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Abstract 

The frequency dependent relaxation behavior of nuclear magnetization is studied by field-cycling (FC) 

NMR relaxometry. It yields information on the molecular dynamics in complex fluids, such as linear 

polymer melts. For describing polymer dynamics, the renormalized Rouse (RR) and especially the 

tube-reptation (TR) model are popular. For entangled polymers those models predict a hierarchy of 

four characteristic power-law regimes (I-IV) for the segmental mean square displacement (MSD) 

<r2(t)> and the 2nd rank re-orientational correlation function C2(t), respectively. Moreover, such 

models provide relations between these quantities, like the return-to-origin (RTO) hypothesis of the 

TR model. Employing the FC technique, it is demonstrated that 1H NMR relaxometry is able to probe 

both, segmental translation in terms of <r2(t)>, as well as re-orientation in terms of C2(t). This enables 

testing relevant forecasts. The scientific field of FC NMR relaxometry on polymer melts was 

pioneered by R. Kimmich et al. and was later on revisited by the research of A. Herrmann et al. 

(Bayreuth). This PhD work continues the subject and the preceding Extended Abstract summarizes 

achievements.  

Fluctuating local fields caused by molecular motion lead to relaxation within nuclear spin systems. By 

means of FC NMR relaxometry, the frequency-spectrum of these fluctuations is probed. It is reflected 

in the measurand of FC NMR, the dispersion of the spin-lattice relaxation rate R1(ω), which is 

essentially proportional to the spectral density J(ω). Using electromagnets the magnetic field B and 

thus the Larmor frequency ω ∂ B becomes a variable. In close collaboration between groups in 

Bayreuth and in Darmstadt (F. Fujara), a commercial FC relaxometer and a home-built apparatus are 

employed. Endowed with unique low-field equipment the latter provides an extraordinary broad 

frequency range of 100 Hz ≤ ν = ω/2p  ≤ 30 MHz concerning protons (1H). The relaxation data is 

converted into the susceptibility representation c’’(ω) = ωR1(ω). Here, assuming frequency-

temperature superposition, the frequency window is effectively extended to about ten decades by 

constructing master curves c’’(ωτα). Thereby, the temperature dependence of the time constant 

τα(T), associated with the structural relaxation (a-process) is gained for temperatures well above the 

glass transition temperature Tg, and the frequency axis of the master curve is scaled according to τα. 

The broad (effective) frequency window obtained enables a Fourier transform of susceptibility data 

into the time domain. A time auto-correlation function is gained, which is analyzed for various 

polymers of different molar masses. The a-process leads to an initial correlation loss in form of a 

stretched exponential decay. In polymers the subsequent decay is retarded by chain modes. The 

mode distribution features different regimes, which evolve with increasing chain length and lead to 

power-law behavior, ascribed to Rouse and entanglement dynamics. It is demonstrated that the 

specific form of the probed correlation function depends on the nature of the interaction, i.e. on the 

studied nucleus. Relaxation in 1H is caused by fluctuations of the long-ranged dipole-dipole 

interaction. As a consequence, 1H relaxation dispersion is additively composed by an intra- and an 

inter-molecular contribution along R1(ω) = R1
intra(ω) + R1

inter(ω). Fourier transformation of the total 

relaxation R1(ω) yields the dipolar correlation function CDD(t).  

A separation is achieved by isotope dilution experiments; i.e. protonated chains are diluted in a 

deuterated matrix. In this way inter-molecular relaxation is suppressed, leaving the intra-molecular 

relaxation. The inter-part R1
inter(ω), which is obtained by subtracting the intra-part from the total 
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relaxation, is transformed to Cinter(t), an inter-molecular pair correlation function. The latter is mainly 

sensitive to translational dynamics. Applying a theoretical framework provided by N. Fatkullin, the 

segmental mean square displacement <r2(t)> for the polymers poly(butadiene) (PB), poly(dimethyl 

siloxane) (PDMS) and poly(ethylene propylene) (PEP) is calculated from Cinter(t) data over a wide time 

range and for different M. In all three polymers, sub-diffusive power-law regimes are found, which 

conform to Rouse (I) and constrained Rouse dynamics (II) predicted by the TR model. In the case of 

PB and PDMS, FC NMR relaxometry carried out previously by A. Herrmann et al. is complemented 

toward even longer times by field-gradient (FG) NMR diffusometry carried out by B. Kresse (PhD 

thesis, Darmstadt). In addition to the hydrodynamic regime (IV) where <r2(t)> = 6Dt holds, a further 

sub-diffusive regime is found. It is assigned to the reptation regime (III) of the TR model. Combining 

FC and FG 1H NMR, all four power-law regimes of the TR model are retrieved for high-M PB and 

PDMS. Furthermore, in the case of PEP, <r2(t)> obtained by FC 1H NMR is compared to data of 

neutron scattering; good agreement is found. In conclusion, FC 1H relaxometry confirms the TR 

model with respect to segmental translation essentially.  

The intra-molecular relaxation contribution R1
intra(ω) obtained from isotope dilution transforms to 

the re-orientational correlation function C2(t). In isotropic polymer models like the (renormalized) 

Rouse model, C2(t) is equivalent to the (squared) bond vector correlation function in a coarsened 

picture. As was previously discovered by Herrmann et al. in PB, the exponent ɛII
intra of C2(t) in the 

entanglement related power-law regime II decreases with M and saturates at a value of about 0.45 

for very long chains. This finding was validated by FC 2H relaxometry. In contrast to 1H, relaxation in 

deuterons (2H) is purely of intra-molecular nature as the localized quadrupolar interaction 

dominates, yielding C2(t) exclusively. The investigation of PB chains deuterated at their ends by FC 1H 

relaxometry in the course of this work, reveals the “protracted transition” of the exponent in  

regime II as a finite length effect. It immediately disappears when merely inner chain segments are 

probed. However, the TR model predicts a significantly lower value of 0.25 in the constrained Rouse 

regime than 0.45 observed experimentally. Regarding re-orientation, the TR model is contrary to the 

FC NMR results. Especially, the RTO hypothesis is challenged, which postulates an inverse 

proportionality <r2(t)> ∂ (C2(t))-1. Unlike, double quantum (DQ) NMR data of PB as well as generic 

computer simulations actually confirm the TR model, i.e. for large M the correct exponent value of 

0.25 is reproduced in C2(t).  

A refined analysis of the FC relaxation data in the frequency domain cannot remedy the 

discrepancies between FC and DQ NMR regarding C2(t) of PB. Verifying the previous FC NMR results 

on PB along the further polymer PEP is thus of great importance for this thesis; besides 1H and 2H 

relaxometry on neat protonated/deuterated PEP of different M, an isotope dilution experiment is 

carried out. The comprehensive investigation of PEP fully confirms the previous findings on PB and 

the discrepancy with respect to DQ NMR and the TR model is even corroborated. PEP, which was 

provided by the group of D. Richter (Forschungszentrum Jülich), is actually best suited for scrutinizing 

models as it represents the simplest implementation of a linear chain, expect for poly(ethylene). The 

latter tends to crystallize easily.  

Shear relaxation measurements on the PEP samples used for the FC NMR relaxometry are 

performed, in cooperation with the group of N. Aksel (Bayreuth) in an extraordinarily broad 

temperature range, reaching down to Tg. The constructed master curves encompass thirteen 
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decades in reduced frequency and are directly confronted to NMR susceptibility data. Such a 

comparison between the macroscopic and the microscopic rheology is presented for the first time. 

While consistent results are found for the α-process, in the Rouse and in the terminal regime, 

deviations are observed in the entanglement regime due to the different nature of the probed 

correlation functions. Here, the shear relaxation modulus G(t) is determined by the correlation 

function of the end-to-end vector, the multi-exponential decay of which is governed by the terminal 

mode. This causes the rubber-plateau, a characteristic of entangled polymers. Otherwise, spin-lattice 

relaxation is more sensitive to the whole mode spectrum, therefore the correlation functions CDD(t), 

C2(t) and Cinter(t) feature distinct power-law regimes. In contrast to shear rheology, this allows the 

straightforward determination of important regime crossover times like the entanglement time τe 

and, in favorable cases, also the Rouse time τR.  

The weighting of relaxation modes in the different correlation functions probed by various 

experimental techniques like shear rheology, FC NMR and also dielectric spectroscopy is reflected in 

the cumulative mode ratio F(M). The quantity is a measure of the increase of the mean relaxation 

time of the probed mode spectrum, with respect to that of a low-M reference system. As 

demonstrated for several polymers, F(M) evolves differently for different methods or correlation 

functions, respectively. Given the data of FC NMR, shear rheology and supplementary techniques, a 

comprehensive “relaxation map” of PEP is drawn, including all time constants of all the collective as 

well as of several local processes.  

Finally, another kind of molecular topology is addressed in this work, namely dendrimers, which are 

studied via FC NMR relaxometry for the first time. Besides the α-process, two regimes of collective 

dendrimer dynamics are identified. Again, good agreement with accompanying shear measurements 

is observed. The findings suggest that dendrimers resemble un-entangled polymers.  

In conclusion, it is demonstrated that the broad frequency/time range gained by utilizing low-field 

equipment as well as by assuming FTS, the possibility of generating contrast via isotope labelling and 

the high information content of the fully probed correlation functions render FC NMR relaxometry as 

a promising tool of “molecular rheology”.  
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Kurzdarstellung  

Das frequenzabhängige Relaxationsverhalten der Kernmagnetisierung wird mit Hilfe der Field-

Cycling- (FC)-NMR studiert. Es liefert Informationen über die Moleküldynamik in komplexen Fluiden, 

wie beispielsweise Schmelzen linearer Polymere. Zur Beschreibung von Polymerdynamik haben sich 

hierfür das (renormierte) Rouse- und insbesondere das Reptationsmodell etabliert. Diese Modelle 

sagen für verschlaufte Polymere (solche mit „Entanglements“) vier hierarchische Regime von 

Potenzgesetzen (I-IV) für das mittlere Verschiebungsquadrat <r2(t)> sowie die 

Reorientierungskorrelationsfunktion C2(t) der Kettensegmente voraus. Darüber hinaus liefern solche 

Theorien auch Zusammenhänge zwischen diesen Größen, wie beispielsweise die „return-to-origin“ 

(RTO)-Hypothese des Reptationsmodells. Durch Anwendung der FC-Technik kann mittels NMR-

Relaxometrie sowohl segmentale Translation als auch Reorientierung gemessen werden, was eine 

kritische Überprüfung solcher Modellvorhersagen gestattet. Nachdem R. Kimmich und Mitarbeiter 

Pionierarbeit geleistet hatten, wurde die Forschung auf diesem Gebiet von A. Herrmann (Bayreuth) 

aufgegriffen. Diese Doktorarbeit stellt wiederum eine Fortsetzung dar. Das vorliegende “Extended 

Abstract” fasst die wichtigsten wissenschaftlichen Erkenntnisse zusammen.  

Fluktuationen in den lokalen Wechselwirkungen, verursacht durch molekulare Bewegung, führen zur 

Relaxation in Kernspin-Systemen. Mittels FC-Relaxometrie kann das Frequenzspektrum dieser 

Fluktuationen sondiert werden. Es ist verknüpft mit der Spin-Gitter Relaxationsrate R1(ω), deren 

Frequenzabhängigkeit (Dispersion) die eigentliche Messgröße in der FC-NMR darstellt. Letztere ist im 

Wesentlichen proportional zur Spektraldichte J(ω) der Fluktuationen. Zu diesem Zweck kommen 

Elektromagnete zum Einsatz, deren Feld B, sowie die resultierende Larmorfrequenz der Kernspins  

ω ∂ B, variiert werden können. In enger Zusammenarbeit zwischen Arbeitsgruppen aus Bayreuth und 

Darmstadt (F. Fujara) kommen ein kommerzielles Relaxometer sowie ein Eigenbau zur Anwendung. 

Letzterer ist mit einzigartiger Niederfeld-Technik ausgestattet. Diese ermöglicht einen besonders 

breiten Frequenzbereich von 100 Hz ≤ ν = ω/2p ≤ 30 MHz, bezogen auf Protonen (1H). Die 

Relaxationsdaten werden in die Suszeptibilitätsdarstellung c’’(ω) = ωR1(ω) überführt. Unter der 

Annahme von Frequenz-Temperatur-Superposition (FTS) kann hier das effektiv zur Verfügung 

stehende Frequenzfenster auf zehn Dekaden erweitert werden, indem Masterkurven c’’(ωτα) 

konstruiert werden. Auf diesem Wege erhält man für Temperaturen oberhalb des Glaspunktes die 

Temperaturabhängigkeit der Zeitkonstanten τα(T). Diese beschreibt die strukturelle Relaxation (den 

a-Prozess), bezüglich welcher die Frequenzachse einer Masterkurve skaliert wird. 

Das so gewonnene Frequenzintervall ist effektiv breit genug, um per Fourier-Transformation in die 

Zeitdomäne überführt zu werden. Man erhält eine Zeit-Autokorrelationsfunktion, welche für 

verschiedene Polymere in Anhängigkeit des Molekulargewichts  analysiert wird. Rein qualitativ führt 

der a-Prozess zunächst zu einem anfänglichen Korrelationsverlust in Form eines (gestreckt) 

exponentiellen Abfalls. Der Korrelationszerfall bei längeren Zeiten ist in Polymeren durch das 

Auftreten von Kettenmoden verzögert. Deren Modenspektrum weist verschiedene Regime auf. Diese 

entwickeln sich mit zunehmender Kettenlänge und führen zu den erwähnten Potenzgesetzen, welche 

Rouse- und „Entanglement“-Dynamik zugeschrieben werden. Wie gezeigt wird, hängt die genaue 

Form der sondierten Korrelationsfunktion von der Art der lokalen Wechselwirkung und somit vom 

untersuchten Kern ab. Relaxation in Protonen wird verursacht durch Fluktuationen der 
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langreichweitigen Dipol-Dipol-Wechselwirkung. Aus diesem Grund ist die Relaxationsdispersion von 
1H additiv aus einem intra- und einem inter-molekularen Beitrag zusammengesetzt, gemäß R1(ω) = 

R1
intra(ω) + R1

inter(ω). Die Fouriertransformierte der Gesamtrelaxation R1(ω) ist die dipolare 

Korrelationsfunktion CDD(t).  

Eine Trennung gelingt mittels Isotopenverdünnungsexperimenten, bei denen protonierte 

Polymerketten in einer deuterierten Matrix verdünnt werden. Dadurch wird die inter-molekulare 

Relaxation unterdrückt und lediglich der intra-molekulare Beitrag R1
intra(ω) bleibt erhalten. Der inter-

molekulare Beitrag R1
inter(ω) wird durch Subtraktion des intra-molekulare Beitrags von der 

Gesamtrelaxation R1(ω) gewonnen. Er führt auf eine Paar-Korrelationsfunktion Cinter(t), welche 

empfindlich gegenüber (relativer) Translationsdynamik ist. Nach N. Fatkullin steht diese translative 

Korrelationsfunktion mit dem mittleren Verschiebungsquadrat <r2(t)> von Polymersegmenten im 

Zusammenhang. Für die Polymere Poly(butadien) (PB), Poly(dimethylsiloxan) (PDMS) und 

Poly(ethylenpropylen) (PEP) wird jeweils für verschiedene Molekulargewichte der inter-molekulare 

Beitrag aus der totalen 1H Relaxationsdispersion extrahiert. Anschließend wird aus Cinter(t) das 

mittlere segmentale Verschiebungsquadrat <r2(t)> berechnet. In allen diesen drei Polymeren werden 

sub-diffusive Potenzgesetz-Regime gefunden, welche mit den vom Reptationsmodell vorhergesagten 

Regimen „Rouse“ (I) bzw. „constrained Rouse“ (II) übereinstimmen. Im Fall von PB und PDMS werden 

die Daten der FC-Relaxometrie, welche zuvor von A. Herrmann et al. durchgeführt wurde, durch 

Diffusionsdaten bei noch längeren Zeiten ergänzt, die mittels Feldgradienten (FG) NMR gewonnen 

werden (vgl. Dissertation von B. Kresse, Darmstadt). Zusätzlich zum hydrodynamischen Bereich (IV), 

in welchem <r2(t)> = 6Dt gilt, wird ein weiteres sub-diffusives Regime entdeckt, welches dem 

Reptationsregime (III) des Reptationsmodells zugeordnet wird. Durch die Kombination von FC und FG 
1H NMR werden somit im Fall von hochmolekularem PB bzw. PDMS, sämtliche vier Potenzgesetz-

Regime des Reptationsmodells gefunden. Im Fall von PEP wird das per FC 1H Relaxometrie 

gewonnene <r2(t)> mit Daten aus der Neutronen-Spin-Echo-Spektroskopie verglichen, wobei gute 

Übereinstimmung gefunden wird. Insgesamt bestätigen die gefundenen Ergebnisse der FC-1H-

Relaxometrie das Reptationsmodell bezüglich Translation weitgehend. 

Der rein intra-molekulare Relaxationsbeitrag R1
intra(ω), der ebenfalls aus Isotopenverdünnungs-

experimenten gewonnen wird, liefert die erwähnte Reorientierungskorrelationsfunktion C2(t). In 

isotropen Modellen der Polymerdynamik, wie dem (renormierten) Rouse Modell, repräsentiert C2(t) 

näherungsweise das Quadrat der Korrelationsfunktion des Segment-Segment Verbindungsvektors. 

Wie zuvor von Herrmann et al. in PB entdeckt, nimmt der Exponent ɛII
intra des mit Entanglement-

Dynamik in Verbindung gebrachten Potenzgesetz-Regimes (II), mit zunehmendem Molekulargewicht 

M stetig ab und sättigt bei einem Wert von ungefähr 0.45, jedoch erst im Fall sehr lange Ketten. Der 

Sättigungsprozess ist somit stark verzögert. Dieses Ergebnis wurde durch Deuteronen-(2H)-FC-

Relaxometrie bestätigt. Im Gegensatz zu 1H ist Spin-Gitter-Relaxation in Deuteronen (2H) rein intra-

molekularer Natur, da hier die lokalisierte, quadrupolare Wechselwirkung dominiert. Demzufolge 

wird in FC-2H-Relaxometrie C2(t) direkt gemessen und so eine Überprüfung der 1H-

Isotopenverdünnungsexperimente ermöglicht. Die im Zuge dieser Arbeit durchgeführte 

Untersuchung von PB Ketten, deren Enden deuteriert wurden, mittels FC 1H NMR, entlarvt den „stark 

verzögerten Übergang“ als Folge von Effekten, aufgrund der endlichen Kettenlänge. Er verschwindet, 

sogleich ausschließlich die innersten Segmente einer Kette sondiert werden, d.h. der Plateauwert 

ɛII
intra ist bereits bei wesentlich kürzeren Ketten erreicht. Dennoch sagt das Reptationsmodell für das 
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„constrained Rouse“-Regime (II) einen deutlich niedrigeren Exponenten von 0.25 voraus, als der 

experimentelle Befund 0.45. Die gefundenen Ergebnisse bzgl. C2(t) widersprechen somit dem 

Reptationsmodell. Insbesondere wird die RTO-Hypothese in Frage gestellt, welche eine inverse 

Proportionalität <r2(t)> ∂ (C2(t))-1 im Entanglement-Bereich postuliert. Im Gegensatz dazu bestätigen 

Messungen aus der Doppelquanten-(DQ-) NMR sowie generische Computersimulationen das 

Reptationsmodell, d.h. für lange Ketten wird der vorhergesagte Exponent von ɛII
intra=0.25 tatsächlich 

näherungsweise erreicht. 

Ohne Erfolg wird zunächst versucht, diese Diskrepanzen zwischen FC- und DQ-NMR bezüglich C2(t) 

von PB im Rahmen einer verfeinerten Analysemethode der FC-NMR Daten zu beseitigen. Die 

Überprüfung vorheriger Ergebnisse der FC-NMR an PB anhand des weiteren Polymers PEP ist daher 

von großer Bedeutung für diese Arbeit; neben 1H und 2H Relaxometrie an protonierten/deuterierten 

Reinsystemen verschiendener Molekulargewichte wurde auch ein weiteres 

isotopenverdünnungsexperiment an PEP durchgeführt. Die umfassende Untersuchung von PEP 

bestätigt die vorherigen Ergebnisse in Bezug auf PB vollumfänglich, wodurch die Diskrepanz zu den 

Ergebnissen der DQ-NMR zusätzlich untermauert wird. PEP wurde von der Arbeitsgruppe von D. 

Richter (Forschungszentrum Jülich) zur Verfügung gestellt. Zur Überprüfung von Modellvorhersagen 

ist dieses Polymer bestens geeignet, denn es weist, nach Polyethylen, die einfachst mögliche 

Kettenstruktur auf. Letzteres neigt jedoch zur Kristallisation.  

Die gleiche Charge des Polymers PEP, an welcher FC-NMR Untersuchungen durchgeführt werden, 

wird per Scher-Rheologie vermessen. Diese Messungen wurden in der Gruppe von N. Aksel 

(Bayreuth) über einen besonders breiten Temperaturbereich bis hin zum Glaspunkt durchgeführt. Die 

generierten Masterkurven umfassen effektiv 13 Dekaden in der Frequenzachse und werden den 

entspechenden FC-NMR-Daten in der Suszeptibilitätsdarstellung gegenübergestellt. Auf diese Weise 

wird zum ersten Mal ein direkter Vergleich zwischen der mikroskopischen und der makroskopischen 

Rheologie präsentiert. Während konsistente Ergebnisse bezüglich des α-Prozesses, des Rouse 

Regimes und der terminalen Relaxation gefunden werden, führt die unterschiedliche physikalische 

Natur der sondierten Korrelationsfunktionen zu Unterschieden im Entanglement-Bereich. Der 

Schermodul G(t) ist hier bestimmt durch die Korrelationsfunktion des End-zu-End Vektors, deren 

multi-exponentieller Zerfall von der terminalen Mode dominiert wird. Dieser Umstand führt zum für 

Polymerschmelzen charakteristischen Gummiplateau. Spin-Gitter-Relaxation hingegen ist sensitiver 

gegenüber dem gesamten Modenspektrum, weshalb die Korrelationsfunktionen CDD(t), C2(t) und 

Cinter(t) das erwähnte, deutlich ausgeprägte Potenzgesetzverhalten aufweisen. Anders als in der 

Rheologie können so kritische Zeitskalen wie die Entanglement-Zeit τe oder, unter günstigen 

Umständen, auch die Relaxationszeit der längsten Rouse-Mode τR auf einfachem Wege bestimmt 

werden. 

Die Gewichtung von Relaxationsmoden in den verschiedenen experimentell gemessenen 

Korrelationsfunktionen ist auch im sog. „kumulativen Modenverhältnis“ F(M) abgebildet. Die Größe 

ist ein Maß für das Anwachsen der mittleren Relaxationszeit des Modenspektrums mit M, in Bezug zu 

einem niedermolekularen Referenzsystem. Wie für mehrere Polymere gezeigt wird, entwickelt sich 

F(M) in unterschiedlicher Weise für verschiedene experimentelle Techniken(Korrelationsfunktionen). 

Mit den Daten aus FC NMR, der Scher-Rheologie und ergänzenden Techniken, wie der dielektrischen 

Spektroskopie, wird eine Art „Karte der Relaxationsprozesse“ in PEP erstellt. Diese beinhaltet die 
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Temperaturabhänigkeiten sämtlicher kollektiver als auch mehrerer lokaler Relaxationsprozesse über 

einen gigantischen  Zeitbereich.  

Schließlich werden per FC NMR zum ersten Mal Dendrimere untersucht und damit polymere 

Moleküle mit einer komplexeren Topologie. Neben dem a-Prozess werden zwei Regime kollektiver 

Dendrimer-Dynamik identifiziert. Das gefundene Verhalten ähnelt dem nicht verschlaufter (kurzer) 

Polymere. Auch hier werden viele Gemeinsamkeiten bzgl. FC-NMR und Schermessungen aufgedeckt. 

Das extrem breite Frequenzfenster, welches man durch Verwendung von Niederfeld-Technik sowie 

durch Frequenz-Temperatur-Superposition erhält, die Möglichkeit, Kontrast durch gezielte 

Isotopenmarkierung zu erzeugen und der Informationsgehalt der gemessenen, mikroskopischen 

Korrelationsfunktionen, etablieren FC-NMR-Relaxometrie als vielversprechende Methode der 

molekularen Rheologie.  
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Extended Abstract 

1. Introduction 

The term “molecular rheology” appearing in the title of this thesis denotes the approach of relating 

macroscopic, rheological properties of liquids to microscopic, molecular details1 and was introduced 

by Williams2 and Doi3 in the context of polymers. In this thesis, it will be shown that Field-Cycling (FC) 

NMR relaxometry is a very powerful method for investigating the molecular dynamics, in particular in 

polymer melts. 

In FC NMR the dependence of the spin-lattice relaxation rate R1 on the Larmor frequency ω =|-gB| is 

probed by varying the external magnetic field B. This quantity R1(ω) is denoted as relaxation 

dispersion. For that purpose, electromagnets are employed with fields sometimes reaching well 

below the earth’s. Thus, FC NMR is essentially a “low-field” NMR technique. By quickly cycling 

between different fields in a well-defined way using transistor controlled currents, relaxation and 

signal detection are decoupled. Doing so, the issue of tiny NMR signals going along with low fields is 

evaded. The idea of the FC technique has already dated back to the origins of NMR and was 

pioneered by F. Noack4 and R. Kimmich5,6 in its modern form. It gained momentum over time with 

the technical progress, so that nowadays a commercial relaxometer has become available, namely 

the STELAR FFC2000. It provides a frequency range of 10 kHz § ω/2p  § 20 MHz concerning protons 

(1H). One such device is operated in Bayreuth since 2004. Advanced, scientific relaxometer may even 

reach lower fields. Such an advanced, home-built machine equipped with unique low-field 

technology is located at the Technische Universität Darmstadt in the group of F. Fujara, with which 

the Bayreuth group maintains a fruitful collaboration. It allows for dispersion measurements in a 

range of 100 Hz § ω/2p  § 30 MHz, i.e. fields well below the earth’s (≈ 2.5 kHz) are achieved. That 

device is used to extend the range of R1(ω) measurements toward frequencies, where the slow, 

collective dynamics in entangled polymer melts shows up.  

Usually, the abundant nucleus 1H is studied, the relaxation of which is mainly caused by fluctuations 

of the long-ranged magnetic dipole-dipole interaction due to molecular motion. The relaxation 

dispersion R1(ω) is a measure of the spectral density J(ω). The latter quantifies molecular motion in 

terms of its frequency components. After transformation of R1(ω) (or J(ω), to be precise) into the 

time domain, the dipolar (auto-)correlation function CDD(t) is gained, which is a pair correlation 

function between spins. Due to the many-particle character of the dipolar interaction relaxation in 1H 

is attributed to an intra- as well as an inter-molecular contribution in the sense that R1(ω) is 

additively composed along R1(ω) = R1
intra(ω) + R1

inter(ω). When the intra-part R1
intra(ω) is converted 

into the time domain, the rank l=2 re-orientational correlation function C2(t) is obtained. In polymers, 

C2(t) is approximately equal to the squared bond vector correlation function. Otherwise, R1
inter(ω) 

transforms to an inter-molecular correlation function Cinter(t), which is sensitive to relative 

translations. It directly reflects the mean square displacement (MSD) <r2(t)> of molecules in the 

liquid, or segments in a polymer melt, respectively. Exploiting the isotope-selectivity of NMR, 

however, both relaxation contributions can be distinguished. As a consequence of intra- as well as 

intermolecular couplings, FC 1H NMR offers the unique opportunity of probing both, re-orientations 

as well as translational motion over a huge time/frequency window, as will be demonstrated. 
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In the same manner as it is often done in rheology or dielectric spectroscopy (DS), for instance, the 

frequency range is significantly extended by measuring the relaxation dispersion in a broad 

temperature range and constructing master curves. The resulting (effective) frequency range is so 

broad that the manifold relaxation behavior of polymer melts can be studied.  

The tube-reptation (TR) model is the most accepted theory with regard to the dynamics in entangled 

polymer melts. Based on a molecular scenario, the TR model predicts a family of hierarchical dynamic 

regimes for <r2(t)> and also for C2(t), depending on chain length. As both these quantities can be 

measured by FC NMR over a wide range of times/frequencies, the technique allows for a critical test 

of relevant polymer theories, a major issue of this work. The FC NMR results on polymers are also 

compared to such of other “molecular methods” like atomistic computer simulations, quasi-elastic 

neutron scattering (NS) or different NMR methods; to mention are double quantum (DQ) NMR and 

field-gradient (FG) NMR. FC NMR data addressing the microscopic relaxation behavior is also 

compared to shear measurements, the latter rather probing macroscopic relaxation properties. Thus, 

micro- and macroscopic rheology are directly confronted. Moreover, results on dendrimers are 

reported. With respect to linear chains, they feature a more complex macromolecular topology. In 

the course of this work such systems were studied via FC NMR for the first time. 

In the upcoming sections I will briefly summarize my PhD work, which is a continuation of my 

diploma work, the research on low-molecular liquids of R. Meier and in particular of A. Herrmann 

together with B. Kresse, on polymer melts. The latter contributed to the latest successful efforts of 

pushing the FC NMR technique toward record-breaking low fields. The results are published in the 

articles referred to as PUB1-6 enclosed to this thesis (cf. section 6.1). Those articles are also reprinted 

in section 6. Three further publications dedicated to the results on the polymer poly(ethylene 

propylene) (PEP), and in particular to the comparison between FC NMR relaxometry and the shear 

measurements, are currently in preparation or have just been submitted (cf. section 6.3). 

 

1.1 Dynamics in Liquids – Quantities of Interest  

Polymer melts are viscous liquids. On a microscopic level the dynamics in the liquid must be 

described by quantities of statistical physics due to the stochastic nature of molecular motion. The 

physical quantities relevant for this work are introduced in this section. 

The liquid is a state of condensed matter resulting from weak and transient attractive inter-

molecular forces. Inter-molecular distances are comparable to molecular sizes. In contrast to the 

crystal, the structure merely features short-range order which may extend over several nm, and is 

reflected in only a few peaks in the pair-distribution function.7-10 Furthermore, liquids differ from 

solids by the absence of transversal phonons (for ω smaller than the Frenkel frequency11 ωF) and are 

consequently characterized by a vanishing shear response (relaxation modulus) at long times as well 

as a finite viscosity; liquids flow after all. A general connection between macroscopically observable 

transport coefficients and microscopic, statistical quantities is established via Green-Kubo 

relations.12,13 Those relate transport coefficients to integrals over time auto-correlation functions. For 

instance, the diffusion coefficient D (transport of mass) is the integral over the velocity auto-

correlation function. In molecular systems one has to distinguish between rotational (re-
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orientational) and translational motion. The extent of translational motion is generally expressed in 

terms of the mean square displacement (MSD)  
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e.g., of a molecule’s center of mass or a polymer segment. The MSD is a key-concept in soft matter 

physics since the pioneering theoretical works of Einstein and Smoluchowski in the description of 

Brownian motion.14,15 At shortest times, the dynamics in all dense liquids is first ballistic and the MSD 

∂ t2, until the displacement is “caged” by inter-molecular packaging effects (cf. Fig. 1 in section 1.5). 

At long times, in the so-called hydrodynamic limit, the dynamics in a liquid becomes diffusive and the 

MSD linear in time, <r2(t)> = 6Dt, where D denotes the (self-) diffusion coefficient. In complex fluids 

such as polymers, motion is sub-diffusive at intermediate times, i.e. <r2(t<τt)> ∂ tα<1, with τt denoting 

the terminal, i.e. the longest relaxation time.  

The MSD in liquids is accessible from the intermediate scattering function obtained from incoherent 

inelastic scattering (cf. section 2). The dynamic fluctuation in the intensity of quasi-elastically 

scattered waves is reflected in the dynamic structure factor ( )ω,qS
r

 or its temporal Fourier transform, 

the intermediate scattering function ( )tqS ,
r

, respectively. Compared to elastic scattering, the 

detected signal ( )ω,qS
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 is broadened. ( )tqS ,
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 is the spatial Fourier transform of the Van-Hove function  
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which correlates density fluctuations. As distinguished in eq. 2 ( )trG ,
r

 (and consequently ( )tqS ,
r

 and 

( )ω,qS
r

) consists of a coherent and an incoherent contribution. Those can be distinguished by isotopic 

contrast, exploiting differences in scattering lengths.16 For t = 0 the static particle-particle auto-

correlation function ( ) ( ) ( )rgrrG
rrr

ρδ +=0,  is obtained, with ρ denoting the density and ( ) )(rgrg =
r

 the 

pair distribution of a liquid.16,17 Assuming a Gaussian propagator (eq. 54, section 1.7), the incoherent 

intermediate scattering function can be related to the MSD:6   

( ) ( )[ ]trqtS 22

inc 61exp −∝                                   .                          (3) 

Field-gradient (FG) NMR has been established as a standard method for measuring D, i.e. in the 

hydrodynamic limit (cf. section 2). As will be demonstrated, <r2(t)> is also related to the inter-

molecular spin-lattice relaxation among protons, detectable by FC 1H NMR (cf. section 1.7). More 

precisely, it is received from the (normalized) inter-molecular correlation function 
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of the 2nd order Legendre polynomial Pl=2 of the fluctuating angle J(t) monitoring the molecular (in 

polymers segmental) orientation. The distance between particles (spins) is denoted as r(t).   
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The rotational motion of molecules in liquids is typically described by means of the re-orientational 

auto-correlation functions:   

( ) ( )( )[ ] ( )( )[ ]tPP
l

tC lll ϑϑ cos0cos
2

12 +
=                                                     (5) 

The rank l depends on the probe and thus on the experimental technique (cf. section 2). It is 

anticipated that C2(t) is related to the intra-molecular relaxation R1
intra(ω) in NMR (cf. section 1.7). 

After transformation to the frequency domain, the spectral density is gained, according to the 

Wiener-Khinchin theorem:18 
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Both, correlation functions as well as spectral densities, respectively, are normalized: 

( ) ( ) lll JdttC τ==∫
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       and        ( ) 2
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∞

dJ                                            (7) 

Here, <τl> denotes the mean correlation time of the underlying correlation time distribution. In the 

model case of rotational diffusion with a single correlation time one gets  

( ) ( )[ ]tDlltC rl 1exp +−=                  
( )2l
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lJ
ωτ
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+
=                                              (8)   

with the rotational time constant τl = l(l+1)Dr . The rotational diffusion coefficient is denoted as Dr 

and is related to the mean square jump angle <W 2(t)> = 4 Drt.19,20 The corresponding spectral density 

is a Lorentzian. In practice, however, already in simple liquids re-orientational correlation functions 

are more elaborate (see section 1.2). Of course, a spectral density is also obtained for Cinter(t), defined 

in eq. 4.  

In experiments like dielectric spectroscopy or rheology, however, macroscopic time domain response 

functions or frequency dependent susceptibilities are probed, instead of correlation functions or 

spectral densities, respectively, which are defined on a molecular level. A link is necessary, which is 

accomplished by means of the fluctuation-dissipation theorem (FDT, see below).12,13,21,22 A temporal 

response function c(t-t’) generally relates the macroscopic response x(t) of a system to an applied 

perturbation h(t). Under linear conditions this relation reads:6,23 
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The linear response formula is applicable if the perturbation h(t) on the system is small. Then the 

response function c(t-t’) is time invariant and independent of the perturbation itself. Otherwise, 

higher orders have to be taken into account. Fourier transformation yields the (linear) frequency 

domain response  
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~
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where c*(ω) denotes the complex susceptibility. Its imaginary part c’’(ω) is the absorptive or 

dissipative  contribution of the response. The real part c’(ω) is the reactive contribution. c’(ω) and 

c’’(ω) are related via the Kramers-Kronig relations. An example important for this work is the linear 

response relation between shear stress s(t) and an applied step-like shear strain g(t)  
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where the linear (step)response function G(t) is called relaxation modulus.24 Experimentally, G(t) is 

measured in a shear step-response experiment. Yet, shear measurements are more often realized in 

the frequency domain (see below and section 2). The complex shear modulus, i.e. the complex 

“shear susceptibility” reads:24 

( ) ( ) ( ) ( )ωωωω ω
'''*

0
iGGdtetGiG

ti +== −∞

∫                                             (12) 

The real part is called storage modulus G’(ω) and the imaginary part G’’(ω) loss modulus. Oscillatory 

shear rheology enables measuring both quantities as in- and out-of-phase components with respect 

to the applied oscillatory strain (cf. section 2). Another example is the complex dielectric 

susceptibility e*(w) probed in dielectric spectroscopy. 

An important feature of susceptibilities in liquids above the glass transition temperature Tg is that 

frequency-temperature superposition (FTS) applies, meaning that the form a susceptibility curve 

c*(ω) doesn’t change with temperature (cf. section 1.2). This implies that by applying temperature 

dependent frequency shift factors aT a master curve c*(ωaT) can be constructed from susceptibility 

curves measured at different temperatures, as for example: 

( ) ( )Taωχωχ '''' ≡                                                                    (13) 

Exploiting FTS the dynamic range of experimental techniques can be strongly extended in many 

systems (cf. sections 4.1 and 5). According to the FDT, the imaginary part of the susceptibility c’’(ω) is 

connected to thermal equilibrium fluctuations, the spectrum of which is quantified by the spectral 

density J(ω):12,13,21,22  
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The static contribution is denoted as c0(ω). In the time domain the FDT reads:6,12,13 
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Within the linear response theory, it can be shown that the time derivative of the correlation 

function d/dt C(t) corresponding to the fluctuation spectrum J(ω), is identical to the step-response 

function, such as G(t) for example. 6,12 Under linear conditions the FDT provides the mentioned 

connection between the macroscopic relaxation of a system with respect to a (small) perturbation 

and the thermal fluctuations on microscopic scale in equilibrium.12,21,22 The macroscopic step 

response function G(t), for instance, is the auto-correlation function of the (off-diagonal) 

components of the stress-tensor sab  in the shear plane. 6,12,25  

( ) ( ) ( )t
Tk

V
tG

B

αβαβ σσ 0=                                                            (16) 

Here, a,b denote Cartesian components defining the shear plane. The stress tensor can be related to 

molecular quantities via the virial theorem.26 It contains a kinetic and a potential energy contribution 

in terms of forces acting between particles. The dynamic viscosity formally assumes the role of the 

spectral density. It is defined as 

( ) ( ) ωωωη ''' G=                                                                   (17) 

and quantifies transport of momentum.12,13 However, in contrast to a spectral density, the dynamic 

viscosity is not normalized, as can be immediately seen from its zero-frequency limit, which is 

denoted as the zero-shear viscosity: 
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Such a time integral over a correlation function given in eq. 18 is an example for a Green-Kubo 

relation.12,13 In analogy to eq. 7 the zero-shear viscosity is interpreted as a measure for the mean 

correlation time if the static contribution G0 is divided out.  

In section 1.7 it will be discussed that the spin-lattice relaxation rate dispersion R1(ω) as the 

measurand in FC NMR, also reflects a spectral density J(ω). Via the FDT (eq. 14) an NMR susceptibility 

c’’NMR(ω) is formally defined as: 

( ) ( )ωωωχ 1:'' RNMR =                                                           (19) 

Later in this work it will be just denoted as c’’(ω), for brevity. Also the NMR susceptibility 

representation is used to construct master curves c’’(ωaT)  (cf. section 4.1) in the same way as in 

rheology, for instance. 

 

1.2 “Glassy Dynamics” and the Glass Transition 

When a liquid is cooled below its melting point Tm it is called “supercooled”. At even lower 

temperatures, i.e. below the glass temperature T < Tg < Tm a supercooled liquid becomes a glass. 

Crystallization is avoided if the cooling rate is fast enough, while Tg itself depends on the cooling rate. 

The glass transition is not a typical phase transition, as even higher order derivatives of the 

thermodynamic potentials remain continuous. For temperatures below the melting point all 

correlation functions in supercooled liquids show some universal features. Those features, which also 

occur in polymers, are often summarized under the term “glassy dynamics”.27,28  

(i) Close to Tg time-correlation functions actually decay in two steps.29,30 On the time scale of 

picoseconds there is an initial decay caused by fast secondary relaxations, for instance vibrational 

modes, side-group dynamics (CH3 group rotations) and the so-called “fast process”. At longer times 

and above Tg, the structural relaxation called α-process takes place, which is usually associated with 

the glass transition phenomenon. The α-process is isotropic and mainly involves inter-molecular re-

arrangement effects in simple, low-molecular liquids. In high-M polymers intra-molecular energy 

barriers, like torsional potentials, play an additional role.28  

(ii) The correlation decay caused by the α-process is stretched-exponential,27-30 reflecting i.a. a 

distribution of correlation times due to the disorder in the liquid. Different distribution functions 

were proposed like the Cole-Davidson (CD), the Havriliak-Negami (HN) or the less popular “Kahlau” 

distribution.31-33  

(iii) The associated correlation time constant τα(T) displays a super-Arrhenius temperature 

dependence. The α-process drives the glass transition phenomenon, meaning that transport 

coefficients like the viscosity h0(T) or the diffusion coefficient D(T), are usually proportional to τα(T) or 

to its inverse, respectively.34 Around the glass transition temperature Tg solid-like values like τα(Tg) ≈ 

100s, h0(Tg) ≈ 1012Pas or D(Tg) ≈ 10-25m2s-1, are assumed.27-30,35,36 Thus, upon cooling, glass formers 

undergo a swift slow-down of the molecular dynamics within some 10K, during which the 

microscopic, amorphous structure of a liquid without long-range order is preserved. Other 

properties, like the thermal conductivity, the density or the refractive index, merely show subtle 
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discontinuity in their temperature dependence around Tg. The small, yet characteristic change in the 

heat capacity resulting from ergodicity breaking enables determining (the calorimetric) Tg
cal. via 

thermal analysis like differential scanning calorimetry (DSC).37  Phenomenologically, the super-

Arrhenius temperature dependences of τα(T) and h0(T) are often described by the Vogel-Fulcher-

Tammann27 (VFT) or the Williams-Landel-Ferry38 (WLF) equation. These functions fail, however, when 

data on a broad temperature range has to be interpolated. Recently, Schmidtke et al. proposed 

another function also having three parameters, which satisfyingly describes τα(T) “from the boiling 

point to the glass transition”.39,40  

(iv) Furthermore, in the regime of the α-process and for longer times the correlation functions Cl(t) 

obey time-temperature superposition (TTS), the time-domain analogue of FTS. Hence, the shape of 

the correlation functions doesn’t change with temperature: Cl(t) = Cl(t/aT).27-30 

The probably most successful but not fully accepted theory dedicated to “glassy dynamics” is the 

mode coupling theory41-43 (MCT), which is an attempt to describe the glass transition in terms of the 

time auto-correlation function of the particle density. Specifically, it is assumed that the density 

correlation function obeys a generalized Langevin equation with a memory term, the latter leading to 

mode-coupling as well as to a damping. The MCT reproduces all generic features of the glassy 

dynamics (i-iv) mentioned above, but fails below a critical temperature Tc ≈ 1.2Tg, where the 

dynamics is predicted to become fully arrested. In order to avoid singularities occurring in the 

original MCT at temperatures below Tc the theory was extended, e.g. by the process of phonon-

assisted hopping.43-45 Otherwise, simplifications concerning the mode coupling term of the original 

MCT were also proposed, the so-called “schematic” MCT’s.46-49 Alternative approaches to the MCT 

are the “entropy theory of the glass formation”50-52 or the “random first order transition theory”.53 

However, the physics of the glass transition is not completely understood yet, rendering it as “…the 

deepest and most interesting unsolved problem in solid state theory…”.54 

In polymers τα and Tg increase with growing chain length until a saturation is reached.55-59 As the 

slow, collective dynamics in polymers usually occurs well above Tg (t >> τα), the systems investigated 

in the course of this work are glass formers with a relatively low Tg , typically well below 300 K. This 

leaves enough margins for shifting the slow polymer dynamics, showing up for ωτα << 1 , into the 

methodical frequency range. The glass transition also drives the polymer dynamics. In so-called 

rheologically simple systems time constants referring to cooperative (polymer) dynamics are 

proportional to τα(T). If this is not the case the system is called rheologically complex. 

In order to compare different methods with completely different frequency windows, like FC NMR 

and shear rheology, a common reference point, e.g. in the susceptibility spectra or in the correlation 

functions is required. The α-process, as the dominant relaxation mechanism being immanent in all 

liquids, poses the most suitable common reference. If it is covered by the measurements, the spectra 

can be scaled according to c’’NMR(ωτα) or G*(ωτα), for instance. To cover the α-process, the condition 

ωτα(T) ≈ 1 must be fulfilled. In the studied low-Tg glass formers, τα is on the order of 10 ps at room 

temperature. Thus, FC NMR and in particular rheology, will not cover the α-process, unless the liquid 

is sufficiently cooled down. Due to the low frequencies accompanied by shear rheology, one has 

indeed to go down as low as Tg. 
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1.3  Polymer Chains: Structural Modelling 

As linear polymers are important subjects of this work, some aspects of molecular modelling shall be 

summarized. Linear polymer chains are sequences of monomers of mass m0, the stereochemistry of 

which depends on the chemical composition. Above a certain length scale larger than that of the 

monomer, the dynamic properties are assumed to be generic. “Ideal” chain models are the simplest 

and most often encountered ones as they don’t take long-range interactions (like excluded-volume 

effects) into account. One such an ideal model is the “freely jointed chain”. The coarse-grained 

conformation of a chain constituted by N so-called Kuhn segments, each of length b (the Kuhn 

length), is idealized as a three dimensional random-walk. Consequently, the end-to-end distance 
eer
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follows a Gaussian distribution6,24,60-62      
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 , where L denotes the chain contour length. The radius 

of gyration for an ideal chain is 62

eerRG = . Elastic Scattering techniques are suited to determine 

structural properties of molecules: by measuring the (time-averaged) scattering intensity S(q) at 

different scattering wave vectors qq =||
r

, properties like Rg (size), Mw (mass), the  form factor (shape) 

and, if present, the static structure factor (spatial order) can be determined.63-67 A Kuhn segment 

usually incorporates several monomers (depending on flexibility), just to allow for the presumed 

Gaussian statistics (eq. 20). The associated molar mass is denoted as the Kuhn mass M0  (¥  m0). The 

parameter b (Kuhn-length) is related to the bond-length l via the characteristic ratio C¶ = <ree
2> / nl2 = 

Nb2 / nl2 (n is the number of bonds). The quantity reflects the steric properties or, in other words, the 

“stiffness” of the chain.6,24,60-62 Other ideal chain models like the “freely rotating chain”, the “worm-

like chain” or the “hindered rotation model” provide predictions for C¶.62  By introducing the Kuhn 

segment a coarse-graining is performed. All ideal models can be mapped to that of the “freely 

jointed chain”, provided that the chains are sufficiently long. Hence, the chemical structure and the 

chain stiffness are eluded. However, the question “when does a molecule become a polymer” (ref. 

55) is experimentally difficult to answer, as Gaussian statistics develop asymptotically and may be 

observed only above M ~ 50-100 m0.55 Concerning real polymers in solution, excluded-volume 

interactions are relevant, which can be modeled by a self-avoiding-random walk, for which eq. 20 

doesn’t hold of course. Yet, in polymer melts, in highly concentrated solutions or under Θ-conditions, 

respectively, attractive and repulsive forces exactly compensate, yielding zero net excluded-volume 

interactions and consequently ideal chain statistics.68 This is the case for all polymer systems studied 

in the course of this work. 
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1.4 Unconstrained Polymer Dynamics: the Rouse Model 

Due to its simplicity, analytical solvability and its success in describing experimental findings, the 

Rouse model6,24,5,69 is popular to explain the chain dynamics in un-entangled melts, i.e. when M is 

below the crossover molar mass Mc marking the beginning of entanglement effects in experiments 

(cf. sections 1.5 and 2). The N Kuhn segments forming a single chain are modeled as mass bearing 

“beads” connected by harmonic, entropic springs, each with a temperature dependent elastic 

constant k = 3kbTb-2, reflecting intra-molecular interactions. Inter-molecular forces, such as those 

exerted by surrounding chains, are merely incorporated by the monomeric friction coefficient z and 

stochastic forces )(S tfn

r
 acting on the beads. Neglecting inertial terms, a coupled system of N coupled 

Langevin equations containing the bead positions ( )trn
r

 and momenta ( )trt n

r
∂∂ , is obtained. Often, a 

continuum approacha is chosen: 5,6,24,69 
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The system (21) is solved by introducing normal coordinates ( )tX p
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The correlation functions of the orthogonal normal modes have the following property  
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and represent the probability that the p-th normal coordinate with relaxation time τp has not yet 

relaxed after time t.6 The associated correlation times read τp = τs N2/p2. The shortest and the longest 

correlation times occurring in the mode distribution are 
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respectively. The segmental relaxation time τs is usually identified with the time constant of the α-

process, controlled by the glassy dynamics, i.e. τs ≈ τα. However, as is discussed in the context of PUB4 

and PUB5, the ratio τα/τs actually may be smaller than unity. The Kuhn segment, relevant for the 

Gaussian statistics of the whole chain, is usually larger than the smallest unit relevant for local re-

orientations. The longest (terminal) time τR is called Rouse time. The zeroth mode ( )tX 0

r
reflects the 

MSD of the center-of mass (cm) ∑ =
−= n

N

n rNr
rr

1

1

cm
, the MSD of which follows from eq. 22: 
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Thus, the Rouse cm diffusion coefficient scales with the inverse molar mass, i.e. DR ∂ M-1.  

 

                                                           

 

a The continuum approach often faced in the literature causes mathematical artifacts for very short chains.70,71  
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The auto-correlation function of the end-to-end vector ( ) ( ) ( )trtrtr Nee 0

rrr
−=  is detected by dielectric 

spectroscopy (DS) (cf. section 2) in the case of type-A polymers.72 The Rouse model predicts  
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yielding a multi-exponential decay. Due to the weighting with p-2 the sum is, however, dominated by 

the p = 1 term reflecting the time scale τR, the longest Rouse time. Expression 26 describes what is 

frequently called “normal mode relaxation”. The MSD of the n-th segment is also readily calculated 

from eq. 22:24  
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It can be split into the cm diffusion and the segmental diffusion relative to the cm, the latter 

depending on the Kuhn segment index n, i.e. on the position along the chain. In experiments, it is 

hardly possible to trace the MSD of single segments. Instead, eq. 27 is averaged over the whole 

chain; the result features two regimes:24  
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The segmental MSD is first sub-diffusive in the Rouse regime, i.e. for t < τR. At long times, the center 

of mass diffusion takes over and the MSD becomes linear. As will be shown in section 1.7, the 

segmental MSD controls the inter-molecular correlation function Cinter(t), and thus the inter-

molecular relaxation dispersion R1
inter(ω). The auto-correlation function of the bond vector

nrrrb iii ∂∂≅−= −

rrvr

1
 connecting adjacent Kuhn segments is sensitive to segmental re-orientation. After 

averaging over the whole chain, the following expression again featuring two limiting cases is 

obtained:  
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The terminal relaxation of the bond vector correlation function is exponential, while a power-law 

results at short times (Rouse regime). ( ) ( ) >⋅< 0btb
rr

 is proportional to the 1st rank re-orientational 

correlation function C1(t).3 The 2nd rank re-orientational correlation function in the Rouse model 

describing the re-orientation of Kuhn segments reads:19,20 
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Basically, eq. 30 is not only valid for Rouse dynamics, but for any other spatially isotropic model of 

polymer dynamics.73-75 In isotropic models it is assumed that segmental displacements lose 

correlation with respect to the chain’s initial conformation already after short times (t > τs). As will be 

discussed in section 1.7, the intra-molecular relaxation dispersion R1
intra(ω) is proportional to the 

Fourier transform of the squared bond vector correlation function (cf. section 1.7).6,73-76 

 

An important difference between the end-to-end vector correlation function ( ) ( ) >⋅< 0eeee rtr
rr  (eq. 26) 

on the one hand and the bond vector correlation function ( ) ( ) >⋅< 0btb
rr

 (eq. 29) as well as the 
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segmental MSD <r2(t)> (eq. 28) on the other, is the different weighting of the modes. While 

( ) ( ) >⋅< 0eeee rtr
rr  is a multi-exponential process governed by the mode numbers with the lowest indices 

and (essentially) reflects the relaxation time τR , ( ) ( ) >⋅< 0btb
rr

 and <r2(t)> are more sensitive to the 

whole mode distribution. This results in the sub-diffusive power-law regime.  

 

Concerning stress relaxation, each Rouse mode provides an equitable relaxation pathway. The 

(normalized) correlation function ( ) ( ) [ ]ppp tXtX ταα −∝⋅ exp0  corresponds to the probability that the 

Cartesian component a of the p-th Rouse mode with relaxation time τp hasn’t relaxed yet after the 

time t has passed, thus sustaining stress.6 Shear stress involves two components (a,b) in the shear-

plane, therefore the probability of sustaining the stress is given by 

( ) ( ) ( ) ( ) [ ]ppppp tXtXXtX τββαα 2exp00 −∝⋅⋅ . After summation over all modes G(t) adopts: 
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The static shear modulus (cf. eq. 18) G0 = rNAkBTM-1 obtained for tØ 0, depends on the mass density 

r and the inverse molar mass M, hence on monomeric properties exclusively.6,24,60-62 The zero-shear 

viscosity is proportional to the molar mass, i.e. h0 = ! G(t) dt ∂ M. For the complex frequency domain 

shear modulus G*(ω) the following predictions result from the Rouse model which can be deduced 

by inserting eq. 31 into eq. 12:  
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In the Rouse regime power-laws result while at long times the behavior of a Newtonian Fluid is 

obtained. Although phenomena like chain stiffness or torsional energy barriers are not taken into 

account, the Rouse model is successfully applied to polymer melts and also to concentrated solutions 

of short chains (M < Mc), where entanglement is not yet relevant. Examples will be given in section 2. 

The Rouse model fails, however, for polymers in dilute solution as neither, hydrodynamic nor 

excluded volume interactions, are explicitly taken into account. For instance, Dcm ∂ M-0.6 is observed 

in solution, instead of DR ∂ M-1 expected for melts of short chains (cf. eq. 25).77 Furthermore, 

viscosimetric experiments on dilute polymer solutions reveal a weaker M-dependence of the 

(intrinsic) viscosity of [h]∂ M0.5 – 0.75 , instead of [h] ∂ M1, expected for Rouse dynamics in the 

melt.78,79 The more general, but non-linear Zimm model for polymers in solution explicitly takes 

hydrodynamic couplings into account.80 
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1.5 Entangled Polymer Dynamics: the Tube-Reptation Model  

The Rouse model is also insufficient for describing the dynamics of longer chains, e.g. in the melt 

state. Above the crossover molar mass Mc , the zero-shear viscosity h0 and the terminal relaxation 

time τt of a polymer melt obtained by shear rheology, for instance, scale ∂ M3.4 - 3.7. The Rouse model, 

however, predicts much weaker dependences, h0 ∂ M and τR ∂ M2, respectively (cf. section 

1.4).24,69,81-84 Likewise, the diffusion coefficient is known to scale D ∂ M-2.0 - -2.4 , instead of DR ∂ M-1 

predicted for Rouse dynamics.85-87 The Rouse model alone is obviously not appropriate for high M.  

The Rouse model doesn’t imply any topological constraints underlying the uncrossability of chains, 

termed entanglements. DeGennes’ reptation idea88 according to which a polymer chain diffuses 

back- and forth along its contour in a worm-like motion between fixed obstacles (reptation), together 

with the tube-concept by Doi and Edwards,89,90 led to the phenomenological tube-reptation (TR) 

model.24 Topological constraints in an entangled polymer melt are assumed to resemble those in an 

immobile network. Below, the ideas of the TR model are briefly outlined.  

At short times τs < t < τe (Rouse regime (I)) where τe denotes the entanglement time, segmental 

displacements are small and not influenced by entanglements yet. The segmental motion is assumed 

to be describable by the Rouse model, implying  <r2(t < τe ) > ∂ t1/2. At t > τe the allowed configuration 

space for a single “tagged” chain is restricted by the presence of neighboring chains. In the TR model 

these topological constraints reduce the accessible space to a tube-like region of radius a0. The radial 

extension of the tube, reflected in a0, is on the order of the mean distance between entanglements 

comprising Ne = Me/m0 Kuhn segments. The average molar mass between adjacent entanglements 

along a chain is the entanglement molar mass Me. The crossover molar mass Mc marking the onset of 

entanglement effects in experiments, is typically 2-4 times higher than Me.60 By introducing the 

fictitious tube the many-chain problem is reduced to a single chain problem. The tube represents all 

the possible chain configurations that are compatible with the topological constraints given at a time. 

The tube contour, called primitive path, is assumed to have a Gaussian configuration with Z = M / Me 

steps, evoking the equivalence <ree
2> = Nb2 = Zao

2. This readily leads to the relation a0 = Neb2.  

At times t > τe the MSD approaches the tube dimensions, i.e. <r2(τe)> = a0
2. Segmental motion by 

Rouse dynamics perpendicular to the primitive path becomes constrained, while parallel 1D-motion 

along the primitive path is still free. Be s(t) the curvilinear displacement of the tagged chain along the 

primitive path defining the tube, with s(t) ≥ a0. Then, the MSD in 3D of a segment confined in the 

tube is given by <r2(t > τe)> º a0 (<s2(t)>)0.5. In analogy to Rouse diffusion the mean square 

displacement along the primitive path features a sub-diffusive and a diffusive regime. As a result, the 

segmental MSD first scales according to <r2(t)> ∂ t1/4 at times τe < t < τR, , where <s2(t)> ∂ t0.5. This 

regime (II) is called “constrained Rouse” regime. Beyond the Rouse time at τR < t < τd , curvilinear 1D 

diffusion of the whole chain along the primitive path (<s2(t)> ∂ t) governs the dynamics as the Rouse 

mode spectrum ends with τR. The term “reptation” (latin: “reptare”; to creep) was coined for this 

collective back-and-forth motion constituting regime III, which is accompanied by <r2(t)> ∂ t1/2. 

Hence, the dynamics becomes anisotropic and the segmental displacement is strongly correlated 

with the chain’s initial configuration at t = 0. The terminal time of the TR model is the disengagement 

time τd , which is determined by the diffusion of the primitive path, i.e. of the tube itself. At the ends 

of the tagged chain the tube is continuously destroyed and renewed. The averaged segmental MSD 
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obeys the relation <r2(t)> ∂ t and is governed by the center-of-mass diffusion of the whole chain in 

this terminal regime (IV). The dynamics at t > τd finally becomes (normal) diffusive as in any liquid. 

The associated diffusion constant DTR = 3DR ao
2/Nb2∂ M-2 scales with the inverse of the squared molar 

mass.  

Altogether, the TR model incorporates the Rouse model and predicts the four hierarchical power-

laws mentioned. They are separated by the time constants τe(T), τR(T) and τd(T), respectively, which 

feature distinct M-dependences and read as follows:   
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Those time constants delimit the polymer-specific dynamic regimes I-III, also called Doi/Edwards (DE) 

limits. The scaling of the MSD in regimes II and III is considered as the “fingerprint” of the tube 

model. The predictions for the segmental MSD <r2(t)> resulting for the different regimes are 

illustrated in Fig. 1 and are later on tabulated in Table 1 (section 1.7).  

The correlation function of the end-to-end vector at times τe < t < τd reads24  
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and resembles eq. 26 following from the Rouse model, with τR replaced by τd. The relaxation 

described by eq. 34 is again multi-exponential and is dominated by the longest relaxation times, in 

particular by the tube disengagement time τd. As said, the normal mode relaxation in eq. 34 is the 

relevant correlation function for dielectric spectroscopy as well as for shear rheology in the 

entanglement regime, i.e. for times τe < t < τd (cf. section 2).  

As in the Rouse model, ( ) ( ) >⋅< 0eeee rtr
rr  is less sensitive to the whole mode distribution than <r2(t)>. Due 

to the different weighting of modes the MSD is characterized by two power-law regimes II and III, 

while the end-to-end vector correlation function on the other hand merely reflects the relaxation of 

the longest modes, especially the tube disengagement process, as said. In the TR model the normal 

mode relaxation function (eq. 34) is also interpreted as the tube occupancy function μ(t).3 The latter 

reflects the fraction of the initial tube not yet attended by a chain end and thus surviving over time 

t.24 Otherwise, if a tube segment is visited by a chain end, the tube segment ceases to exist. 

 

Figure 1: Predictions of the tube-reptation 

model24 (TR, black) as well as of the n-

renormalized Rouse model5 (n-RR, blue), 

respectively, for the segmental mean square 

displacement <r2(t)>. The dynamic regimes I-III are 

specific for polymers. At shortest times (t < τs) and 

as in any liquid, the dynamics is first ballistic until 

the caging effect confines translations (“glassy 

dynamics” (0)). 
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Concerning the correlation functions C1,2(t) and the bond vector correlation function, the latter being 

relevant for the intra-molecular relaxation dispersion R1
intra(ω) in NMR (cf. section 1.7), the 

disengagement process leads to ( ) ( ) ( ) dt
ebtbtC

τ−>∝⋅∝< 02,1

rr
 at longest times. Straightforward 

predictions for regimes II and III of the TR model haven’t been derived, yet. Instead, further 

phenomenological assumptions are made. Specifically, it is argued that the re-orientational 

correlation function C1(t) defined in eq. 5 reflects the probability that a segment remains in or 

returns to its initial tube section after time t.3 Given the Gaussian statistics of the tube axis (primitive 

path), it follows that C1(t) ∂ (2p <s2(t)>)1/2 = pRTO.3,20,88 The right hand side is the so-called return-to-

origin probability. Similarly, C2(t) is interpreted as the probability that the mean square displacement 

along the primitive path s(t) doesn’t exceed the tube radius, i.e. that C2(t) ∂ p(<s2(t)> ≤ a0
2).3,20,88,128 

Ball et al. related this probability to the return-to-origin probability in the sense that  

p(<s2(t)> < a0
2) ∂ pRTO. These considerations lead to the important scaling relation 

( ) ( ) ( ) 1
2

21

−
∝∝ trtCtC                                    .                            (35) 

This is the so-called return-to-origin (RTO) hypothesis (cf. section 1.7). It states that re-orientation is 

strongly coupled to translation, if the tube is sufficiently rigid. Orientational correlation survives over 

time if a segment returns to (or remains in) its original tube segment. Reptation of a chain, i.e. its 1D 

random-walk along the primitive path of the tube, also leads to segmental re-orientation, except for 

the case that the initial position is attained, the likelihood of which is estimated to be proportional to 

the inverse MSD. Then, according to the RTO hypothesis, the segmental re-orientation is preserved 

or regained, respectively. A qualitatively different relation between C1,2(t) and <r2(t)> than eq. 35 

follows from isotropic models like the (renormalized) Rouse model. Note for instance, that C2(t) ∂ 

<r2(t)>-2 holds in the Rouse regime (cf. eq. 30, section 1.4). The ability of FC NMR relaxometry to 

probe C2(t) as well as <r2(t)> predestines the technique for a critical inspection of the RTO hypothesis. 

Entanglement causes the so-called rubber plateau in the shear relaxation modulus G(t). Within the 

TR model this rubber-elastic regime is explained that stress will only relent to an applied strain when 

the chains completely “reptate” out of their original tube, i.e.  Gtube(τe < t < τd) ≈ Gp m(t) , where m(t) is 

again the tube survival function (eq. 34).6 The plateau modulus Gp is an M-independent material 

constant from which Me can be estimated explicitly.3 Formally, it has the meaning of a dynamic order 

parameter. The contribution to the shear relaxation function by reptation is:3 
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The zero-shear viscosity, following from integration over G(t), is determined by the disengagement 

time td; hence h0 ∂ M3. The complex shear modulus in the entanglement regime follows from eq. 36 

and again Fourier transform according to eq. 12: 
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However, eqs. 36 and 37 don’t take Rouse modes into account, yet. The full form of G(t) including 

free as well as constrained Rouse modes reads according to Likhtman and McLeish:20   
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The first term describes the tube relaxation process (regimes III, IV) while the latter two ones 

represent constrained (II) as well as unconstrained (I) Rouse modes (cf. eq. 31), respectively. The 

Fourier transform of eq. 38 provides the the complex shear modulus G*(w). For an entangled, linear 

polymer melt the imaginary part of G*(w), the loss modulus G’’(w), is sketched in Fig. 28 (top) of 

section 5.5, as it would result from the TR model. Again, four different power-law regimes are 

obtained. 

Experiments in the melt reveal M-dependences of transport coefficients, which are stronger than 

predicted by the TR model, for instance h0, τt ∂ M3.4 - 3.7  and D ∂ M-2.0 - -2.4 (see above and section 2). 

These deviations led to modifications of the original TR model by adding additional relaxation 

mechanisms.91-94 The most prominent ones are fluctuations of the chain contour length and 

constraint release.  

In real chains the contour length fluctuates with time. Such contour-length fluctuations (CLF), which 

were already suggested by Doi,24,95,96 pose an additional relaxation mechanism for single chains. CLF 

effectively lead to a loosening of the tube constraints at the chain ends, i.e. a0 increases and the tube 

effectively widens. Likhtman and McLeish take this effect into account by a modification of the tube 

survival function at short times (t < τR):97 
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The long time behavior (t > τR) of m(t) is described by eq. 34, yet, with an effectively reduced 

disengagement time according to:97 
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The factor of 1.5 in eq. 39 and the constants ci in eq. 40 arises from a numerical optimization. CLF 

lead to increased molar mass dependences of τd and h0 , with respect to the original tube model. 

Thus, CLF explains the experimentally observed exponents. A first direct experimental proof of CLF 

succeeded via neutron spin echo (NSE) spectroscopy (cf. chapter 2) on poly(ethylene) (PE).98 The 

findings were later supported by another NSE work on poly(butadiene) (PB) chains, where only the 

center section was labelled (protonated) while the ends were disguised by deuteration.99 Such 

pseudo-triblock copolymers are also subject of PUB2 and section 5.2, where FC 1H NMR results are 

reported. Yet, CLF can’t impact on the diffusion coefficient D, therefore the effect cannot explain the 

mentioned discrepancies between theory and experiment alone. Graessley suggested that parts of 

chains can “leak” the strict tube confinement assumed in the original TR model. This enables some 

lateral movement in regimes II and III.100,101 This “constraint release” (CR) is a further relaxation 

mechanism, taking into account that the tube is actually mobile all over and not only at its ends, as 

the neighboring chains forming the tube, also move. It is a coherent relaxation process involving 

many chains, in contrast to CLF. Graessley treated the tube dynamics by a Rouse-like model. As his 

original ansatz is at variance to some experimental observations,102 the modelling of CR was refined 

by Rubinstein and Colby103 and later on by Likhtman and McLeish.97 The latter propose to add the 

following relaxation function at short times (t < τR):  
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The parameter 0 § cv § 1 characterizes the mobility of the tube. For long times t > τR the Likhtman/ 

McLeish model doesn’t apply, which is, however, unproblematic, as here the exponential decay of 

the tube survival function m(t) (eq. 34) dominates anyway. Zamponi et al. provided the first 

experimental proof of CR using NSE spectroscopy.104 Summarized, the full form of the end-to-end 

vector correlation function in the entanglement regime reads: 

( ) ( ) ( ) ( ) ( )tRttrtr CRCLFeeee µµ∝⋅ 0
rr

                                                      (42) 

Of course, the corrections appearing in eq. 42 can be applied to m(t) in the shear relaxation function 

(eq. 38) as well. The Likhtman/McLeish theory likely poses the most rigorous treatment incorporating 

CR as well as CLF. It was successfully applied to fit rheological and dielectric data simultaneous.105 

Graessley conjectured that the predictions of the TR model are approached asymptotically with 

growing M, so that it becomes appropriate only for M > Mrep >> Mc due to finite length effects.61 This 

transition is indeed realized in the Likhtman/McLeish theory when M becomes very large (cf. eqs. 39-

41). Experimentally, finite length effects indeed asymptotically disappear for very high M >> Mc ,i.e. 

at a second crossover mass. Then, the predictions of the TR model are essentially reproduced (cf. 

Figs. 5 and 8).106-109 It is finally noted that the TR model can also be adapted to semi-dilute polymers 

using scaling arguments.87 

 

1.6 Generalized Rouse Models  

As an alternative to the phenomenological TR model, Schweizer adapted a generalized form of the 

Langevin equation to polymers, which is also known as the polymer mode coupling theory (PMCT, cf. 

section 1.2).45,110,111 The bead-and-spring system of the Rouse model (eq. 21) is extended by a 

memory matrix intended to take entanglement effects into account, by mimicking a time and 

position dependent “non-local” friction. A special choice of the memory matrix leads to the 

renormalized Rouse model (RR) proposed by Kimmich and Fatkullin.5 Like the TR model, the RR 

model predicts a family of four hierarchical power-law regimes for <r2(t)>. It incorporates the 

standard Rouse regime at short times and a diffusive one at long times. At time scales where 

entanglement is relevant, two further intermediate sub-diffusive power-law regimes in <r2(t)> are 

predicted, as in the case of the TR model. In the first renormalization, the memory matrix describing 

entanglement at long times is related to the segmental MSD as provided by the ordinary Rouse 

model. For the second renormalization, the memory matrix is related to the MSD resulting from the 

once renormalized Rouse model and so on.5 The degree of recursive normalizations is physically only 

reasonable for n § 3, thus one distinguishes between once, twice and thrice renormalization.5 The 

regime transition times depend not only on M in a different way than in the TR model, but partially 

also on the number of recursive renormalizations n. Yet, also the RR model is purely 

phenomenological. In Fig. 1 (section 1.5) the predictions for <r2(t)> following from the once, twice 

and thrice RR model are outlined, in comparison to that of the TR model. 

In the so-called “high mode number” limit succeeding the ordinary Rouse regime, <r2(t)> ∂ t1/4 is 

predicted by the n-RR model, for all degrees of renormalization. As this exponent coincides with that 

of the constrained Rouse dynamics, this regime is of limited meaningfulness for distinguishing 
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between the TR and the RR model. In the “low mode number - short time limit” occurring at longer 

times, <r2(t)> ∂ t-2/(n+4) depends on n and values different than that of the reptation regime of the TR 

model result. Here, both models can indeed be distinguished. Finally, in the terminal regime of the n-

RR model called “low mode number - long time limit”, i.e. at t > τt
nRR the MSD becomes linear in time. 

It is noted that the n-RR model predicts τt
nRR∂ Mn/2+2 for the M-dependence of the terminal relaxation 

time and DnRR∂ M-(n/2+1) for the diffusion coefficient. Thus, the forecasts of the thrice RR model 

conform to experimental observations quite well. In contrast to the TR model, the RR model is 

isotropic at all times, therefore ( ) ( ) 12 )(0 −><∝>⋅< trbtb
rr

 holds in general (cf. eq. 30).73-75 As already 

mentioned, FC 1H NMR with its sensitivity to intra- as well as inter-molecular relaxation, allows to 

confront predictions of the TR vs. the RR model. In PUB 2 and section 5.2 it is discussed that re-

orientation of polymers is describable rather in favor of the RR than the TR model. The RR model was 

already used by Kimmich and co-workers to describe FC NMR relaxation data. 6,73-76,112,113  

Another generalization of the Rouse model is generalized Gaussian structures (GGS).114 By 

introducing a connectivity matrix, arbitrary topologies of molecules can be realized via systems of 

Langevin equations. GGS are used to model complex molecular geometries such as dendrimers, star-

like polymers or semi-flexible linear chains, usually based on bead-and spring systems.115-117  

 

1.7 Intra- and Inter-Molecular Relaxation in 1H 

In this section it is briefly explained how molecular dynamics in terms of <r2(t)> and C2(t/τα), is related 

to the spin-lattice relaxation rate dispersion R1(ω) measured by FC 1H NMR. In particular, it is 

distinguished between intra- as well as inter-molecular relaxation. The proton (1H, nuclear spin I = 

1/2) is the most favorable nucleus for FC NMR for several reasons: with g = 42.6 MHz/T it possesses 

the second largest gyromagnetic factor at all, only that of 3H is slightly higher.118 Hydrogen is the 

most abundant atom in the universe and with a share of 99.99%, 1H is the most abundant isotope. As 

such, it is omnipresent in organic compounds like polymers. Thus, 1H offers by far the highest signal, 

which is beneficial at the still comparatively low detection fields available in FC NMR. The dominating 

interaction among 1H is the magnetic dipole-dipole interaction HDD(t), the Hamiltonian of which reads 

in Cartesian coordinates75,119-121  

( ) ( ) ( ) ( )( ) ( )( )[ ]∑ ⋅−⋅⋅⋅−=
−

pairs
spin

320
DD 3

4
jiijjijiij IIteIteItrtH
rrrrrrr

hγ
π

µ
                     (43) 

with ( ) ijijij rrte
rrr

=  denoting the unit vector connecting two magnetically equivalent spins i and j, 

respectively, and I
r

 is the spin vector operator. Higher order interactions involving more than two 

spins are neglected for simplicity. Nevertheless, the dipolar interaction has many-particle character. 

The assumed spin pairs display four eigenstates in the Zeeman product basis, two of which are 

degenerate as both spins are alike. The dipolar interaction acts directly through space. It is sensitive 

to relative translations and rapidly decreases with the inter-nuclear distance rij. HDD also depends on 

the relative orientation of the spins, i.e. it also senses rotation. The local magnetic field at the 

position of each spin generated by its neighbors fluctuates. Thus, the dynamics of molecules bearing 

the spins leads to a time dependence of HDD(t). HDD generally contains both, secular as well as non-

secular components and is considered as a small perturbation to the much stronger Zeeman 
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interaction BIH z

rr
γ−= . In liquids HDD is essentially averaged to zero by rapid and isotropic molecular 

motion, unless the dynamics is sufficiently slowed down, for example during the glass transition at 

temperatures close to Tg. Then, the dipolar coupling becomes detectable in the spectrum as it leads 

to line broadening. Otherwise, in systems with spatial long-term order such as liquid crystals, rubbers 

or entangled polymers, a residual dipolar coupling (RDC) occurs, although motion is rapid. This also 

leads to spectral line broadening, which can be a valuable source of information (cf. section 2). The 

fluctuations of the non-secular components of HDD do not affect the NMR spectrum but are 

responsible for spin relaxation.122  

The following, well-known expression for the relaxation rate can be derived from time-dependent 2nd 

order perturbation theory75,76,119 

( ) ( ) ( ) ( ) ( ) 



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
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where Am(t) are second-rank (l = 2) autocorrelation functions  
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and ns is the spin volume density. The occurrence of A1(t) and A2(t) in eq. 44 stems from single and 

double quantum transitions between the four energy states related to the non-secular components 

of HDD(t).123 In isotropic systems like liquids, the dependence on the index m can be dropped, i.e. 

Am(t) = A0(t) and the spherical harmonics reduce to the 2nd rank Legendre polynomial. 

( ) ( )( )
( )

( )( )
( )

( )∑ ∝
−

⋅
−

= −

pairs
spin

3

ij

2

3

ij

2
1

0
0r

10cos3

r

1cos3

16

5
tC

t

t
ntA DDs

ϑϑ
π

                            (46) 

After normalization, the dipolar correlation function CDD(t) := A0(t)/A0(0) is gained (cf. eq. 4). As it 

correlates fluctuations with respect spin pairs, CDD(t) is a pair-correlation function. Furthermore, 

CDD(t) depends on relative translational displacements between nuclei as well as on the alignment in 

space, i.e. the orientation of the inter-nuclear vector. The cos-transformation provides the 

normalized dipolar spectral density:18  

( ) ( ) ( )dtttCJ DDDD ωω cos
0

∫
∞

=                                                            (47) 

Hence, eq. 44 can be rewritten to the well-known Bloembergen-Purcell-Pound (BPP) equation,123 

with K denoting the dipolar coupling constant:  

( ) ( ) ( )[ ] ( )ωωωω KJJJKR 5241 ≈+=                                                   (48) 

As the spectral density J(ω) encountered in complex liquids is very broad, the difference between the 

single quantum J(ω) and the double quantum component J(2ω) is negligible, i.e. J(ω) ≈ J(2ω) holds in 

approximation, when discussed on logarithmic scales.b The coupling constant is related to the second 

moment M2, which reads for I = 1/2 nuclei in isotropic systems:119 

                                                           

 

b  Assuming a power-law behavior for the spectral density for demonstration purposes, i.e. J(ω) ∂ ω-a , it 

follows that J(ω)/4J(2ω) = 2a-2. For a < 2 the term 4J(2ω) dominates over J(ω). This is practically always the case. 
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Besides quantifying the interaction strength, M2 takes the spatial distribution of interacting spins into 

account and is formally similar to a lattice sum, like the Madelung constant. The second moment is 

essentially a system-specific parameter. Yet, as it strongly depends on inter-nuclear distances, it 

might be affected by density changes, e.g. when the temperature is varied. Another advantage of 

using protons in FC NMR is that the second moments M2 , and thus the typical relaxation rates, are 

not too high, so that the switching times encountered in FC NMR (a few milliseconds) usually do not 

compromise the measurements.  

The perturbation treatment leading to eqs. 44 and 48, respectively, is only valid if two important 

conditions are fulfilled.124 First, the amplitude of the perturbation HDD(t) in terms of its angular 

frequency must be small compared to the inverse of the longest correlation time within a given 

system, i.e. wDD << τt
-1. This condition is frequently denoted as the Redfield condition.125 Only then, 

the power series of the perturbation ansatz can be restricted to the 2nd order. Second, the time scale 

of relaxation must be much longer than that of the fluctuations causing it, i.e. R1 << τt
-1.124-126 At very 

low fields or in viscous systems, respectively, both conditions may be violated. Then, defining a 

relaxation rate is difficult as it becomes time dependent. A satisfying theoretical treatment 

appropriate when the common relaxation theory breaks down is still missing.  

As mentioned, the dipolar correlation function CDD(t), the dipolar spectral density JDD(ω) and hence 

the (total) relaxation rate R1(ω) usually probed in FC 1H NMR, are all superpositions of an intra- and 

an inter-molecular contribution, which are probed simultaneously:119   

( ) ( ) ( )tCtCtCDD inter2 +∝   ( ) ( ) ( )ωωω interintra JJJDD +∝   ( ) ( ) ( )ωωω inter

1

intra

11 RRR +=      (50)                 

The intra-molecular correlation function C2(t) refers to interacting spins situated on the same 

molecule or segment. As the molecules are assumed to be sufficiently rigid, the inter-nuclear 

distance rij is constant, merely leaving the angular dependence in the dipolar correlation function eq. 

45. In polymer melts, assuming isotropic dynamics like in the Rouse or the RR model for instance, 

C2(t) reflects the bond vector correlation function (cf. section 1.4 and eq. 30): 

( ) ( ) ( ) ( ) 2
2

2

2 0
−

∝∝ trbtbtC
rr

        (isotropic dynamics)            (51) 

This allows for a direct interpretation of the intra-molecular spin-lattice relaxation dispersion in 

polymer melts as the Fourier transform of the squared bond vector correlation function:73-75   

( ) ( ) ( ) dtebtbR tiωω −
+∞

∞−
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2
intra

1 0
rr

        (isotropic dynamics)            (52) 

Regarding this relationship, it is understandable, that the power-law regimes occurring in the re-

orientational correlation function are mapped in the relaxation dispersion. Intra-molecular relaxation 

in polymers can actually be subdivided into an intra-segmental and an inter-segment part. The first 

one originates from neighbored spins, the latter one is associated with spins located on the same 

molecule but on different segments. Yet, Fatkullin et al.76 and later on Kehr et al.127 demonstrated, 

that the inter-segment contribution is negligible (see also PUB2). 
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In the TR model the dynamics is first isotropic at t < τe , i.e. in regimes 0 and I. At τe <  t < τd , however, 

the dynamics becomes anisotropic due to the tube, meaning that the chain dynamics is correlated to 

the initial conformation over large times. In this regime, it is difficult to calculate the bond-vector 

correlation function and hence R1
intra(ω). Alternatively, deGennes RTO hypothesis is taken up.88 

According to eq. 35 (section 1.5) it states an inverse proportionality between C2(t) and <r2(t)>  in the 

constrained Rouse (II) and in the reptation regime (III). As in the case of the shear relaxation modulus 

G(t), the terminal process is the disengagement from the tube, represented by the tube survival 

function m(t). Neglecting CR/CLF, this produces an exponential cutoff at t > τd. Altogether, the 

following, time scale separation ansatz for C2(t) in the TR model was proposed by Ball et al., which is 

currently the most accepted approach, relating entangled polymer dynamics to NMR:128 
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         (TR model)              (53) 

Note in eq. 53 that C2(t ≤ τe) follows Rouse dynamics. Below in this section, Table 1 summarizes the 

regimes in C2(t) and, after Fourier transformation, R1
intra(ω), as predicted by the TR model. It is again 

emphasized that, regarding eqs. 51 and 53, the relation between C2(t) and <r2(t)> in the 

entanglement regime (at t > τe) depends on whether the dynamics is isotropic (like in the Rouse or 

the RR model) or anisotropic (like in the TR model). In PUB2 FC NMR data is interpreted in this sense.  

A somewhat different time scale separation approach was proposed by Kimmich et al.5,129 As in Ball’s 

ansatz (eq. 53), the correlation function C2(t) is phenomenologically decomposed into three 

independent parts along C2(t) := a(t)äb(t)äc(t). Component a(t) reflects local reorientation of (or 

within) segments, which is essentially the α-process. Component b(t) comprises chain dynamics. 

Finally, the terminal relaxation related to diffusion, is represented by c(t). Component a(t) leads to 

pre-averaging and c(t) to an exponential decay, respectively, as in eq. 53. Concerning component 

b(t), a relation linking translational and re-orientational motion different from that of eq. 35 is 

assumed, specifically C2(t > τα) ∂ d/dt <r2(t)> . This leads to different exponents in regimes I and II, 

with respect to eq. 53. Later on, Kimmich and co-workers described the polymer specific component 

b(t) in the context of the renormalized Rouse model (section 1.6).5 Substituting the prediction for the 

MSD of the RR model into eq. 51, the forecast for the corresponding re-orientational correlation 

function C2(t) is calculated. The predictions are outlined in Fig. 19b of section 5.2. Concerning <r2(t)>, 

the TR model and the RR model can only be distinguished in regime III, as mentioned. Yet, due to the 

fact that ( ) 22

2 )( −><∝ trtC  results within the RR model, while ( ) 12

2 )( −><∝ trtC  is assumed in the TR 

model (RTO hypothesis), one can distinguish both already in regime II, succeeding the Rouse 

regime.PUB2 

 

The inter-molecular correlation function Cinter(t) is related to relative translational displacements 

between protons. Fatkullin et al. derived a theoretical framework relating Cinter(t) directly to the 

segmental MSD in polymers.75,127 It is briefly outlined. The conditional probability that two spins (i 

and j) having an initial distance of || ji rrr
rr

−=∆  are displaced after time t so that their relative distance 

becomes |''|' ji rrr
rr

−=∆ , is given by a propagator ( )trrW ,'| ∆∆ . Their relative displacement is given by 

|'|~ rrr ∆−∆=  and the corresponding propagator by ( )trW ,~ . First, the equivalence ( ) ( )trWtrrW ,~,'| =∆∆  



33 
 

 

is assumed, i.e. that the propagator only depends on the relative displacement r~ . In polymer 

statistics, usually a Gaussian propagator is assumed for long times (t >> ts), specifically:5,6,24,75,76,130,131  
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For translational correlation to survive requires that the relative displacement during time t is zero, 

the probability of which is ( )trW ,0~ = . This consideration leads to:75,76  
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The relative MSD is related to the absolute one via a factor 2, i.e.  ( ) ( ) ><>=< trtr 22 2~  as it is 

assumed that chain motion is independent of each other’s.75,76,PUB4 The expectation for Cinter(t) using 

the MSD provided by the TR model is included in Table 1 and illustrated in Fig. 21c (section 5.4). 

Similar predictions result for the RR model; only in regime III a different exponent is expected (cf. Fig. 

1). Substituting eq. 55 into 44 and reversing the cos-transformation yields:75,PUB4  
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Equation 56, offers the opportunity to determine the segmental MSD in polymer melts. Inverse 

Fourier transformation leads to R1
inter(ω), the prediction of which by the TR model is also included in 

Table 1. Equation 54 was tested by atomistic MD simulations (cf. also section 5.1).132 It was found 

that the dynamics is not yet Gaussian at times smaller than 1 ns, limiting the range validity of the 

approach to longer times. Then, higher order corrections have to be added to eq. 56, as indicated. It 

is further noted that the inter-molecular relaxation doesn’t exclusively contain information on 

translational dynamics. The distance between spins on different molecules will also be modulated by 

reorientations of the molecules, to which they are attached, a phenomenon called “eccentricity”.133  

This effect will play a role at small displacements and is neglected in the treatment given here. 

Equation 56 is exploited in this work to calculate the segmental MSD in poly(butadiene) (PB), 

poly(dimethyl siloxane) (PDMS) and poly(ethylene propylene) (PEP), of various molar masses from FC 

NMR relaxation data (cf. sections 5.3, 5.4 and PUB4). Explicitly presuming a power-law character 

<r2(t)>∂ ta<1  of the MSD, eq. 56 can be further simplified to a purely algebraic expression  

( ) ( )[ ] 3/2inter

1

2 −
∝ ωωRtr                                                                (57) 

which was used by Herrmann et al.134 In the hydrodynamic limit, where the MSD becomes linear in 

time, Cinter(tØ ¶)∂ t-3/2   adopts a universal, model-independent power-law anticipated in all kinds of 

liquids.135-137 In the frequency domain 

( ) ( ) ωω 23

11 00 −−=→ BDRR                                                        (58) 

(B is a constant) is found for 1H spin-lattice relaxation dispersion.135-137 This relation allows to 

determine the diffusion coefficient D in simple liquids as well as in polymers.138-141 Computer 

simulations confirmed this generic low frequency/long time behavior.132,142 The presence of inter-

molecular relaxation has the important consequence that R1(ω) shows dispersion at all ω, hence no 

“extreme narrowing” exists in 1H, even at lowest ω. Yet, when D is large, the square root law eq. 57 is 
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difficult to resolve in the overall dispersion data. Isotope dilution experiments enable a distinction 

between intra- and inter-molecular components and reveal that the inter-molecular relaxation rate 

indeed must not be neglected (cf. section 4.3 and section 5).134 Moreover, it even dominates the 

shape of CDD(t) at long times as C2(t) decays exponentially.  

 

 

 

 

 

 

 

 

 

Table 1: Predictions of the TR model for quantities accessible by FC NMR: segmental mean square 

displacement <r2(t)>, re-orientational correlation functions C1,2(t), intra-molecular spin-lattice relaxation 

dispersion R1
intra(ω) , as well as the respective inter-molecular analogs. 

 

Using the predictions for the TR or the isotropic polymer models, it can be derived that the ratio A(ω) 

:= R1
inter(ω)/R1

intra(ω) ∂ <r2(t=ω-1)> ≤1/2 increases with ω in the TR model (- sign) while isotropic models 

(like RR) rather predict a decrease (+ sign).PUB2 In addition to confronting theoretically predicted 

power-law exponents to such actually observed in experiments, this can be exploited to test polymer 

theories (cf. Fig. 18, section 5.2).  

  

regime <r2(t)> C1(t) C2(t) R1
intra(ω) Cinter(t) R1

inter(ω) 

Rouse t1/2 t-1/2 t-1 - τ0 ln(ω τ0) t-3/4 ω-1/4 

const. Rouse t1/4 t-1/4 t-1/4 ω-3/4 t-3/8 ω-5/8 

reptation t1/2 t-1/2 t-1/2 ω-1/2 t-3/4 ω-1/4 

diffusion t1 exp(-t/τd) exp(-t/τd) const. t-3/2 R1(0)-c ω1/2 
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1.8 Relaxation in 2H  

Deuterons (2H) possess a nuclear spin of I = 1 and thus an electric quadrupole moment Q interacting 

with an electric field-gradient (EFG). An EFG is induced by the molecular charge distribution, e.g. of a 

C-D single bond.119-121 The quadrupolar Hamiltonian reads119  

( ) ( ) IrVI
eQ

tH
rrr

h
⋅⋅= αβ

2
Q                  .                                              (59) 

The EFG tensor Vab = ∑2F / ∑a∑b (a, b are Cartesian coordinates) comprises the second derivatives of 

the electric potential F and thus information about the charge distribution within a molecule. The 

quadrupolar interaction is purely local and short ranged. In the case of 2H also a dipolar interaction 

exists, but its strength is negligible compared to the much stronger quadrupolar interaction. While 

the principal moments of Vab depend on the charge distribution, the alignment of the EFG tensor 

fluctuates due to molecular motion; therefore HQ(t) is a time-dependent perturbation of the Zeeman 

interaction Hz causing relaxation. The spin-lattice relaxation rate in the case of isotropic motion and 

an axially symmetricc EFG tensor reads similar to that of 1H (cf. the BPP-eq. 48)  

( ) ( ) ( )[ ]ωωδω 24
15

2 2

1 JJR Q +=                      ,                                 (60) 

with dQ = 3e2qQ/4ℏ  denoting the 2H coupling constant. The latter depends on the field-gradient -eq 

which is, by convention, equal to the maximum principal component Vzz of the field gradient 

tensor.119 Relaxation rates concerning 2H are significantly higher (typically by a factor of 8-10) when 

compared to 1H which, may interfere with the finite switching times emerging in FC NMR. Moreover, 

the NMR signal is much weaker due to the smaller frequency as the gyromagnetic factor is reduced 

by g1H / g2H ≈ 6.5. Due to the local character of the quadrupolar interaction, the spectral density R1(ω)  

is exclusively intra-molecular and sensitive to re-orientational dynamics of the segment, i.e. C2(t) is 

probed. Hence, at low ω under extreme narrowing conditions (ωτt << 1), liquids are expected to 

feature a plateau in the spin lattice relaxation dispersion, i.e. R1(ω) = const. (cf. Table 1). FC 2H NMR 

allows a confirmation of 1H isotope dilution experiments also revealing the intra-molecular relaxation 

rate.130,134,PUB2  The state-of-the art of FC 2H NMR on polymers is outlined in section 5.4 and in PUB6. 

 

  

                                                           

 

c The EFG tensor is axially symmetric if the asymmetry parameter h :=(VXX-Vyy)/Vzz  vanishes, where  

|Vzz|>|Vyy|>|Vxx| are the principal components.143 
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2. Experiments on Polymer Dynamics Beyond FC NMR – 

State-of-the-Art  

The dynamics in liquids can be studied by a multitude of methods. The most important ones often 

used to investigate polymer dynamics are outlined in this section, in particular those which also refer 

to this work. The subsequent section 3 is dedicated to field-cycling (FC) NMR. Figure 2 displays a 

schematic comparison of the typical dynamic range of the different methods, where the usual 

domain, time (t) or frequency (f), is indicated.  

 

Figure 2: Approximate dynamic range and typical 

domain (t: time, f: frequency) of various 

experimental techniques used to study the 

dynamics in liquids. NS: neutron scattering; MD 

sim.: molecular dynamics simulations; DQ NMR: 

double quantum NMR spectroscopy; FG NMR: 

field-gradient NMR; DLS: dynamic light scattering; 

OKE: optical Kerr-effect spectroscopy; DS: 

dielectric spectroscopy. 

 

Translational motion of molecules can be 

probed by dynamic scattering methods 

involving light144 (DLS), X-rays, electrons or 

neutrons1,16,145-151 (NS). As outlined in the 

Introduction (section 1.1) the dynamic structure factor ( )ω,qS
r

 or the intermediate scattering function 

( )tqS ,
r

, respectively, are analyzed. Neutrons yield the highest spatial resolution and selectivity, the 

latter e.g. via 1H/2H labelling. Molecular (segmental) diffusion is reflected in the self-part of the 

dynamic structure factor accessible from the incoherent contribution of quasi-elastically scattered 

neutrons, specifically, by measuring the scattering function ( )tqS ,inc
 (cf. section 1.1) of a fully 

protonated liquid.16,131,147 Neutron Spin Echo (NSE) spectroscopy, a time-of-flight technique, offers a 

particularly high energy resolution. Changes in the velocity distribution caused by inelastic scattering 

in a sample prevent a full refocusing of the phase angles the neutrons accumulate when passing 

through two magnetic field gradients with opposite directions.98,131,148-151 In Fig. 3 the segmental MSD 

<r2(t)> as derived from NSE measurements on entangled poly(ethylene) (PE) in the melt state is 

shown. For that purpose, eq. 3 was used.  
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Figure 3: Segmental MSD <r2(t)> of an 

entangled poly(ethylene) melt. Sinq(q,t) was 

measured using NSE and related to the MSD via 

eq. 3 (cf. vertical axis). The crossover from 

Rouse (I) to the constrained Rouse (II) dynamics 

is observed. Taken from Wischnewski et al.131  

 

 

 

 

 

 

 

The MSD of PE shown in Fig. 3 features the crossover between the sub-diffusive Rouse and the 

constrained Rouse power-law regime (cf. Table 1).131 Beyond computer simulations (see below), such 

NSE experiments have been the only experimental proof of regime II in the segmental MSD of 

polymers for a long time. In PUB4 as well as in sections 5.3 and 5.4 it is demonstrated that also FC 1H 

NMR provides <r2(t)> in polymers, if it succeeds to work out the inter-molecular relaxation dispersion 

R1
inter(ω) from the total 1H relaxation using the isotope dilution technique. In section 5.4 even a 

comparison between the MSD of PEP as determined from NSE spectroscopy as well as from FC 1H 

NMR relaxometry is carried out. 

 

Moreover, forward recoil spectrometry (FRES),83,152-154 scanning infrared microscopy (SIRM),155 

fluorescence recovery after photo bleaching (FRAPP),85,86 forced Rayleigh scattering (FRS)156-159  and 

fluorescence correlation spectroscopy (FCS)160-162 can be applied to measure the diffusion coefficient 

D, i.e. translation in the hydrodynamic limit. While the first two techniques are restricted to thin 

films, the latter three require tracers like dye molecules.  

 

Established as a gold-standard, field-gradient (FG) NMR163-167 is used to measure diffusion, typically 

also in the hydrodynamic limit. The loss of phase coherence in a spin system by particle diffusion 

along an either static or pulsed field-gradient g = ∑B/∑z is probed via spin-echo techniques, like the 

stimulated echo. The measured stimulated echo amplitude is formally identical to the (incoherent 

contribution of the) intermediate scattering function ( )tqS ,inc

r
, when q

r
 is identified with ggτ. The 

evolution time is denoted as τ. Indeed, FG NMR and NS are complemental methods.168 Regarding 

polymers, under favorable conditions FG NMR is able to advance into the reptation regime, where D 

becomes time-dependent and the MSD sub-diffusive.87,169-176 The lowest diffusion coefficients reliably 

determinable by FG NMR are on the order of D~10-15 m2/s, limited by the NMR specific phenomenon 

of zero-quantum flip-flop transitions (spin-diffusion)5,165,177 and by the strength of the field gradient. 

Besides the diffusion induced decay, the stimulated echo amplitude is additionally attenuated by 

longitudinal as well as transversal relaxation, constituting further limitations.PUB4 In Fig. 4 the MSD 

<z2(t)> along the direction of a field-gradient of poly(styrene) (PS) with 1 § M/106 § 20, well above 

Mc , is shown as an example.87 To match the time scale with the experimental window, the 

measurements were carried out in concentrated solution and not in the melt. The entanglement 
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related power-law regimes II and III of the TR model (cf. Table 1) are reproduced asymptotically. At 

longest times, the hydrodynamic limit <z2(t)>  = 2Dt is reached. Thus, at least in polymer solutions all 

regimes of the TR model were reproduced via FG NMR. 

 

Figure 4: FG NMR diffusion data of poly(styrene) with 

1 § M/106 § 20 . (MD = megadaltons). MSD <z2(t)>  in 

the direction of a field-gradient. Depending on M, 

transitions between power-laws t1/4 to t1/2and t1/2 to 

t1, respectively, conforming to regimes II-IV of the TR 

model, are indicated (straight lines). From Komlosh et 

al. 87 

 

The identification of all sub-diffusive regimes of 

<r2(t)> in a polymer melt by a single technique 

was still missing. In PUB4 (section 5.3) the 

complemental time ranges of FG 1H and FC 1H 

NMR are combined to measure the segmental 

MSD in PB and PDMS melts over a huge time 

range.  

 

 

Re-orientational motion in terms of the correlation functions Cl(t) is accessible by DLS (l=2) using 

depolarized detection.29,30,39,55,56,49,144,177-180 Frequency (Raman, 10-12 τ/s < 10-8) and time domain 

(Photon Correlation Spectroscopy, 10-8 τ/s < 101) techniques provide complemental dynamic ranges. 

Yet, while DLS is predestined for measuring the α-process and faster dynamics, large scale polymer 

dynamics is difficult to detect.55 Another optical method suitable for measuring the local and fast 

dynamics in the time domain is Kerr-effect spectroscopy (OKE, l=2).181-184 Dielectric spectroscopy 

(DS, l=1) probes the fluctuating electric polarization, usually in the frequency domain.23,185,186 Most 

polymers merely have (electric) dipole components perpendicular to the chain contour and are 

classified as type-B.72 Such dipole components re-orientate independently with the corresponding 

monomers and reflect the local α-relaxation Fa(t) solely. In the rare case of type-A polymers72 like 

poly(isoprene) (PI) or poly(propylene glycol) (PPG), there is also a dipolar component parallel to the 

backbone, accumulating along the chain. Therefore type-A polymers feature two relaxations, Fa(t) 

and the normal mode FNM(t), the latter posing the correlation function of the end-to-end vector 

( ) ( ) >⋅< 0eeee rtr
rr  (cf. eqs. 26 and 34).108,185   

In Fig. 5a master curves of the dielectric loss ɛ‘‘(ωτα) of PI plotted vs. the reduced frequency ωτα are 

shown.108 They include the α-process at high as well as a normal mode (NM) at low frequencies. The 

latter shifts toward lower reduced frequencies with increasing M. Figure 5b shows the ratio of the 

time constant of the normal mode and of the α-process τNM(M)/τα. Three power-law regimes 

τNM(M)/τα ∂ Ma were identified, the exponents of which slightly differ from the predictions of the 

Rouse and of the TR model (sections 1.4, 1.5). Specifically, for M < Mc aI = 2.6 was found, while the 

Rouse model predicts aR = 2. For Mc < M < Mrep ≈ 10 Mc an intermediate regime with aII = 4.0 and for 
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M > Mrep a regime with aIII = 3.0 was attributed, the latter being in accordance with the TR model. 

This finding is an indication that finite length effects (like CLF, CR) disappear when M becomes very 

large. Then the predictions of the TR model for pure reptation are approached (cf. section 1.5). 

Similar observations follow from shear measurements which also suggest such a further crossover 

molar mass Mrep in the M-dependence of the zero shear viscosity h0(M) of polymer melts (see below 

and Fig. 8).  

 

 

 

 

 

 

 

 

Figure 5: a) Dielectric loss master curves ɛ‘‘(ωτα) of poly(isoprene) (PI) evolving with M, as indicated. The 

amplitude of the α-peak is scaled to 1. Besides the α-process an M-dependent normal mode is observed.  

b) Ratio τNM(M)/τα as a function of M. Three power-law regimes occur, with exponents and crossover molar 

masses Mc , Mrep as indicated. Adapted from Abou Elfadl et al.108  

 

Computer simulations of molecular dynamics (MD) give access to atomic or segmental trajectories, 

from which any quantity, like correlation functions or the MSD, can be computed.10,187 The virial 

theorem in combination with eq. 16 is used in simulations to predict mechanic response of complex 

fluids such as polymer melts.25 As simulations still lack of sufficient computing power, slow dynamics, 

as they occur in complex liquids like polymers, are impossible to simulate for large scale systems, 

unless microscopic details are coarsened or the potentials are facilitated. Kremer et al. were the first 

to discover the transition from Rouse (I) to constrained Rouse (II) dynamics, applying a bead-and-

spring model.188,189 Since then, numerous simulations revealed further evidence for polymer 

dynamics in terms of Rouse modes and reptation.19,71,97,187-196 In Fig. 6 a state-of the-art example of 

simulated polymer dynamics in the entangled melt is given.20 A generic bead-and-spring model was 

assumed in this work by Wang, Likhtman and Larson which poses a rare example for a simulation 

addressing both, the segmental MSD as well as re-orientational correlation functions. It can be 

considered as a reference for FC 1H relaxometry. 
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Figure 6: a) Scaled MSD and (b) re-orientational correlation functions C1(t) and C2(t), respectively, of central 

monomers, resulting from coarse-grained computer simulations of entangled polymer melts. Chain lengths N 

are indicated. Power-law regimes of ballistic (0), Rouse (I) and constrained Rouse (II) dynamics are assigned, as 

well as the entanglement time τe. Taken from Wang et al.20   

 

Specifically, Fig. 6a displays the (rescaled) MSD <r2(t)> ä t-1/4, averaged over the ten middle 

monomers of entangled chains, each consisting of at least N = 100 and up to N = 1000 segments. 

Figure 6b shows the corresponding (rescaled) re-orientational correlation functions C1(t) ä t1/4 and 

C2(t) ä t1/4. This scaling of the abscissae was chosen, as in the constrained Rouse regime (II) on which 

the work focusses, the TR model predicts plateaus due to <r2(t)>-1 ∂ C1(t) ∂ C2(t) ∂ t-1/4 (cf. section 1.7 

and Table 1). Three power-law regimes are apparent in all three quantities. They were assigned to 

ballistic (0), Rouse (I) and constrained Rouse (II) dynamics. At short times (regime 0), ballistic motion 

going along with <r2(t)> ∂ t2 was observed, but no “cage” effect, which is actually characteristic for 

“glassy dynamics” (cf. Fig. 1). In the Rouse regime (I), the predicted behavior <r2(t)> ∂ t1/2 was 

reproduced essentially. Also the power-law exponents of the functions C1,2(t) slightly differ only 

slightly from the predicted ones in the Rouse regime: while C1(t) ∂ t-1/2 follows from the Rouse 

model, a value of -0.41 was obtained in the simulation. For the 2nd order correlation function one 

expects C2(t) ∂ t-1 , while an exponent of -0.86 followed from the simulation data. The relation 

between both correlation functions anticipated for Rouse dynamics C2(t) ∂ C1
2(t) (cf. section 1.4) was 

also satisfyingly reproduced. In regime II, i.e. beyond the entanglement time te, <r2(t)>-1∂ C1(t) ∂ C2(t) 

∂ t-1/4 behavior is reflected in the long time plateaus turning up in Fig. 6b, although regime II in C2(t) 

is poorly resolved within the noise. Thus, also the exponent values of the constrained Rouse regime 

were reproduced satisfyingly. The extension of regime II along the time axis shrinks with decreasing 

chain length. While for N = 1000 the constrained Rouse regime was observed up to the longest times, 

it barely extended over one decade for N = 100.  As said, the findings discussed above resulted from 

merely averaging over the ten inner monomers of the chains. Wang et al. also evaluated C1,2(t) and 

<r2(t)> averaged over the whole chains. Increased mobility of chain ends was found, slightly 

increasing the absolute exponent values in regime II. Thus, significant finite size effects were 

discovered in the simulation. A comparison of C2(t) obtained by FC NMR of fully as well as centrally 
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labelled chains shows similar results, as will be demonstrated in section 5.2. Concluding, Wang and 

co-workers claim to confirm the RTO hypothesis (eq. 35).20  

Finally, it should be noted that in Herrmann et al. carried out a comparison between the dipolar 

correlation function CDD(t) of PB obtained by FC 1H NMR, and C2(t) from another coarse-grained 

(Monte Carlo) simulation by Kreer et al.197. Consistent results in the Rouse and the constrained Rouse 

regime were revealed, 198  although inter-molecular relaxation was not considered in this simulation, 

which is, however, crucial for 1H relaxation. In atomistic MD simulations, Newton’s equations of 

motion are integrated, using potentials derived from quantum-chemical calculations.199 In contrast to 

generic (coarse-grained) simulations it is attempted to pretend a microscopic environment as 

realistic as possible. With contemporary computational power atomistic MD simulations have 

become available also for polymeric systems, where time scales on the order of 100ns can be 

reached.132 For the first time, atomistic MD simulation data of a polymer melt of different M is 

compared to FC 1H NMR data, practically measured on the same polymer (cf. section 5.1 and PUB1). 

NMR spectroscopy is mostly performed at a single, high field, generated by a cryo-magnet. The only 

available parameter for varying the dynamic range is the temperature. Applied to many nuclei, the 

most prominent ones being 2H, 13C or 31P, C2(t) is probed by a variety of pulse sequences. Most 

methods are sensitive to local and fast dynamics.200-208 Polymer dynamics is difficult to detect via 

spectroscopy since the signal (spectrum), resulting from the secular components of the Hamiltonian, 

is averaged to zero by rapid, isotropic dynamics.121 In entangled polymers, liquid crystals or rubbers, 

however, this averaging may be incomplete, when topological constraints remain on the NMR time 

scale (inverse Larmor frequency). Then, the so-called order parameter S = <P2[cos(J(t))]> is larger 

than zero. Such residual coupling leads to a subtle broadening of the NMR linewidth209,210 and the 

occurrence of pseudo-solid echoes.59,211,212  

Besides longitudinal (R1) relaxation which is the keystone of FC NMR, transversal (R2) relaxation is 

another source of information about polymer dynamics. Based on previous work of Cohen-Addad 

and co-workers,213 Brereton et al. derived expressions for the M-dependence of the transversal 

relaxation rate R2 in terms of the Rouse214 and the TR model,215 respectively, using a coarsened 

scenario of the microscopic chain details. Specifically, R2 is predicted to feature log(M) in the Rouse 

and M log(M) dependence in the entanglement regime, allowing for a distinction between entangled 

and un-entangled chains and also for the determination of parameters of the Rouse and of the TR 

model, respectively. Yet, the treatment is only appropriate in the absence of residual couplings. For 

large M (>> Mc) the residual coupling renders the transversal magnetization decay multi-exponential 

and the definition of a single transversal relaxation rate R2 becomes inappropriate.216,217 The 

transversal relaxation rate R2 is proportional to the zero-frequency component of the spectral 

density, which is, by definition, identical to the mean correlation time, i.e. R2 ∂ J(0) = <τ>. 

Consequently, there is no ω-dependence in R2 and the quantity is not of interest for FC NMR.  

In proton double quantum (DQ) NMR the temporal build-up of double quantum coherences among 

dipolarly coupled spins is measured.218,219 Without major modifications the technique is also 

applicable to 2H.195,218 The coherence build-up is recorded via a time dependent intensity function, 

the so-called (normalized) DQ intensity InDQ(τDQ). In polymers InDQ(τDQ) can be related to the re-

orientational auto-correlation function via C2(t = τDQ) ∂ InDQ(τDQ)/ τDQ
2.195,218-223 Concerning 1H, also 
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inter-molecular effects are detected via isotope dilution experiments,195-221-223 therefore one should 

rather write CDD
DQ(t), as in the case of FC 1H NMR relaxometry. It is unclear if such evidently relevant 

inter-molecular effects are still compatible with the assumptions leading to this simple relationship 

between InDQ(τDQ) and the correlation function CDD
DQ(t). Indeed, Fatkullin et al. have derived 

expressions for the DQ build-up curves for different polymer models.224 They actually demonstrate 

the relevance of inter-molecular interactions. Also the authors of the mentioned DQ studies state 

that “Presumably, our simplistic model based on spin dynamics in an isolated chain segment does 

not take proper account of inter-chain dipolar couplings”.222 The DQ evolution time τDQ is varied in a 

specific pulse sequence225 within some 10 ms, limited by technical aspects, and about 1 ms, providing 

an almost two decades broad  time window. Assuming time-temperature superposition (TTS) the 

time range can be extended to τe <  t < τe µ 105 , which is sufficient to cover the terminal relaxation 

for polymers up to M/Mc ≈ 100.195,221-223 The first applications of DQ NMR to polymers were reported 

by Graf et al.220 and Dollase et al.226 The authors claimed to confirm the TR model in regimes II and III. 

The method was later improved by K. Saalwächter218 and applied to PB195,221,223 and to further 

polymers (PI, PDMS).222 

CDD(t) data from DQ 1H NMR was previously combined with such from FC 1H NMR by Vaca Chávez et 

al. and Herrmann et al. (cf. section 4.2).221,227 As merely the STELAR device was used at that time, the 

FC NMR data comprised τα <  t < τe µ 103. Both methods were still complemental, together covering 

ten decades in time. Using the FC-1 relaxometer in Darmstadt FC NMR nowadays reaches the longest 

time scales, which were preserved to DQ NMR previously.227 In Fig. 14 (section 4.2) it is 

demonstrated that the CDD(t) curves obtained by DQ 1H NMR coincide with such obtained by FC 1H 

NMR almost perfectly. However, when intra- and inter-molecular relaxation is explicitly distinguished 

via isotope dilution experiments, C2(t) resulting from FC 1H NMR doesn’t coincide with its analogue 

from DQ NMR any more, as is addressed in section 5.2 and in PUB2. 

As outlined in section 1.1, in shear rheology the relaxation of shear stress, as a consequence of 

applied strain is recorded. Such strain can be step-like and the decay of stress in the time domain is 

monitored in terms of the relaxation modulus G(t). Applying oscillatory strain, the complex shear 

modulus G*(ω) in the frequency domain is gained.6,24,60-62 As examples, master curves of G’(ωτα) and 

G’’(ωτα) of the linear, low disperse polymer PB with M = 130k >> Mc taken from a publication of Colby 

and co-workers228 are reprinted in Fig. 7. The measurements were carried out in an extraordinarily 

broad temperature range. As T reaches as low as Tg the α-process, reflected in the peak in G’’ at 

ωτα(T) ≈ 1 is included. This allows determining τα(T), as in the case of DS, DLS and FC NMR (cf. section 

5.5). Note that the frequency axis was scaled by the time constant τα(T) subsequently. Rheological 

measurements which include the local dynamics are rarely reported in the literature. 228-230 In section 

5.5 such data will be shown. 
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Figure 7: Master curves of the loss and the storage modulus, G’(ωτα) and G’’(ωτα), respectively, of PB 130k. 

Going from high to low (reduced) frequencies, the α-process, the polymer specific Rouse and the rubbery 

regime as well as the terminal regime are covered. Taken from Colby et al.228 , rescaled and complemented by 

the power-law indicators.    

 

At lowest (reduced) frequencies the terminal power-laws G’ ∂ ω2  and G’’ ∂ ω1 are observed. Thus, 

the polymer melt behaves like a Newtonian fluid on long time scales. The intersection between G’ 

and G’’ at lowest frequencies is often used as an estimate for the terminal relaxation time τt 

(indicated by the arrow in Fig. 7).62 The most obvious feature in entangled polymers is the rubber 

plateau in G’(ω) (and G(t)) between the Rouse and the terminal regime. Strain and stress are 

(approximately) proportional (Hooke’s law), indicating elastic response. This interplay of temporary 

rubber-like elasticity and liquid-like flow is called visco-elasticity. At ωτα < 1 the local relaxation is 

followed by a power-law regime G’ ∂ G’’ ∂ ω0.7 , referred to Rouse dynamics, although the exponent 

doesn’t match exactly; a value of 0.5 is predicted (cf. eq. 32 and Fig. 28 (top)). Up to the authors 

knowledge, no regime compatible with constrained Rouse dynamics (II, cf. Fig. 28 top) was 

experimentally observed in rheological data. The high frequency flank of the terminal peak in G’’ 

typically has a slope of -0.3 π -0.2 (Fig. 7). The difference to the TR model predicting a slope of -0.5 in 

the reptation regime (eq. 37) is explained by finite length effects causing further relaxation modes 

(cf. eq. 38 with the modification of m(t) via eq. 42).6   

In contrast to FC NMR, the transition from Rouse (I) to constrained Rouse (II) dynamics occurring at τe 

is difficult to determine from shear data shear rheology. Park et al. recently proposed a procedure 

according to the which the shear spectra are fitted by the Likhtman/McLeish model97 (cf. section 1.5), 

after the α-process was subtracted from shear master curves.231 As will be suggested in this work, FC 

NMR is indeed capable of determining τe in entangled polymers model-independently, as the 

technique probes different correlation functions than shear rheology. Specifically, in PUB5 and 

section 5.5, rheological data of PEP and PPG are presented and compared to spin-lattice relaxation 

data, in which the transition between regime I and II is pronounced. Shear rheology also doesn’t 

allow for a straightforward distinction between the regimes II and III of the TR model (section 5.5). 
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Unidad et al. recently summarized a multitude of zero-shear viscosity data h0(M) of PI and PB, 

collected from various rheological works.109, This data is reprinted in Fig. 8. Three power-law regimes 

were identified in both species: for M < Mc , h0 ∂ M is apparent, in accordance with the Rouse model 

(cf. section 1.4). For entangled systems a first regime with the typical scaling,  

h0 ∂ M3.3π3.7 is observed.6,24,60-62 Finally, when even another limit Mrep >> Mc is exceeded, the 

prediction of the TR model is approached, as finite length effects disappear, i.e. h0 ∂ M3. This is 

similar to the dielectric results plotted in Fig. 5b, which also suggest a second crossover at Mrep in the 

M-dependence of the relaxation time of the end-to-end vector.108 Unidad et al. state that the 

crossover regime between Rouse and fully established reptation dynamics characterized by h0 ∂ M3 

shrinks if the packaging length p := M (r NA <ree
2>)-1 increases.109 The latter is a characteristic of the 

polymer species. 

 

Figure 8: M-dependence of the zero-shear 

viscosity η0 of PB and PI, respectively. Three 

power-law regimes are indicated. Taken from 

Unidad et al.109  
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3. Principles of Field-Cycling NMR Relaxometry 

The idea of frequency-dependent NMR, in particular relaxometry, dates back to the origins of NMR in 

the end of the 1940s.123 Although applications in biomedicine are presented in the literature like the 

optimization of contrast agents,232 FC NMR tomography,233,234 organic tissue investigations,235-237 food 

science238 or landmine detection,239 the technique is still quasi-monopolized by academia.  

 

3.1 Overview 

Due to the Zeeman interaction BIH z

rr
γ−=  a nuclear spin-system features para-magnetism in an 

external magnetic field B. It can be brought out of equilibrium by manipulation through sequences of 

radio frequency pulses being resonant with the Larmor frequency ω =|-gB |or by instantaneously 

switching the magnetic field, which is the idea behind FC NMR. Equilibrium goes along with a 

diagonal density operator, the elements of which are the Boltzmann populations of the spin-states. 

The latter depend on T and, in particular, on the magnetic field. In equilibrium, the differences in 

populations lead to a tiny net longitudinal (z-)magnetization described by the Curie law. Non-

equilibrium states go along with populations differing from Boltzmann equilibrium, i.e. perturbed z-

magnetization, or the existence of coherent superpositions of spin-states. This leads to off-diagonal 

elements in the density operator and causes transversal magnetization in the x-y plane. Relaxation is 

the process of re-establishing thermal equilibrium out of a non-equilibrium state. 

The mostly encountered application of FC NMR is the frequency dependent measurement of the 

spin-lattice relaxation rate R1(ω ∂ B). Modern superconducting (cryo-) magnets typically operate at 

one single frequency in the high-field range of 100 MHz § ν = ω/2p  § 1 GHz, lacking the possibility of 

field variation. Moving a sample in the fringe field of a superconducting high-field magnet is an 

option for varying the field or otherwise, the use of electromagnets. As the naturally already weak 

NMR signal decreases with the squared magnetic field, conventional detection suffers from weak 

signals when frequencies below, say, 10 MHz, shall be achieved.4,240 This issue can be circumvented 

by realizing relaxation and signal detection at different fields. This decoupling can be implemented 

either mechanically or electronically. Mechanical field-cycling (“shuttling”), profits from high and 

homogeneous fields providing spectral resolution. The technique requires transfer times of about 

100 ms, rendering shorter relaxation times inaccessible.241-246 Electronic (fast) field-cycling draws 

upon resistive coils generating variable fields, nowadays by FET-controlled currents and typical 

switching times of about 1-3 ms. Generally, electromagnets are inhomogeneous and provide a poor 

spectral resolution on the order of 1 kHz. Further technical details are described in the relevant 

literature. 4,240,247-252 An interesting design of a superconducting FC NMR device operating between 

1kHz and 50MHz and switching times on the order of ms was presented by Schauer et al.253  

Currently, the Spinmaster FFC2000 from STELAR254 is the only commercially available FC relaxometer. 

One such device is located at the University of Bayreuth since 2004. It provides a frequency window 

of 10 kHz § ν § 20 MHz (1H). The field is upwardly restricted by the maximal applicable current. 

Downwardly, it is limited by insufficient field-stability as well as interfering magnetic fields such as 
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the earth-field (which is about 2.5 kHz) and stray fields from other laboratory equipment like NMR 

magnets. In order to probe the very slow dynamics encountered in high-M polymers, a self-built FC 

relaxometer located at the Technical University of Darmstadt (group of F. Fujara) was used, 

specifically the device named FC-1.240 It allows for measurements in the range of 100 Hz § ν § 30 

MHz by employing three different power-sources each appropriate for its own magnetic field range, 

by shielding external fields in three dimensions and by an active field-drift and fluctuation 

compensation system. In tilted magnetic fields (such with a component perpendicular to the z-axis), 

a low-frequency record of 12 Hz (0.3 µT) could be achieved by Kresse et al. recently.255,256 The 

dynamic ranges of both relaxometers are indicated in Fig. 2. The instrumental limitations can be 

overcome by performing measurements at different temperatures. Assuming FTS dispersion data 

sets recorded for different T can be assembled to master curves. For that purpose R1(ω) is converted 

to the susceptibility representation (cf. sections 1.1 and 4.1). The temperature can be controlled to 

≤1 K in the range of 180 K – 420 K on both, the Bayreuth and the Darmstadt relaxometer. 

 

3.2 Technical Principles  

Initially, an equilibrated Curie magnetization Meq(Bp) aligned in z-direction is generated by exposing a 

sample to a polarization field Bp . The latter is either zero (non pre-polarized (NP-) experiment) or as 

high as technically possible (pre-polarized (PP-) experiment) (cf. Figure 9). Within a few ms, the field 

is quickly switched to the desired relaxation field Br , which is maintained for the evolution time τ. 

During the evolution time the magnetization M(τ) relaxes toward the pertinent equilibrium Meq(Br) = 

M(Br,τØ¶). The corresponding time scale of the presumed exponential recovery is the spin-lattice 

relaxation rate R1. The magnetization M(Br ,τ) is probed in the x-y-plane via quadrature detection, 

after rotation by a π/2-radio-frequency pulse. This produces a complex signal M*(t)=Mx(t)+iMy(t) , 

termed free induction decay (FID), the initial magnitude of which provides a measure for the 

evolution of the magnetization. Yet, just before detection, the external field is again switched almost 

instantaneously to the acquisition field Baq , which is as high as possible to gain maximum signal. The 

receiver dead-time between the detection pulse and the beginning of the acquisition is about 5 ms. 

The cycle schematically depicted in Fig. 9, is repeated with incremented τ, providing a magnetization 

curve M(Br,τ). The relaxation dispersion R1(Br) is probed by varying Br. 
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Figure 9: Schematic field-cycle for 

measuring spin-lattice relaxation at a 

field Br using pre-polarization. Middle 

row: external magnetic field toggled 

through polarization Bp, evolution Br 

and acquisition field Baq. Upper row: 

corresponding evolution of the 

magnetization M(t). Lower row: 

detection of M(Br,τ) via a π/2-radio-

frequency pulse. Switching ramps are 

indicated by vertical dashed lines.  

 

 

Generally, the probed magnetization curve has the following form: 

( ) ( ) ( ) ( )[ ] ( )( )1;, RptmBMBMBMtBM reqpeqreqr ⋅−+=                        (61) 

The pre-factor Meq(Bp) – Meq(Br) defined by the field-cycle is decisive whether pre-polarization is 

profitable or not, where Meq(Br) is the (apparent) equilibrated magnetization corresponding to Br. The 

time-dependent expression m(t; p(R1) ) is the normalized relaxation function. By definition, it decays 

from one to zero. In general, a distribution p(R1) of relaxation rates has to be considered. Regarding 
1H, however, in most cases p(R1) gets averaged by rapid cross relaxation, leading to a single 

(averaged) relaxation time R1 (cf. below). Then, m(t;R1) is an exponentially relaxing time function. 

Figure 10a displays typical magnetization raw data M(Br,t), here of the entangled, linear and low-

disperse polymer PDMS, measured utilizing the FC-1 relaxometer. Pre-polarization was used for  

ν d 15 MHz, while above, pre-polarization was omitted. This results in the observed built-up and 

decay curves, respectively, observed in Fig. 10a. The time axis corresponds to the beginning of 

acquisition.  

Instantaneous field switching is an idealization as switching usually takes some few ms. Actually, also 

during switching some magnetization relaxes, spoiling both equilibrium values Meq(Bp) and Meq(Br), 

respectively, between which the progress of relaxation is monitored. When successively going to 

lower fields, the switching time from Bp to Br increases, causing a small but growing loss of 

magnetization at the beginning of M(t), as can be seen in Fig. 10a. This bias causes the weak 

frequency dependence of Meq(Bp) = M(tØ 0). Likewise, in the NP case, magnetization already builds-

up during the upward field-ramp between zero-field and the relaxation field Br , therefore M(tØ 0) is 

not zero. On the other hand, at Meq(Br) = M(Br , tØ ¶) one would anticipate the Curie law, i.e.  

Meq(Br) ∂ ν which is, however, also spoiled by switching effects.  
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Figure 10: a) Magnetization curves M(t) of PDMS with M = 22k, measured on the Darmstadt FC-1 relaxometer 

within relaxation fields Br corresponding to 150 MHz § ν § 30 MHz and at 353 K. The lines are intended to 

guide the eye. (b) Apparent long-time limit Meq (Br) as a function of frequency ν for both relaxometers. Only 

above 1 MHz the Curie-law Meq(Br)∂ ν  holds, indicated by the red, dashed line.  

 

In order to demonstrate this, the experimentally observed value of Meq(Br) is plotted in Fig. 10b as a 

function of ν. For the same sample and temperature data measured on the STELAR device is included 

for comparison, after vertical scaling to coincide with the FC-1 data. In fact, at high frequencies the 

expected Curie law is perfectly reproduced by the data measured on both relaxometers and the 

points lay on an original straight. At lower ν, however, plateaus are observed, which are explained by 

field-switching between relaxation and acquisition field during which some additional magnetization 

is built-up prior to detection. The STELAR plateau is somewhat lower than that of the FC-1 

relaxometer. This is probably due to the slightly lower switching time of the STELAR machine. The 

detection field in Bayreuth was about  

16 MHz while that in Darmstadt was 40 MHz. Furthermore, the STELAR data begins to deviate from 

the Curie law for frequencies below, say, 700 kHz, while the FC-1 data already deviates for ν < 3 MHz. 

The equilibrium value Meq(Br) is thus an apparent one at low fields. Yet, as long as the magnetization 

curve m(t) is mono-exponential, field-switching effects merely decrease the signal intensity in terms 

of the level difference Meq(Bp) – M*eq(Br) but do not lead to systematic errors in R1(ω).166,251,257 Else, if 

m(t) is not exponential, one has to consider that relaxation components being on the order or even 

faster than the switching-interval, may relax appreciably during the ramps. Their proportion in the 

recorded magnetization curve M(t) will be under-represented. Another effect additively contributing 

to M(t) at long evolution times is the noise, which is always positive due to the magnitude evaluation 

of the complex NMR signal. Taking the magnitude of the complex signal is necessary due to phase- 

and field-fluctuations occurring in electronic FC NMR. 
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3.3 Multi-Exponential Spin-Lattice Relaxation 

Indeed, there are some cases, where non-exponential relaxation is observed, namely in dendrimer 

melts (PUB3, section 5.6) as well as in proteins in aqueous solution.257 Furthermore, it was attempted 

to explain the mentioned discrepancies between FC and DQ NMR findings regarding polymer 

dynamics (for details see section 5.2), by handling (supposedly) multi-exponential relaxation in some 

of the FC magnetization curves negligent. This triggered an in-depth re-analysis of former raw data 

regarding non-exponential relaxation. Thereby, an instrumental artifact produced by the Darmstadt 

relaxometer, which appears to mimic non-exponential relaxation was revealed.  

Magnetical equivalence of spins, which was presumed in section 1.7 for 1H relaxation, is rarely 

fulfilled. In practice, spins may be subject to dynamic or spatial inhomogeneities: as an example, 

consider the simple liquid toluene, where the hydrogen atoms in the molecular backbone and those 

in the methyl group constitute two different spin subgroups. The dipolar interaction within the latter 

is dynamically pre-averaged by rapid rotation. One would first anticipate relaxation to be bi-

exponential. Another example is polymer chains, where the chain ends move faster than the inner 

parts. However, if there are several magnetically inequivalent spin subgroups of 1H, they are, to a 

certain extent, coupled together as well, due to the long-range, multi-particle character of the 

dipolar interaction. This leads to cross relaxation among different spin subgroups. While the intrinsic 

relaxation of each subgroup is associated with energy exchange with the lattice (the “heat bath” in 

NMR), cross relaxation leads to a continuous, energy conserving distribution of magnetization among 

the different subgroups. Solomon treated the case of a system consisting of only two different spins 

I, S = ½, each with a different Larmor frequency ωI, ωS , and interacting which each other via dipolar 

coupling.258 The treatment was later generalized to take many spins in an arbitrary number of 

subgroups into account.259-263  

Here, the model of Zimmerman and Brittin is outlined.259 The deviation from the equilibrium 

magnetization of the i-th out of N spin subgroups ( ) ( ) .
:

eq

iii mtmtm −=∆  in vector notation follows a 

system of coupled differential equations ( ) ( )tmRtmdtd
rr

∆−=∆ . The NµN relaxation matrix R reads 

( ) iji

i

iij RR ρσσδ −+= 1
. Here, R1

i is the spin-lattice relaxation rate of the i-th spin subgroup in the sense 

of the BPP-eq. 48, si  is the cross relaxation rate of the magnetization leaving the i-th subgroup and 

entering any other subgroup (but not the lattice), and rij is the conditional probability that 

magnetization is just transferred from subgroup i to j. If there are only two spin subgroups, r12=r21=1 

and r11=r22=0. The solution of the system reads ( ) ( ) ( ) ( )00 1 mTTemetm DtRt rrr
∆=∆=∆ −−− , where the 

diagonal matrix D=T-1RT containing the N eigenvalues li , results from principal axes transformation. 

( )0m
r

∆  are the initial conditions which depend on the preparation of the experiment. 

Multidimensional NMR experiments allow determining the entries of the matrix R.122,263 If it is 

assumed that all subgroups are fully polarized at the beginning, ( )0im∆  is proportional to the fraction 

pi of spins in subgroup i with  S pi = 1. Two limiting cases need to be discussed. The first is that of 

rapid cross relaxation, i.e. R1
i << si. Setting R1

i Ø 0 yields the trivial result of no relaxation. The net 

magnetization would stay constant. Thus, Zimmerman and Brittin treated this limit via perturbation 

theory.259 The result for the total magnetization reads  
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1
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−∝ ∑

=

     ,                                      (62) 

which is a single exponential function decaying with the average rate <R1>. Rapid cross relaxation 

inherently leads to an averaging over all the different intrinsic rates of the individual spin subgroups, 

so that the whole system relaxes with a single relaxation time. Thus, information is lost. In the vast 

majority of 1H spin-lattice relaxation measurements, rapid cross relaxation is efficient and m(t) 

mono-exponential. If cross relaxation is slow compared to spin-lattice relaxation, i.e. R1
i >> si  or 

even absent, the eigenvalues of R approach the spin-lattice relaxation rates (lI ≈ R1
i) and the total 

magnetization function reads259 

( ) [ ]∑
=

−∝
N

i

i

i tRptm
1

1exp           .                                                 (63) 

This is just a linear superposition of independent exponential relaxation processes with the weighs 

corresponding to the relative number of spins within each subgroup. The moments <R1
n> can be 

calculated model-independently by differentiation. The mean <R1> is obtained from the initial slope 

<R1> = - limtØ0 d/dt m(t).264 Also in the intermediate regime, where R1
i and si  are of the same order 

and the magnetizations are only partially averaged, the initial slope of the magnetization curve will 

provide the mean relaxation rate <R1>.265 Thus, the initial decay of m(t) is a universal and reliable 

measure of <R1>, independent of cross relaxation.  

 

The spin-lattice relaxation rates R1
i and the cross relaxation rates sI depend in different ways on 

combinations of spectral densities and also on the interaction strengths (essentially determined by 

the inter-nuclear distances) within or between the spin subgroups. As R1
i depends on single- and 

double quantum transitions, the spectral density is evaluated at ω and 2ω (eq. 48). In opposition, si  

is governed by zero-quantum transitions (flip-flop-processes). Thus, si is evaluated at the zero-

frequency value of the spectral density. As J(0) is usually much larger than J(ω, 2ω) cross relaxation is 

practically always expected to be rapid. Indeed, for many systems like low-M liquids,138-141 ionic 

liquids,266 rubbers and in particular polymer melts,70,74,127,134,140,227,267-275 mono-exponential relaxation 

is reported in a wide range of T and ω, although different spin subgroups eventually exist therein. 

Yet, when the frequency ω becomes so low that the inverse terminal relaxation time is reached, the 

spectral density runs into the plateau (“extreme narrowing”), i.e. J(ωτt(T) < 1) = const. . Consequently, 

the spin-lattice relaxation rates always approach the cross rates and the averaging will be 

incomplete, leading to non-exponential magnetization curves. This case may occur at low ω, at high T 

and in systems with a relatively short terminal relaxation time. The magnitude of cross relaxation 

also strongly depends on the distances between the different subgroups. In order to check relaxation 

data for mono-exponentially, it is useful to plot the normalized magnetization function following 

from eq. 60, with time axis scaled by <R1>:  

( ) ( ) ( )( ) ( ) ( )( )reqpeqreq BMBMBMRtMRtm −−⋅=⋅ 11                                 (64) 

Neither the software provided by the manufacturer of the STELAR relaxometer nor that running on 

the FC-1 setup is sufficient for that task. Therefore, the raw data in terms of the FID’s is analyzed 

externally, employing a self-written program. If the initial decay of m(t<R1(ω)>) concurs with exp[-

<R1>t] , the mean rate <R1>  was determined correctly, irrespective of the method or fit function 

used for its determination. Furthermore, magnetization data measured at numerous different 
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frequencies is strongly condensed by plotting m(t<R1(ω)>), as master curves are generated. Another 

benefit of this kind of representation is that non-exponential relaxation can be identified easily. Fig. 

11 exemplifies the suggested representation of m(t<R1(ω)>), based on selected protonated polymers, 

specifically PDMS-h 22k (a), PEP-h 200k (b) and PB-h 196k, isotopically diluted in deuterated PB-d 

191k (cf. sections 4.3 and 5.2) (c), as well as for (partially) protonated toluene h8, h5 and h3 (d). The 

relaxation curves measured with the STELAR relaxometer are shown in blue, while such recorded on 

the FC-1 device are distinguished in gray. It is emphasized that in the case of the polymers (Figs. 10a-

c) only data is included which was measured at about the same temperature and in a common 

frequency interval, as indicated. This allows for a direct comparison between magnetization curves 

measured with the STELAR and with the FC-1 relaxometer, respectively. In the case of toluene (Fig. 

11c), only FC-1 data was available.PUB6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Normalized 1H relaxation functions m(t <R1>) of (a) PDMS-h 22k, (b) PEP-h 200k and (c) PB-h 196k 

diluted to 15% in PEP-d 191k, resulting from measurements in Darmstadt (gray) and Bayreuth (blue).  

d) Same representation for toluene h3, h5 and h8 (distinguished by different colors), all of which were solely 

measured in Darmstadt.PUB6 Frequency intervals and temperatures as indicated. Simulations of single 

exponentials are also included (red dashed lines).   

At least at short times (t < <R1
-1>), perfect mastering is observed in all cases, from which it is 

concluded that <R1(ω)> was always determined correctly. Obviously, at the long evolution times, 

there is a difference between data measured on the STELAR and on the FC-1 relaxometer, as can be 
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seen from Figs. 11a-c. While m(t), when measured in Bayreuth is clearly mono-exponential over two 

decades for all frequencies and in all three polymers, the curves measured in Darmstadt always bend 

up at long evolution times, i.e. they deviate from mono-exponential behavior indicated by the red 

dashed lines.  

The first example PDMS-h 22k, for which m(t<R1(ω)>) is shown in Fig. 11a, merely contains one group 

of magnetically equivalent protons, namely those in the methyl side-groups. While relaxation 

measured with the STELAR device is mono-exponential, as expected, the FC-1 curves bend up at long 

times. The second example is PEP-h 200k (Fig. 11b), which is alternatingly constituted from ethylene 

and propylene monomers, imposing the existence of two magnetically inequivalent spin-subgroups. 

The first comprises seven protons per repeat unit in the backbone, the second one three protons in 

the methyl side group, respectively. The relaxation rate R1
CH3(ω) of the methyl protons subject to 

rapid rotation, is expected to be significantly smaller than that of the seven protons attached to the 

chain, R1
chain(ω). One could be inclined to expect a bi-exponential m(t) (cf. section 5.4). The STELAR 

data is again single exponential, suggesting rapid cross relaxation among the different ensembles of 

protons. Yet, the Darmstadt data is again apparently not exponential. The next example is PB-h 196k 

diluted to 15% in a matrix of deuterated PB-d 191k, shown in Fig. 11c. This important isotope dilution 

experiment is crucial, as it is used for determining the pure intra-molecular relaxation contribution 

R1
intra(ω) in this polymer (cf. sections 4.3 and 5.2). Also in this case, the Bayreuth data is clearly mono-

exponential, in contrast to that of Darmstadt. The dilution goes along with a decrease of the proton 

signal. This could explain why the Darmstadt artifact is more pronounced in the diluted system.  

The final example is toluene (Fig. 11d). The fully protonated species toluene h8 bears five backbone 

and three methyl protons, i.e. again two spin subgroups. Nonetheless, the curves of h8 highly 

resemble those of the single spin subgroup systems h3 and h5, respectively. The deviation from 

mono-exponential behavior observed at long times in all three toluene species is of similar extend 

compared to that of the (undiluted) polymers. It is thus concluded, that relaxation is actually single 

exponential in all three cases of toluene labelling, in particular in toluene h8, where rapid cross 

relaxation averages over both spin subgroups. Apparently, all the 1H magnetization curves shown in 

Fig. 11 which were measured in Darmstadt, are superimposed by an instrumental artifact, 

pretending an apparent multi-exponentiallity at long evolution times. A closer inspection of the 

artifact reveals no systematic trend, like frequency dependence. Considered as a whole, the 

discovered instrumental artifact occurring on the FC-1 relaxometer is weak and previous 

measurements are not challenged. It turns out that the un-weighted, mono-exponential fits used so 

far for determining relaxation rates from Darmstadt data, approximate the values determined by 

initial slope analysis, so well, that there are virtually no differences. The corrections are in the 

percent area. In particular, they cannot explain the mentioned discrepancies between FC and DQ 

NMR concerning relaxation in polymers, which will be discussed in detail in section 5.2. Yet, until the 

artifact is overcome, one should refrain from explicitly including the long-time tail of magnetization 

curves measured on the FC-1 relaxometer in the analysis. 

Counterexamples for actual, multi-exponential longitudinal magnetization decay of 1H are, as said, 

proteins in aqueous solution257,276 and dendrimer meltsPUB3 (cf. section 5.6), but also organic tissues277 

and 1-phenylpropyne (CH3CªCC5H5).260 Those are also systems with more than one 1H spin subgroup. 

Nevertheless, cross relaxation may be inefficient here due to weak interaction strength between the 
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different spin subgroups. As discussed in section 1.7, the strength of the dipolar coupling depends on 

the inter-spin distance r-6. If different spin subgroups are spatially well-separated, the averaging via 

cross relaxation is incomplete and the magnetization remains multi-exponential. 

Phenomenologically, the extent of non-exponentially can be quantified by fitting experimental data 

to model-functions. Roos et al. evaluated FC magnetization curves of proteins in concentrated 

solution measured in Bayreuth, assuming a Gaussian distribution of ln(R1) (log-normal 

distribution).257 It contains two parameters, the width s and the median R1
med. The arithmetic mean 

follows from <R1> = R1
medexp[-s/2]. Yet, the log-normal distribution doesn’t feature a maximal cutoff 

relaxation rate physically required. This issue potentially leads to an overestimation of the obtained 

mean-value. In PUB3 a stretched exponential was fitted to the magnetization curves of dendrimer 

melts. Yet, the arithmetic mean rate doesn’t exist for the underlying distribution function in this case. 

Instead, the mean relaxation time <T1 = R1
-1>-1 ∫ <R1> was calculated using the stretched exponential. 

This issue will be revisited in section 5.6. 

Regarding 2H, the situation is different. The relatively short range of the quadrupolar interaction 

compared to that of the dipole-dipole interaction inhibits cross relaxation among different nuclei, 

therefore m(t) is expected to obey the limit in eq. 63, and the different relaxation rates are not 

averaged. As an example, FC 2H NMR measurements performed on the FC-1 device provide bi-

exponential m(t) for toluene d8, as shown in Fig. 12, where the mean rate, used for scaling the time 

axis, was determined from a bi-exponential 

decomposition.PUB6 In the case of toluene d3 and 

d5, respectively, the expected mono-exponential 

decay is observed over the first decade in 

amplitude; beyond, the “FC-1 artifact” again 

spoils the data.  

 

Figure 12: Normalized relaxation functions  

m(t<R1>) of toluene d3, d5 and d8, all  measured on 

the FC-1 relaxometer.PUB6 The temperature was  

170 K. 
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4. FC NMR: Previous Work 

The following chapter is intended to briefly summarize previous work concerning FC NMR 

relaxometry on polymer melts, a field which was mainly pioneered by Kimmich and co-workers. 5,6,166 

Different linear standard polymers like PB, PDMS and PE were investigated by FC 1H and 2H NMR, yet, 

in limited ranges regarding temperature and molar mass. In particular, no low-M reference systems 

were investigated, and the evolution from the simple liquid to the polymer melt was not addressed. 

In accordance with their theoretical time scale separation ansatz5,129 (cf. section 1.7), Kimmich et al. 

ascribed spin-lattice relaxation dispersion in polymer melts to three distinct regimes. The first reflects 

the local regime (α-process), which they didn’t cover as they only measured at rather high 

temperatures. The second regime is that of polymer dynamics, governed by chain modes. Kimmich et 

al. focused on this regime and found rich dispersion in form of different power-law regimes, which 

they explained within the renormalized Rouse model. The third regime is governed by the terminal 

relaxation. 

The subsequent FC relaxometry works on polymer melts of S. Kariyo et al.,70,271,273 R. Meier et al.140,141 

and in particular A. Herrmann et al.134,198,227,274,275,278 in the Bayreuth group can be considered as a 

continuation of the studies of Kimmich and co-workers. The low-field capabilities of the FC-1 

relaxometer allowed reaching frequencies of a few hundred Hz, while previous experiments of 

Kimmich and also of the Bayreuth group were limited to about 10 kHz. One of the most important 

developments in the Bayreuth group is the construction of master curves in the so-called 

susceptibility representation. By measuring relaxation dispersion in a much broader temperature 

range than Kimmich et al., the effective frequency window is broadened so much, that a 

transformation into the time domain becomes possible and the dipolar correlation function CDD(t) is 

gained (cf. below and section 1.1). However, the role of intra- and inter-molecular relaxation in 1H 

wasn’t fully understood initially. 

 

4.1 Susceptibility Representation and Master Curves 

Even with the low-field capabilities of the Darmstadt relaxometer, the frequency range is restricted 

to about five decades (cf. Fig. 2 and section 3.1). In order to study the full hierarchy of polymer 

dynamics, still a wider frequency interval is required. Assuming frequency-temperature superposition 

(FTS), this window can be significantly extended by measuring R1(ω) in a broad temperature range.  

As an example, dispersion data R1(ν) of the fully protonated, entangled (M >> Mc) polymer PB 87k is 

displayed in Fig. 13a. It was measured on the STELAR relaxometer within 10 kHz § ν  § 20 MHz  and 

at 220 K § T §  400 K.227 Rich dispersion is found at all temperatures. In Fig. 13b the conversion into 

the NMR susceptibility representation c’’(ω) = ωR1(ω) (eq. 19, section 1.1) is shown. Assuming FTS a 

master curve c’’(ωaT) from susceptibility data is constructed by applying T-dependent frequency shift 

factors aT, a procedure well-known from DS57,58,108 and in particular rheology.6,60-62,82,228,229 The idea of 

analyzing spin-lattice relaxation data in terms of ωR1(ω) was first spawned by Cohen-Addad.279 Yet, 



55 
 

 

not ω was varied as in FC NMR, but the relaxation rate by changing the concentration of a polymer in 

solution. 

Such master curves are shown in Fig. 13c for many different M.227 It is again emphasized that solely 

horizontal shifting is required in the susceptibility representation, while the second moment M2 (eq. 

48 in section 1.7) is conserved. An approach for constructing master curves in terms of R1
-1(ωaT) , 

where shifting in the two dimensions is necessary to keep M2 , was proposed by Kariyo et al.269,270 In 

bulk liquids, including polymers, typically a good mastering is observed. Constructing mater curves 

dramatically extends the frequency range from five to up to ten decades and leads to a strong 

condensation of a large amount of data recorded at many different temperatures. Furthermore, 

susceptibility master curves allow for a direct comparison between spin-lattice relaxation dispersion 

and measurements from other techniques, such as DLS, DS and in particular rheology. 

 

 

 

 

 

 

 

 

 

Figure 13: a) R1(ω) of PB 87k measured by A. Herrmann on the STELAR relaxometer in the T range as 

indicated.227 (b) Same data in the susceptibility representation c’’(ω). (c) Evolution of NMR susceptibility 

master curves c’’ (ωτα) with M, from the simple liquid (PB 355) to the entangled melt (M > Mc). The range 

solely accessible to the Darmstadt relaxometer is marked. Relaxation regimes (0,I,II,IV) are indicated. Fig. 13c 

was taken from Herrmann et al. and adapted.227   

 

By measuring down to sufficiently low T it is ensured that the α-relaxation is included in the FC NMR 

susceptibility spectra. In Figs. 13b and c the α-process is reflected in the dominating peak at high 

frequencies. Then, the frequency axis of the master curves is scaled according to c’’(ωτα). This 

provides the temperature dependence of τα along the way. The values can be compared to those of 

other techniques like DS and shear rheology (cf. Fig. 32, section 5.5). Master curves c’’(ωτα) of the 

total 1H relaxation of PB of several M are shown in Fig. 13c. For the first time, Herrmann et al. 

extended the measurements on PB carried out on the STELAR relaxometer toward lower frequencies 

employing the FC-1 device.227 Thus, extremely low fields were accessed (cf. section 3.1). The 

evolution of the polymer dynamics with increasing chain length M, i.e. from the simple liquid to the 
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entangled melt, was studied. Starting with the simple liquid PB 355, where essentially just the peak 

of the α-process (regime 0) is recognized, M is increased, finally exceeding the crossover molar mass 

significantly, i.e. M >> Mc ≈ 2k. In the entangled melt, additional amplitude at ωτα  << 1 arises in 

c’’(ωτα), to which two polymer specific power-law regimes, denoted with I and II, were ascribed. 

They were referred to Rouse and entanglement dynamics, respectively. In particular in the 

entanglement regime (II) the shape of the c’’(ωτα) curves depends on the molar mass. If M is not too 

high, the terminal relaxation (regime IV) falls into the frequency window of FC NMR. Yet, the 

corresponding low-frequency behavior c’’(ωτα) ∂ ω1 , indicated in Fig. 13c, is actually just apparent. 

The diffusion-determined inter-molecular relaxation predominant in 1H at low frequencies leads to a 

square root behavior in the dispersion (cf. section 1.7 and eq. 58). In the susceptibility representation 

this behavior yields c’’(ω) ∂  (ωR1(0)  - cω3/2). In the limit of small frequencies this expression 

approaches ∂ ω1 asymptotically. Hence, the inter-molecular relaxation, governing the low-frequency 

dispersion, is somewhat concealed in the susceptibility representation. In the rate representation, 

however, the inter-molecular relaxation contribution is more visible and the diffusion coefficient can 

be determined, typically in the range 10-15 < D m-2s < 10-9 using eq. 58. When compared to reference 

data from FG NMR, the agreement is striking.138-141 A more detailed description of how FC relaxation 

data evolve with increasing M is given in given in the subsequent section, where it is focused on the 

time domain. 

 

4.2 FC 1H NMR in the Time Domain and Comparison to DQ 1H NMR 

As said, the dynamic range of FC susceptibility master curves (like those shown in Fig. 13c) is very 

broad. Hence, a transformation into the time domain can be performed, yielding the dipolar 

correlation function CDD(t/τα). After master curve construction the data is arbitrarily spaced over a 

huge frequency range. Thus, an ordinary discrete Fourier transformation will not work. Instead, a 

version of Filon’s numerical integration method is employed.280 Figure 14 shows the resulting 

evolution of CDD(t/τα) with M, obtained by transforming the susceptibility master curves of the total 
1H relaxation of PB (M ≥ 2k) shown in Fig. 13c. Nine decades in time and almost seven in amplitude 

are covered, and the full form of the dipolar correlation function is monitored by a single 

technique.227 Other linear polymers display very similar behavior regarding CDD(t) (cf. ref. 272 and 

section 5.4).  

In a methodical comparison, corresponding CDD
DQ(t) data of DQ 1H NMR (cf. section 2) is also included 

in Fig. 14 and marked in red.221 Using the Darmstadt relaxometer, FC NMR has approached the long 

time scales, which were restricted to DQ NMR before.227 Otherwise, DQ NMR doesn’t reach times 

shorter than τe , in contrast to FC NMR. Almost perfect agreement among the both 1H NMR methods 

is observed, i.e. CDD (t) @ CDD
DQ(t). Yet, the DQ data had to be vertically scaled by a factor of about 0.5 

in order to achieve overlap (cf. section 5.2).223,227 
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Figure 14: Evolution of CDD(t/τα) of PB with 

M.227 DQ 1H NMR data CDD
DQ(t/τα) is 

included (red lines).221 Dynamic regimes 

(0-IV) and the entanglement time τe are 

indicated. The extrapolation of the α-

process by a (stretched) exponential is 

also shown (dashed blue line). Adapted 

from ref. 278. 

 

Beyond the initial stretched 

exponential decay (regime 0) indicated 

by the blue dashed line in Fig. 14 and 

referred to the α-process, two 

polymer specific power-law regimes 

(I,II) where CDD(t) ∂ t-ɛ were attributed by Herrmann et al.227 At times τα < t < τe , the dipolar 

correlation function of the polymers is first governed by the Rouse regime (I). With increasing M, it 

emerges from the relaxation behavior of a simple liquid and saturates for M around Mc, finally 

converging toward a power-law regime with an apparent exponent ɛI ≈ 0.9, as indicated in Fig. 14. At 

τe a crossover to a second power-law regime (II) occurs. As M increases, regime II also extends 

toward longer times. The exponent value, i.e. the slope depends on M, specifically 0.3 § ɛII(M) § 0.8. 

The slope decreases with increasing M and saturates at very high M, say, for M > 200 Mc. The values 

ɛII(M) resulting from FC as well as DQ 1H NMR are summarized in Fig. 20 of section 5.2, again 

demonstrating the good agreement between FC and DQ NMR, at least at high M.221,227 At that time, it 

was still assumed that inter-molecular relaxation would be negligible, and consequently that CDD(t) 

agrees with the re-orientational correlation function C2(t).221,227 As the found values for ɛII at highest 

M are very close to the one predicted by the TR model regarding re-orientation (ɛII
TR = 0.25, cf. Table 

1), the findings were interpreted as a validation of the TR model. In other words, for M high enough 

that finite length effects don’t interfere any more, the existence of the constrained Rouse regime of 

the TR model concerning re-orientation, appeared to be confirmed by two independent NMR 

techniques (DQ & FC).221-223,227 The “highly protracted transition” (refs. 198, 221) to the predicted 

value of 0.25 was also observed in the computer simulations by Wang et al. (cf. section 2).20 It was 

justified by finite length effects, especially CR. 

According to Herrmann et al., regime II is succeeded by a smooth transition to the terminal regime 

(IV), which can only be observed, if the strongly M-dependent terminal relaxation time still fits into 

the experimental time window.227 Yet, it wasn’t commented on the terminal behavior of CDD(t) 

adequately. Neglecting inter-molecular relaxation, one would expect that CDD(t) ª C2(t). The terminal 

relaxation of C2(t) is supposed to be an exponential decay, which is, however, not observed in Fig. 14. 

Subsequent isotopic dilution experiments by Herrmann et al. indeed confirmed that assuming inter-

molecular relaxation to be negligible, is grossly wrong,134 as will be discussed below in section 4.3. In 

section 5.4 a re-interpretation of the findings on PB concerning the dipolar correlation function CDD(t) 

will be given.  
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4.3 Isotope Dilution Experiments  

Due to the fact that in the case of protons the functions CDD(t) and c’’(ω), respectively, are 

time/frequency dependent superpositions of intra- and inter-molecular contributions, a rigorous 

comparison with theoretical models (like TR) is only reasonable when a separation is performed and 

both components are studied independently (cf. section 1.7). The selectivity of NMR enables a 

distinction, applying the isotope dilution technique: fully protonated chains are diluted in a matrix 

consisting of fully deuterated chains of the same species and of similar molar mass.112,127,281,282 While 

the intra-molecular contribution is preserved, the inter-molecular one is suppressed, when 

approaching zero concentration. It is assumed that such isotope dilution doesn’t change anything 

else, except for the dipolar interaction between spins of different molecules. In practice, isotope 

dilution experiments are challenging. Isotope effects on Tg are reported,134,PUB2 it is often difficult to 

obtain the same M for deuterated and protonated chains195 and, due to the low mixing entropy, such 

polymer blends tend to demix.62 Nevertheless, first FC experiments on isotopic polymer blends of PB 

as well as of PEO were performed by Kehr et al.127,130 and later on by Herrmann et al. on protonated 

PB-h 24k diluted to 11% in a matrix of deuterated PB-d 23k and on PB-h 196k diluted to 15% in a PB-d 

191k.134 The correlation functions C2(t/τα) and Cinter(t/τα) for PB 196k, resulting from the 

decomposition of susceptibility master curves and subsequent Fourier transformation, are displayed 

in Fig. 15.134  

 

Figure 15: Intra- and inter-molecular 

correlation functions of PB 196k, as 

determined by FC 1H as well as by 2H 

relaxometry. Relaxation regimes (0,I,II) are 

indicated. Adapted from ref. Herrmann et 

al.134 

 

The most important experimental 

finding of Herrmann et al. was that the 

inter-molecular relaxation is not 

negligible at all, as was often assumed 

before. Instead, it even dominates the 

relaxation dispersion at low frequencies/long times. At τα < t < τe (regime I) C2(t) ∂ t-ɛ  features a 

slightly steeper decay than Cinter(t), a subtle fact on which it was not commented on by Herrmann et 

al. and which will be also revisited in section 5.4. It will be discussed that for t > τe the exponent 

ɛII
intra(M)  becomes smaller with increasing M, i.e. the protracted transition is observed, as in the case 

of the total relaxation (cf. ref. 134, section 4.2 and Fig. 20). The “protracted transition” is 

consequently also observed in C2(t). An exponent value of ɛII
intra(196 k) ≈ 0.49 was estimated by 

Herrmann et al.134 A refined analysis of the derivative of C2(t) in log-log scaling presented PUB2 

(section 5.2) reveals a somewhat smaller value of around ɛII
intra(196 k) ≈ 0.45. The precise exponent 

values can be found in Fig. 20 of section 5.2. Nevertheless, the value ɛII
intra of high-M PB differs from 

the value 0.25 predicted by the TR model significantly (Table 1). This fact challenges the TR model 

regarding re-orientation, which actually seemed to be essentially confirmed, when the total 

relaxation was regarded (cf. section 4.2). The reliability of this important finding was confirmed by 2H 
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dispersion measurements probing intra-molecular relaxation exclusively and yielding ɛII
intra≈ ɛII

Q (Q 

stands for “quadrupolar” 2H relaxation). This data is also included in Fig. 15 (orange stars) and the 

corresponding exponent value in Fig. 20 (section 5.2). 

The determination of Cinter(t) allowed the calculation of the segmental MSD <r2(t)> of PB 24k and  

PB 196k.134 For that purpose still the analytical expression eq. 57 was applied. Good agreement with 

the TR model for Rouse and constrained Rouse dynamics was found.134 The fact that translational 

motion is in accordance with the TR model while re-orientational motion is not, explicitly challenges 

the RTO hypothesis and the further investigation of both is part of this PhD work. The C2(t) data of PB 

is revisited in section 5.2 and the Cinter(t) data in section 5.4. Moreover, a further isotope dilution 

experiment on the linear polymer PEP was performed recently. It enables to check whether the 

results on PB indicating a failure of the TR model with respect to re-orientation, can be generalized 

(cf. section 5.4).  
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5. Results - FC NMR as a Tool of Molecular Rheology 

Refraining from chronological order, the following chapter summarizes the major results of this PhD 

work, which are partially published in the articles reprinted in section 6. Furthermore, the chapter is 

enriched with recent findings, which are be part of three further publications, which are currently 

under review (cf. also section 6.3).  

 

5.1 FC 1H Relaxometry vs.  Atomistic MD Simulations 

PUB1 arose from the unique opportunity of comparing FC 1H relaxometry results to those of 

atomistic MD simulations (cf. section 2). Already at the end of my Diploma studies preceding the PhD 

work, I started measuring the polymer dynamics of poly(propylene glycol) (PPG) in a broad M range 

via FC 1H relaxometry, using the STELAR machine. At around the same time, atomistic MD 

simulations of poly(propylene oxide) (PPO) were performed at the Technische Universität Darmstadt 

in the group of M. Vogel. As PPG and PPO are chemically identical except for the end-groups 

(hydroxyl vs. methyl), the findings of both, experiment and simulation could be confronted. The FC 1H 

NMR relaxation data on PPG was published in a preceding article.272 Assuming FTS, susceptibility 

master curves c’’(ωτα) of the total relaxation were constructed for PPG in the range 0.1k § M § 18k. 

Fourier transformation yielded the dipolar correlation function CDD(t/τα) (cf. section 1.7). 

Concerning the MD simulations, a set of atomistic, quantum chemistry-based potentials was applied 

to PPO chains of different molar masses 0.1k § M § 6k. The force field comprised Coulomb and 

Buckingham potentials for non-bonded interactions, as well as stretching, bending and torsion 

potentials for modelling the chemical bonds between monomers. The number of simulated atoms in 

the volume was about 4000. The longest chains consisted of N = 100 monomers. Atomic trajectories 

in the time range 1ps § t § 30ns and at different temperatures were simulated and recorded using 

the GROMACS package.283 In a preceding atomistic simulation work, the M-dependence of the α-

relaxation was investigated in terms of the intermediate scattering function.284 For PUB1 the re-

orientational autocorrelation function  

( ) ( ) ( )[ ] 10321
2

2 −⋅≅ OOOO etetC
rr

                       ,                            (65) 

with 
OOe
r  denoting the bond vector connecting two consecutive oxygen atoms located in the chain 

backbone, was calculated. It was assumed that this correlation function is equivalent to the intra-

molecular correlation function C2(t), accessible by NMR relaxometry. In PUB1 the inter-molecular 

relaxation was first spared out in the evaluation of the simulation data. As also the time range of the 

simulations was limited by insufficient computational power, TTS (cf. section 1.2) was assumed to 

create master curves C2(t/τα) of PPO of the different M. Thus, the simulation data was analyzed in the 

same way as that of NMR relaxometry. Figure 16 shows selected results for the simple liquids di-

propylene glycol/di-propylene oxide (a) and for some PPG/PPO polymer melts (b). The dimers were 

chosen because monomeric PO was not simulated, and second, due to the fact that a pronounced 

inter-molecular contribution appears in the total relaxation dispersion of PG.272 
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Figure 16: a) Dipolar correlation function CDD(t/τα) of di-PG gained from FC 1H NMR relaxometry in comparison 

to C2(t/τα) and Cinter(t/τα) (ref. 132), obtained from atomistic MD simulations.  

b) C2(t/τα) from simulations (thick lines) of un-entangled PPO 1k as well as of entangled PPO 6k, respectively, in 

comparison to CDD(t/τα) of entangled PPG 5k and PPG 18k, obtained from FC 1H NMR relaxometry (symbols). 

Relaxation regimes (0-IV) and power-laws are indicated. The dotted lines represent extrapolations of the  

α-relaxation via stretched exponential fits. Both figures are adapted and extended from PUB1. 

 

Regarding the simple liquids (Fig. 16a), C2(t/τα) and CDD(t/τα) are obviously different, which can be 

explained by the fact that C2(t), determined from the simulation data, solely refers to re-orientation. 

It features a stretched exponential decay, as indicated by the dotted orange line. Otherwise, CDD(t) 

gained from FC NMR, is a superposition of intra- as well as inter-molecular relaxation contributions, 

the latter dominating the shape of CDD(t/τα) at long times (cf. section 1.7). In fact, the long-term 

behavior of di-PG follows CDD(t/τα)∂ t-1.5 , as indicated in Fig. 16a. In the course of a subsequent 

publication by the Vogel group, the inter-molecular correlation function Cinter(t) was explicitly 

calculated from the trajectories of di-PO.132 In Fig. 16a this Cinter(t/τα) data of di-PO is included (blue 

open symbols). It also features the expected ∂ t-1.5  behavior at long times, as it was found for the 

NMR data CDD(t). The good agreement to the FC NMR data on di-PG corroborates the fact that inter-

molecular relaxation determines the shape of CDD(t) in this simple liquid. It is noted again that 

simulations, in particular atomistic ones, rarely address inter-molecular correlation functions. 

Another notable exception is a simulation of a Lennard-Jones liquid by Odelius and co-workers.142  

For the polymers (Fig. 16b) PPG 5k (FC NMR, blue) and PPO 6k (simulation, red), C2(t) and CDD(t) yield 

a consistent picture in the glassy regime (0) as well as beyond, in regimes I and II, where polymer 

dynamics is detected. From this good agreement between FC 1H NMR and simulation regarding PPG 

5k vs. PPO 6k, it was concluded that at least in the common time range (glassy and Rouse dynamics) 

inter-molecular relaxation is not so important, yet. First, a power-law regime is established, where 

both, C2(t) as well as CDD(t) are ∂ t-1 . This exponent value is in accordance with the Rouse model 

concerning intra-molecular relaxation (cf. Table 1). Only for curves with M > Mc ≈ 5k a second power-

law regime (II) appears at t > τe ≈ 300 τα in both, C2(t) as well as in CDD(t).PUB1 Note that in the case of 

PPO (simulation) only M ≈ 6k exceeds Mc and an exponent value of ɛII ≈ 0.9 is assigned. As far as it is 

known, this could be the first hint of entanglement in atomistic simulations of polymers. In Fig. 16b 
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also FC NMR data of the higher M polymer PPG 18k is included. Here, the entanglement related 

regime II is more pronounced and features a lower exponent of around ɛII ≈ 0.7, i.e. also in PPG the 

exponent value ɛII(M) decreases with increasing M, according to the “protracted transition” (cf. 

section 4.2 and Fig. 20). For the lower M polymer PPO 1k, for which C2(t/τα) data is also included in 

Fig. 16b, regime II is not observed, yet. At longest times, only FC NMR reaches the terminal regime 

(IV) in the case of PPG 5k where CDD(t/τα)∂ t-3/2. In order to approach the terminal regime of PPO 6k 

also by the atomistic simulations, way more computational power is required. Yet, for lower M, the 

simulation was still able to cover the terminal relaxation, for example in the case of un-entangled 

PPO 1k (cf. Fig. 16b). As expected, and as it is the case of the simple liquid di-PG, C2(t/τα) of PPO 1k 

decays (stretched) exponentially at long times (green dashed line). 

Atomic trajectories offer the opportunity to calculate C2(t) for different positions along the chains, 

enabling to address the dynamics of segments close to the chain ends and of segments in the center 

separately. In ref. 284 (Vogel group) it was found that the local segmental reorientation (α-process) 

of terminal and central segments becomes increasingly decoupled when chains become longer, e.g. 

τα of the terminal segments in PPO 2k was found to be four times larger when compared to central 

segments. In the course of PUB1 the long-time behavior in C2(t) of PPO 6k was investigated position-

dependently. It was found that segments close to the ends de-correlate quicker than central ones. 

Those at the very ends even feature (stretched) exponential correlation decay and no polymer 

dynamics at all. In contrast, central segments appear to be stronger affected by entanglement, 

reflected in a decreased exponent C2(t) ∂ t-0.75 in regime II instead of ∂ t-0.9, as resulted from 

averaging over the whole chain.PUB1 Similar findings were already reported by Kremer and Grest, yet, 

from coarse-grained simulations based on a simple bead-and-spring model.189 Cohen-Addad et al. 

also ascribed two regimes to transverse relaxation data, reflecting the dynamics of inner as well as of 

end-monomers, respectively.59 In experiments, such a position resolved analysis of quantities like 

correlation functions is very difficult. Nevertheless, the selectivity of NMR offers the opportunity of 

probing only parts of chains by partial isotope labelling. In the course of PUB2, which is discussed in 

the upcoming section, chains where only the central monomers are labelled while the ends are 

obscured by deuteration, were investigated. 

 

5.2 Reorientation and Finite Length Effects in Polymer Melts 

In this section results on the segmental re-orientational dynamics of entangled poly(butadiene) (PB) 

are reported. Mainly the correlation function C2(t), resulting from the Fourier transform of intra-

molecular relaxation data was analyzed. The latter was obtained by isotope dilution experiments as 

well as by FC 2H NMR relaxometry, already performed by Herrmann et al.134 The findings are 

confronted with predictions of different models as well as with results from the competitive method 

of double quantum (DQ) NMR (cf. section 2). As said, DQ NMR is suitable to probe the dipolar 

correlation function CDD
DQ(t) directly in the time domain, without need of Fourier transformation. 

Beforehand, almost perfect agreement between FC and DQ 1H NMR was found in undiluted PB, i.e. 

CDD(t) @ CDD
DQ(t) (cf. section 4.2).  
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In PUB2 the intra-molecular relaxation contribution of entangled polymer melts of PB 196k and  

PB 24k presented by Herrmann et al.134  (cf. section 4.3) was revisited and a refined data analysis in 

the frequency domain was presented. This became necessary because the direct comparison of 

these systems regarding C2(t), as determined from FC NMR as well as measured by DQ NMR, 

respectively, revealed significant and consequential differences. The DQ NMR data was published in 

a recent follow-up study.195  

The issue is illustrated in Fig. 17, where C2(t) of PB 196k is shown again.134 Corresponding DQ 1H NMR 

results reported by Furtado et al. on the isotopic blend, PB-h 196k diluted to 15% in PB-d 191k, as 

well as DQ 2H data on undiluted PB-d 191k, are also displayed in Fig. 17.195 To be exact, the FC and 

DQ measurements, which are compared to each other in this section, were done on the same 

systems, yet, not on the same samples. However, the polymers used were purchased from the same 

provider.PUB2,134,195 The DQ data on C2(t) was vertically shifted (see below) to coincide with the 

corresponding correlation function CDD
DQ(t) of neat PB-h 196k, which is also displayed (cf. Fig. 14). 

The power-law exponents of the dipolar as well as the re-orientational correlation function in regime 

II can be found in Fig. 20, for all M. With one exception they show the mentioned “protracted 

transition” (cf. section 4.2). A more detailed discussion of the exponents in regime II follows at the 

end of this section. 

 

Figure 17: Segmental re-orientational 

correlation function C2(t/τα) of PB 196k as 

measured by FC 1H NMR134 as well as by 

DQ 1H NMR (data taken from Furtado et 

al.195 and vertically scaled, see text). In the 

case of DQ NMR the full dipolar 

correlation function CDD
DQ(t) of the 

undiluted melt is also included. Relaxation 

regimes (0,I,II) are indicated.  

 

Concerning the FC results it is recalled 

from section 4.3 that the exponent 

value in regime II of C2(t)  

(at t > τe º 6000τα) ɛII
intra(196 k) ≈ 0.45 (cf. also Fig. 20) determined by FC 1H NMR is significantly larger 

than ɛII(196 k) ≈ 0.3, found for the corresponding dipolar correlation function CDD(t). This 

experimental value ɛII
intra doesn’t conform to the constrained Rouse regime of the TR model. Hence, 

the dilution changes the slope in regime II as the inter-molecular relaxation is suppressed. The 

reliability of the isotope dilution experiment was checked via FC 2H NMR relaxometry. This data is 

also included in Fig. 17 (red stars). The found exponent value ɛII
intra(196 k) ≈ 0.45 actually fits better to 

the (thrice) renormalized Rouse model, for which a value of 4/7 ≈ 0.57 results in the high mode 

number limit.5 Below, in Fig. 19b the prediction of the n-RR models for C2(t) is shown (cf. sections 1.6 

and 1.7). One would expect to observe a similar behavior in the DQ NMR measurements. Instead, a 

discrepancy between both methods is apparent in Fig. 17, as the FC NMR curves of C2(t) are clearly 

steeper than their DQ NMR counterparts. In fact, the DQ power-law exponent values, ɛII
intra, DQ 
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(isotopic blend) and ɛII
Q,DQ (deuterated melt), are both about 0.3 and thus smaller than their 

counterparts from FC NMR (Fig. 20). At first glance, the DQ NMR results on C2(t) are in favor of the TR 

model, predicting a value of 0.25 in the constrained Rouse regime (II). Suppressing the inter-

molecular relaxation contribution in the DQ experiments by isotope dilution doesn’t change the 

slope in regime II. Almost the same exponent and an identical curve shape as for the undiluted, fully 

protonated PB-h 196k is obtained, i.e. ɛII
intra, DQ = ɛII

 DQ. Furtado et al. backed their DQ results on C2(t) 

by a computer simulation.195 Moreover, the DQ findings on C2(t) not only conform to the TR model 

but are also consistent with the generic simulations by Wang et al.20 (cf. Fig. 6 of section 2). However, 

the DQ data on the isotopic blend of PB 196k had to be multiplied by a factor of about ten in 

amplitude in order to match C2(t) with CDD
DQ(t) in Fig. 17. A similar effect on DQ measurements in a 

lesser diluted isotopic blend of PB 196k was reported before.221 Consequently, the dilution also has a 

significant effect on the DQ experiments, i.e., also the DQ 1H NMR data CDD
DQ(t) obtained from fully 

protonated polymer melts contains intra- as well as inter-molecular contributions (cf. section 

2).195,221-223  In contrast to FC NMR (cf. Cinter(t) in Fig. 15), however, the inter-molecular contribution in 

DQ NMR is obviously time independent, a fact contradicting all current theories of polymer dynamics 

(including TR).  

In this light, the good agreement between FC and DQ 1H NMR concerning fully protonated polymers 

(Fig. 14, section 4.1) is actually surprising, because CDD(t) determined by FC NMR is a superposition of 

C2(t) and Cinter(t), both showing pronounced time dependence. FC and DQ NMR, respectively, 

evidently deliver different results for each of these two correlation functions. Admittedly, it is not 

necessarily required that Cinter(t), as measured by FC 1H relaxometry and related to the segmental 

MSD, represents the same (time independent) “inter-molecular effect” occurring in DQ 1H NMR. If 

this is true, CDD(t) from FC 1H NMR and its counterpart CDD
DQ(t) from DQ 1H NMR can not be compared 

to each other. The good agreement in Fig. 14 would be rather accidental.  

In order to resolve the discrepancies between FC and DQ NMR regarding C2(t), the intra-molecular FC 

relaxation data on PB 24k and 196k was re-analyzed in PUB2 in the frequency domain, i.e. in the 

susceptibility representation c’’(ω), c’’intra(ω). Doing so, numerical Fourier transformation was 

avoided. Additionally, relaxation was studied only at a single, high temperature (393 K), therefore 

assuming FTS was not necessary. The power-law exponents in regime II were more precisely 

determined using a derivative method. Instead of extrapolating the relaxation rate R1(ω, cØ 0) of the 

isotope dilution series to zero concentration, the exponent itself was extrapolated, yielding ɛII
intra. 

Such a procedure allows skirting possible isotope effects on the local dynamics (τα).134,281 Indeed, DSC 

measurements presented in PUB2 revealed that there may be significant differences (> 10 K) in Tg 

between the deuterated and the protonated component of an isotopic mixture. The thorough re-

analysis presented in PUB2 merely led to minor corrections of the exponent values published before 

and the previous FC NMR results were fully confirmed. The specific exponent values are summarized 

below in Fig. 20. For the higher M PB 370k proton relaxometry on a further isotopic blend as well as 

FC 2H NMR on a fully deuterated sample was performed. Again, ɛII
intra(M) > ɛII(M) was found. Yet, PB 

370k was purchased from another manufacturer and features a different micro-structure (a different 

composition of conformational isomers) than the PB’s investigated previously; therefore, it couldn’t 

be compared.PUB2  
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Given the puzzling discrepancies between FC and DQ NMR, FC measurements on the much better 

suited polymer PEP were performed recently. Protonated as well as deuterated material of different 

M was available in sufficient quantities (provided by L. Willner, Forschungszentrum Jülich), enabling 

for a comprehensive investigation. Fully protonated, fully deuterated and isotopic diluted systems 

were studied. The results on PEP will be addressed in section 5.4. Thus, the findings on PB are 

checked for another system featuring i.a. a well-defined microstructure.  

The frequency dependence of the ratio between inter- and intra-molecular relaxation 

A(ω):=R1
inter(ω)/R1

intra(ω)  is an alternative to comparing experimentally observed power-law 

exponents to such predicted. The quantity offers another way for testing models on a very 

fundamental level. Neither has FTS to be assumed, nor is Fourier transformation required. A(ω) 

follows from experimental raw data directly. Such data is presented in Fig. 18 for the two M of PB.  

 

Figure 18: Ratio A(ω) = R1
inter/R1

intra vs. ωτe 

of PB 24k, PB 196k, PEP 200k (cf. section 

5.4) as well as PEO 180k. The latter data 

was taken from Kehr et al.127 The prediction 

for constrained Rouse dynamics (TR model) 

is indicated. Gray: expectation for DQ 1H 

NMR. 

 

The ratio A(ω) in PB of two different M 

is found to increase with decreasing ω 

in the entanglement regime (II). Thus, 

the inter-molecular relaxation becomes 

increasingly important at low ω. The 

same trend is also observed for PEP 200k (cf. section 5.4) as well as for poly(ethylene oxide)  

(PEO 180k, measured by Kehr et al.127). Those results are also included in Fig. 18. All A(ω) data was 

horizontally scaled to take the different temperatures and entanglement times τe into account. As 

derived in PUB2, this trend, which is now confirmed for three different polymers, contradicts the 

anisotropic TR model predicting the opposite, a decrease of A(ω) when going from high to low ω, 

specifically A(ω) ∂ ω1/8 (cf. section 1.7). Instead, the observation, which appears to be universal, is 

rather in favor of isotropic models like the n-RR model.PUB2 At lowest frequencies the square root 

behavior (eq. 58) is expected to show up in A(ω), when R1
intra(ω) becomes a constant and inter-

molecular relaxation prevails. Figure 18 suggests that the absolute value R1
inter(ω) becomes larger 

than R1
intra(ω) below, say, ωτe < 0.01. This might be misleading because the dispersion, i.e. the 

frequency dependence of R1
inter(ω) may of course be stronger than that of R1

intra(ω). The fact that the 

correlation decay of Cinter(t) is delayed with respect to C2(t) is not at all in contradiction with the 

finding that R1
intra(ω) is still appreciably larger than R1

inter(ω). Yet, the latter features the stronger 

dispersion (change with frequency). As the inter-molecular contribution in DQ 1H NMR is obviously 

time-independent (see above), the corresponding ratio, tentatively defined as  

ADQ = [CDD
DQ(t-1=w) - C2

DQ(w)] / C2
DQ(w) , yields a constant, as schematically indicated by the gray 
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dashed line in Fig. 18. In other words, the time/frequency independence of the inter-molecular 

contribution concluded from the DQ NMR measurements on PB195 shown in Fig. 17 would lead to the 

proportionality R1
intra(ω) ∂  R1

inter(ω), which is clearly not observed in Fig. 18. 

 

PB chains composed of deuterated ends and a protonated center section offer the opportunity to 

study the influence of enhanced chain-end mobility. PB chains labeled this way were synthesized by 

L. Willner and were provided by the Forschungszentrum Jülich (group of D. Richter).PUB2 Employing FC 
1H NMR on such samples the more mobile chain ends are obscured and the CLF effect (cf. section 

1.5) is suppressed. Furthermore, the partial 1H labelling leads to an isotope dilution, also suppressing 

inter-molecular relaxation. In the case of PB composed by deuterated/protonated/deuterated 

sections of M = 13k / 6k / 10k ( = PB-dhd 29k), it is consequently assumed that only the intra-

molecular relaxation of the center segments is probed. In fact, this scenario comes closest to the 

generic models that are assumed in polymer theories. While in PUB2 c’’(ω) data at just one T was 

shown, Fig. 19a of this work displays the full correlation function C2(t/τα) of PB-dhd 29k, in 

comparison to that of the fully protonated but diluted chains of PB 24k, i.e. of a similar M. 

 

 

 

 

 

 

 

 

 

Figure 19: a) Re-orientational correlation function C2(t) of PB-dhd 29k (red, unpublished). For comparison, C2(t) 

of fully protonated but diluted PB 24k and PB 196k is displayed.134,PUB2 Relaxation regimes (0, I, II) are indicated, 

as well as the prediction of the TR model (gray).  (b) Prediction of the TR3 (black) as well as of the RR model5 

(colored).  

 

Differences in C2(t/τα) with respect to entirely protonated chains only occur at long times in regime II 

and in the terminal one. Against the trend of the “protracted transition”, ɛII
intra of PB-dhd 29k agrees 

with that of the high molar PB 196k (ɛII
intra = 0.45) well and is significantly lower than that of fully 

protonated (but diluted) PB 24k (0.66). It is concluded that the “protracted transition” found before 

by FC as well as DQ NMR (cf. Fig. 20) is a finite-length effect involving chain-end relaxation. It 
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disappears when merely the center sections are regarded. Similar results arose from the atomistic 

MD simulations discussed in PUB1 (cf. section 5.1). Yet, the discrepancy with respect to the TR model 

predicting a value of 0.25, remains. Still, the thrice-RR model, for which the prediction is plotted in 

Fig. 19b, fits better. In Fig. 19a the terminal relaxation of PB-dhd 29k, reflected in the (stretched) 

exponential decay at longest times, appears to be shifted with respect to that of PB 24k by about one 

decade toward longer times. The shift cannot be explained by the slightly higher M alone as  

(29 k /24 k)3.7 ≈ 2. This finding clearly confirms the idea that the M-dependence of the terminal 

relaxation time τt is significantly decreased by enhanced chain end motion (cf. eq. 40, section 1.5). 

The computer simulations by Wang et al. indicate that C2(t) is also strongly influenced by the CR 

process, which is not obfuscated by the partial protonation.20 In order to suppress the CR process, 

one could mix PB-dhd 29k with deuterated chains with a much larger M. Then, the topological 

constraints (the “tube”) become immobile. 

Figure 20 summarizes all the values of the power-law exponent in regime II of the different 

correlation functions, gathered for PB via FC as well as DQ NMR. In addition to PB 196k further M are 

now included in the discussion. For PEP 200k (cf. section 5.4) data is also added. Concerning the full 

dipolar (ɛII), the pure intra-molecular (ɛII
intra) and the quadrupolar relaxation (ɛII

Q) the exponent values 

are plotted vs. M/Mc , with Mc(PEP) =  3k and  Mc(PB) =  2k. The exponent values ɛII
DQ, ɛII

intra,DQ and 

ɛII
Q,DQ  resulting from the DQ NMR studies are also shown for comparison.195,221-223   

 

Figure 20: Power-law exponent in regime II 

of PB as a function of M/Mc. The following 

values of Mc were used: Mc(PEP) = 3k, 

Mc(PB) = 2k. Results from FC (closed 

symbols) and DQ NMR (open symbols), 

each applied on both, 1H and 2H, 

respectively, are compared. Data points of 

PEP 200k are also included (cf. section 5.4). 

The protracted transition (represented by 

the gray and the black line) disappears 

when just the middle segments are 

investigated (as suggested by the red line). 

 

 

First, the total dipolar relaxation of PB is addressed.  The “protracted transition” is reflected in the 

exponent ɛII decreasing from about 0.8 to about 0.3. As already discussed in section 4.2 and in this 

section, DQ NMR (ɛII
DQ, gray open squares) and FC NMR (gray closed squares) provide similar 

exponent values. When the intra-molecular relaxation is singled out, the exponent values gained 

from both techniques diverge. As mentioned, the values ɛII
intra, DQ (orange open circles) resemble 

those corresponding to the total correlation function ɛII
DQ. At least for high M DQ 2H NMR 

measurements reveal similar values, i.e. ɛII
Q,DQ ≈ ɛII

intra,DQ ≈ ɛII
 DQ (see above). In opposition, the 

exponent values in FC NMR increase upon isotopic dilution, i.e. ɛII
intra  >  ɛII. The values from isotopic 
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dilution are also validated by FC 2H relaxometry. The agreement between the outcomes of the 

isotope dilution experiments and corresponding 2H measurements are even better in FC than in DQ 

NMR. Furthermore, the FC data on PB is confirmed by those on PEP.  

In the diluted/deuterated systems the protracted transition is still observable. Compared to the full 

dipolar data it is less pronounced as the decay goes just down to about 0.45, instead to 0.3. It is 

illustrated by the black line in Fig. 20. When the partially deuterated sample PB-dhd 29k is regarded, 

the protracted transition in the power-law exponent ɛII
intra has disappeared. As suggested by the solid 

red line, the high-M plateau value of about 0.45 for intra-molecular relaxation is reached 

immediately.  

Finally, it is remarked that in the experimental section of PUB2 it was claimed that “in all investigated 

systems the magnetization build-up or decay curves were found to be monoexponential”, which 

turned out to be wrong after closer inspection. In fact, the magnetization curves m(t) of all data 

measured on the FC-1 relaxometer are apparently non-exponential at long evolution times (cf. Fig. 

11c). It was attempted to remedy the mentioned discrepancies between FC and DQ NMR by fitting 

m(t) under the assumption of a log-normal distribution of relaxation rates.285 Yet, as turned out later, 

the non-exponentiallity results from experimental artifacts of the FC-1 relaxometer and not from a 

broad distribution of relaxation rates (cf. section 3.3). The (unweighted) mono-exponential fits 

applied by Herrmann et al.134 over whole magnetization curves provide practically the same results 

for <R1(ω)> as restricting the fit to the initial, artifact-free region at t § <R1(ω)>-1. Thus, no results 

presented in PUB2 have to be revised in this sense.  

 

5.3 Mean Squared Displacements of Segments in Polymer Melts 

While in the previous section the focus lies on the re-orientational dynamics in polymer melts, this 

one is dedicated to translational motion of segments. FC and FG 1H NMR measurements on the same 

samples were combined to probe <r2(t)> in two different polymers, namely in PB and in PDMS, over 

an extremely wide time range, not reached by any other single technique.PUB4 Later on, the analysis 

was repeated with PEP (section 5.4).  

By extracting the inter-molecular relaxation dispersion R1
inter(ω) from the total one, the segmental 

MSD <r2(t)> in polymer melts was calculated from FC 1H NMR data. To this end, the theoretical 

framework of Fatkullin et al.75,130 outlined in section 1.7 was applied. Specifically, a version of the full 

expression eq. 56 was used (see below), relating the absolute MSD of polymer segments to the 

cosine-transform of R1
inter(ω). Technically, R1

inter(ω) was received from isotope dilution experiments 

(cf. sections 4.3 and 5.2) via subtracting the intra-part from the total one, i.e. R1
inter(ω) = R1(ω) - 

R1
intra(ω). For two different molar masses of entangled PB, such data was available from the 

experiments carried out by Herrmann et al.134 (see also section 4.3). In the case of the other polymer 

PDMS the overall relaxation is inter-molecular dominated already for relatively high frequencies of 

ωτα < 0.1, as was demonstrated by Herrmann et al.134 This peculiarity is related to the fact that PDMS 

only contains methyl protons that undergo rapid rotations in addition, as mentioned in section 3.3. 

Those pre-average the intra-molecular dipolar coupling and cause low values of R1
intra(ω). Thus, 
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concerning PDMS no isotope dilution was required as it was focused on the collective polymer 

dynamics occurring at frequencies ωτα << 1. Applying the common FC NMR toolbox of the Bayreuth 

group, susceptibility master curves c’’inter (ωτα) were constructed from the inter-molecular relaxation 

data via subtraction along c’’inter (ωτα) = c’’total (ωτα) - c’’intra (ωτα). While in a first attempt of Herrmann 

and co-workers the algebraic approximation eq. 57 was used,134 the actually required numerical 

transformation was carried out in PUB4 rigorously. By substituting d(ln ω) = ω dω , eq. 55 can be re-

written in its most convenient form used in PUB4: 
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In contrast to the original eq. 56 the above expression has the advantage that it works with 

susceptibility master curves as input. As τα(T) is known from the master curve construction over a 

wide range 400 K t T t 200 K,  the absolute MSD can be calculated for any reference temperature 

therein. This is necessary for comparing FC results with that of FG NMR and also NSE spectroscopy 

(cf. section 5.4) as these techniques cover significantly different time ranges (cf. Fig. 2). 

 

 

 

 

 

 

 

 

 

 

Figure 21: Segmental MSD <r2(t)> in PB (a) and 

PDMS (b) melts with M and T as indicated. Data 

from FG 1H NMR (full symbols) and from  

FC 1H NMR (open symbols) is combined, 

together covering four power-law regimes 

(I-IV). Adapted from PUB4 and extended.  

c) Forecast of the TR model.24  
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Figure 21a displays the MSD <r2(t)> for two different M > Mc of PB, after scaling the data to the 

reference temperature T= 391 K. In Fig. 21b <r2(t)> of PDMS at 292 K is shown, for which a broader 

range of M was investigated, ranging from the simple liquid PDMS 860 up to entangled PDMS 232k. 

Assuming FTS, a time range between ns and ms is covered by FC NMR, revealing several sub-diffusive 

regimes, depending on M, which will be discussed below. In order to extend this window toward 

even longer times, FG 1H NMR was performed on some M of the same undiluted polymers. FG NMR 

is a standard method for measuring the diffusion in the hydrodynamic limit, where the diffusion 

coefficient D is well-defined. Measuring sub-diffusive motion, where <r2(t)> ∂ ta<1 or D becomes 

time-dependent, is difficult with FG NMR but possible. However, experimental data is scarce (cf. 

section 2). In the course of PUB4 the benefits of a static, very high magnetic field gradient were 

exploited, allowing for measuring down to such short diffusion times (a few ms) that D indeed 

becomes time-dependent for high M and T. While for long diffusion times D(t t 100 ms) = const. 

holds (hydrodynamic limit), power-laws close to D(t) ∂ t-0.5 are observed at shorter times, associated 

with chain reptation (regime III). The MSD <r2(t)> is derived using the Einstein relation <r2(t)> = 6Dt. 

For both polymers, PB and PDMS, the data resulting from FG NMR is included in Fig. 21. The MSD 

data coming from FC and FG NMR is complemental as the data of both techniques doesn’t overlap. 

When the curves are projected (red dashed lines in Fig. 21a), there appears to be a vertical gap of 

about a factor of two between the absolute values of <r2(t)>. Possible explanations for this mismatch, 

which is marginal regarding the many methodical differences, are proposed in PUB4.  

Given the complemental time ranges, both NMR methods cover the complete dynamical hierarchy of 

<r2(t)> in entangled polymer melts, namely the Rouse regime (I), two entanglement related regimes 

(II, III) and finally normal diffusion (IV). When compared to the TR model (Fig. 21c), high 

correspondence is found: all predicted translational power-law regimes are identified. The values of 

the power-law exponents agree with those predicted within ≤ 0.1. When M is decreased below Mc 

the entanglement related regimes (II,III) disappear, while the hydrodynamic regime <r2(t)> ∂ t1 shifts 

toward shorter times. Going down even further, finally the Rouse regime (I) vanishes. For the shorter 

polymers PDMS 22k, 6k and 860 and eventually also for PB 24k, the terminal behavior is already 

observed in the FC NMR data. The constrained Rouse regime (II) with its characteristic exponent of 

<r2(t)> ∂ t0.25 is only fully established for the systems with the highest M, i.e. PB 196k and  

PDMS 232k, respectively. PB 24k and PDMS 42k (the latter is not yet included in PUB4) are also 

entangled. However, regime II is not fully established yet, and one would assign higher slopes than 

0.25. Thus, the protracted transition observed in regime II concerning CDD(t) and C2(t) (cf. Fig. 20 in 

section 5.2) is also relevant for the MSD.  

The full segmental MSD at hand allowed estimating the Kuhn length b as well as the tube radius a0 of 

the TR model. Concerning the Kuhn length, some variance to literature data was found, while the 

tube radius is essentially in accordance.PUB4 Moreover, the extracted values of the translational 

diffusion coefficient D, the terminal relaxation time τt and the entanglement time τe were compared 

to results from the literature in PUB4, mostly to rheological results; good agreement was found. 

Finally, “relaxation maps” of both PB as well as PDMS including τα(T), τe(T) and τt(T) were presented in 

PUB4, emphasizing the correspondence between NMR and other methods, in particular between FC 

NMR and rheology. A further relaxation map will be presented in the next section for the linear 

polymer PEP (Fig. 32). 



71 
 

 

Concluding, the combination of FC and FG NMR provides information on the translational motion in 

polymer melts over a huge time range in terms of the segmental MSD. The results are well described 

within the TR model, which is essentially confirmed concerning segmental translation. Nevertheless, 

it is recalled that the re-orientational correlation function C2(t) also accessible from FC 1H NMR 

doesn’t match to the TR model, as was discussed in the previous chapter. In the meantime, a further 

isotope dilution experiment was performed for PEP, enabling the determination of <r2(t)> as well. 

These unpublished results are part of the next section, which is dedicated to a comprehensive 

investigation of the polymer dynamics in PEP via FC 1H and 2H relaxometry. 

 

5.4 NMR Relaxation in Poly(ethylene propylene) 

FC measurements on polymer melts which started with PB in the Bayreuth group, were meanwhile 

extended to a multitude of different linear polymers. The results are published only in parts. In  

Fig. 22 the total 1H susceptibility master curves c’’(ωτα) of high-M (i.e. M > Mc) representatives of 

PB,227 PI,274 PDMS,134 PPG,272 poly(propylene sulfide) (PPS, sample provided by H. Pletsch, Universität 

Bayreuth), poly(butylene oxide) (PBO, sample provided by L. Willner, Forschungszentrum Jülich) and 

PEP are shown, with M as indicated. In each case, the highest M available was chosen. For 

comparison, the curve of the simple, low-M liquid di-PG (cf. section 5.1) is also provided.d Note that 

the curves are vertically scaled to c’’(ωτα≈1) = 1 at the α-peak, to take small variances in the coupling 

constants/second moments into account. It turns out that the behavior found for PB (cf. section 4.1) 

is also observed in other entangled polymers, i.e. power-law regimes reflecting Rouse and 

entanglement dynamics occur at ωτα < 1, unlike in low-M liquids like di-PG. The shape of c’’(ωτα) of 

linear polymers and its evolution with M appear to be generic.272 It is emphasized that polymers with 

different rations of M/Mc are compared. In cases where this ratio is small (PPG 18k, for instance) the 

entanglement regime is less pronounced and the terminal relaxation already affects the curves at 

low frequencies. Nevertheless, it is obvious that the amplitude of polymer relaxation strength in 

relation to the low-M reference di-PG depends on the type of polymer. Possibly, the nature of the 

monomer, in particular the orientation of the inter-nuclear vectors with respect to the chain 

contour,274 or differences in chain stiffness20 provide an explanation.  

  

                                                           

 

d Dimeric PG was chosen as the low-M reference in FC 1H NMR as monomeric PG features more pronounced 

inter-molecular relaxation (cf. section 5.1 and PUB1). 
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Figure 22: Vertically scaled NMR 

susceptibility master curves c’’(ωτα) of 

different entangled (M > Mc) polymers, in 

comparison to that of the simple liquid di-

propylene glycol (PG). Partially 

unpublished data (see text).   

 

Although somewhat different M are 

compared, it is apparent that PB (blue 

colored) and PEP (red colored) 

feature the strongest polymer effect 

among the species investigated so far. 

Their susceptibility master curves 

show the largest amplitudes at low ω, in relation to the α-process. The latter is essentially 

represented by the curve of the simple liquid di-PG. Actually, the c’’(ωτα) curves of PB and PEP are 

very similar. PEP is a linear co-polymer consisting of alternating ethylene and propylene monomers, 

the latter bearing each a methyl side group. Unlike PB, PEP contains single bonds exclusively. As a 

consequence, PEP has no variation in its micro-structure in contrast to PB, for instance, which is 

known to feature variations in the content of different conformational isomers.206 Furthermore, PEP 

poses a compromise between the simplest implementation of a linear chain (poly(ethylene)) and a 

weak tendency to crystalize. Furthermore, PEP features a suitable Tg , i.e. low enough that the 

relevant frequency/time scale of polymer dynamics coincides with the window of the FC NMR 

technique. This renders PEP as an ideal candidate for further FC NMR investigations. Specifically, the 

far-reaching conclusions drawn from the previous measurements on PB (sections 4.2, 4.3 and 5.2) 

can be critically checked for another system. It is reminded that FC and DQ NMR on PB yields 

contradicting results concerning re-orientational dynamics (cf. section 5.2).  

Seven batches of protonated PEP with different M within 3k § M § 200k and low polydispersity 

(Mw/Mn § 1.06) were provided by the group of D. Richter (Forschungszentrum Jülich). In the case of 

PEP 200k and 50k also deuterated polymer was provided. Unfortunately, no low-M reference was 

available. The systems were investigated via FC 1H and 2H NMR, respectively, as well as by shear 

rheology. The NMR results are summarized in this section. The subsequent one is dedicated to a 

methodical comparison between the NMR and the rheological results.  
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Figure 23: a) Dipolar correlation function CDD(t) of PEP 

with 3 k § M § 200 k, as well as of the simple liquid 

di-propylene glycol (PG). The Rouse time τR explicitly 

belongs to PEP 80k (shown in green). The terminal 

time τt of PEP 80k is projected from shear 

measurements. b) CDD(t) of selected M of PB, as 

indicated.227 Here, τR and τt belong to PB 24k (marked 

in green). Relaxation regimes (0-IV) and 

corresponding power-law exponents are indicated.  

c) Predictions of the TR model for the inter-molecular 

correlation function Cinter(t) (cf. Table 1).  

 

 

In Fig. 23a the time domain master curves of the dipolar correlation function CDD(t/τα) of PEP are 

shown, in comparison to that of di-PG. As in the case of PB (section 4.2), they result from Fourier 

transformation of susceptibility master curves c’’(ωτα) of the total (i.e. intra- + inter-molecular) 1H 

relaxation. The time constant τα(T) of PEP, gained from the master curve construction, is plotted in 

Fig. 32 (section 5.5) in a “relaxation map”. There, a comparison to results from other techniques, in 

particular to the shear measurements, is performed. It is anticipated that perfect agreement among 

the different techniques regarding τα(T) is found. FTS applies perfectly. 

As in the case of PB (section 4.2) and other polymers,272 several power-law regimes CDD(t)∂ t-ɛ  are 

discovered in PEP beyond the α-process (regime 0), i.e. at t >> τα. The curves actually highly resemble 

those of PB, for which CDD(t) of selected M is plotted again in Fig. 23b, for a direct comparison. 

Remarkably, the found exponent values for the different regimes I-IV in CDD(t) in both, PEP as well as 

in PB, resemble those predicted by the TR model rather for Cinter(t) than for Cintra(t) (cf. Table 1). The 

corresponding forecast concerning Cinter(t) is sketched in Fig. 23c. In the case of PB, this fact was 

actually overseen by Herrmann et al.,227 where an apparent agreement between the experimentally 
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determined CDD(t) and the prediction of the TR model concerning C2(t) was actually claimed. First, in 

the Rouse regime (I) power-law exponents of εI = 0.8 (PEP) and εI = 0.9 (PB) are observed, 

independent of M. Concerning inter-molecular relaxation, Cinter(t) ∂ t-0.75  is predicted by the Rouse 

model, following from the relationship between the segmental MSD and Cinter(t) given by eq. 56 (cf. 

section 1.7). For the re-orientational correlation function resulting from the intra-molecular 

relaxation contribution, C2(t) ∂ t-1 is predicted. As the experimentally observed exponent values are 

in-between the predicted ones concerning C2(t) and Cinter(t), respectively (Table 1), one might 

speculate that already in the Rouse regime, the shape of CDD(t) is affected by inter-molecular 

relaxation significantly, although the absolute relaxation rate is still intra-dominated here (cf. Fig. 18, 

section 5.2 and below).  

PEP with molar mass M ≥ 5k shows characteristics of entanglement dynamics. Hence, the crossover 

molar mass is supposed to be in between 3k § Mc § 5k, which is in accordance to values reported in 

the literature.286 The constrained Rouse regime (II) with its exponent εII(M) decreasing with M, occurs 

at times t > τe. The “protracted transition” in εII(M) (cf. Fig. 20 and section 5.2) is also observed for 

PEP. Concerning the longest chains studied, an exponent value of  

εII(PEP 200k) = 0.38 ± 0.03 is found for the total relaxation (cf. Fig. 23a). The entanglement time  

τe /τα ≈ 7000 is estimated from the corresponding power-law intersection in CDD(t/τα). The value is by 

about 1-2 decades higher than predicted by the TR model (eq. 33), a finding which was also observed 

for PB and PDMS, respectively.PUB4 For PB, a high-M exponent value of εII(PB 441k) = 0.31 ± 0.03 was 

found. The TR model provides Cinter(t) ∂ t-0.375 for the constrained Rouse regime, which is in between 

the exponent values of PEP and PB concerning regime II of CDD(t).  

For PEP 50k and 80k, respectively, actually a third polymer-related power-law regime is observed at 

longest times in CDD(t), with an apparent exponent value of εIII ≈ 0.75. Regime III, which wasn’t 

identified before, apparently doesn’t show up in PEP for M lower than 50k. Otherwise, in PEP 200k it 

is already outside the accessible time window. Besides regime II, this could be a second power-law 

regime characteristic for entanglement dynamics, such as the “reptation” regime forecast by the TR 

model (cf. section 1.5) or, alternatively, the “low mode number – short time limit” of the RR model 

(cf. section 1.6). Tentatively interpreting CDD(t) in terms of the TR model, the crossover time  

τR /τα ≈ 5 x 106 at which the Rouse mode spectrum ends and reptation becomes dominant, is 

indicated in Fig. 23a for PEP 80k (green colored). A closer inspection of the dipolar correlation 

function CDD(t) of PB, which is shown again in Fig. 23b for selected M, also reveals regime III for PB 

24k (green colored) and PB 56k (red colored). The corresponding exponent is εIII ≈ 0.75 also in these 

cases. It is remarked that also the authors of the DQ 1H NMR studies221-223 on PB claim the existence 

of regime III in CDD
DQ(t), while Herrmann et al. refrained from a clear statement. The latter rather 

attribute this regime to a smooth transition toward terminal relaxation.227 The exponent value εIII ≈ 

0.75 found for PEP as well as for PB, conforms to the prediction of the TR model in the reptation 

regime, again concerning Cinter(t) (cf. Table 1). Notably, regime III doesn’t (yet) show up in the re-

orientational correlation function C2(t) of PB 24k and of partially deuterated PB-dhd 29k (Fig. 19a). 

This could indicate that segmental translation and re-orientation decouple at long times, in 

contradiction to the RTO hypothesis (cf. section 1.5). 

The terminal regime (IV) in PEP as well as in PB is coined by CDD ∂ t-1.5 behavior, which is indicated by 

dashed lines in Figs. 23a and b. Herrmann et al. didn’t sufficiently comment on the terminal behavior 
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of CDD(t) of PB.227 In fact, for all PB of molar mass smaller than about 30k, the universal behavior 

CDD(t)∂ t-1.5  is observed at longest times. Here, the inter-molecular relaxation governed by diffusion 

dictates the form of CDD(t). This circumstance was even exploited by Meier et al. to determine the 

diffusion coefficient of PB with M § 10k and other polymers.141 The terminal correlation decay 

quickly shifts with τt ∂ M 3.7 (cf. section 5.5) toward longer times and leaves the experimental 

window.  

As said, the exponent values for the different regimes I-IV in CDD(t) in both, PEP as well as in PB, are 

close to those predicted by the TR model for Cinter(t). In the case of PDMS the equivalence of CDD(t) 

and Cinter(t) at long times allowed determining the segmental MSD even without necessity of isotope 

dilution (cf. section 5.3). Thus, also concerning PDMS the shape of CDD(t) is governed by inter-

molecular relaxation. In the case of PB 24k, which is marked in green in Fig. 23b, CDD(t) actually 

covers all the mentioned translational power-law regimes (I-IV). For PEP, no such molar mass was 

studied. Yet, the terminal time τt can be estimated from the mentioned shear measurements 

presented below in section 5.5. This allows projecting the further progress of CDD(t) e.g. of PEP 80k, 

as indicated in Fig. 23a by the solid green lines. In conclusion, the dispersion of the total relaxation 

and the corresponding dipolar correlation function CDD(t) is much more affected by inter-molecular 

relaxation than it was perceived before. Consequently, CDD(t) appears to conform to the TR model, 

yet, not regarding re-orientation but translation. 

In the case of PEP 200k deuterated material in sufficient quantity was provided, offering the 

opportunity to perform a further isotope dilution experiment. This enabled a separation between 

intra- and inter-molecular relaxation contributions for another polymer than PB (section 5.2). 

According to the procedure described by Herrmann et al.,134 an isotopic blend of fully protonated 

(PEP-h) and fully deuterated (PEP-d) chains with the same M = 200k was mixed and measured in a 

broad T range in Bayreuth as well as in Darmstadt. The concentration was 10 (weight) % of PEP-h 

200k in 90% of PEP-d 200k, controlled by thorough weighing. Due to dilution by the deuterated 

matrix, it is assumed that the inter-molecular relaxation is (mostly) suppressed. An intra-molecular 

susceptibility curve c’’intra(ωτα) was constructed from measurements on the isotopic blend at 

different temperatures. The result is shown in Fig. 25b, after converting c’’intra(ωτα) to the rate 

representation R1
intra(w) (see below). As in the case of PB, the intra-molecular susceptibility curve 

c’’intra(ωτα) was subtracted from the total susceptibility c’’(ωτα) of PEP-h 200k, to get the pure inter-

contribution c’’inter(ωτα). Afterwards, both c’’intra(ωτα) and c’’inter(ωτα), were transformed into the time 

domain. Figure 24 shows the resulting correlation functions C2(t/τα) as well as Cinter(t/τα), respectively, 

of PEP 200k. 
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Figure 24: Inter- and intra-molecular 

correlation functions Cinter(t/τα) (black) 

and C2(t/τα) (red), respectively, resulting 

from 1H FC relaxometry on isotopically 

diluted PEP 200k. C2(t/τα) obtained from  

FC 2H relaxometry is also included 

(orange triangles). Dynamic regimes are 

indicated. Dashed lines: predictions of 

the TR model3 for Cinter(t) and C2(t) (cf. 

Table 1). 

 

 

 

In regime 0 the intra- and the inter-molecular contribution are barely distinguishable and the noisy 

Cinter(t) data is not shown in Fig. 24. In regime I Cinter(t) closely follows ∂ t-0.75, as predicted by the 

Rouse model (cf. Table 1). For Rouse dynamics C2(t) ∂ t-1 is predicted. Experimentally, a somewhat 

lower slope of around -0.9 is observed. Returning to the results on the isotope dilution experiment 

concerning PB 196k shown in Fig. 15 (section 4.3), it is noted that C2(τα < t < τe) features a slightly 

steeper decay with ɛI
intra ≈ 1 than Cinter(τα < t < τe) with ɛI

inter ≈ 0.75, a subtle fact that wasn’t addressed 

by Herrmann et al.134 As in the case of PEP 200k, both these exponent values in PB are very close to 

the respective predictions of the Rouse model (cf. Table 1). In regime II Cinter ∂ t-0.30 ± 0.05 is found for 

PEP 200k, which is somewhat flatter than the corresponding prediction of ∂ t-0.375. Otherwise,  

C2 ∂ t-0.50 ± 0.05  observed in regime II is clearly steeper than C2∂ t-0.25 predicted by the TR model, just as 

it was found previously for PB (section 5.2). This exponent is also reproduced by 2H relaxation 

dispersion measurements (see below). The resulting C2(t) data is included in Fig. 24 (orange colored) 

and fits to that obtained from the dilution experiment well. Both exponent values ɛII
intra, and ɛII

Q, 

respectively, of PEP 200k are integrated in Fig. 20 of section 5.2; they match and confirm the 

previous data of PB.  

Using the Darmstadt FC-1 relaxometer, also the quadrupolar relaxation dispersion R1(ω) of the pure, 

per-deuterated PEP 200k (PEP-d 200k) was measured via FC 2H NMR at 393 K and within  

500 Hz § ω/2π § 5.6 MHz. The results have been published in PUB6 recently. As similar power-law 

exponents as for the intra-molecular 1H relaxation are expected, the FC 2H NMR measurements serve 

again as a verification of the isotope dilution experiment. Due to the local character of the 

quadrupolar interaction averaging of the spin-lattice relaxation by cross-relaxation is inefficient, 

leading to bi-exponential (normalized) magnetization m(t), unlike in fully protonated PEP-h (cf. 

section 3.3). In Fig. 25a the normalized magnetization curves m(t<R1>) of PEP-d are shown for 

different frequencies. They can be well fitted to a bi-exponential, where the weighs are specified as 

the number of deuterons p = 3/10 and (1-p) = 7/10, respectively, as found in the monomer unit. One 

relaxation component in PEP-d stems from the deuterons directly connected to the chain backbone 
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(R1
chain), the other one from the deuterons in the methyl groups (R1

CD3). The average rate was 

calculated via <R1(ω)> = p R1
CD3 + (1-p) R1

chain and is used in Fig. 25a to scale the time axis, yielding a 

master curve for all frequencies ω in good approximation.  

 

 

 

 

 

 

 

 

Figure 25: a) Rescaled relaxation function m(t<R1(w)>) of PEP-d 200k at 393 K, measured at different 

frequencies 500 Hz § ν = ω/2π § 5.6 MHz (not distinguished). The initial decay reflecting <R1> is indicated (red 

dashed line). The decomposition into R1
chain (blue) and R1

CD3 (green) is sketched.  b) Corresponding relaxation 

rates of chain and methyl group deuterons. Data measured at ω/2π = 46 MHz on a high-field magnet is 

included. The high-field and FC data is interpolated by the (vertically shifted) intra-contribution R1
intra(ν) of 1H 

relaxation obtained from isotope dilution (black crosses). Relaxation regimes are indicated. Purple dashed line: 

CD function fitted to the α-process of the chain relaxation and extrapolated to lowest ν. Blue: transition to the 

plateau for the chain relaxation as predicted from rheological data (cf. section 5.5). Both figures are taken from 

PUB6. 

 

Although the noise is large due to the technical difficulties of FC 2H NMR (cf. section 1.8), an initial 

linear regime at t § <R1>-1 is identified for all w, i.e. a master curve is gained. This gives confidence 

about the reliability of the bi-exponential decomposition. The individual contributions R1
chain and 

pR1
CD3 , respectively, are also indicated in Fig. 25a. The smaller relaxation rate corresponds to the 

rapidly rotating methyl group. One could raise the question if the long time tail of m(t) rather results 

from the FC-1 artifact than from the methyl group relaxation. When compared to the relaxation of 

toluene (Fig. 11d in section 3.3) the data appears to be reliable down to a 10% drop, while methyl 

group relaxation contributes to 30%, as expected. Thus, chain- and methyl group relaxation are 

distinguishable, as in the case of deuterated toluene (cf. Fig. 12).  

The extracted rates are shown in Fig. 25b, where the relaxation regimes for Rouse (I) and 

entanglement dynamics (II) are indicated. Additionally, 2H NMR relaxation measurements on PEP-d 

200k at ω/2π = 46 MHz were carried out, employing a superconducting high-field magnet.287 These 

results are included in Fig. 25b (open symbols). In contrast to the FC 2H NMR measurements, where 

ω was varied at constant Tref = 393 K, the temperature was varied within 100 K §  T § 330 K at a 

constant field. With the full temperature dependence τα(T) known (cf. Fig. 32 in section 5.5) and 
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under the assumption of FTS, it is possible to include the high-field relaxation data in Fig. 25b, where 

the time constant τα for Tref = 393 K is indicated. While the α-process (0) is covered in the high-field 

data, the polymer specific power-law regimes I, II appear in the FC measurements. The purple dashed 

line indicates the contribution of the α-process in the chain relaxation, extrapolated over the full 

frequency range. The gap between both methods, FC and high field, is still two decades broad and 

could be filled in future work by (i) performing FC 2H NMR measurements at lower T or (ii) higher ω, 

respectively, (iii) by performing high-field measurements at T > 330K or, preferentially, by using 

further high-field magnets operating within 46 MHz > ω/2π > 4.6 MHz.  

A comparison to the results of the 1H isotope dilution experiment on PEP 200k discussed above  

(Fig. 24), is worthwhile. The corresponding susceptibility master curve is included in Fig. 25b by 

proper scaling. For that purpose R1
intra(ω) = [c’’intra(ωτα)/ ωτα ] µ τα(Tref = 393K) is plotted vs. 

 ωτα/ τα(Tref = 393K). This procedure yields a rate curve R1
intra(ω) as if it was measured at 393 K, but on 

a relaxometer pretending an extremely broad frequency range. This data is included as black crosses 

and interpolates the 2H data from both, FC and high-field measurements, very well, after vertical 

scaling. This additional scaling is necessary to compensate the different coupling constants of the 

dipolar and the quadrupolar interaction. Only at low frequencies, minor deviations between the 1H 

and 2H curves are found.  

As in the case of the intra-molecular relaxation resulting from isotopic dilution, also the 2H dispersion 

data are transformed into the time domain to gain the re-orientational correlation function C2(t). For 

that purpose the gap between the 2H high-field and the FC data was interpolated by the c’’intra(ωτα) 

data obtained from the isotopic dilution experiment. The resulting re-orientational correlation 

function C2(t) is included in Fig. 24 (orange triangles), as mentioned before. Also in this 

representation, only at long times slight deviations with respect to C2(t) obtained by isotope dilution 

are observed. They may result from residual inter-molecular relaxation in the isotopic blend. 

Specifically, εII
Q agrees well with εII

intra = 0.5 derived from the isotope dilution experiment but not 

with the prediction (0.25) of the TR model concerning re-orientation, a fact also found for PB before. 

This exponent value already shows up in the relaxation rate raw data, where in regime II  

R1
intra(ω) ∂ ω-0.5 is observed (cf. Fig. 25b). As mentioned, the exponent values εII

intra and εII
Q of  

PEP 200k are included in Fig. 20 of section 5.2 and fit well to the FC NMR data on PB. Consequently, 

the results on PEP fully support the conclusion drawn in PUB2 (cf. section 5.2) that segmental re-

orientation is not correctly described within the TR model. Again, also for PEP εII
intra > εII

total is found, 

confirming the previous observations by FC NMR on PB and cementing the discrepancy to the DQ 

NMR measurements revealing ɛII
intra, DQ = ɛII

 DQ.195 

As also rheological measurements on PEP 200k were carried out, which are presented in section 5.5, 

the value of the terminal relaxation time τt(393 K) ≈ 0.1s is known. It can be read off, from the 

“relaxation map” in Fig. 32. Furthermore, the so-called “cumulative mode ratio” FNMR(M) which will 

be introduced in section 5.5, allows to predict the low frequency plateau value of R1(w) of PEP 200k, 

which is still outside the frequency window of FC NMR for such a high M. Without going into detail 

yet, the quantity is defined as FNMR(M) := <τ(M)>/ τα = R1(0) / R1
α(0) . It quantifies the mean relaxation 

time averaged over the whole mode distribution, in relation to τα. When M grows, polymer dynamics 

shows up, causing an increase of <τ(M)>. The quantity FNMR(M) as shown in Fig. 31 i.a. for PEP, is 

linearly extrapolated to estimate its value at M = 200k. Afterwards, the extrapolated value is 
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multiplied with R1
α(ωØ 0), estimated from a fit of the α-process by a CD function (purple dashed line 

in Fig. 25b). Doing so, the low frequency plateau of R1 is estimated to about R1 (ωØ 0) ≈ 50000 s-1. 

Clearly, such a high rate exceeds the limits of FC NMR with respect to the switching time. The plateau 

representing the terminal regime (IV) of PEP 200k, is included in Fig. 25b as a blue line. This approach 

yields the pure intra-molecular relaxation dispersion R1
intra(ω) of an entangled polymer over more 

than ten decades in frequency.  

Given the inter-molecular correlation function Cinter(t) also provided by the isotope dilution 

experiment, the segmental MSD <r2(t)> is calculated for PEP 200k as well. For that purpose, eq. 66 

was used again, as it was done for PB and PDMS (cf. section 5.3 and PUB4). After scaling to the 

reference temperature Tref = 393 K, the MSD <r2(t)> is shown in Fig. 26.  

 

Figure 26: Segmental MSD <r2(t)> at  

Tref = 393 K of PEP 200k obtained by FC 
1H NMR. Corresponding NSE data from 

Wischnewski et al. 131 on PEP 80k is also 

included, after conversion to Tref. 

Relaxation regimes (I,II) are indicated. 

 

For the somewhat lower M PEP 80k 

reference data from neutron spin 

echo (NSE) spectroscopy is available 

in the literature, which is included 

in Fig. 26.131 The NSE data was 

recorded at 492 K, which exceeds 

the range of the FC NMR and the rheological measurements. Thus, the value of τα(T = 492 K) needs to 

be projected in order to rescale the time axis of the NSE data to that of the FC NMR data measured 

at e.g. Tref = 393 K. For that purpose, an Arrhenius function fitted to the high-T data of τα(T) collected 

by FC NMR and rheology is used. The extrapolation to 492 K is shown in Fig. 32 with τα(492 K) 

represented as a red star. Accordingly, the NSE data on <r2(t)> has to be horizontally rescaled by the 

factor τα(393K)/τα(492 K) ≈ 12, to shift the time axis to the reference temperature 393 K. Of course 

FTS is assumed in this rescaling. It is noted that no vertical shifting had to be employed. 

In the common range, absolute agreement between both methods, FC NMR and NSE data, is found. 

As in high-M PB and PDMS (Fig. 21, section 5.3), the power-law regimes of Rouse (I) and constrained 

Rouse (II) dynamics are covered by FC NMR, while NSE is restricted to the Rouse regime (I) and the 

onset of the constrained Rouse regime II. This again highly supports the reliability of the FC 

measurements on the isotopic blend of PEP and, moreover, the whole idea of determining the MSD 

from 1H spin-lattice relaxation dispersion. It is noted that NSE measurements on the different 

polymer poly(ethylene) also revealed the transition into the constrained Rouse (II) regime.98 While in 

the Rouse regime the predicted slope <r2(t)> ∂ t0.5 (cf. Table 1) is experimentally reproduced, the 

exponent in regime II is slightly lower than forecast, <r2(t)> ∂ t0.2 rather than ∂ t0.25. The value of the 
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MSD at the crossover between Rouse and entanglement dynamics occurring at the entanglement 

time τe can be used to estimate the tube radius a0 , emerging in the TR model: specifically a0 = ( 

<r2(τe)> )1/2 ≈ 3 nm is found, while Fetters et al. derived a somewhat lower value of 2.4 nm , yet, from 

rheological data.65  

As discussed in section 5.2, the ω dependence of the ratio between inter- and intra-molecular 

relaxation A(ω) = R1
inter/R1

intra provides another source of information about the nature of the 

molecular dynamics, besides analyzing power-law exponents. Also for PEP 200k A(ω) is found to 

increase with decreasing ω in the entanglement regime (Fig. 18, section 5.2). This finding, confirmed 

now for three different polymers (PEP, PB, PEO127), is an indication for the isotropy of the dynamics in 

the constrained Rouse regime and contradicts the anisotropic TR model predicting the opposite, a 

decrease of A with decreasing ω (cf. section 1.7).75  

Summarized, the findings on PEP are actually very similar to those on PB (sections 5.2 and 5.3). 

Hence, the discrepancies concerning C2(t) between FC NMR on the one hand and DQ NMR, generic 

simulations and the TR model on the other hand, are reinforced. The fact that translation appears to 

conform to the TR model, while re-orientation does not may seem surprising and challenges in 

particular de Gennes’ RTO hypothesis (eq. 35), an issue deserving future investigation. The situation 

is depicted in Fig. 27, where the (normalized) product of the measured functions C2(t) and <r2(t)> is 

shown for PB 24k, 196k and PEP 200k.  

 

Figure 27: Product of the segmental MSD 

<r2(t)> and the re-orientational correlation 

function C2(t) of PB 24k, 196k, and PEP 200k. 

The predictions of the TR model for regimes I 

and II are indicated. 

 

 

In all three systems, the product is ∂ t-0.5 

at t < τe (regime I) and thus in accordance 

with the Rouse model (cf. section 1.7 and 

Table 1). In the constrained Rouse regime 

(II, t > τe) the product is predicted to be a constant (eqs. 35, 53). It is recalled that Wang et al. indeed 

found C2(t) µ <r2(t)> = const. from generic computer simulations in regime II (Fig. 6).20 Experimentally, 

this is actually not observed due to the fact that C2(t) decays steeper in regime II than predicted. As 

this result is now confirmed for two different polymers, PEP and PB, it may be a generic one for 

entangled polymer melts. Kimmich states that “The topological constraints restricting translational 

segment diffusion are not necessarily the same as those being responsible for limited rotational 

reorientations”.6 Given the experimental evidence, this statement can be confirmed. 
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5.5 From NMR Relaxometry to “Molecular Rheology” 

This section is dedicated to a comparison between FC 1H NMR and shear rheology. For that purpose, 

FC 1H NMR relaxation and dynamic shear experiments were performed for identical samples, the 

results of which are compared in the frequency and in the time domain. A first such comparison in 

the frequency domain was carried out in PUB5 for the linear polymer PPG and for the dendrimer 

poly(propylene imine) (PPI) (cf. also section 5.6.). The most important findings of PUB5 will be 

included in this section. Yet, the focus lays on new, unpublished results on the linear polymer PEP, 

for which FC NMR relaxometry (cf. section 5.4) as well as rheological measurements were performed, 

the latter in cooperation with the group of N. Aksel (Bayreuth).  

The spin-lattice relaxation rate R1(ω) measured by FC 1H NMR is related to the frequency 

components of the fluctuations of the inter-nuclear vectors between adjacent, magnetically 

interacting protons. As mentioned in section 1.7 R1(ω) is proportional to the spectral density J(ω), 

thus quantifying equilibrium fluctuations. It is the Fourier transform of the dipolar correlation 

function CDD(t) (eqs. 4, 45). Using the fluctuation-dissipation theorem (eq. 14) fluctuation in general 

can be related to dissipation (section 1.1). This allows comparing the NMR susceptibility (cf. section 

4.1) given by c’’(ω) = ω R1(ω), to its rheological analogue, the dynamic loss modulus G’’(ω). Thus, 

microscopic and macroscopic rheology are confronted to each other. 

The seven (fully protonated) PEP samples, on which the 1H FC relaxation experiments presented in 

section 5.4 were performed, were additionally investigated by oscillatory shear rheology. The 

complex shear modulus G*(ω) was measured on a state-of-the-art rheometer Anton Paar MCR-500. 

The frequency window of 0.01 Hz § ν = ω/2π § 30 Hz is strongly different than that of FC NMR, 

where typically several 10 MHz down to some 100 Hz (when using the FC-1 device) are covered. 

Assuming FTS, both, the discrepancy in the dynamic windows, as well as the instrumental limitations 

to about three (shear) and to about five decades (FC NMR) are overcome by constructing master 

curves, a procedure very common in rheology.6,60-62 As in the case of the FC NMR experiments the 

shear measurements were carried out in an extraordinarily broad temperature range of about  

200 K § T § 400 K. Thus, the lowest temperatures reach down as low as Tg. Consequently, the  

α-process is included also in the shear data, a fact rarely found in the literature and a peculiarity of 

this work. Figure 28 (middle) shows the rheological master curves of G’’(ωτα) of the different samples 

of PEP with 3 k § M § 200 k. Directly above, the corresponding prediction resulting from the TR 

model is sketched, i.e. the loss modulus resulting from Fourier transform of eq. 38 without finite 

length effects.97 Below, the corresponding susceptibility master curves c’’(ωτα) of the total 1H 

relaxation are shown. In both cases a low-M reference system lacking of polymer dynamics is 

included as well, namely propylene glycol (PG) in the rheological data and di-PG in the NMR data. 

  



82    
          

 

 

 

 

 

 

 

 

 

 

Figure 28: Top: Forecast by the TR model for G’’(ω) of a linear entangled polymer melt without finite length 

effects. Middle: Master curves of the loss modulus G’’(ωτα) of PEP of different M, as indicated. For PEP 200k 

the storage modulus G’(ωτα) is also shown. Bottom:  Master curves of the NMR susceptibility c’’(ωτα). 

Relaxation regimes, power-law behavior (dashed lines) and crossover times are indicated. The entanglement 

time (represented by the vertical dashed line) τe/τα ≈ 7000 was determined from the corresponding time 

domain data CDD(t) (cf. section 5.4).  

 

Despite the mentioned differences between both methods, the master curves G’’(ωτα) and c’’(ωτα)  

show certain correspondences, not only in the case of PEP presented in Fig. 28, but also for PPG, as 

well as for dendritic PPI (cf. PUB5). The α-process reflected in the peak at ωτα ≈ 1 dominates both 

types of spectra at high frequencies. Going toward lower frequencies the α-process in the simple 

liquid PG is directly succeeded by the terminal relaxation obeying ∂ ω1 in the results of both 

techniques. Indeed, concerning PG/di-PG (black crosses) G’’(ω) and c’’(ω)  feature similar shapes and 

both data can be well interpolated by a CD function, for instance. In the polymer PEP the α-peak is 

succeeded by the Rouse regime, where a power-law common for all M is apparent, with exponents of 

∂ ω0.7 concerning the shear and ∂ ω0.8 concerning the FC NMR data. Thus, the slope in G’’(ωτα) is 

somewhat steeper than predicted by the Rouse model (ω0.5,  cf. Fig. 28 (top)). In c’’(ωτα) a crossover 

to entanglement dynamics is observed, i.e. a transition to a second, polymer specific power-law for  

M > Mc. The entanglement time τe was estimated to τe/τα ≈ 7000 from the time domain data, 

specifically from the intersection between the power-laws of regime I and II in CDD(t). A similar 
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extraction in the frequency domain c’’(ωτα) yields a different entanglement time.e Determining τe 

from the power-law intersection in the frequency domain would yield a value which is by a factor of 

about five higher than the value estimated from CDD(t). In this work, the value of τe determined from 

the time domain is considered. The rheological data shows no distinct feature at τe and actually no 

signs of the constrained Rouse regime at all, i.e. the descent with ω-1/4 and the subsequent ascend 

with ω1 predicted by the TR model in regime II (cf. Fig. 28 top) are not observed. Here, G’(ω) is 

governed by the rubber plateau at frequencies ωτe ≈ 1. The estimation of τe from rheological data 

using the onset frequency of the rubber plateau as proposed by Kimmich for instance6, is questioned. 

The frequency, where the FC data fulfills the condition ωτe ≈ 1, indicated by the dashed vertical line in 

Fig. 28, appears to agree with the frequency where the minimum in G’’(ωτα) occurs for high M. 

However, this frequency also depends on M slightly, i.e. G’’(ωτmin) = Min[G’’(ωτα)] with  

τmin(M) ∂  M -0.7±0.05. Per definition, τe is M-independent (eq. 33) and determining τe this way is not 

correct. Finally, the fact that τe determined by FC NMR agrees with the terminal decay of PEP 3k in 

G’’(ωτα) supports the reliability of the value. PEP 3k is supposed to be very close to Me.105 The 

terminal time of a polymer with M º Me is a reasonable approximation for τe. Unlike FC NMR, 

rheology appears to be not appropriate for a straightforward determination of τe due to the absence 

of the constrained Rouse regime. 

At lowest frequencies the terminal power-laws G’ ∂ ω2 and G’’ ∂ ω1 characteristic for a Newtonian 

liquid are observed in the shear data, which quickly shift to higher frequencies with decreasing M. As 

a consequence, the Rouse regime and the rubber plateau, both being specific for polymers, 

successively disappear and finally leave the behavior of a simple liquid like PG. FC 1H NMR reaches 

the terminal relaxation, where c’’ ∂ ω1
 is observed (cf. section 4.1), only up to M = 29k. The 

transition to the terminal regime in the FC data of PEP 29k (colored in pink) concurs with the terminal 

peak position in the corresponding G’’ curve.    

As mentioned, rheology and FC NMR detect different correlation functions: while FC 1H NMR probes 

the dipolar correlation function CDD(t), shear rheology probes the shear relaxation modulus G(t) 

related to the fluctuation of the stress tensor (cf. eq. 16, section 1.1). In Fig. 29 both correlation 

functions are compared for (di-)PG as a low-M reference (green), for un-entangled PEP 3k (blue) and 

for entangled PEP 50k (red). For that purpose, the corresponding FC NMR and shear master curves 

shown in Fig. 28 were transformed into the time domain. G(t) was normalized by dividing out G0.  

  

                                                           
 

e The asymptotes of the time function ( ) ba tttf −− +=  intersect at t = 0 per construction, for all 0 < a,b < 1. After 

Fourier transformation ( ) ( )[ ] ( ) ( )[ ] ( ) 1111
2sec22sec2 −−−− Γ+Γ= ba bbaag ωππωππω is gained. The intersection point 

of the asymptotes of g(w), however, depends on the exponents a,b. As a consequence, the determination of τe 

in the time and in the frequency domain will provide different values. 
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Figure 29: Normalized correlation functions CDD(t/τα) (open symbols) and G(t/τα) (crosses) of selected M of PEP, 

as well as of (di-)PG. Relaxation regimes and transition times are indicated. Here, τR and τt explicitly belong to 

PEP 50k. Red solid line: projection for CDD(t) of PEP 50k after estimating τt from shear measurements.  

 

Regarding the simple liquid (di-)PG, for which the α-process is directly succeeded by the terminal 

regime, G(t/τα) and CDD(t/τα) are barely distinguishable. At shorter times the decay of both quantities 

is first stretched exponential. The functions only differ in the terminal behavior, as G(t) remains 

(multi-)exponential, whereas CDD(t)∂ t-3/2 holds due to the dominance of inter-molecular relaxation. 

The curves of the polymer PEP differ in the Rouse regime insofar as the amplitude of CDD(t) is 

somewhat larger when compared to G(t). An explanation might be the factor of 2 appearing in the 

exponentials (modes) contributing to G(t) (eqs. 31, 38), which doesn’t appear in the quantities 

relevant for CDD(t), specifically the segmental MSD (eq. 27) and C2(t) (eq. 29). Otherwise, the slopes 

are quite similar and close to -0.8 in both cases. Yet, in the absence of entanglement in PEP 3k CDD(t) 

and G(t) still resemble each other as both functions probe the same regimes, namely the glassy, the 

Rouse and the terminal one.  

The shapes of G(t) and CDD(t) become increasingly different when going from the simple liquid to the 

entangled melt. For PEP 50k (M >> Mc) in the region where G(t) remains on the rubber plateau, CDD(t) 

continues decaying and has a richer structure: the transitions between regime I (Rouse) and II 

(constrained Rouse) occurring at τe as well as between II and III (reptation) at τR, respectively, are 

resolved (cf. section 5.4). In PEP 50k and for higher M the terminal regime, where CDD(t)∂ t-3/2 is 

expected, exceeds the time window of current FC 1H NMR. Taking the terminal time τt of the shear 

data the further progress of CDD(t) is projected in Fig. 29 by the red solid line. Clearly, the area under 

the curve of CDD(t) is significantly lower than that of the corresponding G(t), thus, the mean 

correlation time averaged over the whole mode distribution is significantly lower in CDD(t) than in 

G(t). This discrepancy strongly increases with growing chain length. This is a consequence of the 

different weighting factors of the relaxation modes as will be discussed below. 
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A full quantitative spectral analysis of both, shear as well as NMR relaxation data in terms of a 

detailed mode analysis is difficult as the contributions of intra- and inter-molecular relaxation need 

to be disentangled. Nevertheless, some quantitative analysis can be performed. A novel scaling is 

presented in PUB5 and applied to linear PPG as well as dendritic PPI. From susceptibility master 

curves the master curve J(ωτα)/τα = c’’(ωτα)/ωτα can be calculated. After multiplication with τα(T) the 

spectral density J(ω) is gained for any reference temperature T, if τα(T) is known. Likewise, the 

dynamic viscosity master curve follows from h’(ωτα)/τα = G’’(ωτα)/ωτα . It is formally similar to a 

spectral density (cf. section 1.1). While master curves are most easily constructed from susceptibility 

data (cf. section 4.1), collective dynamics occurring at very low ω are more emphasized in the 

spectral density representation. The curves are divided by the respective zero-frequency values of 

the local dynamics (a-process) contributions R1
α(ωταØ 0) and hα’(ωταØ 0), respectively, for the sake 

of comparability. Those reference spectra ( R1
α(ωτα) and hα’(ωτα) ) are obtained by extrapolating the 

α-relaxation with a CD function. The rescaling provides iso-frictional (Tg independent) spectra, which 

is important for low-M systems.55-59,272 The rescaling also removes possible M-dependences of the 

dipolar coupling constant K, as well as of G0, respectively. Figure 30 exemplifies the rescaled 

relaxation rates R1(ωτα)/R1
α(0) and dynamic viscosities h’(ωτα)/hα’(0) for PPG of different M as 

indicated.PUB5 The respective contribution by the a-process (R1
α, hα) to which both types of spectra 

are normalized, is marked by the black dashed lines. 

 

 

 

 

 

 

 

 

 

Figure 30: Evolution of the re-scaled spin lattice relaxation rate (a) and the dynamic viscosity (b) of PPG with M. 

Black dashed lines: contribution of the α-process. The cumulative mode ratios FNMR and FG denote the 

corresponding plateau values at zero frequency. Both figures are adapted from PUB5. 

 

Qualitatively, the shapes of the curves obtained by both methods are similar, also in this kind of 

representation. Most prominent is the low-frequency plateau quickly increasing with growing M. This 

effect is clearly more pronounced in the rheological data. The FC data of PPG 18k shows a kink at 

around ωτα ≈ 10-4, marking the frequency where entanglement becomes relevant. In the 

corresponding rheological data, again no such feature is observed. A quantitative analysis of 
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R1(ωτα)/R1
α(0) and h’(ωτα)/hα’(0) is performed by determining the M dependent zero-frequency limits 

(ωταØ 0). These quantities were termed “cumulative mode ratios” FNMR(M) and FG(M).PUB5 Basically, 

F(M) := <τ(M)>/ τα  measures the increase of the mean relaxation time, resulting from averaging over 

the whole mode distribution, with respect to the reference time scale τα. The increase of F(M) is 

caused by slow molecular dynamics emerging at ωτα < 1 with growing M. In the case of type-A 

polymers like PPG or PI, the normal mode relaxation measured via DS can be included in such a 

comparison.PUB5 The corresponding cumulative mode ratio is similarly defined as FDS(M) := ɛ’’(ωτα 

Ø0)/ ωτα. In PUB5 predictions for F(M) were derived, assuming the Rouse, the TR and, in the case of 

NMR, also the RR model. Table 2 summarizes the TR predictions resulting within the Rouse and the 

TR model, respectively. Mostly, power-law behavior is anticipated. A peculiarity occurs in (1H) NMR, 

where different predictions arise for intra- and inter-molecular relaxation. 

 

Table 2: M-dependences of the cumulative mode ratios FNMR, FG 

and FDS as predicted by the Rouse and the TR model, 

respectively.PUB5 In the case of 1H NMR the intra- and inter-

molecular relaxation rates contribute separately. 

 

 

 

For this Extended Abstract the analysis of F(M) was extended to include the data of PEP, PB and PI. 

The dielectric data of the latter two are taken from ref. 108. Figure 31 shows the resulting cumulative 

mode ratios F(M), plotted vs. M/Mc. The respective Mc values are given in the figure caption. 

 

Figure 31: Cumulative mode ratios F(M) of 

different polymers vs. M/Mc. Power-law 

behavior suggested by the Rouse and the TR 

model is indicated. The following values of Mc 

were used: Mc(PPG) =  9k,  Mc(PEP) =  3k, Mc(PI) 

=  14k, Mc(PB) = 2k. Adapted from PUB5 and 

extended. 

 

Two specific regimes, referred to un-

entangled and entangled dynamics, 

respectively, are observed in all 

investigated polymers. The crossover in 

experimental data occurs at Mc. In both regimes the exponents are different for the different 

methods: while behaviors close to FNMR ∂ M0.5, FG ∂ M1 and FDS ∂ M2 , respectively, are found in the 

un-entangled regime, the ascends of F(M) above Mc follow FNMR ∂ M2  , FG ∂ M3.4 and FDS ∂ M3.4.. Thus, 
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the forecasts for DS and rheology are reproduced (cf. Table 2). As said, in the case of FC NMR 

different scaling relations for the intra- and the inter-molecular relaxation are expected. In particular, 

in the un-entangled regime (M < Mc), a distinction between the square root law and the log-scaling is 

difficult. Also in the entangled regime the values are somewhat ambiguous because R1
inter(ω) shows 

dispersion down to lowest ω due to inter-molecular relaxation. Therefore, the plateau values are 

possibly somewhat underestimated. Comparing the different techniques, the M-dependences of 

FNMR, FG and FDS are different and increase in this order, explaining why DS provides the highest 

sensitivity with respect to polymer dynamics. Rheology provides the second largest sensitivity and FC 
1H NMR shows the lowest among those three methods. The methodical sensitivity diverges in 

particular above Mc, explaining why G(t) and CDD(t) increasingly disperse the higher M becomes (see 

Fig. 29).  

The large differences in the quantity F(M) between the different methods in entangled polymers can 

be immediately understood by the different correlation functions monitored. For example, R1
intra(ω) 

probes the bond-vector correlation function (eqs. 29, 51) to which all chain modes count equally. The 

same argument holds for the segmental MSD. In contrast, the quantities hα’(ω) and ɛ‘‘(ω)/ ω are 

related to the end-to-end vector correlation function governed by the longest (terminal) mode τt (cf. 

eqs. 26, 34). In the quantities relevant for NMR relaxation (<r2(t)>, C2(t)), the modes with τi § τt  and 

integers i = 1,…,N are equally weighted. Otherwise, the correlation function relevant for DS and 

rheology is that of the end-to-end vector (eq. 34). To this correlation function, only odd mode 

numbers (indices 1,3,5…) contribute and the modes are weighted by the inverse of the squared 

mode index. This difference immediately explains the slower evolution of F(M) in FC NMR, when 

compared to rheology and DS. The different weighting leads to different mean correlation times. In 

other words, in DS and rheology the amplitude in the normalized spectral density is concentrated at 

lowest frequencies thus yielding higher amplitude there. In contrast, the intensity in the NMR 

spectral density is distributed over a broad frequency range. In conclusion, FC NMR provides superior 

spectral information, for example in terms of well-resolved polymer-specific power-laws, yet, on cost 

of sensitivity, i.e. the decay of the probed correlation function is faster overall. In un-entangled 

polymers like PEP 3k the difference between rheology and FC NMR is smaller. Here, the weighting of 

the exponentials (modes) in the shear response function G(t) (eq. 38, third term) is similar to that of 

the NMR quantities <r2(t)> and C2(t), given by eqs. 28 and 29. The only difference is the factor of 2 

appearing in the exponents of G(t) but not in <r2(t)> and C2(t). 

Combining FC NMR, shear rheology and other techniques, a “relaxation map” was drawn.PUB4 The 

values for the time constant τα(T) in PEP, determined from master curve construction for 

temperatures well above Tg, are shown in Fig. 32. They feature a super-Arrhenius temperature 

dependence, as typical for glass forming liquids. The results for the two methods, rheology and FC 

NMR, overlap over about eight decades almost perfectly. No M-dependence of τα is found in the 

investigated M-range. Reference data obtained from 2H solid state NMR287, DS288,289 and DSC287 

included in Fig. 32 is also highly consistent. Altogether, the slowdown of the α-process during the 

glass transition is probed over 15 decades in amplitude and within a temperature range of 200 K ≤ T 

≤ 420 K. The τα(T) data in Fig. 32 is well interpolated by a three parameter function proposed by 

Schmidtke et al.,39 intended to guide the eye. DSC measurements were done on deuterated  

PEP-d 50k (courtesy of T. Körber287) as well as on protonated PEP-h 50k. Both measurements yield 

similar results for the calorimetric glass transition temperature. Tg
DSC = (212≤1) K was determined for 
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PEP-h 50k, while Tg
DSC = (209≤1) K was found for PEP-d 50k. In contrast to PB (cf. PUB2) only a weak 

isotope effect on Tg
 is observed in PEP. 

 

 

 

 

 

 

 

 

 

 

Figure 32: Relaxation map of PEP: τα(T) determined by FC 1H NMR and rheology for various M, as indicated. For 

PEP 50k also data from DS,288 2H solid state NMR287 and DSC (on PEP-h as well as on PEP-d) is shown (crosses). 

Red star: extrapolation of τα(T  = 492 K) (cf. section 5.4) using an Arrhenius law (red dashed line) for the high T 

data. The τα(T) data is interpolated by a three-parameter function39 (black solid line), versions of which are 

vertically shifted to intersect τt(T) values determined by rheology (closed symbols) as well as the entanglement 

time τe(T), determined by FC NMR. Concerning τe a value reported from a neutron scattering study is added 

(open black square).98 Time constants of methyl group rotation τCH3 and of the β-process τβ(T) are also 

added.287,288 All data is unpublished. 

 

The low-frequency intersection between the G’(ω) and G’’(ω) raw data observed at highest T 

provides a measure for the terminal relaxation time τt.62 It is found to scale as τt(M) ∂ M3.7 (see Fig. 

32), in accordance with numerous studies on linear polymers.6,60-62,81,82 This estimation is only 

possible for M ≥ 10k as below, G’ and G’’ do not cross at lowest ω. The τt(M,T) values are included in 

the plot and coincide quite well with vertically shifted versions of the interpolation function used for 

τα(T). For PEP 29k τt determined from the FC data is included in Fig. 32 at around 1000 K/T ≈ 2.5. It 

was estimated from the intersection between the entanglement (regime II) and the terminal power-

law. The value extracted from FC NMR fits well to the extrapolation of the rheological data  

τt(T, M = 29k) (green dashed line).  The fact that τα and τt feature the same temperature dependence 

justifies the assumption of FTS, meaning that the α-process, relevant for the glass transition, also 

drives the collective, non-local polymer dynamics and even the terminal relaxation. Also included in 

the relaxation map is the value of τe as estimated from the power-law intersection between the 

Rouse and the constrained Rouse regime in c’’(ω), through which the interpolation function of τα(T) is 

also placed. Otherwise, τe can experimentally only be determined via scattering methods.150 A further 
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τe value of PEP 80k taken from a NSE study98 is included in Fig. 32. It essentially confirms the value 

obtained by FC NMR, as the temperature dependence τe(T) appears to be consistent with τα(T). Thus, 

FC NMR provides an alternative way for detecting the transition between Rouse and entanglement 

dynamics in a model-independent way. For the sake of completeness τβ(T) of a secondary (β-) 

relaxation detected in PEP via DS288 as well as τCH3 of the methyl group rotation in the propylene 

monomers determined from solid state 2H NMR spectroscopy287 is included in Fig. 32. The β-process 

is observed below Tg and features an Arrhenius-like temperature dependence. It is furthermore M-

independent. Similar relaxation maps as the one shown in Fig. 32 are published in PUB4 for PB and 

PDMS.  

 

5.6 Molecular Dynamics in Dendrimers 

Many simple liquids and linear polymers were investigated by FC NMR in the Bayreuth group. 

Dendrimers (greek: “dendron”; tree), self-similar cascade molecules aka. “starburst molecules”, pose 

a continuation toward more complex molecular topologies. Dendrimers were first synthesized by 

Buhleier et al. in 1978.290 They potentially face applications e.g. as carriers for MRI contrast agents, in 

drug-delivery or as catalysts.291-294 MD simulations revealed “…a compact (space filling) structure 

under solvent conditions, with the radius of gyration which scales with the number of monomers as 

Rg ∂ N1/3  ”.295 The number of generations G of dendrimers is inherently limited due to the divergence 

going along with the exponential growth of the density. The dynamics of dendrimers is subject of 

quite a number of simulations,296-304 often based on Rouse-like models and generalized Gaussian 

structures (cf. section 1.6). Difficulties in the interpretation of simulation results arise from the 

degeneracy of the eigenmodes, as a consequence of the topological self-similarity. A multitude of 

experimental works address the structure305-307 or the dynamics in solution.307-318 Yet, the highly 

concentrated or the melt state is rarely investigated; some shear data319-321 as well as dielectric 

data322 is reported. The present spin-lattice relaxation dispersion measurements on dendrimers are a 

novelty.  

Employing FC NMR, the 1H relaxation dispersion of the frequently investigated dendrimer 

poly(propylene imine) (PPI) of generations G œ {2,3,4,5} in the melt state was measured in a broad 

temperature range of 230 K § T §  400 K.PUB3, PUB5 In the case of G4 and G5, respectively, STELAR 

(Bayreuth) data was complemented by measurements carried out on the FC-1 relaxometer in 

Darmstadt, in order to reach extraordinarily low fields. Furthermore, solid state 2H NMR, DS and in 

particular shear rheology were applied.PUB3,PUB5 PPI is commercially available in bulk quantities since 

the early 90’s.323 It is characterized by a di-aminobutane core, a functionality of 3 at the branching 

points formed by nitrogen, and terminal NH2 groups. In the melt state, PPI dendrimers constitute 

transparent, viscous, low-Tg (≈ 200 K, cf. PUB3) glass-forming liquids. For the solid state 2H NMR 

measurements, the protons in the terminal amino-groups were exchanged by deuterons.  

Concerning the 1H magnetization, non-exponential relaxation was observed at high temperatures  

(> 300K), for all G, at all frequencies and in the data of both relaxometers. As an example normalized 

magnetization curves m(t<R1(w)>) of PPI G2 and G5 measured on the STELAR relaxometer are plotted 

in Fig. 35. Below, the non-exponentiallity will be addressed in more detail. Tentatively, <T1>-1  was 
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determined from stretched exponential fits of the magnetization curves.PUB3,PUB5 The inverse mean 

relaxation time is not equal to the mean relaxation rate in general, i.e. <T1 >-1  ∫ <R1 >. Nevertheless, 

master curves c’’(ωτα) were constructed from ω<T1 (ω)>-1 data measured at different temperatures, 

which are shown in Fig. 33a. For comparison, c’’(ωτα) curves of the simple liquid di-PG as well as of 

entangled linear PEP 200k and of un-entangled PEP 3k (cf. section 5.4) are also integrated in Fig. 33a.  

 

 

 

 

 

 

 

 

Figure 33: a) NMR Susceptibility master curves c’’(ωτα) of PPI dendrimer melts of G2-G5, in comparison to  

di-PG and entangled (200k) as well as un-entangled linear PEP 3k. Adapted from PUB3 and extended.  

b) c’’(ωτα) in comparison to the shear loss modulus G’’(ωτα) of PPI dendrimer melts G3, G4 and G5. The data 

was taken from PUB5 and is vertically scaled to c’’(ωτα ≈ 1) = G’’(ωτα ≈ 1) = 1. Dynamic regimes are indicated in 

both figures.  

 

With respect to the simple liquid di-PG, excess contribution is found in the dendrimers at ωτα < 1. It 

systematically increases with G. This is a clear evidence for collective, G-dependent dynamics slower 

than the α-process. The curves of PPI resemble that of an un-entangled, linear polymer like PEP 3k 

(black stars in Fig. 33a). In contrast to entangled PEP 200k, the dendrimer lacks of a pronounced 

second, polymer-specific power-law regime. Based on Fig. 33b, the collective dynamics of the PPI 

dendrimer is inspected more deeply in a comparison to G’’(ωτα), included in Fig. 33b. As also for PPI 

the shear measurements were carried out in a broad temperature window ranging as low as Tg, the 

α-process is covered, as in the case of FC NMR (see below). A high level of similarity between c’’(ωτα) 

and G’’(ωτα) is found in Fig. 33b, where all master curves are vertically scaled along  

c’’(ωτα ≈ 1) = G’’(ωτα = 1) = 1. At reduced frequencies about 2µ10-4 < ωτα < 2µ10-2 , both c’’(ωτα) as 

well as G’’(ωτα), are obviously G-independent in the case of G3-G5. Power-laws c’’(ωτα), G’’(ωτα) ∂ ωɛ  

are observed in this two decades broad regime, with similar exponent values of around 0.8 (NMR) 

and 0.7 (rheology), respectively. Thus, this regime shows some reminiscence of the Rouse regime 

observed in linear polymers, where (above a certain chain length) molar mass dependence is 

observed neither. In G2 (not shown in Fig. 33b) this regime is not established, yet.PUB3 For even lower 

reduced frequencies (ωτα < 2µ10-4) both, c’’(ωτα) and G’’(ωτα), split up and the curves become G-

dependent. Both quantities systematically increase in amplitude with growing number of generations 

G. In entangled polymer melts like PEP (Fig. 28, section 5.5) one would expect that the Rouse regime 
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is succeeded by the rubbery regime, where G’’(ωτα) features a pronounced minimum. Such a 

minimum in G’’(ωτα) is not observed in the dendrimers and no signs of a rubber plateau are apparent 

in G’(ωτα).PUB5 Also in the FC data, a pronounced second power-law regime, usually characteristic for 

entangled polymer dynamics, is not observed. At lowest reduced frequencies, the terminal relaxation 

with the asymptotical ω1-behavior takes over in G’’(ω) as well as in c’’(ω), the transition being 

increasingly retarded as G increases. Note again that, as the total 1H relaxation is studied, the 

terminal behavior in the FC data actually follows c’’(ω) ∂  (ωR1(0)  - cω3/2) due to inter-molecular 

relaxation (cf. section 4.1).  

Summarized, concerning the slow, collective dynamics PPI dendrimers resemble polymers without 

entanglement.PUB3,PUB5 The collective dynamics was ascribed to “breathing modes”, i.e. whole 

dendrimer arms move against each other’s collectively.PUB5 Experimentally, such slow, collective 

dynamics was first detected by NSE spectroscopy in star polymers324,325 and later on, also in 

dendrimers318. It is also noted that in the mentioned DS measurements no normal mode showed up 

in the spectra. Therefore, no information about collective dynamics is gained by this technique. This 

again demonstrates the enormous potential of FC NMR in probing slow, collective dynamics.  

 

Figure 34: Relaxation map of PPI dendrimer 

melts of generations G 2-5, encompassing 

three local relaxation processes, termed α,b, 

and d, as found by DS, solid state 2H and FC 
1H NMR.PUB3 To guide the eye, τα is 

interpolated by the VFT equation (lines). 

Adapted from PUB3. 

 

Besides the collective dynamics, three 

local relaxations were found by FC NMR, 

by solid state 2H NMR and in particular by 

DS. The α-process, as well as two 

secondary relaxations, termed b- and d-process, respectively, were detected.PUB3 The corresponding 

time constants are displayed in Fig. 34 in an Arrhenius representation. In the case of FC NMR, the 

temperature dependence of τα followed from master curve construction. The FC NMR technique 

covers the temperature range well above Tg, where good agreement to the solid state 2H NMR data 

is found. At low T τα(T) was determined by DS (closed symbols). The α-relaxation features the 

characteristic super-Arrhenius behavior of a glass former and τα(T) can be well interpolated by a VFT 

equation (solid lines in Fig. 34). A slight tendency that τα increases with G is recognizable. The two 

secondary relaxations termed, b- and d-process, respectively, were detected in the dielectric spectra 

for temperatures below Tg ≈ 200K (measured by DSC), the corresponding time constants (τb, τd) both 

showing an Arrhenius temperature dependence. Mijovic et al. even found three secondary processes 

in PAMAM dendrimer melts below Tg via DS.322 Actually, their dielectric results on PAMAM highly 

resemble those on PPI. 
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Investigating the sample of PPI G5 with the deuterated terminal amino groups used for the solid 

state 2H NMR measurements reveals a significant decrease of the inverse mean relaxation time with 

respect to the fully protonated system at low frequencies.PUB3 This indicates the relevance of inter-

molecular relaxation which is supposed to be partially suppressed by exchanging the topologically 

outermost 1H by 2H. Exploiting the square root law eq. 58, the translational diffusion coefficient D 

was estimated from the low frequency dispersion, where intermolecular relaxation dominates.PUB3 It 

obeys D(T) ∂ τα
-1(T)  approximately. Furthermore, the scaling-relation D(M) ∂ M-1 was estimated, yet, 

only from the four data points (number of generations) available. In the course of the subsequent 

work D(T,M) was determined by pulsed FG NMR, providing D(M) ∂ M-1.6.PUB5 From the shear 

measurements another important scaling relation for the zero-shear viscosity was determined, 

namely h0(M)∂ M1.9 , which is in good agreement to the exponent of 2.1 reported by Rietveld et al.313 

As an addendum, which is not included in the publications PUB3 and PUB5, a closer inspection of the 

magnetization curves was performed. The aim was to study the nature of the non-exponentiallity. It 

is revealed that also a bi-exponential function interpolates the magnetization curves of the 

dendrimers well. In Fig. 35 m(t) of fully protonated PPI G5 (a) and G2 (b) measured at around 400 K is 

shown. The evolution time axis is again scaled by the individual <R1(ω)> value, determined from the 

weighted sum of the two components, resulting from the bi-exponential fits. 

 

 

 

 

 

 

 

 

Figure 35. 1H magnetization function, m(t) horizontally scaled with <R1(ω)> for dendritic PPI of G5 (a) and  

G2 (b). In both cases, data measured at a high T (red) and at a lower T (blue) is shown. Mono-exponential 

behavior is indicated by orange lines. All data was measured in Bayreuth and all this magnetization data is 

unpublished. 

 

The initial decay to around 0.5 is mono-exponential as indicated by the orange line, giving confidence 

that <R1(ω)> was always determined correctly. All curves measured at different fields coincide. At 

longer times the curves begin to deviate from the exponential. As those measurements were 

exclusively done in Bayreuth, m(t) should be artifact-free (cf. section 3.3). When T is lowered below 

295 K in the case of G5 and below 273 K in the case of G2, m(t) becomes purely mono-exponential 
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and a master curve is gained, as can be seen from Fig. 35. The non-exponentiality vanishes with 

decreasing T. Obviously, cross-relaxation is not efficient enough at higher T to average over the 

different R1 of the 1H located at different sites within the dendrimer molecules.  

Two following explanations for the occurrence of significantly different relaxation rates R1 within PPI 

dendrimers are reasonable: applying selective labelling, 2H and 13C NMR relaxation experiments with 

spectral resolution on PAMAM by Meltzer et al. revealed a gradient in the spin-lattice relaxation rate, 

which decreases from the core to the outermost shells. The authors demonstrate that “…segmental 

motion is most rapid at the chain terminus and slower at interior sites…”.326,327 Besides such dynamic 

heterogeneities, the apparent bi-exponential m(t) may also be caused by the fact that protons close 

to nitrogen atoms situated at the branching points as well as in the terminal amino groups face 

quadrupole enhanced relaxation, induced by heteronuclear cross-relaxation. As a I = 1 nucleus 14N 

has three energy levels if the asymmetry of the electronic field gradient tensor η ≠ 0 .143 When the 1H 

Larmor frequency matches one of the three 14N Larmor frequencies the 1H relax via the 14N spin 

system, which acts as a relaxation sink. The condition is fulfilled if  ω1 = ω14N2/3h , ω2,3 = ω14N(1 ≤ h/3), 

where ω14N = 3/2pdQ and dQ denotes the quadrupolar coupling constant.328 The energy level-crossing 

leads to the so-called quadrupolar peaks (“Q-peaks”) in systems where protons are coupled to 

quadrupolar nuclei. FC NMR is predestined to detect this phenomenon which is only detectable at 

very low T.4,240,329,330 In Fig. 36 R1(ω) of 1H is shown for PPI G5, measured in Bayreuth at 209 K. This is 

close to Tg, i.e. the dynamics is very slow. 

 

Figure 36: Dispersion of the 1H relaxation rate of 

dendritic PPI G5, measured on the STELAR 

relaxometer at 209 K. Three peaks at frequencies 

ω1,2,3 appear. Red dashed lines: Lorentzian fitting 

functions used to estimate ω1,2,3. Unpublished 

data. 

 

Indeed, three peaks are resolved in Fig. 36 at 

frequencies ω1/2π=2.47 MHz, ω2/2π=3.19 

MHz and ω3/2π=3.78 MHz, which are 

estimated by Lorentzian fit functions (red 

dashed lines). Given the three experimental 

peak frequencies ωi , the coupling constant dQ=4.6 MHz as well as η=0.79 are determined. While the 

first is in good agreement to values reported in the literature, the latter is larger. For amino groups 

values of η=0.25π0.35 are reported.331 Yet, as mentioned, 1H-14N couplings may also arise at the 

nitrogen atoms at the branching points within the dendrimer, i.e. in the topological interior. The 

occurrence of the Q-peaks demonstrates the relevance of 14N-1H cross relaxation, at least for such 

protons in the vicinity of nitrogen. When going to higher T the Q-peaks disappear as the correlation 

time τα(T) becomes smaller, i.e. ωτα << 1, and the interaction is averaged out. Yet, it was shown by 

Westlund328 that the relaxation dispersion as a whole will be distorted by 14N-1H cross relaxation, 
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leading to stretched 1H dispersion profiles of affected protons. This may provide another explanation 

for the bi-exponential decay, besides dynamic heterogeneities. 

6. Publications 

6.1  List of Included Publications as Referred to in this Thesis 

The most important publications contributing to this PhD work are listed in chronological order. They 
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6.2 Individual Contributions to Joint Publications 

PUB 1: I performed some of the FC NMR measurements on PPG during my diploma thesis, the results 

of which are published in ref. 272. PG was measured by R. Meier.332 The low-field measurements on 

PPG 18k were performed by me during my PhD work, with the technical assistance of B. Kresse. The 

simulations on PPO were performed by the co-authors from the Technische Universität Darmstadt. I 

constructed all the master curves (including those concerning the simulation data) and performed 

the Fourier transformations during my PhD time. I performed all further analyses (simulation and FC 

NMR), except for the position-resolved investigation of segmental relaxation, which was done in 

Darmstadt. 

PUB 2: I performed the FC 1H/2H measurements on PB-h 380k, PB-d 364k, on the corresponding 

isotopic blend, on PB-h 441k and on the two partially labeled polymers PB-dhd 29k in Darmstadt, 

with the technical assistance of B. Kresse. The other FC measurements on the PB samples 

summarized in Table 1 of PUB2 were done by A. Herrmann, B. Kresse and S. Kariyo.70,134,227 The 

refined analysis of all the PB data was performed by me during my PhD studies. I also did the DSC 

measurements at the Lehrstuhl für Makromolekulare Chemie I at the Universität Bayreuth with the 

technical assistance of P. Knauer. 

PUB 3: I performed all the FC measurements on the dendrimer melts in Bayreuth and in Darmstadt 

during my PhD time. For the measurements in Darmstadt, I had technical assistance by B. Kresse. 

Furthermore, I performed all analyses related to the FC NMR measurements. 

PUB 4: The FG NMR measurements were performed in Darmstadt. The FC measurements were done 

by B. Kresse, A. Herrmann and S. Kariyo, respectively, and were published in parts previously.70,134,227  

I performed the data analysis, except for the determination of the diffusion coefficient from the 

stimulated echo data. All work was done during my PhD studies. 

PUB 5: I performed all the FC measurements some of which were published in parts previously,272,PUB3 

except for PG, which was measured by R. Meier.332 The oscillatory shear measurements on PPI were 

performed by B. Cetinkaya at the Technische Universität Dortmund (group of R. Böhmer), except for 

the generation 2 dendrimer, which I measured by myself at the Lehrstuhl für Technische Mechanik 

und Strömungsmechanik (Universität Bayreuth, group of N. Aksel). The pulsed field-gradient NMR 

measurements were done by R. Valiullin at the Universität Leipzig. All work, including the data 

analysis, was done by me during my PhD studies.  

PUB 6: I measured PEP-d 200K via FC 2H NMR on the FC-1 relaxometer, together with B. Kresse 

(Darmstadt). I also measured the isotopic blend employing both, the STELAR and the FC-1 

relaxometer. I performed all analyses concerning PEP. All work was done during my PhD time. 

Furthermore, I performed all other FC measurements on PEP (cf. sections 5,4, 5.5) in Bayreuth and in 

Darmstadt, respectively, the latter in close collaboration with F. Fujara’s group. I also conducted the 

shear measurements on PEP in N. Aksel’s group and carried out the data analysis regarding PEP. I had 
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technical assistance of L. Heymann who introduced me to the Rheometer. The DS measurements on 

PEP were carried out by A. Lichtinger (Bayreuth) and F. Mohamed (Bayreuth). The solid state 2H NMR 

measurements were done by T. Körber (Bayreuth), as well as the DSC measurement on PEP-d 50k. 

The DSC measurement on PEP-h 50k was performed by me at the Lehrstuhl für Makromolekulare 

Chemie I at the Universität Bayreuth. PBO and PPS (Fig. 22) were also measured by me in Bayreuth 

and in Darmstadt via FC NMR. Some of the FC measurements on proteins in solution presented in 

ref. 257 were done by me in Bayreuth. Finally, I did all analyses of FC NMR data in terms of the 

normalized magnetization curves m(t) presented throughout this extended abstract. 
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Chain-Length Dependence of Polymer Dynamics: A Comparison of
Results from Molecular Dynamics Simulations and Field-Cycling 1H
NMR

Andre ́ Bormuth,† Marius Hofmann,‡ Patrick Henritzi,† Michael Vogel,*,† and Ernst A. Rössler*,‡

†Institut für Festkörperphysik, Technische Universitaẗ Darmstadt, D-64289 Darmstadt, Germany
‡Experimentalphysik II, Universitaẗ Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT: Molecular dynamics simulations are performed
for poly(propylene oxide) with molecular masses between M =
104 and 5795 g/mol using an atomistic force field. From
atomic trajectories extending well into the nanoseconds
regime, we calculate rank-two orientational correlation
functions, providing access to segmental motion, to free
Rouse dynamics, and even to the onset of entanglement
dynamics, depending on the molecular mass. The simulation
results are directly compared with experimental data for
poly(propylene glycol) from field-cycling 1H NMR relaxom-
etry. We find that simulation and experiment are in very good
agreement for high values of M. For low values of M, some
deviations result from the fact that the present analysis of the simulation results focuses on intramolecular behavior while the
experimental data are influenced by both intramolecular and intermolecular relaxation contributions, particularly at longer time
scales. Exploiting that the computational data allow us to separately study polymer motions at different positions along the
polymer backbone, it is shown that free Rouse dynamics and constrained Rouse dynamics are modified for a few and a few dozen
monomers at the chain ends, respectively. We discuss implications of such chain-end effects for the interpretation of experimental
results, which are obtained from an ensemble average over all monomers along the backbone.

■ INTRODUCTION

Molecular dynamics simulations provide important insights
into the microscopic nature of polymer dynamics.1−5 For
example, simulations using generic polymer models, such as the
bead-and-spring model, have given early confidence to the
concept of tube reptation rationalizing the rheological behavior
of melts of entangled linear polymers, i.e., for long chains.6

With progress of computing power, atomistic simulations have
become available, which are expected to draw a more realistic
picture of microscopic dynamics in a given polymer. Yet,
comparison with experimental data is not straightforward as
only few techniques are capable of probing the microscopic
polymer dynamics over many orders of magnitude of time
needed to cover the loss of correlation caused by glassy and
polymer dynamics. More precisely, in terms of the Doi−
Edwards tube-reptation model,7 polymer dynamics are
expected to exhibit four relaxation regimes: free Rouse (I),
constrained Rouse (II), reptation (III), and disentanglement
dynamics reflecting free diffusion (IV). In addition, glassy
dynamics (0) have to be considered at shortest times.8,9

Regarding the mean-squared displacement, neutron scattering
studies confirmed a crossover from the free to the constrained
Rouse regime.10,11 At the long time end, a crossover from
regime (III) to free diffusion, i.e., regime (IV), was observed in
field gradient NMR studies.12

Recently, the application of field-cycling (FC) 1H NMR
relaxometry has gained new momentum for the investigation of
polymer dynamics due to the availability of commercial
spectrometers.8,9,13 The method measures the frequency
dependence (dispersion) of the spin−lattice relaxation time
T1 by cycling the magnetic field between polarization,
relaxation, and detection fields. In the present contribution
we exclusively refer to 1H relaxation data. By applying
frequency−temperature superposition (FTS), as often done
in rheological studies,14,15 master curves can be constructed
which, in the case of proton relaxation, directly yield the dipolar
correlation function after Fourier transformation and which
typically cover 6 decades in amplitude and 8 decades in
time.16−21 The accessible frequency window can be further
extended by 2 orders of magnitude if earth field compensation
is applied to reach frequencies down to about 100 Hz.22,23 The
obtained correlation functions disclose glassy dynamics, Rouse
dynamics, and entanglement dynamics, thus enabling tests of
current polymer theories as well as comparison with simulation
data. First experiments show a highly protracted transition to
tube reptation; i.e., a trend to reptation is found only at a
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molecular mass much larger than the entanglement mass Me, a
result also confirmed by double quantum NMR studies.24,25

Because of the short-range character of the magnetic dipole−
dipole interaction among protons, it is usually assumed that
intramolecular relaxation reflecting segmental reorientation
dominates 1H spin−lattice relaxation. Then, the dipolar
correlation function CDD(t) obtained from FC 1H NMR is
expected to follow the rank-two reorientational correlation
function C2(t) closely. However, as was demonstrated
recently,23,26 intermolecular relaxation leads to a failure of
this assumption, in particular, in the entanglement regime, i.e.,
at low frequencies or long times. It turns out that the agreement
with the tube-reptation theory is not satisfactory when
neglecting the intermolecular relaxation and considering only
the intramolecular relaxation, which is given by C2(t). The
latter contribution can be determined by isotope dilution
experiments, which permit a suppression of the intermolecular
contribution. Here, we will directly compare the dipolar
correlation function CDD(t) with the rank-two correlation
function C2(t) obtained from atomistic simulations. As we
essentially encompass the Rouse regime at intermediate time
scales, we expect that the intermolecular contribution is still
negligible in the experiments.
In the present experiments, we focus on poly(propylene

glycol) (PPG), which was investigated by FC 1H NMR for a
series of molecular masses in previous work.21 The atomistic
simulations are carried out for poly(propylene oxide) (PPO)
for which a reliable force field is available.27 The glassy
dynamics of this polymer model was ascertained in previous
computational studies.28−30 PPG and PPO differ with respect
to their end groups. Specifically, PPG and PPO chains are
terminated by hydroxyl groups and methyl groups, respectively
(see Figure 1). This difference is relevant for small molecular

weights, but it can be neglected for high ones. Following a
previous analysis21 of NMR dispersion data, which included the
correlation function CDD(t) as well as the corresponding
spectral density JDD(ω), we will discuss the molecular-weight
dependence of the FC 1H NMR (PPG) and MD simulation
(PPO) results against the background of the tube-reptation
model, which enables calculation of not only the segmental
mean-square displacement but also the rank-two correlation
function C2(t). In particular, a relation Cl(t) ∝ ⟨R2(t)⟩−1, which
was first derived based on rather general arguments,31 is also
assumed in regime II of the tube-reptation model.8,23 These
aspects were discussed in some detail in previous work.32 We
will show that there is a remarkable agreement between
experimental and computational results in the dynamic regimes
typical of polymers. In our analyses, we will exploit that
atomistic simulations reach the entanglement regime for the
first time and that such approach provides access to position-
resolved correlation functions.

■ METHODOLOGICAL AND EXPERIMENTAL
SECTION

Field-Cycling Relaxometry. Electronic FC 1H NMR measures
the (Larmor) frequency dependence of the longitudinal relaxation
time, T1(ω), by cyclically switching the magnetic field in a solenoid
coil.13 In doing so, it is exploited that the frequency ω and the
magnetic field strength B are related via ω = γHB, where γH is the
gyromagnetic ratio of the proton. In the framework of the relaxation
theory by Bloembergen, Purcell, and Pound33 (BPP), the relaxation
dispersion T1(ω) is related to a spectral density J(ω) describing the
fluctuations of the magnetic dipole−dipole interactions between each
pair of proton spins. As the spectral density and the corresponding
susceptibility are connected via the fluctuation−dissipation theorem,
χ″(ω) = J(ω)ω, multiplication of the BPP equation with the frequency
ω yields the susceptibility representation χDD″ (ω):

ω

ω
ω ω ω ω χ ω χ ω

χ ω

= + = ″ + ″

″

T
K J J K

K

( )
[ ( ) 4 (2 )] [ ( ) 2 (2 )]

: 3 ( )

1

DD (1)

Here, K is an effective coupling constant. The subscript “DD” refers to
the dipole−dipole interaction between proton spins, which includes
both intra- and intermolecular contributions.23,26 Strictly speaking,
χDD″ (ω) is a weighted sum of two separate susceptibilities evaluated at
single- and double-quantum transitions, but both are hardly
distinguishable when considering broad relaxation dispersions on a
logarithmic scale.

Under the assumption that FTS is valid, the accessible frequency
window of the FC experiment can be effectively extended from 3 to 7
or even more orders of magnitude.16−21 In summary, this approach
involves that several susceptibility curves ω/(T1(ω,T)) obtained for
different temperatures T are subsequently shifted horizontally along
the frequency axis by applying temperature-dependent shift factors aT
in order to create a susceptibility master curve. The thus obtained
master curve can then be scaled to the correlation time of segmental
motion, τs, by fitting to a Cole−Davidson function.34 This yields the
NMR susceptibility master curve χDD″ (ωτs). Fourier transformation of
χDD″ (ωτs) provides access to the dipolar correlation function CDD(t/τs).
Here, we discuss the molecular mass dependence of this correlation
function against the background of the tube-reptation theory of
polymer dynamics by Doi−Edwards and de Gennes.7 This theory
predicts various characteristic power law decays C2(t) ∝ t−ε in the
above-mentioned dynamic regimes, called Doi−Edwards limits.

The experiments are performed on a STELAR FFC 2000
relaxometer working in a proton Larmor frequency range of 10 kHz
≤ ν ≤ 20 MHz. The accuracy of the temperature was better than ±1 K
within an accessible range of 180−420 K. FC 1H NMR is used to
investigate PPG with molecular massesMw between 134 and 18 200 g/
mol. The samples are denoted as PPG followed by the value of Mw,
e.g., PPG 134, to indicate the respective molecular mass. Based on Mw,
the number of segments (monomers) N constituting a chain can be
estimated according to

≈ + + + +M N m m N m m m( ) 2 [ (3 6 )]w H O C H O (2)

where mC, mH, and mO denote the respective atomic masses. The PPG
compounds were purchased from PSS Mainz except PPG 18200,
which was kindly provided by R. Böhmer (TU Dortmund). We would
appreciate provision of PPG with higher molecular masses.

Molecular Dynamics Simulations. In MD simulations, Newton’s
equations of motion are numerically solved for multiparticle systems,
interacting via classical interaction potentials. Here, MD simulations
are performed for PPO, where the number of monomer units N varies
between N = 2 and N = 100. The corresponding molecular masses

= + + + + +M N m m m N m m m( ) 2 6 [ (3 6 )]C H O C H O (3)

range between 104 and 5795 g/mol. The studied models will be
denoted as PPO followed by the value of M in the following.

The interatomic interactions of the model are described by a
quantum-chemistry-based all-atom force field, which enables good

Figure 1. Chemical structure of (left) PPO featuring methyl end
groups as simulated and (right) PPG featuring hydroxyl end groups as
measured by FC 1H NMR.
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reproduction of structural and dynamical properties of PPO melts.27 In
addition to nonbonded interactions, which are considered via
Buckingham and Coulomb potentials, the force field contains terms
adjusting bond lengths, bond angles, and dihedral angles. These MD
simulations provide us with the trajectories of all atoms of the PPO
models, i.e., with the full microscopic information. The studied PPO
systems comprise ca. 4000 atoms, and the time window extends from
10−15 s to about 10−7 s, limited by computing power. Further details of
our simulations can be found in previous publications.28,29 To enable
comparison with NMR data, we calculate the rank l = 2 rotational
correlation function

= ⟨ ⃗ + · ⃗ − ⟩C t e t t e t( )
1

2
3[ ( ) ( )] 12 OO 0 OO 0

2

(4)

Here, the unit vector eO⃗O(t) describes the orientation of the
internuclear vector connecting two consecutive oxygen atoms along
the polymer backbone at a time t. The brackets ⟨...⟩ denote the
ensemble average over all neighboring oxygen atoms in all polymer
molecules and the time average over various time origins t0. The
relation between correlation functions that characterize the reor-
ientation of internuclear vectors connecting different pairs of atomic
species within a PPO molecule was investigated in previous simulation
work.30

■ RESULTS AND DISCUSSION

Analysis in the Time Domain. In Figure 2, we show
correlation functions from FC 1H NMR relaxometry on PPG
and from MD simulations on PPO for the indicated molecular
masses. Specifically, we display master curves CDD(t/τs) and
C2(t/τs) obtained from results at various temperatures. For
details about the construction of master curves in the frequency
and time domains and about the determination of the
segmental relaxation times τs, the interested reader is referred
to previous publications.16,17,21,29,30 Depending on the
molecular mass, several dynamic regimes are distinguishable
for both the measured and computed data. In the following, we
argue that these dynamic regimes can be identified with local,
“glassy” dynamics (regime 0) and the Doi−Edwards limits I
and II.
At shortest times, t ≤ τs, CDD(t/τs) and C2(t/τs) are well

described by stretched exponential (Kohlrausch) functions, as
expected for the structural relaxation of viscous liquids (see
Figure 2). Therefore, we identify this dynamic regime with
glassy dynamics. In this regime, the experimental data for PPG
do not depend on M. In particular, the stretched exponential
decays of all studied samples can be described with the same
stretching parameter β = 0.41. The stretching parameters
obtained from the simulated data for PPO are somewhat

higher. They decrease from β = 0.87 for M = 104 g/mol to β =
0.57 for M > 2000 g/mol. The origin of the molecular mass
dependent stretching for PPO was studied in a previous
simulation work.29 Partly, it is due to a higher relevance of
chain-end effects for shorter chains. The different stretching of
the experimental and computational correlation functions can
have several origins. First, it is necessary to consider that the
computed data exclusively monitor intramolecular dynamics,
while the measured data additionally probe intermolecular
dynamics. Moreover, one should take into account the fact that
the experimental and simulated correlation functions are
sensitive to motions of H−H and O−O internuclear vectors,
respectively, which involve different length scales. Finally, the
different end groups of PPG and PPO can play a role, in
particular, for small molecular masses.
At longer times, t > τs, the measured and simulated

correlation functions show pronounced and characteristic
molecular mass dependencies, which highly resemble each
other. When the molecular weight increases, the decays of the
correlation functions become more and more delayed. In the
following, we discuss the molecular mass dependent long-time
behavior in more detail. First, we focus on the time range τs < t
< 100τs. In this regime, the number of Rouse modes grows with
increasing chain length resulting in a retardation of the
dynamics until the behavior saturates (see Figure 2).
Specifically, for PPG, the loss of correlation slows down until
a common (i.e., essentially Mw independent) power law is
observed at intermediate time scales forMw ≥ 3000 g/mol. The
power law exponent amounts to εI = 1, in perfect agreement
with the prediction for the Doi−Edwards regime (I), the free
Rouse dynamics.35 For the simulation data of PPO, free Rouse
dynamics saturates at a molecular mass of M ≥ 2079 g/mol.
Thus, the behavior saturates at a somewhat smaller molecular
weight in the simulation than in the experiment, but we cannot
determine whether this difference is significant as PPG
specimen with Mw ≈ 2000 g/mol were not studied in NMR.
Consistent with our experimental results, the behavior of the
simulation data is well described by a power law with an
exponent of εI = 1 and extends over at least 11/2 orders of
magnitude in time, enabling clear identification of the Rouse
regime in our simulations, too.
Now, we move on to the time range t > 100τs. For these

times in both experiments and simulations, a further power law
is evident for specimen with highest molecular masses, yet with
an exponent ε < 1 (see Figure 2). The observation of such
crossover is taken as evidence for an existence of chain

Figure 2. (a) Dipolar correlation functions CDD(t/τs) for PPG from FC 1H NMR relaxometry and (b) reorientational correlation functions C2(t/τs)
for PPO from MD simulations. The molecular masses are indicated. Dashed lines: short-time stretched exponential decay typical of reorientation in
simple liquids (regime 0). Solid lines: power laws in relaxation regimes I and II. Red dotted line in (a): prediction for Doi−Edwards regime II
(constrained Rouse dynamics).
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entanglement. In the case of PPG, the decays start to develop a
power law beyond the Rouse regime for Mw ≥ 3000 g/mol,
which led us to the conclusion that the entanglement molecular
mass amounts to Me ≈ 3000 g/mol in our previous
publication.21 Unlike εI, the exponent in the long-time regime
depends on the molecular mass, i.e., εII = εII(Mw). It decreases
steadily from 1 to 0.69 for PPG 18200. The latter value is still
very different from the prediction εII = 0.25 for the Doi−
Edwards regime (II), the constrained Rouse regime. However,
it was argued in previous studies22,24,32 that εII is expected to
approach the value of 0.25 only for highest molecular masses of
M ≥ 50Me which were not available to us in the case of PPG.
Concerning the simulation data of PPO, we also observe a
second power law regime extending over more than an order of
magnitude. Specifically, for PPO 5795, we find a power law
exponent of εII = 0.89, which is practically identical with the
experimental finding for PPG 5000. As the studied molecular
mass of M = 5795 g/mol is larger than the entanglement
molecular mass Me ≈ 3500 g/mol for PPO,36 it is reasonable to
conclude that the long-time power law results from
entanglement effects. These observations are remarkable
since, to the best of our knowledge, it is the first time that
MD simulations using a fully atomistic force field reach
entanglement dynamics. We note that the time window of FC
NMR is still about 2 orders of magnitude larger, enabling
observation of the terminal relaxation for the highest molecular
mass Mw = 18200 g/mol on the basis of an exponential cutoff.
In Figure 3a, the correlation functions CDD(t/τs) and C2(t/

τs) for PPG 5000 and PPO 5795 are compared in more detail.
We see that the experimental and computational results agree
very well. Some minor deviations exist in the regime of glassy

dynamics where the stretching of the measured correlation
function is more pronounced than that of the simulated one, as
discussed above. Moreover, the crossover between the power
law regimes is located at t ≈ 50τs in the simulation, while it is
found at t ≈ 100τs in the experiment. Notwithstanding, the
good agreement between measured and simulated data
provides strong evidence that the observed dynamic regimes
are generic features of the relaxation behavior shown by linear
polymers in bulk melts. In previous work, it was reported that
poly(ethylene glycol) and poly(ethylene oxide) show different
end-group effects as a consequence of hydrogen bonding.37

Here, the good agreement between experimental data on PPG
and computational data on PPO implies that the differences are
largely removed when considering rescaled times t/τs.
For the dimer PPO 104, the decay of the MD correlation

function C2(t/τs) follows a stretched exponential function, as
expected for the reorientational dynamics in simple liquids (see
Figure 3b). The NMR correlation function CDD(t/τs) of the
corresponding low-molecular-weight reference system PPG 134
exhibits a different long-time behavior. Specifically, a power law
with an exponent ε = 1.5 is observed for t/τs ≫ 1, in harmony
with predictions from the theory of intermolecular relaxa-
tion,23,38 which yields Cinter ∝ ⟨R2⟩−3/2 ≈ t−3/2 for Fickian
diffusion. Thus, the differences between the experimental and
computational data at long times can be attributed to the fact
that the former and the latter do and do not probe
intermolecular contributions, providing further evidence that
it is very important to consider intermolecular relaxation in 1H
NMR, particularly at long time scales. These effects were
addressed in some detail in previous experimental and
computational studies.23,26,30

Figure 3. Comparison of correlation functions CDD(t/τs) and C2(t/τs) as obtained for (a) PPG 5000/PPO 5795 and for (b) PPG 134/PPO 104.
The resulting power laws are indicated as straight lines. In panel b, C2(t/τs) of PPO 104 is fitted to a Kohlrausch function yielding β = 0.87.

Figure 4. Spectral densities (a) JDD(ωτs) of PPG from FC 1H NMR relaxometry and (b) J2(ωτs) of PPO from MD simulations. The molecular
masses are indicated. In panel a, the color code distinguishes di(propylene glycol) showing only glassy dynamics (red) from nonentangled (green)
and entangled (blue) polymers. In panel b, an analogous color code is used for the simulated PPO models.
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Analysis in the Frequency Domain. Next, we study the
manifestation of the different relaxation regimes in the
frequency domain. Specifically, the spectral density J2(ωτs) is
determined from the simulated correlation functions C2(t/τs)
by means of Fourier transformation. To deal with data
nonuniformly distributed on a linear scale, the Filon
algorithm39 is used for this conversion. In the experimental
counterpart, we divide the susceptibility master curves by ω to
obtain JDD(ωτs). In Figure 4, we compare the spectral density
master curves for (a) PPG and (b) PPO, as obtained by FC 1H
relaxometry and MD simulation studies, respectively. To allow
for straightforward comparison, all data sets fulfill the
normalization condition:

∫ ω ω
π

=
∞
J ( ) d

20
DD,2 (5)

Consistent with our results for the correlation functions, the
experimental and computational spectral densities exhibit
similar behaviors. For PPG and PPO dimers, we observe the
characteristics of glassy dynamics (red data in Figure 4) with a
plateau at lowest frequencies (ωτs ≪ 1). For higher molecular
masses, J2 and JDD exhibit additional contributions in the low-
frequency range, which can be attributed to dynamics
characteristic for polymers. For unentangled chains (green
data in Figure 4), a successive emergence of Rouse modes with
increasing chain length leads to a strong molecular mass
dependence of the spectral density at low frequencies (regime
I), in particular, the plateau shifts to higher values. Beyond the
entanglement molecular mass Me, the plateau height increases
even more strongly with increasing chain length and dispersion
is found down to lowest frequencies (in regime II). This
behavior is expected due to an onset of even slower
entanglement dynamics. Specifically, for entangled chains
(blue data in Figure 4), a pronounced dispersion of the
spectral density extends to lowest values of ωτs.
A quantitative analysis can be achieved when the molecular-

mass dependence of the low-frequency plateaus JDD,2(ω→ 0) is
determined. Such an analysis has been done before using
experimental results for several polymers18,21 in order to
identify the Rouse regime and the crossover to entanglement
dynamics. The low-frequency limit (ωτs ≪ 1) for the
contribution of Rouse dynamics to the spectral density has
been given as18

ω
τ π

→ =J N( 0)
2

ln( )
DD,2
Rouse 0

G (6)

where τ0 is the shortest Rouse time and NG is the number of
Gaussian chain segments. This analysis of the low-frequency
behavior of the spectral densities resembles in a way that
performed by other authors who studied the molecular-weight
dependence of 2H spin−spin relaxation times T2 for
polybutadiene and observed the crossover to entanglement
dynamics by plotting 1/T2 as a function of ln M.40

In Figure 5, we see that the height of the low-frequency
plateau obtained from the simulation data of PPO well agrees
with the prediction for the Rouse regime (see eq 6), over
almost 2 decades in chain length, when identifying NG with N
and τ0 with τs obtained from the reorientation of the O−O
internuclear vectors. For Ne > 50, the chain-length dependence
of the plateau height deviates from the prediction for Rouse
dynamics. This discrepancy can be attributed to the crossover
to entanglement dynamics, providing further evidence that the
onset of such polymer motion is observed in the present

atomistic simulations. Concerning the experimental results for
PPG, a logarithmic molecular mass dependence is also found
for sufficiently short chains. As larger N are covered in the
experiments, stronger deviations are found in the entanglement
regime, in particular for PPG 18200. The crossover occurs in
the vicinity of Ne ≈ 60, corresponding to an entanglement
molecular mass Me = 3500 g/mol reported in previous work.36

The discrepancy between our computational and experimental
data can be rationalized based on the outcome of a previous
simulation study,30 which ascertained the role of intermolecular
contributions and the relation between different correlation
functions in some detail.30 It was found that, unlike the
computational data, the experimental data are affected by
intermolecular contributions, which are particularly important
at low frequencies and that the rotational correlation functions
of the H−H vectors can decay an order of magnitude faster
than that of the O−O vectors. The latter effect means that the
present analysis does not provide straightforward access to the
value of τ0, and hence, the observed agreement between data
and prediction for the PPO model does not necessarily indicate
that NG equals N; i.e., it is not possible to conclude that the
Gaussian chain segment can be identified with the PPO
monomer.

Chain-End Effects. When elaborate isotopic labeling
strategies are not available, experimental techniques usually
probe a superposition of signals from all segments along the
polymer backbone. In particular, there are contributions from
monomers in the backbone centers and from monomers at the
chain ends, which are expected to exhibit somewhat different
dynamical behaviors. In simulation studies, it is straightforward
to separately ascertain the motions of segments at different
positions along the polymer backbone. In previous work, we
found for PPO 1382 at 300 K that the correlation times of
segmental motion τs differ by up to a factor of 5 within a
chain.29 In this contribution, we investigate whether Rouse
dynamics is different for monomers in the backbone centers
and at chain ends. For this purpose, we separately determine
the correlation functions for O−O vectors at different positions
n along the polymer backbone. Here, n is the distance of an O−
O vector from the nearest chain end, starting with n = 1. Figure
6 shows these position-resolved correlation functions c2(t,n) for
PPO 5795 at 450 K. We see that the dynamical behavior of a
segment strongly depends on its position along the polymer

Figure 5. Extrapolated values JDD(ω→ 0) for the experimental data of
PPG (red circles) and J2(ω→ 0) for the simulated data of PPO (black
squares). Straight black line: prediction for Rouse dynamics, as
obtained using N = NG and τ0 = τs in eq 6. Red dashed line: guide for
the eye resulting from adding a constant value to this prediction.
Vertical dashed line: entanglement molecular mass Me = 3500 g/mol
(N ≈ 60).36
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backbone. In particular, monomers at chain ends (n ≤ 3) do
not exhibit Rouse dynamics. When moving from the end to the
center of a chain, Rouse dynamics continuously develop, but
the findings differ in the relaxation regimes I and II. In regime I,
the n dependence of the curves ceases at n ≈ 7, while such
saturation is not observed in regime II. Thus, free Rouse
dynamics is common to all but the outermost monomers of a
chain, while constrained Rouse dynamics is diverse for a few
dozen monomers near a chain end. To further demonstrate the
latter effect, we compare correlation functions C2(t), which are
obtained when we average the contributions from all
monomers along the backbone and when we exclusively
average the contributions from those monomers in the center
of the chain. In Figure 6, we see that the power law exponent of
regime II, εII, changes from −0.90 to −0.75 when excluding
contributions from the chain ends.
The results of experimental studies of polymer dynamics are

affected by this diversity of motions at various positions in the
polymer backbone. In regime 0, the stretching of the
correlation functions increases due to the difference of glassy
dynamics in the backbone centers and at the chain ends. Also,
the crossover between the dynamic regimes I and II is smeared
out due to the position-dependent free and constrained Rouse
dynamics. In particular, the strong variation of the latter motion
along the polymer backbone complicates a comparison of
experimental findings and theoretical predictions. Specifically, a
precise determination of the entanglement molecular mass Me

can be difficult since first indications of entanglements are
masked by strong contributions from outer monomers, which
show less pronounced entanglement dynamics and constitute a
significant fraction at the relevant chain lengths. Furthermore,
meaningful determination of the power law exponent in regime
II requires use of very high molecular masses, as mentioned in
the preceding sections, so that it is possible to neglect
contributions from outer monomers, which exhibit steeper
correlation functions in this regime.

■ CONCLUSIONS

We combined FC 1H NMR relaxometry results for poly-
(propylene glycol) and MD simulation results for poly-
(propylene oxide) to investigate the molecular mass depend-
ence of polymer dynamics in the melt. To enable

straightforward comparison, time domain data and frequency
domain data were transformed into one another. In both
domains, it was found that the experimental results for PPG
and the computational findings for PPO yield a consistent
picture not only in regime 0 of glassy dynamics on short time
scales but also in the Doi−Edwards regimes I and II
characteristic for polymer dynamics occurring on long time
scales, namely, free Rouse and constrained Rouse dynamics,
respectively.
For low molecular masses, the correlation functions are well

described by stretched exponentials; i.e., glassy dynamics is
observed, corresponding to regime 0. In this simple-liquid limit,
differences between experimental and computational results
were observed at times t ≫ τs. On such time scales, the
experimental correlation functions are governed by intermo-
lecular dynamical effects, which give rise to a power law with an
exponent of −3/2, in harmony with intermolecular relaxation
theory. By contrast, the computational correlation functions of
the present approach are of purely intramolecular nature, and
hence, they are not sensitive to these intermolecular
contributions. However, the long-time behavior of measured
and simulated data for small molecules can be reconciled when
including both intra- and intermolecular contributions into the
calculation of correlation functions from simulation data.30

When the molecular mass is increased, Rouse dynamics slows
down the loss of correlation at long times. Free Rouse
dynamics, i.e., the Doi−Edwards regime I, is fully established at
Mw = 2000−3000 g/mol, as indicated by our finding of a power
law with exponent εI = 1 in both experiment and simulation.
Constrained Rouse dynamics, i.e., Doi−Edwards regime II,
starts to develop when the chain length is further increased.
However, for the studied molecular masses Mw ≤ 18 200 g/
mol, the theoretically predicted power law exponent of 0.25 is
not observed, but rather significantly larger values of εII are
found. In the frequency domain, we compared master curves of
spectral densities obtained from our NMR and MD studies. It
was found that these frequency-domain data are also highly
comparable. Analysis of J(ω → 0) provided clear evidence for
the existence of free Rouse dynamics, and it enabled an
estimation of the entanglement molecular mass, yielding Me ≈

3000 g/mol for measured and computed data, in agreement
with a literature value of Me = 3500 g/mol.36 The described
dynamical behaviors appear to be common to all linear
homopolymers. Specifically, we obtained similar FC 1H NMR
results for poly(butadiene), poly(isoprene), and poly-
(dimethylsiloxane) in recent work.21

In addition, our combined experimental and computational
approaches revealed that different molecular dynamics at the
backbone centers and at the chain ends affect the results of
experimental studies, which usually probe a superposition of
signals from monomers at different positions along the polymer
backbone. In particular, we found that a few dozen monomers
near the chain ends show modified constrained Rouse
dynamics so that their contributions affect the value of the
observed power law exponent in regime II unless polymers with
very high molecular masses are investigated. Thus, the present
approach yielded interesting insights into polymer dynamics by
probing entanglement dynamics, up to our knowledge, for the
first time in MD simulations of an all-atom polymer model.
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2012, 45, 6516−6526.
(24) Chav́ez, F. V.; Saalwac̈hter, K. Phys. Rev. Lett. 2010, 104,
198305.
(25) Chav́ez, F. V.; Saalwac̈hter, K. Macromolecules 2011, 44, 1549−
1559.
(26) Kehr, M.; Fatkullin, N.; Kimmich, R. J. Chem. Phys. 2007, 126,
094903.
(27) Smith, G. D.; Borodin, O.; Bedrov, D. J. Phys. Chem. A 1998,
102, 10318−10323.
(28) Vogel, M. Macromolecules 2008, 41, 2949−2958.

(29) Bormuth, A.; Henritzi, P.; Vogel, M. Macromolecules 2010, 43,
8985−8992.
(30) Henritzi, P.; Bormuth, A.; Vogel, M. Solid State Nucl. Magn.
Reson. 2013, 54, 32−40.
(31) Ball, R.; Callaghan, P.; Samulski, E. J. Chem. Phys. 1997, 106,
7352−7361.
(32) Wang, Z.; Likhtman, A. E.; Larson, R. G. Macromolecules 2012,
45, 3557−3570.
(33) Bloembergen, N.; Purcell, E. M.; Pound, R. V. Phys. Rev. 1948,
73, 679−712.
(34) Beckmann, P. A. Phys. Rep. 1988, 171, 85−128.
(35) Rouse, P. E. J. Chem. Phys. 1953, 21, 1273.
(36) Smith, B. A.; Samulski, E. T.; Yu, L. P.; Winnik, M. A.
Macromolecules 1985, 18, 1901−1905.
(37) Wick, C. D.; Theodorouo, D. N. Macromolecules 2004, 37,
7026−7033.
(38) Scholl, C. A. J. Phys. C: Solid State Physics 1981, 14, 447−464.
(39) Filon, L. N. G. On a quadrature formula for trigonometric
integrals, 1928.
(40) Klein, P.; Adams, C.; Brereton, M.; Ries, M.; Nicholson, T.;
Hutchings, L.; Richards, R. Macromolecules 1998, 31, 8871−8877.

Macromolecules Article

dx.doi.org/10.1021/ma401198c | Macromolecules 2013, 46, 7805−78117811

mailto:ernst.roessler@uni-bayreuth.de


108    

          

 

6.6 PUB2 

Publication 2 

 

 

Field-Cycling NMR Relaxometry Probing the 

Microscopic Dynamics in Polymer Melts 

 

Hofmann, M.; Kresse, B.; Privalov, A. F.; Willner, L.; Fatkullin, N.;  

Fujara, F.; Rössler, E. A. 

Macromolecules 2014, 47, 7917-7929. 

DOI: 10.1021/ma501520u 

 

 

(Copyright 2014 by The American Chemical Society) 

 

 

 

 

 

 

 

 

 

 

 



Field-Cycling NMR Relaxometry Probing the Microscopic Dynamics
in Polymer Melts

M. Hofmann,† B. Kresse,‡ A. F. Privalov,‡ L. Willner,§ N. Fatkullin,# F. Fujara,‡ and E. A. Rössler*,†
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ABSTRACT: Field-cycling (FC) 1H and 2H NMR relaxometry
is applied to linear polybutadiene (PB) of different molar mass
(M) in order to test current polymer theories. Applying earth
field compensation, five decades in the frequency dependence
of the spin−lattice relaxation rate T1

−1(ν) = R1(ν) are accessed
(200 Hz - 30 MHz), and we focus on the crossover from Rouse
to entanglement dynamics. A refined evaluation is presented,
which avoids application of frequency−temperature super-
position as well as Fourier transformation. Instead, the power-
law exponent ε in the entanglement regime is directly determined
from the susceptibility representation χNMR″ (ω) = ω/T1(ω) ∝ ω

ε by a derivative method. Correspondingly, a power-law t−ε

characterizes the decay in the time domain, i.e., the dipolar correlation function. For the total 1H relaxation, comprising intra- and
intermolecular relaxation, a high-M exponent εtotal = 0.31 ± 0.03 is found. An isotope dilution experiment, which yields the
intramolecular relaxation reflecting solely segmental reorientation, provides an exponent εintra = 0.44 ± 0.03. It agrees with that of
FC 2H NMR (εQ = 0.42 ± 0.03) probing only segmental reorientation. The fact that εintra > εtotal demonstrates the relevance of
intermolecular relaxation in the entanglement regime (but not in the Rouse regime), and εintra is significantly higher than predicted
by the tube-reptation (TR) model (εTR = 0.25) and, the latter being supported also by recent simulations. The ratio of inter- to
intramolecular relaxation grows with decreasing frequency, again in contradiction to the TR model and results from double quantum
1HNMR. We conclude that no clear evidence of a tube is found on the microscopic level and the so-called return-to-origin hypothesis
is not confirmed. Studying the influence of chain end dynamics by FC 1H NMR we compare differently chain end deuterated PB.
For the dynamics of the central part of the polymer the exponent drops from εintra = 0.66 ± 0.03 down to εcent = 0.41 ± 0.03 for
M = 29k which is very close to the high-M value εintra. Thus, the protracted transition to entanglement dynamics reported before
is not found when the polymer center is probed; instead full entanglement dynamics appears to set in directly with M > Me.

1. INTRODUCTION

The tube-reptation (TR) model,1 a combination of the Rouse
model2 for nonentangled chains (with molar mass M below
the entanglement mass Me) and de Gennes’ reptation idea3 for
M > Me, is a widely accepted model describing the dynamics of
melts of entangled linear polymers. The model predicts four
different power-law regimes (I−IV) for the microscopic
dynamics, more specifically for the time dependence of the
segmental mean square displacement ⟨r2(t)⟩ ∝ tα, summarized
in Figure 1. Molecular dynamics (MD) simulations,4,5 neutron
scattering experiments6 as well as recently field-cycling (FC)
1H NMR,7,8 have essentially confirmed parts of the model
by identifying the predicted crossover from ⟨r2(t)⟩ ∝ t0.5 to
⟨r2(t)⟩ ∝ t0.25 for the transition from free Rouse (regime I) to
constrained Rouse dynamics (regime II). On long time scales
the final crossover from ⟨r2(t)⟩ ∝ t0.5 typical of reptation
(regime III) to ⟨r2(t)⟩ ∝ t1 of the terminal regime of free
diffusion (regime IV) has been observed by field gradient (FG)
NMR.9,10 Another regime (regime 0) usually not included in
polymer theories reflects glassy dynamics at very short times,

i.e., local motions on the time scale of the segmental correlation
time τs.

11,12 Given the large range of different relaxation
regimes, characterization by essentially a single experiment is
still missing. Also, the connection of diffusion with segmental
reorientation described in a coarse grained model by the
tangent vector correlation function is not accessed exper-
imentally. Cast in rank-l reorientational correlation functions-
(e.g., l = 2 accessible by NMR) a corresponding set of
power-laws C2(t) ∝ t−ε is provided by the TR model (cf.
Figure 1).3,11,12 In regimes II and III the motion of polymer
chains is confined inside a tube and the correlation function
Cl(t) for any l is Cl(t) ∝ ⟨r2(t)⟩−1, whereas in regime I Cl(t) is
l-dependent with C2(t) = [C1(t)]

2 ∝ t−1 and C1(t) ∝ ⟨r2(t)⟩−1

(the so-called return-to-origin hypothesis).3,11−14

For comparison, we also included the prediction of the
n-renormalized Rouse model,11,15−18 an alternative approach
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describing entanglement dynamics in Figure 1. We have chosen
the thrice (n = 3) renormalized Rouse model as it reproduces
the well-known scaling relations for the diffusion coefficient
(D ∝ M2.3) and the terminal relaxation time (τt ∝ M3.4) best.
Concerning the mean square displacement ⟨r2(t)⟩ in regimes
I (α = 1/2) and II (α = 1/4) the exponents predicted by the
renormalized Rouse models and those of the TR agree, only in
regime III discrepancies are expected. In the case of C2(t),
however, differences are found even in regime II. Here the TR
theory provides C2(t) ∝ t−1/4 (constraint Rouse regime) while
the n-renormalized Rouse models provide a t−1/2 scaling in the
so-called high-mode number limit. In regime III the TR theory
provides ∝ t−1/2 while the n-renormalized Rouse models
predict ε = 4/(4 + n). Thus, only by measuring segmental
reorientation the two theoretical models can be distinguished in
regime II and this can be achieved by FC NMR.11,19,20

Recent progress by two different NMR methods has pro-
vided new insights. While FC 1H NMR relaxometry gives
access to the frequency dependence of the spin−lattice relaxation
time,8,11,19−23 double quantum (DQ) 1H NMR probes the
correlation function directly in the time domain.24−27 The
quantities accessed are correlation functions probing the
fluctuations of the nuclear magnetic dipole−dipole interaction.
Usually, it is argued that the relaxation is dominated by
intramolecular relaxation, and thus segmental reorientational
dynamics in terms of the rank-two reorientational correlation
function C2(t) (tensorial segmental orientational autocorrelation
function as used by Saalwac̈hter et al.27) is probed. Both
methods usually extend their effective frequency/time range
by applying frequency−temperature superposition (FTS), a
procedure well-known from rheological studies.28−30 Discussing
the power-law exponent of regime II, both techniques so far
provide clear indications for a highly protracted crossover from
Rouse to reptation dynamics. Concerning the dipolar correla-
tion function, CDD(t/τs) ∝ t−ε, the results on 1,4-polybutadiene
(PB) agree even quantitatively.8,22,26,27 At high molar masses the
exponent in regime II is found to be εtotal = 0.31 (FC 1H NMR)

and 0.29 (DQ 1H NMR) and almost reaches the theoretical
prediction of the TR model, εTR = 0.25.1

Yet, it has been shown that the assumption of intramolecular
relaxation dominating the total spin−lattice relaxation does not
hold.7,8,20,31−34 In particular, at low frequencies in the regime
of terminal relaxation, the intermolecular relaxation reflecting
translational dynamics becomes the dominant contribution,
actually allowing to extract the self-diffusion coefficient as an
alternative method to FG NMR.20,32−34 Thus, the correlation
function probed by 1H NMR is expected to be a superposition
of intra- and intermolecular contributions. Intermolecular
contributions are also expected for the correlation function
probed by DQ NMR.35 Isotope dilution experiments, i.e.,
mixing a protonated species with its deuterated counterpart
allows for separating both relaxation contributions.35,36 In the
case of PB, such experiments were carried out in a recent
publication.8 The exponent ε = εintra of C2(t) in regime II,
represented by the isolated intramolecular relaxation, turned
out to be significantly larger than the prediction εTR = 0.25 of
the TR model. Explicitly, while the long-time exponent in the
total dipolar correlation function CDD(t) was reported to be
εtotal = 0.31 ± 0.03, it becomes εintra = 0.49 ± 0.03 for the
intramolecular correlation function C2(t). In addition, the
exponent agrees essentially with the one found from 2H NMR
relaxation, the latter probing only reorientational dynamics. We
concluded that the relation C2(t) ∝ ⟨r2(t)⟩−1, as predicted by
the TR model, is not confirmed.
Very recently, in a DQ 1H NMR study by Saalwac̈hter and

co-workers,27 experiments on PB in deuterated matrices have
also been performed, and regarding the power-law exponents,
virtually no difference was reported for fully protonated melts
and those diluted in deuterated chains, although a strong
intermolecular contribution was identified, yet with apparently
the same time dependence as the intramolecular contribution.
This result is at variance with our FC 1H NMR finding.8 It is
the purpose of the present publication to dwell on this
discrepancy by thoroughly reanalyzing our previous data and by
presenting new FC NMR data. Clarifying this issue is of great
importance since in one case (DQ NMR) the TR model is
confirmed while in the present case (FC NMR) it is not. Again
we emphasize that only by comparing reorientational and
translational dynamics the return-to-origin hypothesis under-
lying the TR model can be tested.
We will reanalyze relaxation data of PB already presented8

but refrain from constructing master curves and directly analyze
the relaxation dispersion R1(ω) = T1

−1(ω) measured at highest
temperatures for which the slowest polymer dynamics appear.
Moreover, applying the isotope dilution technique in order to
characterize the intramolecular relaxation contribution, we do
not extrapolate the rate to zero concentration but the power-
law exponents instead. Both approaches avoid possible sources
of errors. As we apply active earth and stray field compensation
a large frequency range of 200 Hz ≤ ν ≤ 30 MHz is covered.
In addition, the existing data are complemented by new FC
1H and 2H NMR measurements involving a novel low-field
stabilization system.37,38 Saalwac̈hter and co-workers extracted
the exponents from the flattest part of the measured correlation
function by applying a derivative procedure.27 This avoids an
overestimation of the exponent in the case when some
influence of the terminal relaxation leads to a higher exponent
at longest times. Indeed, reinspecting our FC 1H NMR results
for C2(t) for the highest M, a possible influence of terminal
relaxation may be anticipated for the intra part. The actual

Figure 1. Predictions of the tube-reptation model for the segmental
mean square displacement ⟨r2(t)⟩ (black solid line, right scale) and the
rank-two reorientational correlation function C2(t) (red solid line, left
scale).12 Relaxation regimes are indicated (adapted from ref 8). Dashed
lines: predictions for the thrice-renormalized Rouse model.11,15−18
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exponent reported in our previous FC NMR studies resulted
from averaging over one to two decades at lowest frequencies;
thus, such effects were not taken into account. In the present
contribution we also stick to a derivative method allowing a
consistent comparison between the two NMR methods. Yet,
we will show that the newly obtained high-M exponent εintra is
still higher than that reported by DQ 1H NMR and does not
agree with that of the TR model as well as simulation data. We
emphasize that in both FC and DQ NMR studies PB from the
same source was investigated.
From a theoretical perspective7,11,18,39,40 the relative weights

of intra- and intermolecular contributions are expected to be
time (or frequency) dependent and sensitive to details of
the chain dynamics. Quite different expressions result for the
ratio A(ω) = R1

inter(ω)/R1
intra(ω) when isotropic models of

polymer dynamics, like the renormalized Rouse11,15 or the
mode coupling model,15,16,41 in which already at short times,
yet longer than segmental relaxation time, t > τs, the segmental
displacements are not correlated with the polymer chain’s initial
conformation, are compared to the “anisotropic” TR model
for which the polymer chain is confined to a tube at times
τe ≤ t ≤ τ1. Here τ1 denotes the terminal relaxation time of the
polymer chain equivalent to the disengagement time τd in the
TR model and τe the entanglement time.1 Thus, the actually
measured ratio A(ω) provides important information on
the microscopic dynamics in polymer melts. First attempts
in this direction have already been undertaken by Kimmich
and co-workers,7,31 we will extend such studies. Furthermore,
we will discuss the influence of the chain end dynamics by
investigating protonated PB with differently deuterated chain
ends. In a neutron spin echo study on poly(ethylene) dynamics
the results have been explained by contour length fluctuations
(CLF).42 Yet, such experiments are still rare.
All in all, our analysis will show that the discrepancy to the

DQ 1H NMR cannot be resolved, and our experiments do not
confirm the return-to-orgin hypothesis assumed in the TR
model. Microscopically, the dynamics is rather isotropic than
anisotropic. However, the previously claimed “protracted
transition” to reptation dynamics has to be revised in the
light of studying only the polymer centers.

2. THEORETICAL BACKGROUND: INTRA- AND
INTERMOLECULAR RELAXATION

Field-cycling 1H NMR probes the segmental polymer dynamics
in the frequency domain by measuring the dispersion, i.e., the
frequency dependence, of the spin−lattice relaxation rate
R1(ω = γ · B) = T1

−1(ω) where B is the magnetic field and γ

the gyromagnetic ratio. The rate probes the segmental
dynamics via the fluctuations of the magnetic dipole−dipole
interaction of proton pairs. The dipolar couplings comprise
two contributions, such acting between protons located each
on the same molecule, causing intramolecular relaxation, and
such located on different molecules, causing intermolecular
relaxation. The total relaxation rate measured by FC 1H NMR
can consequently be separated:43

= +R R R1 1
intra

1
inter

(1)

Both contributions follow the Bloembergen, Purcell, and
Pound (BPP) equation44

ω ω ω= +R K J J( ) [ ( ) 4 (2 )]1
intra,inter intra,inter

2
intra,inter

2
intra,inter

(2)

with K denoting the corresponding coupling constant. The
intramolecular rate R1

intra has to be split into an intrasegment
contribution referring to spin pairs within a polymer segment,
and an intersegment contribution implying pairs of spins in
different segments of the same macromolecule. Yet, the interseg-
ment contribution can be neglected18,31,39 wherefore R1

intra

reflects segmental reorientational dynamics described by the
rank-two correlation function C2(t) which is linked to the
spectral density J2

intra(ω) via Fourier transformation. We again
refer to Figure 1 where the predictions for C2(t) by the different
polymer models are displayed.
The TR model is a so-called anisotropic polymer model.7,11,15

Here, in the time interval τe ≤ t ≤ τd, spatial displacements of
polymer segments are confined within a tube and polymer
conformations are strongly correlated with the polymer chain
initial conformation. In this scenario the ratio of inter- to
intramolecular relaxation contribution is connected to the
segmental root-mean-square displacement ⟨r2(t = ω

−1)⟩1/2 for
times τs ≤ t ≤ τ1 in the following way:18,39

ω

ω

ω ω

= ∝
⟨ ⟩

A
R

R r
( )

( )

( )

1

(1/ )
TR

1
inter

1
intra 2 1/2

(3)

In the case of the isotropic polymer models like the
n-renormalized Rouse or the polymer mode−mode coupling
model, it is assumed that already at short times t > τs the
segmental displacements are not correlated with the polymer
chain initial conformation. Assuming that the relative mean
square displacement of two segments from different chains
(actually measured by FC NMR) scale with time like the polymer
segment mean square displacement, the inverse connection with
⟨r2(t)⟩1/2 is derived, explicitly:18,39

ω

ω

ω

ω= ∝ ⟨ ⟩A
R

R
r( )

( )

( )
(1/ )iso

1
inter

1
intra

2 1/2

(4)

Thus, the different models of polymer dynamics can be
distinguished by their relation between inter- and intra-
molecular relaxation A(ω); quite distinct frequency depend-
encies are expected. Separation of both contributions becomes
feasible by isotopic dilution experiments where protonated
chains are successively diluted in a fully deuterated matrix
constituted by chains of the same molar mass.7,8,11,32,45

Extrapolating the concentration of the protonated species to
zero the intermolecular relaxation contribution is removed
since dipolar couplings between 1H and 2H are negligible.7 In
addition, FC 2H NMR can be applied to probe solely segmental
reorientation. In this case the relaxation is caused by
fluctuations of the electric field gradient (EFG) which interacts
with the electric quadrupole moment of the I = 1 nucleus 2H.43

Since in organic systems the EFG is caused by the
inhomogeneous charge distribution of the carbon−hydrogen
bond, solely reorientation of the latter is probed, i.e., the correla-
tion function C2(t) is explored. The quadrupolar relaxation rate
follows an analogous equation like eq 2 with an appropriate
coupling constant KQ.

43

In order to stress the similarity with rheological experiments,
the dispersion data are given in the susceptibility representa-
tion, χ″(ν = ω/2π) = ν·R1(ν).

20−23 Note that the power-
law exponent ε in C(t) ∝ t−ε reappears in χ″(ω) ∝ ω

ε. We
once again emphasize that we refrain from constructing master
curves by applying frequency−temperature superposition.
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3. EXPERIMENTAL SECTION AND DATA ANALYSIS

3.1. Samples. Linear, either fully protonated (-h) or fully
deuterated (-d), 1,4-polybutadienes (PB) with low polydispersity
and with various molar masses between Mw = 4.6 kg/mol (=4.6k) and
Mw = 441k, all being well above the entanglement mass Me ≈ 2k,29,46

were purchased from Polymer Standards Service (PSS), Mainz,
Germany. The molar mass refers to the weight-average molar mass
Mw. The PSS polymers are stabilized by 0.1% butylated hydroxy-
toluene. The microstructures of selected PB samples from PSS were
determined from 13C NMR spectra.47 For M > 11k, all samples
contain around 50% cis-isomers and 40% trans-isomers; the rest
refers to 1,2-PB (cf. Table 1). In order to excerpt the intramolecular

relaxation contribution, two isotope dilution series were set up,
namely PB-h with M = 24k with mole fractions x of 76%, 53%, 22%
and 11% in PB-d 23k, and 16% PB-h 196k in PB-d 191k.8 In addition,
protonated 1,4-PB with Mw = 380k (PB-h 380k) and fully deuterated
1,4-PB with Mw = 364k (PB-d 364k) were purchased from another
source, namely from Polymer Source (PS), Dorval, Canada. According
to the datasheet the protonated species contains 68% cis- and 27% trans-
isomers, thus differing somewhat from that of the PSS polymers
(cf. Table 1). The 1,2-PB content is given as 5%.
Differential scanning calorimetry (DSC) using a DSC 7 device

(PerkinElmer Inc., Waltham, MA) was applied in order to determine the
glass transition temperatures Tg of selected systems. Thermal cycles be-
tween 153 K and 213 K were run at a cooling/heating rate of 10 K/min
and Tg, listed in Table 1, were determined from the intersection of the
two tangents applied to the DSC curves at the endothermic step.
Exemplarily, two DSC curves are shown in Appendix A, which
demonstrate that, in the case of PB-d 23k, we find a Tg which is by 11 K
higher than that of PB-h 24k. This will be further discussed, below.
In order to investigate end group effects, two different triblock

PB copolymers consisting of two fully deuterated blocks at the chain
ends and a protonated center were investigated. These systems are
abbreviated with the term PB-dhd. The triblock polymers, PB-dhd
13/6/10 and PB-dhd 5/20/4, were prepared by living anionic
polymerization of butadiene at room temperature under high
vacuum. Benzene was used as solvent and s-butyllithium as initiator.
The techniques and purification applied were similar to those specified

in ref 48. The triblock structure was achieved by sequentially
polymerizing butadiene-d6, butadiene-h6, and butadiene-d6. Termina-
tion of the polymerization reaction was done by adding a small amount
of degassed methanol. After each polymerization step, a small sample
was removed from the polymerization mixture for separate character-
ization. The PB was isolated by precipitation in methanol and dried in
high vacuum.

The polymers and the individual blocks were characterized by size
exclusion chromatography. Tetrahydrofuran (THF) was used as eluant
at a flow rate of 1 mL/min. Molar masses and molar mass distributions
were determined relative to polystyrene standards taking into account
the Mark−Houwink-Sekurada relationship between PS and 1,4-PB in
THF: MPB = 0.581MPS

0.997. The chromatograms showed a single peak
indicating that no termination occurred during the addition of new
monomer for the individual blocks. Polydispersities were found to be
smaller than 1.03 for the final triblocks as well as for the inter-
mediate homo- and diblocks. Absolute molar masses of the triblocks
were additionally determined by light scattering in n-heptane and
membrane osmometry in toluene at 310 K. The microstructure of the
polybutadienes consists of 7% 1,2, 52% trans-1,4, and 41% cis-1,4 as
calculated from 1H NMR spectra. Therefore, the microstructure of the
triblocks agrees with that of the samples from PSS and are identical to
those discussed in ref 42 and their characteristics are summarized in
Table 2.

All PB samples were filled into standard 5 mm NMR sample tubes
without further purification. Subsequently the samples were degassed
under vacuum for 2 days to remove paramagnetic oxygen impurities
and finally sealed.

3.2. Spin−Lattice Relaxation Measurements. The 1H and 2H
spin−lattice relaxation experiments were carried out on a home-
built FC NMR relaxometer located at the Technische Universitaẗ
Darmstadt (Germany).8,37,38,49 With respect to protons, a Larmor
frequency range of 200 Hz ≤ ν = ω/2π ≤ 30 MHz was accessible. In
the case of 2H, the Larmor frequency is reduced by a factor of γH/γD =
6.51. That is, extremely low frequencies are achieved by actively
compensating the earth magnetic field and other stray fields caused by
surrounding laboratory equipment. A novel field stabilization system
was applied.37 The lower limit for the spin−lattice relaxation time is
determined by the time needed for electronic field-stabilization which
is around 2 ms. In all investigated systems the magnetization build-up
or decay curves were found to be monoexponential. Since this study
focuses on the slow entanglement dynamics, the experiments were
performed at a temperature as high as 393 K where the spectral density
of entanglement dynamics coincides with the accessible frequency
range of the FC spectrometer.

The relaxation behavior of a polymer melt shows up in form of dif-
ferent power-law regimes (cf. Figure 1). A power-law t−α with 0 < α < 1
is transformed as ∫ dt t−αe−iωt ∝ ω

α−1 to the spectral density. Hence,
one gets equal magnitudes of the exponent, yet with opposite sign
when the susceptibility representation χ″(ω) = ωR1(ω) is used.

8,21−23

In order to reliably characterize the power-law behavior of the
relaxation data we applied the derivative method as was also done in
ref 27. On a double-logarithmic scale, an interval with length of one
decade is shifted pointwise along the frequency axis. All data points
comprised by the actual interval were linearly interpolated providing
the corresponding (window-averaged) apparent power-law exponent
α(ω). Each data point of α(ω) belongs to the center (on a log-scale) of
the corresponding frequency interval.

Table 1. Properties of the Investigated Poly(butadiene)
Samplesa

sample code
Mw

[g/mol] PDI = Mw/Mn

1,2-PB
content in %

Tg [K]
(±1 K)

PB-h 4.6k 4600 1.03

PB-h 9.5k 9470 1.02 8

PB-h 11k 11400

PB-h 18k 18200 1.01 7 176

PB-d 23k 22800 1.02 187

PB-h 24k 24300 1.01 7 177

PB-h 35k 35300 1.02

PB-h 47k 47000 1.04 24 187

PB-h 57k 56500 1.02

PB-h 88k 87500 1.05

PB-h 143k 143000 1.02

PB-d 191k 191000 1.03 176

PB-h 196k 196000 1.02 177

PB-d 364k* (PS) 364000 1.08 5 190

PB-h 380k* (PS) 380000 1.12 5 177

PB-h 441k* 441000 1.07 6 174
aThe sample code reflects the isotope labeling and the mass average
molar mass Mw. Whenever known, the polydispersitiy (PDI), the 1,2-PB
(vinyl) content and the glass transition temperature Tg (in K) is given.
Samples marked with the asterisk (*) were measured in the present work,
those without in the context of ref 8. Samples from Polymer Source were
labeled with PS, the others are obtained from Polymer Standards Service.

Table 2. Properties of the Poly(butadiene) Tri-Block
Copolymersa

sample code
Mw

[g/mol]
composition
[kg/mol]

1,2-PB content
in %

PB-dhd 13/6/10 29500 13.2−6.2−10.1 7

PB-dhd 5/20/4 28300 4.7−19.6−4.0 7
aThey consist of protonated center sections and deuterated chain
ends.
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4. RESULTS

This section is divided as follows: We start with the FC 1H
NMR results obtained for PB containing intra- and inter-
molecular contributions, i.e., the total relaxation (eq 1) is
discussed (section 4.1). Then we proceed with the analysis of
the intramolecular relaxation obtained by isotope dilution
experiments (section 4.2) and FC 2H NMR results for selected
systems (section 4.3). Finally we prove the significance of finite
length effects by measuring partially labeled chains (section 4.4).
4.1. Results from FC 1H NMR. Figure 2a summarizes the

dispersion data in the susceptibility representation νR1(ν)
recorded for different molar masses of (fully protonated) PB as
indicated, each at 393 K, over five decades in frequency range.
The rate R1(ν) = T1

−1(ω/2π) contains intra- and intermo-
lecular contributions. Since all molar masses are higher than the
entanglement molar mass Me ≅ 2k29,46 entanglement effects are
anticipated. As going from high to low frequencies all curves in
Figure 2a essentially coincide for ν ≥ 1 MHz except for PB-h
11k and PB-h 47k which appear to be slightly shifted toward
higher/lower frequencies, respectively. This can be explained by
somewhat different microstructures changing slightly the
segmental time constants τs (different Tg). Indeed, PB-h 47k
features larger vinyl content and a by 10 K higher Tg than most
other systems (cf. Table 1) while actually no changes in Tg are
expected at such high M.50 This effect, however, is of minor
relevance for the present discussion as we are mainly interested
in the power-law behavior of the susceptibility, i.e., in the
corresponding exponents.
As in our previous publications,8,21−23 two regimes of polymer

dynamics are identified. Applying the derivative method (cf.
Experimental Section) a common power-law with an exponent
εI = 0.78 ± 0.05 (cf. exponents in Figure 2b) independent of
M is observed at high frequencies (ν > 90 kHz) and attributed to
Rouse dynamics (regime I). This value agrees well with 0.76
found in ref 22 in the frequency domain but differs slightly from
0.85 reported in ref 8 after transformation to the time domain.
One theoretically expects an exponent of εRouse = 1; thus, our
result is close to this. It is well-known that the so-called free
Rouse regime in entangled polymers never agrees perfectly
with the Rouse theory, the latter designed to describe dynamics
of unentangled polymers.5 At lower frequencies (ν < 90 kHz)
one observes a crossover to a second power-law with a smaller
exponent reflecting entanglement dynamics; it extends to lower

and lower frequencies for increasing M. For M below 88k, the
terminal relaxation is reached signaled by an apparent exponent
asymptotically returning to one at longest times. The exact deter-
mination of the exponent in regime II is most important for
answering the question whether it can be explained by the TR
model, for which an exponent of εTR = 0.25 (constrained Rouse
dyanmics) is predicted.
The crossover frequency from regime I to regime II can be

defined as the intersection of the two power-law extrapolations
located at around 90 kHz and which we associate with the
entanglement time τe via τe2πν = 1 yielding τe ≈ 1.8 μs (cf.
Figure 2(a)). In contrast, one calculates τe = τs × Ne

2 ≈ 10 ns
(using τs(393 K) = 32 ps taken from ref 23 and Ne = Me/M0 =
2000/113 ≈ 1829,46) for the theoretically expected value which
is by 2 orders of magnitude shorter. Up to our knowledge,
in most rheological experiments τe is not explicitly determined
and a systematic test has not been carried out so far. For other
polymers investigated by FC 1H NMR similar much higher
ratios are found as well, i.e., τe/τs ≈ 50000. We postpone the
discussion of this issue to a forthcoming publication.
The value of the exponent εtotal in the entanglement regime

displayed in Figure 3 is defined by the minimum value of the

Figure 2. (a) Susceptibility representation of the relaxation data recorded at T = 393 K obtained from FC 1H NMR of PB-h of different molar
masses M > Me. Two relaxation regimes (I, II) are observed. For the highest M the corresponding power-laws (ν0.78 and ν

0.31) and the intersection
point at around 90 kHz are indicated providing an estimate of the entanglement time τe. The low-frequency behavior of a simple liquid
χ″(ν) ∝ ν

1 is added (solid line). (b) Apparent power-law exponent α(ν) of the curves calculated by a derivative method.

Figure 3. Power-law exponent εtotal in regime II as a function of molar
mass M obtained via a derivative method in the frequency domain
(open squares), in the time domain by Herrmann et al.8 (black filled
circles) and by DQ 1H NMR27 (crosses). All samples are from
Polymer Standards Service except one (from Polymer Source).
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apparent frequency dependent exponent α(ν) (cf. Figure 2b).
The index “total” refers to the total relaxation including intra-
and intermolecular relaxation contributions. As long as a local
minimum is recognized in α(ν), it defines the crossover from
the Rouse regime at high frequencies to regime II and further
to the terminal relaxation at low frequencies. The minimum
observed for all curves except that of PB-h 4.6k (which is very
close to Me) becomes deeper and shifts toward lower
frequencies when M is increased (again one realizes that the
curve α(ν) for M = 47k is shifted with respect to the other
curves). At highest M no such minimum is found as the
terminal relaxation is well beyond the frequency window and
only a plateau is observed as first anticipated for M = 57k. For
M = 143k, M = 196k, and M = 441k, the plateau value saturates
at a level of εtotal = 0.31 ± 0.03 while it is 0.78 ± 0.03 for M =
4.6 k for which Rouse dynamics dominate. The exponents
εtotal(M) are in very good agreement with those of our previous
work8 where the exponents were determined after Fourier
transformation into the time domain. We take the saturation of
the exponent at the highest three M as an indication that the
final exponent in regime II is reached eventually, i.e., no further
decrease is expected. The M-dependence εtotal(M) is shown in
Figure 3 together with data from DQ 1H NMR27 obtained in
the time domain, which matches our data for M ≥ 30k. From
these results, a “protracted transition” to the power-law
behavior predicted by the TR model was concluded,22,25,26

i.e., the exponent approaches the theoretical value εTR = 0.25
asymptotically only for highest M. At the present εtotal = 0.29 is
the lowest exponent found by DQ 1H NMR in PB-h M =
2000k.27

In order to test the reliability of the FC NMR dispersion data
at very high M and low frequencies, the sample PB-h 441k was
measured once again using the new field stabilization system
(cf. Experimental). As shown in Figure 4 an almost perfect

agreement with our previous measurement is found, yet with
improved signal-to-noise ratio. In addition to the PB systems
(PB-h) which were invariably purchased from PSS, another
high-M PB, specifically PB-h 380k, was obtained from Polymer
Source (Canada), which allows for testing the comparabi-
lity of the polymer provided by different manufacturers.
The susceptibility curve recorded at 393 K and its derivative

for that system is added to Figure 4 in comparison to PB-h
441k from PSS. Above ν = 20 kHz the curves agree well.
Therefore we conclude that relaxation in the regimes of glassy
dynamics and Rouse dynamics agrees. Indeed, the Tg measured
by DSC differ only by 3 K (Table 1). At lower frequencies in
the entanglement regime, however, PB-h 380k features a
significantly steeper increase leading to an exponent εtotal = 0.43
± 0.03. This is about 0.1 higher than one might expect with
respect to the other high-M exponents shown in Figure 3 and
far off from the TR limit. With vinyl contents being similar
(Table 1), the varying cis-/trans-ratios might cause the
differences. Similar differences are found when the FC 2H
NMR results are compared (Appendix B). As Saalwac̈hter and co-
workers exclusively run their DQ 1H NMR experiments on PSS
samples, comparison between both NMR techniques remains
unchallenged. Yet, the results emphasize the importance of
investigating polymers (at least in the case of PB with its varying
microstructure) obtained from a common source when comparing
the results from different techniques.

4.2. Intra- and Intermolecular Relaxation. In selected
cases, deuterated and protonated PB samples of similar molar
masses were available (cf. Table 1) allowing for the separation of
the intra- and intermolecular relaxation contributions via the
application of the isotope dilution technique. Mixing the
protonated species with its deuterated counterpart leads to a
suppression of the intermolecular relaxation contribution. Figure
5a shows the proton dispersion data of PB-h 24k and PB-h 196k
diluted by PB-d 23k and PB-d 191k, respectively. For ν ≥ 1 MHz,
the Rouse regime is probed and all susceptibility curves coincide
on an absolute scale independently of molar mass and dilution
and the exponent of εI = 0.78 ± 0.05 is again observed in all cases.
This clearly demonstrates that virtually no intermolecular relaxa-
tion contribution is present in the Rouse regime. In contrast, at
low frequencies, i.e., in the entanglement regime II, the relaxation
rates decrease systematically upon dilution with respect to the
undiluted reference curves leading to a strong separation of the
susceptibilities at lowest frequencies. In the case of the low-M
system PB-h 24k the exponent in regime II is changed and also
the terminal relaxation which becomes apparently faster at high
dilution. As mentioned, in the regime of the terminal relaxation,
i.e., at lowest frequencies, the total relaxation in polymers as
well as in simple liquids is determined by the intermolecular
relaxation reflecting Fickian diffusion of the entire polymer chain
(cf. Theoretical Background).20,32−34 The apparent faster relaxa-
tion at high dilution, however, does not mean that the transla-
tional diffusion coefficient D changes. Instead, the proton spin-
density decreases upon dilution.
The apparent exponents α(ν) observed in Figure 5a are

displayed in Figure 5b. They qualitatively follow the behavior
described in the previous section for the total relaxation (cf.
Figure 2b). However, in the entanglement regime, the value of
the exponent increases upon dilution with respect to the
undiluted case. In Figure 6, for both concentration series, the
minimum values of α(ν) are shown. This exponent ε(x) appears
to follow a linear behavior with the same slope. Although this
linearity of the exponent cannot be easily explained we take it as
a first approach to extract the intercept for x → 0 which yields
the infinite-dilution limit ε(x → 0) = εintra representing the
exponent of the intramolecular relaxation contribution and which,
as mentioned, is solely determined by segmental reorientational
dynamics. One finds εintra = 0.44 ± 0.03 for PB-h 196k and εintra =
0.66 ± 0.03 for PB-h 24k, which is about 0.1 higher than
the exponents obtained for the corresponding total relaxation,

Figure 4. FC 1H NMR dispersion data (symbols) and corresponding
apparent exponent α(ν) (lines, corresponding to the right scale) of
PB-h 441k (from Polymer Standards Service) at T = 393 K newly
measured using the field stabilization system (blue squares) in
comparison to previous data from ref 8 (red triangles). Included: data
for PB-h 380k (black crosses) from Polymer Source.
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i.e., εtotal = 0.31 ± 0.03 and εtotal = 0.54 ± 0.03, respectively. The
fact that εintra > εtotal demonstrates the relevance of intermolecular
relaxation in the entanglement regime (but not in the Rouse
regime), and εintra is significantly higher than predicted by the TR
model (εTR = 0.25). Here, we emphasize that the determina-
tion of εintra was done without taking recourse to extrapolating
the original relaxation R1(ν, x) data to x → 0. Thereby, one
avoids isotope effects discussed previously8 and effects of possibly
different τs of the protonated and the deuterated polymers (see
below).
In order to obtain the intermolecular rate R1

inter(ν) one has to
extrapolate R1(ν,x) down to x → 0 and subtract the thereby
obtained R1

intra(ν) from the total relaxation rate R1(ν). This
procedure was carried out in our previous publication.8 The
extrapolation relies on the assumption that the dynamics of the
mixed (protonated and deuterated) polymers does not change.
This, however, is usually not the case. For example, Tg of the
protonated and deuterated species may differ. Here, the Tg

contrast of PB-h 24k and PB-d 23k is 10 K whereas the Tg of
PB-h 196k and PB-d 191k practically agree (cf. Table 1).
In addition, mixing different polymers may lead to additional
“isotope effects” like a trend toward demixing. In order to remove
such effects, we previously constructed master curves applying

FTS. Yet, as we want to avoid this procedure, we are left
with the assumption that the lowest concentration of the
dilution series reflects the best estimate for the pure
intramolecular contribution. The thus extracted rates R1

intra(ν)
and R1

inter(ν) are shown in the Appendix C. In Figure 7 the ratio

A(ω) = R1
inter(ν)/R1

intra(ν) is displayed for bothM. As in the case
of M = 23k/24k the values of Tg are different such that the
results for this system have to be taken with some care.
Obviously the ratio A(ω) is frequency dependent and

increases with decreasing frequency. At high frequencies
(ν ≥ 90 kHz), i.e., in the Rouse regime, R1

intra dominates over
R1
inter and the ratio is small, i.e., as already seen in Figure 5a,

essentially no intermolecular contribution is observed. Below,
in the entanglement regime (II) the rate increases in favor of
R1
inter which becomes equal to R1

intra at around ν ≈ 30 kHz for
PB-h 24k and at ν ≈ 1 kHz for PB-h 196k. At lower frequencies
R1
inter becomes even dominating. The effect is stronger for the

low-M PB sample PB-h 24k. In this case the terminal relaxation
is reached at lowest frequencies. Here the intermolecular
contribution always becomes dominating as it is controlled
by translational diffusion being slower than reorientation.32−34

A ratio A(ω) increasing with decreasing frequency clearly
supports the isotropic polymer models. For ν ≥ 90 kHz the

Figure 5. (a) Susceptibility curves measured by FC 1H NMR at 393 K of PB-h 24k diluted in PB-d 23k and PB-h 196k diluted in PB-d 191k,
respectively. The mole fractions of PB-h are indicated. (b) Apparent exponent α(ν) calculated from FC 1H NMR relaxation data of the isotope
dilution series PB-h 24k in PB-d 23k and PB-h 196k in PB-d 191k, respectively; mole fractions of the protonated species are indicated.

Figure 6. Concentration dependence of the power-law exponent ε(x)
in relaxation regime II for both dilution series (closed symbols);
straight lines reflect linear interpolations. Open triangles: exponents εQ
from FC 2H NMR on PB-d 23k and PB-d 191k; crosses: exponents
εdhd(x) for center-labeled PB-dhd M = 30k (cf. Table 2) and the
corresponding interpolation to zero proton concentration.

Figure 7. Frequency dependence of the ratio A(ω) of inter- and
intramolecular relaxation rate for PB-h 24k and PB-h 196k at 393 K as
calculated from the data shown in Figure 6a and Appendix C. The
prediction of eq 4 for isotropic models (dashed line) is indicated; for
comparison, also the prediction of the anisotropic TR model for
regime II is shown (dotted line).
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ratio follows a power-law behavior ∝ ν
−0.25 as suggested by

the (isotropic) Rouse model (eq 4) provided that the
mean square displacement of the Rouse model ⟨r2(t)⟩ ∝ t0.5,
which has essentially been confirmed experimentally,4−6,8,52 is
used. At lower frequencies a crossover to ∝ ν

−0.125 is expected
for isotropic models if the scaling ⟨r2(t)⟩ ∝ t0.25 in regime II,
which again can be taken as experimentally granted, is used
in eq 4. However, this is not observed in A(ω). Instead,
for both M, the whole curves continue with ∝ν−0.25. Below
90 kHz, i.e., in regime II the frequency dependence of A(ω)
appears to be even stronger than predicted by the isotropic
models.
4.3. Quadrupolar Relaxation. The intramolecular part

R1
intra contains an intra- and an intersegment contribution, the

latter implying spin pairs located on different segments of the
same macromolecule. Yet, the intersegment contribution can
be neglected.18,31,39 This can be demonstrated by comparing
the intramolecular relaxation contribution with the quadrupolar
relaxation measured by FC 2H NMR. By its very nature
the quadrupolar interaction measures solely the fluctuation
of the C−2H bond probing the reorientational correlation
function C2(t). Figure 8a shows a comparison between the
relaxation data of PB-d 23k and PB-d 191k, respectively,
obtained by FC 2H NMR and their protonated counterparts of
similar molecular masses (PB-h 24k and PB-h 196k) measured
by FC 1H NMR. The comparison of the samples from PS is
found in Appendix B. The curves measured by FC 2H NMR,
for which the accessible frequency range is reduced by a factor
γH/γD = 6.51, resemble those of FC 1H NMR as two power-law

regimes are recognized. The differences in magnitude result
from the different coupling constants (KQ > Kintra). However,
the curve of PB-d 23k appears to be shifted by a factor of
around 2 toward lower frequencies with respect to PB-d 191k
(as a consequence of different Tg, cf. Table 1), a fact which is
not observed for the combination PB-h 196k and PB-h 24k.
In regime I at ν ≥ 90 kHz the (M-independent) exponent εI =
0.78 ± 0.05 obtained by FC 1H NMR (section 4.1) is well
reproduced by both PB-d 23k and PB-d 191k. In regime II,
εQ = 0.70 ± 0.03 and εQ = 0.42 ± 0.03 are observed for PB-d
23k and PB-d 191k (cf. Figure 8b), respectively, being in good
agreement with εintra = 0.66 ± 0.03 and εintra = 0.44 ± 0.03
found by the isotope dilution technique (section 4.2). We note
that no indications for a third power-law regime (III) are found
in Figure 8 as one could expect from Figure 1.
Parts a and b of Figure 9 show direct comparisons between

the FC 2H and the intramolecular 1H NMR relaxation data, the
latter being represented by the results for the lowest concentra-
tions of the isotope dilution series. In the case of PB-d 23k, the
data were shifted along the frequency axis first by applying a
factor of 1.75, in order to coincide with those of PB-d 191k
in regime I to compensate the slightly different segmental
dynamics. Afterwards, the curve has been divided by a factor of
8.4, taking the different coupling constant KQ into account, to
achieve best overlap. After scaling, the FC 2H and 1H intra-
molecular relaxation data agree well. Thus, we not only confirm
that intersegment relaxation is negligible in FC 1H NMR
but also that the rather high power-law exponents in regime II
concur for both techniques (εintra ≅ εQ).

Figure 8. (a) Comparison between the susceptibility curves (T = 393 K) of PB-d 23k and PB-h 24k as well as between PB-d 191k and PB-h 196k
measured by FC 2H and FC 1H NMR, respectively. The two power-law regimes (I, II) are indicated. (b) Corresponding apparent exponents α(ν).

Figure 9. (a) FC 1H NMR relaxation dispersion data of PB-h 24k (x = 1.00) and PB-h 24k (x = 0.11) diluted in PB-d 23k compared to the FC
2H NMR data of neat PB-d 23k (circles) after proper scaling (see text). (b) Proton relaxation data of PB-h 196k (x = 1.00) and PB-h 196k (x = 0.16)
in PB-d 191k (open squares), respectively; circles: FC 2H NMR data after vertical scaling (see text).
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Figure 10 summarizes the exponents in regime II for the
total relaxation εtotal (see also Figure 3), the intramolecular
contribution εintra and εQ for the quadrupolar relaxation. The
latter is compared to that from DQ 1H and DQ 2H NMR.
When the pure intramolecular relaxation is considered, a clear
discrepancy between both methods becomes obvious. The
intramolecular exponents obtained by DQ 1H NMR data
resemble the values obtained for the total relaxation and appear
to approach εTR = 0.25 while the FC NMR data saturate at
around εintra(M → ∞) = 0.44 ± 0.03. Thus, although a strong
intermolecular contribution (of about 50%) was found in the
DQ 1H NMR data, it appears not to be frequency dependent.27

Moreover, εintra and εQ from DQ NMR only agree within a high
error margin, while the FC NMR data are consistent here.
In any case, a protracted crossover from the Rouse to the
entanglement regime is revealed by both techniques.
4.4. Finite Length Effects. In order to investigate the effect

of chain end dynamics we have studied the FC 1H NMR
relaxation dispersion of PB chains partially deuterated at their
ends. The effect of deuterating the end sections of the polymer
is 2-fold. First, the dynamics in the center of the chain is probed
and, second, the intermolecular relaxation contribution is
partially suppressed as spin-density is decreased. In Figure 11a,

we present the results for the two PB samples PB-dhd 5/20/4
and PB-dhd 13/6/10 (cf. Table 2) in comparison to that of
PB-h 24k. Correcting for slight changes of the segmental time
constant τs and assuming that the relaxation in the Rouse
regime is not expected to be altered, shift factors of aT = 0.7 for
PB-dhd 5/20/4 and aT = 0.4 for PB-dhd 13/6/10 have been
applied along the frequency axis in order to match the curves of
PB-h 24k at high frequencies. The resulting wide overlap over
more than three decades in the frequency range where Rouse
dynamics is probed demonstrates that it is irrelevant in this
regime whether the whole chain is regarded or just the central
section. Below ν·aT ≤ 10 kHz the dispersion curves and their
corresponding apparent exponents α(ν) (cf. Figure 11b) differ
increasingly. In addition, the terminal relaxation becomes
gradually slower. As demonstrated above (Figure 5a) the
decreasing spin-density should result in accelerated terminal
relaxation. However, the opposite is observed.
Neglecting the effect of the inhomogeneous distribution of

protons and deuterons in the dhd polymers, the exponents
εdhd(x) are plotted against the overall proton concentration, i.e,
x = 0.70 in PB-dhd 5/20/4 and x = 0.15 in PB-dhd 13/6/10 in
Figure 6. As a reference for the fully protonated system, we took
the average of the exponents of PB-h 24k and PB-h 35k yielding
εtotal(x = 1.0) ≈ 0.51 as no data for PB-h 29k were available. In
strong difference to our results of the isotope dilution experi-
ment on the fully protonated PB the exponent decreases with
increasing dilution. This effect is understood such that in the
case of the short chain PB the chain end dynamics strongly
influence the relaxation of the fully protonated polymer. It
actually overcompensates the dilution effect suppressing the
intermolecular interaction. A linear extrapolation to x → 0 as
suggested by the observed concentration dependence provides
the limit of chain dynamics not influenced by the chain end
dynamics as well as by intermolecular contributions. A value
εcent = 0.41 ± 0.03 is found; it is in very good agreement with
the value obtained for the intramolecular part of PB-h 196k. In
other words, the high-M limit of εintra = 0.44 ± 0.03, reflecting
the relaxation behavior of the pure reorientational dynamics, is
already reached at M = 29k when solely polymer centers are
considered. The effect of a protracted transition observed for the
full chain dynamics again displayed in Figure 10 is not present.
Thus, a rather sharp drop of the exponent from εI = 0.78 ± 0.05
in the Rouse regime to εintra = 0.44 ± 0.03 in regime II is

Figure 10. Power-law exponents in the entanglement regime (II) εtotal,
εintra, εQ and εcent vs reduced molar mass M/Me. Exponents from DQ
1H NMR of PB-h diluted to x = 0.15 by PB-d and from DQ 2H NMR
are included for comparison.27 Key: red line, suggested behavior of
εcent(M); dashed line, εintra(M) guide-for-the-eye; dotted line,
prediction of the TR model.

Figure 11. (a) Dispersion curves from FC 1H NMR of partially proton labeled PB-dhd samples with similar molar masses (M ≈ 29k) with
protonated center fractions of 6.2k (red cricles) and 19.6k (blue crosses). The data of fully labeled PB-h 24k and PB-h 24k in PB-d23k (x = 0.11)
reflecting intramolecular relaxation are included. The PB-dhd data are horizontally scaled by shift factors aT to coincide with those of PB-h 24k at
high frequencies (see text). (b) Corresponding apparent power-law exponents α(ν).

Macromolecules Article

dx.doi.org/10.1021/ma501520u | Macromolecules 2014, 47, 7917−79297925



anticipated for the dynamics of the center sections (red solid
line).

5. DISCUSSION

Field-cycling NMR relaxation dispersion data of linear, either
fully protonated or fully deuterated PB bulk melts of various
molar masses were reinvestigated and supplemented by new
measurements. All PB samples discussed in what follows
(as well as those studied by DQ NMR25−27) were obtained
from the same source. Refraining from the application of FTS,
five decades in frequency were covered by a home-built
relaxometer. Two power-laws are identified in the frequency
domain. They are associated with the free Rouse (I) and the
entanglement regime (II), the latter being of particular interest
as a comparison with different polymer theories is to be
attempted. In the case of the total relaxation (including intra-
and intermolecular relaxation), it has turned out that the
M-dependent exponent of regime II εtotal(M) coincides with
that previously obtained by analyzing the time domain.8,22 The
derivative method provides small corrections with respect to
some of the exponents reported before.8 The found high-M
exponent εtotal = 0.31 ± 0.03 (at M/Me ≅ 100) is close to the
prediction of the TR model for regime II (constrained Rouse
dynamics) and agrees with reports from DQ 1H NMR.25−27

Investigating a high-M polymer obtained from a different
manufacturer, however, a significant difference is observed by
FC 1H as well as FC 2H NMR. This stresses the problem of
controlling the microstructure in the case of PB. Also, as
learned from DSC results, deuterated and protonated polymers
may show different values of Tg and thus render a direct
application of the isotope dilution technique partly obsolete.
Therefore, we have avoided the extrapolation of original
relaxation data R1(ν,x) to zero concentration. Instead, we have
extrapolated the corresponding power-law exponents to attain
the exponents of the intramolecular relaxation contribution.
Still, in order to estimate the intermolecular relaxation, the
isotope dilution technique is essential, and we consider the
good agreement between intramolecular and quadrupolar
relaxation as a support of our decomposition of the relaxation.
The intermolecular relaxation contribution is accessed for

low and high M. In both cases a strong contribution is revealed
in the entanglement and in the terminal relaxation regime
but virtually not in the Rouse regime. In contrast to the
assumption of most relaxation studies, the intermolecular
contribution must not be ignored; at lowest frequencies it even
becomes dominant, a fact already demonstrated by the
pioneering work of Kimmich and co-workers7,18,31 and recently
by ourselves extracting the diffusion coefficient.33,34,51 Con-
cerning the intramolecular relaxation, which probes only
segmental reorientation, a high-M exponent εintra = 0.44 ±

0.03 is found. It well agrees with that of FC 2H NMR (εQ =
0.42 ± 0.03), yet is somewhat lower than previously obtained
due to applying the derivative method for the determination of
the exponent. The value, however, is significantly higher than
that for the correlation function C2(t) predicted by the TR
model (εTR = 0.25). It is close to the value ε3RR = 0.5 predicted
for the so-called high-mode-number limit (regime II) of the
thrice-renormalized Rouse theory (cf. Figure 1).11,15 Any
corrections of the TR model in terms of taking into account
additional relaxation modes like contour length fluctuations and
constraint release effects will render the model more isotropic
and thus closer to the n-renormalized Rouse models. Yet, such

modified TR approaches become more and more phenomeno-
logical and more nonanalytical.
Employing coarse-grained simulations, Wang et al.52 accessed

the rank-one and rank-two reorientational correlation functions
C1(t) and C2(t), respectively, for chain lengths reaching well
into the entanglement regime. They found a prolonged cross-
over for C2(t) (as compared to C1(t)) from the free Rouse to
the entangled state. Still, for highest N an exponent α = 0.27 ±
0.03 has been found for flexible and α = 0.29 ± 0.03 for
semiflexible chains. Finding at the same time that the segmental
mean square displacement ⟨r2(t)⟩ follows the prediction of the
TR model, the authors concluded that the return-to-origin
hypothesis, which leads to the proportionality of C1,2(t) ∝
⟨r2(t)⟩−1 is well confirmed for long chains. In another recent
simulation study27 a similar result was reported, i.e., the ex-
ponent of C2(t) in the entanglement regime was found to
follow the prediction of the TR model. As mentioned, recent
DQ 1H NMR findings also appear to be in agreement with
these simulation results in clear contrast to our present findings
(cf. Figure 10). The result of the DQ 1H NMR study is par-
ticularly surprising as good agreement between FC and DQ
NMR is found for the total relaxation. Here, we note that the
result εintra > εtotal is also confirmed for a polymer investigated
from a different manufacturer (Figure 13) as well as by Kehr
et al.7,31 The failure of the TR model when compared to the FC
NMR result could be explained by assuming that the return-to-
origin hypothesis applies only when microscopic details of the
dynamics can be ignored. Future atomistic simulations may give
an answer here.
As theoretically discussed18,19,39 the ratio A(ω) = R1

inter(ω)/
R1
intra(ω) can reveal details of the microscopic dynamics in

polymer melts. Quite different expressions result when
isotropic models of polymer dynamics, like the renormalized
Rouse model, are considered in opposition to the (anisotropic)
TR model (cf. Theoretical Background). In accordance with
Kimmich and co-workers31 the present study finds that the ratio
grows with decreasing frequency. This is in clear contradiction to
the TR model where an inverse trend is expected in regime II.
The found frequency dependence of A(ω) in regime I (Rouse)
is described quantitatively by the isotropic model as expected,
since the Rouse model is an isotropic model. However, in the
entanglement regime II, A(ω) further decreases. Again, our
findings do not agree with the results from the recent DQ 1H
NMR. As mentioned, in this case no difference in the frequency
dependence of total and intramolecular relaxation has been
reported although actually about 50% of the correlation was
attributed to the intermolecular contribution (at high M), yet
apparently with the same time dependence as the total
correlation function.27 Here we emphasize that in any case at
long times the intermolecular correlation function follows a
power-law t−3/2 being characteristic for free diffusion20,36,53,54 in
contrast to an essentially exponential decay for the intramolecu-
lar or reorientational dynamics. This will always lead to a predomi-
nance of the intermolecular contribution at longest times. Here,
the DQ NMR results appear to reveal some inconsistencies.
Investigating the influence of chain end dynamics we

compare the relaxation of fully protonated and differently
chain end deuterated PB for a relatively short PB chain with
M = 29k. A strong effect is observed, i.e., an enhanced chain
end mobility becomes relevant for low M. Extrapolating for
solely center dynamics an exponent εcent = 0.41 ± 0.03 is found
which is very close to the high-M value of fully protonated PB
(εintra = 0.44 ± 0.03). Thus, the previously discussed protracted
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transition8,23,25 to the final exponent occurring at highest M,
say above M = 500k, observed for the total as well as for
the intramolecular relaxation in the recent FC11 as well as
DQ 1H NMR27 studies, disappears when the polymer centers
are considered. The exponent εcent quickly drops from its Rouse
value εI = 0.78 ± 0.05 at M > Me to the apparently M
independent value εintra = 0.44 ± 0.03 (cf. Figure 10). As
already mentioned, neutron scattering studies came to the same
result and the effect was explained by contour length fluctu-
ations.42,55 The relevance of chain end dynamics spoiling the
TR dynamics has already been emphasized ever since the first
simulation data.4,5,56,57

■ CONCLUSIONS

Our study demonstrates that FC 1H and 2H NMR provide
a unique opportunity to reveal details of the microscopic
dynamics of polymer melts. In particular, the frequency
dependence of the ratio of inter- to intramolecular relaxation
rate can discriminate between different microscopic models
of polymer dynamics. In the case of polybutadiene (PB), by
accessing the exponent ε of the dipolar correlation function in
the entanglement regime II, a strong influence of intermo-
lecular relaxation is revealed. The TR model does not
correctly describe the relation between segmental diffusion
and reorientation, i.e., the so-called return-to-origin hypothesis
fails. The found frequency dependence of the ratio of inter- to
intramolecular relaxation does not support the existence of a
strong restriction of the dynamics by a tube-like region. The
derived exponent εintra is closer to the prediction of the

isotropic n-renormalized Rouse theory. Currently, the exper-
imental disagreement between FC and previous DQ 1H NMR
regarding the exponent εintra cannot be resolved. The consistent
results of FC 1H and 2H NMR provide confidence in the
robustness of our findings. The previously discussed protracted
transition to the final high-M exponent occurring only at
highest M observed in the recent FC8 as well as DQ 1H NMR27

studies disappears when the polymer centers of chain end
deuterated PB are considered; i.e., entanglement dynamics sets
in directly at M > Me. Future experiments have to be extended
to other polymers in order to check whether the relaxation
features revealed for PB can be generalized or whether the ratio
of intra- and intermolecular relaxation might depend on the
particular structure of the monomer.

■ APPENDIX

A. DSC Measurements

Figure 12 shows two exemplifying DSC curves measured for PB-h
24k (a) and PB-d 23k (b). Both polymers were purchased from
PSS. The heating rate was 10 K/min. The Tg which have been
determined at the intersection of both tangents differ by about 10 K.
The Tg values of further systems are summarized in Table 1.

B. Relaxation of PB Samples from Different Suppliers
For sake of completeness, Figure 13a shows proton and deuteron
relaxation data of PB-h 380k and PB-d 364k, respectively, both
purchased from Polymer Source, Canada. Figure 13b shows the
corresponding derivatives α(ν) providing εtotal = 0.43 ± 0.03 for
PB-h 380k and εQ = 0.56 ± 0.03 for PB-d 364k. Again, as in the
case of the other PB studied, the power-law exponent of the

Figure 13. (a) Susceptibility curves of samples purchased from Polymer Source, namely PB-h 380k and PB-d 364k as measured by FC 1H NMR and
FC 2H NMR, respectively. (b) Corresponding apparent exponents α(ν).

Figure 12. Selected DSC curves recorded with a heating rate of 10 K/min of PB-h 24k (a) and PB-d 23k (b) showing the glass transition.
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intramolecular relaxation contribution (reflected by εQ) is
significantly higher than that of the total relaxation. Yet, the
absolute values are in both cases significantly higher than for
those purchased from Polymer Standards Service. Hence, it does
not fit in the series.

C. Intra- and Intermolecular Relaxation Rates in PB-h

Figure 14 shows the decomposition of the total relaxation rates
of PB-h 24k (a) and PB-h-196k (b), respectively, into their
intra- and intermolecular contributions. The intra-parts were
equated with the lowest concentrations of the dilution series.
The inter-part results from subtraction from the total rate after
linear interpolation of the measured frequencies. From these
data the ratios R1

inter(ν)/R1
intra(ν) in Figure 8 were calculated.
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Fujara, F.; E.A. Rössler, E. A. ACS Macro Lett. 2012, 1, 1339.
(52) Wang, Z.; Likhtman, A. E.; Larson, R. G. Macromolecules 2012,
45, 3557.
(53) Sholl, C. A. J. Phys. C: Solid State Phys. 1981, 14, 447.
(54) Belorizky, E.; Fries, P. H. Chem. Phys. Lett. 1988, 145, 33.
(55) Wischnewski, A.; Monkenbusch, M.; Willner, L.; Richter, D.;
Likhtman, A. E.; McLeish, T. C. B.; Farago, B. Phys. Rev. Lett. 2002, 88,
058301.
(56) Likhtman, A. E.; McLeish, T. C. B. Macromolecules 2002, 35,
6332.
(57) Bormuth, A.; Hofmann, M.; Henritzi, P.; Vogel, M.; Rössler, E.
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ABSTRACT: We investigate bulk poly(propyleneimine) den-
drimers of generation (G) 2−5 by dielectric spectroscopy (DS),
solid-state 2H NMR, and field-cycling 1H NMR relaxometry (FC
1H NMR) in a large temperature range (120−400 K). Three
relaxation processes are identified by DS: a main (α-) relaxation (T
> Tg) and two secondary processes (T < Tg). The α-process
exhibits a super-Arrhenius temperature dependence typical of glass-
forming liquids and changes only weakly with G, yielding Tg ∼ 200
K. The temperature dependence of the secondary relaxations is
governed by an Arrhenius law. While one secondary process
exhibits features characteristic for glasses, the other is atypical. Its
time constant is virtually independent of G, and its spectral width
does not increase with lowering temperature as is usually observed for sub-Tg relaxations. Regarding FC 1H NMR probing the
dispersion of the spin−lattice rate R1 in the frequency range 200 Hz−30 MHz, transformation to the susceptibility
representation, χ″(ω) ≡ ωR1(ω), and applying frequency−temperature superposition, an effective frequency range of 9 decades
is covered by a master curve χ″(ωτα). In addition to the segmental time τα(T), which complements the results from DS up to
high temperatures, a longer terminal relaxation τt(T) is identified. In between, an intermediate power-law regime is observed in
χ″(ωτα) with an exponent of about 0.8. The broad relaxation spectrum is attributed to local dynamics, breathing modes, and
overall tumbling and diffusion of the dendrimer molecule. In the low-frequency limit, R1(ω) is determined by intermolecular
relaxation from which the molar mass dependence of the translational diffusion coefficient can be estimated. We find D(M) ∝
M−1.2±0.2.

1. INTRODUCTION

Dendrimers as a special type of macromolecular architecture
offer an interesting field of investigations in physics and
chemistry.1−5 Starting from a central point with a functionality
f, segments of uniform length again with functionality f are
attached. Thereby “shells” of segments are created, and each shell
defines a generation starting with G = 0 for the functional center.
Dendrimers are thus perfectly monodisperse, and as mass grows
faster than volume, the number of generations G is limited. Yet,
the actual maximum depends on the chemistry of the segment.
The latter also strongly determines structure and dynamics of the
dendrimers.
Here we focus on bulk poly(propyleneimine) (PPI)

dendrimers with f = 3. Generations 2−5 can be synthesized
and purchased commercially. At room temperature they
constitute liquids of high viscosity, and cooling below the glass
transition temperature Tg (around 200 K) yields transparent
glasses. The dendrimer structure is soft enough to allow for
partial interpenetration, however, the extent of which decreases
with generation.6 Entanglement effects, as in the case of long-
chain polymers, do not occur.7,8Correspondingly, the viscosity is
significantly lower than in entangled linear polymers.7 According
to MD simulations, the dendrimers become more compact and
spherical as the generation number grows, and also dendra turn

inward.6,9Thus, the end amine groups are spread more and more
uniformly over the entire dendrimer volume. The overall density
profile decreases gradually from the center to the surface of the
molecule while the radius of gyration scales approximately with
the cubic root of the number of segments. This structural picture
sketched by simulation data essentially agrees with experimental
studies.3,6,9

While several studies on the solution behavior were published,
up to our knowledge not many experiments were done
attempting to unravel the dynamics in bulk dendrimers. Values
of Tg for neat and end group modified PPI, linear and nonlinear
rheological behavior, and the M dependence of the zero-shear
viscosity were reported.8 Detailed rheological results were also
reported for polyamidoamine (PAMAM) dendrimers.7 No
entanglement (rubber) plateau was observed in the dynamic
modulus, indicating, as mentioned, the absence of entanglement
effects. Altogether, one finds a relaxation behavior showing some
reminiscence of melts of polymer chains below their
entanglement molar mass. That is, in addition to segmental
dynamics determined by the glass transition phenomenon,4 a
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spectrum of slower modes appears. Indeed, the Rouse model10

was applied to reproduce the rheological behavior, yet deviations
were found.7 Also, secondary relaxation processes as usually
observed in molecular glasses were reported for other
dendrimers.11,12 A number of MD simulations as well as
theoretical approaches deal with the dynamics of particular
dendrimer models.4−6,9,13−17

In the present work we investigate the dynamics of PPI
dendrimers by dielectric and NMR spectroscopy. A large
temperature range is covered (120− 400 K) comprising the
melt (T > Tg) as well as the glassy state (T < Tg). In the case of
NMR we present results from solid-state 2H NMR and from
field-cycling (FC) 1H NMR relaxometry. The latter technique
has gained new momentum with the availability of commercial
spectrometers.18−22 In contrast to existing NMR studies on
dendrimers mostly in solution,23−26 which characterize the
spin−lattice relaxation time T1 at a few frequencies (magnetic
fields), the FC method probes the frequency dependence of the
relaxation rate 1/T1 = R1(ω) usually in the frequency (ω/2π)
range 10 kHz−20 MHz. Taking recourse to a self-built FC
relaxometer,28we were able to reach a low-frequency limit of 200
Hz. Converting the relaxation data to the susceptibility
representation χ″(ω) ≡ ωR1(ω) and applying frequency−
temperature superposition (FTS), an approach well-known from
rheological studies,27 a large effective frequency range is covered
by a master curve χ″(ωτα). It reveals both local and collective
segmental dynamics.29−33Here τα = τα(T) denotes the time scale
of the local segmental dynamics. The evolution of χ″(ωτα) with
molar mass M will be compared to that of linear polymers.
Moreover, as the low-frequency dispersion is determined by
translational dynamics, we are able to extract the diffusion
coefficient D(M).

2. EXPERIMENTAL SECTION

2.1. Systems. We investigated the dynamics of PPI dendrimers in
bulk, which were purchased from SyMO-Chem BV (University of
Eindhoven) and used without further treatment. In the case of FC 1H
NMR the samples were degassed to remove paramagnetic oxygen. The
chemical structure of generation 2 is shown in Figure 1. For each further

generation the number of amine end groups doubles. We investigated
dendrimers of generation 2 (G2), 3 (G3), 4 (G4), and 5 (G5); higher
generations are not available for this type of dendrimer. For the 2H
NMR investigations, the amine end groups were deuterated by
dissolving the dendrimers in deuterated water and evaporating the
water again. The procedure was repeated twice. The glass transition
temperature Tg was determined by DSC experiments (cf. Table 1).

2.2. Dielectric Spectroscopy. Dielectric measurements were
carried out with an Alpha-A Analyzer by Novocontrol, which allows
for frequency-resolved measurements of the dielectric permittivity in the
range 10−2−106 Hz. Temperature stability was ±0.2 K controlled by a
Quatro-H temperature controller (Novocontrol). The absolute
accuracy is better than ±0.5 K. The sample cell is designed as described
in ref 34 and guarantees constant plate distance while cooling.

In most of the PPI dendrimer samples a pronounced dc conductivity
is observed in the dielectric loss ε″(ω) (T > Tg), which is subtracted by
using the expression εdc″(ω) = σdc/(ε0ω) (cf. Figure 12). All time
constants were estimated by “peak picking”; i.e., the condition τi = 1/
(2πνmaxi) was applied. In the case of the two secondary processes (“d”

and “β”) a sum of a distribution of correlation times G(ln τ) appropriate
for thermally activated relaxation processes35 was chosen for
interpolating the dielectric spectra, explicitly
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The coefficients A and (1 − A) define the relative weight of the
individual contributions. The parameter a causes a symmetric
broadening of the distribution while the “asymmetry parameter” b
only affects its short time flank. After Laplace transformation, the
resulting susceptibility peak is symmetrically broadened by a, which is
also the exponent of the power-law asymptotically approached by the
peak’s low-frequency flank. The exponent of the power-law asymptote
of the high-frequency flank is given by the product ab.

2.3. 2H NMR. Solid-state 2H NMR spectra of the end group
deuterated dendrimers are dominated by the interaction of the nuclear
quadropolar moment with the electric field gradient (EFG), and the
NMR angular frequency depends on the spherical angles (θ,ϕ) between
the EFG tensor axis and the magnetic field direction36

ω θ ϕ δ θ η θ ϕ= ± − −( , ) /2(3 cos 1 sin cos(2 ))Q Q
2 2

(4)

whereωQ(θ,ϕ) is the shift of the resonance frequency with respect to the
Larmor frequency ω. The parameter δQ is the anisotropy and η the
asymmetry parameter of the EFG tensor. In the case of an isotropic
distribution of tensor orientations and η = 0, a so-called Pake spectrum is
observed, which is measured with a solid-echo pulse sequence.36 At high
temperatures the two-site reorientation of the dendrimer’s amine groups
becomes faster than the NMR time scale (τjump≪ 1/δQ), which leads to
a motion-averaged powder spectrum with η̅ close to one (cf. below and
Figure 6). In the case of an isotropic reorientation occurring at even
higher temperatures a Lorentzian line typical for a liquid results. Under
the condition 1/δQ ≫ τα≫ ω−1, for which effects from the crossover to
a solid-state spectrum and from field inhomogeneity, respectively, can be
ignored, the full half-width Δv of the line is related to the transversal
relaxation time T2 via Δv = 1/πT2, and one can estimate the
reorientational correlation time τα from37 1/T2 = (1/5)δ ̅Q

2(1 + η ̅
2/

3)τα, where δ ̅Q = 2π 90 kHz is the motionally averaged anisotropy
parameter and η ̅ = 0.9 due to the fast 180° two-site jumps.

The 2H NMR experiments were performed on an upgraded Bruker
Avance DSX spectrometer and a 300 MHz Oxford cryomagnet. The 2H
Larmor frequency is ω = 46.067 MHz for a magnetic field of 7 T. The
pulse length of a π/2 pulse was 2.8 μs. The recovery delay after applying
a saturation sequence of 5 π/2 pulses was at least 4T1 and 8-fold phase

Figure 1. Idealized structure of the PPI dendrimer of generation 2.
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cycling was applied for collecting the solid-echo spectra with a pulse
delay of 10 μs. The home-built 2H NMR probe was cooled by liquid
nitrogen with a CryoVac Konti cryostat and an Oxford ITC-503
temperature controller with temperature accuracy better than ±1 K and
temperature stability better than ±0.2 K.
2.4. Field Cycling 1H NMR. The spin−lattice relaxation time T1

describes the recovery of the nuclear magnetization toward its
equilibrium value. Its frequency dependence can be studied by applying
the FC technique where the external magnetic field is switched between
a variable relaxation field B and a constant detection field.18 The angular
frequency is given by the Larmor frequencyω = γB, where γ denotes the
gyromagnetic ratio. Usually, T1 reflects intra- and intermolecular
relaxations contributions, and the measured rate R1 = 1/T1 is given by
R1(ω) = R1

intra(ω) + R1
inter(ω).18,37 The role of the two relaxation paths

was elucidated by not only measuring the fully protonated system but
also the dendrimer with the protons at the amine groups exchanged by
deuterons used for the 2H NMR experiments (cf. above).
Rewriting the Bloembergen−Purcell−Pound (BPP) expression in

the susceptibility representation yields29−33,37

ω ω χ ω χ ω ω ω χ ω= ″ + ″ ≡ = ″R C C J C( ) [ ( ) 2 (2 )] 3 ( ) 3 ( )1 NMR NMR

(5)

where χ″(ω) =ωJ(ω) is the susceptibility with the spectral density J(ω),
and C denotes the coupling constant of the magnetic dipole−dipole
interaction. In the case of intramolecular relaxation J(ω) is given by the
Fourier transform of the rank-two reorientational correlation function
C2(t) of a dendrimer segment, more precisely of the internuclear vectors
of the proton spin pairs in the segment. Although χNMR″ (ω) and JNMR(ω)
are actually weighted sums, in the case of a broad distribution of
correlation times, both quantities are essentially indistinguishable on
logarithmic scales from χ″(ω) and J(ω), respectively, besides the factor
of 3.
As said, the actually measured relaxation rate contains both intra- and

intermolecular contributions and follows a similar equation like eq 5.
Thus, the spectral density splits up into two parts. While the intra part
reflects segmental reorientation, the inter part probes translational
motion. The correlation functions C2(t) and Ctrans(t) exhibit quite
different long-time behavior. WhileC2(t) decays stretched exponentially
for long times, Ctrans(t) follows a power law t−3/2 reflecting Fickian
diffusion and therefore will always dominate the total correlation
function in the limit of long times.38−40 Thus, at low frequencies the
relaxation dispersion R1(ω) follows a square root law, explicitly
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and the spin densitiy ns = 7.3 × 1028 m−3 in the case of the dendrimers.
This relation was recently exploited to determine the diffusion
coefficient D(T) in simple liquids40 as well as in polymers,41 and it
will be employed here to estimate the D(T,M) of the PPI dendrimers.

As a large temperature range is covered, local segment dynamics as
well as dendrimer specific dynamics are probed and one is able to
construct master curves χNMR″ (ωτα) extending over many decades in
time by assuming frequency−temperature superposition (FTS).
Specifically, the individual data sets measured at different temperatures
are shifted solely horizontally to obtain best overlap.30−33 The master
curves χNMR″ (ωτα) thus combineR1(ω) results from a broad temperature
range and yield “isofrictional” spectra which allow comparing the results
for different dendrimer generations. As the high-frequency part reflects
the α-dynamics, which is interpolated by a Cole−Davidson function, the
construction of the master curves provides the time constants
τα(T).

29−33 For simple liquids, no spectral contribution at ωτα < 1 in
excess to the Debye behavior χ″(ω) ∝ ω1 is observed except for some
weak intermolecular contributions. Any additional low-frequency
relaxation thus reflects dendrimer specific dynamics.

The dispersion of the spin−lattice relaxation time T1 was monitored
by a STELAR FFC 2000 relaxometer, which allows measurements in the
temperature range 160−420 K and in (Larmor) frequency range 10 kHz
≤ ν ≤ 20 MHz.18,30 The accuracy and stability of the temperature
measurements are typically ±1 K. Concerning G4 and G5 the T1(ω)
measurements performed in Bayreuth were complemented by two data
sets obtained at the Technical University of Darmstadt. There, a home-
built relaxometer allows for extremely low frequencies via active field
stabilization and stray field compensation.28 The lower limit is 200 Hz
being well below the limitations of the STELAR machine and even
below the earth’s magnetic field. This gives access to extremely slow
dendrimer dynamics.

The magnetization curves for all dendrimers investigated feature a
monoexponential decay at T < 300 K. With temperature growing the
decay curves develop an increasingly stretched form which is well
describable by a stretched exponential function ∝ exp[−(t/T1

K)β]. The

Table 1. Properties of the Investigated PPI Dendrimers: Molecular Formula, Molar Mass, Number of Amine Groups, Glass
Transition Temperature (Tg) from DSC and Dielectric Relaxation (DS), Activation Energy EA/R, and Attempt Time τ∞ of the β-
Process

generation molecular formula molar mass [g/mol] no. of amine end groups Tg [K] (DSC) Tg [K] (DS) EA/R(β) [K] τ∞(β) [s]

2 C40N14H96 773.3 8 195 196 3522 5 × 10−15

3 C88N30H208 1686.8 16 198 200 3914 2 × 10−14

4 C184N62H432 3513.9 32 204 204 4282 5.2 × 10−15

5 C372N126H880 7198.1 64 200 200 3868 5.5 × 10−16

Figure 2. (a) Dielectric spectra of PPI dendrimer G2 as measured for temperatures 121 to 241 K as indicated. (b) Analogous spectra of PPI dendrimer
G3 from 121 to 241 K.
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(mean) relaxation time follows from ⟨T1⟩ = T1
Kβ−1Γ(β−1) which is

generally used in this work. The stretching parameter decreases only
slightly between β = 1 at low temperatures and β ≈ 0.8 at T ≈ 400 K.

3. RESULTS

3.1. Dielectric Spectra. Figure 2 shows dielectric spectra as
measured at different temperatures for the generation G2 and G3
of the PPI dendrimer. In Figure 11 we display the corresponding
spectra of G4 and G5. Three rather broad and barely separated
relaxation processes are recognized at high temperatures. The
relaxation peak at lowest frequencies is partly covered by a dc
conductivity contribution, most obviously for G3, G4, and G5
(cf. Figures 11 and 12). With decreasing temperature the low-
frequency peak leaves the acquisition window and the other two
relaxations become better resolved while shifting to lower
frequencies. In addition, below Tg their amplitudes appear to
decrease and their widths to broaden. This is typical for
secondary processes in molecular glasses.42 Figure 3 shows the
DS spectra of G4 and G5 after subtracting the dc contribution
(see Figure 12). Above Tg (data marked in red) the three
relaxation processes can be distinguished. Inspecting also the
corresponding spectra of G2 (Figure 2) and G3 (Figure 12), one
can conclude that relaxation patterns are rather similar for all
generations: PPI dendrimers show three relaxation processes
which we call, for reasons becoming clear below, α, d (d for
dendrimer), and β, according to the order of their appearance in
the DS frequency window upon cooling. At lowest temperatures
only the β-relaxation can be probed in the given frequency
window.
In order to extract time constants for α, d, and β-relaxation, we

take the estimate τi = 1/(2πνmaxi). The results for all generations

are shown in Figure 4. Close to Tg (measured by DSC, cf. Table
1) the segmental time constant τα(T) exhibits a strong
temperature dependence and reaches values of the order of
seconds. This is typical of the structural relaxation (α-process) in
supercooled liquids or polymer melts and justifies this assign-
ment. Moreover, the time constants fit well to the high-
temperature data compiled by the NMR techniques (cf. below)
included in Figure 4. Considering all data the temperature
dependence is describable by a Vogel−Fulcher−Tammann
(VFT) law. Because of quite similar Tg the different τα(T)
almost coincide around 200 K. In Table 1, Tg values obtained via
the condition Tg = T(τα = 100 s) are compared to those from
DSC experiments; very good agreement is found. We note that
also the dc conductivity σ(T) extracted from the original data

exhibits a temperature dependence similar to that of τα(T).
Usually, dc conduction in molecular liquids or polymers
originates from diffusion of ionic impurities. Thus, conductivity
is coupled to the viscosity of the host. Concerning the stretching
parameter of the α-relaxation, we find a value βCD = 0.3 when
applying a Cole−Davidson function.43

The other two relaxations (d and β) show an Arrhenius
temperature dependence of their time constants characteristic
for secondary processes in glasses (T < Tg) (cf. Figure 4). The d-
relaxation displays a time constant which is virtually independent
of the number of generations while that of the β-relaxation shows
some differences. Yet, no systematic trend can be identified. The
Arrhenius law for the d-process yields a rather high activation
energy EA/R = 8520 K (EA/RTg ≅ 42) and an attempt time τ∞ =
5.3 × 10−22 s, which is exceptionally low. Regarding the β-
process, EA and τ∞ are listed in Table 1. Its activation energy is
found in the range 18 < EA/RTg < 21. The corresponding τ∞
values range within 5 × 10−16−2 × 10−14 s, which is typical for β-
processes in glasses.42

Figure 3.Dielectric loss after subtracting the dc conductivity contribution of PPI dendrimer G4 (a) and G5 (b); red triangles: T > Tg in 3 K steps; black
circles: T < Tg (selected data); solid red lines: fits by a sum of two subspectra along eq 2 corresponding to d- and β-processes; dashed black lines: Cole−
Davidson fits of the α-relaxation.

Figure 4. Time constants of the PPI dendrimers for the different
relaxations identified by the different techniques. Structural relaxation
times τα: dielectric spectroscopy (DS, filled squares), FC 1H NMR
(open squares), solid-state 2HNMR (crosses). Time constants τd and τβ
of the d- and the β-process as provided by DS (stars and circles,
respectively); the color code for the generations is given in the legend.
Solid lines: VFT interpolations for τα(T); dashed lines: Arrhenius fits for
d- and β-process. Triangles: diffusion coefficient D(T)−1 referred to the
right ordinate.
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Below Tg a quantitative interpolation of the DS spectra is
possible using the distribution G(ln τ) defined in eq 2. The
asymmetry parameter b was kept constant. The corresponding
fits are included in Figure 3 and well reproduce the spectra. As
demonstrated in Figure 5, the parameter ab of the β-process

decreases essentially linearly upon cooling, which is the typical
trend of a β-process in glasses,42 while the parameter ab of the d-
process is temperature-independent for all generations. Thus,
this relaxation is atypical. In order to illustrate directly the
spectral changes of the secondary relaxations, we display in
Figure 13a rescaled spectra of G2, for which ε″(ω)/ε″d,max is
plotted versus ν/νd,max with ε″d,max and νd,max denoting the height
and frequency of the d-relaxation peak, respectively. Figure 13b
shows the analogous scaling for the β-process. It is apparent that
FTS applies for the d-process while the β-relaxation broadens
upon cooling, so FTS does not hold for the latter. Finally, the
inset of Figure 5 displays the temperature dependence of the
relative dielectric strength of the d-process. The ratio does not
change and is temperature independent below Tg while it tends
to increase above Tg.
3.2. Solid-State NMR. Figure 6 shows the 2H NMR spectra

for all the generations of PPI dendrimers beginning with G2 in
the left column to G5 in the right column in a temperature range
from 110 to 240 K. The temperature at which the spectra were

measured is given by the baseline of the spectra. At lowest
temperatures a typical Pake spectrum with a small asymmetry
parameter η≈ 0.15 is observed for all G (cf. Figure 7). At highest
temperatures a Lorentzian line shows up characteristic of fast
isotropic (liquid-like) reorientation. In between features of
spectra with an anisotropy parameter close to one are discovered,
indicating fast 180° two-site jumps of the ND2 groups according
to their symmetry. Concerning the transition to the liquid line
the spectra of different G essentially agree. Thus, the liquid
dynamics do not significantly change, in agreement with very
similar Tg values (cf. Table 1). Yet, some differences are observed
for the transition from the low-temperature Pake spectrum to the
motionally averaged spectrum of the fast amine group jumps.
In order to quantitatively describe the solid-state spectra (T ≤

180 K), a weighted superposition of two subspectra, namely a
Pake spectrum and a motionally averaged spectrum due to the
fast jumps of the amine group, is assumed. Examples of calculated
spectra are shown in Figure 7. An angle of 104° between the two
ND2 bond directions has to be assumed to reproduce the
experimental subspectrum with the motion-averaged anisotropy
parameter η ̅ ≈ 0.92. The large temperature range 120−180 K
(G2, G4, G5) (130−190 K for G3) in which the spectra must be
described by a superposition of the two subspectra indicates
dynamical heterogeneities regarding the two-site jump of the
ND2 group. In other words, the jump process, actually taking
place also below Tg, is determined by a broad distribution of
jump times. This behavior is typical of glasses that exhibit static
density fluctuations.44,45 Figure 7 shows such a “two-phase”
spectrum for G2 at 153.9 K and a fit with a superposition of a 50%
solid state spectrum and a 50% motionally averaged spectrum
due to the ND2 jumps. At higher temperatures (180−210 K for
G2, G4, G5; 190−220 K for G3) the solid-state line collapses to a
liquid-like Lorentzian line. The width Δν of the Lorentzian line
at high temperatures is taken to estimate the time constant of the
α-process (cf. Experimental Section). The extracted time
constants τα(T) fit well to those from FC 1H NMR as is
shown in Figure 4.

3.3. Field-Cycling 1H NMR. Figure 8a shows typical
relaxation rates R1(ω) = 1/T1(ω) for the PPI dendrimer G5 as
a function of frequency ν = ω/2π. For all temperatures one
recognizes pronounced dispersion, becoming stronger at low
temperatures where the local dynamics determines the
relaxation. At T = 393 K the measurements for G4 and G5
were extended to lower frequencies by applying a home-built
spectrometer which covers significantly lower frequencies (cf.
Experimental Section). As described, the relaxation rates are
transformed into the susceptibility representation via ω/T1 =
χ″(ω). Then master curves χNMR″ (ωτα) are constructed by
applying FTS which collapses different data sets collected at
several temperatures in the range 220−400 K.32 The resulting
master curves for G2−G5 are shown in Figure 8b and can be
characterized by three relaxation regimes. At frequencies around
the relaxation maximum (ωτα ≅ 1) the glass transition
determines the segmental relaxation. Here, by construction, all
master curves agree. In the regime ωτα ≪ 1 excess relaxation is
observed when compared to the susceptibility of a low-M liquid
(oligo-butadieneM = 460 g/mol,30 cf. Figure 8b) which does not
exhibit any polymer dynamics. The excess relaxation becomes
more pronounced with growing generation number G. It can be
specified by a power law ωε with an apparent exponent ∝ weakly
changing from 0.87 (G2) to 0.76 (G5). At even lower frequencies
the curves turn back to a behavior with an exponent very close to
one. This is typical for the terminal relaxation. The χNMR″ (ωτα)

Figure 5. Temperature dependence of the spectral shape parameter ab
(cf. eq 2) of the β-process; asymmetry parameter b is kept constant.
Inset: temperature dependence of the dielectric strength of the d-
process with respect to that of the sum of both β- and d-processes.

Figure 6. 2HNMR spectra for generation G2 to G5 (from left to right).
The baseline of each spectrum indicates the temperature at which the
spectrum was measured.
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curves show some similarity with the FC 1H NMR results for
unentangled (linear) polymers like polybutadiene (PB,M = 2000
g/mol,33 data included in Figure 8b), i.e., PB with M below the
entanglement molar mass Me. However, high-M (entangled)
PB33 displays a quite different behavior (PB, M = 87 kg/mol ≫
Me, data included in Figure 8b). In the latter case a second power-
law regime with an even lower exponent is recognized at lowest
frequencies, a finding which is typical for entanglement polymer
dynamics.33 This second power-law is absent for the dendrimers;
that is, they do not show entanglement effects, a fact well-known
from rheological studies.7 Upon constructing the master curves
χNMR″ (ωτα) the time constants τα = τα(T) are obtained and
included in Figure 4. They well extend the data sets from DS to
high temperatures and also agree perfectly with those from solid-
state 2H NMR.
As discussed in the Experimental Section, performing 1H

NMR always raises the question to what extent the spin−lattice
relaxation is actually determined by the intramolecular
reorientation-mediated relaxation and whether there is some
significant contribution from intermolecular relaxation reflecting
also translational diffusion. In order to address this question, we
compare in Figure 9 the FC 1H susceptibility master curves for
the fully and the partially deuterated dendrimer G5 (original
R1(ω) data is shown in Figure 8a). Indeed, differences are
observed, in particular at low frequencies; the susceptibility of the
end group deuterated dendrimer is reduced due to the
suppression of some of the intermolecular relaxation contribu-
tions. Thus, the relaxation rate of the fully protonated samples

contains a significant intermolecular contribution. This can be
exploited to estimate the diffusion coefficient D(T,M) for the
different generations along eq 6.
Figure 10 presents the relaxation rates measured at the highest

temperature T = 393 K as a function of the square root of angular
frequency. At the lowest frequencies a linear behavior is observed
from which D(M) is extracted when inserting the spin density ns
= 7.3 × 1028 m−3 in eq 6. The latter is calculated from the
molecular structure and mass density ρ ≅ 1 g cm−3 (from the
supplier) and only slightly depends on G. The inset of Figure 10
shows the change of D with M. We find D(M) ∝ M −1.2±0.2 (cf.

Figure 7. Examples of 2HNMR spectra (symmetrized) fitted to a “two-phase”model. (a) Spectrum of PPI dendrimer G3 atT = 120.8 K (black line) and
fit with a solid-state spectrum with η = 0.15 (red line). (b) Spectrum of G2 at T = 153.9 K (black line) and fit (red line) with a superposition of a 50%
solid-state and 50% motionally averaged spectrum (η ≅ 0.9).

Figure 8. (a) Spin−lattice relaxation rate R1(ν) of the fully protonated dendrimer G5 as a function of frequency ν, obtained by FC
1HNMR; in addition,

at T = 393 K data for the end group-deuterated dendrimer G5. (b) Normalized (by area) susceptibility master curves of the (fully prototonated) PPI
dendrimers of different generations; for comparisonmaster curves of polybutadiene forM = 460 g/mol(simple liquid, dotted blue line),M = 2000 g/mol
≈ Me (unentangled, dashed blue line), and for M = 87 000 g/mol (entangled, blue line) are shown.

Figure 9. Comparing the FC 1H NMR susceptibility master curve for
fully and end group deuterated dendrimer G5. Dashed line: simple
liquid (Debye) limit.
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inset). This result will be reconsidered in the Discussion. The
temperature dependence ofD closely follows, as expected, that of
the reciprocal segmental time 1/τα(T) (see Figure 4).

4. DISCUSSION

The dynamics of PPI dendrimers is investigated by several
techniques addressing segmental (“local”) and polymer specific
(“collective”) dynamics. Concerning the local dynamics, as
revealed by DS and 2HNMR, the dendrimers show features well-
known from amorphous polymers and molecular glass-
formers.42,46 The main (structural or α-) relaxation only weakly
changes with generation and follows a super-Arrhenius temper-
ature dependence. Correspondingly, Tg is virtually independent
ofG, in agreement with previous studies,8 but in contrast to other
dendritic macromolecules.47 The spectral width of the α-process
is broad but similar to polymers.48 Yet, some influence of
heterogeneous dynamics within the dendrimers reflecting
different mobilities in different “shells”, as documented by
NMR studies23−26 as well as theoretical work,5,16,17 may
additionally broaden the α-relaxation. This fact may also explain
the weak nonexponential relaxation observed in the present
study, yet most of the dynamic heterogeneities are averaged out
due to spin diffusion in the present case of 1H NMR. Secondary
relaxations occur, which appear to merge with the structural
relaxation above Tg. Below Tg their time constants follow an
Arrhenius law. One of the secondary relaxations (d-process)
displays time constants that virtually do not change withG and its
spectral shape does not change with temperature. In addition, the
attempt frequency is unphysically high. A temperature-
independent spectral shape of the relaxation is usually found

for cooperative processes like the α-process.46 Thus, we may
speculate whether the d-process is of cooperative nature and
reflects internal motion of the dendrimers which still can proceed
in the structurally frozen state, i.e., below Tg. As proven by 2H
NMR, the amine end groups undergo a two-site jump governed
by a broad distribution of jump times reflecting (static) density
fluctuations in the glass state.44,45 The latter process is not
probed by DS as the dipole moment does not change by a 180°
jump. We plan to run 2H NMR experiments on PPI dendrimers
deuterated only in the core. Then the amine group reorientation
will not obscure the 2H spectral features characteristic of main
and secondary relaxations.
The other secondary process displays features typical of a β-

process (also Johari−Goldstein process) in amorphous
systems.42 Although there are conflicting interpretations of its
nature,49 according to 2H NMR investigations in molecular
glasses (T < Tg) it is attributed to small-angle displacements of
the segments, and a wobbling-on-a-cone model reproduces the
salient NMR findings.50,51 Secondary processes in dendrimers
were also reported by other research groups.11,12 For example, a
quite similar relaxation scenario with an α-process and two
secondary relaxations virtually not changing with generation was
found in PAMAM dendrimers.12 Also, hyperbranched polymers
show a relaxation time map highly resembling that of the present
PPI dendrimers, in particular, also two secondary relaxations are
observed.52−54

The collective polymer dynamics, in addition to local
dynamics, are revealed by FC 1H NMR (T > Tg). Here we
note that the collective dynamics are not probed by dielectric
measurements since already the local segmental dynamics (α-
process) leads to a complete loss of the correlation as is the case

Figure 10. Spin−lattice rate R1(ω) at 393 K as a function of the square
root of angular frequency. The slope of the linear part at lowest
frequencies (dashed line) yields the diffusion coefficient D (cf. eq 6).
Inset: D as a function of M with corresponding power-law fit.

Figure 11. Dielectric spectra of PPI dendrimer G4 (a) and G5 (b) including the dc conductivity masking the structural relaxation (α-process).

Figure 12. Dielectric spectra of PPI dendrimer G3 (filled symbols) for
temperatures T = 217, 214, 211, 208, and 205 K. Lines: dc conductivity
contribution. Open symbols: susceptibility after subtracting the
conductivity contribution.
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of so-called type B polymers (Stockmayer notation55).
Frequency−temperature superposition works well and suscept-
ibility master curves χ″(ωτα) extending over 9 decades in
(reduced) frequency are obtained. Clear evidence of additional
dynamics much slower than the local dynamics is found. The
construction of the master curves provides τα(T) which
complements the data from dielectric spectroscopy and 2H
NMR; summarized, 12 decades in τα(T) are covered. Between
the local dynamics (α-process) and the terminal relaxation time
τt of the collective dynamics an intermediate relaxation regime
can be approximated by a power-law with an exponent around
0.8 depending weakly, yet systematically on G. When compared
with results for linear polymers, some resemblance with Rouse
dynamics is recognized. Entanglement can be excluded, a fact
well-known also from rheological studies.7 The FC 1H NMR
susceptibility also shows some features that were recently
reported by theory14 as well as simulations.5,13−17 Yet,
quantitative comparison is not possible since no fully realistic
models were considered. Qualitatively, local dynamics at high,
breathing modes at intermediate, and overall tumbling and
diffusion of the whole dendrimer molecule at low frequencies can
be distinguished in accordance with our experimental findings.
Exploiting the universal low-frequency dispersion law, the

diffusion coefficient D(M) is estimated from the low-frequency
relaxation rate R1(ω), a relation D(M) ∝ M−1.2±0.2 is found. Of
course, having only four generations at hand the change withM is
small, and the extracted exponent should be taken with caution.
Nevertheless, to our knowledge this is the first report ofD(M) for
bulk PPI dendrimers. We note that our approach extracting D
from the low-frequency dispersion of T1 was recently applied for
linear polymers41 as well as simple liquids,40 and good agreement
with field gradient NMR was found. Again, attempting to
understand the M dependence appears somewhat speculative as
only five generations of PPI generations can be synthesized.
Nevertheless, we want to propose some scaling arguments, the
details of which will be discussed in a forthcoming publication.
They are meant to provide a semiquantitative understanding. In
any case, the rheological behavior of dendrimers certainly
depends on details of their structure.
In first approximation, a dendrimer can be considered as a

viscoelastic ball with constant density and a radius scaling as R ∝

N1/3 with N denoting the number of segments. In a coordinate
system fixed within the dendrimer any segment has a well-
defined average position r ⃗ with respect to which thermal
fluctuations lead to a displacement u ⃗(r;⃗t). The vector u ⃗(r;⃗t)
satisfies a diffusion equation with adequate boundary conditions
and a diffusion coefficientDα being on the order of the segmental

diffusion coefficient. The thus derived (longest) relaxation time
of such breathing modes scales as τbreath ∝ R2/Dα ∝ N2/3 with τα
≪ τbreath ≪ τt. In order to estimate the longest relaxation
connected with translational diffusion, the friction coefficient of a
(large) dendrimer with its environment is assumed to be
proportional to the number f of surface segments for N going to
∞, i.e., f ∝ R2

∝ N2/3. Hence, self-diffusion scales as D ∝ (kBT/f)
∝ DαN

−2/3
∝ (b2/τα)N

−2/3, where b is a characteristic segment
length. Hence, the time during which the dendrimer diffuses over
a distance of about its linear size will scale as τtrans ∝ (R2/D) ∝
ταN

4/3. Regarding rotation the sameM scaling is expected within
this model. The spin−lattice relaxation at ωτα ≤ 1 is determined
by these three types of motions. It appears that the breathing
time τbreath cannot be resolved from the experimental
susceptibility (cf. Figure 9); only an intermediate power-law
regime is found. Yet, in any case, the low-frequency part of spin−
lattice relaxation is determined by translations and rotations of
the entire dendrimer molecule. Given this coarse-grained
description for D(M), the actually observed M dependence
D(M)∝M−1.2±0.2 can be explained by finite size effects due to the
rather small M range investigated. In addition, for these small
molar masses the extent of penetration is large, i.e., comparable
with the radius, which will increase the exponent of D(M).
Qualitatively, our mathematically simple model may be regarded
as continuous limit of the discrete viscoelastic models recently
proposed.5,13−17 Its advantage is that it takes into account
excluded volume interactions between the dendrimer’s arms.

5. CONCLUSIONS

We investigated bulk PPI dendrimers of generation (G) 2−5 by
dielectric spectroscopy (DS), solid-state 2H NMR, and field-
cycling (FC) 1H NMR relaxometry in a large temperature range
of 120−400 K, above and below the glass transition temperature
Tg = 200 K. Three relaxation processes are identified by DS; a
main (α-) relaxation (T > Tg) and two secondary processes (T <
Tg). The α-process exhibits a super-Arrhenius temperature
dependence typical of glass-forming liquids. The secondary
relaxations are governed by an Arrhenius temperature law. While
one secondary process exhibits features characteristic of a β-
process in amorphous systems, the other one is atypical and thus
possibly specific to dendrimers. Its spectral width does not vary
with temperature and exhibits time constants independent of G.
Regarding FC 1H NMR probing the dispersion of the spin−
lattice relaxation rate R1(ω), applying susceptibility representa-
tion, χ″(ω) ≡ ωR1(ω), and frequency−temperature super-
position a large effective frequency range is covered by the master
curve χ″(ωτα). Its construction yields τα(T); thereby, together

Figure 13. (a) Rescaled dielectric spectra of PPI dendrimer G2; dielectric permittivity ε″ is rescaled by maximum height ε″d,max and frequency ν by νd,max
of the d-relaxation peak in a temperature range T = 157−187 K. (b) Dielectric data are rescaled with respect to the β-relaxation peak in T = 118−151 K.
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with results from DS, 12 decades in τα(T) are covered. The
obtained master curve χ″(ωτα) provides evidence of dynamics
much slower than the local dynamics. An intermediate power-law
regime is identified which covers the frequency range between
the terminal relaxation and local relaxation. In accordance with
theoretical models and computer simulations reported in the
literature, we identify three processes: local reorientations at
high, breathing modes at intermediate, and overall tumbling of
the dendrimer at low frequencies. Estimating the diffusion
coefficient D(M) from the universal low-frequency dispersion
law of R1(ω), the D(M) ∝ M1.2±0.2 is found. Discussing some
scaling arguments, we derive D(M) ∝M−2/3. This deviation may
be connected to the relatively small range of molar masses that
can be investigated in the case of PPI dendrimers.
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ABSTRACT: Field-cycling and field-gradient 1H NMR experi-
ments were combined to reveal the segmental mean-square
displacement as a function of time for polydimethylsiloxane
(PDMS) and polybutadiene (PB). Together, more than 10
decades in time are covered, and all four power-law regimes of
the tube-reptation (TR) model are identified with exponents
rather close to the predicted ones. Characteristic polymer
properties like the tube diameter a0, the Kuhn length b, the
mean-square end-to-end distance ⟨R0

2⟩, the segmental correlation
time τs(T), the entanglement time τe(T), and the disengagement
time τd(T) are estimated from the measurements and compared to results from literature. Concerning τd(T), fair agreement is
found. In the case of τe, agreement with rheological data is achieved when the time constant is extracted from the minimum in
the shear modulus G″(ω). Concerning the TR predictions the molar mass (M) dependence of τd is essentially reproduced. Yet,
calculating τe from τd for PDMS yields agreement with experimental data while for PB it gets by 2 orders of magnitude too short.
In no case τe is correctly reproduced from τs(T). Segmental and shortest Rouse times appear to coincide for PB, while in the case
of PDMS the latter turns out to be longer by 1 decade.

1. INTRODUCTION

The tube-reptation (TR) model1 is a widely accepted approach
to describe the microscopic dynamics of entangled polymers
melts. The model predicts four different power-law regimes (I−
IV) for the time dependence of the segmental mean-square
displacement (msd) ⟨r2(t)⟩ ∝ tα (cf. inset of Figure 5b).
Molecular dynamics simulations2,3 and neutron scattering (NS)
experiments4 essentially confirmed parts of the model by
identifying the predicted crossover from ⟨r2(t)⟩ ∝ t0.5 to ⟨r2(t)⟩
∝ t0.25 for the transition from free Rouse (regime I) to
constrained Rouse dynamics (regime II). On long time scales
the crossover from ⟨r2(t)⟩ ∝ t0.5, characteristic for reptation
(regime III), to ⟨r2(t)⟩ ∝ t1, for the terminal regime of free
diffusion (regime IV), was observed by field gradient (FG)
NMR.5−8 However, the agreement was only qualitative since
numerical discrepancies with respect to the TR model occurred.
Another regime (regime 0) reflects local motions connected
with fluctuations for times on the order of the segmental
correlation time τs determined by structural relaxation of the
glass transition dynamics. Given the large range of relaxation
regimes, characterization by essentially a single experiment is
still missing.
Recently, field-cycling (FC) 1H NMR relaxometry9,10

confirmed the crossover between the power-law behavior of
regime I and II and has thus become a complementary method
to FG NMR and a competing one to NS. The method, which
measures the frequency dependence (dispersion) of the spin−
lattice relaxation rate R1 = 1/T1, gained momentum with the

availability of advanced FC relaxometers.9−16 Commercial
machines typically cover a frequency range of 10 kHz−20
MHz. Using a home-built relaxometer, where we applied active
earth and stray field compensation, we are able to achieve a
low-frequency limit of about 100 Hz (in 1H Larmor frequency
units).10,14−16 In the case of 1H NMR the relaxation originates
from fluctuations of the magnetic dipole−dipole interaction.
Here one has to distinguish contributions from spins belonging
to the same polymer molecule constituting the intramolecular
contribution, and spins from different molecules, representing
the intermolecular contribution.17 As a consequence, the total
relaxation rate is given by the sum of both contributions, i.e., R1

= R1
intra + R1

inter. In polymer melts R1
inter(ω) is dominated by

translational dynamics and hence reflects the relative msd of
segments from different macromolecules.17 Assuming sub-
diffusive power-law governed translational dynamics for times t
< τ1, where τ1 is the terminal relaxation time,1 it was
demonstrated that ⟨r2(t)⟩ can be estimated from the
intermolecular relaxation rate R1

inter(ω) by a simple analytical
expression (cf. Theoretical Background).9,10,18 Note that in the
framework of the TR theory the terminal relaxation time τ1 is
equivalent to the tube disengagement time τd. The
intermolecular relaxation rate was singled out from the total
relaxation by applying isotope dilution experiments for which
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protonated chains are successively diluted in a perdeuterated
polymer matrix.9,10,19−21

A more general relationship connecting ⟨r2(t)⟩ directly with
the Fourier transform of R1

inter(ω) was derived9,18 which does
not rely on any assumptions (cf. Theoretical Background). It is
the purpose of the present contribution to test this approach
and to compare it with results measured by FG 1H NMR which
provides absolute values of the segmental msd in the regime III
and IV. The method is a well-established technique to access
translational diffusion; ⟨r2(t)⟩ is usually probed in the
hydrodynamic limit (regime IV in the case of polymers).6

Yet, in order to access also shorter times t < τ1, where the
diffusion coefficient becomes time dependent, special exper-
imental efforts have to be undertaken. In particular, the so-
called dipolar correlation effect due to reorientational motion
has to be accounted for.6,22 We will demonstrate, for the first
time, that all four regimes of polymer diffusion are covered by
combining data of two NMR methods for polybutadiene (PB)
and polydimethylsiloxane (PDMS). Moreover, a comparison
with rheological data is carried out and discussed within the
frame of the TR model.

2. THEORETICAL BACKGROUND

2.1. Mean-Square Displacement Derived from 1H FC
NMR. Here we provide a derivation of the relationship between
the intermolecular spin−lattice relaxation time T1(ω) accessible
by FC 1H NMR and the segmental msd. Proton relaxation is
determined by fluctuations of the magnetic dipole−dipole
interaction, specifically, by the following correlation function:
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Ylp(ek⃗m) is component p of the spherical function of rank l, Ns is
the total number of spins in the system, rkm is the internuclear
distance, and ek⃗m(t) = rk⃗m(t)/rkm(t) is the corresponding unit
vector. In isotropic systems the correlation function becomes
independent of p, yielding A0(t) = A1(t) = A2(t) ≡ A(t).11,17

The correlation function includes intra- and intermolecular
contributions; i.e., it comprises correlations between spins
belonging to the same macromolecule and to spins from
different macromolecules, respectively. We note that we use the
nomenclature A(t) in the present context denoting the
reorientational correlation function while we usually chose
C(t).10,13,19

The relaxation rate R1 = T1
−1 is a linear combination of

Fourier transforms of A(t) evaluated at the frequencies ω and
2ω:17
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Note that this expression is only correct as long as the so-called
Redfield condition is satisfied, i.e.,T1(ω) ≫ 2πω−1. At very low
frequencies (ν = ω/2π < 400 Hz) this limit is approached for
high M in the present case. A violation of the Redfield
condition would go along with a pseudo-Gaussian magnet-
ization decay, which is actually not (yet) observed. Instead, all
magnetization curves encountered in the course of this work
are monoexponential. Furthermore, a common spin temper-
ature has to be established by fast flip-flop processes (spin
diffusion) which also applies well within the frequency window
ν = 200 Hz−30 MHz covered by our experiments.

Equation 2 can be rewritten
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The Fourier transform in eq 3 connects the total dipolar
correlation function, including intra- and intermolecular
contributions, with the dispersion of the relaxation rate:
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The total dipolar correlation function can be decomposed into
a sum of inter- and intramolecular parts:11,17

̂ = ̂ + ̂A t A t A t( ) ( ) ( )
inter intra

(5)

The intermolecular part reads
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For times t ≫ τs A
inter(t) assumes a universal form valid for all

models of polymer dynamics, explicitly

π
= ̃A t nW t( )

4

9
(0; )s

inter

(7)

where ns is the proton spin density and W̃(r′⃗,r;⃗t) = W̃(r′⃗−r;⃗t)
the propagator of relative displacements of two spins from
different macromolecules, i.e., the probability density for two
spins separated by a vector r ⃗ initially and by a vector r′⃗at later
time t. For times t ≫ τs the Ainter(t) is proportional to the
probability density to recover the initial spatial separation at
time t, i.e., the vector r ⃗ = r′⃗.18 Next, the propagator in eq 7 can
be approximated by a Gaussian distribution:23
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Here ⟨r ̃2(t)⟩ = ⟨((ri⃗(t) − ri⃗(0)) − (rj⃗(t) − rj⃗(0)))
2⟩ is the

relative msd of two arbitrary spins (i, j) located on different
macromolecules. Combining eqs 7 and 8 and setting r ⃗ = 0
yields

π
=

⟨ ̃ ⟩
A t

n

r t
( )

2

3 ( ( ) )

sinter
2 1/2 3

(9)

Thus, for times t ≫ τs one is left with two parameters
governing the intermolecular correlation function: the spin
density ns and the relative msd ⟨r ̃2(t)⟩. In this case ⟨r ̃2(t)⟩1/2 ≫
σ* holds with σ* ∝ (b2ρs)

−1 being a microscopic quantity
characterizing the spatial separation of nearest segments; b is
the Kuhn length, and ρs is the concentration of Kuhn segments.
Otherwise, if the time scale approaches the segmental
correlation time t ≅ τs, the relative msd becomes of the order
of the segmental packaging length, i.e., ⟨r ̃2(t)⟩1/2 ≅ σ*, and eq 9
needs to be corrected:

π σ
=

* + ⟨ ̃ ⟩
A t

n

r t
( )

2

3 ( ( ) )

sinter
2 1/2 3

(10)

We emphasize that the Gaussian approximation (8) does not
necessarily assume that diffusion has Brownian character, i.e.,
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⟨r ̃2(t)⟩ ∝ t, but also applies for subdiffusive motion. By
substituting eq 9 into eq 6, a connection between the relative
msd and the relaxation rate (1/(T1

inter(ω))) can be established:
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In polymer melts translational motion is subdiffusive on time
scales τs ≤ t ≤ τ1 and the msd scales as ⟨r2(t)⟩ ∝ tα, where the
exponent α ∈ [0.25, 1], depending on the regime of the
underlying polymer dynamics (α = 1 reflects isotropic
diffusion). Exploiting this power-law character of the msd, the
left-hand side of eq 11 can be rewritten
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Note that the α-dependent factor (which is denoted as δ from
now on) in eq 12 changes rather slowly for α ∈ [0.25, 1], thus
varying within 3.6 ≤ δ := 1 +21+(3α/2) ≤ 6.6. Finally, to convert
the actually measured relative msd ⟨r ̃2(t)⟩ into the absolute
displacement ⟨r2(t)⟩, one assumes that motion of chains is
essentially independent of each other. Then the relative
segmental msd can be estimated as twice as large as the
absolute msd yielding the final result
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This expression will be applied in the present study to derive
the msd.
For a constant α < (2/3) eq 13 is equivalent to
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which was originally derived in ref 9 with
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Assuming ⟨r2(t)⟩ ∝ tα, eq 14 directly leads to

ω ω
∝

α−T
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1
inter 3/2 1

(16)

For calculating the msd as a function of time, R1
inter(ω) is

required over a wide range of frequencies. The long-time
diffusion coefficient D, however, can be obtained from the low-
frequency limit of the total relaxation dispersion R1(ω).

24,25

This was recently demonstrated for simple liquids26 as well as

for polymers.27 The low-frequency dispersion of the rate R1(ω)
is always dominated by the intermolecular relaxation
contribution mediated by translational motion, while at higher
frequencies both inter- and intramolecular contributions are
relevant. In a liquid, self-diffusion at long times is Fickian,
yielding a power-law Ainter(t) ∝ t−3/2. Therefore, the total
relaxation rates (including intra- and intermolecular contribu-
tions) can be expanded at low frequencies, providing a universal
dispersion law:24−27
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The intramolecular (reorientational) contribution is included in
R1(0) as the rotational contribution is frequency independent at
low frequencies (ωτrot ≪ 1). The corresponding spectral
density is constant here. Thus, at sufficiently high temperatures
R1(ω) is indeed expected to follow eq 17 at low frequencies.
With given spin density27 ns (cf. Table 1), the diffusion
coefficient D can be directly extracted from R1(ω) measured at
different temperatures. Important to note, this approach yields
absolute D(T,M) values without resorting to a master curve
construction.

2.2. Mean-Square Displacement Derived from FG
NMR. A stimulated echo FG NMR experiment measures an
autocorrelation function, SDif(τ,t), which is essentially equiv-
alent to the intermediate incoherent scattering function in
neutron scattering.28 The evolution time τ is proportional to
the size of the scattering vector Q = τγg (gyromagnetic ratio γ,
magnetic field gradient g), and the mixing time t is the dynamic
time variable. Since FG NMR always deals with the
hydrodynamic regime (Q−1 small compared to intermolecular
distances) for isotropic diffusion this correlation function is in
the limit t ≫ τ given by6,29

τ γ τ= −S t g D t t( , ) exp[ ( ) ]Dif
2 2 2

(18)

The time-dependent diffusion coefficient D(t) accounts for
cases where a possibly sublinear time dependence of the mean-
square displacement is mapped onto D(t) via

⟨ ⟩ =r t D t t( ) 6 ( )2
(19)

By measuring in two different gradients, G and g, at the same
Larmor frequency, the same evolution times τ and mixing times
t, it is possible to divide the stimulated echo signals, in the
following equations named SG and Sg, by each other to
eliminate all other contributions to the time-dependent NMR
signal:

τ
τ

τ
γ τ≡ = − −S t

S t

S t
G g D t t( , )

( , )

( , )
exp[ ( ) ( ) ]G

g

2 2 2 2

(20)

For the case of anomalous diffusion with a Gaussian propagator
(eq 8) the corresponding expression is more involved but can,
for arbitrary values of τ and t, be derived from eq 29 of ref 30:
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For t ≫ τ, the right-hand side can be expanded and
approximated leading to
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For the case of normal diffusion, α = 1, and in the limit t ≫ τ
this expression is exactly equal to eq 20. If the condition t ≫ τ
does not hold, eq 22 will lead to an equation quite similar to eq
20 but t being replaced by t + 2/3τ.

31

Note also that the initial decay of the expression (eq 21) is
the same for any model of anomalous diffusion.11 Obviously,
when deriving D(t) from a full experimental decay curve
according to eq 21, some ambiguity prevails due to the lacking
knowledge of α. This ambiguity is subsequently transferred, via
eq 19, to ⟨r2(t)⟩. As pointed out in the Introduction in the
relevant regimes III and IV, 1/2 < α < 1 is expected. This point
and its implications will be discussed in more detail further
below.

3. EXPERIMENTAL SECTION

3.1. Polymers. The polymers investigated are polybutadiene (PB)
with molar masses Mw = M = 232k and M = 196k and
polydimethylsiloxane (PDMS) with M = 0.9k, M = 0.6k, M = 22k,
and M = 232k. The entanglement molar masses are Me = 1.9k for PB
andMe = 12k for PDMS.32 All polymers were purchased from Polymer
Standards Service (Mainz, Germany) and used without further
purification. They were filled into standard 5 mm NMR tubes and
kept under vacuum for 48 h to remove paramagnetic oxygen gas.
3.2. Extraction of the Intermolecular Relaxation Rate from

FC NMR. The 1H NMR spin-relaxation data analyzed in this paper
were measured over the temperature interval of 200−400 K using two
different electronic FC relaxometers: a commercial one (Stelar
Spinmaster FFC 2000) at Bayreuth University covering the 1H
Larmor frequency range between v = ω/2π of 10 kHz and 20 MHz
and a home-built one at Darmstadt University reaching further down
to about 100 Hz and up to 30 MHz. For further technical details of the
Darmstadt relaxometer we refer to previous publications.14−16

The intermolecular relaxation rate of the measured set of R1
inter(ω)

was determined in our previous publications in terms of a susceptibility
master curve χinter″ (ωτs),

10,12,19 with the susceptibility representation
given by χ″(ω) ≡ ωR1(ω). In order to isolate the inter part from the
total relaxation, protonated PB was successively diluted in deuterated
PB which suppresses the intermolecular relaxation, since the dipolar
interaction between protons and deuterons can be neglected.9

Extrapolating to c → 0 consequently yields R1
intra(ω), and the

intermolecular relaxation rate follows from subtraction R1
inter(ω) =

R1
total(ω) − R1

intra(ω). For PDMS we showed that for ωτs ≪ 1 the total
relaxation is dominated by the intermolecular relaxation.10 Hence, the
total relaxation can be directly used in eq 13. Next, as in the case of
many rheological experiments32 frequency−temperature superposition
(FTS) is exploited to cover an effectively larger frequency window
compared to a single experiment.33 As the segmental relaxation (α-
process) is also covered by our NMR experiments the susceptibility
master curve is scaled according to χ″(ωτs). Using τs(T) values33

obtained from the construction of the master curves, the rate
R1
inter(ω,T) for any desired temperature T can be calculated via

ω
χ ωτ

ωτ
τ=

″
R T T( , )

( )
( )

s

s
s1

inter inter

(23)

Transforming the relaxation data into the msd a cosine transformation
of R1

inter(ω) has to be performed according to eq 13. For that purpose a
Filon-type algorithm34 was applied.

3.3. Field-Gradient Experiments. All FG measurements were
performed in a (static) superconducting gradient magnet at a 1H
Larmor frequency of 99.5 MHz. The magnet provides two different
gradients at this frequency: A large one of G = 168(T/m) and a smaller
one of g = 60(T/m).35 The magnet resides on an air cushion, so that
building and ground vibrations are strongly damped. Thereby, motion
of the sample relative to the magnet is effectively avoided which
otherwise could easily be misinterpreted in term of molecular diffusion
inside the sample.36 The position of the probe head in the magnet can
be adjusted by a stepper motor. In this way, measurements in the
different gradients can be performed directly after each other without
removing the sample from the cryostat nor changing tuning or
matching of the probe. The temperature is stabilized in a cryostat,
where the temperature drift is less than 0.1 K with an absolute
uncertainty of about 1 K. A 2 kW amplifier was used in order to get
short (π/2) pulses of 0.4 μs length. A stimulated echo pulse sequence
(90°−τ−90°−t−90°−τ−) was used to measure the time-dependent
diffusion coefficient D(t). The stimulated echo signal SStE(τ,t) with the
initial amplitude S0 may be decomposed along

τ τ τ τ=S t S S S t S t S t( , ) ( ) ( ) ( , ) ( , )StE 0 SSR SLR Dip Dif (24)

where SSSR(τ) and SSLR(τ,t) describe the spin−spin and the spin−
lattice relaxation, respectively, SDip(τ,t) denotes the dipolar correlation,
and SDif(τ,t) is the diffusion-induced decay.6,22,29 The only factor
depending on the magnetic field gradient is the diffusion factor
SDif(τ,t). Therefore, when dividing experimental data SStE(τ,t) gained at
a large gradient G by those gained in a small gradient g, we are left with
S(τ,t) given by eqs 21 and 22.

Figure 1 exemplarily shows data taken at 292 K of the two
normalized decay curves SG(τ,t = 51 ms) and Sg(τ,t = 51 ms),

Figure 1. Stimulated echo amplitude of PDMS 232k at T = 292 K in
two different gradients G = 168 T m−1 and g = 60 T m−1 at a 1H
Larmor frequency of 99.5 MHz and a fixed mixing time t = 51 ms. In
addition, the ratio of both curves is shown. The fits of S(τ) = (SG(τ)/
Sg(τ))with eq 22 for α = 0.5 and α = 1 are almost indistinguishable
(drawn curves). Inset: same experiment using t = 4.5 ms.
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measured in the two gradients G and g, respectively. Also, the ratio
S(τ,51 ms) = (SG(τ,51 ms)/Sg(τ,51 ms)) is plotted.
Note that the condition t ≫ τ is fulfilled for this example as S

reaches almost zero at τ ≈ 5 ms ≪ t = 51 ms. If this condition was not
fulfilled, the diffusion time t would not be defined accurately since the
molecules significantly diffuse during the evolution time τ. In order to
accounting for the condition t ≫ τ, we decided to evaluate the data
only for evolution times τ < 0.5t. In this limiting case, the “true”
diffusion time may still be approximated by t as a lower limit. An upper
limit for the diffusion time can be approximated by t + τmax. Here τmax

is taken either to be the longest evolution time used for the fit or the
half decay time of the magnetization, depending on which one is
shorter. The inset of Figure 1 shows the diffusion decay at the shortest
chosen diffusion time, t = 4.5 ms, of PDMS 232k at T = 292 K.
According to the above condition only the beginning of the decay
curve is shown and fitted. From these fits time-dependent (apparent)
diffusion coefficients D(t) are gained which will be discussed in section
4.2.

4. RESULTS

4.1. Susceptibility Master Curves from FC NMR. Figure
2 displays the susceptibility master curves of PB (a) and PDMS
(b), both extending over about 9 decades in frequency, as
obtained from FC 1H NMR relaxometry comprising relaxation
data in the temperature range of around 200−400 K (cf. ref
10). In the case of PB both the total relaxation data χ″(ωτs) and
the pure intermolecular contributions χinter″ (ωτs) are shown, the

latter being extracted previously by isotope dilution experi-
ments.10,19 The susceptibility shows three relaxation regimes
denoted by 0, I, and II. Regime 0 reflects the (fast) segmental
dynamics and manifests itself in a relaxation peak at ωτs ≅ 1.
For ωτs ≪ 1 regime I features a M-independent power-law
regime reflecting Rouse dynamics while regime II at lowest
frequencies (ωτs ≪ 10−5 in PB and ωτs ≪ 2 × 10−6 in PDMS)
is characteristic for entanglement dynamics and has a
significantly smaller and M-dependent power-law expo-
nent.10,19,37 We note that the crossover from regime 0 to I,
i.e. the beginning of the Rouse regime, is somewhat difficult to
define. It works better for the transition between I and II
occurring at ωτe ≈ 1 (see below). As far as PDMS is concerned,
it was shown that the relaxation is dominated by intermolecular
relaxation over the whole frequency range ωτs ≪ 1,10 implying
χ″ ≅ χinter″ . Another peculiarity is that for PDMS the power-law
regime I first appears at frequencies (ωτs < 10−3) of 1 decade
smaller than for PB (ωτs < 10−2). Actually, some kind of
shoulder is recognized. We will return to this point below.

4.2. Time-Dependent Diffusion Coefficients Gained
from FG NMR. Let us proceed with the results from FG NMR.
For all temperatures the diffusion coefficients depicted in
Figure 3 for both PDMS 232k and PB 196k clearly show a time
dependence at short times. One subtlety has to be taken care of
while fits with eq 22 lead to decay curves which cannot

Figure 2. (a) Susceptibility master curves of polybutadiene (PB) with two different molar masses as obtained from field-cycling 1H NMR
relaxometry. Both the intermolecular, χinter″ (ωτs), and total susceptibilities, χ″(ωτs), are shown. Different relaxation regimes (0, I, II) and molar
masses (M) are indicated. (b) Susceptibility master curves χ″ ≅ χinter″ of PDMS with different M.

Figure 3. Time-dependent diffusion coefficients of PDMS 232k (a) and of PB 196k (b) as deduced from fits of eq 22 to the measured decay curves
S(τ) as exemplified in Figure 1. For small diffusion times the resulting D(t) depends on the choice of α. The solid lines show fits for highest
temperatures and α = 0.5 used in eq 22 (see text) with a power-law decay (resulting exponents are indicated) at short and a constant regime D at
long times. The dashed lines illustrate a power law D(t) ∝ t−0.5 (regime III) predicted by the TR model.
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distinguish between α = 0.5 (TR regime III) and α = 1 (TR
regime IV); for small diffusion times the resulting apparent
diffusion coefficients D(t) do differ and for α = 0.5 being above
those for α = 1 by up to a factor of 2 (Figure 3).
The short-time regime in both polymers can be acceptably

described by a power law D(t) ∝ t−0.5±0.1 which is expected for
regime III of the TR model (cf. the inset of Figure 5b). At long
times the diffusion coefficient becomes time-independent when
the terminal relaxation of free diffusion (regime IV) is finally
reached. For highest temperatures we exemplarily included fit
curves for both polymers in Figure 3 consisting of an initial
power-law decay regime and a constant long time regime D(t→
∞) = D the transition occurring at the terminal relaxation time
τ1. The resulting D and τ1 are included in Table 1. Although the
transition between regimes III and IV is clearly discernible, the
experimental errors are significant. We emphasize again the
experimental difficulties of reaching such low diffusion
coefficients by FG NMR, especially in the case of PB (cf.
Experimental Section). At this point a comment on the validity
range of FG measuring time-dependent diffusion coefficients is
appropriate: A competing process which may eventually feign
segmental diffusion or at least contribute to D(t) is spin
diffusion. The validity criterion chosen by us requires the long
time diffusion coefficient to scale with the inverse segmental
relaxation time, i.e., D ∝ τs

−1. If we do so, it turns out that data

only at those temperatures shown in Figure 3 can be trusted; at
lower temperatures spin diffusion gradually takes over.
As stated, in regime IV the evaluated D(t) does not depend

on the choice of the parameter α in eq 22, but it does in regime
III. Here, α = 0.5 is expected from the TR model for which we
will base the evaluation of the msd on those D(t) data obtained
with α = 0.5. According to eq 19 the time-dependent msd, to be
discussed later, can now be directly evaluated from these D(t).

4.3. Mean-Square Displacements from Combination
of FC and FG Data. In Figure 4 the msd of both PDMS 232k
(a) and PB 196k (b) is displayed for several temperatures as
obtained from the application of eq 13 (FC NMR data) and via
⟨r2(t)⟩ = 6D(t)t (FG NMR data). For the FC NMR data we
employed α = 3/8 being the average of α = 0.5 and α = 0.25
predicted for the regimes I and II of the TR theory,
respectively, which are usually covered by the FC method for
high M. We once again emphasize that the influence of the
parameter α is marginal here. About 10 decades in diffusion
time is covered, and the data obtained from FC NMR agree
well with the absolute values derived from FG NMR. Several
power-law regimes are identified in both polymers and will be
discussed below. We note that at shortest times, say, at t < 10−9

s, eq 13 does no longer apply as the spatial extension of the
monomer unit is not taken into account. Thus, our analysis
holds for times t ≫ τs.

Table 1. Collected Properties of PB and PDMS at 390 Ka

property PDMS 232k (T = 389 K) PB 196k (T = 391 K)

τ1 [ms] 20 43

D [m2 s−1] 1.3 × 10−14 1.8 × 10−15

⟨r2(τ1)⟩ [nm
2] 1500 450

⟨R0
2⟩ [nm2] 110040 170040

experimental (present work) from literature experimental (present work) from literature

a0 [nm] 4.841 7.9,40 7.242 3.2 3.2,43 4.440

b [nm] 1.6 1.332 0.5 1.032

M0 = [g mol−1] 38132 11332

Me = [g mol−1] 12k32 1.9k32

Ne = M/Me 31 17

N = M/M0 609 1735

Tg [K] 15044 180,45 177,19 17546

ns [10
28 m−3] 4.7027 5.7527

aTerminal relaxation time τ1 and D = D(t→∞) determined from Figure 3; the msd ⟨r2(τ1)⟩ and the mean-square end-to-end distance ⟨R0
2⟩ taken

from ref 40. Estimates for the tube diameter a0 and the Kuhn length b and in comparison to values given in the literature (as indicated); for their
uncertainties see text. Other parameters used were taken from the literature: the Kuhn molar mass M0, the entanglement molar mass Me, the ratios
Ne = M/Me and N = M/M0, the glass transition temperature Tg, and the spin density ns.

Figure 4. (a) Segmental mean-square displacements obtained from field-cycling (FC) and field-gradient (FG) 1H NMR for PDMS 232k at
temperatures as indicated. (b) Corresponding results for PB 196k.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b00855
Macromolecules 2015, 48, 4491−4502

4496

http://dx.doi.org/10.1021/acs.macromol.5b00855


Figure 5 shows the msd of PDMS at 292 K (a) and PB (b) at
391 K and for different molar masses. First, we discuss the case
of highest M, PDMS 232k and PB 196k, both being well above
Me. Starting with the FC NMR data at short times, the msd of
both polymers follows a power-law which matches the
prediction of (free) Rouse dynamics with αR = 0.5 ± 0.1 well
(regime I). At succeeding times, in regime II a power-law
exponent of αII = 0.3 ± 0.1 is observed in PDMS 232k while αII
= 0.2 ± 0.1 is found in PB 196k. Both values are consistent with
0.25 of the constraint Rouse regime (II) predicted by the TR
model. On even longer times, a further power-law with αIII =
0.5 ± 0.1 for both PDMS 232k and PB 196k appears in the FG
NMR data. This relaxation regime is quite limited in time and
actually difficult to be unambiguously identified. However, it
can be well estimated from the diffusion data shown in Figure
3. Finally, at longest times the free diffusion limit (regime IV)
with an exponent αIV = 1.0 ± 0.1 is reached in both polymers.
Thus, for the first time all four power-law regimes of the TR
model are discovered in two high-M polymers by combining
two NMR techniques, and the power-laws are close to those
predicted by the TR model.
When going to lower M the regimes II and III, which reflect

the entanglement dynamics, shrink and the free diffusion
regime (IV) directly succeeds the Rouse regime (I). PDMS 22k
and PDMS 6k, for instance, are close to Me = 12k. While the
Rouse regime (I) is still fully established with αR = 0.5 ± 0.1 in
the FC NMR data, regime II disappears in both cases, and
already the FC NMR measurements reach the regime of
terminal relaxation, i.e., ⟨r2(t≫τ1)⟩ ∝ t1. Regime III is
completely absent in the FG NMR data of PDMS 22k.
Although FC NMR and FG NMR data show virtually the same
exponent in the terminal regime (IV), they do not fully agree
on an absolute scale provided by the FG data; a discrepancy of
a factor 3−4 prevails. We will discuss possible reasons for this
mismatch below. For PDMS 0.9k even the Rouse regime is
missing. In this case essentially no polymer dynamics is
discovered as this oligomer actually behaves like a simple liquid.
For PB just one further molar mass with M = 23k is studied by
FC NMR as an isotope dilution experiment is necessary here in
order to isolate the intramolecular relaxation.9,10,19−21 Although
regime II is significantly less pronounced, it can still be
identified. Regime III appears to be absent in the corresponding
FG NMR data. While for M ≫ Me only the combination of FG

and FC NMR provides the full msd, FC NMR already suffices
to probe the translational dynamics for M ≤ Me.
In Figure 6, we compare the msd for PB 196k and PDMS

232k at virtually the same temperature (T ≅ 390 K) in a

common presentation. From the intersection points of the
power-law regimes I and II we extract rough estimates of the
tube diameter1 a0 = ⟨r2(t=τe)⟩

1/2 and the entanglement time τe.
We read from the plot a0 = 4.8 nm for PDMS and a0 = 3.2 nm
for PB (cf. also Table 1). A comparison with literature data
follows in the Discussion. Moreover, the Kuhn length b can be
estimated via1 ⟨r2(τ1)⟩ = Nb2, i.e., from the intersection points
between regimes III and IV. In order to get b the number of
Kuhn segments N = M/M0 with M0 being the Kuhn segment
mass has to be known. We tentatively adopt M0 from the
literature32 (cf. Table 1). The extracted proxies are b = 1.6 nm
for PDMS and b = 0.5 nm for PB. The uncertainties of both a0

2

and b2, as read from Figure 6, are estimated to be of about a
factor of 2.
Recently,27 in the case of PDMS absolute (long-time)

diffusivities D(M) were determined by applying eq 17; i.e., the

Figure 5. Segmental mean-square displacement of PDMS (a) and PB (b) obtained from FC and FG NMR; data for a single temperature are shown.
In both, data for short-chain systems are included. Dashed lines represent corresponding power-law regimes. The inset in (b) illustrates the
prediction of the TR theory.

Figure 6. Segmental mean-square displacement (msd) of polydime-
thylsiloxane (PDMS) and polybutadiene (PB) for a similar temper-
ature. Entanglement time τe and disengagement time τd = τ1 referred
to the intersection points of the power-law transitions between
regimes I to II and III to IV, respectively, are indicated. The msd
evaluated at τe and τ1 provide an estimate of the tube diameter a0 and
segment length b, respectively (cf. Table 1).
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total relaxation rate was analyzed in the low-frequency limit for
various temperatures without applying FTS. In Figure 7 we

compare those data with the ones from the present FG NMR
work and with literature data6 at about 292 K. All three data
sets match very well. While FG NMR covers the entanglement
regime M > Me and a power-law with the exponent α = 2.3 ±

0.2 is found in agreement with literature data,5,6,38,39 FC NMR
cannot cover high M with the present low-frequency limit of
some 100 Hz. In any case, the crossover from Rouse to
entanglement dynamics can be well identified. We emphasize
that the low-M D values are not corrected for the M-dependent
monomeric friction coefficient as it was done before.27 In the
case of PB we measured only at a single M value and literature
data at this temperature is not available.

5. DISCUSSION

The complementary frequency/time windows of FC 1H NMR
and static FG 1H NMR experiments were combined in order to
measure the segmental msd in two different polymers, namely
PDMS and PB, over almost 10 decades. While the msd can be
easily obtained from the (time dependent) diffusion coefficient
measured by FG NMR, it is calculated from FC 1H NMR
intermolecular relaxation data involving Fourier transformation
(eq 13). In general, the intermolecular contribution must be
isolated from the total 1H spin−lattice relaxation data by
applying an isotope dilution experiment.9,10,19−21 Only in
favorable cases like PDMS the total 1H relaxation at ωτs ≪ 1 is
dominated by the intermolecular relaxation since the fast
methyl group rotation reduces the intramolecular relaxation.
Thus, the data can directly be used for obtaining the msd.10 As
the time windows of FC and FG NMR do not overlap, the
experiments need to be performed at different temperatures;
thus, a direct comparison of the msd relies in the construction
of the master curve χinter″ (ωτs) which assumes the validity of
FTS. With τs(T) known from the master curve construction,
χinter″ (ω) can be calculated for any temperature. As will be
discussed below, there are strong indications that FTS indeed
applies well for both polymers.
At time scales longer than the segmental relaxation time (t≫

τs) four different relaxation regimes, each showing power-law

behavior, can be identified for the msd in the high-M limit and
compared to the TR model.1 While regimes I and II are
covered by FC NMR, FG NMR traces the transition from
regime III to IV (Figure 5). The four regimes can be associated
with those from the TR model, namely that of the (free) Rouse
(I), the constrained Rouse (II), the reptation (III), and finally
the free diffusion (IV) regime at longest times. All found
power-law exponents agree well, within ±0.1, with the
predicted ones. On an absolute scale, it appears that there is
some mismatch between the msd measured by FC and FG
NMR, in particular for M = 22k for both PDMS as well as PB
(cf. Figure 5). Field-gradient NMR yields absolute msd values
within an uncertainty of a factor of 2 at most which is due to
the lacking knowledge of the power law exponent α. The
corresponding msd data of FC 1H NMR relies on several
assumptions: (i) Adopting τs(T) from master curves assumes
FTS to hold. Any correction will shift the FC 1H NMR msd
along the time axis (cf. Figure 5). (ii) The choice of the
numerical factor δ in eq 13 weakly influences the value of the
msd. It is actually time dependent due to the different diffusion
regimes covered. (iii) The assumed relation between relative
and absolute msd may not strictly hold (cf. Theoretical
Background). In general, it may vary according to ⟨r2(t)⟩ = (1/
q)⟨r ̃2(τ1)⟩ with 0 ≤ q ≤ 2, the limits representing the cases of
rigidly bonded segments and completely uncorrelated segmen-
tal motion, respectively. However, when regime IV is reached, q
= 2, precisely. (iv) The Gaussian approximation is assumed for
deriving the connection between the msd and R1(ω) (eq 8). If
it does not fully apply an additional numerical factor would
appear. (v) Fast dynamics (β-process, methyl group rotation in
PDMS, etc.) also may slightly affect the results. Given these
various sources of possible corrections of the FC 1H NMR data,
we think the present results provide a fair agreement between
the two NMR methods. So, within these limitations, for the first
time, all four diffusion regimes of the msd are covered and
confirm the TR model. We note that the power-law regimes I
and II were also covered by NS experiments.4 Here, FC NMR
and NS are competing techniques, yet according to our
knowledge no msd data from NS addressing the regime I to II
transition are available for PDMS and PB.
The TR model also provides predictions47 regarding the

segmental reorientation correlation function Al(t) of rank l.
According to the so-called return-to-origin hypothesis,47,48 the
model predicts an inverse proportionality between Al(t) and
⟨r2(t)⟩ in regimes II and III independent of rank l, specifically,
Al(t) ∝ ⟨r2(t)⟩−1. This relation was tested by FC 1H and 2H
NMR and found to be violated.10 However, in a recent
publication by Furtado et al. applying also isotope dilution and
double quantum (DQ) NMR together with MD simulations
the TR predictions were confirmed essentially.37 Yet, in a
succeeding publication19 we reanalyzed our results together
with new measurements. We critically assessed the findings and
once again reproduced our previous results. For example, in the
case of PB the exponent of A2(t) in regime II turns out to be αII

≈ 0.44, which is in strong disagreement with the prediction
0.25 given by the TR model, although finite chain length effects
were taken into account. We emphasize that A2(t) can only be
obtained from isolating the intramolecular 1H relaxation
contribution or, more directly, by FC 2H NMR. Although the
discrepancy among the results from DQ and FC NMR still
needs to be settled, given our FC NMR results, it appears that
the inverse proportionality between A2(t) (probing reorienta-
tion) and the msd (probing translation) does not apply.

Figure 7. Molar mass dependence of the (long-time) diffusion
coefficient D of PDMS at 292 K obtained from FG NMR (red disks).
For comparison, values of Meier et al.,27 derived from FC 1H NMR
relaxometry (black crosses) and from Pahl et al.,6 also obtained by FG
NMR (blue squares), yet, at a slightly higher temperature of 305 K, are
included. Two power-law regimes are indicated while the crossover
molecular mass agrees well with the entanglement molar mass Me ≈

12k (cf. Table 1 and refs 32 and 40).
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Possibly, the relation depends on the microscopic details of the
polymer chain, i.e., the chemical structure of the monomer.
At 390 K the tube diameter is obtained from the condition a0

= ⟨r2(τe)⟩
1/2, and τe is defined as the crossover time between the

regimes I and II. In the case of PDMS the deduced diameter, a0
= 4.8 nm, is smaller than reported from rheological experiments
which gave a0 = 7.9 nm40 while a0 = 7.2 nm was found in NS
experiments (cf. Table 1 and Figure 6).42 We note that in the
case of PDMS our value differs somewhat from the one
reported previously.10,41 Regarding PB, our value of a0 = 3.2 nm
is in good accordance with reference values derived from
rheological experiments (cf. Table 1).40,43 It appears, however,
that a0 slightly depends on temperature.40,49

The FG NMR data also allow estimating the Kuhn lengths b
from the transition time between regime III and IV using
⟨r2(τ1)⟩ = (M/M0)b

2.1 The value b = 1.6 nm obtained for
PDMS agrees reasonably well with literature data (cf. Table 1).
In PB, for which b = 0.5 nm is found, there is a deviation by a
factor of 2. Of course, M0 and b are not independent of each
other, and therefore only a proxy for b can be given. On the
other hand, within the TR model,1,50 at τ1 the msd is expected
to be equal to the mean-square end-to-end distance ⟨R0

2⟩, i.e.,
⟨R0

2⟩ ≈ ⟨R2(τ1)⟩. It can be determined by small-angle neutron
scattering (SANS) and compared to our results (cf. Table 1).
Given the molar masses of PB and PDMS investigated in this
work the SANS results reported in ref 40 provide ⟨R0

2⟩ = 1100
nm2 for PDMS and ⟨R0

2⟩ = 1700 nm2 for PB, while we obtain
⟨R2(τ1)⟩ = 1500 nm2 and ⟨R2(τ1)⟩ = 450 nm2. Again, the
discrepancy is much less for PDMS than for PB. Here one has
to keep in mind that data from experiments characterizing the
dynamics (FG NMR) and the structure (SANS) may not
necessarily agree.
Next, we compare the time constants τs(T), τe(T), and τ1(T)

from our work with data found in the literature. As far as PB is
concerned, we first display the segmental time constant τs(T) in
Figure 8 as obtained from combining FC 1H NMR and
dielectric spectroscopy33,51 (DS) for various high-M samples. In
this limit τs(T) is independent of M which goes along with a
saturation of Tg. Usually in polymers, τs(T) is interpolated by a
Vogel−Fulcher−Tammann equation. Alternatively, we use a
recently introduced four-parameter function52,53 (cf. Appen-
dix). Experimental data of high-temperature segmental time
constants are scarce. Here, FC NMR offers a unique
opportunity to provide τs(T). The values τs(T) can be checked
against those from rheological experiments which usually
provide the temperature dependence in terms of the shift
factor aT. In ref 46, aT(T) is given for PB (M = 130k), and
together, with τs(298 K) = 0.3 ns,32 it is referred to τs(T) as
described in the Appendix. The thus calculated curve (green
dashed line) reproduces our data almost perfectly. Alternatively,
τs(T) (more precisely the fastest Rouse time τ0(T)) can be
calculated from the monomeric friction coefficient ξ(T) given
in ref 45 (cf. eq 27, Appendix). This leads again to a fair
agreement with our results (cf. purple dashed line in Figure 8).
Rheological experiments are well established for determining

the terminal time τ1. We follow ref 32 and estimate τ1 from the
intersection of the storage and loss shear moduli at lowest
frequencies. The red (open and full) symbols in Figure 8
represent τ1 values obtained in this way from a multitude of
rheological results.32,46,54−57 A large range of molar masses 21k
≤ M ≤ 925k is covered, essentially at room temperature.
Assuming FTS, our interpolation (black solid line) of the FC
NMR and DS data along eq 25 for τs(T) is shifted to intersect

selected data points (solid red symbols in Figure 8) obtained
from rheology providing the solid red lines. Obviously, our FG
NMR measurement, yielding τ1(391 K) = 43 ms (cf. Figure 3b)
in the case of PB 196k, is in fair agreement with the behavior
suggested by shifting τs(T) through the value given by the
rheological data given in ref 56 for the similar molar mass of
201k. The M dependence τ1(M) is further discussed below.
Field-cycling NMR also provides τe (cf. Figure 6); actually,

this crossover from regime I to II is well documented in all FC
NMR experiments.10,19,33 We are not aware of any work which
attempts to estimate τe in a model-independent way. In
rheological spectra and according to the ideal TR model, τe
should be given by the beginning of the rubber plateau in
G′(ω) or G(t) or likewise from the end of the Rouse power-law
regime. This implies that τe is also given by the minimum in
G″(ω) (cf. ref 50). However, experimentally the position of the
minimum depends weakly on M, which appears not to be the
case for τe as probed by FC NMR. Notwithstanding, we
estimated τe from the minimum in G″(ω) and included it in
Figure 8 (blue symbols) together with an error bar indicating
the spread with M. A version of the interpolation of τs(T) is
once again shifted to intersect (the average of) those τe data.
Our value of τe(391 K) = 0.8 μs (cf. Figure 3a) is in good
agreement with these rheological results. Thus, it appears that
the time constants τe obtained from NMR agree rather well
with those obtained from rheology when taking τe from the
minimum, ignoring its weak M dependence. As will be shown
below this also holds for PDMS.
The results collected for PB and shown in Figure 8 can be

checked against the predictions of the TR model according to
which the disengagement time τd is related to τs via

1,11
τd(T) =

3τs(T)(N
3/Ne). Such calculated curves for selected molar

masses (red solid symbols) using the interpolation of τs(T) and
Ne given in Table 1 are included in Figure 8 as red dashed lines.
Fair agreement with the experimental results (τ1) is found.

Figure 8. Temperature and M dependence of the time constants of
PB: τs(T) for several high-M samples (M > Me) (distinguished from
each other by the different black symbols) as obtained from FC NMR
and DS,33,51 respectively, interpolated by the black solid line in
comparison to rheological data reported in the literature as indicated
(green and purple dashed lines). Terminal relaxation time τ1(T) as
obtained by FG NMR (red cross) and by rheology (other red
symbols). Solid red lines: same interpolation of τs(T) but shifted for
hitting selected M values (represented by solid red symbols)
suggesting the behavior of τ1(T). Red dashed lines: prediction for
τd(T) by the TR model for the selected M. τe(391 K) as obtained by
FC NMR (blue cross) in comparison to rheological data (other blue
symbols). The solid blue line is another shifted version of the
interpolation of τs(T). Dashed blue line: prediction by the TR model
for τe

DE(T). Molar masses M are indicated.
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However, experimentally τ1(M) rather scales with M3.4.32,44,46

Therefore, deviations between τ1 and τd are anticipated. With
respect to the entanglement time τe the TR model provides1,11

τe
DE = τsNe

2.This prediction is also included in Figure 8 as a blue
dashed line. Likewise, it can be expressed and estimated in
terms of the disengagement time along τe

DE = (τd/3)(Ne/N)
3. A

very similar result (and thus not shown) is found to that
obtained using τe

DE = τsNe
2. Apparently, in the case of PB the

TR prediction for τe
DE is more than 2 decades shorter than

suggested by FC NMR and by the minimum of the rheological
spectra, even if the more realistic τe

DE
∝ τ1(Ne/N

−3.4) (instead
of −3.0) scaling is used. As indicated in ref 32 τe, when
calculated from the TR model, appears to be close to the
crossing of G′(ω) and G″(ω) at high frequencies which indeed
is much higher than the minimum in G″(ω). Yet, it is not
obvious what the physical meaning of this intersection is.
The comparison of the different time constants τs(T), τe(T),

and τ1(T,M) can be carried out for PDMS as well, which is
done in Figure 9. When compared to rheological data44 (cf.

Appendix) our high-temperature values for τs(T) appear to be
faster by 1 decade. Two values for τs(T) were reported,

58 which
were originally deduced from NS59 confirming our result
(green disks in Figure 9). As a note of caution: we were unable
to retrace these values to the original work.59 As the τs(T)
values determined by FC 1H NMR could be spoiled by the
influence of the methyl group rotation, we included in Figure 9
the corresponding values τCH3

(T); they are significantly

shorter.60 As another possibility we suggest the following: FC
NMR and DS actually probe reorientations on molecular level
(so-called α-process). This must not necessarily be identical
with the shortest Rouse time τ0 reflecting reorientation of the
Kuhn element, a finding deserving further investigations. As in
the case of PB τs ≈ τ0 is found from the consistency between eq
28 (Appendix) and the experiments, we conclude that rather τ0
≈ 10τs holds for PDMS. Reinspecting Figure 2b the power-law

regime I (characteristic of free Rouse dynamics) sets in at ωτs <
10−3 while in the case of PB this crossover is already observed
at ωτs < 10−2 (Figure 2a).
The terminal relaxation time τ1(T = 389 K) = 20 ms

obtained by FG NMR for PDMS 232k essentially agrees with
reference data: the value is somewhat lower than anticipated
from the FG NMR data in ref 6 for PDMS 344k and somewhat
larger than that of PDMS 200k measured by rheology.61 The
value τe(389 K) = 1.3 μs obtained by FC NMR is in fair
agreement with data obtained from rheological experi-
ments42,61,63 (blue symbols in Figure 9) extrapolated to 389
K when again taking the minimum in G″(ω). As we lack of a
reliable source of τ0 we calculate τe

DE from τ1 applying τe
DE =

(τ1/3)(Ne/N)
3 for PDMS 232k. Unlike in PB our value τe

agrees acceptably with τe
DE predicted by the TR theory.

Otherwise, the estimation along τe
DE = τsNe

2 provides, as in
the case of PB, values, which are by more than 2 orders of
magnitude too short when compared to the experimental τe,
even when τ0 ≈ 10τs is taken into account.
Finally, the M-dependence of τ1 evaluated at around 300 K is

plotted in Figure 10. In the case of PB we included a fit with a

power-law providing τ1 ∝ M3.3±0.1 which, in accordance with
other authors44,46 and our FG NMR data point, fits in perfectly.
Since for PDMS the data scatter more we omit a fit. Our data
point, however, fits well to FG NMR results reported
elsewhere.6

■ CONCLUSIONS

By combining field-cycling (FC) and field-gradient (FG) NMR
experiments, the segmental mean-square displacement (msd) is
determined covering 10 decades of time for PB and PDMS.
While the msd can directly be obtained by FG NMR, it is
calculated from the dispersion of the FC 1H NMR
intermolecular relaxation rate R1

inter(ω) involving Fourier
transformation. The quantity R1

inter(ω) was isolated from the
total 1H spin−lattice relaxation rate by applying isotope
dilution experiments. As the FG and FC NMR experiments,
when performed at the same temperature, cover completely
different time/frequency ranges, FTS has to be applied to
convert the FC data to temperatures covered by the FG
experiments. For the first time all four power-law regimes of the

Figure 9. Temperature and M dependence of the time constants in
PDMS: τs(T) for several high-M samples (M > Me) (distinguished by
the black solid symbols) as obtained from FC NMR and DS fitted with
a four-parameter function52 (black solid line, cf. Appendix) in
comparison to rheological data (see text). τe(389 K) as obtained by
FC NMR (blue cross) in comparison to rheological data (other blue
symbols). Dashed blue line: prediction by the TR model for τe

DE. Red:
τ1(T) as obtained from our FG NMR results (red cross) and from
reference data (also FG NMR6 and rheology, other red symbols).
Solid red lines: several versions of the interpolation of our τs(T) data
shifted for intersecting selected M values (solid red symbols)
suggesting the behavior of τ1(T). The molar masses studied in each
reference are indicated. Also indicated: time constant τCH3

(T) of

methyl group rotation.60

Figure 10. M-dependence of the terminal relaxation time τ1 obtained
from rheological experiments, evaluated at 300 K for PB (solid
symbols) and PDMS at 305 K (open symbols). Red crosses: τ1 as
obtained from the transition between regime III and IV in Figure 6.
The symbol style reflects the various references given in Figures 8 and
9, respectively. A fit with a power-law provides τ1 ∝ M3.3±0.1 for PB
(dashed black line).
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tube-reptation (TR) model are identified in the msd with the
exponents rather close to the predicted ones. Even on absolute
scale the msd extracted from FC NMR agrees fairly well with
that from FG NMR. The estimates of the Kuhn length b and
the tube diameter a0 resemble those found in the literature.
Comparing the temperature dependence of segmental time
τs(T) and disengagement time τd(T) to literature data, we find
satisfying agreement. In the case of PDMS we find indications
that the segmental time is not identical with the shortest Rouse
time; i.e., the Rouse regime I sets in about 1 decade later in
time as compared to PB. In the case of τe, agreement with
rheological data is achieved when the time constant is extracted
from the minimum in the shear modulus G″(ω). Concerning
the TR predictions the molar mass (M) dependence of τd is
essentially reproduced. Yet, calculating τe from τd for PDMS
yields agreement with experimental data while this is not the
case for PB, for which the prediction yields times by 2 orders of
magnitude too short. In no case τe is correctly reproduced from
τs(T).
Altogether, we have demonstrated that with advanced

equipment FC 1H NMR relaxometry, which can probe the
frequency dependence of the spin−lattice relaxation in a
frequency range of 100 Hz−40 MHz, has become a powerful
tool not only to unravel segmental reorientation as previously
shown but also translational diffusion.

■ APPENDIX

An Interpolation Formula Used To Describe τs(T)

As shown earlier,52,53 the temperature dependence of the
segmental correlation time τs(T) can be decomposed into an
Arrhenius-like high-T part and in a cooperative part along

τ τ= +∞
−

∞T T E E T( ) exp[ ( ( ))]s
1

coop (25)

with

μ
= − −∞

∞

⎡

⎣
⎢

⎤

⎦
⎥E T E

E
T T( ) exp ( )Acoop

The parameters denote the high-T activation energy E∞, an
attempt time τ∞, a generalized fragility parameter μ, and a
characteristic temperature TA. In contrast to the VFT equation
it also covers temperatures well above Tg.

Extracting Segmental Time Constants from Rheological
Data

In the context of discussing Figure 8, we compare τs(T)
obtained by FC NMR and DS with rheological data. Assuming
FTS,46 shear modulus measurements on PB (M = 130k) span a
broad (reduced) frequency range. This allows mapping the shift
factors aT given in ref 46 in form of a Williams−Landel−Ferry
(WLF) equation

= −
−

+ −
a

C T T

C T T
log

( )
T

1 0

2 0 (26)

with C1 = 3.48 and C2 = 163 K, to absolute values of τs(T):
From ref 46 we estimate τs(298 K) = 0.3 ns corresponding to
a298 K = 1. This value is also in accordance with that given in ref
32 (green disk in Figure 8). Finally, τs(T) is calculated from eq
26 according to log τs(T) = log τs(298 K) + log aT.
In ref 45, the monomeric friction coefficient ξ(T) of high-M

PB is also given as the expression

ξ ξ= +
− +

T
C C

T T C
log ( ) log

g g

g0
1 2

g 2 (27)

with ξ0(T) = 10−13.8 N s m−1,C1
g = 13.9, and C2

g = 44 K.
Inserting ξ(T) into the definition of the segmental correlation
time1

τ
ξ

π
=T

b T

k T
( )

( )

3
0

2

2
B (28)

yields the purple dashed line in Figure 8. Concerning PDMS
(Figure 10) ξ(T) is given in ref 44 for several temperatures.
Inserting these values into eq 28 yields the purple squares in
Figure 9. We note that the thereby obtained τ0(T) values for
PDMS are consistent with those used by Chav́ez et al.66 but
differ from those obtained by FC NMR and DS (cf.
Discussion).
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E. A. Phys. Rev. E 2012, 86, 041507.
(53) Schmidtke, B.; Hofmann, M.; Lichtinger, A.; Rössler, E. A.
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ABSTRACT: Linear poly(propylene glycol) (PPG) as well as
a poly(propyleneimine) (PPI) dendrimer with different molar
masses (M) are investigated by field-cycling (FC) 1H NMR,
shear rheology (G) and dielectric spectroscopy (DS). The
results are compared in a reduced spectral density
representation: the quantity R1(ωτα)/R1

α(0), where R1(ωτα)
is the master curve of the frequency dependent spin−lattice
relaxation rate with τα denoting the local correlation time, is
compared to the rescaled dynamic viscosity η′(ωτα)/η′α(0).
The quantities R1

α(0) and η′α(0), respectively, are the zero-
frequency limits of a simple liquid reference system.
Analogously, the dielectric loss data can be included in the methodological comparison. This representation allows quantifying
the sensitivity of each method with respect to the polymer-specific relaxation contribution. Introducing a “cumulative mode ratio”
Fi(M) for each technique i, which measures the zero-frequency plateau of the rescaled spectral density, characteristic power-law
behavior Fi(M) ∝ Mαi is revealed. In the case of PPG, FNMR(M), FG(M), and FDS(M) essentially agree with predictions of the
Rouse model yielding characteristic exponents αi. The crossover to entanglement dynamics is identified by a change in αi around
M ≅ 10 kg/mol. The analysis is extended to the dendrimer which exhibits a relaxation behavior reminiscent of Rouse dynamics.
Yet, clear evidence of entanglement is missing. The M-dependencies of the dendrimer diffusion coefficient D obtained by pulsed
field-gradient NMR and the zero-shear viscosity are found to be D(M) ∝ M−1.6±0.2 and η(M) ∝ M1.9±0.2, respectively, in good
agreement with our theoretical prediction η(M) ∝ M1/3 D−1(M). The close correspondence of R1(ωτα) with η′(ωτα) establishes
FC NMR as a powerful tool of “molecular rheology” accessing the microscopic processes underlying macroscopic rheological
behavior of complex fluids.

1. INTRODUCTION

Field-cycling (FC) NMR relaxometry provides important
information on molecular dynamics in condensed matter.1−5

In contrast to conventional NMR relaxation studies, which
measure the spin−lattice relaxation rate R1 (inverse relaxation
time, T1

−1) at a single frequency, usually as a function of
temperature, the FC method allows probing its frequency
dependence (dispersion) by varying the relaxation field. Since
the end of the nineties a commercial FC relaxometer has
become available which covers a frequency range of 10 kHz−20
MHz (for protons).1 By employing earth field compensation,
frequencies down to some 100 Hz can be reached.5−8

Achieving such low frequencies, the method is particularly
suited to study slow dynamics in complex liquids.
FC experiments are most often performed for protons,

although studies of other nuclei like 2H, 13C, or 19F are
possible.5,9,10 In the case of 1H, relaxation is caused by
fluctuations of the magnetic dipole−dipole interactions and one
has to distinguish intra- and intermolecular relaxation path-

ways.1,4,8 While the intramolecular contribution R1
intra(ω)

originates from interactions between nuclei belonging to one
molecule, the intermolecular relaxation R1

inter(ω) stems from
interactions between nuclei belonging to different molecules.
Thus, the intramolecular relaxation is associated with reorienta-
tional dynamics while the intermolecular part provides
information on translational motion. However, it is difficult
to distinguish both pathways, in particular, determining the
ratio of both relaxation contributions as a function of frequency.
Yet, by applying isotope dilution experiments intra- and
intermolecular relaxation can be separated and individually
analyzed.8,11−14 From general arguments, it can be shown that
intermolecular relaxation, mediated by translation, dominates at
lowest frequencies15,16 which was exploited recently to extract
the translational diffusion coefficient D(T,M) in simple liquids,
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polymers and dendrimers,17−19 with M denoting the molar
mass. Having R1

inter(ω) at hand, even the mean square
displacement as a function of time is available.11,13,20

In a series of papers we demonstrated that the effective
frequency window of FC NMR can be significantly extended by
applying frequency−temperature superposition (FTS),20−24 a
procedure well-known from rheological studies.25−27 For this
purpose, the FC relaxation data are first converted to the
susceptibility representation χ″(ω) = ωR1(ω). By shifting the
data sets obtained at different T along the frequency axis, in
good approximation a susceptibility master curve is revealed
covering local as well as collective dynamics, i.e., glassy, Rouse,
and entanglement dynamics in the case of polymers.
Subsequently, the master curve can be scaled along χ″(ωτα)
with τα(T) denoting the local correlation time controlled by the
glass transition phenomenon. Such master curves typically
cover about 10 decades in frequency and allow transformation
into the time domain yielding the corresponding correlation
function.4,13,23 Applying these procedures for polymers a
picture emerged which confirms the tube-reptation model
only in parts.8,13

Recently, we also investigated the dynamics of poly-
(propyleneimine) (PPI) dendrimer of different generations by
different techniques.19 The bulk dendrimer constitutes highly
viscous liquids at room temperature that undergo a glass
transition with a glass transition temperature Tg of around 200
K, virtually independent of the number of generations. The
local (α-) dynamics was probed by dielectric spectroscopy
(DS) and solid state 2H NMR. In addition to the α-relaxation,
two secondary processes were identified persisting below Tg.
The existence of collective dynamics slower than the local
dynamics (T > Tg) was revealed by FC 1H NMR. Specifically,
an intermediate relaxation regime between the α-dynamics and
the terminal relaxation of the collective dynamics was identified.
When compared with results for linear polymers, some
resemblance with Rouse dynamics is recognized. Yet,
entanglement was excluded for dendrimers, a fact also known
from rheological studies.28 Tentatively, in accordance with
theoretical and simulation work,29−33 local dynamics at high,
breathing modes at intermediate, and overall tumbling and
diffusion of the dendrimer at low frequencies were attributed.
For characterizing the rheological behavior of soft matter,

oscillatory shear relaxation in terms of the complex shear
modulus G*(ω) is an important source of information.25−27 In
the case of polymers, the data are usually discussed in the frame
of the Rouse model (short chains) and the tube-reptation
model27 (long chains) while a detailed understanding of
dendrimers is still missing. In the present contribution we
report on G*(ω) of linear poly(propylene glycol) (PPG) and a
poly(propyleneimine) (PPI) dendrimer with different molar
masses M collected in a large temperature interval, allowing to
cover both polymer-specific as well as local dynamics. In
addition, for the dendrimer we provide the diffusion coefficient
D(M) as obtained from pulsed field gradient (PFG) NMR. The
rheological results are compared to the corresponding
relaxation spectra provided by FC 1H NMR, published in
part previously.19,24 We note that there already exist rheological
studies of PPG34 as well as of PPI dendrimer,28 yet, in smaller
M and T ranges. Our main goal is to demonstrate that
providing master curves of the spectral density (instead of the
susceptibility) in terms of R1(ωτα), a direct comparison with
the frequency dependent viscosity η′(ωτα) derived from G*(ω)
becomes possible. As a type A polymer,35 PPG reveals a normal

mode relaxation in the dielectric spectra and the data extracted
from ref 36 can be included in the methodical comparison. As
will be demonstrated, with increasing M qualitatively similar
evolution of the low-frequency, polymer-specific contribution is
disclosed in R1(ωτα) and η′(ωτα), respectively. Without need
of describing the full relaxation spectra our analysis allows
testing predictions of the Rouse theory being taken as a
reference also for the dendrimer. The close correspondence
with shear relaxation establishes FC NMR as a powerful tool of
“molecular rheology”, directly accessing the microscopic
processes underlying the (macroscopic) rheological behavior
in complex liquids, here of linear PPG and dendritic PPI.

2. THEORETICAL BACKGROUND: M DEPENDENCE OF
FC 1H NMR, SHEAR, AND DIELECTRIC RELAXATION
IN POLYMERS

Field-Cycling NMR. Field-cycling 1H NMR relaxometry
provides the frequency dependence of the spin−lattice
relaxation rate R1(ω) = T1(ω)

−1 giving access to a spectral
density J(ω) characterizing the fluctuations of the magnetic
dipole−dipole interaction among protons. In the case of
intramolecular relaxation, it is given by the Fourier transform of
a rank-two reorientational correlation function C2(t) of a
monomer, more precisely of the internuclear vectors of the spin
pairs within a monomer.1,4 In the case of intermolecular
relaxation, a translational correlation function Ctrans(t) is
probed, the long-time behavior of which follows a power-law
due to Fickian diffusion, specifically Ctrans(t) ∝ t−3/2.4,15−18 The
actually measured (total) relaxation is given by the sum of the
rates

ω ω ω= +R R R( ) ( ) ( )1 1
intra

1
inter

(1)

The Bloembergen, Purcell, and Pound expression connects
rate and spectral density1,37

ω ω= +R K J J[ ( ) 4 (2 )]1
intra/inter intra/inter

NMR
intra/inter

NMR
intra/inter

(2)

where Kintra/inter is the NMR coupling constant of intra- and
intermolecular relaxation, respectively. The Larmor frequency is
given by the magnetic field, i.e., ω = γB, where γ = γH is the
gyromagnetic ratio of the proton. The spectral density is
normalized, ∫ 0

∞J(ω)dω = π/2. Then, by definition J(0) = ⟨τ⟩,
where ⟨τ⟩ denotes a mean correlation time. In simple liquids
the latter is just the structural (rotational) correlation time τα
determined by the so-called α-process (ignoring intermolecular
relaxation). In the case of polymers or dendrimers featuring
further relaxation contributions at low frequencies (ωτα ≪ 1),
the average is taken over all modes appearing between the
terminal relaxation time τ1 and the much faster time scale τα.
For the present context discussing the evolution of the

polymer specific dynamics we take the Rouse model27 as a
reference. In polymer theories it is usually assumed that the
shortest Rouse mode τs can be identified with that of the α−
process (τs = τα). Yet, this is not always a proper description
when compared to experimental results.20 This is not
surprising, because the concept of Kuhn segments mainly
reflects the equilibrium statistics of long polymer chains in the
melt. For flexible chains the Kuhn segment roughly
corresponds to a chain segment containing 3−10 monomers,
which have a large number of internal degrees of freedom and
internal mobility. Therefore, the shortest Rouse time τs is
usually somewhat longer than τα , which characterizes the
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dynamics of the smallest unit of a polymer chain. The spectral
shape of the latter relaxation is essentially M-independent.
Thus, as a heuristic approximation, we describe the (total)
spectral density in terms of a sum of three contributions:

ω ω

ω ω

= − + − −

+α

J N f p J N f p

J pJ N

( ; ) (1 ) ( ; ) (1 )(1 )

( ) ( , )

NMR NMR
intra

NMR NMR
inter

(3)

The functions JNMR
intra (N;ω) and JNMR

inter (N;ω) represent
polymer-specific dynamics, thus depending on the number of
Kuhn segments N (or M), while JNMR

α (ω) reflects “glassy” (or
intrasegmental) dynamics being N independent. The quantity f
specifies the fraction of the decay of the reorientational
correlation function induced by polymer dynamics, which is
related to the order parameter S by f = S2. It depends on the
chemical structure of the monomer and is on the order of f =
0.01.1,38,39 The parameter p gives the fraction of the
intermolecular relaxation in the total NMR correlation function.
It is actually unknown but may be estimated to be around p ≈
0.1−0.2.8 Both f and p are assumed to be temperature
independent, which is of course an approximation. In
accordance with recent findings,8,12−14 we assume in eq 3
that the contribution of the α−process is essentially of
intramolecular nature. While the polymer specific contributions

are described within the Rouse model (short chains),27 that of
the α−process is phenomenologically interpolated by a Cole-
Davidson (CD) function accounting for the non-Debye
character of the spectral density of dense simple liquids.40

Next, we discuss the low-frequency limit of eq 3 and assume
Rouse dynamics for describing intra- and intermolecular spin−
lattice relaxation

π
τ π π

τ τ

= − +

+ − − α

J N f p N p

a b N f p

( ; 0) (1 )
2

ln(2 / ) (3/2)

( / ) (1 )(1 )

s

s

NMR
3/2

0
3 1/2

(4)

The first (intramolecular) term is obtained in accordance
with refs 3 and 22. The second term reflecting the
intermolecular relaxation contribution is derived in the
Appendix A eq 30. The parameter a0 denotes a characteristic
length reflecting the local packing of the protons from different
chains and b the Kuhn length; as a rule a0 < b. We note that,
neglecting the intermolecular term, eq 4 was tested
previously,22,24 but succeeding experiments revealed that the
intermolecular relaxation has to be taken into account, in
particular, when low-frequency dispersion is discussed.8,12,13

Next, we define the cumulative mode ratio FNMR(N):

π π

π π

= =
− + + − −

− + + − −
∝

π τ

τ

π τ

τ

α

α

( )
( )

F N J N J
f p N p a b N f p

f p p a b f p
N( ): ( ; 0)/ (1; 0)

(1 ) ln(2 / ) 3 /2( / ) (1 )(1 )

(1 ) ln(2/ ) 3 /2( / ) (1 )(1 )
NMR NMR

2

3/2
0

3 1/2

2

3/2
0

3

1/2s

s (5)

It is a measure how much the mean correlation time
(averaged over a particular mode distribution) of the dynamics
of a macromolecule has increased with respect to that of a melt
of segments, i.e., a chemically equivalent simple liquid. The
denominator of eq 5 is a number of the order of one and the
ratio τα/τs ≤ 1 is assumed to be temperature independent.
Usually, the second term in the nominator dominates, resulting
in a N1/2 dependence expected for Rouse dynamics.
In the case of long chains (M > Me), the tube-reptation (TR)

model27 and the n-renormalized Rouse model41−44 (n-RR)
(discussed for NMR, only) provide the following expressions as
given by scaling arguments (for details see Appendix A)

τ τ∝ − +J f p N N p a b N(0) (1 ) ( / ) ( / ) (TR)s e sNMR
2

0
3 3/2

(6)

τ τ∝ − +

‐

+

−

J f p N N p a b N

N n

(0) (1 ) ( / ) ( / ) ( )

( RR)

s e
n

s
n

e
n

NMR
/2

0
3 ( 1)/2

/2
(7)

including intra- (first term) as well as intermolecular relaxation
(second term). Here, we have neglected the contribution from
intrasegmental dynamics (α-process) as its influence is
irrelevant for high N.11 For the cumulative mode ratio one
thus expects for M > Me:

∝ ···F N N( ) (TR)NMR
1.5 2.0

(8)

∝ ‐···F N N( ) (3 RR)NMR
1.5 2.0

(9)

Note that TR and thrice-renormalized Rouse (3-RR) model
predict very similar N dependences for FNMR(N). Yet there is a
qualitative difference: in the TR model the term proportional to
N1.5 results from the intermolecular while the term proportional

to N2 arises from the intramolecular contribution. Within the 3-
RR model the situation is opposite.
When the quantity

ωτ ωτ= =α
α

α
αJ J R R F N( )/ (0) ( )/ (0) ( )

NMR NMR 1 1 NMR (10)

is plotted, FNMR(N) can directly be read off from the low-
frequency plateau (ωτα→ 0). Here JNMR

α (0) (or R1
α(0)) denotes

the low-frequency limit of the relaxation contribution attributed
to the local (glassy) dynamics. It may be extracted from the
spectral density master curve JNMR(ωτα) by interpolating the
high-frequency peak region with a CD function or by directly
taking data from a low-M reference system. The master curve
for the spectral density itself is derived from the susceptibility
master curve χNMR″ (ωτα) = ωτα JNMR(ωτα) which is the most
reliable way to get a master curve just by shifting the spectra
solely along the frequency axis (cf. Experimental Section).

Shear Modulus. The rheological experiments provide the
complex shear modulus G*(ω) = G′(ω) + iG″(ω). Its
imaginary part is connected to the real part of the dynamic
viscosity by26

η ω ω ω
ω

ω′ = ″ =
″

=∞
∞

∞G G
G

G
G J( ) ( )/ ( )

G
(11)

The quantity G∞ = G′(ω → ∞) is the high frequency
modulus and JG(ω) the spectral density in terms of rheology.
Although quite different fluctuation phenomena with respect to
NMR are consideredin the case of G*(ω) fluctuations of off-
diagonal elements of the stress tensor are monitored27,34 (cf.
Appendix B)eq 11 represents a kind of spectral density
representation. Consequently, we compare the results of the
NMR and rheological measurements in this representation.
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Again, we again split the total rheological response into two
parts, in analogy to eq 3:

η ω ω ω′ = + α α
∞ ∞G J G J( ) ( ) ( )

G G
pol pol

(12)

The quantities G∞
pol and G∞

α are the high-frequency shear
moduli for the polymer-specific and the α-dynamics,
respectively. Assuming Rouse dynamics in the continuum
limit, the corresponding cumulative mode ratio FG(N) (cf. eq 5)
reads3,26

η η
π τ τ

τ
= ′ ′ =

+

∝

α

α
α

α
α

∞ ∞

∞

F N
G N G

G

N

( ) (0)/ (0)
( /6)

(Rouse)

G
s

pol 2 2

(13)

Here, ηα′(0) = G∞
α τα (Maxwell relaxtion) denotes the zero-

frequency limit in the case of a simple liquid. The
proportionality with N in the case of Rouse dynamics follows
from the relation G∞

pol = ρRT/ M ∝ 1/N 3,26 with ρ being the
mass density. For long chains (M > Me), the TR model predicts
FG(N) ∝ N3.25−27

Dielectric Relaxation. In the case of type A polymers
(Stockmeyer classification35) to which PPG belongs, a normal
mode relaxation is observed in addition to the α-relaxation,
which probes the fluctuation of the end-to-end vector. The N-
dependence of its correlation time is well-known.45−47 The
scaled spectral density is defined in analogy to eqs 10 and 13 as

ωτ
ε ωτ

ωτ

ε

ωτ
=

″ ″
=α α

α

α

α

α

J J F N( )/ (0)
( )

/
(0)

( )
norm

norm
DS

(14)

with

∝F N N( ) (Rouse)DS
2

(15)

∝F N N( ) (TR)DS
3

(16)

We note that the normal mode relaxation solely probes
polymer dynamics. It vanishes for N → 0. Thus, in eq 14 we
take the α-relaxation, usually measured in addition in the DS
spectrum of a type A polymer, as reference.
In conclusion, quite different scaling relations are expected

for the cumulative mode ratio FNMR(N), FG(N), and FDR(N)
provided by NMR, mechanical and dielectric relaxation,
respectively, when considering linear polymers. For bulk
dendrimer melts, to our knowledge, theoretical predictions
are not available so far. Nevertheless, we can compare the
results collected for the dendrimer with those for linear
polymers in the way sketched above.

3. EXPERIMENTAL SECTION

A series of linear poly(propylene glycole) (PPG) melts with several,
narrowly distributed (Mw/Mn ≤ 1.06) molar masses 134 ≤ Mw, mol
g−1 ≤ 18200 was investigated by FC 1H NMR relaxometry, oscillatory
shear rheology, and dielectric spectroscopy. It was obtained from
Polymer Standards Service PSS, Mainz (Germany), except the species
Mw = 18200 g mol−1 (PPG 18k, kindly provided by Roland Böhmer,
TU Dortmund) characterized via MALDI−TOF and investigated
previously36,48 as well as Mw = 1800g mol−1 (PPG 1.8k) which was
bought from Polymer Source, Dorval (Canada). Henceforth, the name
code reflects the (rounded) values of Mw. The different generations of
PPI dendrimer were purchased from SyMo-Chem BV (University of
Eindhoven) and feature monodisperse molar masses of 773 g mol−1,
1687 g mol−1,3514 g mol−1 and 7198 g mol−1, corresponding to
generation numbers G ∈ {2, 3, 4, 5}. For the NMR measurements the

polymers/dendrimers were used as delivered and filled into standard 5
mm NMR glass tubes. After thoroughly degassing under vacuum for
48h the tubes were sealed.

The dispersion of the spin−lattice relaxation rate R1(ω) was
measured by an electronic FC relaxometer STELAR FFC 2000,
located at the University Bayreuth, allowing for measurements in a
frequency range of 10 kHz ≤ ν ≤ 20 MHz. Measurements are possible
in a temperature range of 150−420 K enabling to extend the frequency
window assuming FTS. In order to probe very slow molecular
dynamics, the data were supplemented by measurements on a home-
built FC relaxometer situated at the TU Darmstadt reaching extremely
low frequencies of 200 Hz ≤ ν ≤ 40 MHz, achieved by actively
compensating the earth’s magnetic field.6,7 For PPG we always
observed monoexponential build-up/decay of the longitudinal magnet-
ization extending over almost two decades in amplitude. Concerning
the dendrimers the build-ups/decays are slightly stretched at high
temperatures wherefore we determined the (mean) relaxation rate
from a stretched exponential function M(t) ∝ exp[−(t/T1

k)β] (0.8 ≤ β
≤ 1).

The dielectric spectra were published before36 and supplemented by
own measurements of dipropylene glycol (DPG). The shear
experiments on the polymers and the dendrimers G3, G4, and G5
were performed in plate−plate geometry with diameters of 8 mm, 25
mm and 50 mm at low, medium and high temperatures, respectively,
on a MCR-502 rheometer from Anton Paar located at the Technical
University Dortmund.49The G2 dendrimer was measured on an MCR-
500 rheometer at the University of Bayreuth (group of Nuri Aksel).
The gap was 1 mm in all cases. All mechanical measurements were
done under linear response conditions.

Diffusion measurements on the dendrimers were performed using
pulsed field gradient50 (PFG) 1H NMR on a 400 MHz spectrometer
located at the University of Leipzig. It is equipped with a home-built
PFG unit allowing for gradients up to 35 T/m. The measurements
were conducted with a 13-interval pulse sequence allowing for an
efficient compensation of the disturbing eddy currents upon the
application of the strong magnetic field gradient pulses.51 Typical
parameters of the pulse sequence were: τ = 2 ms for the separation
between the π/2 and π pulses, Δ = 50 ms for the separation between
the π/2 pulses defining the diffusion time, δ = 1 ms for the duration of
the gradient pulses, and Rd = 5s for the delay between repetitions of
the pulse sequence. The temperature was controlled to ±0.2 K.

Figure 1 displays typical normalized spin−echo attenuations
showing the signal intensities obtained for different values of q2td,

where q = γδg is the wave vector (with γ being the gyromagnetic ratio)
and td = Δ+7τ/2+δ/6 is the diffusion time, measured at two different
temperatures for the dendrimer G4. Most notably, the decay curves
appear to deviate from the exponential behavior characteristic of
normal diffusion,

Figure 1. Normalized spin−echo decay for PPI dendrimer G4 at two
temperatures as indicated. The solid lines show eq 17 interpolating the
slowly decaying parts of the experimental data with their slopes
yielding D(T).
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where D is the self-diffusion coefficient. Hence, the curves were
described biexponentially
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with components weighted by the spin−spin relaxation time T2.
Measurements using the CPMG pulse sequence indicate the
occurrence of two proton fractions having different T2. The
component slower diffusing with Ds has a much shorter T2 than the
faster diffusing one. This indicates that the slowly diffusing component
can be associated with the dendrimer molecules. The origin of the
faster diffusing component is not clear so far. Applying eq 17 to the
long-time tail of the echo decays, the D values of the dendrimer
molecules were obtained as indicated in Figure 1.

4. RESULTS

Shear Modulus. Parts a and b of Figure 2 display the real
G′(v = ω/2π) and the imaginary part G″(v), respectively, of
PPG 18k in double logarithmic presentation as collected in a
temperature interval of 200−320 K.49 The spectra show all the
features typical of entangled polymer melts. At lowest
frequencies and highest temperatures the terminal relaxation
characteristic of a liquid is identified based on the power-laws
G′(ω) ∝ ω2 and G″(ω) ∝ ω1, respectively, (dashed lines in
Figure 2, cf. also Figure 4). At intermediate temperatures (e.g.,

230 K) a rubber plateau is suggested in G′(ω) indicating
entanglement effects. At low temperatures the high-frequency
plateau value G∞ is found in G′(ω), while in G″(ω) the main
relaxation peak associated with local dynamics (α-process) is
displayed. Regarding the α-relaxation, similar spectra are found
for the lower M values investigated while the mentioned
features characteristic of polymer dynamics continuously
disappear with decreasing M. As our experiments cover the
α-relaxation the shift factors aT usually applied for constructing
master curves can be allocated to the correlation time τα =
τα(T): for that purpose the peak region of the master curve of
G″(aTω) is fitted by a Cole−Davidson (CD) function52

allowing one to refer the aT to time constants τα(T). The
resulting τα(T) are displayed in Figure 7a and will be discussed
below. Density changes caused by temperature variation
eventually impacting the amplitudes cannot be resolved within
experimental accuracy.
The master curves G′(ωτα)/G∞ and G″(ωτα)/G∞ of PPG

are shown in Figure 4 for the different M investigated, where
they are compared to those obtained for the dendrimers (cf.
below). As mentioned, PPG was rheologically investigated by
Nicolai and Floudas.34 The authors reported that segmental
and normal mode do not exhibit the same temperature
dependence close to Tg. A deviation of about a factor of 10 was
found at Tg. Yet, 30 K above Tg ≈ 205 K,19 this effect
disappeared, and they were able to construct master curves. In

Figure 2. (a) Real G′(v) and (b) imaginary part G″(v) of the complex shear modulus for poly(propylene glycol) (PPG) with M = 18k at several
temperatures as indicated. Dashed lines: power-laws reflecting the terminal relaxation.49

Figure 3. (a) Storage G′(v) and (b) loss modulus G″(v) of PPI dendrimer G5 for several temperatures as indicated. Terminal power-laws are
indicated. (c) G″(v) at temperatures close to Tg on linear scale. The α-process (arrow) is observed in addition to some secondary relaxation at higher
frequencies.
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our case, FTS works in good approximation over the whole
temperature range and for all systems investigated.
Parts a and b of Figure 3 present G′(v) and G″(v),

respectively, for the PPI dendrimer G5 within a temperature
range of 200−300 K. Broad dispersion curves are observed.
Figure 3c shows G″(v) of G5 for several temperatures around
Tg on a linear scale, where the main (α-) relaxation is identified
(arrow); at high frequencies a crossover to some secondary
process is recognized. The corresponding time constant τα is
again extracted via fitting the peak region with a CD function. A
terminal relaxation typical of a liquid is identified at low
frequencies, i.e., G′(ω) ∝ ω2 and G″(ω) ∝ ω1 (dashed lines in
Figure 3) are observed at low frequencies and high temper-
atures, as in the case of PPG. The master curves of the
dendrimers G2−G5 are included in Figure 4 and the resulting
time constants τα(T) are displayed in Figure 7b and will be
discussed below.
In Figure 4 the master curves of PPG and PPI dendrimers in

terms of G′(ω) and G″(ω), respectively, are compared to each
other as well as to a reference, namely the simple liquid
propylene glycol (PG). Clearly, with respect to the dynamics of
PG, the terminal relaxation for both polymers and dendrimers
shifts to lower reduced frequencies the higher M becomes. In
the case of PPG, polymer-specific and α-dynamics appear to be
well separated, i.e., an intermediate power-law G′(ω) ∝G″(ω)
∝ ω0.6 fairly close to that predicted for Rouse dynamics27

(G′(ω) ∝ G″(ω) ∝ ω1/2) is suggested at ωτα < 10−2 (dashed
line). In the case of the dendrimers G3, G4, and G5 an
intermediate power-law regime G′(ω) ≅ G″(ω) ∝ ω∼0.7

extending over at least two decades in amplitude and three in
frequency succeeds the α-relaxation more closely for ωτα < 1
with an exponent actually slightly decreasing from G3 (0.72) to
G5 (0.65). At intermediate frequencies 10−5 < ωτα < 10−1 the
rescaled moduli G′(ωτα)/G∞ and G″(ωτα)/G∞ of these
dendrimers obviously exceed their counterparts of PPG by
more than one decade. Concerning G2 the intermediate power-
law regime is not observed and the curves highly resemble that
of the polymer PPG 770 attended by a low-frequency shoulder
for ωτα < 10−1. Note also that high-M PPG features indications
of a rubber plateau in G′ intimating entanglement while this is
not the case for the dendrimers.
Field-Cycling 1H NMR. Some FC 1H NMR relaxation data

of PPG were published before.24 They are supplemented by
new measurements on PPG 1.8k. In the case of the high-M

PPG 18k we collected new data at extremely low-frequencies
(200 Hz < ν < 10 kHz) obtained from a home-built
relaxometer (cf. Experimental Section) as shown in Figure 5.

While at high temperatures comparatively weak dispersion due
to polymer dynamics is recognized in R1(v), strong frequency
dependence is found at low temperatures reflecting the α−
process. For comparison the data of the simple liquid reference
system di(propylene glycol) (DPG, M = 134) is also shown for
a high temperature.24 Note that in the case of FC 1H NMR we
use DPG instead of PG as low-M reference as it turned out that
the latter is stronger influenced by intermolecular relaxation
contributions.14 As polymer dynamics are absent in DPG, an
(almost) dispersion free behavior is observed. The master
curves χ″(ωτα) (cf. Theoretical Background) belonging to
various M are shown in Figure 6a. As in the rheological spectra
(cf. Figures 2 and 3) the FC NMR spectra also cover low
temperatures where the α−process determines the relaxation.
Analogously, its time constant can be determined from a fit of
the susceptibility maximum by a CD function.
Inspecting the evolution of the low-frequency contribution

χ″(ωτα < 1) of PPG 18k (Figure 6a) one observes an apparent
power-law regime with χ″(ωτα) ∝ ω0.8 for 10−4 < ωτα < 10−2. It
is also present in the other PPG systems 5k, 3k, and 1.8k while
the extension to low frequencies decreases with decreasing M
and a crossover to the terminal relaxation is found at the lowest
frequencies. This intermediate power-law is attributed to Rouse

Figure 4. (a) Master curves of the dynamic moduli G′(ωτα) and (b) G″(ωτα) of selected M (as indicated) of PPG (blue symbols) as well as of the
PPI dendrimers G2−G5 (red symbols) as a function of reduced frequency. For comparison the corresponding data of the simple liquid propylene
glycol (PG) is shown. Terminal and intermediate (Rouse) power-laws are indicated by dashed lines. Data for PPG are from ref 49.

Figure 5. FC 1H NMR relaxation dispersion of poly(propylene glycol)
(PPG) with M = 18k at different temperatures (as indicated). Also
shown for comparison: dispersion of di(propylene glycol) (DPG) at
393 K representing the simple liquid.
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dynamics. Here, a note of caution has to be given: In the Rouse
model, one actually expects χ″(ωτα) ∝ ω ln ω for
intramolecular relaxation dominating instead of a power-
law.22,45 Yet, this is difficult to be distinguished from a
power-law with an exponent somewhat smaller than 1. For M =
18k at even lower frequencies an inflection point appears at ωτα
≈ 5 × 10−5 and a crossover to a second power-law with a
slightly lower exponent χ″(ωτα) ∝ ω0.75 is suggested. This is
typical of entanglement dynamics emerging for M > Me.

24

Finally, the terminal relaxation sets in and χ″(ωτα) asymptoti-
cally approaches χ″(ωτα) ∝ ω1. We note that no PPG with
higher M was available. In the case of high-M poly(butadiene)
the low-frequency exponent in the entanglement (or constraint
Rouse) regime decreases down to 0.3.8,13

Concerning the dendrimer, the original NMR dispersion data
were published previously.19 In Figure 6b, we present the
master curves for the different generations. The relaxation
maximum at around ωτα = 1 reflects the α-process. At ωτα < 1
an excess relaxation with respect to the data of the simple liquid
DPG becomes more pronounced with growing generation. It
yields an intermediate power-law χ″(ωτα) ∝ ωε the apparent
exponent ε of which changes from 0.87 (G2) to 0.76 (G5). At
even lower frequencies the curves return to a power-law
behavior with an exponent close to one. This again reflects the
terminal relaxation, and the corresponding terminal relaxation
time τ1 grows with the number of generations, i.e., the time
scale separation between τ1 and τα increases.
Figure 7 shows the time constant τα(T) of PPG 18k (a) and

of the PPI dendrimers G3 and G5 (b) as obtained from master
curve construction of the data of FC NMR and rheology,
respectively. In addition, we included DS data.19,24,36 The time

constants for PPG of lower M coincide with those of PPG 18k
as Tg already saturates at low M. For PPG 18k the time
constants obtained from the rheological data agree with those
obtained by FC NMR and DS within a factor of 3. In the case
of the dendrimers there is some variance between FC NMR
and DS on the one hand and rheology on the other. As
reported,19 Tg of the dendrimers is essentially independent of G
within 5K which is well recognized in Figure 7b: no strong
difference is observed between the different G.

Common Representation of FC 1H NMR, Shear
Modulus, and Dielectric Data. As discussed in the
Theoretical Background, formally, the real part η′(ω) of the
complex dynamic viscosity is a spectral density representation
and can thus directly be compared to the spectral density
provided by FC NMR. Depending on the particular macro-
molecular architecture (linear polymer or dendrimer) as well as
on the experimental probe (NMR, rheology, DS), quite
different mode distributions are expected, spanning between
the local time τα and the terminal relaxation time τ1. Although
the polymer-specific effects appear rather weak in the NMR
susceptibility representation, it is actually most suitable for
constructing master curves as merely horizontal shifting is
required while normalization of the spectral density (cf.
Theoretical Background) is conserved. Yet, in the spectral
density representation, which can be recalculated from the
susceptibility via JNMR(ωτα) ∝ χNMR″ (ωτα)/ωτα, low-frequency
features are more pronounced and JNMR(ωτα) can be directly
compared to the dynamic viscosity η′(ωτα). Moreover, this
representation of the relaxation spectra allows a quantitative
analysis without carrying out a full spectral fitting (cf. below).

Figure 6. (a) FC NMR susceptibility master curves χ″(ωτα) for PPG of molar mass M as indicated and (b) for the PPI dendrimer of generations
G2−G5. Terminal and intermediate power-law regimes are indicated (dashed lines). Solid lines: Fit of the α-peak with a Cole-Davidson function
indicating simple liquid dynamics.

Figure 7. (a) Temperature dependent time constant τα(T) of the α-process in PPG 18k as obtained by FC NMR, DS and rheology.49 (b) Same plot
for the PPI dendrimers G3 and G5. The dashed lines are interpolations by the Vogel−Fulcher−Tammann law intended to guide the eye.
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In Figure 8a, the reduced NMR spectral density R1(ωτα)/
R1
α(0) eq 10 for PPG (blue symbols) as well as for the

dendrimer (red symbols) are shown, while in Figure 8b the
corresponding rescaled dynamic viscosities η′(ωτα)/ηα′(0) are
presented. Finally, Figure 8c shows the dielectric PPG data
taken from ref 36. Note that for the PPI dendrimer, no normal
mode relaxation is observed. In the case of DS, the
experimental frequency range is sufficient so that one can
omit constructing master curves. Indeed, rather similar
relaxation patterns are observed for the three techniques for
both PPG and the PPI dendrimer, respectively. As M (or G)
increases, the low-frequency plateau rises indicating a growing
polymer-specific relaxation contribution. By construction, the
plateau value for the simple liquid limit represented by PG and
DPG, respectively, is set to yield 1. In the case of the FC 1H
NMR data we take the CD fit as the simple liquid limit; due to
a weak intermolecular relaxation contribution of DPG its
plateau value is slightly above that of the CD limit. Generally,
one finds that the plateau value grows fastest with M in the DS
and weakest in the NMR data.
In Figure 9 the cumulative mode ratio FNMR(M), FG(M), and

FDS(M) for PPG (a) and dendrimers (b), respectively, are
displayed (cf. Theoretical Background). The values can be
directly read off from the low-frequency plateau values in
Figure 8. Generally, as already mentioned, the ratio is weakest
in NMR while strongest in DS. For PPG in the Rouse regime
(M < 10k) the data are compatible with power-laws of FDS(M)
∝ M2 for the dielectric data, FG(M) ∝ M1 for the dynamic
viscosity, and FNMR(M) ∝ M0.5 for FC 1H NMR, in accordance
with the predictions of the Rouse model eqs 15, 13 and 5. We
note that in the case of FC 1H NMR the weak M dependence
of FNMR(M) can also be described by FNMR(M) ∝ ln M which is
expected for the case that exclusively intramolecular relaxation
contributes in the Rouse regime (cf. eq 4).22,24 The M range of
the Rouse regime is too small for deciding this question. For M
> 10k the M-dependences of FDS(M) and FG(M) strongly
increase with power-law exponents compatible to 3.3, in
agreement with well-known experimental observations regard-
ing entanglement dynamics.25−27 In the case of NMR, a weaker
M dependence is indicated, yet being close to the predictions of
FNMR(M) ∝ M1.5−2.0 eqs 8,9 expected for the TR as well as the
renormalized Rouse model. The crossover mass Me between
Rouse and entanglement dynamics is estimated to Me ≈ 10k.
In the case of the dendrimers, we find the shear data being

close to FG(M) ∝ M1 (cf. eq 13) while FNMR(M) shows again a
weaker M-dependence, yet close to ∝ M0.5. We indicated the
Rouse limits of each technique in Figure 9b (dashed lines).

Figure 8. (a) Scaled spectral density from FC 1H NMR of the PPI
dendrimers (red) in comparison with that of the simple liquid DPG
(green) and of poly(propylene glycol) (PPG, blue, ref 49). (b) Scaled
dynamic viscosity of the dendrimers (red) in comparison with that of
the simple liquid propylene glycol (PG, green) and that of PPG (blue).
(c) Scaled spectral density obtained from dielectric normal mode
spectra of PPG.24,36 At low frequencies the DS spectra are obscured by
DC conductivity contribution, therefore they are extrapolated (dashed
lines). Molar masses and number of generations, respectively, are
indicated.

Figure 9. (a) Cumulative mode ratio FNMR(M), FG(M) and FDS(M) as a function of molar mass M for poly(propylene glycol) (PPG); expected
power-law behavior is indicated (dashed and dotted lines) assuming Rouse (M < 10k) and tube-reptation (M > 10k), respectively. In the case of FC
NMR, both cases, intra- (dashed) and intermolecular (dotted) relaxation, are compatible with the data. (b) Corresponding data for PPI dendrimers;
Rouse limits for each method are included (dashed lines).
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Tentatively, one can state that the dendrimer displays a
behavior reminiscent of Rouse dynamics. As said, the dielectric
spectra of the PPI dendrimer do not show normal mode
relaxation, thus no information on collective dynamics can be
extracted.
A direct comparison between a FC 1H NMR and a shear

relaxation spectrum is done in Figure 10a for PPG 18k and in
10b for PPI dendrimer G5. In the case of the dendrimers, the
NMR curve was horizontally shifted to coincide with the
rheological data at high frequencies where the local dynamics
dominates the spectra. This is justified by the fact that the time
constants obtained by FC NMR and rheology do not fully
coincide (cf. Figure 7b). In the case of PPG, the shapes of the
spectral densities agree well at high frequencies where local

dynamics are probed. The low-frequency plateau values
reflecting the polymer-specific relaxation is significantly differ-
ent, and also the exponents of the intermediate power-law
spanning between the terminal τ1 and local time τα. In the case
of the dendrimers both techniques provide rather similar
curves. Yet, the agreement at high frequency is less manifested
and the corresponding exponents in the intermediate regime
differ (cf. inset of Figure 10b showing the apparent, frequency
dependent exponent).

Temperature and Mass Dependence of Viscosity and

Diffusion. In Figure 11, we present the temperature
dependence of the (zero-frequency) viscosity η of PPG and
the PPI dendrimers of different M. In both cases, super-
Arrhenius dependence is observed being characteristic of glass

Figure 10. (a) Scaled dynamic viscosity49 of PPG in comparison with the scaled spectral density from FC NMR calculated from the data shown in
Figure 6a). (b) Same representation for the PPI dendrimer G5. The inset shows the corresponding apparent exponent as a function of frequency
(derivative of the curves). The dashed lines indicate power-law behavior behavior corresponding to that observed in Figures 4 and 5.

Figure 11. (a) Zero-shear viscosity of the liquid propylene glycol (PG) and the polymer PPG (colored circles). For PG and PPG 18k (cf. Figure 7a)
the time constants τα(T) obtained from combining FC NMR and DS measurements are also included (dashed lines) after vertical scaling to coincide
with the viscosity data points. (b) The same plot for the PPI dendrimers with the dashed lines again reflecting (scaled) τα(T) values (cf. Figure 7b).
Open symbols: literature data for G4 and G5.28

Figure 12. (a) Arrhenius plot of the diffusion coefficient D for the different generations (G2-G5) of the PPI dendrimer as obtained by PFG 1H NMR
(solid symbols) and previously by FC 1H NMR (open symbols). (b) Molar mass dependence of the zero shear viscosity η and the diffusion
coefficient D of the PPI dendrimer; power-laws are suggested by dashed lines with apparent exponents (as indicated).
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forming systems. It agrees well with that of the (vertically
scaled) τα(T) as obtained from constructing the NMR master
curves and directly from DS, i.e. η(T) ∝ τα(T) holds for both
kinds of systems. Up to our knowledge there is only one other
report28 which provides the viscosity for PPI dendrimers G4
and G5 at just two temperatures (open symbols); the data
agree well (cf. Figure 11b).
In Figure 12a the temperature dependence of the diffusion

coefficient D(T) of the dendrimer as determined by PFG NMR
is displayed and tentatively interpolated by an Arrhenius law
being appropriate at such high T. We also included the
previously reported D values as estimated by FC 1H NMR.19

While the agreement among PFG and FC 1H NMR is fair for
the dendrimers G3−G5, stronger deviations are found for G2
for which the D value is highest and apparently exceeds the
resolution limit of FC NMR.
Finally, in Figure 12b we show the M dependence of the

diffusion coefficient and the viscosity, for the investigated
dendrimers. We estimate D(M) ∝ M−1.6±0.2 and η(M) ∝
M1.9±0.2, respectively, via linear fitting on double-logarithmic
scales. The latter is in accordance with η(M) ∝ M2.1 obtained
by other authors employing low-shear rotational viscosimetry.53

The expected η(M) ∝ M1/3 D−1(M) thus holds in good
approximation, which is derived in Appendix B eq 44 and
discussed below.

■ DISCUSSION

Poly(propylene glycol) with different M and PPI dendrimers of
different generations G were investigated by FC 1H NMR,
shear and dielectric relaxation experiments. By application of
FTS, master curves were constructed covering polymer-specific
as well as local dynamics. Although quite different fluctuations
are probed, qualitatively similar spectral evolution with M (or
G) is observed. Between the local dynamics (α-process) and
the terminal relaxation (depending on M) an intermediate
frequency regime 1/τt < ω < 1/τα is found, which can be
approximated by at least one power-law with exponents
depending on the macromolecular architecture (polymer or
dendrimer) as well as on the probing method.
It is the purpose of the present contribution to demonstrate

that the results of the methods are most conveniently compared
in the spectral density (NMR) and the dynamic viscosity
(rheology) representation, where the polymer-specific effects
appear most pronounced. However, it is suitable to construct
master curves in the susceptibility representation as merely
frequency shifting is required while the integral over the
spectral density is conserved. Without performing a full
description of the corresponding spectral densities (covering
polymer and α-relaxation), which is not easily possible, the
evolution of the polymer-specific modes with M can be
quantified in the zero-frequency limit and tested against
theoretical predictions. We note that, beyond the search for
characteristic power-laws in the dispersion data, this is currently
the only reliable way to extract quantitative, model-free
information in the case of FC 1H NMR. Although a different
kind of correlation function is involved, dielectric relaxation can
be included in the methodological comparison.
For the zero-frequency limit considered here, a “cumulative

mode ratio” Fi(M) (with i = NMR, G, and DS) is introduced,
which measures the ratio of a mean relaxation time, averaged
over the mode distribution probed by the particular technique,
with respect to the local time scale τα. It can be directly read off
when the relaxation spectra are scaled to that of the low-M limit

system. The ratio Fi(M) reflects a “structure factor”, i.e., it does
not depend on a possible M dependence of τα (reflecting a
possible M dependence of Tg), what is usually observed for
short-chain polymers. In other words, “iso-frictional” dynamics
are compared. For the different methods, the function Fi(M)
displays different M dependences, usually in terms of a power-
law. Generally, while theM dependence is strongest for DS, it is
weakest for FC 1H NMR. In the case of PPG, the different
Fi(M) follow the predictions of the Rouse model in good
approximation, and clear indications are found that entangle-
ment dynamics sets in around Me ≅ 10 kg/mol, which is higher
than reported elsewhere: values from the literature span
between Me ≈ 3 kg mol−1 (ref 54), Me ≈ 5.3 kg mol−1 (ref
36), and Me ≈ 7 kg mol−1 (ref 55). For a more reliable
determination additional M need to be investigated. In the case
of FC 1H NMR intra- as well as intermolecular relaxation
contributions control the M dependence of FNMR(M). Given
the small M range for which Rouse dynamics applies and the
weak M dependence of FNMR(M), it cannot be decided so far
what contribution dominates. Here, future FC measurements
by 2H NMR may settle the question. We note that while the
low-frequency dispersion, i.e., the change of the relaxation rate
R1 with frequency, is always determined by the intermolecular
relaxation,15−17 the absolute contribution depends on the
particular polymer system.
Regarding the PPI dendrimer, similar relaxation spectra are

observed as well, when NMR and rheological data are
compared. Again, FNMR(M) grows weaker with M and a
behavior reminiscent of Rouse dynamics is observed.
Reinspecting the relaxation spectra of the highest generation
(G5) in detail, indication of an inflection point can be
recognized instead of a well-defined intermediate power-law, as
first anticipated in our analysis. Indeed, some bimodal spectral
shape is observed when the derivative, i.e., the apparent
exponent is considered (cf. inset of Figure 10b) suggesting that
actually two slow relaxation processes appear (ωτs ≪ 1). Three
relaxation processes were also identified by Brownian
simulations,32 namely (i) rotation of the dendrimer as whole,
(ii) rotation of the dendrimer’s branches, a kind of breathing
modes, and (iii) local reorientation of the segment. However,
the bimodal structure of the polymer-specific relaxation
spectrum may also be interpreted as reminiscence of weak
entanglement effects, i.e., the dendrimers could interpenetrate
each other to some extent. For the PPI dendrimer addressed in
this study, only five generations can be synthesized, wherefore
the three processes are difficult to separate−essentially a single
apparent intermediate power-law is safely identified. Thus,
future work should focus on a dendrimer class which allows
studying more generations.
Measuring both η(T, M) and D(T, M), the latter by FC as

well as FG NMR, the corresponding M dependencies,
specifically D(M) ∝ M−1.6±0.2 and η(M) ∝ M1.9±0.2, closely
follow an interrelation, which can be derived from rather
general arguments, explicitly η(M) ∝ M1/3 D−1 (M) (Appendix
B). Within the “elastic ball” model presented in our previous
publication19 providing D ∝ M−2/3 interpenetration is
considered as a surface effect referring to the case of large
dendrimers, the linear size of which being much larger than the
segment length, i.e., Rg ≫ b. In our case, however, Rg ≈ 15 Å
and b ≈ 5 Å are comparable and nearly 50% of all segments are
situated in a surface layer of depth b. Therefore, the limit of
strong interpenetration is more appropriate: if the dendrimer
molecules strongly interpenetrate themselves, i.e., the character-
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istic length of interpenetration is on the order of Rg ∝ bN1/3

and breathing modes start to play a key role for translational
displacements. Indeed, due to the uncrossability of different
dendrimer branches from different interpenetrating dendrimers,
breathing modes can create free space for performing large
scale translation. The breathing modes of a given dendrimer
provide space for the segments of neighboring dendrimers for
translating on a distance of the segment length b. As was
discussed in ref 19, the typical breathing time scales as τbr ∝
τsN

2/3. Provided that the translations of the N monomers of the
dendrimer due to the breathing mode of its neighbors are
uncorrelated, the diffusion coefficient can be estimated as D ∝
((b2/τbr) · (1/N)) ∝ N−5/3, which is close to the experimental
observation.

■ CONCLUSIONS

We investigated the polymer PPG and dendritic PPI of
different M by dynamic shear experiments and by field-cycling
1H NMR relaxometry in a large temperature range at T > Tg. In
both cases, the α-process exhibits a super-Arrhenius temper-
ature dependence typical of glass forming liquids. In order to
provide a direct comparison, we propose to plot the relaxation
data in the spectral density representation, i.e., the rescaled
spectral density R1(ωτα)/R1

α(0) is compared to the rescaled
dynamic viscosity η′(ωτα)/ηα′(0), where R1

α(0) and ηα′(0) are
the corresponding zero-frequency limits for a simple liquid
reference system. Dielectric data are included in this
comparison. In both, the polymer as well as the dendrimer,
this representation shows qualitatively similar evolution with M
among the techniques. The quantitative differences can be
brought out by introducing a cumulative mode ratio Fi(M)
(with i = NMR, rheology, and DS) which measures the zero-
frequency plateau of the spectral density with respect to that of
the simple liquid limit. In the case of PPG each technique
provides a different power-law behavior which essentially agrees
with the prediction of the Rouse model (M < Me). For PPG
with its normal mode relaxation, dielectric spectra can be
included in the comparison. Actually, FDS(M) shows the
strongest while FNMR(M) shows the weakest M dependence.
Moreover the crossover to entanglement dynamics is estimated
to Me ≈ 10k.
In the case of the PPI dendrimer again systematic differences

are observed for the rescaled spectral density as well as for
FNMR(M) and FG(M), yet, the interpretation is still preliminary.
An extensive, intermediate power-law regime is identified
covering the frequency range between the terminal relaxation
and the local (segmental) relaxation, yet, with the exponent
differing among the techniques. Qualitatively the spectra show
some reminiscence of Rouse dynamics.
Without performing a full interpolation of the relaxation

spectra, the analysis allows for testing theoretical predictions.
The correspondence of JNMR(ω) with η′(ω) spectra establishes
FC NMR as a powerful tool of “molecular rheology” accessing
the microscopic processes underlying the (macroscopic)
rheological and dielectric behavior of soft matter
Measuring both η(T,M) and D(T,M), the latter by FC as well

as field gradient NMR, the M dependences are revealed,
specifically D(M) ∝ M−1.6±0.2 and η(M) ∝ M1.9±0.2 is observed
in accordance with the relation η(M) ∝ M1/3 D−1(M) derived
from general arguments. Improving our recent “elastic ball”
model by assuming interpenetration of the dendrimers we find
D(M) ∝ M−5/3, again in nice agreement with the experiment.

■ APPENDIX A

Derivation of low-Frequency Limits of the Spin−Lattice
Relaxation Rate in Polymers

The most general expression for the proton spin−lattice
relaxation rate, when determined by fluctuations of the
magnetic dipole−dipole (DD) interaction, is given by37,56

∫ω
π

γ ω

ω

= ℏ + +
∞

R I I t A t

t A t t

( )
8

5
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4 2
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where Y2p(ek⃗m) is the component p of the spherical harmonic of
rank 2, Ns the number of spins and ek⃗m(t) = ((rk⃗m(t))/(rkm(t)))
the unit vector with rk⃗m(t) being the internuclear vectors. For
isotropic systems Ap(t) does not depend on p. The correlation
function (20) contains information about the dynamics of all
spins and will be called the total DD correlation function. Its
initial value depends on the spatial distribution of spins
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Introducing the second moment

∑γ= ℏ +
≠
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the relaxation rate can be written as

∫ω ω ω= +
∞

R M t C t t C t t( )
2

3
{cos( ) ( ) 4 cos(2 ) ( )} d1 2

0
2 2

(23)

where C2(t) = ((A(t))/(A(0))) is the normalized DD
correlation function with the corresponding spectral density

∫ω ω≡
∞

J t C t t( ) cos( ) ( ) d
NMR

0
2 (24)

Then, the relaxation rate can be expressed as

ω ω ω= +R M J J( )
2

3
( ( ) 4 (2 ))
NMR NMR1 2 (25)

The total DD correlation function contains both intra- and
intermolecular contributions and can be decomposed in a sum
of intra- and intermolecular spectral densities

ω ω ω= − +J p J pJ( ) (1 ) ( ) ( )
NMR NMR

intra
NMR
inter

(26)

where p is the fraction of the intermolecular DD interactions
contributing to M2.
As derived,56 the zero-frequency limit of the intermolecular

rate is given by
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where Rg is the radius of gyration, D the diffusion coefficient,
and ns the spin density. In the Rouse model (M < Me), D can be
expressed through the segmental relaxation time τs and the
number of Kuhn segments N, explicitly DR = (1/3π2)(b2/
τsN).

27 Together with Rg = (bN1/2/√6) it follows:
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The intermolecular second moment can be estimated along
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where a0 is a characteristic cut-off length on the order of the
distance between nearest spins on different macromolecules.
We can now combine eq 28 and M2

inter = pM2 with

π τ
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which enters in eq 4. The corresponding intramolecular
relaxation rate R1

intra(0) yielding a logarithmic N dependence
under the condition of Rouse and entering also in eq 4 is well
known from literature.22,45

Concerning the TR model (M > Me), one again applies eq
27, which holds universally. For the TR model one
consequently finds
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together with Rg leading to
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For the n-renormalized Rouse models, one finds43
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eqs 33 and 34 are used in eqs 6 and 7.
The intramolecular part of JNMR(0) for the TR as well as the

n-RR models can be derived from the following expression
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exponentially decaying for all models, where τ1 is the terminal
relaxation time. For the zero-frequency limit one gets:
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The decay of the four-point dynamical correlation function
⟨bn

z(τ1)bn
z(0)bn

x(τ1)bn
x(0)⟩ is essentially different for the TR and

n-renormalized Rouse model, respectively. For the TR model
one finds56
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Here (b4/Ne
2) is the remaining correlation after (free) Rouse

dynamics and (bNe
1/2/bNNe

−1/2) the probability for polymer
segment to return at initial part of the tube at times on the
order of τ1. Furthermore, bNe

1/2 is the size of the tube and
bNNe

−1/2 the tube length.
For the n-renormalized Rouse model, which is spatially

isotropic, one can derive56
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With the expressions for the terminal relaxation times
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we can get the final estimates used in eqs 6 and 7:
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■ APPENDIX B

Connection between Zero-Frequency Viscosity and the
Diffusion Coefficient

The connection between η = η′(ω → 0) and the diffusion
coefficient D can be derived from general arguments.57−59 The
viscosity is the integral over shear-stress tensor correlation
function60 and formally reads

∫η σ σ= ⟨ ⟩αβ αβ
∞V

k T
t t( ) (0) deq

B 0
0 0

(40)

The stress tensor σ0
αβ has the following structure:

Macromolecules Article

DOI: 10.1021/acs.macromol.5b01805
Macromolecules 2015, 48, 7521−7534

7532

http://dx.doi.org/10.1021/acs.macromol.5b01805


∑ ∑σ = − +αβ α β α β

⎧

⎨
⎪

⎩⎪

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎫

⎬
⎪

⎭⎪
t

V M
P t P t R t F t( )

1 1
( ) ( )

1

2
( ) ( )

i

i i

j

ij ij0

(41)

Here V denotes the volume of the system and M the molar
mass, respeictively. Pi

α(t) is the component α ∈ {x, y, z} of the
total momentum of molecule i at moment t, Rij

α(t) is the
component α of the vector connecting the centers-of-mass of
molecules i and j. The component β ∈ {x, y, z} of the total
force exerted on molecule j by molecule i is Fij

β(t). After
neglecting the kinetic part of the stress tensor, one can write
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Assuming further dynamical correlations of all dendrimer
pairs to be equivalent, the expression can be rewritten

∫ ∑η = ⟨ ⟩α β α β
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where ns is the segment concentration. A final reasonable
assumption is that the dynamical correlation function decays
with the translational relaxation time τtr ∝ Rg

2D−1. Then, eq 43
can be simplified further:
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Here z ∼ 10 is the number of nearest dendrimer molecules. As
the radius of gyration scales like Rg ∝ N1/3,61 the relation
between viscosity and diffusion coefficient becomes
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n k T
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4

2
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(45)

which is very close to the experimental observation.
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(14) Meier, R.; Schneider, E.; Rössler, E. A. J. Chem. Phys. 2015, 142,
034503.
(15) Harmon, J. F.; Muller, B. H. Phys. Rev. 1969, 182, 400.
(16) Sholl, C. A. J. Phys. C: Solid State Phys. 1981, 14, 447.
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2013, 46, 5538.
(19) Mohamed, F.; Hofmann, M.; Pötzschner, B.; Fatkullin, N.;
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ABSTRACT: Due to the single-particle character of the quadrupolar
interaction in molecular systems, 2H NMR poses a unique method for
probing reorientational dynamics. Spin−lattice relaxation gives access to the
spectral density, and its frequency dependency can be monitored by field-
cycling (FC) techniques. However, most FC NMR studies employ 1H; the
use of 2H is still rare. We report on the application of 2H FC NMR for
investigating the dynamics in molecular liquids and polymers. Commercial as
well as home-built relaxometers are employed accessing a frequency range
from 30 Hz to 6 MHz. Due to low gyromagnetic ratio, high coupling
constants, and finite FC switching times, current 2H FC NMR does not reach
the dispersion region in liquids (toluene and glycerol), yet good agreement
with the results from conventional high-field (HF) relaxation studies is demonstrated. The pronounced difference at low
frequencies between 2H and 1H FC NMR data shows the relevance of intermolecular relaxation in the case of 1H NMR. In the
case of the polymers polybutadiene and poly(ethylene-alt-propylene), very similar relaxation dispersion is observed and
attributed to Rouse and entanglement dynamics. Combination with HF 2H relaxation data via applying frequency−temperature
superposition allows the reconstruction of the full spectral density reflecting both polymer as well as glassy dynamics.
Transformation into the time domain yields the reorientational correlation function C2(t) extending over nine decades in time
with a long-time power law, C2(t) ∝ t−0.45±0.05, which does not conform to the prediction of the tube-reptation model, for which
∝ t−0.25 is expected. Entanglement sets in below C2(t = τe) ≅ S2 = 0.001, where τe is the entanglement time and S the
corresponding order parameter. Finally, we discuss the future prospects of the 2H FC NMR technique.

■ INTRODUCTION

NMR relaxometry, i.e., measuring the spin−lattice relaxation
time T1 or the spin−spin relaxation time T2, is a well
established method for probing the dynamics in condensed
matter. In particular, with the availability of a commercial field-
cycling (FC) relaxometer since about 2000, NMR relaxometry
received new momentum, as it is now routinely possible to
measure the dispersion of the spin−lattice relaxation in a
frequency range of 10 kHz to 30 MHz (1H).1−5 With the use of
a home-built relaxometer, even frequencies down to, say, 10 Hz
are nowadays accessible.6,7 The technique “cycles” the magnetic
field produced by a resistive electromagnet from a (high)
polarization field down to a (low) relaxation field and back to a
(high) detection field. As in the case of dielectric spectroscopy
(DS), relaxation spectra are collected for various temperatures
and motional models in terms of their spectral density or
susceptibility, respectively, are tested.
Most of the FC studies employed 1H NMR. Due to the

rather low detection field (about half a Tesla), protons with
their high gyromagnetic ratio provide the most convenient way
to get relaxation profiles within a reasonable time. Without

taking recourse to isotope labeling, 1H FC NMR is well suited
to study in particular the collective dynamics in soft matter, for
example, in polymers, dendrimers, or liquid crystals. Here,
collective dynamics is governed by frequency−temperature
superposition (FTS); that is, the spectral shape of the dynamic
susceptibility virtually does not change with temperature.8−12

As in the case of shear stress relaxation,13,14 collecting NMR
relaxation data at different temperatures allows master curves to
be constructed, which significantly extend the still narrow
frequency range of the FC technique. Regarding polymers,
different power-law dispersions were identified,2−4,15−23 allow-
ing the tube-reptation model to be tested,24 for instance. The
high similarity of such “broad band” NMR relaxation spectra
with the corresponding shear relaxation spectra may establish
FC NMR as a method of molecular rheology.25

The relaxation mechanism of 1H NMR is provided by the
fluctuation of the magnetic dipole−dipole interaction, which by
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its very nature is a many-particle interaction.26 For example,
there is an intra- as well as an intermolecular relaxation
pathway, and it is not easy to attribute both contributions in the
total relaxation. For simple liquids and polymers, it is well-
known that intermolecular contribution caused by translational
dynamics (molecular diffusion) dominates the low-frequency
dispersion of the total relaxation and allows the diffusion
coefficient to be extracted,26−29 while reorientational dynamics
yields the dispersion at higher frequencies. However, this fact
was only recently exploited in a systematic way30−36 and also
verified by molecular dynamics simulations.37,38 However,
molecular reorientations also yield an intermolecular 1H
relaxation contribution (the so-called eccentricity effect).32,39

An ultimate approach to disentangle both intra- and
intermolecular relaxation is given by the isotope dilution
technique; first FC experiments were reported only re-
cently.35,40−43 Here, by dilution with the same but deuterated
molecule, the intermolecular relaxation is suppressed. However,
such FC experiments are time-consuming, as one has to
measure the relaxation spectra for different concentrations (and
temperatures). In the case of polymers, there are additional
problems due to the necessity of having at hand deuterated and
protonated polymers with the same molar mass and glass
transition temperature Tg. Moreover, polymer blends tend to
demix. Nevertheless, such experiments provide the intermo-
lecular relaxation contribution, in addition to the intramolecular
part. From the former, the mean square displacement as a
function of time can be extracted in addition to that from field
gradient NMR experiments.44−47 Combining both methods
discloses all the diffusion regimes of long-chain polymers
predicted by the tube-reptation model.43

With its multiparticle interaction, another problem is
inherent to 1H NMR, in particular, to 1H FC NMR with its
low spectral resolution. It is not easily possible to distinguish
between the relaxation of chemically different groups, for
example, between the methyl group and chain protons in a
polymer. In the worst case, the simple Bloch equations do not
apply and nonexponential relaxations result, rendering it
difficult to define a relaxation time.48,49 Fortunately, in many
cases, the different groups are strongly coupled due to fast cross
relaxation and relax with a common time constant, yet the
quantitative interpretation may still not be straightforward.
These problems led many researchers to investigate the
relaxation of other nuclei like 13C or 2H, for instance, where
a single-particle interaction dominates. However, here
relaxation rates for only a few frequencies were accessible, so
far.
Applying 2H NMR on (labeled) compounds does not suffer

from many of the problems mentioned above, and the power of
the techniques, in particular, regarding multidimensional solid-
state investigations has been demonstrated in innumerous
publications.50−53 First of all, the relaxation is controlled by the
quadrupolar interaction, which in molecular systems is of purely
intramolecular origin; for example, the reorientation of the
C−2H bond is probed. Each chemical group exhibits its own
relaxation rate, and by appropriate (partial) isotope labeling, the
dynamics of a specific group can be singled out. Even in the
case when, e.g., two chemically different groups are deuterated
and spectral resolution is lost due to molecular slowdown, the
resulting (total) relaxation becomes biexponential and can be
well measured in conventional high-frequency (HF) spectrom-
eters. Thus, extending the FC technique to include also the 2H
nuclei is highly desired, yet several challenges have to be

mastered. Due to the by a factor of 6 lower gyromagnetic ratio,
the detection field of the employed commercial electromagnets
is below 5 MHz, and thus, the signal-to-noise ratio is very low.
Moreover, the quadrupolar interaction is stronger than the 1H
dipolar coupling, and faster relaxation results. This may
interfere with the switching time of the FC magnet, even
more than in the case of 1H FC NMR. Nevertheless, first 2H
FC NMR studies on polymers were used to check the reliability
of the isotope dilution 1H FC NMR experiments.22,40−42,54,55

Intramolecular 1H and 2H relaxation are expected to essentially
display the same dispersion. Indeed, this was found
experimentally.
Performing experiments on a commercial as well as on a

home-built relaxometer, in the present contribution, we further
explore the potential of 2H FC NMR for studying the dynamics
in liquids and polymers. Provided that crystallization does not
interfere, liquids like glycerol or toluene undergo the glass
transition upon cooling, which results in a strong molecular
slowdown. As shown by 1H FC NMR (as well as by
conventional high-field 2H relaxation studies), strong dispersion
is expected at low temperatures approaching Tg. As will be
demonstrated, 2H FC NMR with the current technical
possibilities does not reach the dispersion region, but a
comparison with results from high-field (HF) relaxation
experiments on simple liquids yields good agreement. A direct
comparison between the results of 2H and 1H FC NMR will
confirm the relevance of intermolecular relaxation in the case of
1H NMR, often ignored in conventional 1H NMR studies.
Considering polymers like poly(ethylene-alt-ethylene) (PEP)
and polybutadiene (PB) collective, polymer-specific dynamics
lead to pronounced dispersion well above Tg. By applying FTS,
the full spectral density or reorientational correlation function,
extending over many decades in frequency or time, respectively,
can be revealed. The results will be discussed in the frame of
the tube-reptation model describing Rouse and entanglement
dynamics of long chain polymers.2,15,24,56 Finally, we will
discuss the future prospects of 2H FC NMR relaxometry.

■ THEORETICAL BACKGROUND

Field-cycling NMR is applied to monitor the frequency
dependence of the spin−lattice relaxation time T1. The latter
is determined by the evolution of the nuclear magnetization
toward its equilibrium value. The frequency is given by the
Larmor frequency depending on the magnetic relaxation field B
via ω = γB, where γ denotes the gyromagnetic ratio of the
nucleus. In the case of 2H NMR, fluctuations of the
quadrupolar interaction cause the relaxation, which in
molecular systems is strictly of intramolecular origin.50−53

Specifically, the present study focuses on the motional
narrowing regime where the NMR spectrum of a more or
less viscous liquid (or polymer melt) is given by a Lorentzian
line shape with its width reflecting the inverse of the spin−spin
relaxation time T2. In the case of (high molar mass) polymers,
due to slow polymer specific dynamics, some very small
residual coupling may still be present. The 2H spin−lattice
relaxation rate R1 = 1/T1 of an ensemble of chemically identical
deuterons reorienting presumably isotropically is connected to
the spectral densities Jm(ω) by a “BPP-type” equation26,56

ω ω ω= +R K J J( ) [ ( ) 4 (2 )]1 1 2 (1)

where K is given by
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is the 2H quadrupolar coupling constant, a

quantity easily accessible from the solid-state spectrum of a
liquid, i.e., in the glass state T < Tg when all large-angle motion
has ceased. For the systems investigated, the coupling constant
is known (cf. below). In the case of isotropic systems, all the
quadrupolar spectral densities are m-independent and Jm(ω) =
J(ω) is the Fourier transform of the second order reorienta-
tional correlation function C2(t), i.e., the correlation function of
the second Legendre polynomial. We note that DS probes
C1(t) in good approximation, i.e., the first Legendre polynomial
correlation function.57

In liquids or polymers, due to the collective nature of
molecular dynamics, quite generally, the shape of the
fluctuation spectrum in terms of the susceptibility representa-
tion χ″(ω) = ωJ(ω) virtually does not change with temper-
ature; i.e., frequency−temperature superposition (FTS) applies.
One can write the susceptibility as a function of a reduced
frequency, explicitly χ″(ωτ), where τ denotes a characteristic
correlation time, which drives the temperature dependence of
the dynamics, for example, the time τα determined by the glass
transition phenomenon (α-process). Thus, measuring at
different temperatures, one can construct master curves,
which effectively extend the covered frequency range. Actually,
this is quite important for FC NMR as the currently accessible
frequency range is still narrow (3−5 decades). In order to allow
for such master curve construction, we rewrite eq 1 in the
susceptibility representation3,4,17−19

ω ω χ ω χ ω χ ω= ″ + ″ ≡ ″R K K( ) [ ( ) 2 (2 )] 3 ( )
Q1 (3)

Although χQ″(ω) is a weighted sum of two susceptibilities,
both quantities are essentially indistinguishable for broad
relaxation dispersion monitored on logarithmic scales. We
note that the susceptibility representation of NMR relaxation
data was already used by Cohen-Addad and co-workers.58 In
many cases, for example, in rheological studies as well as in 2H
FC NMR studies, the time constant τα cannot be obtained
directly, since the susceptibility maximum linked to the main
relaxation (α-) process is not observable; i.e., the condition ωτα
≅ 1 is difficult to match experimentally. However, the
temperature dependence of the shift factor aT is that of τα.

Assuming isotropic reorientation in the extreme narrowing, the
simple relation R1 = 5Kτ2 holds, which yields τ2(T) from R1(T)
provided that K is known from the solid-state spectrum
accessible at low temperatures. Here, τ2 is the time constant of
the second Legendre correlation function.
In viscous liquids not too close to Tg, the reorientational

spectral density is well interpolated by a Cole−Davidson
(CD)57 distribution of correlation times G(ln τ) (or equiv-
alently by a Kohlrausch decay in the time domain), a fact
extensively demonstrated by dielectric and light scattering
studies8−12 as well as by many 2H HF NMR relaxation
investigations, which jointly analyzed T1(T) and T2(T).

59−62

This distribution will also be applied in the case of toluene and
glycerol-d5. Actually, choosing G(ln τ) is nothing else than
introducing a nonexponential correlation function C2(t)
reflecting the collective dynamics.

■ EXPERIMENTAL SECTION

Parts of the 2H spin−lattice relaxation experiments (toluene:
methyl deuterated: -d3, phenyl deuterated: -d5, fully deuterated:
-d8 and PEP-d10) were carried out on a home-built FC NMR
relaxometer located at the Technische Universitaẗ Darmstadt.
For the measurements on PEP-d10, a home-built main current
source5−7 was used with a polarization field of 4.5 MHz and a
detection frequency of about 6 MHz for deuterons. The earth
and other stray magnetic fields from the surrounding laboratory
equipment were compensated, and the evolution fields were
calibrated carefully.6,7,63 The temperature was stabilized by a
thermally controlled gas flow across the probe. The measure-
ments on toluene-d3, -d5, and -d8 were performed using a
commercial gradient pulse amplifier instead of the home-built
one, namely, the model Avanto SQ from Siemens. All three
channels of this amplifier were used in parallel to set up a
detection field of 2 T (12 MHz), but for purposes of a stable
coil temperature, the polarization field was kept at 4.5 MHz. In
order to reach also lower temperatures (down to 80 K), a
commercial cryostat was used. This cryostat contains
unavoidable metal parts in which during field switching eddy
currents are induced so that the switching time is about 4 ms
and the minimum evolution field is limited to 4 kHz. The
absolute accuracy of temperature is ±1.5 K and its stability ±1
K.
The measurements for glycerol-d5 were carried out on a

STELAR relaxometer FFC 2000 located in Bayreuth, which

Figure 1. (a) 2H spin−lattice relaxation rate R1 of toluene-d5 as a function of frequency at various temperatures as revealed by FC NMR.
Conventional, high-field data measured at 14 MHz (present work), 13.8 MHz,75 34.4 MHz,75 and 55.8 MHz75 are included (open symbols). (b)
Corresponding 2H relaxation rate of toluene-d3: HF data measured at 14 MHz (present work), 30.7 MHz,77 34.4 MHz,70 and 55.2 MHz59 are added
(open symbols). For the two lowest temperatures, we show an interpolation with a Cole−Davidson spectral density. In both figures, the connected
black points show the results of toluene-d8 and the straight lines denote the average rate (cf. text).
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allows measurements in the temperature range from 180 to 420
K and in a 2H Larmor frequency range 800 Hz ≤ ν ≤ 3 MHz.
The temperature is maintained by evaporating liquid nitrogen,
which passes through a glass Dewar carrying the NMR coil with
the sample; accuracy and stability of temperature is comparable
with that of the home-built relaxometer.

■ RESULTS AND DISCUSSION

1. Molecular Liquids Undergoing the Glass Transition.
High-field 2H NMR relaxation studies are well established for
investigating the dynamics in liquids, in particular in such
systems which undergo the glass transition. Here, a strong
molecular slowdown is observed upon cooling, provided that
crystallization is avoided. Prominent examples are glycer-
ol,61,64−67 propylene carbonate,68 salol,69,70 o-terphenyl,60,61,71

and toluene.59,72−78 Typically, the spin−lattice relaxation rate is
monitored as a function of temperature and at a few
frequencies. The major aim is to extract correlation times
which characterize the glass transition. In order to achieve this
goal, an appropriate spectral density has to be assumed. As
discussed (cf. Theoretical Background), a CD spectral density
is well suited to describe R1(T) (and R2(T)) in the modestly
viscous regime of the liquid; it provides correlation times which
agree with those reported by other methods. At lower
temperatures close to Tg, secondary processes become relevant,
and a straightforward analysis relying solely on HF NMR
relaxation data is elusive. This, of course, makes 2H FC NMR a
promising tool for overcoming the limits of conventional (HF)
NMR studies. Here, we discuss the 2H FC NMR results for
differently deuterated toluene (-d3, -d5, -d8) and glycerol-d5. As
mentioned, 2H NMR solely probes a single-particle reorienta-
tional correlation function which can easily be interpreted.
In Figure 1, we show a few examples of the 2H relaxation

dispersion of toluene-d5 (Figure 1a) and toluene-d3 (Figure
1b), respectively, as revealed by FC NMR. They were measured
with a home-built relaxometer covering a 1H frequency range of
4−4500 kHz (cf. Experimental Section). Note that, due to the
different gyromagnetic ratio, for 2H NMR, the frequencies
available are by a factor of 6 lower than those for 1H FC NMR.
All relaxation decays are exponential and thus provide a well-
defined relaxation rate R1(ν). Starting with toluene-d5, no
frequency dependence is observed down to the lowest
temperature (160 K). Even including results from HF NMR
experiments taken from refs 59 and 75, no dispersion is found,
yet the agreement between the results from FC and HF
experiments is very satisfactory. In the case of the toluene-d3
(Figure 1b), data down to somewhat lower temperature (150
K) can be collected due to the fact that the fast methyl group
reorientation reduces the effective QCC (cf. eq 2 and below)
and thus decreases the relaxation rate compared to that of
toluene-d5. Again, no dispersion is recognized for the FC NMR
data; however, the HF data59,70,77 clearly show the onset of
dispersion. The onset can be reproduced by a CD spectral
density with a stretching parameter of β = 0.32 (taken from refs
59 and 75) and included in Figure 1b. For completeness, in
Figure 2, the currently available 2H relaxation rates for toluene
are displayed as a function of temperature.
We also measured the spin−lattice relaxation of toluene-d8.

Figure 3 shows the normalized relaxation function plotted
versus a rescaled time t⟨R1⟩ for some frequencies and
temperatures measured. Here, ⟨R1(ω)⟩ denotes the initial
slope, i.e., the average rate. Essentially, master curves are found;
however, small deviations occur for the different temperatures,

since the ratio of the two relaxation times is not constant (cf.
below). The nonexponential relaxation can be well fitted to a
sum of two exponentials with weighting factors of 5/8 and 3/8,
respectively, reflecting the number of different deuterons in the
molecule. Here, we note that the correct weighting factors can
only be retained in a limiting temperature range. While at low
temperatures, due to the not ignorable switching time, the fast
relaxation gets partly lost, at high temperatures and long
relaxation times (∼ seconds), the stability of the detection field
due to thermal expansion of the main coil decreases. The
resulting relaxation rates R1

d3(v) and R1
d5(v) are included in parts

a and b of Figure 1, respectively (black connected symbols).
Satisfying agreement is observed with the data obtained for
toluene-d5 and toluene-d3.
Given the rigid-lattice QCC values for toluene-d5 as well as

for toluene-d3 and taking R1(ω) = 5Kτ2 (cf. Experimental
Section), one can extract the correlation time τ2(T) from both
data sets in Figure 1. For toluene-d5, a value of QCCd5 = 180
kHz was reported,59,79 and for toluene-d3, with its fast
reorienting methyl group, the motionally averaged coupling is
QCCd3 = 52 kHz (T < Tg).

59 In Figure 4, the extracted

correlation times are compared to a compilation of time
constants collected by other techniques like DS and depolarized
light scattering.80 Overall, satisfying agreement is found; at high
temperatures, some deviations are observed. As discussed
below, they may be explained by some extent of anisotropic

Figure 2. 2H spin−lattice relaxation rate of toluene as a function of
temperature. Closed symbols, present work; open symbols, literature
data (13.8, 34.4,75 30.7,77 34.4,70 55.2,59 and 55.8 MHz75).

Figure 3. Normalized magnetization decay ϕ of toluene-d8 for selected
frequencies and temperatures displayed as a function of the rescaled
time. A biexponential fit is shown for 200 K (straight line) as well as
the decomposition in its monoexponential components (dashed lines).
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reorientation. As typical of the glass transition in molecular
liquids, reorientational time constants revealed by the various
methods agree well, i.e., τ2(T) ≡ τα(T).
As discussed, collective dynamics in condensed matter

usually exhibits FTS; i.e., the shape of the susceptibility
virtually does not change with temperature, and it can be
expressed as a system specific susceptibility function χ″(ωτα).
However, when measurements cover a very large temperature
range, including temperatures close to Tg FTS may fail. In the
present case, we stick to high temperatures only. The simplest
way to construct master curves is by transforming the data to
the susceptibility representation ωR1 (cf. Theoretical Back-
ground) and taking τα(T) from independent experiments.
Another possibility is to produce susceptibility master curves by
shifting different data sets solely along the ω-axis and check the
extracted shift factor in terms of τα(T) against independent
measurements of the latter. Shifting along the frequency axis
without any vertical shift conserves the integral over the
susceptibility; the latter is given by the QCC, which is
temperature independent in good approximation. Such
susceptibility master curves are easily compared to results
from DS, for instance.
In Figure 5, we constructed a master curve χ″(ωτα) for the

toluene-d5 data (NMR and DS) by taking recourse to the time
constants plotted in Figure 4. The maximum of χ″(ωτα) is

scaled to one. First, we discuss the 2H FC NMR results, which
are extended by HF data.75 In the latter case, R1(T) data,
measured at a single frequency, is taken, and in order to get the
reduced frequency ωτα for each temperature, the time constant
τα(T) is picked off from Figure 4. For both data sets (FC and
HF data), the same scaling factor of the amplitude is applied.
While the 2H FC data follow a straight line, i.e., ωR1 ∝ ω1, as
expected as a consequence of the dispersion-free data of the
spectral density representation in Figure 1, the HF data exhibit
a relaxation maximum which fits into the trend of the 2H FC
data. We added also the dielectric curve χ″(ωτα) of toluene
(unpublished results, see also ref 9). Good agreement between
DS and 2H NMR is revealed. In the case of toluene with its low
electric dipole moment, DS can only probe a small amplitude
range on the low-frequency side of the relaxation maximum. In
addition, in most dielectric spectra of liquids (and polymers),
the low-frequency flank is spoiled by the presence of parasitic
contribution of a dc conductivity. Here, FC experiments
provide access to a much larger susceptibility range, and
dynamics slower than the α-process (for instance, polymer
dynamics, see below) contributes here.
The master curve in Figure 5 can be interpolated by a CD

susceptibility57 (not shown), as typically done for dielectric
spectra of glass forming liquids.10,12 Moreover, the master
curves demonstrate that in the temperature range (160−290 K)
investigated by 2H NMR no influence of another process like
the β-process is recognized. Actually, from analyzing the
dielectric spectra close to Tg = 117 K,9 it is known that a
pronounced β-process emerges at low temperatures. In other
words, the α- and β-process have merged at temperatures, say,
above 160 K, a phenomenon well-known in glass forming
liquids.9,81 We repeat that 2H FC NMR with its current
instrumentation cannot reach lower temperatures, as the rate
becomes too high to be resolved. The master curve displayed in
Figure 5 can be Fourier transformed to yield the reorientational
correlation function C2(t/τα), which is included in Figure 11,
for comparison (cf. below).
As already mentioned in the context of discussing the data in

Figure 4, when extracting correlation times from the relaxation
rates, one implicitly assumes isotropic reorientation. However,
the deviations observed at high temperatures with respect to
the literature data may originate from anisotropic reorientation
of the toluene molecule. For example, given that the methyl
group rotation is fast77 and assuming overall isotropic
reorientation, the ratio of the relaxation times R1

d5(v)/R1
d3(v) =

r is expected to be r = (QCCd5/QCCd3) = (180/52)2 = 12.0,

thus independent of temperature. Actually, the ratio decreases
above 160 K reaching values around 6 at ambient temperature,
and this may be explained by the presence of anisotropic
reorientation as suggested in the literature.82−84 Taking the
Woessner model of anisotropic reorientation,85 in the
Appendix, we extract from r(T) the anisotropy parameter δ =
D||/D⊥.
Next, we consider the liquid glycerol-d5; the corresponding

relaxation rate R1(ω), measured with the commercial
relaxometer FFC 2000, is displayed for different temperatures
in Figure 6. Compared to Figure 1, the frequency range extends
to somewhat lower frequencies, but also the upper limit is
smaller (800 Hz to 3 MHz). Again, no dispersion is revealed in
the frequency range covered by 2H FC NMR, and good
agreement is found with HF relaxation data. For completeness,
we note that at the highest temperatures a very weak dispersion

Figure 4. Reorientational correlation times τα for toluene and glycerol
as a function of temperature as determined from 2H FC NMR (closed
symbols) and from several other techniques (open symbols80).

Figure 5. Susceptibility master curve for toluene-d5 as obtained from
2H FC and high field (HF) NMR relaxometry;75 in addition, the
corresponding dielectric spectrum (DS) is included (unpublished
results, cf. also ref 9).
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is found (cf. inset in Figure 6), which is actually close to the
error margin of the measurement and for which we currently
have no explanation. Possibly, the finding is related to hydrogen
exchange processes, like those found by 1H FC NMR in water.1

Taking the average rate from the 2H FC data and QCCglyc =
165 kHz,61 we again get very satisfying agreement with the time
constants reported by other techniques (cf. Figure 4).
Figure 7 shows a master curve constructed by taking recourse

to τα(T), as given in Figure 4. For the 2H FC and HF NMR

data (cf. ref 61), again the same scaling factor for the relaxation
values is applied. While the 2H FC NMR data follows a straight
line, i.e., ωR1 ∝ ω1, the HF NMR data exhibits a relaxation
maximum which fits into the 2H FC NMR data. We included
the curve provided by our DS measurement,86 which follows
the HF 2H NMR data. Moreover, comparing the 2H NMR
results with those from the intramolecular 1H relaxation
dispersion studies obtained by performing isotope dilution
experiments,30 complete agreement is recognized. As in the
case of 2H NMR, the 1H intramolecular rate probes solely the
reorientational dynamics. Thus, 2H, 1H(intra), and DS all probe
essentially the same susceptibility, which can be well
interpolated by the same CD function. In contrast, the total
1H relaxation (taken from ref 30 and included in Figure 5)
exhibits a low-frequency shoulder, which thus has to be

attributed to the intermolecular relaxation contribution. As
established long ago,27−29 the intermolecular correlation
function shows a long-time power-law behavior, C(t) ∝ t−d/2,
with d being the spatial dimension. With respect to the more or
less exponential decay of C2(t) in liquids, this long-time power
law in d = 3 will always dominate the response at long times or
at low frequencies, respectively. This implies that for the total
1H relaxation the extreme narrowing condition (R1 becoming
frequency independent) never applies, while in the 2H case it is
essentially found at high temperatures, as demonstrated in
Figures 1 and 7. For d = 3, a square root frequency dependence
is predicted for R1(ω) at low frequencies, which directly allows
the translational diffusion coefficient to be determined in
liquids as well as polymers.4,31−36

2. Polymer Dynamics. High-field 2H spin−lattice
relaxation studies on polymer melts were conducted by several
groups.87−95 Focus was on characterizing the “local” segmental
relaxation (α-process) determined by the glass transition
phenomenon. In contrast, 2H FC NMR investigations are still
rare. For example, in the case of poly(butadiene) (PB) and
poly(ethylene oxide) (PEO), first results were reported by the
Kimmich group2,15,41,54 and by our group.22,42 In these systems,
the 2H spin−lattice relaxation is exponential, and in contrast to
simple liquids, 2H FC NMR probes pronounced dispersion at
high temperature well above Tg, reflecting polymer-specific
(collective) dynamics. They were interpreted in terms of Rouse
and entanglement dynamics. Below we will discuss these results
on PB in the context of new measurements performed on fully
deuterated poly(ethylene-alt-propylene) (PEP) with molar
mass M = 200 k (≫Me) and Tg = 206 K.
The low-Tg polymer PEP is well suited to probe the

collective dynamics of linear chain polymers over a large
temperature interval, as it provides a good compromise
between avoiding crystallization and introducing minimal
structural complexity. In contrast, structurally simpler polymers
like poly(ethylene), poly(ethylene oxide), or poly-
(dimethylsiloxane) show a strong tendency to crystallize, and
thus do not allow the dynamics to be probed from high
temperatures down to Tg. In the case of PB, the microstructure
strongly influences Tg as well as the polymer-specific dynamics.
Hence, any study has to rely on identically prepared polymer
samples, which is actually not an easy task.
Poly(ethylene-alt-propylene) with a narrow molar mass

distribution is synthesized via hydrogenation from standard
polyisoprene; the latter is obtained from anionic polymer-
ization.96 Concerning the deuterated samples, we had only
access to the fully deuterated polymer PEP-d10, which at first
glance complicates the situation, as methyl group dynamics as
well as chain dynamics are probed by 2H NMR. However, this
is actually not the case, as the methyl and the chain deuterons
yield different 2H relaxation rates which can be resolved when
the total relaxation is measured as is done in a FC NMR
experiment. In other words, the total 2H relaxation is
biexponential, which was first tested by HF 2H relaxation
(unpublished results). The relaxation dispersion was measured
by employing the home-built relaxometer in Darmstadt.
However, in comparison to the toluene measurements, we
are able to measure to higher relaxation rates R1 by using a
different home-built power supply with a shorter switching
time, which covered a frequency range of 30 Hz to 6 MHz (cf.
Experimental Section).
In Figure 8, the normalized 2H relaxation decay plotted as a

function of the reduced time t⟨R1⟩ is presented for different

Figure 6. 2H spin−lattice relaxation rates of glycerol-d5 from FC NMR
(closed symbols) and for comparison high field NMR data (5561 and
38 MHz67). Inset: dispersion at high temperatures on linear scale.

Figure 7. Susceptibility master curve constructed from taking τ2 = τα
in Figure 4: High field (HF) NMR,61 1H FC NMR (total and intra),30

and data from dielectric spectroscopy (DS)86 were added for
comparison. Solid line: interpolation by the Cole−Davidson function.
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frequencies. Here, again, ⟨R1⟩ is the mean relaxation time taken
from the initial slope of the relaxation curve. Comprising the
relaxation functions measured at all frequencies, a master curve
is found. The scatter for the long-time decay is rather high.
Nonetheless, this result indicates that the ratio of these rates as
well as the relative weight of the two exponentials are frequency
independentand temperature independent as confirmed by
HF measurements (unpublished results). The decay can be
fitted to a sum of two exponentials with the relative weights
fixed by the ratio 3/10 and 7/10 as given by the numbers of the
chemically different deuterons (solid line in Figure 8). The two
extracted relaxation rates R1

methyl(ν) and R1
chain(ν) are shown in

Figure 9a. Clearly, pronounced dispersion is identified for both
rates, which reflects polymer-specific relaxation. The ratio
R1

chain/R1
methyl = 6.5 ± 0.3 is found, as said, independent of

temperature, yet it is smaller than expected from the ratio of the
QCCs. We note that in addition to the fast methyl group
reorientation a nonmerging secondary (β-) relaxation process
has to be taken into account (unpublished results). For the
present discussion, these details are irrelevant.
As revealed by the 2H FC data (red symbols), two dispersion

regimes (I and II, as indicated) can be identified in Figure 9a.
Rather similar dispersion is observed for PB which is plotted in
Figure 9b, for comparison. In addition, we added our HF NMR
results of PEP-d10 (unpublished results), which were converted
from the temperature axis to the frequency axis by assuming

FTS. As discussed, collective dynamics in polymers (and
liquids) usually follows FTS.13,14 Showing an even stronger
dispersion, the HF relaxation data reflects a third relaxation
regime (regime 0), namely, the local dynamics (α-process).
Furthermore, we included our results for the intramolecular 1H
relaxation rate of PEP and PB, respectively, obtained from an
isotope dilution experiment, and which cover a much larger
frequency range (again, a result of applying FTS; unpublished
results). In contrast to 2H, the magnetization recovery is
exponential, yielding a single relaxation rate. Regarding the
spectral shape, the 1H (intra) and 2H data are expected to
agree, as was demonstrated above for glycerol. Indeed, the data,
appropriately scaled in amplitude (due to different coupling
constants), agree so well that the 1H (intra) data can serve as a
guide for the eye interpolating the 2H dispersion of PEP. Only
at lowest frequency some difference appears. Here one has to
keep in mind that the nominal “intramolecular” relaxation data
are obtained from measuring a sample with 10% protonated
PEP in a deuterated matrix and we refrained to extrapolate to
zero concentration. Very good agreement is also found for PB;
however, HF 2H relaxation data are missing here. More than
nine decades in frequencies are effectively covered and
encompassing all the different relaxation regimes of polymer
melts, which are discussed in detail next.
In the rate representation (Figure 9), a plateau characteristic

of the terminal relaxation is expected at lowest frequencies; this
frequency range constitutes the terminal relaxation regime IV in
the tube-reptation (TR) model. The plateau value was
calculated with the help of the terminal relaxation time,
which was determined from shear stress relaxation experiments
(unpublished results). For high-M polymers, this regime cannot
be covered by 2H FC NMR but shows up for short chains, as
seen for PB in Figure 9b. At higher frequencies, two regimes II
and I (with increasing frequency) are well recognized.
Presently, it is unclear whether another dispersion regime
(reptation in terms of the TR model; III) shows up between
regimes II and IV (cf. ref 43). In the frame of the TR model,
regime II is attributed to entanglement dynamics, more
precisely to the constraint Rouse regime for which a power
law R1 ∝ ν−3/4 is predicted; however, a behavior close to R1 ∝

ν−1/2 is actually observed for both PEP and PB, while for the
Rouse regime R1 ∝ ln(1/ν) is predicted.2,15,18,97−99 The latter is
difficult to distinguish from a power-law behavior with a rather
small exponent, what we could rather attribute. The crossover

Figure 8. Normalized relaxation decay of PEP-d10 as a function of
reduced time at T = 393 K for all frequencies investigated; ⟨R1⟩ is the
mean relaxation rate derived from the initial slope of the relaxation
decay. Decomposition into two exponentials is shown (dotted lines).

Figure 9. (a) Spin−lattice relaxation rates of PEP (200k) as a function of frequency at 393 K: 2H FC data (solid symbols) comprising rates for the
methyl and the polymer chain; intramolecular 1H FC data (crosses, shifted; unpublished results), high field data (open symbols); relaxation regimes
are indicated; the plateau value at the lowest frequencies (regime IV) is estimated from rheological experiments (unpublished results), dotted line: α-
process. (b) Corresponding relaxation rates for polybudadiene (PB) with two molar masses. In both figures, the expectation of the TR model for
regime II is indicated as a gray dotted line.
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between the two regimes defines the entanglement time τe,
which is a measure at which time the reorientational
fluctuations of the segments “feel” the “tube”,24 and which
can thus be extracted easily from FC NMR relaxation spectra.
The Rouse regime (I) continues to high frequencies until at
highest frequencies the local dynamics with its strong
dispersion sets in (regime 0). At even higher frequencies not
covered by our experiments, secondary relaxation processes will
appear as proven for both PEP and PB by dielectric
spectroscopy and HF 2H NMR (unpublished results and ref 8).
As already demonstrated for toluene and glycerol, instead of

the rate representation, the susceptibility representation of data
may be of interest for polymers, toosee Figure 10. As

discussed, this representation is the starting point for
constructing master curves by exploiting FTS. The dispersion
profiles measured at different temperatures are solely shifted
along the frequency axis to achieve best overlap. In Figure 10,
the relaxation peak reflects the α-process, while at lower
frequencies (ωτα ≪ 1) the polymer-specific contributions
starting with the Rouse contribution (regime I) and followed at
lower frequencies by another power law reflecting constraint
reptation (regime II) is recognized. The dotted line represents
a CD function interpolating solely the α-process as it appears in
simple liquids. As mentioned before, in the case of the high-M
PEP, the terminal relaxation leading to χ″(ω) ∝ ω1 is only
expected at even lower frequencies not covered by 2H NMR,
yet it shows up for shorter polymer chains. In the susceptibility
representation, it is directly seen that 2H FC NMR data does
not cover the relaxation regime 0 (“local” or “glassy” dynamics),
which leads to the relaxation maximum at high frequencies.
Upon cooling, the value of T1 quickly becomes too short to be
resolved in a 2H FC NMR experiment, a boundary which limits
the analysis in the case of simple liquids as demonstrated above.
Finally, we show in Figure 11, the reorientational correlation

function C2(t/τα) of PEP as well as of PB as obtained from
Fourier transformation of the spectral density in Figure 9. The
1H FC (intra) data were taken for interpolating the 2H data.
We added the corresponding function for toluene-d5 and
glycerol-d5 (from Figures 5 and 7). This representation of the
relaxation data, covering six decades in amplitude and nine

decades in time, is actually most convenient to illustrate the
different relaxation regimes of a high-M polymer melt.
Comparing polymer and simple liquid, a strong retardation of
C2(t/τα) is obvious for the polymers. Moreover, the decays for
PEP and PB are virtually indistinguishable, which emphasizes
the conclusion that generic, polymer-specific relaxation is
observed. While for the simple liquids C2(t/τα) can be
interpolated by a Kohlrausch function (the time domain
equivalent to the CD function), in the case of the polymers, at
least two power-law decays are observed for the high-M
samples, in addition to the short-time behavior attributed to
glassy dynamics. In regime I, a power-law decay is recognized
which closely follows the Rouse prediction, C2(t) ∝ t−1. At the
longest time, in regime II, a power-law behavior, C2(t) ∝

t−0.45±0.05, is found which does not conform to the TR
prediction for the constraint Rouse regime for which one
expects a power-law exponent α = 0.25. Possibly, the strong
rotational−translational coupling assumed in the TR model in
terms of the so-called return-to-origin hypothesis15,100,101 does
not apply in real polymers. Here, atomistic simulations will
deliver further insight provided that they reach the entangle-
ment regime which is still difficult with the current computer
power.102 In the case of PB, we added also our results for
shorter chains, yet still entangled (M > Me). Here the terminal
relaxation appears within the frequency window of 2H FC
NMR featuring an essentially exponential cutoff of the power-
law regime II. We note that entanglement dynamics sets in
below C2(te) = S2 ≅ 0.001, where τe is the entanglement time
and S the corresponding order parameter, which is on the order
of a few percent and thus very small.

■ CONCLUSION

As shown by the novel examples of 2H FC NMR relaxometry
studying molecular motions in glass forming liquids and
polymers, the technique constitutes another dynamic suscept-
ibility method thereby complementing traditional ones such as
dielectric spectroscopy, dynamic light scattering, quasi-elastic
neutron scattering, and rheology, for example. In the case of
dielectric spectroscopy with its broad frequency window,
however, only in favorable cases, i.e., for so-called type A

Figure 10. Susceptibility master curve of the chain dynamics of PEP-
d10 obtained from 2H FC NMR (filled squares) as well as
intramolecular 1H FC NMR data (crosses, scaled in amplitude); in
addition, we added high-field data (open squares; unpublished
results); dashed line: Cole−Davidson function representing the glassy
relaxation. Gray dotted line: expectation of the TR model for regime
II.

Figure 11. Segmental reorientational correlation function C2(t) of
PEP and PB vs reduced time t/τ2 as obtained from Fourier
transforming relaxation master curves in Figure 9; relaxation regimes
are indicated; numbers give the molar mass of polymers; gray dotted
lines: prediction of the tube-reptation model;15,19,100,101 for compar-
ison, the decay for two simple liquids toluene and glycerol is given.
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polymers,103 the polymer-specific dynamics is accessible in the
form of a normal mode relaxation.
Thus, the whole toolbox of susceptibility analyses (e.g., FTS

allowing for the construction of master curves) can fruitfully be
applied to FC relaxometry irrespective of which nuclear spin
species is used. At the same time, one profits from the
selectivity of NMR which in many cases allows data to be
interpreted in a much more specific way compared to other
methods. As this and some of our previous papers
demonstrated,17−22 there may be a lot of important physics
hidden in the FC dynamic range, i.e., at frequencies below the
range of typical high field NMR spectrometers. The simplest
case (e.g., toluene), when 2H FC relaxometry yields dispersion-
less rates, gives the nontrivial information that there is no slow
process. Another case discussed in this paper dealt with glycerol
and the time scale separation of molecular rotation and
translation, which is revealed when 2H and 1H relaxation
dispersion is compared. We recall that in 1H FC NMR
translational dynamics leads to a characteristic low-field
behavior of the rates.29−33 In even other cases, e.g., in network
forming monoalcohols,104,105 there are dynamics reflecting the
reorganization of the hydrogen bonding network, which
exhibits characteristic dynamics slower than the structural
relaxation. Thus, FC relaxometry should be ideally applicable to
address this problem; characteristic low field dispersion is
anticipated. A prominent case, discussed in some detail in this
paper, is long chain polymer motion. FC relaxometry has been
able, partly in concert with other methods, to test grand
theories of polymer dynamics.19,22,23,25,42 Not too much
prophecy is required that more physical cases of slow molecular
dynamics, e.g., hydrogen exchange processes1 or the dynamics
of supramolecular structures, wait for being detected by 2H FC
NMR.
As the title tells, this paper is meant to draw the attention of

the reader to the perspectives of 2H FC NMR relaxometry for
studying molecular motions in soft matter. The central question
is, why should one use deuterons? By dealing with selected
experimental examples, our paper really has proposed some
answers, which here we will try to recall in order to finally
formulate a couple of summarizing take-home messages. A
critical comparison of 1H and 2H FC relaxometry with respect
to certain key properties may be instructive. The first two
properties to be mentioned render 2H FC relaxometry a very
attractive method:
Reorientations measured exclusively: The dominant relaxa-

tion mechanism is the fluctuation of quadrupolar interaction,
i.e., in the case of organic systems with covalent CD bonds:
molecular reorientations only. Translational motions, which in
the case of 1H NMR contribute at low frequencies, do not
contribute. In consequence, theoretical understanding as well as
computer simulation is less demanding.
No cross relaxation effects: Deuteron quadrupolar inter-

actions are much stronger than dipole−dipole interactions. This
implies that cross relaxation effects, that in the case of 1H NMR
always tend to couple all system protons to each other, do not
interfere. Thus, each subgroup of deuterons represents its own
thermodynamic system and relaxes independently, and specific
isotope labeling allows highly selective studies.
Of course, 2H FC also encounters limitations:
Sensitivity problems: Due to the 2H Larmor frequency being

about a factor of 6 below that of the 1H one is more seriously
confronted with a poor signal-to-noise ratio. This stresses the
point that high detection fields are essential for a broader

application of the method. Currently, the most advanced home-
built relaxometers may reach a detection field of about 12 MHz.
Short relaxation times: Due to the relatively strong (as

compared to dipole−dipole interactions among protons)
quadrupole interaction, the relaxation times are correspond-
ingly short. This may lead to a limitation for low fields,
especially in FC where field switching times are notoriously
long anyway. Thus, even if evolution fields down to 10−6 T6

(corresponding to 2H frequencies of less than 10 Hz) may have
become feasible, they cannot always be made use of.
Phase sensitive pulses: Even if in this paper we have not

encountered a situation where we would have desired to apply
phase sensitive high-frequency pulses and detection, we would
like to use the occasion to stress that meeting the slow motion
regime (nonaveraged static quadrupole interaction) one will
have to measure solid-echo amplitudes. This will then require a
highly stable detection field. At present, we have achieved a 2H
frequency drift in the detection field of about 500 Hz. This
gradually starts to be sufficient for the first applications, and is a
work in progress.
Concluding the conclusions: In view of the great potential of

applying 2H FC NMR relaxometry, especially at low fields, one
should continue to invest in further instrumental improve-
ments, i.e., among others, improving signal-to-noise ratio,
increasing and stabilizing detection fields, and shortening field
switching times.

■ APPENDIX

Here we discuss the ratio r(T) = R1
d5(v)/R1

d3(v) in the case of
toluene which allows one to estimate the extent of anisotropic
reorientation. Given that the methyl group reorientation is fast
with respect to the overall tumbling of the molecule,77 a naiv̈e
picture would assume isotropic rotation, which would yield a
ratio R1

d5(v)/R1
d3(v) = r = 12.0 (cf. above and eq 8). Figure 12

presents the experimentally observed value r(T) taken from the
present FC as well as from different HF NMR relaxation data
(cf. Figure 2). The expected value (dashed line) is only reached
around 160 K; below 160 K as well as above, the ratio drops. As
the toluene-d5 and toluene-d3 relaxation rates are usually
measured at different temperatures, some interpolation is
necessary and may explain the scatter of the ratio. In addition,
since the temperature coefficient of the relaxation rates is high
at low temperatures, small differences in the absolute
temperature may enhance the scatter. We also stress that the

Figure 12. Ratio r = R1
d5/R1

d3 for toluene plotted versus temperature;
conventional high-field (HF) data were taken from the literature:
1973,77 1984,59 2000;70 dashed line: isotropic reorientation.
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comparison is now done on a linear scale, while in Figures 2
and 4 a logarithmic scale was chosen.
The strong temperature dependence of the ratio r above 160

K is explained by assuming that the reorientation of toluene
becomes significantly anisotropic, an indication of which was
already reported in the literature,75,82−84 where the Woessner
model of anisotropic diffusion85 was applied. The decrease
observed below 160 K is probably due to the emergence of the
β-process. While the extension of the Woessner approach to
viscous liquids with their nonexponential reorientational
correlation functions is not straightforward, the situation
under extreme narrowing conditions is more favorableand
it holds for the present analysis of the toluene data at T > 160
K.
The toluene molecule is an asymmetric top molecule

described by three rotational diffusion coefficients, yet as our
experiments cannot discriminate between the rotation around
the two axes perpendicular to the C2 axis, we approximate the
molecular reorientation by assuming a symmetric top molecule
with only two diffusion constants, D|| and D⊥, and an anisotropy
parameter given by δ = D||/D⊥. The quantity D|| represents the
rotation around and D⊥ the reorientation perpendicular to the
pseudo C2 axis. Then, given that the methyl group rotation is
very fast,77 and assuming extreme narrowing conditions, the
spectral density of toluene-d3as well as that of the para (p)
deuteron in toluene-d5reflects solely τ⊥ = 1/6D⊥; one gets

τ= = ⊥J J
d p3 (4)

For the deuterons in ortho (o) and meta (m) position in
toluene-d5, it follows

85
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where the coefficients A, B, and C depend on the cosine of the
angle ϑ between the C−D bond and the C2 axis, which is 60° in
the case of toluene. These deuterons are sensitive to both D||

and D⊥, while the para (p) deuteronlike the methyl group
deuteronsreflects only D⊥. As the spin−lattice relaxation
rates of o, m, and p deuterons are not expected to be largely
different, we assume that the essentially exponential relaxation
of toluene-d5 is described by an average rate and a uniform
coupling for each relaxation for o and m, and p, respectively.
Thus, we can write

= +J J J0.8 0.2
d o m p,5 (6)

With eq 5, this leads to
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Here, the anisotropy parameter δ appears. It can be extracted
from the ratio r of the relaxation rates.
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Figure 13 presents r(δ). As the dependence of r on δ
becomes very flat for low r values, the uncertainty of δ becomes
quickly large at high temperatures.

Figure 14 displays the anisotropy ratio δ as a function of
temperature. While at low temperatures the toluene molecule

essentially reorients isotropically, in the high temperature range,
anisotropic reorientation is observed, the extent of which grows
upon heating. In the literature, δ values between 2 and 3 were
reported for ambient temperature;75,82,83 the present study
reveals values around 10 at room temperature. A completely
different scenario was reported in ref 84 and thus can be
questioned. As said, concerning the δ value, the error bars
become quickly large when low r values are involved (cf. Figure
12). Importantly, the anisotropy disappears when the glass
transition sets in. Hence, the suppression of anisotropic
reorientation may be taken as a signature of glassy dynamics
becoming strongly cooperative at low temperatures approach-
ing Tg, a phenomenon already suggested a while ago.106
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providing the deuterated PEP and N. Fatkullin (Kazan) for
fruitful discussions.

Figure 13. Ratio of the relaxation rates r = R1
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function of δ (cf. eq 8). The isotropic case r = 1 is indicated (dashed
lines).

Figure 14. Anisotropy parameter δ versus temperature as given by 2H
FC NMR as well as by HF NMR from the literature: 1973,77 1984,59

2000.70 Dashed line: guide for the eye.
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Mass Dependence of Diffusion of Polymer Melts Revealed by 1H
NMR Relaxometry. Macromolecules 2013, 46, 5538−5548.
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Displacement and Reorientational Correlation Function in Entangled

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.6b05109
J. Phys. Chem. B 2016, 120, 7754−7766

7764

http://dx.doi.org/10.1021/acs.jpcb.6b05109


Polymer Melts Revealed by Field Cycling 1H and 2H NMR
Relaxometry. Macromolecules 2012, 45, 6516−6526.
(43) Kresse, B.; Hofmann, M.; Privalov, A. F.; Fujara, F.; Fatkullin,
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