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tial that the charging and discharging of these devices be scheduled so as to avoid adverse impacts on
the electricity distribution network. In this paper, we propose a non-cooperative, price-based hierarchical
distributed optimisation approach that provably recovers the centralised, or cooperative, optimal per-
formance from the point of view of the network operator. The performance of this algorithm is validated
on recent measurements taken from an Australian electricity distribution company, Ausgrid.
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1. Introduction

As residential battery storage becomes increasingly common, particularly in conjunction with small-
scale renewable energy sources such as rooftop solar photovoltaics, it is clear that uncoordinated
charging and or discharging of a large number of batteries can lead to undesirable behaviour from
the point of view of an electricity distribution company. In particular, if charging occurs across all
resources simultaneously an artificially high supply must be maintained. Similarly, if discharging
occurs simultaneously the grid must absorb an unnecessarily large amount of energy.

In (Worthmann, Kellett, Braun, Grüne, & Weller, 2015; Braun, Grüne, Kellett, Weller, & Worth-
mann, 2016) we investigated several model predictive control (MPC) schemes for the control of a
small scale electricity network and demonstrated the performance of these schemes using a dataset
provided by the company Ausgrid (see (Ratnam, Weller, Kellett, & Murray, 2015) for an overview
of the dataset). The control schemes in (Worthmann et al., 2015; Braun, Grüne, et al., 2016) con-
centrated on reducing fluctuations of the aggregate power demand and on temporary operation
of the electricity network in islanded mode (see (Braun, Faulwasser, et al., 2016)). The control
algorithms range from centralised approaches to cooperative and non-cooperative distributed al-
gorithms. Whereas for the cooperative distributed approaches convergence to the centralised control
setting was shown in (Braun, Grüne, et al., 2016; Braun, Faulwasser, et al., 2016), convergence
of the non-cooperative algorithms introduced in (Worthmann et al., 2015) and (Braun, Grüne,
Kellett, Weller, & Worthmann, 2015) remains an open question.

In this paper we close this gap by introducing a negotiation algorithm between an energy provider
and its customers to compute real-time electricity prices. The algorithm is based on the dual ascent
algorithm (see (Bertsekas, 1999), for example) from which convergence can be concluded. Residen-
tial customers send their predicted power demand for the next several hours to the energy provider.
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The energy provider communicates real-time prices to its customers which then can change their
consumption patterns by using storage devices and update their predicted energy demand. Thus,
the negotiation process continues until an equilibrium, which minimises the electricity costs and
the fluctuations in the power demand, is found.

Herein we consider the need for prices to correspond to an essentially non-cooperative scheme,
whereby customers act purely in order to minimise their costs (or maximise their profits). By
contrast, we consider the centralised optimisation problem, and its distributed variant, to be essen-
tially cooperative as customers either blindly implement the centralised control solution or solve
an optimisation problem that benefits the network.

An approach for real-time electricity prices with a similar motivation (i.e., peak reduction and
cost minimisation) is proposed in (Mohsenian-Rad & Leon-Garcia, 2010). There, prices are set
by the energy provider without a negotiation process and the customer minimises its electricity
costs by anticipating future electricity prices. In (Samadi, Mohsenian-Rad, Schober, Wong, &
Jatskevich, 2010), a similar dual decomposition algorithm is used to create time-varying adaptive
prices. However, a different smart grid model is used without local storage devices. Instead, it is
assumed that at every time instant k ∈ N customers have a lower and an upper bound on their
power demand. Then customers maximise their welfare by maximising their power demand (based
on a strictly increasing utility function) minus the costs for electricity. In this case, there is no
coupling between two consecutive time steps k and k+ 1 and every time instant can be considered
independently. Thus, local storage devices cannot be handled with this approach.

In (Vytelingum, Voice, Ramchurn, Rogers, & Jennings, 2010), a game theoretic approach for
real-time pricing is presented. The authors consider micro-storage devices, similar to the batteries
used in this paper, for peak-shaving and cost reduction. In contrast to our approach, customers
optimise their battery usage based on predicted prices without a negotiation process with the energy
provider. The authors in (Yang, Chavali, & Nehorai, 2012) optimise the schedule for controllable
loads instead of the optimal usage of batteries. In this reference, a different distributed optimisation
algorithm with the same communication structure as the one proposed in our work is used. The
approach in (Yang et al., 2012) is not embedded in a receding horizon scheme. In (Floch, Belletti,
Saxena, Bayen, & Moura, 2015), a similar distributed dual ascent algorithm in the context for the
optimal charging of electric vehicles is considered. The algorithm, however, is not used to model real-
time electricity prices and the algorithm is not used in an MPC context. In the context of MPC,
dual decomposition algorithms for quadratic separable cost functions are considered in (Doan,
Keviczky, Necoara, Diehl, & Schutter, 2009; Doan, Keviczky, & Schutter, 2011; Giselsson, Doan,
Keviczky, Schutter, & Rantzer, 2013; Giselsson & Rantzer, 2010), for example.

Recently, in (Gharesifard, Basar, & Dominguez-Garcia, 2016), a continuous-time game theoretic
framework is proposed. Similar to our work, (Gharesifard et al., 2016) proposes a central entity (an
aggregator) though, with a continuous-time system, there is not a negotiation period, but rather
a leader-follower structure where the central entity sets a price curve and the residences employ a
distributed gradient-flow algorithm to find the Nash equilibrium. As a further structural difference
with the approach proposed herein, in (Gharesifard et al., 2016) residences communicate amongst
themselves (not necessarily all-to-all communication), whereas our proposed structure has each
residence communicating only with the central entity.

This paper is structured as follows. In Section 2 the model of the small scale electricity network
is introduced and the control problem is formulated. In Section 3, the dual ascent algorithm is
reviewed and convergence properties of the algorithm are provided. Furthermore, it is shown how
the algorithm can be implemented in a distributed way. In Section 4 we show how the the distrib-
uted dual ascent algorithm can be applied to the electricity network. In particular we show how
the distributed dual ascent algorithm can be used to obtain real-time electricity prices and how
convergence of the algorithm can be ensured. Additionally we explain how the algorithm can be
embedded in a receding horizon context and discuss its differences to centralised and cooperative
distributed control schemes. In Section 5 the open loop and the closed loop performance of the
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dual ascent algorithm using the pricing scheme is demonstrated by means of numerical simulations.
In particular, we investigate the performance compared to a cooperative control scheme and the
impact of the number of storage devices in the electricity network before the paper is concluded in
Section 6.

2. Model description and problem fomulation

We consider a dynamical system consisting of I residential energy systems (RESs), I ∈ N, which
was first introduced in (Ratnam, Weller, & Kellett, 2013) and extended in (Braun, Faulwasser, et
al., 2016). Each RES owns storage devices and has positive and negative loads which result from
local generators and residential appliances. The i-th RES, i ∈ NI = {1, . . . , I}, is governed by the
system dynamics

xi(k + 1) = xi(k) + T
(
βiu

+
i (k) + u−i (k)

)
(1)

zi(k) = wi(k) + u+
i (k) + γiu

−
i (k) (2)

with parameters (βi, γi) ∈ (0, 1]2 and time index k ∈ N. The variables zi(k) [kW], representing the
power demand drawn from/supplied to the grid by each RES and given by Equation (2), depend on
the net consumptions wi(k) [kW], i.e., the power generation of solar photovoltaic panels minus the
energy demand of the residents, and the battery usage. The dynamics of the battery, Equation (1),
are defined through the state of charge xi(k) in [kWh] and the input variables u+

i (k) and u−i (k)
in [kW]. The input u+

i (k) represents the power drawn from the grid, while u−i (k) can be used to
discharge the battery and, thus, decrease the power demand. The parameters βi and γi model losses
due to energy conversion, and T (in hours [h]) represents the length of the sampling interval.

∑I
i=1 zi

zI

z2

z1

...

RES I

RES 2

RES 1

Main Grid
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wi

u+i

zi

γiu
−
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Figure 1. Visualization of the electricity network (left) and visualisation of Equation (2) (right). The power demand zi depends

on the net power consumption wi and can be manipulated by using the battery.

The storage device of each RES is constrained by

0 ≤ xi(k) ≤ Ci (3a)

ui ≤ u−i (k) ≤ 0 (3b)

0 ≤ u+
i (k) ≤ ui (3c)

0 ≤ u−i (k)
ui

+ u+
i (k)
ui

≤ 1. (3d)

The constraint (3a) sets an upper and a lower bound on the capacity of the batteries, the constraints
(3b) and (3c) define upper and lower bounds on the charging rate of the batteries and (3d) ensures
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that the bounds on the charging rate are also respected when the batteries are used for charging
and discharging in the time interval from k to k + 1.

Each RES is connected with the main grid at the point of common coupling through its individual
power demand zi, i ∈ NI . The network wide power demand

∑I
i=1 zi is covered by the main grid.

The network is coordinated by the central entity (CE). The CE encompasses the functions of a grid
operator (coordinator) and an energy provider. Since the CE is responsible for a stable operation of
the electricity grid without outages we are interested in minimising the deviation from the average
power demand

ζ(k) =
1

N

k+N−1∑
j=k

1

I

I∑
i=1

wi(j) (4)

over a fixed prediction horizon N ∈ N. In other words, we assume that the CE is interested in the
optimal solution of the minimisation problem

min
ui

1

N

k+N−1∑
j=k

(
1

I

I∑
i=1

zi(j)− ζ(k)

)2

s.t. xi(k) = x0
i and (1), (2), (3)

∀ i = 1, . . . , I, ∀ j = k, . . . , k +N − 1

(5)

for given states of charge of the battery x0
i ∈ [0, Ci] and fixed predictions of the net consumption

wi(k), . . . , wi(k + N − 1) for i = 1, . . . , I. Optimal solutions of the optimisation problem (5) are
denoted with a ·?; i.e., u?i (k), . . . , u?i (k +N − 1) and z?i (k), . . . , z?i (k +N − 1) for i = 1, . . . , I.

Since the net consumption wi(k) can only be approximated up to some time into the future, model
predictive control (MPC) offers a natural tool to compute a feedback control for the charging and
discharging of the batteries. To this end, the finite dimensional optimisation problem (5) is solved
at every time step k and the first piece of the optimal solution ucl

i (k) = u?i (k), i = 1, . . . , I, is
used as a control value before the time index k is shifted and the process is repeated. Analogously,
the power demand of the closed loop solution is denoted by zcl

i (k) for i = 1, . . . , I and k ∈ N. To
simplify the notation we use ·̄ to denote the average with respect to the number of systems, i.e.,
we define z(k) = 1

I
∑I

i=1 zi(k) to denote the average power demand at time k.
To measure the performance of the MPC feedback over a simulation of length N ∈ N we use the

following performance metrics:

• The first measure reflects the mean-quadratic-deviation (MQD) from the average:

1

N

N−1∑
k=0

(
zcl(k)− ζcl

)2
, (MQD)

1

N

N−1∑
j=0

(
z?(k + j)− ζ(k)

)2
, (MQDk)

where ζ
cl

:= 1
N
∑N−1

k=0

(
zcl(k)

)
denotes the overall average power demand of the MPC simu-

lation.
• Peak-to-Peak (PTP), i.e., the maximal variation in the demand profile over the simulation
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interval in closed and open loop:

max
k=0,...,N−1

{zcl(k)} − min
k=0,...,N−1

{zcl(k)}, (PTP)

max
j=0,...,N−1

{z?(k + j)} − min
j=0,...,N−1

{z?(k + j)}. (PTPk)

To compute the feedback (ucl
i (k))k∈N, i ∈ NI , the optimisation problem (5) must be solved at

every time step k ∈ N. Thus, we introduce the dual ascent algorithm in the next section in order
to solve an optimisation problem at a fixed time instant k ∈ N on a time window of length N ∈ N.
Afterwards, we discuss the convergence properties of this algorithm. Then, in Section 4, we return
to the electricity network application.

The following abbreviations are used in order to simplify the notation:

• zi = (zi(k), . . . , zi(k + N − 1))T ∈ RN for the power demand of the i-th system, i ∈ NI , on
the considered time window,
• z = 1

I
∑I

i=1 zi ∈ RN for the average power demand on the considered time window, and

• z = (zT1 , . . . , z
T
I )T ∈ RNI .

Similar notation is used for other variables, e.g. x and w. Additionally we use the notation 1 =
(1, . . . , 1)T for a vector of appropriate size and I is used for the identity matrix of appropriate
dimension. As defined at the beginnning of this section, NI = {1, . . . , I} denotes the RESs from 1
to I. For a given net consumption wi and an initial state of charge x0

i , the feasible set of solutions zi
is

Di =

zi ∈ RN

∣∣∣∣∣∣∣∣
xi(k) = x0

i
System dynamics (1) and (2)
Constraints (3)
∀ j ∈ {k, . . . , k +N − 1}

 . (6)

The set D is defined in the same way for the variable z (instead of zi) with D1 × . . . × DI . Note
that the feasible sets Di, i ∈ NI , and D are compact and convex (polyhedral).

3. The dual ascent method

3.1 The Lagrangian and duality

At a fixed time step k ∈ N the optimisation problem (5) can be written in the form

min
y∈D

φ(y)

s.t. 0 = χ(y) := Ay − b.
(P)

with a convex function φ : Rn → R, a convex set D ⊂ Rn, a matrix A ∈ Rm×n and a vector b ∈ Rm
defining linear equality constraints χ : Rn → Rm. The Lagrangian L : Rn ×Rm → R of the primal
problem (P) is defined as

L(y, λ) = φ(y) + λT (Ay − b). (7)
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The variables λ ∈ Rm are called Lagrange multipliers. Given the primal problem (P) and the
Lagrangian (7), we can define the dual function ψ : Rm → R ∪ {−∞} ,

ψ(λ) = inf
y∈D
L(y, λ), (8)

and the dual problem

max
λ∈Rm

ψ(λ). (D)

Observe that ψ is defined as an extended real-valued function since the infimum does not need
to be finite for all y ∈ D. All definitions and results in the remainder of this section concern the
primal (P) and the dual problem (D). Thus we assume that the assumptions and notations used
in Section 3.1 hold throughout Section 3.

The primal problem (P), the Lagrangian (7), and the dual problem (D) are related through the
following results which allow a characterization of the optimal solution of the primal problem (P)
based on the solution of the dual (D), and vice-versa. These results and the corresponding proofs
can, for example, be found in (Bertsekas & Tsitsiklis, 1989, Appendix C).

Theorem 1 (Duality theorem): If the primal problem (P) has an optimal solution y?, then the
dual problem (D) has an optimal solution λ? and the optimal values are equal; i.e.,

φ(y?) = φ? = ψ? = ψ(λ?).

Theorem 2 (Saddle point theorem): For the primal problem (P) and the dual problem (D), the
following holds: y? is optimal for the primal problem (P) and λ? is optimal for the dual problem (D)
if and only if the saddle point condition

L(y?, λ) ≤ L(y?, λ?) ≤ L(y, λ?) (9)

holds for all y ∈ D and for all λ ∈ Rm.

Hence, with these two theorems, if an optimal solution of the dual problem is known, a solution
of the primal problem can be computed based on the Lagrangian by solving the minimisation
problem

y? ∈ argmin
y∈D

L(y, λ?). (10)

The advantage of the minimisation problem (10) over the original primal problem (P) is that the
constraints χ(y) = 0 are incorporated into the cost function. Likewise, if y? is known an optimal
solution of the dual problem is obtained by solving the unconstrained problem

λ? ∈ argmax
λ∈Rm

L(y?, λ). (11)

Moreover, if the function φ is strictly convex and D is convex and compact, the primal problem
has a unique optimal solution y? (see (Bertsekas, 1999, Proposition B.10) for example) and thus,
the dual problem also has an optimal solution λ?. We exploit these properties in the dual ascent
algorithm introduced next.
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3.2 Definition and convergence of the dual ascent method

Instead of solving the primal optimisation problem (P) directly, we search for an optimal solution
of the dual problem (D) from which an optimal solution of the primal problem is obtained. If the
dual function ψ is known, the dual problem (D) can be solved by a gradient ascent method. The
key idea is to find a sequence (λ`)`∈N such that ψ(λ`+1) > ψ(λ`) holds for all ` ∈ N. Typically,
directions (d`)`∈N satisfying the ascending condition

∇ψ(λ`)Td` > 0 (12)

are computed to fulfill this task; e.g., d` = ∇ψ(λ`) is a possible choice. Then, the gradient method
is defined by

λ`+1 = λ` + c`d` (13)

using a sequence (c`)`∈N of suitable stepsizes. Here, we distinguish between the following two cases:

• Constant stepsize c > 0: c` = c for all ` ∈ N.
• Diminishing stepsize: a sequence (c`)`∈N satisfying

c` ≥ 0, c`
`→∞−→ 0 and

∑∞

`=0
c` =∞, (14)

e.g. the harmonic numbers c` = 1/(`+ 1).

Convergence of the gradient method can be proven under Lipschitz continuity of the gradi-
ent ∇ψ (Bertsekas, 1999, Proposition 1.2.3 and Proposition 1.2.4).

Theorem 3 (Convergence of the dual ascent method): Assume the existence of a Lipschitz con-
stant L > 0 such that

‖∇ψ(λ1)−∇ψ(λ2)‖ ≤ L‖λ1 − λ2‖

holds for all λ1, λ2 ∈ Rm. Let (λ`)`∈N be generated according to (13) with ascent directions (d`)`∈N
satisfying (12). In addition, let one of the following two conditions be satisfied.

• Constant stepsize: There exists ε > 0 such that

ε ≤ c` ≤ (2− ε) · |∇ψ(λ`)Td`|
L‖d`‖2

for all ` ∈ N.
• Diminishing stepsize: There exist positive scalars c1, c2 such that the stepsize (c`)`∈N sat-

isfies (14) and the ascent directions (d`)`∈N satisfy

c1‖∇ψ(λ`)‖2 ≤ ∇ψ(λ`)Td`, ‖d`‖2 ≤ c2‖∇ψ(λ`)‖2.

Then, either ψ(λ`) → −∞ for ` → ∞ or (ψ(λ`))`∈N converges to a finite value and ∇ψ(λ`) → 0
for `→∞. Furthermore, every accumulation point of (λ`)`∈N is a stationary point of ψ.
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3.3 The dual ascent algorithm

Before we present the dual ascent algorithm, we show first how an ascent direction can be computed.
Since a closed form expression of the dual function ψ and its derivative ∇ψ is generally not
known, we use the Lagrangian to compute ∇ψ(λ`) for a given Lagrange multiplier λ` ∈ Rm. The
corresponding results read as follows (Bertsekas, 1999, Prop. 6.1.1).

Theorem 4: Let φ : Rn → R be strongly convex and suppose that yλ ∈ D is the unique minimiser
of the Lagrangian L(·, λ) for a given λ ∈ Rm over the convex and closed set D. Then, the dual
function ψ : Rm → R ∪ {−∞} is continuously differentiable and satisfies

∇ψ(λ) = Ayλ − b.

To show the Lipschitz-continuity of ∇ψ required for the convergence statement in Theorem 3, a
few definitions and auxiliary results are needed.

Definition 1: For the dual function ψ : Rm → R∪{−∞}, we define a restriction Dψ of the domain
of ψ as

Dψ := {λ ∈ Rm|ψ(λ) > −∞} .

Based on Definition 1, concavity of the dual function can be shown, cf. (Bertsekas, 1999, Pro-
position 5.1.2).

Proposition 1: The restricted domain Dψ of the dual function ψ : Rm → R ∪ {−∞} is convex
and ψ is concave on Dψ.

Proof. Let λ1, λ2 ∈ Dψ, and β ∈ [0, 1] be given. Then, for all y ∈ D, the linearity of the Lagrangian
with respect to the Lagrange multiplier λ implies that

L(y, βλ1 + (1− β)λ2) = βL(y, λ1) + (1− β)L(y, λ2).

Taking the minimum on both sides leads to the estimate

min
y∈D

L(y, βλ1 + (1− β)λ2) ≥ min
y∈D

βL(y, λ1) + min
y∈D

(1− β)L(y, λ2)

which by definition is equivalent to

ψ(βλ1 + (1− β)λ2) ≥ βψ(λ1) + (1− β)ψ(λ2);

i.e., ψ is concave. Furthermore, for λ1, λ2 ∈ Dψ, the last inequality implies ψ(βλ1+(1−β)λ2) > −∞,
and thus, βλ1 + (1− β)λ2 ∈ Dψ for all β ∈ [0, 1], which shows convexity of Dψ and completes the
proof.

With the help of Theorem 4, an ascent direction can be computed by first minimising the Lag-
rangian for a fixed λ and then evaluating the function χ.

Remark 1: Sufficient conditions to ensure uniqueness of the minimiser of the Lagrangian L(·, λ)
for a fixed λ are that the function φ is strongly convex on a closed convex domain or that the
function φ is strictly convex on a compact and convex domain, for example. A twice continuously
differentiable function φ : D → R is strongly convex with parameter α > 0 if and only if∇2φ(y)−αI
is positive semidefinite for all y ∈ D (Bertsekas, 1999, Proposition B.5).
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It remains to show that ∇ψ is Lipschitz continuous. To this end, the following general property
of projections is required (Bertsekas, 1999, Proposition 2.1.3).

Theorem 5 (Projection Theorem): Let the set D ⊂ Rn be non-empty, closed, and convex.

(a) For y ∈ Rn, there uniquely exists [y]+ ∈ D satisfying

[y]+ = argmin
v∈D

‖v − y‖.

The vector [y]+ is called the projection of y on D.
(b) The mapping η : Rn → D defined by η(y) = [y]+ is continuous and nonexpansive; i.e.,∥∥[y1]+ − [y2]+

∥∥ ≤ ‖y1 − y2‖ ∀ y1,y2 ∈ Rn.

Theorem 6: Consider the primal problem (P) with non-empty, closed and convex set D. Assume
that φ is continuously differentiable and strongly convex with parameter α > 0; i.e., for all y1,y2 ∈
D,

α‖y1 − y2‖2 ≤ (∇φ(y1)−∇φ(y2))T (y1 − y2). (15)

Then, the dual ψ is concave and ∇ψ is Lipschitz continuous with Lipschitz constant L := ‖A‖2 /α.

Proof. The following proof is based on ideas presented in (Cheng, 1987). Let y1,y2 ∈ D, y1 6= y2.
Since φ is assumed to be differentiable and strongly convex, inequality (15) and the Cauchy-
Schwartz inequality yield

α‖y1 − y2‖2 ≤ (∇φ(y1)−∇φ(y2))T (y1 − y2) ≤ ‖∇φ(y1)−∇φ(y2)‖ · ‖y1 − y2‖ ,

or equivalently

‖y1 − y2‖ ≤
1

α
‖∇φ(y1)−∇φ(y2)‖ . (16)

For fixed λ, the minimiser ỹλ of the Lagrangian L(·, λ) on Rn, i.e.,

ỹλ := argmin
y∈Rn

L(y, λ),

is given by the solution of

∇φ(ỹλ) +ATλT = 0. (17)

Since φ is strongly convex, the Lagrangian L(·, λ) is also strongly convex and ỹλ is unique. Us-
ing (17) to substitute the gradient ∇φ(·) in (16) yields

‖ỹλ1
− ỹλ2

‖ ≤ 1

α

∥∥−ATλ1 +ATλ2

∥∥ ≤ 1

α
‖A‖ ‖λ1 − λ2‖ .

Let ŷλ1
and ŷλ2

denote the unique minimiser of the Lagrangian for fixed Lagrange multiplier λ1

and λ2, respectively, subject to the constraint set D. Then, with Theorem 5, we obtain the estimate

‖ŷλ1
− ŷλ2

‖ =
∥∥[ỹλ1

]+ − [ỹλ2
]+
∥∥ ≤ ‖ỹλ1

− ỹλ2
‖ ≤ ‖A‖

α
‖λ1 − λ2‖ . (18)
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Since the gradient of the dual function can be evaluated using the expression ∇ψ(λ) = Aŷλ − b
(see also Theorem 4), we obtain the estimate

‖∇ψ(λ1)−∇ψ(λ2)‖ = ‖(Aŷλ1
− b)− (Aŷλ2

− b)‖ ≤ ‖A‖‖ŷλ1
− ŷλ2

‖. (19)

Combining (18) and (19) provides the Lipschitz continuity estimate

‖∇ψ(λ1)−∇ψ(λ2)‖ ≤ ‖A‖
2

α
‖λ1 − λ2‖

which shows the assertion.

With the results presented in this section the dual ascent algorithm can be stated and is sum-
marised in Algorithm 1.

Algorithm 1 Dual ascent algorithm

Input:

• Strongly convex function φ : Rn → R,
• Non-empty, closed and convex set D ⊂ Rn, and
• Linear coupling χ : Rn → Rm, χ(y) = Ay − b with A ∈ Rm×n and b ∈ Rm.

Initialization: Set ` = 0 and λ0 ∈ Rm.
Main loop:

• Solve the minimisation problem

y` := argmin
y∈D

(
φ(y) + yTATλ`

)
. (20)

• Compute an ascent direction d`; e.g., d` = χ(y`).
• Choose a stepsize c` according to Theorem 3 and update the Lagrange multiplier

λ`+1 = λ` + c` · d`.

Increment the iteration counter ` = `+ 1 and repeat the loop.

3.4 The distributed dual ascent algorithm

The dual ascent Algorithm 1 is an efficient method if the solution of the minimisation problem (20)
can be obtained easily or if the objective function φ is separable, and hence the minimisation
problem (20) can be solved in a distributed way. Here, we will introduce a distributed dual ascent
algorithm after we give a formal definition of a separable function.

Definition 2 (Separable function): Let φ : Rn → R be a function in the variables

y = (yT1 ,y
T
2 , . . . ,y

T
I )T

with yi ∈ Rni , i ∈ NI , and n =
∑I

i=1 ni. Then, φ is called separable if there exist functions
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φi : Rni → R, i ∈ NI , such that

φ(y) =

I∑
i=1

φi(yi)

holds for all y ∈ Rn.

We assume that the objective function φ : Rn → R can be written in the form

φ(y) = φ

(
1

I

I∑
i=1

yi

)
+

1

I

I∑
i=1

φi(yi)

for strongly convex functions φ : RN → R and φi : RN → R, i ∈ NI , with N ∈ N and NI = n. Since
the function φ depends on the variables yi, i ∈ NI , the function φ is not separable. Nevertheless,
by introducing the variables a ∈ RN and the linear constraints χ : RIN × RN → RN , as

χ(y,a) = − 1

I

I∑
i=1

yi + a,

we observe that the minimisation problem

min
y∈D

φ(y)

is equivalent to the minimisation problem

min
a∈RN , yi∈Di

φ (a) + 1
I
∑I

i=1 φi(yi)

s.t. − 1
I
∑I

i=1 yi + a = 0
(21)

forDi ⊂ RN , i ∈ NI , defined such thatD = D1×· · ·×DI holds. The Lagrangian of the minimisation
problem (21) is given by

L(y,a, λ) = φ (a) + aTλ+
1

I

( I∑
i=1

φi(yi)− λTyi

)
(22)

and, thus, the Lagrangian L(·, ·, λ) is separable for fixed Langrange multiplier λ ∈ RN . This implies
that a solution of the optimisation problem (20) can be obtained by solving the minimisation
problems

a?λ = argmin
a∈RN

(
φ(a) + aTλ

)
and

y?λi = argmin
yi∈Di

(
φi(yi)− yTi λ

)
for i ∈ NI in parallel. Since φ and φi, i = 1, . . . , I, are strongly convex by assumption, also the
functions φ(a) − aTλ and φi(yi) + yTi λ, i = 1, . . . , I, are strongly convex for fixed λ ∈ RN . The
corresponding distributed dual ascent algorithm is summarised in Algorithm 2.
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Algorithm 2 Distributed dual ascent algorithm

Input:

• Strongly convex functions φ : RN → R and φi : RN → R, i = 1, . . . , I,
• Non-empty, closed and convex sets Di ⊂ RN , i = 1, . . . , I, and
• Linear coupling χ : RNI × RN → RN , χ(y,a) = − 1

I
∑I

i=1 yi + a.

Initialization: Set ` = 0 and λ0 ∈ RN .
Main Loop:
Phase 1 (Subsystem i, i ∈ NI): Receive λ`

• Solve the minimisation problem

y`i := argmin
yi∈Di

(
φi(yi)− yTi λ

`
)

(23)

and send y`i to the CE.

Phase 2 (CE): Receive y`i for all i = 1, . . . , I

• Solve the minimisation problem

a`i := argmin
a∈RN

(
φ(a) + aTλ`

)
. (24)

• Compute an ascent direction d`, e.g. d` := χ(y`,a`).
• Choose a stepsize c` according to Theorem 3 and update the Lagrange multiplier

λ`+1 := λ` + c` · d`

and broadcast λ`+1.

Increment the iteration counter ` = `+ 1 and repeat the loop.

Remark 2: The distributed dual ascent algorithm can be applied to the more general problem

min
yi∈Di

I+1∑
i=1

φi(yi) s.t.

I+1∑
i=1

Aiyi − b = 0

where φi : Di → R, Di ⊂ Rni , ni ∈ N, and Ai ∈ Rm×ni for i = 1, . . . , I + 1, b ∈ Rm. Since we
consider optimisation problems in the unknowns zi and z = 1

I
∑I

i=1 zi, i ∈ NI , we use the notation
used in Algorithm 2 for simplicity of exposition.

4. The dual ascent algorithm for a network of RESs

In the following section, we show how the distributed dual ascent Algorithm 2 can be used to find
an approximation of the optimal solution of the minimisation problem

argmin
zi∈Di

∥∥∥∥∥ 1

I

I∑
i=1

zi − 1ζ

∥∥∥∥∥
2

(25)

12



with ζ = ζ(k). The problem (25) is the same as (5) introduced in Section 2, but written in terms
of the power demand z instead of the input u. Observe that the objective function covers the
performance metric (MQD). Since we consider a single optimisation problem corresponding to a
fixed time instant k ∈ N in this section, we omit the time dependency whenever possible.

4.1 Cooperative application of the dual ascent algorithm

To apply Algorithm 2, we introduce the (auxiliary) variable a ∈ RN and introduce the additional
constraint

a = z =
1

I

I∑
i=1

zi.

Thus, the optimisation problem (25) can be equivalently written as

argmin
z∈D,a∈RN

G(a)

s.t. χ(z,a) = 0
(26)

with G : RN → R, G(a) = η
2

∥∥a− 1ζ∥∥2
for fixed η > 0 and χ : RIN × RN → RN , χ(z,a) =

a − 1
I
∑I

i=1 zi. Note that the scaling factor η > 0 only changes the minimum G? but not the
(possibly non-unique) minimisers (z?,a?).

Since the function G does not depend on the variables z, the objective function is not strongly
convex and thus, the assumptions of the dual ascent algorithm are not satisfied. Therefore, we
define the functions Fi : RN → R, Fi(zi) = 1

I
δ
2‖zi‖

2 for i = 1, . . . , I and δ > 0, and define the
relaxed optimisation problem

argmin
z∈D,a∈RN

G(a) +
∑I

i=1 Fi(zi)

s.t. χ(z,a) = 0.
(27)

Problem (27) is an approximation of the original problem (26) and for η > 0 and δ → 0 the
minimisers of the original problem are recovered, as demonstrated in our numerical simulations
below. The advantage of using the relaxed problem (27) is that convergence of Algorithm 2 can be
shown if the stepsize is chosen appropriately. Before the corresponding result is given we introduce
the notation K : RIN × RN → R,

K(z,a) = G(a) +
I∑
i=1

Fi(zi),

for the overall objective function.

Theorem 7: Let the functions G : RN → R, Fi : RN → R, i ∈ NI , and χ : RIN × RN → RN be
defined as

G(a) =
η

2

∥∥a− 1ζ∥∥2
, Fi(zi) =

δ‖zi‖2

2I
, and χ(z,a) = a− 1

I

I∑
i=1

zi

for a given reference ζ ∈ RN and given parameters η > 0 and δ > 0. Furthermore, let the ascent
direction d` in Algorithm 2 be defined as d` = χ(z`,a`). Additionally, assume that the sequence

13



(c`)`∈N is defined such that

ε ≤ c` ≤ (2− ε)
min

{
δ
I , η
}

1
I + 1

(28)

for a fixed, sufficiently small ε > 0. Then the following holds:

(i) The sequence (z`,a`)`∈N converges to the unique optimal solution of the minimisation prob-
lem (27), i.e., (z`,a`)→ (z?,a?) for `→∞.

(ii) The sequence (z`,a`)`∈N approaches primal feasibility, i.e., χ(z`,a`) → 0 for ` → ∞ and
every accumulation point λ? of (λ`)`∈N is an optimal solution of the dual problem.

Proof. We show that the overall objective function K is strongly convex and we compute the
Lipschitz constant of the gradient of the dual function according to Theorem 6 from which the
results follow. The Hessian of the function K is given by

∇2K(z,a) =


δ
I I

. . .
δ
I I

ηI


and hence, K is strongly convex with parameter

α = min

{
δ

I
, η

}
. (29)

The strong convexity implies the existence of a unique primal solution (z?,a?) (see Remark 1) from
which the existence of an optimal dual solution λ? follows (see Theorem 1). For the constraints χ,
we use the notation

A :=
[
− 1
I I · · · − 1

I I I
]

to obtain

χ(z,a) = A


z1
...

zI
a

 .

Since A · AT =
(
1 + 1

I
)
I holds, we obtain the norm ‖A‖ =

√
1 + 1

I which provides the Lipschitz

constant

L =
1 + 1

I
min

{
δ
I , η
} (30)

of the dual function ψ according to Theorem 6. The gradient of the dual function is given by
∇ψ(λ) = χ(zλ,aλ) where (zλ,aλ) ∈ D × RN denotes the unique minimiser of the optimisation
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problem

(zλ,aλ) = argmin
(z,a)∈D×RN

L(z,a, λ)

(see Theorem 4). The concavity of the dual function together with the convexity of the domain of
ψ implies that every stationary point λ? (i.e., ψ(λ?) = χ(zλ? ,aλ?) = 0) of the sequence (λ`)`∈N is a
global maximum of the dual problem. Finally, the saddle point Theorem 2 implies the convergence
(z`,a`)→ (z?,a?) for `→∞. This concludes the proof.

Remark 3: Note that the functions Fi, i ∈ NI , can be defined in a different way. For example the
functions

Fi(zi) =
δ

2I
‖zi − ζi1‖2 (31)

with ζi ∈ R penalising the deviation from an individual reference value lead to the same stepsize
condition (28). If strongly convex functions different from (31) are used, the condition on the
stepsize might change.

Theorem 7 guarantees convergence of the distributed dual ascent Algorithm 2 for every η >
0, δ > 0 if the stepsize c` is chosen according to (28). Nevertheless, only for fixed η > 0 and δ → 0
(or equivalently η → ∞ and δ > 0 fixed) is a solution of the original problem (25) recovered. In
Section 5.1, the impact of the choice of δ > 0 is investigated numerically.

To obtain a good approximation of the original problem, it is necessary to choose a small δ (if we
additionally assume that η = 1 is fixed). Unfortunately, a small δ leads to a small Lipschitz constant
L, and hence a small stepsize and, thus, slow convergence. Additionally, this effect increases with
the number of RESs in the network. Even though the theoretical bound on the stepsize becomes
quite small for large networks, numerically, larger stepsizes can often be used to obtain good results.
If we consider the residual

r` := −z` + a` (32)

in the `-th iteration of Algorithm 2, we can define an alternative stepsize rule which guarantees
convergence.

Corollary 1: If the stepsize (c`)`∈N in Algorithm 2 is defined as

c`+1 =

 c` if
∥∥r`+1

∥∥ < ∥∥r`∥∥
max

{
c`

2 ,
min{ δI ,η}

1

I+1

}
if
∥∥r`+1

∥∥ ≥ ∥∥r`∥∥ (33)

and c0 > 0, then the convergence properties of Theorem 7 hold.1

Proof. The result follows immediately from Theorem 7 since the stepsize decreases until the con-
dition (28) is satisfied for all following iterations `.

The stepsize rule of Corollary 1 is used in the numerical simulations in Section 5. In our setting,

1The stepsize rule of Corollary 1 significantly reduces the average number of iterations in our numerical simulations.
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the stopping criterion is met in most of the cases with a stepsize

c` ≥ 2
min

{
δ
I , η
}

1
I + 1

;

i.e., the condition (28) is not satisfied, and fewer iterations are necessary to obtain a solution of
the optimisation problem (27).

Remark 4: For the function G(a) = η
2‖a− ζ1‖

2, the update a`+1 of the CE in Algorithm 2 can

be computed explicitly as a`+1 = ζ1− 1
ηλ

`.

Remark 5: The results in this section focus on the function G(a) = ‖a− 1ζ‖2. However, similar
results can be derived for arbitrary strongly convex functions G defined on convex and closed sets.

4.2 Price-based implementation of the dual ascent algorithm

In this section, we give a non-cooperative, price-based, implementation of the distributed dual
ascent Algorithm 2 in the form of a negotiation process between the CE (energy provider) and the
RESs. Whereas in (25) the variables zi, i ∈ NI , are coupled and the RESs need to cooperate to
find an optimal solution, in Algorithm 2, the local optimisation problem (23) of RES i

z`+1
i := argmin

zi∈Di

(
Fi(zi)− λ`zTi

)
solely depends on the variables zi and the dual variables λ defined by the CE. We show how the CE
can reduce the fluctuations in the average power demand with real-time electricity price signals.
Thus, the dual ascent algorithm corresponds to a negotiation of electricity prices until a price signal
is found, which is accepted by the CE and the RESs.

To be able to introduce electricity prices in Algorithm 2, we describe the energy price at a certain
time by a function p : R→ R depending on the amount of energy used in the corresponding time
interval. In particular, we want the following properties to be satisfied:

a) The function p is increasing, i.e., a higher energy demand leads to higher costs, and
b) if the power demand is 0 then also the costs are zero.

The simplest case is to consider linear costs; i.e., at a certain time the energy price can be
described by the function

p(z; c) = Tcz

depending on the sampling time T and a constant c ∈ R≥0 chosen by the energy provider based
on the average power demand z. With respect to Algorithm 2 these costs are realized by rewriting
the original minimisation problem (25) in the form

min
z∈D,a∈RN

∥∥a− 1ζ∥∥2

s.t. 1
I
∑I

i=1 zi − a = 0.
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Indeed, this minimisation problem implies local updates of the form

a?λ = argmin
a∈RN

(∥∥a− 1ζ∥∥2 − aTλ
)

z?λi = argmin
zi∈Di

zTi λ,

(cf. Equations (23) and (24) in Algorithm 2) and we can identify c = c(k + j) = λj/T , j ∈
{0, 1, . . . , N −1}, as the parameter of the CE defining the price for electricity at time instant k+ j.
For this setting, the local functions Fi ≡ 0, i ∈ NI , are convex but not strongly convex. Thus, the
assumptions of Algorithm 2 are not satisfied so that convergence cannot be guaranteed. In fact,
while the sequence (λ`)`∈N seems to converge for a diminishing stepsize, the sequence (z`)`∈N does
not need to converge as already observed in the Market Maker approach presented in (Worthmann
et al., 2015).

As a remedy, we propose an approach where the electricity prices contain an additional penalty
term. More precisely, we propose linear costs with an additional quadratic penalty term

p(z; c) := T · a
(
z + b (z − c)2 − bc2

)
, (34)

with cost coefficients a, b ∈ R>0 and parameter c ∈ R. The price still contains the linear term
Taz, but in addition, the demand deviating from a given reference c is penalised. Either a power
demand above the reference is penalised by additional costs, or the earning is reduced if too much
energy is sold to the grid operator. In particular, p(0; c) = 0, i.e. Property b) holds. Since, p(·; c)
is not monotonically increasing on R the constants a and b have to be fixed by the CE such that
p(·; c) is monotonically increasing on the domain of interest (Property a)). This is always possible
since both the net consumption profiles wi and the battery capacities Ci, i ∈ NI , are bounded.

Minimizing the electricity costs with respect to the function p(·; c) over the prediction horizon
N ∈ N can be achieved by the minimisation problem

min
z∈D,a∈RN

η
2

∥∥a− 1ζ∥∥2
+ 1
I
∑I

i=1

(
ρ1T zi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 zi + a = 0
(35)

for η, ρ, δ ∈ R>0. In the context of Algorithm 2, the optimisation problems of the CE and of the
RESs read

a?λ = argmin
a∈RN

(η
2

∥∥a− 1ζ∥∥2
+ aTλ

)
,

z?λi = argmin
zi∈Di

(
ρ1T zi +

δ

2
‖zi‖2 − zTi λ

)
.

The functions Fi(zi) = 1
I

(
ρ1T zi + δ

2 ‖zi‖
2
)

, i ∈ NI , are strongly convex due to the quadratic term

(with parameter α = δ/I, see Remark 1). Hence, Algorithm 2 is applicable. More importantly, the
objective function of RES i, i ∈ NI , can be written in the form

ρ1T zi +
δ

2
‖zi‖2 − zTi λ = ρ1T zi +

δ

2

∥∥∥∥zi − λ

δ

∥∥∥∥2

− λTλ

2δ
(36)
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yielding the price function p(·; c) by identifying the parameters

a =
ρ

T
, b =

δ

2T
, c(k + j) =

1

δ
λj . (37)

The constant term 1
2δλ

Tλ has no impact on the minimiser z?λi and thus, it does not have to be
considered in the minimisation problem.

In summary, minimisation of the electricity costs of RES i over the prediction horizon N is equi-
valent to solving the minimisation problem (23). Moreover, if the minimisation problems (23) are
solved iteratively, an optimal solution of (35) is recovered. The price contains the linear component
Taz, but is also constructed such that deviations from a given reference value c are penalised.

In Figure 2, the price for electricity is visualised for fixed parameters a and b.2 If λj and con-
sequently also c = c(k + j) is small, energy is expensive and vice-versa. This figure additionally
shows that it is possible to obtain almost linear prices, for which the dual ascent algorithm con-
verges. Note that the parameters ρ and δ can be set individually for every RES; e.g., via specific
contracts depending on the respective demand profiles.

Note that the additional linear term ρ1T zi in (36) does not change the convexity properties of a
function. Consequently, Theorem 7 also holds for Fi(zi) = ρ1T zi + δ

2 ‖zi‖
2, i ∈ NI .
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Figure 2. Visualization of the electricity cost function p(·; c) (left) and p(·; ·) (right) from (34) for a = 2.2 and b = 0.0091

(corresponding to ρ = 1.1, δ = 0.02 and T = 0.5). In the area of interest, the price is almost linear with respect to c and the

demand z. The nonlinearity of the cost function can still be seen in p(z; 50) (left).

In Section 5.2, numerical simulations investigating the pricing scheme are provided. In particular,
the impact of batteries on the price signals c are investigated.

Remark 6: The objective function G(a) = ‖a−1ζ‖2 can be replaced by any other strongly convex
function. Also, constraints on a ∈ A for a closed and convex set A ⊂ RN can be included as long
as feasibility of the optimisation problem is guaranteed.

4.3 General properties of the (non-)cooperative control setting

In this section, we highlight properties of the cooperative control setting (i.e., when the optimisation
problem (25) is solved directly), and the non-cooperative, price-based control setting. We discuss
similarities and differences of both schemes and investigate how the performance (with respect to
the performance metrics) deteriorates if a non-cooperative, price-based scheme is used instead of
a cooperative scheme.

2The parameters chosen here are just for illustration. The value used for a can be scaled arbitrarily to obtain realistic energy
prices.
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In the cooperative setting, an optimal solution of the optimisation problem

min
zi∈Di

∥∥∥ 1
I
∑I

i=1 zi − 1ζ
∥∥∥2

(38)

is obtained. With the distributed dual ascent Algorithm 2, we obtain an approximation of the
solution of (38) by solving the minimisation problem

min
zi∈Di,a∈RN

η
2

∥∥a− 1ζ∥∥2
+ 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 zi + a = 0
(39)

for fixed η, δ ∈ R>0. As already pointed out, for fixed η and δ → 0, an optimal solution of
the original problem is recovered. To obtain a price-based implementation, we introduced the
minimisation problem

min
zi∈Di,a∈RN

η
2

∥∥a− 1ζ∥∥2
+ 1
I
∑I

i=1

(
ρ1T zi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 zi + a = 0
(40)

with η, δ, ρ ∈ R>0. This problem can be solved using a non-cooperative, price-based implementation
of Algorithm 2 as indicated in Section 4.2.

In the remainder of this section we concentrate on characteristic properties of the cooperative
optimisation problems (38) and (39), and the non-cooperative optimisation problem (40). Accord-
ing to our assumption, the price function p(·; c) is monotonically increasing; i.e., feeding in energy
results in a profit in the non-cooperative setting. This implies that the battery of each RES is
empty at the end of the prediction horizon3; i.e., xi(k + N) = 0 for all i ∈ NI , whereas in the
cooperative setting the state of charge of the batteries xi(k+N) for all i ∈ NI is determined by the
optimisation criteria. This is one characteristic which distinguishes the optimal cooperative solu-
tion from the optimal non-cooperative solution. In the cooperative control setting, the additional
constraints xi(k +N) = 0 can be included by using the constraints

D0
i =

zi ∈ RN

∣∣∣∣∣∣∣∣
xi(k) = x0

i , xi(k +N) = 0
System dynamics (1) and (2)
Constraints (3)
∀ j ∈ {k, . . . , k +N − 1}


instead of Di for all i ∈ NI to ensure that the battery is empty at the end of the prediction horizon.
If the battery state of charge at the end of the prediction horizon is known, then the energy used in
the prediction window is known up to losses in the battery model and can be used to simplify the
objective function. To illustrate this fact, we consider the simplified dynamics (1) and (2) without
losses; i.e., βi = γi = 1 for all i ∈ NI . Here, the empty battery at the end of the prediction horizon
implies that the energy demand is constant for all feasible demand profiles zi ∈ D0

i ; i.e.,

1T zi =
xi(k)

T
+
k+N−1∑
j=k

wi(j).

This allows for the following equivalent characterization of the set of minima in the cooperative

3We assume that the prediction horizon N and the maximal discharging rate ui, i ∈ NI , are chosen such that the battery can
always be discharged within the prediction horizon.
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setting:

argmin
zi∈D0

i

∥∥z− ζ1∥∥2
= argmin

zi∈D0
i

‖z‖2 − 2ζ1T z +Nζ
2

= argmin
zi∈D0

i

‖z‖2 .

Analogously, for the non-cooperative problem one obtains

argmin
zi∈D0

i

η

2
‖z‖2 +

δ

2I

I∑
i=1

‖zi‖2 .

This implies that the set of optimal solutions is independent of the reference value ζ. In particular,
no a priori knowledge of the average demand is needed in the case without losses in the battery
model. Furthermore, observe that the constant ρ disappears in the objective function since it only
appears in the linear term and does not have an impact on the minimiser. Nevertheless, ρ is
necessary to obtain the price-interpretation and monotone electricity costs. We summarise these
results in the following corollary.

Corollary 2: Consider the system dynamics (1) and (2) subject to the constraints (3) and let
βi = γi = 1 for all i ∈ NI . Additionally, let η, ρ, δ ∈ R>0 be fixed and replace Di by D0

i . Then the
minimisers can be characterized as follows

(i) Original cooperative problem (38):

argmin
zi∈D0

i

∥∥∥ 1
I
∑I

i=1 zi

∥∥∥2
.

(ii) Relaxed cooperative problem (39):

argmin
zi∈D0

i ,a∈RN
η
2 ‖z‖

2 + δ
2I
∑I

i=1 ‖zi‖
2

s.t. − 1
I
∑I

i=1 zi + a = 0.

(iii) Non-cooperative optimisation problem (40):

argmin
zi∈D0

i ,a∈RN
η
2 ‖z‖

2 + δ
2I
∑I

i=1 ‖zi‖
2

s.t. − 1
I
∑I

i=1 zi + a = 0.

In Corollary 2 it is worth emphasising that, when using the constraint set D0
i in place of the con-

straint set Di, the relaxed cooperative optimisation problem (39) is the same as the non-cooperative
optimisation problem (40). Specifically, the derivations show that the minimiser of the relaxed
problem (39) only differs from the minimiser of the non-cooperative problem (40) because of the
constraint xi(k+N) = 0 for all i ∈ NI independent of the parameter ρ (if a model without losses is
considered). Moreover, if δ is chosen small, we can expect that a good approximation of a minimiser
of the original problem (38) is obtained.

If losses are considered, the term 1T zi is not constant for all zi ∈ D0
i . Hence, for smaller constants

βi and γi, the impact of the linear term in the non-cooperative optimisation problem increases (see
Section 5.2).
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5. Numerical simulations

In this section, we examine the performance of the distributed dual ascent Algorithm 2 by sim-
ulating the algorithm using data obtained from the Australian electricity distribution company
Ausgrid (Ratnam et al., 2015). Consistent with the Ausgrid data, we fix T = 0.5[h] and we use
a prediction horizon of N = 48, which then corresponds to a prediction of one day. We consider
I = 100 RESs defined through the system dynamics (1), (2), and the constraints (3).

5.1 The impact of the relaxation parameter δ

The original optimisation problem (38) cannot be solved using the distributed dual ascent Al-
gorithm 2 since the assumptions on the objective function are not satisfied. Instead the relaxed
problem (39) is solved by Algorithm 2 for fixed η, δ ∈ R>0. In Figure 3, the open loop solution for
η = 1 and varying δ, as well as the solution of the original optimisation problem (38), is shown.
For this simulation, every RES is equipped with a battery without losses (i.e., βi = γi = 1 for all
i ∈ N100). For this example batteries of size Ci = 2[kWh] and ui = −ui = 0.3[kW] for all i ∈ N100

are used to avoid that the average demand profile z is just a straight line and the constraints on
the charging/discharging rates are never active.
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Figure 3. Comparison of the solution of the centralised optimisation problem and the relaxed optimisation problem for different

relaxation parameters δ.

For a decreasing parameter δ the difference between the solution z of the original optimisation
problem and the relaxed optimisation problem shrinks. For δ = 0.01 the difference in the solutions
is negligible. The corresponding performance metrics are summarised in Table 1. The same con-
clusions can be drawn for the setting with losses, i.e., βi ∈ (0, 1) and γi ∈ (0, 1) for i ∈ NI (and
ρ = 0).

PTP MQD

Uncontrolled 1.1016 0.0879
δ = 0 0.5016 0.0100
Distributed dual ascent Algorithm 2
δ = 1 0.5531 0.0198
δ = 0.1 0.5016 0.0110
δ = 0.01 0.5016 0.0100

Table 1. Performance of the open loop solution of the original problem (δ = 0) compared to the solution using
the dual ascent Algorithm 2 for different relaxations δ.
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In conclusion, the cooperative application of the distributed dual ascent Algorithm 2 recovers an
optimal solution of the original problem if the parameter δ is chosen small enough, justifying the
relaxation of the original problem.

5.2 Price-based MPC simulations

In this section we concentrate on the difference of the solutions of the optimisation problems (38)
and (40) with η = 1, ρ = 1.1, and δ = 0.02. In particular, we examine the open loop and the
closed loop solutions depending on the number of RESs with a battery. From the point of view of
the CE (energy provider), we consider the performance metrics, and from the point of view of an
individual RES, we consider energy prices and savings.

In the simulations using the minimisation problem (35) (corresponding to the real-time
prices (34)), we vary the number of RESs with a battery. For RESs with a battery, we choose
the constraints Ci = 4, ui = −ui = 1 and the initial conditions xi(0) = 0. (For the RESs without
a battery we set Ci = 0.) According to (Chen et al., 2009) the cycle efficiency of Li-ion batteries is
higher than 90%; i.e., the losses in the (dis-)charging process are less than 10%. Hence, we illustrate
our findings with the parameters

(βi, γi) ∈ {(1, 1), (0.95, 0.95), (0.9, 0.9)},

for all i ∈ NI , which corresponds to losses over a charge/discharge cycle of 0% and of about 10%
and 19%, respectively.

5.2.1 Open loop (one-shot optimisation) simulations

In Figure 4, we compare the solution of the original cooperative optimisation problem with the
solution of the non-cooperative problem for a different number of batteries in the overall system
and different constants βi and γi, i ∈ N100. We vary the number of batteries from 0 to 100 in steps
of 10. The red line corresponds to the setting where every RES has a battery.

We observe that for the case without losses, the solution of cooperative control and non-
cooperative control only varies slightly due to the penalty term δ

2‖zi‖
2 and due to the empty

battery at the end of the prediction horizon in the price-based setting. (This effect can be observed
in the battery profiles which are excluded for brevity.) As argued in Section 4.3, the additional linear
term in the cost functional does not influence the optimal power demand profile. Since xi(0) = 0,
the deviation from the average in the first 2 hours cannot be compensated.

While in the cooperative setting the performance does not deteriorate if losses are considered and
if enough storage devices are in the network, in the price-based setting the performance worsens
with the loss of energy. If the losses are too big and the gradient in the corresponding electricity
costs is too small, it does not pay off to store energy at one time instant to use it at a later time
instant.

To make this more precise, we investigate in which case it pays off to use an isolated battery (i.e.,
we assume that z(k) = 0 for all time indices k ∈ N where the battery is not used) with efficiency
β, γ ∈ (0, 1] to buy an amount of energy z > 0 at time j ∈ N and sell it at time k ∈ N. To make a
profit the inequality

p(z, c(j)) + p(−βγz, c(k)) < 0

has to hold; i.e., the money paid to the central entity is negative. With (34) this inequality can be
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Cooperative (left) and price-based (right) optimal power demand without losses

0 10 20

Time in hours [h]

0

0.2

0.4

0.6

0.8

1

z
[k
W

]

0 10 20

Time in hours [h]

0

0.2

0.4

0.6

0.8

1

z
[k
W

]

Cooperative (left) and price-based (right) optimal power demand with βi = γi = 0.95
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Cooperative (left) and price-based (right) optimal power demand with βi = γi = 0.90
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Figure 4. Comparison of the cooperative and the non-cooperative solution of a single optimisation problem with increasing
number of batteries in the network (blue lines) and increasing losses (top to bottom). The red line indicates the setting where
every RES owns a battery.

rewritten as

0 > (1− βγ)z + bz2 − 2bzc(j)− bβ2γ2z2 + 2bβγzc(k)

= (1− βγ)z + b(1 + β2γ2)z − 2bz (c(j) + βγc(k)) .

Reordering the terms leads to

0 < z < 2
c(j)− βγc(k)

1 + β2γ2
− 1

b

1− βγ
1 + β2γ2

and finally to the estimate

0 < 1− βγ < 2b(c(j)− βγc(k)) (41)
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or

0 < βγ(1− 2bc(k)) + 2bc(j)− 1. (42)

Since by assumption, the price function (34) is monotonically increasing on the range of values
defined by the minimum and maximum possible loads, the parameter b > 0 has to satisfy b <
1/(2|c(j)|) for all j ∈ N. Thus, βγ(1− 2bc(k)) is strictly increasing in β, γ and

βγ(1− 2bc(k)) + 2bc(j)− 1 ≤ 2b(c(j)− c(k)) (43)

holds for all β, γ ∈ (0, 1]. To be able to generate a profit, we can conclude that the losses in the
battery model have to be small enough such that inequality (42) holds and in the case where
no losses in the battery model are considered, i.e., βγ = 1 a profit can always be generated if
c(j)− c(k) > 0.

Nevertheless, even if βi = γi = 0.9 and hence 19% of the energy is lost, the deviation of the
aggregated power demand from the average can be reduced significantly as seen in Figure 4.

The optimal dual variables λ? corresponding to the non-cooperative settings in Figure 4 (right)
are shown in Figure 5.

0 10 20

Time in hours [h]

-0.5

0

0.5

λ
⋆

0 10 20

Time in hours [h]

-0.5

0

0.5

λ
⋆

0 10 20

Time in hours [h]

-0.5

0

0.5

λ
⋆

Figure 5. Optimal dual variables λ? of a single optimisation problem corresponding to the case without losses (left), βi =

γi = 0.95 (middle) and βi = γi = 0.9. One can observe that the average demand profiles are mirrored

In Figure 6, the performance metrics of the non-cooperative open loop solutions are illustrated.
The usage of storage devices significantly improve the results — even if losses are taken into
account. If 60% of the RESs own a battery the results do not improve anymore. In the case where
only a small number of RESs have a battery, the losses do not have a significant impact on the
performance.
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Figure 6. Performance metrics of the non-cooperative open loop solution. Beyond a certain threshold (about
60%), further deployment of battery storage does not yield improved performance.
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Not only the energy provider benefits from the smoothened aggregated power demand; individual
RESs can benefit as well from lower energy prices if the prices which result from the case without
batteries are taken as a reference. In Figure 7 (left), the average electricity costs4 for the RESs are
shown depending on the number of RESs with a battery. Figure 7 (right) shows that, on average,
the costs can be reduced up to 14% in the case without losses and up to 8% if γi = βi = 0.9.
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Figure 7. Average open loop electricity costs for every RES and savings with respect to the number of batteries in the network.

Figure 8 shows the savings of the individual systems if 1%, 20%, 50% and 100% of the RESs
own a battery. Not only the RESs with a battery reduce their costs, but also most of the RESs
without a battery benefit with a significant deployment of battery resources. If many RESs own
a battery, the effect of single systems is reduced. This can be observed, for example, looking at
RES 1. Moreover, we point out, that even though most of the RESs can reduce their costs, there
exist single RESs with increased costs. Figure 8 corresponds to the setting without losses. The
cases with loss of energy show a similar behaviour.
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Figure 8. Savings of the individual RESs. Green bars indicate the RESs with batteries and blue bars indicate the RESs without
batteries. Observe that not all RESs benefit from batteries. (The results correspond to the setting without losses.)

4To obtain realistic energy prices, the numbers can be scaled arbitrarily in Figure 7 (left).
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5.2.2 Closed loop (MPC) simulations

In this section we investigate the closed loop performance of Algorithm 2 embedded in a receding
horizon scheme. To reduce the number of iterations ` in Algorithm 2, warm-start can be used at
every time step k. Here, we use the optimal Lagrange variables at time instant k

λ?k = (λ?k(k), . . . , λ?k(k +N − 2), λ?k(k +N − 1))

to initialize the Lagrange multipliers at time k + 1 as

λ0
k+1 = (λ?k(k + 1), . . . , λ?k(k +N − 1), λ?k(k +N − 1)) .

The stepsize at a fixed time instant k is selected according to Corollary 1. Proceeding from time
instant k to k+1 we initialize c0

k+1 by c0
k+1 = 2 ·cend

k where cend
k denotes the stepsize of Algorithm 2

at the iteration where the stopping criterion is satisfied. This ensures that the stepsize not only
decreases but also increases again at the next time instant.

We use a simulation of N = 387 time steps5 to verify that the performance properties of the open
loop simulation carry over to the closed loop. In Figure 9, the closed loop solution for 100 RESs is
visualised. In this setting only 50 RESs are equipped with batteries. The average over the state xcl

and the input ucl = u+cl+u−cl is taken only with respect to the RESs with a battery. As one already
expects from the open loop control problem, the peaks in the average demand zcl are decreased
significantly. If losses are considered in the battery model, then the battery capacities are not fully
used since it does not pay off to buy and sell energy if the gradient in the cost functional is small.

0 50 100 150

0

0.5

1

z
in

[k
W

]

0 50 100 150

0

2

4

x
in

[k
W

h
]

0 50 100 150

Time in hours [h]

-1

0

1

u
in

[k
W

] Uncontrolled setting
βi = γi = 0.90
βi = γi = 0.95
βi = γi = 1

Figure 9. Closed loop trajectories of the non-cooperative control problem for different parameters βi and γi for the case that
50% of the RESs are equipped with a battery.

In Figures 10 and 11, the closed loop counterparts of Figures 6 and 7 are presented. Again,
we obtain the same qualitative results as in the open loop setting. Nevertheless, in Figure 11 we
observe that the average savings are significantly lower compared to the open loop problem. Note
that this occurs due to the high peaks on the first day of the simulation coupled with the assumption

5The number of time steps is chosen such that xi(0) = xi(N ) = 0 for all i ∈ NI . This is important to be able to calculate

the overall savings of the individual systems. The simulation length N = 387 satisfying xi(N ) = 0 is found by simulating on a
longer time interval.
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xi(0) = 0 and is not a feature of the closed loop simulation compared to the open loop simulation
in general.
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Figure 10. Performance measures of the closed loop control problem for a simulation of length N = 387 with and without

losses in the battery model.
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Figure 11. Average closed loop electricity costs for every RES and savings with respect to the number of
installed batteries.

The closed loop counterpart of Figure 8 is given in Figure 12. We obtain the same qualitative
behaviour as in the open loop case. The results from the point of view of a single RES are summar-
ised additionally in Table 2. If RES 1 is the only RES with a storage device, the expected savings
are high. The effect decreases with the increase of RESs equipped with storage devices.

Average savings Average savings in percent
RES 1% 20% 50% 100%

1 23.69 11.69 4.74 3.49
2− 20 0.10 13.02 7.27 6.26
21− 50 0.12 2.77 6.35 5.25
50− 100 0.08 2.97 4.91 5.89

RES 1% 20% 50% 100%

1 15.93% 7.87% 3.19% 2.34%
2− 20 0.09% 11.67% 6.52% 5.61%
21− 50 0.11% 2.59% 5.92% 4.90%
50− 100 0.07% 2.52% 4.18% 5.01%

Table 2. Average closed loop savings of the groups of RESs with respect to the percentage of RESs with batteries in the system.
(The results correspond to the setting without losses.)

6. Conclusions & Outlook

In this paper we have shown that the distributed dual ascent algorithm converges in a non-
cooperative setting to the globally optimal solution. Hence, the distributed dual ascent algorithm
can be interpreted as a real-time pricing scheme, which allows an energy provider to control a net-
work of RESs. Moreover, we conducted numerical simulations to investigate the impact of storage
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Figure 12. Closed loop savings of the individual RESs. Green bars indicate the RESs with batteries and blue bars indicate

the RESs without batteries. Observe that not all RESs benefit from batteries. (The results correspond to the setting without

losses.)

devices both on network-wide electricity demand patterns and on the individual electricity bill of
each RES.

Whereas in the open loop simulations optimality of the solution of a single optimisation problem
can be rigorously proven, performance of the closed loop solutions can only be validated numerically
at present. Thus, a rigorous closed-loop performance analysis will be a topic for future research.
Another interesting aspect is the tacitly assumed honesty, meaning that each RES reports its
unadulterated predicted energy profiles. This, however, may not be the case since electricity prices
can by influenced by suitably adapted predictions. Hence, we anticipate an extension of the pro-
posed dual ascent algorithm such that it becomes robust with respect to manipulated information
(adulterated predictions).
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