 

silk-like polymers were used to determine the usefulness of producing a 

pH-responsive surface active polymer in this host organism (Werten et al., 

2008). The produced EE24 was purified by isoelectric precipitation, and 

remaining host proteins were removed by ethanol precipitation. Using this 

purification strategy, 3 g/L of 98% pure protein was obtained. The amphi-

philic protein EL28 was purified by dissolving the protein precipitate in 

formic acid and a subsequent dilution with water, which resulted in a pre-

cipitation of the host proteins, whereas the target protein remained soluble 

for a while. This purification strategy yielded 1 g/L of a 98% pure protein 
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(Werten et al., 2008). The obtained 1–3 g/L of pure protein reflect high 

yields for P. pastoris (Cregg, Cereghino, Shi, & Higgins, 2000) as well as host 

organisms in general (Schmidt, 2004).

Further, two synthetic genes were created, based on nucleotide sequences 

of cDNA of N. clavipes (MaSp1) and Nephila madagascariensis (MaSp2). Both 

genes, which encode a 94 kDa and a 113 kDa protein, respectively, were 

subcloned and expressed in P. pastoris (Agapov et al., 2009; Bogush et al., 

2009). The proteins were purified using cation exchange chromatography 

followed by dialysis and lyophylization. The purified proteins were pro-

cessed into meshes by electrospinning, cast into thin films, and spun into 

fibers using wet-spinning. The fibers obtained by wet-spinning showed an 

elasticity of 5–15% and a tensile strength of 0.1–0.15 GPa (Bogush et al., 

2009). Possible applications of the recombinant proteins include biomedi-

cal ones, such as drug delivery and tissue engineering (Bogush et al., 2009).

Fahnestock and Bedzyk (1997) created synthetic genes encoding 

mimicking sequences of the two dragline proteins MaSp1 and MaSp2 of  

N. clavipes. The proteins were purified from the cell lysate by acid and 

heat precipitation, followed by a step-wise (NH4)2SO4 precipitation. Of 

the totally produced target protein (663 mg/L), 45% was obtained after 

 purification (with 5% impurities). Immunoblotting revealed a protein lad-

der, probably due to internal deletions within the gene. The obtained pro-

teins were spun into fibers under varying conditions, but the tensile strength 

of natural spider silk fibers could not be gained (Fahnestock et al., 2000). 

Using P. pastoris as a host organism for the recombinant spider silk pro-

tein production was included in the above mentioned patent (Fahnestock, 

1994), but no further publications were made.

3.3.    Plants

Introducing and expressing synthetic spider silk genes in transgenic plants is 

another promising approach in order to obtain large amounts of spider silk 

proteins, as plants are capable of producing foreign proteins on a large scale 

with lower costs than most other host organisms (Barr, Fahnestock, & Yang, 

2004). Additionally, the production of recombinant spidroins in plants is 

easily scalable. By targeting recombinant proteins to cellular compartments, 

such as the endoplasmic reticulum (ER), vacuole, and apoplast (Conrad & 

Fiedler, 1998; Moloney & Holbrook, 1997), protein degradation can be  

prevented, and consequently higher yields can be achieved. Besides Ara-

bidopsis, tobacco (Nicotiana tabacum) and potato (Solanum tuberosum) plants 

have been used as hosts for the production of spider silk proteins.
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Disadvantages of this system are a more complicated genetic manip-

ulation than for bacteria and longer generation intervals (Heim et al., 

2009). Furthermore, only the production of recombinant spidroins with 

a molecular weight up to 100 kDa is reliable, as the underlying genes of 

larger proteins are prone to genetic rearrangements and multiple inser-

tions of the target gene (Barr et al., 2004).

Synthetic genes that encode silk proteins based on sequences of MaSp1 of 

N. clavipes were expressed in the leaves and seeds of Arabidopsis thaliana, as well 

as somatic soybean embryos (Barr et al., 2004).  A 64 kDa silk-like protein was 

produced successfully, whereas the production of a 127 kDa protein yielded 

not only the target protein but many smaller by-products as well, being caused 

by genetic rearrangements and multiple insertions of the target genes (Barr 

et al., 2004). Further, in contrast to the 64 k Da silk-like protein, the 127 kDa 

protein was not detectable in the somatic soybean embryos (Barr et al., 2004).

Targeting of these proteins to special cellular compartments, such as the 

ER and apoplasts in Arabidopsis leaves, increased protein yields 5-fold and 

13-fold, respectively, as degradation is prevented. In Arabidopsis seeds, target-

ing the recombinant spidroins to the ER and vacuole increased the yield 

7.8-fold and 5.4-fold, respectively (Yang, Barr, Fahnestock, & Liu, 2005).

Recombinant N. clavipes dragline proteins with a molecular weight of up 

to 100 kDa have been accumulated in the ER of tobacco (N. tabacum) and 

potato leaves (S. tuberosum), as well as in potato tubers (Menassa et al., 2004; 

Scheller, Guhrs, Grosse, & Conrad, 2001). The extraction of the pure recombi-

nant protein yielded up to 3 mg protein per kg of tissue (Menassa et al., 2004). 

In order to simplify purification, hybrid systems of silk and another structural 

protein, namely elastin, have been developed. Synthetic elastin-like polypep-

tides, which comprise repeats of  Val-Pro-Gly-Xaa-Gly (where Xaa can be any 

amino acid but proline), can undergo inverse temperature transition. Such syn-

thetic polypeptide is soluble in water below 25 °C, but when the temperature 

is raised above 25 °C, the polypeptide aggregates, and phase separation occurs 

(Meyer & Chilkoti, 1999; Urry, Haynes, Zhang, Harris, & Prasad, 1988). By 

fusing such elastin-like domains to the target silk protein, selective precipita-

tion can be achieved. The extraction of a spider silk-elastin fusion protein out 

of 1 kg of tobacco leaves yielded 80 mg of pure recombinant protein (Scheller 

& Conrad, 2005; Scheller, Henggeler, Viviani, & Conrad, 2004).

3.4.    Insect Cells

Introducing foreign genes into higher organisms can be achieved through 

different procedures, such as the integration of the synthetic genes into 
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the chromosomal DNA or by transporting the target DNA into the cell, 

resulting in transient expression (Maeda, 1989). Since the transformation 

efficiency is low with both approaches, viruses are much more promising as 

a transporter, as they are extraordinarily efficient in transferring their own 

genome into foreign cells. Using the baculovirus as a vector has been widely 

used in the successful expression of target genes at high levels (Maeda, 

1989). For this purpose, both Autographa californica nuclear polyhedrosis 

virus (AcNPV) (Pennock, Shoemaker, & Miller, 1984) and B. mori NPV 

(BmNPV)(Maeda et al., 1985) have been established. The use of BmNPV 

has several advantages, since the natural host of BmNPV is the silkworm 

B. mori (Maeda, 1989). Using the insect cells for the recombinant produc-

tion of spider silk proteins has several advantages, one being that insects are 

phylogenetically closest related to spiders compared to other commonly 

used expression systems (Huemmerich, Scheibel, et al., 2004). In addition, 

translational stops or pauses, which result in truncated proteins, were not 

observed using insect cells as host organisms. Other advantages include 

high-expression efficiencies, low feeding costs, the capability to secrete pro-

teins simplifying the purification, as well as the ability to posttranslationally 

modify the proteins (Heim et al., 2009; Miao et al., 2006).

Disadvantages include more complex cloning procedures and longer 

generation times compared to bacteria. In addition, some spider silk pro-

teins formed aggregates in the cytosol of the cells, which complicates the 

purification and subsequently lowers the protein yield (Heim et al., 2009; 

Huemmerich, Scheibel, et al., 2004).

Using the baculovirus in combination with the insect cell line Sf9, 

derived from the fall armyworm Spodoptera frugiperda (Huemmerich, 

Scheibel, et al., 2004), partial cDNAs encoding 35–105 kDa MA spidroins 

from A. diadematus (ADF3 and/or ADF4 ± carboxy-terminal domains) 

have been expressed (Huemmerich, Scheibel, et al., 2004; Ittah, Barak, 

& Gat, 2010; Ittah, Cohen, Garty, Cohn, & Gat, 2006; Ittah, Michaeli, 

Goldblum, & Gat, 2007). In contrast to ADF3, which was soluble in the 

cytosol of the insect cell, ADF4 was insoluble and self-assembled into fila-

ments. This difference is assumed to be based on different properties of 

the proteins, such as hydropathicity (Huemmerich, Scheibel, et al., 2004). 

Contrary to other expression systems, only few degradation products or 

smaller protein fragments were detected, which confirms that no transla-

tional pauses or stops take place.

The baculovirus expression system using AcNPV and the insect cell 

line Sf9 was employed to produce a 28 kDa Araneus ventricosus Flagelliform 



Aniela Heidebrecht and Thomas Scheibel140

protein (AvFlag), as well as a 61 kDa polyhedron-AvFlag fusion protein 

(Lee et al., 2007), but no information was given concerning the yield of 

the proteins.

The BmNPV expression system was used to produce a 37 kDa- 

recombinant spidroin based on the silk of N. clavipes in BmN cells (Miao 

et al., 2006). The target protein was purified from the BmN cell lysate by 

using Ni-NTA spin columns under denaturing conditions. Analysis of the 

eluted fractions showed the 37 kDa protein, as well as a 74 kDa protein, 

which is assumed to result from dimerization of the 37 kDa protein. The 

37 kDa protein was obtained with yields of 13.3 mg/L (Miao et al., 2006). 

Information about chemical and structural characteristics of the produced 

protein has not been published so far.

3.5.    Mammalian Cells

When producing recombinant spider silk proteins in different host organ-

isms, truncated synthesis especially of high molecular weight proteins is the 

limiting factor. In order to overcome this limitation, mammalian cells were 

used (Grip et al., 2006; Lazaris et al., 2002). Additionally, mammalian cells 

are capable of secreting the produced proteins, which simplifies purification 

and enables higher protein yields.

Even though mammalian cells are able to produce larger proteins than 

bacteria, problems with the transcription and translation of the highly 

repetitive spider silk genes have been reported (Grip et al., 2006). Ineffi-

cient transcription due to the secondary structure of the mRNA, low copy 

number transfection of the target constructs and limitations of the cell’s 

translational machinery were listed as possible reasons for the low expres-

sion levels. Aggregation of the produced proteins and insufficient secretion 

of large proteins were stated as reasons for the low protein yield (Grip et al., 

2006; Lazaris et al., 2002).

Bovine mammary epithelial alveolar (MAC-T) and baby hamster kid-

ney (BHK) cells have been tested for the expression of spider dragline silk 

cDNAs from two spider species, ADF3 from A. diadematus and MaSp1 

and MaSp2 from N. clavipes, (molecular weights ranging from 60 kDa to 

140 kDa)(Lazaris et al., 2002). Even though 110 and 140 kDa proteins were 

secreted to the extracellular environment, their yields in BHK cells were 

much lower than that of the 60 kDa protein.

Different constructs of a partial cDNA fragment of MaSp1 of 

Euprosthenops sp. were expressed in mammalian cells (COS-1) in order 

to provide recombinant spider silk proteins as a biomaterial for bone 
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replacement after tumor surgery. With this approach, low expression  

levels were obtained caused by the above stated reasons (Grip et al., 2006).

3.6.    Transgenic Animals

Transgenic animals have also been tested for the production of recombinant 

spider silk proteins. Advantages are possible PTMs and secretion into the 

milk or urine of transgenic goats and mice, which enables protein pro-

duction for long time intervals, thus gaining a higher protein yield (Heim 

et al., 2009; Karatzas, Turner, & Karatzas, 1999). Additionally, the produced 

proteins can be directly spun as fibers as in the case of transgenic silkworms 

(Wen et al., 2010).

The process of using transgenic mammals for recombinant spider silk 

production has been patented (Karatzas et al., 1999). Importantly, there are 

a lot of disadvantages of such system that have to be considered. Firstly, 

the creation of transgenic mammals is very time-consuming and complex. 

Secondly, obtaining the spider silk proteins that were secreted into the milk 

of goats and mice is challenging, as the spider silk proteins have to be sepa-

rated from milk caseins, and especially mice only produce a small amount 

of milk (Heim et al., 2009; Xu et al., 2007).

3.6.1.    Transgenic Silkworms

Using a Bac-to-Bac/BmNPV Baculovirus expression system, a 70 kDa-

fusion protein consisting of a recombinant spidroin (MaSp1) from Nephila 

clavata, fused to EGFP, was co-produced with silk fibroin in BmN cells as 

well as in the transgenic silkworm larva (Zhang et al., 2008). As 60% of the 

produced fusion protein was found to be insoluble, and the silkworm was 

not able to assemble the spider silk proteins into fibers, this approach is not 

feasible to obtain large amount of spider silk proteins. In order to overcome 

these difficulties, transgenic silkworms were created that produce a chime-

ric silkworm and spider silk protein (Chung, Kim, & Lee, 2012). Using this 

approach, composite silk fibers can be obtained, which are tougher than 

the parental silkworm silk fibers, and that are mechanically comparable to 

natural MA spider silk fibers (Teule et al., 2012).

In another approach, a vector was created that carries a partial cDNA 

encoding MaSp1 (83 kDa) of N. clavata under the sericin promoter (Ser1) 

(Wen et al., 2010). Transgenic silkworms grown from eggs that were injected 

with the altered vector spun a cocoon that contained recombinant spi-

der silk that was located in the sericin layer of the original silkworm silk. 

A comparison of the mechanical properties of wild-type silkworm 
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silk with transgenic silkworm silk and natural spider silk showed that 

the silk from the transgenic silkworm (18.5% elasticity, 660 MPa ten-

sile strength) was superior to natural silkworm silk (15.3% elasticity, 

564 MPa tensile strength) but did not reach the extraordinary properties of  

natural spider silk fibers (30% elasticity, 1300 MPa tensile strength)(Wen 

et al., 2010).

3.6.2.    Transgenic Mice and Goats

Transgenic mice have been used to express synthetic genes based on the 

partial cDNA of the MaSp1/MaSp2 dragline proteins from N. clavipes. It 

was found that some mice produced a 55 kDa target protein, whereas other 

mice produced inhomogenous proteins with molecular weights of 31, 45, 

and 66 kDa. The different molecular weights are assumed to be caused by 

an error during protein synthesis. Yields of up to 11.7 mg/L were obtained, 

and the synthetic genes were stably transmitted to the mice’s offspring (Xu 

et al., 2007).

Two recombinant 50 kDa proteins, whose encoding DNA is based on 

the genes of MaSp1 and MaSp2 of N. clavipes, were produced in the milk of 

transgenic goats. These proteins were purified by tangential flow filtration 

and chromatography, followed by alcohol precipitation. The purity of the 

obtained proteins was >95%. Four different w/w-ratios of the two pro-

teins (100:0, 70:30, 30:70, 0:100 (% MaSp1 analog − % MaSp2 analog)) 

were solved in hexafluoroisopropanol (HFIP) to prepare individual spin-

ning dopes. By extruding the spinning dope into a 2-propanol coagulation 

bath followed by post-spin drawing, recombinant fibers were produced. It 

was shown that the tensile strength of the artificial fibers made from all 

dopes (280–350 MPa) were considerably lower than that of the natural spi-

der silk fibers (1800 MPa), whereas their elasticities were in the same range 

(30–40% for artificial and 26% for natural spider silk fibers) (Perez-Rigueiro 

et al., 2011).

4.    CONCLUSION AND OUTLOOK

 Natural spider silk fibers have outstanding mechanical properties with 

a combination of stability and extensibility resulting in a toughness accom-

plished by no other fibrous material. Due to its extraordinary properties, 

spider silk is eligible to be used in various textile, automotive, and medical 

engineering applications.

The biotechnological production of spider silk proteins is essential in 

order to investigate and to employ them for applications, because in contrast 
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to the silkworm B. mori, the spider’s aggressive territorial behavior and its 

cannibalism render their farming not feasible. The expression of partial 

cDNAs in different host organisms (Table 4.3) has only led to limited suc-

cess (protein yields: 4–50 mg/L), as differences in the codon usages cause 

inefficient translations, and the highly repetitive nature of spider silk genes 

impedes its gene manipulation and amplification (Heim et al., 2009; Schei-

bel, 2004).

In order to overcome these problems, synthetic genes were produced 

encoding proteins differing from the natural spider silk proteins but pos-

sessing their key features. The expression of synthetic spider silk genes in 

different host organisms resulted in protein yields ranging from 2 mg/L 

(Bini et al., 2006) to 300 mg/L (Fahnestock & Bedzyk, 1997), with one 

exception of 3 g/L (Werten et al., 2008). Common problems are inefficient 

transcription due to the secondary structure of the mRNA and limitations 

of the cells’ translational machinery, such as depletion of tRNA pools due 

to the highly repetitive nature of the spider silk genes. Heterologous pro-

teins caused by truncations and gene instability are more pronounced in 

prokaryotes, but occur in eukaryotes as well, a problem rising with increas-

ing molecular weights of the proteins. Secretion of the produced proteins 

into the extracellular environment simplifies the purification and results 

in higher yields, but as the underlying mechanism is more complex than 

that of cytosolic production, this system is more time-consuming and more 

prone to errors.

For many applications, using E. coli as a host organism for the 

recombinant spider silk protein production seems most promising, as 

the simple genetic manipulation and the short generation times enable 

fast adjustments. For biomedical applications such as tissue engineer-

ing and drug delivery, the engineered spider silk proteins are processed 

mostly into films (Slotta et al., 2006; Wohlrab et al., 2012), nonwovens 

 (Leal-Egana et al., 2012), hydrogels (Schacht & Scheibel, 2011), and 

particles (Lammel, Hu, Park, Kaplan, & Scheibel, 2010). In contrast to 

fibers, where the molecular weight has a decisive influence on the prop-

erties concerning both the processing of the proteins and the fabricated 

fiber, the molecular weight contributes little to the properties of these 

morphologies.

Until today, recombinant spider silk proteins produced by metabolically 

engineered E. coli or transgenic goats were spun into fibers with mechanical 

properties, that were similar but still lower than those of natural spider silk 

fibers. Therefore, gaining artificial silk fibers with mechanical properties as 

found as in nature still remains the holy grail of silk research.
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Abstract Spider silk fibers have a sophisticated hierarchical

structure composed of proteins with highly repetitive se-

quences. Their extraordinary mechanical properties, defined

by a unique combination of strength and extensibility, are

superior to most man-made fibers. Therefore, spider silk has

fascinated mankind for thousands of years. However, due to

their aggressive territorial behavior, farming of spiders is not

feasible on a large scale. For this reason, biotechnological

approaches were recently developed for the production of re-

combinant spider silk proteins. These recombinant proteins

can be assembled into a variety of morphologies with a great

range of properties for technical and medical applications.

Here, the different approaches of biotechnological production

and the advances in material processing toward various appli-

cations will be reviewed.

Keywords Spider silk . Recombinant protein production .

Proteinmorphologies

Introduction

Spider silks represent a class of fibers with a unique combina-

tion of strength and flexibility which leads to an outstanding

toughness (Gosline et al. 1999). In comparison to one of the

strongest man-made fibers, Kevlar, spider silk can absorb

three times more energy before breaking (Roemer and

Scheibel 2007). Therefore, it is not surprising that ancient

Australian aborigines and New Guinean natives utilized spi-

der silk as fishing lines, fishing nets, head gear, and bags

(Lewis 1996). Further, until WorldWar II, spider silk was used

for crosshairs in optical devices like microscopes, telescopes,

and guns because of its extremely small diameters (thickness

of 1/40 of a human hair) (Gerritsen 2002; Lewis 1996). By

using cobwebs to stanch bleeding wounds, the ancient Greeks

unknowingly observed further extraordinary characteristics of

this material, like high biocompatibility and low immunoge-

nicity (Altman et al. 2003; Gerritsen 2002; Vollrath et al.

2002). However, the first scientific studies to unravel its bio-

medical properties were not started until 1710, when it was

shown that a spider’s web is able to stop bleeding in human

wounds and also supports the wound healing (Bon 1710).

Two centuries later, Otto G. T. Kiliani investigated spider silk

as suture material for surgery (Kiliani 1901).

As illustrated by the long history of spider silk use, the

outstanding properties of natural spider silk have been well-

known for a long time; however, scientifically, the material

attained intensive interest of researchers only in the last de-

cades. The combination of mechanical performance, biode-

gradability, and ambient processing conditions of the under-

lying proteins makes spider silk a highly desirable material for
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applications from biomaterials to high-performance industrial

fibers (Rising 2014; Vollrath and Knight 2001).

Spider silk structure

Female orb weaving spiders can produce up to six different

types of silk, with each one produced in a specialized gland

that provides the name of the corresponding silk type (Fig. 1).

Every silk type has to fulfill a certain task either in the struc-

ture of the web, the protection of the offspring, or the wrap-

ping of prey. Additionally, a silk-like glue, produced in a sev-

enth gland, is deposited on the web for prey capture. The most

frequently investigated silk type is the dragline silk, used to

build frame and radii of an orb web. It also is used as the

lifeline of the spider and is therefore easy to obtain by forced

silking (Andersen 1970; Blackledge and Hayashi 2006;

Denny 1976; Heim et al. 2009; Vollrath 2000). Similar to

many biological materials, the outstanding (mechanical)

performance of spider silk is based on its hierarchical structure

(Brown et al. 2012; Keten and Buehler 2008; Munch et al.

2008; Smith and Scheibel 2013; Sponner et al. 2007).

Dragline spider silk fibers exhibit a core-shell structure with

proteinaceous fibrils in the core and a three-layered shell of

minor ampullate (Mi) silk, glycoproteins, and lipids. While

the lipid part of the shell is only loosely attached to the core

and does not substantially contribute to the mechanical per-

formance of the fiber, the glyco-layer adheres directly and is a

mediator between the fiber and its environment (Sponner et al.

2007). In this context, the shell is thought to be relevant for

protection against environmental damage and microbes

(Sponner et al. 2007). However, the determinant of the ex-

traordinary mechanical characteristics of spider silk is the pro-

teins which form the core of the fiber. The protein core of

dragline silk is composed of two classes of spider silk proteins

(spidroins): the highly ordered, hydrophobic spidroin I (Sp1),

poor in proline residues, and the less ordered, hydrophilic,

proline-rich spidroin II (Sp2), each with a molecular mass of

Fig. 1 Schematic overview of the

different types of silk produced by

female orb weaving spiders

(Araneae); each silk type

(highlighted in red) is tailored for

a specific purpose as depicted
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around 300 kDa (Heim et al. 2009; Xu and Lewis 1990)

(Ayoub et al. 2007; Hinman and Lewis 1992; Xu and Lewis

1990). As they originate from the major ampullate gland,

these proteins are also called major ampullate spidroins

(MaSp). All MaSps comprise a highly repetitive core domain

(up to 100 repeats of highly conserved sequence motifs, with

40 to 200 amino acids each) flanked by short (around 100–

150 amino acids each) nonrepetitive (NR) terminal domains

(Fig. 2). Upon fiber assembly, the gain and arrangement of

secondary structure elements of the spidroins is responsible

for the extraordinary mechanical properties of the fiber. Poly-

alanine stretches fold into β-sheets, forming hydrophobic

crystallites responsible for a high tensile strength

(Kummerlen et al. 1996; Lewis 1992; Simmons et al. 1996);

31-helices formed by hydrophilic glycine-rich regions (GGX-

motif, where X represents tyrosine, leucine, glutamine) are

reflecting the elastic part (Kummerlen et al. 1996); and type

II β-turns made of proline-rich GPG motifs are important for

the reversible extensibility of a spider silk fiber (Hinman and

Lewis 1992).While the latter sequencemotif is only present in

MaSp2, the first two motifs are ubiquitous (Ayoub et al. 2007;

Hayashi et al. 1999; Hinman et al. 2000; Hinman and Lewis

1992; van Beek et al. 2002). All these motifs are repeated

several dozen times within a single spidroin core domain.

The nonrepetitive terminal motifs which flank the core do-

main have an α-helical secondary structure arranged in a

five-helix bundle. These domains are responsible for control-

ling the storage of the spidroins at high concentrations in the

spinning duct (Motriuk-Smith et al. 2005), and they also have

an important function during the initiation of fiber formation

upon their controlled dimerization and structural arrangement

(Challis et al. 2006; Eisoldt et al. 2010, 2011; Hagn et al. 2010,

2011; Hedhammar et al. 2008; Heidebrecht et al. 2015;

Huemmerich et al. 2004b; Rising et al. 2006)

Biotechnological production of recombinant spider

silk proteins

Unfortunately, it is not possible to produce large quantities of

spider silk for applications by farming. This is due to the

territorial and cannibalistic behavior and lower quality as well

as quantity of silk produced by captive spiders (Craig et al.

2000; Fox 1975; Madsen et al. 1999; Vollrath and Knight

1999). Therefore, biotechnological production of the underly-

ing spidroins was pursued to enable applications for spider

silks.

Recombinant spidroin production has been conducted

using a range of organisms including bacteria (Teule et al.

2009), tobacco plants (Menassa et al. 2004), yeast

(Fahnestock and Bedzyk 1997), silk worms (Teule et al.

2012), goats (Steinkraus et al. 2012), insect cells

(Huemmerich et al. 2004b), and mammalian cells (Lazaris

et al. 2002). Each of these host systems has advantages and

disadvantages. To begin with, short fragments of unmodified

spider silk genes were expressed in a variety of hosts. It turned

out that spider silk genes were unstable or the mRNA folded

into undesirable secondary structures. Further, rearrange-

ments, translation pauses, and problems with PCR amplifica-

tion arose due to the highly repetitive character of the genes

and the infidelity of template realignment during primer an-

nealing (Fahnestock and Irwin 1997; Fahnestock et al. 2000).

Additionally, host-derived differences in codon usage, prob-

lems with expression of repetitive sequences in various hosts,

and insufficient Gly- and Ala-tRNA pools led to only limited

success concerning the recombinant production of natural spi-

der silk proteins.

To overcome these hurdles, several synthetic genes were

designed encoding proteins that resemble the key features of

the natural spider silk proteins. Since the gram-negative en-

terobacterium Escherichia coli is relatively simple, has a well-

known genetic composition, and has the capability of fast,

high-density cultivation, recombinant protein expression in

E. coli allows for inexpensive, large-scale production

(Sørensen and Mortensen 2005). Likewise, several ap-

proaches of recombinant spider silk-like protein production

were successful in E. coli (for an overview, see Heidebrecht

and Scheibel 2013).

In addition to E coli, yeast or insect cells have been used to

express spider silk constructs with the advantage of the latter

of being genetically more closely related to spiders. However,

the spidroins produced in these systems showed a quite low

solubility (Heim et al. 2009; Huemmerich et al. 2004b). Other

hosts such as plants and mammalian cells have been used, too,

but showed mostly low expression levels (Barr et al. 2004;

Hauptmann et al. 2013; Lazaris et al. 2002).

Finally, transgenic animals were tested as hosts to produce

recombinant spidroins in secreted body fluids. The presumed

advantage of this approach would be the ease of purification

Fig. 2 Schematic structure of major ampullate spidroins including

recurring amino acid motifs and the corresponding secondary structure.

X: predominantly tyrosine, leucine, glutamine, alanine and serine

residues. NTD amino-terminal domain, CTD carboxy-terminal domain
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upon secretion into the milk or urine of the respective animal

(Heim et al. 2009; Karatzas et al. 1999). However, it turned

out that the purification was more difficult than thought due to

contamination with animal-based secreted proteins. Given the

fact that the generation of transgenic animals is far more com-

plex and time consuming than that of bacteria or yeast, this

approach has been rarely used in the past (Heim et al. 2009;

Xu et al. 2007). For example, recombinant spider silk-

EGFP fusion proteins were produced using BmN cells

and larvae of silkworms as a host organism, but the pro-

tein yield was low due to the insolubility of the recombi-

nant spider silk proteins (Zhang et al. 2008). In a more

successful approach, chimeric proteins containing se-

quences of spider silk proteins and silkworm fibroin were

designed, including either a H-chain promoter (Kuwana

et al. 2014; Teule et al. 2012; Zhu et al. 2010) or a sericin

promoter (Wen et al. 2010) locating the chimeric

silkworm/spider silk proteins in the core or the sericin

shell of the fiber. In both cases, silkworms spun fibers

with mechanical properties exceeding that of silkworm

silk, but they did not reach the properties of natural spider

silk (Teule et al. 2012; Wen et al. 2010). Production of

designed short spider silk proteins (50 kDa) resembling

MaSp1 and MaSp2 of Nephila clavipes in goat milk was

also successful, while expression of their partial comple-

mentary DNA (cDNA) in transgenic mice was not possi-

ble likely due to errors in protein synthesis (Perez-

Rigueiro et al. 2011; Xu et al. 2007).

Based on the experience throughout the last three decades,

E. coli has been established as the host system of choice, given

the balance of quality of the silk produced with the scalability

of the approach.

BTo spin^: artificial spider silk fibers

Due to the abovementioned, outstanding mechanical and

biomedical properties of spider silk fibers, great efforts

have been made to employ these fibers in different tech-

nical as well as biomedical applications. For instance,

functional recovery of nerve defects was successfully per-

formed in rats and sheep by using natural spider silk fi-

bers as a guiding material (Allmeling et al. 2008; Radtke

et al. 2011). Further, native spider dragline silk, directly

woven onto steel frames, was used as a matrix for three-

dimensional skin cell culture (Wendt et al. 2011). Since

natural spider silk fibers are not available at large scale as

mentioned above (see section BBiotechnological produc-

tion of recombinant spider silk proteins^), different ap-

proaches have been tested to produce artificial spider silk

fibers during the last two decades, which will be

discussed in greater detail below.

The natural spinning process

In order to successfully establish a man-made spider silk spin-

ning process, it is at first necessary to understand the natural

one. Natural spider silk fiber spinning is a highly complex

process involving a number of parameters in a highly regulat-

ed environment as exemplarily demonstrated in Fig. 3 for the

assembly of major ampullate spidroins. Epithelial cells cover-

ing the tail and the ampulla of the major ampullate silk gland

produce the spidroins and secrete them into the lumen. There,

the spidroins are stored in a soluble state at high concentra-

tions (up to 50% (w/v)) in the presence of sodium and chloride

ions. Analysis of major ampullate silk glands by polarized

microscopy revealed a liquid-crystal behavior of the spinning

dope (Knight and Vollrath 1999; Viney 1997), whereas

in vitro experiments showed micellar-like structures both of

which are not mutually exclusive (Eisoldt et al. 2010; Exler

et al. 2007; Heidebrecht et al. 2015). The combination of the

presence of chaotropic ions (stabilizing soluble protein struc-

tures) and a pre-assembly of the spidroins enables their storage

at concentrations as found in the ampulla of the spinning

gland. From the ampulla, the spinning dope passes into an

S-shaped tapered duct, which is lined by a cuticular intima

layer. In addition to supporting the duct and protecting the

epithelial cells, this layer is hypothesized to function as a

hollow fiber dialysis membrane, enabling the dehydration of

the spinning dope (Vollrath and Knight 1999). During travel-

ing of the spinning dope through the spinning duct, sodium

and chloride ions are replaced by the more kosmotropic po-

tassium and phosphate ions inducing salting-out of the pro-

teins (Knight and Vollrath 2001; Papadopoulos et al. 2007).

Additionally, acidification (from pH 7.2 to 5.7; Kronqvist

et al. 2014) takes place triggered by carbonic anhydrase

(Andersson et al. 2014), which has a contrary structural effect

on the terminal domains. Upon acidification, glutamic acid

residues of the amino-terminal domain are sequentially pro-

tonated, leading to structural rearrangements of the domain

enabling dimerization in an antiparallel manner (Rising and

Johansson 2015). In contrary to the stabilizing effect of the pH

reduction on the amino-terminal domain, the carboxy-

terminal one is destabilized upon acidification. In addition to

the pH-induced destabilization, the presence of phosphate

ions initiates the exposition of hydrophobic areas within the

C-terminal domain initiating the parallel alignment of the as-

sociated two core domains (Eisoldt et al. 2010, 2012; Hagn

et al. 2010). Based on the parallel (carboxy-terminal domains)

and antiparallel (amino-terminal domains) orientation of the

terminal domains, an endless spidroin network is achieved.

Finally, water resorption via the cuticular intima layer and

shear stress, resulting from the tapering of the spinning duct

and the pulling of the fiber from the spider’s abdomen, lead to

the final alignment of the spidroins followed by solidification

of the fiber (Fig. 3) (Hagn et al. 2011; Hardy et al. 2008).

9364 Appl Microbiol Biotechnol (2015) 99:9361–9380



Artificial fiber spinning

Commonly used artificial spinning processes are not like the

natural silk spinning one. Typical processes out of solution are

wet spinning, dry spinning, and electrospinning. In wet spin-

ning, a polymer solution is extruded into a coagulation bath,

where the polymer precipitates and the fibers are formed. For

dry spinning and electrospinning, the polymers are solvated in

an organic solvent and extruded into the air. Whereas fiber

formation in dry spinning relies solely on the fast evaporation

of the organic solvent, in electrospinning, the polymer solu-

tion is extruded into an electrostatic field. This field yields

repulsive forces in the extruded solution, leading to eruption

of a thin jet that is stretched toward the collector (i.e., counter

electrode); as the solvent evaporates, a solid fiber is formed

(Greiner and Wendorff 2007; Smit et al. 2005). This fiber is

randomly deposited onto the collector, which results in a non-

woven mat (Teo and Ramakrishna 2006). In theory, wet

spinning, dry spinning, and electrospinning are suitable

methods for spider silk fiber spinning, since organic as well

as aqueous spinning dopes can be used. In practice, dry spin-

ning has been shown to be so far not suitable for silk fiber

production, since spinning a silk fiber out of an organic solu-

tion results in mechanically unstable fibers (unpublished re-

sults), while dry spinning from an aqueous solution could not

be achieved since this spinning technique relies on a highly

volatile solvent for fast fiber formation. Therefore, so far, only

wet spinning and electrospinning have been successfully

employed for producing artificial spider silk fibers.

Dope preparation

The first step toward the production of artificial spider silk

fibers is to solve the spidroins. Therefore, often an organic

solvent is used exhibiting strong hydrogen bonding properties

in order to guarantee good solvent-protein interactions. A

Fig. 3 Overview of natural and

artificial spinning processes
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disadvantage, especially for biomedical applications, of or-

ganic spinning solutions is their putative toxicity. However,

a high spidroin solubility enables the production of highly

concentrated spinning dopes, which simplifies fiber formation

(Um et al. 2004). With the objective of high protein solubility,

many research groups have used the organic solvent 1,1,1,3,3,

3-hexafluoro-2-propanol (HFIP). In HFIP, spidroin concentra-

tions ranging from 10 to 30 % (w/v) can easily be achieved

(Adrianos et al. 2013; An et al. 2011; Brooks et al. 2008; Lin

et al. 2013; Teule et al. 2007; Xia et al. 2010), with the highest

reported spidroin content of 45–60 % (w/v) (Albertson et al.

2014). One advantage of HFIP as solvent for spidroins is its

volatility. Therefore, HFIP is commonly used for spinning

processes which rely on a fast evaporation of the solvent such

as electrospinning (Bini et al. 2006; Lang et al. 2013; Stephens

et al. 2005; Wong Po Foo et al. 2006; Zhu et al. 2015). In

addition to HFIP, formic acid (FA) has been used as an organic

solvent of spidroins (Peng et al. 2009).

Seidel et al. (1998, 2000) dissolved dragline silk of

N. clavipes in HFIP, produced a film out of the reconstituted

spidroins, and then solved this film again in HFIP to a con-

centration of 2.5 % (w/w) in order to use it as a spinning dope

for wet spinning. Dopes made of reconstituted spidroins did

not form fibers in the otherwise commonly used methanol and

isopropanol coagulation baths, but only in acetone coagula-

tion baths (Seidel et al. 1998).

At first glance, using an organic solvent to gain solutions

with a high protein concentration seems to be beneficial for

spinning, but good protein-solvent interactions and, therefore,

high protein solubility may also prevent protein assembly.

Further, if artificial spider silk fibers are to be used for medical

applications like suture materials, health risks caused by toxic

solvents have to be avoided. Additionally, organic waste dis-

posal in industrial processes is highly regulated and expen-

sive; thus, the application of organic solvents is not favorable

for scale-up processes. In order to avoid organic solvents,

three approaches have been used to produce highly concen-

trated aqueous spidroin solutions: (1) spidroin self-assembly

in aqueous buffers (Exler et al. 2007; Grip et al. 2009;

Heidebrecht et al. 2015; Stark et al. 2007; Teule et al. 2007),

(2) concentration of a diluted aqueous spidroin solution

(Arcidiacono et al. 2002; Heidebrecht et al. 2015), and (3)

direct solvation at high spidroin concentrations (Bogush

et al. 2009; Jones et al. 2015). Protein concentrations typically

used for spinning fibers out of aqueous solutions range

from 10 to 30 % (w/v) (Arcidiacono et al. 2002; Bogush

et al. 2009; Exler et al. 2007; Heidebrecht et al. 2015;

Jones et al. 2015; Lazaris et al. 2002), and the highest

concentration achieved so far has been 30 % (w/v)

(Bogush et al. 2009). When spidroins are purified by a

precipitation step such as salting-out or lyophilization,

high spidroin purities are gained, but the spidroins also

have to be resolved afterwards.

Heidebrecht et al. (2015) used the strong denaturant

guanidinium thiocyanate for spidroin solvation, followed by

its removal using dialysis against a 50-mM Tris/HCl buffer

(pH 8.0). Additionally, 100 mM NaCl was added to the dial-

ysis buffer in order to stabilize the spidroins in solution.

Subsequent dialysis against a phosphate-containing buffer in-

duced a liquid-liquid phase separation of the spidroin solution

into a low-density phase and a self-assembled, high-density

phase. Such phosphate-induced self-assembly of spidroins in

solution resulted in spidroin concentrations ranging between 9

and 11 % (Heidebrecht et al. 2015). Alternatively, spinning

dopes were produced by concentrating the protein solution

using either ultrafiltration or dialysis against the hygroscopic

polyethylene glycol (PEG) (Arcidiacono et al. 2002;

Heidebrecht et al. 2015). In this approach, the spidroin mole-

cules are forced into a highly concentrated solution and they

cannot self-assemble. However, these spinning dopes are

prone to aggregation and are less stable than self-assembled

spinning dopes (Heidebrecht et al. 2015). The third approach

to achieve highly concentrated aqueous spinning dopes is the

direct solvation of spidroins in a medium suitable for spinning.

Jones et al. (2015) added a solution containing 0.1 %

propionic acid and 10 mM imidazole to spidroins in a glass

vial and used sonication and subsequent heating in a micro-

wave oven until complete spidroin solvation (Jones et al.

2015). The spidroin suspension was heated up to 130 °C for

more than 48 h, indicating the high energy input that is needed

to directly solve a spidroin at high concentration.

Wet spinning

Extrusion of the spinning dope into monohydric alcohols,

such as methanol, ethanol, or isopropanol with the exemption

of reconstituted spider silks which have to be spun into ace-

tone as mentioned above, initiates fiber formation through

dehydration of the spidroins. This technique results in single

fibers with a diameter in the micrometer range. An advantage

of wet spinning over other techniques such as electrospinning

is the rather Bslow^ fiber formation, which allows a high de-

gree of alignment of the proteins during spinning. This align-

ment enables the formation of a structural hierarchy necessary

to produce fibers with superior mechanical properties. Wet

spinning allows the use of different spinning dopes, ranging

from inorganic or aqueous solutions to dispersions and liquid

crystalline phases, and thus can be used for any polymer/bio-

polymer. Variation of the spinning dope and the composition

of the coagulation bath influence fiber properties, allowing the

production of fibers with tunable mechanical properties. One

disadvantage of wet spinning is the necessity to remove the

solvent or coagulation bath residues after spinning, which re-

quires at least one washing step resulting in a longer and

therefore more expensive process compared to dry spinning

(Jestin and Poulin 2014).
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Besides 100 % of methanol or isopropanol (Adrianos et al.

2013; Albertson et al. 2014; An et al. 2011; Jones et al. 2015;

Zhu et al. 2010), mixtures of water with monohydric alcohols

are often used as coagulation baths (Arcidiacono et al. 2002;

Bogush et al. 2009; Heidebrecht et al. 2015; Lazaris et al.

2002; Teule et al. 2007; Xia et al. 2010). The addition of water

to the coagulation bath slows down the coagulation rate of

spidroins, and water works as a plasticizer for the fibers,

which renders them less brittle and prevents clogging of the

spinneret (Lin et al. 2013).

Posttreatment, such as drawing the spun fibers in air or

inside a bath, is applied to improve the fibers’ mechanical

properties. Poststretching of spun fibers has been shown to

induce a higher β-sheet content (An et al. 2011) and to align

the β-sheet crystals along the thread axis (Heidebrecht et al.

2015). In contrast to the coagulation bath, the poststretching

bath needs to contain water because of its plasticizing features

for the fibers, which enables the proteins to rearrange and align

along the fiber axis. The absence of water results in brittle

fibers. An overview of recombinant spider silk fiber wet spin-

ning and posttreatment conditions is given in Table 1.

Electrospinning

Electrospinning of recombinant or reconstituted spider silk

protein solutions is possible using an electric field of 4–

30 kV with a distance of 2–25 cm between the electrodes

(i.e., the capillary tip and the collector) (Bini et al. 2006;

Bogush et al. 2009; Lang et al. 2013; Peng et al. 2009;

Stephens et al. 2005; Wong Po Foo et al. 2006; Yu et al.

2014; Zhou et al. 2008; Zhu et al. 2015). Parameters influenc-

ing the fiber properties (e.g., fiber diameter) of nonwoven

mats mostly depend on the properties of the spinning dope,

such as the viscosity, surface free energy, protein concentra-

tion, and the solvent’s intrinsic electrical conductivity and per-

meability (Greiner et al. 2006). In contrast to wet spinning,

electrospinning of comparatively low protein concentrations

of 2–6% (w/v) (Bini et al. 2006; Leal-Egana et al. 2012;Wong

Po Foo et al. 2006; Yu et al. 2014; Zarkoob et al. 2004) also

yields fibers, but higher protein concentrations of 10–30% (w/

v) (Bogush et al. 2009; Lang et al. 2013; Leal-Egana et al.

2012; Peng et al. 2009; Stephens et al. 2005; Zhou et al. 2008;

Zhu et al. 2015) are more commonly used. In general, increas-

ing the spidroin concentration in the dope leads to an in-

creased fiber diameter and a reduction of bead formation, the

latter being an unwanted side effect of electrospinning (Lang

et al. 2013; Leal-Egana et al. 2012). Structural analysis of

nonwoven mats electrospun from HFIP using Fourier-

transformed infrared spectroscopy (FTIR) with subsequent

Fourier self-deconvolution (FSD) revealed a low β-sheet con-

tent (~15 %) (Lang et al. 2013). The electric field interacts

with the hydrogen bond dipoles of the protein, stabilizing α-

helical segments and thus inhibiting β-sheet formation

(Stephens et al. 2005). Instead of a solid collector, water- or

organic solvent-based coagulation baths can be used to collect

the spun micro- and nanofibers. In general, the latter approach

has the advantage of including a posttreatment within the

spinning process. Yu et al. used a coagulation bath containing

90 % (v/v) of organic solutions (acetone or methyl alcohol) as

a collector; however, SEM images showed inhomogeneous

fibers containing many beads (Yu et al. 2014). Posttreatment

of electrospun fibers with organic solvents or alcohols is nec-

essary in order to render the spun α-helical fibers water insol-

uble (i.e., inducingβ-sheet formation) (Lang et al. 2013; Leal-

Egana et al. 2012; Slotta et al. 2006). Immersing the fibers into

alcohol baths resulted in fused intersections of single fibers

(Bini et al. 2006), giving the fibers a Bmolten^ appearance.

Therefore, instead of immersing the fibers, Leal-Egana et al.

(2012) and Lang et al. (2013) exposed them to methanol or

ethanol vapor to render the fibers water insoluble with keeping

their original morphology.

Other spinning methods

Besides wet spinning and electrospinning, recombinant spider

silk fibers were produced using microfluidic devices

(Rammensee et al. 2008). Such devices mimic some aspects

of the natural spinning process, such as ion exchange, pH

change, and elongational flow conditions. Since only low or

medium protein concentrations were used, high flow rates

were necessary to induce fiber assembly. Shear forces can also

be applied by hand-drawing fibers from pre-assembled

spidroins out of aqueous solutions (Exler et al. 2007; Teule

et al. 2007). The gained fibers show similar properties as those

produced by wet spinning. However, several parameters can

be fine-tuned within the microfluidic channels which will al-

low for more sophisticated spinning processes and, therefore,

fibers, in the future.

Transgenic silkworms producing silkworm/spider silk

composite fibers

One elegant way to Bartificially^ spin spider silk fibers is to

use transgenic, naturally fiber-producing animals. Silkworms

are naturally able to produce and spin silk proteins and they

can be genetically modified. Transgenic silkworms were

engineered to produce silkworm fibroin/spider silk composite

fibers with a spider silk content of 0.4 to 5 % (w/w) (Kuwana

et al. 2014; Teule et al. 2012). Importantly, the mechanical

properties of silkworm silk (toughness 70 MJ m−3; Gosline

et al. 1999) are inferior to those of spider silk (toughness

167MJm−3; Heidebrecht et al. 2015), and since the composite

material merges the properties of both silks, the mechanical

properties of hybrid silkworm/spider silk fibers will always be

inferior to those of spider silk. In 2000, Tamura et al.

succeeded in a stable germline transformation of the silkworm
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Bombyx mori using a piggyBac-derived vector (Tamura et al.

2000). PiggyBac is a transposon discovered in the lepidopter-

an Trichoplusia ni (Cary et al. 1989), and vectors based hereon

are able to transpose into B. mori chromosomes enabling silk-

worm transformation with various genes encoding fibrous

proteins (Tamura et al. 2000). In general, to create transgenic

silkworms producing chimeric silkworm/spider silk, genes

were designed encoding synthetic spider silk-like sequences,

B. mori fibroin sequences as well as a B. mori promoter,

targeting the foreign protein production to the silk gland.

Subsequently, these genes were cloned into a piggyBac-based

vector which was then injected into B. mori eggs. Silk fibroin

fibers are composed of three proteins, namely fibroin heavy

chain (H-chain), fibroin light chain (L-chain), and

fibrohexamerin protein (fhx/P25) (Kojima et al. 2007), and

they are covered by a sericin layer (Wen et al. 2010). Just like

spidroins, silk fibroins consist of a highly repetitive region

which is flanked by nonrepetitive amino- and carboxy-

terminal domains. Since the H-chain is believed to be mainly

responsible for the mechanical properties of the silk (Kojima

et al. 2007), fibroin H-chain genes were modified with spider

silk sequences for improved properties (Kuwana et al. 2014;

Teule et al. 2012; Zhu et al. 2010). Kuwana et al. (2014)

generated three transgenic silkworm strains using a Japanese

commercial silkworm strain (C515), two of which contained

cDNA of major ampullate spidroins of the spider Araneus

ventricosus, flanked by the amino- and carboxy-terminal do-

mains of the B. mori fibroin H-chain gene. The third strain

consisted of a plasmid coding for enhanced green fluorescent

protein (EGFP), in order to simplify the analysis of the spun

cocoons, subcloned in between the amino- and carboxy-

terminal domains of the H-chain gene. After creating trans-

genic silkworms carrying the modified genes using the

piggyBac-based vector system, the silkworms produced the

modified H-chain/spider silk protein in the silk gland. In the

silkworm’s gland, the modified H-chain protein dimerized

with the fibroin L-chain and was subsequently spun into a

cocoon containing the spider dragline protein (Kuwana et al.

Table 1 Overview of wet-spinning conditions used for generating recombinant spider silk fibers

Spinning dope Max. protein

concentration [%]

Coagulation bath Posttreatment Source

Aqueous

160 mM or 1 M urea, 10 mM

NaH2PO4, 1 mM Tris, 20 mM

NaCl, 10 mM or 100 mM

glycine, pH 5.0

25 (after ultrafiltration) MeOH/H2O mixture N/A Arcidiacono et al. (2002)

60 % NaNCS, 20 % acetate

solution, mix ratio 8:2 or 10 %

LiCl in 90 % formic acid (FA)

30 96 % EtOH 1st draw: 92 % EtOH

2nd draw: 75 % EtOH

Bogush et al. (2009)

50 mM Tris/HCl, pH 8.0 or 50 mM

Na-phosphate buffer, pH 7.2

17 IPA/H2O mixture IPA/H2O mixture Heidebrecht et al. (2015)

0.1 % propionic acid, 10 mM

imidazole; microwaved

12 100 % IPA 1st draw: 80 % IPA

2nd draw: 20 % IPA

Jones et al. (2015)

PBS 28 MeOH/H2O

mixture

1st draw: MeOH

2nd draw: H2O

Lazaris et al. (2002)

Organic

HFIP (5 % v/v added to dope

prior to spinning)

15 100 % IPA 80 % IPA Adrianos et al. (2013)

HFIP (evaporation of HFIP

prior to spinning)

60 100 % IPA 85 % IPA, 60 °C Albertson et al. (2014)

HFIP 30 100 % IPA 75 % IPA An et al. (2011)

HFIP 12 IPA N/A Brooks et al. (2008)

HFIP 10 100 mM ZnCl2,

1 mM FeCl3
in H2O

1st draw: air

2nd draw: 50–70 %

EtOH

Lin et al. (2013)

HFIP (addition of 15 %

water prior to spinning)

30 90 % IPA N/A Teule et al. (2007)

HFIP 15 (10 % silkworm

fibroin and 5 % spider

silk-like protein)

MeOH 1st: 3 h incubation in

MeOH

2nd: drawing in

distilled H2O

Zhu et al. (2010)

HFIP 20 90 % MeOH 90 % MeOH Xia et al. (2010)

MeOH methanol, EtOH ethanol, IPA isopropyl alcohol, PBS phosphate buffered saline, HFIP 1,1,1,3,3,3-hexafluoro-2-propanol, N/A not applicable
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2014). Transgenic efficiencies of the strains were 20.0 % for

the EGFP-containing strain and 16.7 and 22.6 %, respectively,

for the strains containing the spider silk cDNA. Cocoons of

the EGFP-transgenic silkworms showed green fluorescence,

indicating that the EGFP protein is folded in its functional

structure after spinning, suggesting that the spider silk protein

may also be present in the cocoon fibers in its natural struc-

ture. The maximum amount of the modified H-chain/spider

silk protein against the total fibroin was estimated at 0.4–

0.6 % (w/w) (Kuwana et al. 2014) and 2-5 % (w/w) (Teule

et al. 2012).

Alternatively, the sericin promoter has been used to target

spider dragline silk proteins toward the outer sericin layer of

the silk fiber (Wen et al. 2010). Whereas the breaking strain of

the composite fiber was similar to that of natural spider silk

fibers, the breaking stress and toughness were increased com-

pared to that of natural silkworm silk, but the average values

were still well below those of natural spider silk fibers (Teule

et al. 2012). Theoretically, a breaking stress of cocoon silk

equal to that of spider dragline silk could be achieved if the

spidroin content was raised to 5–8 % (Kuwana et al. 2014),

but this has not been shown experimentally, yet.

Properties of reconstituted vs. recombinant fibers

In order to establish processing technologies for gaining bio-

mimetic spider silk fibers, two research groups used

reconstituted Nephila spp. dragline silk for fiber spinning

(Seidel et al. 2000; Shao et al. 2003). The best performing

fibers, in terms of mechanical properties, were obtained by

drawing the fibers in air after spinning, soaking them in water,

and then drawing them in air again. These fibers exhibited a

strength of 320 MPa, a Young’s modulus of 8 GPa, and an

extensibility of 100 % (Seidel et al. 2000). In comparison to

natural dragline fibers, these fibers were much more extensi-

ble, but had a lower strength. Hand-drawn fibers of

reconstituted Nephila edulis dragline silk yielded fibers

showed natural dragline-like extensibility (10–27 %) and

Young’s modulus (6 GPa), but a breaking strength (100–

140 MPa) that was well below that of the natural dragline

fibers (Shao et al. 2003). Generally, achieving man-made fi-

bers with a breaking stress in the regime of natural spider silk

fibers seems to be the greatest challenge. Since the amount of

natural and, therefore, also reconstituted, spider silk is quite

limited due to the facts as mentioned above, the generation of

recombinant (i.e., artificial) silk fibers is the only meaningful

route toward large-scale applications. In several attempts, ex-

tensibility (1.2–302 %) and Young’s modulus (0.04–21 GPa)

of artificial spider silk fibers have been highly variable,

reaching lower as well as higher values in comparison to nat-

ural spider silk fibers (24% and 8 GPa). On the other hand, the

strength even of the best performing fibers achieved values far

below those of natural spider silk fibers. The highest strength

(660 MPa) was achieved by silkworm/spider silk composite

fibers, but since these fibers were only extensible up to 19 %

(Wen et al. 2010), the toughness was far below that of natural

spider silk fibers. In comparison, the highest strength

(508 MPa) of recombinant spider silk fibers was achieved

by wet spinning of proteins with a molecular weight of

285 kDa containing only amino acid motifs based on the core

domain of natural spidroins (Xia et al. 2010). The highest

toughness (189 MJ m−3), on the other hand, was observed

with fibers wet-spun from a self-assembled aqueous spinning

dope of a 134-kDa protein containing all three functional do-

mains: the highly repetitive core domain as well as the helical

amino- and carboxy-terminal domains (Heidebrecht et al.

2015).

Tensile testing of electrospun, recombinant fibers also

showed, not surprisingly, inferior mechanical properties in

comparison to those of natural spider silk fibers (Bogush

et al. 2009; Zhu et al. 2015). But in this case, mechanics can

be neglected, since electrospun fibers are commonly applied

as nonwoven meshes used for biomedical or for filter applica-

tions without the need of nature-like mechanical properties. In

this context, biocompatibility is the more important feature of

spider silks. In general, fibers produced from both

reconstituted and recombinant spidroins exhibited good bio-

medical properties. For instance, fibers electrospun from

reconstituted A. ventricosus major ampullate spidroins re-

vealed a very low degradation rate and showed a good bio-

compatibility with PC 12 cells (Yu et al. 2014). Cell attach-

ment and proliferation experiments of BALB/3T3 mouse fi-

broblasts on nonwoven meshes spun from recombinant

spidroins showed cell alignment along individual fibers as

well as a protrusion of filopodia/lamellipodia through the in-

terstitial space between the fibers (Leal-Egana et al. 2012).

Electrospinning of recombinant spidroins hybridized with

the cell binding sequence RGD even induced the differentia-

tion of bone marrow-derived, human mesenchymal stem cells

(hMSCs) to osteogenic outcomes (Bini et al. 2006). Also, self-

assembled recombinant spidroin fibers implanted subcutane-

ously in rats did not show any negative systemic or local

reactions (Fredriksson et al. 2009), suggesting these fibers to

be biocompatible. Additionally, fiber bundles thereof seem to

support the formation of vascularized tissue formation, since

already 1 week after implantation, new capillaries and

fibroblast-like cells formed in the center of such fiber bundles

(Fredriksson et al. 2009).

BNot to spin^: artificial assembly morphologies

Recombinant spider silk proteins can be processed into more

than fibers; other morphologies such as particles, foams, films,

or hydrogels can also be fabricated, all of which have a high
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application potential (Hardy and Scheibel 2010; Hermanson

et al. 2007; Slotta et al. 2008; Spiess et al. 2010a, b).

Processing of recombinant spider silk proteins in aqueous so-

lutions can be triggered by changes in the pH value, amount

and type of additives (e.g., potassium phosphate, alcohols, or

polymers), mechanical shear, or temperature changes.

Alternatively, organic solvents such as HFIP or FA can be

used; however, the choice of solvent has a significant impact

on structure formation. While aqueous processing leads main-

ly to particle and hydrogel formation, water-soluble films are

mainly produced using fast-evaporating organic solvents.

Here, posttreatment procedures with agents, like potassium

phosphate or monohydric alcohols (methanol, ethanol,

isopropanol), are necessary to render the films insoluble in

water (Exler et al. 2007; Huemmerich et al. 2004a, b;

Lammel et al. 2008; Numata et al. 2010; Rammensee et al.

2008; Rising 2014; Scheibel 2004; Slotta et al. 2007; Spiess

et al. 2010b).

Particles

Spidroin particles are produced in a simple, aqueous process

by the addition of high concentrations of kosmotropic salts,

like potassium phosphate, and fast mixing. This procedure

results in solid particles with high β-sheet content, a smooth

surface (Hofer et al. 2012; Lammel et al. 2008; Slotta et al.

2008), and particle sizes between 250 nm and 3μmdepending

on the mixing intensity, protein concentration, and the con-

centration of kosmotropic salts (Lammel et al. 2008; Slotta

et al. 2008; Spiess et al. 2010a). Using ionic liquids instead

of aqueous buffers and high potassium phosphate concentra-

tions to induce phase separation and nucleation in the protein

solution or ultrasonication for particle production allowed en-

hanced size control and a reduced polydispersity index (Elsner

et al. 2015; Lucke et al. 2015). eADF4(C16) (engineered

Araneus diadematus fibroin 4) particles show a brush-like

outer layer with protruding protein strands and a thickness of

30–50 nm covering a solid inner core (Helfricht et al. 2013).

Importantly, no posttreatment with dehydrating agents is nec-

essary to obtain water-insoluble particles, since the β-sheet

content is high after the salting-out process (Slotta et al.

2008). Further, it has been shown that particles made of re-

combinant spider silk proteins exhibit an extraordinary me-

chanical stability when analyzed in dry state. In a swollen,

hydrated state, these particles exhibited a different mechanical

behavior: the elastic modulus was three orders of magnitude

lower (E modulus dry, 0.8±0.5 GPa; E modulus hydrated,

2.99±0.90 MPa). Further, when dry, the particles deformed

in a plastic response, and when hydrated, they showed a re-

versible, elastic deformation behavior. In both states, dry and

hydrated, the mechanical properties were dependent on the

molecular weight of the spidroin: The higher the molecular

weight, the better the mechanical stability (Neubauer et al.

2013).

Particles made of recombinant spider silk proteins are suit-

able for a large variety of applications. Due to their enhanced

mechanical properties, these particles can be used, for exam-

ple, as filler for composite materials. Additionally, due to their

favorable properties in a physiological environment (nontox-

ic, biodegradable, etc.), these particles could be used as car-

riers of different substances, for example in drug delivery. Silk

particles retain their properties for a limited period of time in

the human body before they gradually decompose into degra-

dation products which can be eliminated (Altman et al. 2003;

George and Abraham 2006; Liu et al. 2005; Müller-Herrmann

and Scheibel 2015).

Uptake and release studies of small molecules with model

drugs showed that these types of molecular entities can be

incorporated either by diffusion or by coprecipitation of both

the spidroin and the drug substance. While the latter increased

the loading efficiency of the particles, it did not significantly

influence the release rate. Importantly, drugs can be only load-

ed into spidroin particles if there is no electrostatic repulsion.

In this context, only positively and neutrally charged drugs

can be loaded onto negatively charged spider silk protein par-

ticles, such as those made of eADF4(C16) (Blüm and

Scheibel 2012; Doblhofer and Scheibel 2015; Lammel et al.

2011). Since protein design allowed the production of posi-

tively charged spider silk proteins, particles made thereof were

also able to uptake negatively charged small molecules as well

as large oligonucleotides (Doblhofer and Scheibel 2015).

One important justification for the use of silk-based drug

delivery vehicles is the ability to design the underlying pro-

teins for a specific target, for example uptake by a specific cell

type. Previous investigations showed that, in general, nega-

tively charged spider silk particles have a low uptake efficien-

cy by mammalian cells. Therefore, cell penetrating peptides

(CPP) as well as an Arg8-TAG or a RGD sequence were

engineered to the N- and C-termini of eADF4(C16). The pres-

ence of CPP increased the number of incorporated particles in

HeLa cells; however, the mechanism behind the increased

uptake was surprisingly mainly the particle’s surface charge,

not the presented surface peptide (Elsner et al. 2015).

Films

The first studies on films made of spider silk proteins were

reported in 2002 by Chen et al. where the salt-controlled struc-

tural conversion of natural spider silk proteins obtained from

the major ampullate gland of Nephila senegalensiswas inves-

tigated (Chen et al. 2002). Films made of recombinant spider

silk proteins first gained attention in 2005 where it was shown

that these spider silk-like proteins undergo a similar structural

conversion from random coil to β-sheet rich. Recombinantly

produced engineered spider silk protein films turned out to be
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transparent and chemically stable under ambient conditions,

depending on their processing (Huemmerich et al. 2006;

Slotta et al. 2006; Spiess et al. 2010b). Twomajor components

determine the properties of these films: the molecular structure

including the secondary structure and intermolecular as well

as intramolecular interactions as well as the macroscopic

structure reflecting the material’s interface with the environ-

ment (Spiess et al. 2010a).

Depending on the solvent, spider silk proteins in solution

adopt mainly an α-helical or random coil conformation which

is often maintained in as-cast films (Borkner et al. 2014; Slotta

et al. 2006). These as-cast films are water soluble, as men-

tioned above, due to the weak intermolecular interactions of

spider silk proteins in an α-helical conformation. Upon con-

version of the protein structure toward a β-sheet-rich structure

by using agents like kosmotropic salts or alcohols, water va-

por, or temperature annealing, films can be rendered chemi-

cally more stable and thereby water insoluble (Huemmerich

et al. 2006; Slotta et al. 2006; Spiess et al. 2010b). This is an

important quality, as most potential applications of recombi-

nant spider silk films involve interaction with a humid envi-

ronment. Structural control over synthetic recombinant spider

silk proteins is also given by the variation of the amino acid

sequence toward a higher number ofβ-sheet forming building

blocks, and with the control of the β-sheet portion, mechani-

cal properties can be predetermined (Rabotyagova et al. 2009,

2010). While the terminal domains of spider silk proteins play

an important role in the fiber spinning process, no significant

influence of the nonrepetitive regions could be observed dur-

ing the film casting from organic protein solutions.

Nevertheless, as-cast films made of recombinant spider silk

proteins containing the NR regions are slightly more chemi-

cally stable than those without, though there are no disulfide

bridges present (Slotta et al. 2006). Besides chemical stability,

the β-sheet content also determines the mechanical properties

of a film. With increasing β-sheet content, elastic modulus

and strength increase, and there is a loss of elasticity. High

amounts of β-sheets, therefore, can be correlated with stiff-

ness and brittleness in silk films (Spiess et al. 2010b).

However, as the content of β-sheets can be adjusted by the

posttreatment conditions upon varying incubation times of the

films in alcohols or posttreatment with water/alcohol mixtures

at various ratios lead to a varying β-sheet content, this is not a

challenge for tailoring films to specific applications (Spiess

et al. 2010a). The water content in silk films plays also an

important role; due to its softening effect, it can work

as a plasticizer. Another possibility to overcome the

brittleness of silk films is to add plasticizers like glyc-

erol. It was reported that glycerol can alter the intermo-

lecular interactions of silk proteins in a film and, there-

fore, is able to enhance the films’ elasticity. The addi-

tion of 40 % w/w glycerol to an eADF4(C16) film

yielded a 10-fold increased elasticity, but also going

along with a 10-fold decrease of the elastic modulus

and a slight decrease in strength (Lawrence et al.

2010; Spiess et al. 2010a).

Spider silk protein films can be envisioned for various

applications; however, they are especially promising for

use in the biomedical field due to their biocompatibility

which has been demonstrated in vitro and in vivo

(Allmeling et al. 2006, 2008; Gellynck et al. 2008a, b;

Hakimi et al. 2010; Vollrath et al. 2002). Conceivable

applications are materials for a controlled substance re-

lease at a specific site of action in the human body,

biomedical sensors, and cell-supporting scaffolds (Hardy

et al. 2013; Minoura et al. 1995; Sofia et al. 2001;

Vendrely and Scheibel 2007). It is possible, for example,

to directly integrate substances (e.g., drugs) into silk

films or to load these substances into microparticles that

are then embedded in or coated with a silk layer amena-

ble for delayed release (Wang et al. 2007, 2010).

Biomedical or biochemical sensors can be fabricated by

covalent binding of biologically active compounds to the

silk proteins (Lawrence et al. 2008; Spiess et al. 2010b).

Cell adhesion on recombinant spider silk protein scaf-

folds was shown to be very weak (Baoyong et al.

2010); therefore, chemical or genetic coupling of specific

functional groups, for example components of the extra-

cellular matrix, and modification of the surface hydrophi-

licity have been employed to influence the cellular re-

sponse to a film’s surface concerning adhesion, prolifer-

ation, and differentiation (Bini et al. 2006; Karageorgiou

et al. 2004; Wohlrab et al. 2012a). As mentioned above,

the function of silk films can be also partly controlled by

the macroscopic structure they adopt. Changing the sur-

face morphology by patterning or partial roughening of a

film under different posttreatment conditions can lead to

a deviating behavior of cells thereon (Bauer et al. 2013;

Borkner et al. 2014). The hydrophilicity of the film sur-

face can easily be affected by the choice of the template

for drop-cast films (Wohlrab et al. 2012b). The influence

of the template’s surface hydrophilicity can be dimin-

ished by spin coating of spidroin solutions, since the

duration of solvent evaporation determines the rearrange-

ment of silk protein molecules within the films, and their

interaction with the underlying substrate and the film

properties are in this case determined by the utilized

solvent (Metwalli et al. 2007; Wohlrab et al. 2012b).

Applications of films made of silk protein in the medical

field include coatings for medical devices (Bettinger and

Bao 2010; Kim et al. 2010; Zeplin et al. 2014a, b) and

skin grafts (Baoyong et al. 2010; Jiang et al. 2007).

In the context of biomedical applications, it is important to

mention that recombinant spider silk protein films undergo

partial degradation in the presence of wound proteases

(~10 %) in a timescale of 15 days, which is in the range of
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the initial phase of wound healing (Müller-Herrmann and

Scheibel 2015).

Hydrogels

Hydrogels are three-dimensional polymer networks that ab-

sorb over 95 % (w/w) of water (Knight et al. 1998; Lee and

Mooney 2001; Rammensee et al. 2006; Schacht and Scheibel

2011; Shin et al. 2003). Their porous structure and mechanical

properties make them candidates for applications in tissue

engineering, drug delivery, or as functional coatings

(Rammensee et al. 2006). The mechanical properties of a spe-

cific hydrogel are determined by the properties of its individ-

ual constituents, and many different polymers, synthetic and

natural ones, have been utilized to form hydrogels. Spidroin

hydrogels are built upon self-assembly of nanofibrils by a

mechanism of nucleation-aggregation followed by a

concentration-dependent gelation in whichβ-sheet-rich spider

silk fibrils become entangled to build a stable three-

dimensional network (Hu et al. 2010; Rammensee et al.

2006; Schacht et al. 2015; Schacht and Scheibel 2011; Slotta

et al. 2008). Spider silk proteins can be processed into stable

hydrogels in a controlled manner by adjusting the protein

concentration, pH, temperature, ion composition, and concen-

tration (Jones et al. 2015; Schacht and Scheibel 2011; Vepari

and Kaplan 2007). Each of these inputs influences the

hydrogel’s morphology, mechanical properties, and pore size.

In particular, increasing the protein concentration and increas-

ing the addition of chemical crosslinkers lead to an increase in

mechanical strength, accompanied by a decrease in pore sizes

(Schacht and Scheibel 2011). It has been recently shown that

recombinant spidroin hydrogels, like many biopolymer

hydrogels, show a viscoelastic behavior with stress changes

proportional to the linear increasing strain (Mackintosh et al.

1995). In the special case of eADF4 hydrogels, the elastic

behavior dominates over the viscous behavior, with low-

viscosity flow behavior, good form stability, and a shear thin-

ning effect, allowing their use as bioink in a biofabrication

setup. Eukaryotic cells were embedded within the hydrogel

prior to printing with a bioplotter and they survived for at least

7 days after printing. The addition of cells did not consider-

ably influence the print-ability of the spider silk protein gels

(Schacht et al. 2015).

Foams and sponges

Foams are defined as material containing small bubbles

formed on or in a liquid. To produce foams made of spidroin

solutions, gas bubbles remain stable when using a high protein

concentration, and the foam is established upon drying. In

comparison, sponges are, like foams, three-dimensional po-

rous scaffolds, but differ in their production technique and

their mechanical properties. Sponges can be produced by

gas foaming, lyophilization, or using porogens. It has been

shown for silkworm silk fibroin that porogens like sodium

chloride and sugar can be used to produce sponges with de-

fined pore sizes due to silk β-sheet formation around the

porogen. Therefore, the pores are the size of the porogen in

case of organic protein solutions and 80–90 % of the size of

the porogen in aqueous solutions (Kim et al. 2005). As a

consequence, it is even possible to produce pore size gradients

by stacking porogens with different diameters (Kim et al.

2005; Nazarov et al. 2004; Vepari and Kaplan 2007). Foams

and sponges are both qualified for cell culture applications due

to the ability of good transportation of nutrients and metabolic

waste through the material in combination with a good struc-

tural and mechanical stability (Kluge et al. 2008). While a

number of studies on silkworm silk fibroin foams and sponges

have been published, spider silk protein foams and sponges

remain largely unexplored. Widhe et al. showed in 2010 that

their recombinant miniature spider silk protein 4RepCTcan be

processed into foams which stay microscopically stable in a

cell culture medium. The surface of these foams showed het-

erogeneous pores with diameters between 30 and 200 μm.

However, in this pore size range, foams lack a characteristic

surface topography which influences cell adhesion (Widhe

et al. 2010).

Concerning spider silk sponges, Jones et al. developed a

method in which hydrogels were frozen in an aqueous medi-

um and subsequently thawed, resulting in a highly elastic,

three-dimensional morphology. Such sponges could uptake

water to the extent of hydrogels as well as maintain their form

upon compression and drying. That is, the effect of dehydra-

tion was completely reversible by the addition of water. The

high elasticity of these sponges is based on a lower content of

stiffening β-sheet crystals and a higher amount of the elastic

random coil and helical structures in comparison to other spi-

der silk scaffolds (Jones et al. 2015).

Composite materials including spider silk

Composites provide the opportunity to produce materials with

extraordinary properties by complementation of at least two

different kinds of materials. In this context, natural as well as

recombinant spider silk materials can play a role due to their

outstanding mechanical and biocompatible properties. In

some studies, naturally spun spider dragline silks were used

to assemble composites with inorganic nanoparticles to rein-

force the fibers. Recently, it was shown that feeding spiders

with carbon nanotubes or graphene dispersions led to carbon-

reinforced silk threads (Lepore et al. 2015). Despite that, most

approaches to enhance mechanical strength of spider dragline

silk were employed after collection of the silk by forced

silking. Dragline silk was used as template for the insertion

of zinc (Zn), titanium (Ti), and aluminum (Al) by multiple

pulsed vapor-phase infiltration (MPI). This treatment
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increased the toughness of the spider silk fibers by almost 10-

fold and the E moduli of the fibers from 9.7 to 68 GPa, in the

best case (Lee et al. 2009).

Spider silk composite production allows not only to in-

crease its mechanical strength but also to extend the range of

applications. Dragline silk fibers, for instance, were incubated

in chloroauric acid to assemble gold nanoparticles on their

surface with the goal of producing water and methanol vapor

sensors with a response time of about 10 s and 150-fold

change of conductivity. Their supercontraction behavior in

the presence of water and methanol vapor led to a change in

the distance of the gold nanoparticles and, therefore, altered

the electrical conductivity of the fibers (Hardy and Scheibel

2010; Singh et al. 2007). Electrical conductivity was also in-

troduced into spider silk fibers by deposition of amine-

functionalized multiwalled carbon nanotubes (MWCNT) onto

their surface. In this study, additionally, an increase in me-

chanical strength was observed for the composite fibers. The

combination of properties allowed an extended application of

the material in various technical approaches (Steven et al.

2013). The accumulation of calcium carbonate or hydroxyap-

atite (HAP) on naturally spun fibers enabled producing new

scaffolds for bone tissue engineering or building blocks for

bone replacement materials (Cao and Mao 2007; Mehta and

Hede 2005). In the case of hydroxyapatite deposition, oriented

crystal growth was obtained being consistent with the orien-

tation of β-sheet crystals in the silk fibers (Cao and Mao

2007). In another approach, naturally spun spider silk was

solubilized in FA for electrospinning. By mixing the resulting

protein solution with a poly(D,L-lactic acid) (PDLLA) FA so-

lution and subsequent electrospinning, nonwoven meshes

with core-shell structured fibers with a diameter range of

about 90–1000 nm were produced. The size of the fibers

was tuned by the weight ratio of the two material components

in the spinning solution (Zhou et al. 2008).

Recombinant spider silk proteins have been used in blends

with polycaprolactone (PCL) and thermoplastic polyurethane

(TPU) to cast films with a higher elasticity than nonblended

spider silk protein films. Good cell adhesion, proliferation,

and the possibility to incorporate drugs in these composite

films endorse them as candidates for implant coatings or as

scaffolds for tissue engineering (Hardy et al. 2013). Another

filler material used in spider silk protein films were carbon

nanotubes. Composite films made of recombinant spider silk

proteins and single-walled carbon nanotubes led to excellent

mechanical properties as a result of the transfer of stress in the

matrix to the filler and of the potential for extensive reorgani-

zation of the matrix at applied high stress (Blond et al. 2007).

Blended dopes of recombinant spider silk with collagen or

gelatin have also been used for electrospinning processes. The

resulting composite nonwoven meshes were predominantly

used in tissue engineering. Electrospinning of a mixture of

spider silk proteins and collagen led to unidirectional, partially

crosslinked fiber scaffolds usable in stem cell differentiation

and in neural tissue engineering. Collagen-dominant scaffolds

were found to provide unique structural, mechanical, and bio-

chemical cues; stem cells were directed to neural differentia-

tion, and the development of long neural filaments along the

fibers was facilitated. These neural tissue-like constructs are

promising candidates for transplantation in cellular replace-

ment therapies for neurodegenerative disorders such as

Alzheimer’s or Parkinson’s disease (Sridharan et al. 2013;

Zhu et al. 2015). Tubular scaffolds made of a blend of recom-

binant spider silk proteins and gelatins, supported by a poly-

urethane outer layer, were produced to be used in tissue-

engineered vessel grafts (TEVG). The morphological and me-

chanical characterization of the tubular structures showed

strong similarities with the structure of native arteries, both

in strength and elasticity. The appearance of RGD sequences

in spider silk used for this purpose supported the growth of

adult stem cells, yielding a higher cellular content prior to

prospective implantation than without the cellular recognition

sequence (Zhang et al. 2014).

Modification of recombinant spider silk proteins with spe-

cific binding motifs for HAP (Huang et al. 2007), titanium

dioxide, germania, and gold could be assembled into various

morphologies and provided the control of organic-inorganic

interfaces and composite structural features (Belton et al.

2012; Foo et al. 2006; Mieszawska et al. 2010). Silica binding

sequences (e.g., R5 from Cylindrotheka fusiformis) were used

to control silica particle formation and assembly on the sur-

faces of spider silk films, fibers, and particles. Mineral phase

formation, morphology, chemistry, and, therefore, composite

properties could be influenced by varying the processing con-

ditions or by sequence alteration. Silica is a critical

osteoconductive element, which can be processed under am-

bient conditions, and has the potential to control the tissue

remodeling rate, making this composite a possible scaffold

for bone regeneration. Studies with humanmesenchymal stem

cells (hMSCs) attached to silica/silk films showed upregula-

tion of osteogenic gene markers at high silica contents (Belton

et al. 2012; Foo et al. 2006; Mieszawska et al. 2010).

Summary and outlook

Biotechnological production of spider silk proteins and their

processing into diverse morphologies (Fig. 4) allow for appli-

cations in textile, automotive, and biomedical industries.

Concerning the production of artificial spider silk fibers, sig-

nificant progress has been made in the last years. Since

reconstituted spider silk fibers did not show nature-like me-

chanical properties after spinning, various techniques for bio-

technological production (i.e., proteins, transgenic animals,

etc.) have been investigated to gain proteins enabling fibers

with such features. Regarding the biotechnological production
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and artificial fiber spinning, great progress was made by ana-

lyzing the natural spinning process and the role of the amino-

and carboxy-terminal domains. Inclusion of the nonrepetitive

terminal domains into the recombinantly produced spider silk

proteins and wet spinning these proteins into fibers resulted in

a toughness comparable to that of natural fibers. This empha-

sized the importance of the nonrepetitive terminal domains in

the proper alignment of the spidroins, which was neglected in

earlier trials. By fine-tuning the composition of the

recombinant proteins and the spinning process, artificial spi-

der silk fibers with mechanical properties exceeding those of

the natural fibers will be likely possible in the future.

Recombinant production of spider silk proteins does not

only offer the option to mimic nature and produce fibers that

are similar to their natural counterparts, but it also enables the

production of different morphologies. These different struc-

tures are biodegradable and biocompatible just like the natural

equivalents, but still comprise new properties that lead to

Fig. 4 Design, production, and processing of recombinant spider silk proteins: from identification of the bioinformation given by the natural material

produced by a spider, to genetic design of its recombinant counterpart, to possible morphologies
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applications in both the medical and the technical field.

Particles and films/coatings have already beenwell-investigat-

ed, and this paves the way toward the first applications in drug

delivery and cell culture. On the other hand, hydrogels, foams,

and sponges require further exploration before they can be

used directly in applications. Nevertheless, in all cases, recom-

binant spider silk protein research tends to explore new tailor-

made materials by adapting the morphology’s properties to a

specific application. The potential of recombinant spider silk

proteins in different fields is thereby essentially limitless.
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