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Abstract

English Version: The energy transition, from a
centralized to a decentralized and sustainable
power supply using small scale power plants,
presents new challenges to the distribution grid
provider who is responsible for maintaining the
stability of the electricity network. Furthermore,
the rapid uptake of power generation from resid-
ential photovoltaic panels and wind turbines, to-
gether with decreasing prices for residential stor-
age devices, is likely to lead to a reorganization
of the energy market. Thus, new procedures to
ensure the overall network stability need to be
developed, which are flexible with respect to the
underlying network and scalable, to be able to
handle the amount of data of a fast growing net-
work of renewable energy producers.
To this end, we consider (distributed) model
predictive control (MPC) and hierarchical dis-
tributed optimization algorithms. We examine
a network of residential energy systems (RESs)
where every resident is equipped with solar
photovoltaic panels and local storage devices,
i.e., each RES is consuming, generating, and
storing power. The RESs are connected through

a grid provider responsible for the stability of the
overall network.
We propose three different hierarchical distrib-
uted optimization algorithms. The flexibility of
the algorithms allows for a plug and play manner
of implementation. Scalability is obtained by
solving the optimization problems on the level
of the RESs and not on the level of the grid pro-
vider. Furthermore, with respect to a specific
centralized optimization problem, convergence
of the distributed optimization algorithms to the
central optimum can be proven. In addition, we
show how distributed optimization can be used
to obtain a real-time pricing scheme depending
on the power supply and the power demand, in
contrast to the static pricing schemes in current
widespread use.
It is verified numerically that the properties of
the open-loop solutions carry over to the closed-
loop by embedding the distributed optimization
algorithms in receding horizon schemes. The
results are illustrated using a dataset on power
generation and power consumption of residential
customers of the company Ausgrid.



Deutsche Fassung: Die Energiewende, die von
der Energieerzeugung aus zentralen Großkraft-
werken zur Energiegewinnung aus dezentralen
Kleinkraftwerken führt, stellt die Netzbetreiber
vor neue Aufgaben bei der Sicherung der Netz-
stabilität. Der Anstieg der Stromerzeugung
aus privaten Solarzellen und Windkraftanlagen
zusammen mit dem immer größer werdenden
Angebot an privaten Energiespeichern führt
zu einer Umstrukturierung des Energiemarktes.
Dies macht neue Methoden bei der Gewährleis-
tung einer stabilen Stromversorgung erforder-
lich, die flexibel bezüglich des Netzwerkes ein-
setzbar sind und gleichzeitig gut skalierbar
sein müssen, um die Datenmenge eines schnell
wachsenden Netzwerkes aus erneuerbaren Ener-
gieerzeugern handhaben zu können.
Diese Arbeit setzt sich in diesem Kontext mit
der modellprädiktiven Regelung (MPC), be-
ziehungsweise mit der verteilten modellprädikt-
iven Regelung, und mit hierarchischer verteilter
Optimierung auseinander. Hierfür betrachten
wir ein Netzwerk aus Konsumenten, zusätz-
lich ausgestattet mit privaten Stromerzeugern
und Stromspeichern, und verbunden über einen

Netzbetreiber, der für die Stabilität des Netz-
werkes verantwortlich ist.

Wir untersuchen drei verteilte Optimierungs-
algorithmen, die Flexibilität und Skalierbarkeit
gewährleisten, indem die Optimierung auf der
Ebene der einzelnen Konsumenten und nicht
bei dem Netzbetreiber stattfindet. Zudem wei-
sen wir Konvergenz der verteilten Optimier-
ung bezüglich einem zugehörigen zentralen Op-
timierungsproblem nach. Dabei zeigen wir
auch, wie die verteilte Optimierung bei der
Echtzeitpreisbildung verwendet werden kann
und somit der Strompreis im Gegensatz zu den
heute gängigen Festpreisen von Angebot und
Nachfrage abhängt.

Dass sich die Ergebnisse des offenen Regel-
kreises der verteilten Optimierung auch auf
den geschlossenen Regelkreis übertragen lassen,
weisen wir numerisch mit Hilfe der modell-
prädiktiven Regelung nach. Für die Simula-
tionen werden reale Daten über den Strom-
verbrauch und die Stromerzeugung einzelner
Haushalte verwendet, die von der Firma Aus-
grid veröffentlicht wurden.
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Chapter 1

Introduction

1.1 Motivation and focus of this thesis

The energy transition, from centralized fuel-based power generation to decentralized power
generation based on renewable energy sources, leading to a reorganization of the national
energy markets, presents many challenges for electricity distribution networks designed for
one-way power flow.
For example, small-scale rooftop solar photovoltaic (PV) distributed generation has seen
dramatic growth in the last years. Over 70% of the 70 GW installed PV capacity in the
European Union (EU) as of 2012, for example, was rooftop-mounted (both residential and
commercial/industrial) [37].
As PV penetration levels increase, integrating solar PV into the grid creates potential
problems for utilities and customers alike. Reverse power flow in the low-voltage network
during daytime periods of peak PV generation coupled with low residential load leads to
well-recognized increases in distribution feeder voltages (the so-called voltage rise problem),
with the potential for adverse impacts on the operation of voltage control devices and the
safety of customer-owned devices [54], [56].
One approach to mitigate the fluctuations in power demand and power generation in an
electricity distribution network based on renewable energies is to consider decentralized
storage devices, such as batteries or fuel cells, storing energy at times with low demand and
providing additional energy at times with high demand. With recent advances in battery
technology, widespread deployment of battery storage at the residential level, particularly
as a complement to rooftop solar photovoltaics, is expected to occur over the next decade.
Nevertheless, if the charging and the discharging is poorly scheduled the batteries can
increase the technical challenges encountered by current electricity networks. This has led
to a significant research effort in the area of battery scheduling; see [52, 54, 74, 79, 83] and
the references therein. Model predictive control (MPC) or equivalently receding horizon
control provides a natural tool in the context of battery scheduling where the future power
demand and power generation can only be estimated up to some time into the future.
However, the size of electricity networks, the rapid change of individual components in
the electricity network, and participants with possibly conflicting objectives and sensitive
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data make the design of appropriate MPC algorithms challenging. The MPC schemes can
range from a centralized approach which requires full communication of all system vari-
ables, to a distributed approach with limited communication of relevant system variables,
to a decentralized approach requiring no communication at all. Unsurprisingly, centralized
approaches achieve the best performance when compared with distributed and decentral-
ized approaches, but in general, suffer from an inability to scale to large networks.
In this thesis, we investigate distributed optimization algorithms and distributed model
predictive control (DiMPC) schemes with the goal of recovering the performance of the
corresponding centralized model predictive control (CMPC) schemes whilst remaining scal-
able. In other words, we focus on the solution of single, finite time horizon, optimization
problems implemented in a distributed fashion. The receding horizon properties of the
distributed optimization algorithms are not investigated here but numerical simulations
are provided for the closed-loop solutions.
At least in the control literature, the field of distributed optimization traces its roots to
the thesis of Tsitsiklis [99] (see also [15]). Much of the recent work in this field has in-
volved multi-agent systems trying to optimize a global objective function under different
conditions, see for example [35, 55, 76, 77, 114] and the references therein. We investigate
three distributed optimization algorithms: an algorithm based on the primal optimization
problem, a dual decomposition algorithm, and an algorithm based on the alternating dir-
ection method of multipliers (ADMM). In the case of the dual decomposition algorithm,
we show how the distributed optimization algorithm can be used to generate a real-time
price signal for energy prices. A detailed description of the structure of the thesis is given
in the following.

1.2 Outline and contributions of this thesis

Chapter 2 – Basic definitions on predictive control and convex optimization In
this chapter, we introduce the necessary notions used throughout the thesis. In particular,
we define time-varying discrete time systems, we introduce the MPC concept, and discuss
convexity in the context of finite dimensional optimal control problems (OCPs).

Chapter 3 – A network of residential energy systems In this chapter, we provide
several models of electricity distribution grids consisting of residential energy systems
(RESs) coupled through their energy demand. The RESs, characterized as time-varying
discrete-time systems, incorporate controllable storage devices and local power generation
in the dynamics of the power demand profile of the distribution grid. The proposed mod-
els are compared to similar works; for example papers on demand-side management and
papers about vehicle-to-grid installations, where the batteries of electric vehicles are used
as residential storage devices.
The algorithms developed in this thesis are tested using data from a dataset containing
the power consumption and the power generation of 300 residents recorded for the time
span of one year. The dataset, which is used throughout the thesis, is introduced in this

2
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chapter.
The chapter concludes by presenting different control architectures for distribution grids.
We go from decoupled systems in a decentralized architecture via distributed architectures
with communication to a completely coupled centralized setting controlled by a central
entity.

Chapter 4 – Predictive control in the context of smart grids In this chapter,
centralized model predictive control (CMPC) and decentralized model predictive control
(DeMPC) algorithms for the system dynamics in Chapter 3 are presented. To be able to
compare the CMPC and the DeMPC scheme, we define appropriate performance metrics
and discuss possible extensions of the cost functional.
In the subsequent section, closed-loop properties of MPC schemes are discussed. In partic-
ular, we provide an example which shows that in our setting different optimal solutions of
the open-loop OCP may lead to different closed-loop solutions with different performance
properties. As a second property, we motivate the concept of warm-starts commonly used
in MPC to reduce the computational complexity of the OCPs. In the last part of this
section, we discuss robustness of MPC. We provide a framework to verify robustness of the
MPC closed-loop solution with respect to disturbances in the model dynamics.
The chapter concludes with numerical simulations comparing the performances of CMPC
and DeMPC based on the dataset provided in Chapter 3.

Chapter 5 – A cooperative distributed optimization algorithm In this chapter,
a hierarchical iterative cooperative distributed optimization algorithm is proposed to solve
a single convex OCP at a fixed time instant. The algorithm calls for communication
between a coordinating central entity (CE) and the individual systems responsible for the
optimization. A particular convex OCP with coupled cost functional is split into smaller
subproblems of fixed size. The subproblems are solved by the individual systems in parallel
and the CE communicates the information between the systems. We show that the solution
recovers the solution of the original OCP if the algorithm is iterated until convergence.
Embedded in the MPC context, we obtain a distributed model predictive control (DiMPC)
algorithm without the curse of dimensionality of CMPC but with CMPC performance
properties. Applied to the network of RESs, the number of variables communicated by the
CE is independent of the number of RESs, and moreover, no private data of the RESs is
exchanged between the RESs via the CE.
The chapter concludes with numerical simulations showing the performance of the distrib-
uted optimization algorithm and the performance of DiMPC. Additionally, we illustrate
the performance of a possible extension of the distributed optimization algorithm for non-
convex optimization problems.

Chapter 6 – Relaxed distributed optimization using the dual gradient method
In this chapter we propose a hierarchical distributed dual ascent algorithm to solve a relaxed
version of the OCP considered in Chapter 5. The distributed dual ascent algorithm has
the same communication structure as the cooperative algorithm proposed in Chapter 5,

3
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but can be implemented in a non-cooperative way where every RES optimizes over its own
costs.
The distributed dual ascent algorithm is interpreted as a price-negotiation mechanism
between the CE and the RESs. While the CE sets electricity prices such that the fluc-
tuations in the aggregated power demand are mitigated, the RESs use the flexibility of
their storage devices to reduce their electricity costs. The results of the non-cooperative
real-time pricing scheme are compared to the results of the cooperative setting used in
Chapter 5.
The chapter concludes with numerical simulations in Section 6.4, illustrating the impact of
the relaxed OCP replacing the original OCP. Moreover, the performance of the proposed
scheme from the point of view of the CE and from the point of view of the RESs is
investigated in the open-loop and in the closed-loop context.

Chapter 7 – The alternating direction method of multipliers In this chapter, we
consider a third hierarchical distributed optimization algorithm, the alternating direction
method of multipliers, for the computation of an optimal solution of a convex OCP. The
proposed scheme is a cooperative algorithm similar to the one considered in Chapter 5, but
in contrast to the algorithm considered in Chapter 5, ADMM is able to consider coupling
constraints between the individual RESs.
Here, we examine different possible couplings between the RESs. In particular, we propose
an OCP where the solution of the OCP yields the maximal time interval a network of
RESs can operate in an islanded mode, i.e., without external supply from the main grid.
Furthermore, we show how time-varying tube constraints on the aggregated power demand
can be included in the OCP formulation.
In the MPC context, the ADMM scheme offers the possibility of changing the objective
of the minimization problem at every time instant. This can be done by changing the
minimization problem of the CE without changing the minimization problems of the RESs.
Thus, we show how the islanded operation of the network of RESs and the minimization
of the vertical deviations in the aggregated power demand can be embedded in a receding
horizon scheme to optimize specific goals at a certain time instant.
Numerical simulations, illustrating the flexibility of the ADMM scheme, conclude the
chapter. Here, closed-loop solutions of the islanded operation of the network of RESs and
closed-loop solutions, including time-varying tube constraints in the OCP formulation, are
provided.

Chapter 8 – Conclusions The thesis concludes with a comparison of the presented
distributed optimization algorithms and with future research directions which are beyond
the scope of this work but are a natural extension of the results presented here.

Publications The results of this thesis are partially based on the papers [108, 19, 21,
20, 18]. Contributions to the model of RESs, extended in Chapter 3, were made in [108]
and [18]. The inclusion of controllable loads was discussed in [22]. Additionally, in the
paper [108], centralized and decentralized MPC, and the robustness verification presented

4
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in Chapter 4 are discussed. The distributed optimization algorithm given in Chapter 5
extends the algorithm presented in [19, 21]. Moreover, the warm-start properties (see
Section 4.4.2) and the non-uniqueness of optimal open-loop trajectories (see Section 4.4.1)
in the context of MPC are discussed in [21]. The ideas of the Market Maker mechanism
for the price-based control approach in Chapter 6 are taken from [108], [20]. Chapter 7
contains results previously published in [18].
Additionally, the papers [24], [23], and [107, 110] originated from the work on this thesis.
The results of these papers are not discussed in this thesis.

5





Chapter 2

Basic definitions on predictive
control and convex optimization

This thesis focuses on distributed predictive control and distributed optimization in the
context of smart grids represented by time-varying discrete-time systems. In this chapter,
we provide the necessary background for these topics. We define discrete-time dynamical
systems, introduce model predictive control (MPC) and discuss general properties of convex
optimization.

2.1 Basic definitions and discrete-time systems

We consider i ∈ NI := {1, . . . , I} (nonlinear) time-varying discrete-time control systems

xi(k + 1) = fi(xi(k), ui(k)), (2.1a)

zi(k) = hi(xi(k), ui(k); si(k)), (2.1b)

where xi(k) ∈ Rni is the state, ui(k) ∈ Rmi is the input, si(k) ∈ Rdi is a time-varying
parameter, zi(k) ∈ Rp is the communication variable and ni,mi, di, p ∈ N are the di-
mensions for all i ∈ NI and for all k ∈ N. The functions fi : Rni×mi → Rni are time
invariant while the functions hi : Rni×mi → Rp are time-varying due to the sequences
si(·) := (si(k))k∈N ⊂ Rdi for all i ∈ NI . Observe that we make the assumption that the
dimensions of the state xi, the input ui and the parameters si depend on the individual
system i, whereas the dimension of the communication variable is independent of the in-
dex i ∈ NI . The time index is denoted by k ∈ N throughout this thesis. The variables zi
are called communication variables to express that they are used to exchange information
between the systems i ∈ NI . In contrast to zi, the variables xi and ui, the sequences s(·)
and the functions fi and hi are in general only known to system i ∈ NI .
The variables yi ∈ Rqi , qi ∈ N, i ∈ NI , are used to describe arbitrary variables throughout
this thesis. For example, yi can represent xi, ui or zi (i ∈ NI). To denote the trajectory
of a time-dependent variable, we define

yi(·) = (yi(k))k∈N ⊂ Rqi ,
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for qi ∈ N. If the overall system is considered then we define

y(k) :=

 y1(k)
...

yI(k)

 .

As a result, the overall dynamical system reads

x(k + 1) = f(x(k), u(k)), (2.2a)

z(k) = h(x(k), u(k); s(k)), (2.2b)

where the dimensions of the variables x, u, z and s and the definitions of the function
f : Rn1·...·nI × Rm1·...·mI → Rn1·...·nI and h : Rn1·...·nI × Rm1·...·mI → RIp follow from the
definitions of the individual systems. To simplify the notation, we set n := n1 · . . . ·nI and
m := m1 · . . . ·mI . In the context of MPC, we use the notation

yi(k;N) = (yi(k), . . . , yi(k +N − 1))

for finite trajectories at a fixed time k ∈ N and a given prediction horizon N ∈ N∪{∞}. If
the time index k and the prediction horizon N are clear from the context, we use the short
notation yi := yi(k;N). We make an exception in this notation for the state variables xi,
i ∈ NI . For the state variables xi, we define

xi := xi(k;N) = (xi(k + 1), . . . , xi(k +N)) .

Specifically for the communication variables zi(k), i = 1, . . . , I, the average will be an
important quantity. The average over the number of systems I is denoted by

ŷ(k) =
1

I

I∑
i=1

yi(k) (2.3)

for all k ∈ N. The definitions given for a single time instant k or for a single system i are
also used for the general cases, i.e., y, y(·), ŷ, ŷ(·) are defined analogously.

Remark 2.1.1. Note that the variable zi should not be confused with the output yi in
standard definitions of dynamical systems.1 Throughout this thesis, we assume that the
state xi is known or observable.2 We distinguish the variables zi from xi to emphasize that
xi is only known to the system i ∈ NI whereas zi might also be known to the other systems
NI\{i}.

1See, for example, [96].
2See, for example, [96, Chapter. 6] for observability.

8
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2.2 Feasibility, admissibility and optimal control

In this section, we assume that the sequence s(·) is fixed, i.e., given by exogenous data.
The states and the inputs are in general constrained, i.e., xi ∈ Xi and ui ∈ Ui for given
sets Xi ⊂ Rni and Ui ⊂ Rmi for all i ∈ NI . For a given control sequence ui(k,N) ∈ UNi
and an initial state xi,0 = xi(k) ∈ Xi, we denote the solution of (2.1) by xuii (k;N)xi,0 and
zuii (k;N)xi,0 . The trajectory xuii (k;N)xi,0 is called admissible if xuii (k;N)xi,0 ∈ XN

i holds.
For a given initial state xi,0 ∈ Xi, a given time index k ∈ N and a given N ∈ N∪ {∞}, we
define the set of all admissible control sequences

U
k,N
i (xi,0) =

ui(k;N) ⊂ UNi

∣∣∣∣∣∣∣∣
xi(k) = xi,0,

xi(j + 1) = fi(xi(j), ui(j)) ∈ Xi,

ui(j) ∈ Ui,
∀ j = k, . . . , k +N − 1

 ,

i.e., xui (k;N)xi,0 ∈ XN
i for all ui(k;N) ∈ Uk,Ni (xi,0). (In the case N = ∞ we define

k +∞− 1 := ∞.) We assume that U0,∞
i (xi) 6= ∅ for all xi ∈ Xi for all i ∈ NI . Since the

dynamics (2.1a) is time invariant, Uk,Ni (xi,0) = U
0,N−k
i (xi,0) holds for all k ∈ N and for

all N ∈ N ∪ {∞}. For the overall system we define the sets XN = XN
1 × . . . ×XN

I and
Uk,N (x0) = U

k,N
1 (x1,0)× . . .×Uk,NI (xI,0) for all N ∈ N ⊂ {∞} analogously. Similarly, we

can define the admissible sets in the variables zi by

D
k,N
i (xi,0) =


zi(k;N) ∈ Rp×N

∣∣∣∣∣∣∣∣∣∣∣

xi(k) = xi,0
xi(j + 1) = fi(xi(j), ui(j))

zi(j) = hi(xi(j), ui(j), s(j))

ui(j) ∈ Ui, xi(j + 1) ∈ Xi

∀j = k, . . . , k +N − 1


(2.4)

for all i ∈ NI and Dk,N (x0) = D
k,N
1 (x1,0) × . . . ×Dk,NI (xI,0). Optimization problems can

either be written in the unknowns u(k;N) or in the unknowns z(k;N). Depending on
whether the representation Uk,N (x0) or Dk,N (x0) is favorable.
We define the feedback µi : Rni → Rmi as a mapping from the state space to the input
variables for i ∈ NI . The solutions of the closed-loop system

xµii (k + 1) = fi(x
µi
i (k), µi(x(k)) (2.5)

are denoted as xµii (k;N)xi(k). The feedback is called admissible, if xµii (k;N)xi ∈ XN
i holds

for i ∈ NI . The same definitions are used for the overall system dynamics (2.2).
For a given running cost ` : RIp → R, and3 a given N ∈ N, we define the average cost
functionals

JN (x(k),u(k;N)) :=
1

N

k+N−1∑
j=k

`(zu(j)x(k)), (2.6)

J∞(x(k),u(·)) := lim sup
N→∞

JN (x(k),u(k;N)). (2.7)

3The running costs can be extended to a mapping ` : RIp ×Rn1·...·nI ×Rm1·...·mI → R which includes
the states x and the input u, whenever this is suitable.
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Chapter 2. Basic definitions on predictive control and convex optimization

Observe that the index k in the input and in the initial state is necessary to implicitly
define s(k;N). With the cost functional, we can define the optimal value function

VN (x(k)) := inf
u(k;N)∈Uk,N (x(k))

JN (x(k),u(k;N)) (2.8)

representing the minimal costs for a given initial state over a given horizon N .
For the cost functional (2.8), we assume that a minimum exists, i.e., we assume that a
u?(k;N) ∈ Uk,N (x(k)) exists such that

VN (x(k)) = JN (x(k),u?(k;N)) (2.9)

holds. If it is possible to solve the infinite-horizon optimal control problem (OCP), i.e., to
find

u?(·) ∈ argmin u(·)∈Uk,∞(x(k))J∞(x(k),u(·)), (2.10)

then the solution u?(·) is said to be optimal.4 In addition, due to the dynamic programming
principle,5 u?(·) defines a feedback in the case of an ideal model without disturbances.
However, it is in general not possible to solve the OCP (2.10) since it is infinite dimensional
in the unknowns u?(·). In addition, the OCP (2.10) requires full knowledge of s(·) at any
time step k, but in the application, which will be introduced in Chapter 3, we only have an
approximation of the sequence s(·) and the approximation is only available up to s(k;N).
For this reason, we use model predictive control (MPC) instead of optimal control to
iteratively compute a feedback by solving a finite OCP at every time instant k.

2.3 MPC and the receding horizon principle

Typically in the literature, model predictive control (MPC) is introduced via the reced-
ing horizon principle visualized in Figure 2.1. Instead of directly solving the infinite-
dimensional OCP (2.10), we approximate its solution by using MPC, which constructs a
feedback law by iteratively solving finite OCPs

u?(k;N) ∈ argmin u(k;N)∈Uk,N (x(k))JN (x(k),u(k;N)) (2.11)

at every time instant k ∈ N on a finite horizon N ∈ N.
From the optimal solution u?(k;N), usually the first element6 is used to define the feedback
µ(k) := u?(k) before the horizon is shifted and the OCP of the time step k+ 1, i.e., to find

u?(k + 1;N + 1) ∈ argmin u(k+1;N+1)∈Uk,N (xµ(k+1))JN (xµ(k + 1),u(k + 1;N + 1)),

is solved. The corresponding control algorithm, which can be found in several monographs
on MPC (see for example [66, 25, 85, 46]) is given in Algorithm 1.

4Optimal control problems are commonly defined as minimization problems and are not given in the
form (2.10). In this thesis, an OCP can be a minimization problem if we are interested in the minimum
value, or it can be given in the form (2.10) if we are interested in a minimizer of the corresponding
minimization problem.

5See, for example, [46, Chapter 3.4].
6Different approaches using multiple elements of the solution u?(k;N) can be found in the literature

on m-step MPC. See for example [80] and [24].
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2.3. MPC and the receding horizon principle

Past Future

x(k)

k k +N

Feedback µ

Predicted state trajectory

Reference
trajectory

Predicted input
trajectory

Closed-loop trajectory xµ

Prediction horizon N

Figure 2.1: Visualization of the receding horizon principle. At every time instant k a finite OCP
over the prediction horizon N penalizing the deviation from a given reference trajectory is solved.
The first part of the optimal trajectory is used as a feedback, then the procedure is repeated at time
k + 1.

Algorithm 1 Model predictive control algorithm

1. Measure the current state x(k) ∈ X.

2. Solve the OCP (2.11)

u?(k;N) ∈ argmin u(k;N)∈Uk,N (x(k))JN (x(k),u(k;N))

for a given prediction horizon N ∈ N.

3. Define the feedback µ(x(k)) := u?(k) and compute xµ(k + 1) and zµ(k).

Shift the horizon by setting k = k + 1 and go to step 1.

In many applications, the crucial step in the MPC Algorithm 1 is the efficient computa-
tion of a solution of the OCP (2.11). Depending on the definition of the system dynamics
and the definition of the constraints, the OCP can be classified as either a continuous
or a discrete optimization problem and, as either a convex or a non-convex optimization
problem. In this thesis we focus on distributed optimization algorithms for convex optimiz-
ation problems, i.e., we develop algorithms in Chapters 5 to 7, which exploit the decoupled
structure of the system dynamics (2.1). In the context where the system dynamics (2.2)
are decomposable into local system dynamics (2.1), one can distinguish among centralized
model predictive control (CMPC), distributed model predictive control (DiMPC), and de-
centralized model predictive control (DeMPC) schemes.
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Chapter 2. Basic definitions on predictive control and convex optimization

2.3.1 Centralized, distributed, and decentralized MPC

The definition of the local system dynamics (2.1) for i = 1, . . . , I and the global system
dynamics (2.2) indicate the possibility of different control schemes.
In CMPC an algorithm based on the overall dynamics (2.2) and an overall cost func-
tional (2.6) is used. In contrast, in DeMPC the I ∈ N decoupled systems compute a
feedback solely on their local dynamics (2.1) and their local average cost functionals

JN,i(xi(k),ui(k;N)) :=
1

N

k+N−1∑
j=k

`i(z
ui
i (j)xi(k)), (2.12)

J∞,i(xi(k),ui(·)) := lim sup
N→∞

JN,i(xi(k),ui(k;N)), (2.13)

where `i : Rp → R, i = 1, . . . , I, are independent of the behavior of the other systems.
Finally, DiMPC lies between DeMPC and CMPC.While the individual systems optimize on
their own based on their local dynamics, the systems are coupled through the average cost
functional7 and hence the optimal costs VN (x(k)) depend on the interaction of the solutions
of the individual optimization problems u?i (k;N). To obtain the optimal solution of the
coupled cost functional, we assume that in DiMPC the systems can exchange information
by means of the communication variables zi between each other.
In Chapter 4, we investigate CMPC and DeMPC schemes in the context of smart grids.
Distributed control will be the focus of the Chapters 5, 6 and 7. In particular, how the
beneficial properties from CMPC and DeMPC carry over to DiMPC, will be of interest.

2.3.2 From stabilizing MPC to economic MPC

In the classical MPC literature, stabilizing MPC for system dynamics

x(k + 1) = f(x(k), u(k))

with or without terminal costs and constraints are considered. In this case, one chooses
a desired steady-state (xs, us) ∈ X × U, such that xs = f(xs, us), and derives conditions
on the cost functional (2.6), and consequently on the running costs `, that ensure that
the feedback obtained by Algorithm 1 drives an initial state x(0) to the steady-state xs.
Moreover, the usual focus has been on performance estimates based on the prediction
horizon N and on controllability assumptions, comparing the costs of the infinite horizon
OCP

V∞(x(0)) = inf
u(0;∞)∈U0,∞(x(0))

∞∑
j=0

`(xu(j), u(j))

7Distributed MPC is also considered in the context of coupled system dynamics and coupled/decoupled
cost functionals. In this thesis, only the case of decoupled system dynamics is considered. See for example
[85, Chapter 6] for a general DiMPC setting.
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to the costs resulting from the MPC application

V µ
∞(x(0)) =

∞∑
j=0

`(xµ(j), µ(xµ(j))) (2.14)

for given positive semi-definite running costs ` : Rn × Rm → R≥0 penalizing the deviation
from the optimal pair (xs, us).8

Depending on the application however, the running costs may be chosen according to other
criteria rather than a design parameter to penalize the deviation from a desired optimal pair
(xs, us). This has led to the recent development of so-called economic MPC [32, 6, 7], where
the existence of a (possibly unknown) optimal steady-state (xs, us) for given running costs
is assumed. Under suitable dissipativity9 conditions of the system dynamics f , convergence
results and performance properties of the economic MPC closed-loop solution towards the
optimal steady-state (xs, us) can still be guaranteed. The results in [32, 6, 7] using terminal
costs and terminal constraints were extended in [43, 47, 45] to the so-called unconstrained
MPC case. Recent advances on economic MPC and in particular on distributed economic
MPC are summarized in the thesis [72].
In this thesis, we design MPC schemes based on the dynamics (2.2) and running costs
` : RIp → R defined in the communication variables z. Hence, we are not seeking for
a stabilizing controller but rather to optimize the performance with respect to a given
criterion depending on z. Consequently, the proposed algorithms can be classified as
economic MPC. Since we assume that the sequence s(·), which influences the variable z,
is only known up to some time into the future, the cost function is designed solely on the
available knowledge and as a consequence, the running costs might even be time-dependent,
i.e., for all k ∈ N, `k : RIp → R has to be defined based on s(k;N).
For time-varying (distributed) control systems, with time-varying running costs, perform-
ance estimates of economic MPC are out of the scope of this thesis. However, we use the
values

V µ
N (x(0)) =

N∑
j=0

`(xµ(j), µ(xµ(j))) (2.15)

to compare the performance of centralized, distributed, and decentralized MPC schemes
with different cost functions on a finite simulation of length N ∈ N to obtain some insight
into the performance of the proposed algorithms.

2.4 Convex optimization

As already discussed, for MPC algorithms at every time instant k, an OCP (2.11) has to
be solved. Depending on the running costs `, the system dynamics (2.2) defined through
f and h, and the state and input constraint sets X and U, respectively, the optimization
problem can be classified as a convex or a non-convex optimization problem.

8See for example the monographs [85] and [46] for a comprehensive study of this topic.
9Dissipation of dynamical systems refers to the term characterized by Willems [105, 106].
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Chapter 2. Basic definitions on predictive control and convex optimization

Regardless of the classification of the OCP, by redefining the variables and the involved
functions, the problem can be written in the form

min
y∈D

φ(y) (2.16)

for a function φ : Rn → R, a set D ⊂ Rn and the vector of unknowns y.
Whereas in the context of non-convex optimization the convergence of an algorithm to-
wards a global optimum can in general not be guaranteed, convex optimization problems
possess several properties which are favorable for optimization algorithms. In this thesis
we concentrate on distributed optimization algorithms for convex optimization problems.
To this end, the notion of convexity is introduced and the properties of convex functions
are highlighted in the following sections. Convexity in the context of optimization can be
found for example in the monographs [14], [15] and [17].

2.4.1 Convex sets and convex functions

First, we define convex sets and convex functions.

Definition 2.4.1 (Convex set). A set D ⊂ Rn is called convex if for all y1,y2 ∈ D and
for all λ ∈ (0, 1)

λy1 + (1− λ)y2 ∈ D

holds.

Geometrically, a set D is convex if and only if for two arbitrary points y1,y2 ∈ D, the line
segment connecting the two points lies in D. For functions, we introduce three notions of
convexity.

Definition 2.4.2 (Convex functions). Let φ : D → R be a function defined on a convex
set D ⊂ Rn. The function φ is called

(i) convex if

φ(λy1 + (1− λ)y2) ≤ λφ(y1) + (1− λ)φ(y2), (2.17)

(ii) strictly convex if

φ(λy1 + (1− λ)y2) < λφ(y1) + (1− λ)φ(y2), (2.18)

(iii) strongly convex if there exists an α > 0 such that

φ(λy1 + (1− λ)y2) ≤ λφ(y1) + (1− λ)φ(y2)−
1

2
αλ(1− λ) ‖y1 − y2‖2 (2.19)

holds for all y1,y2 ∈ D, y1 6= y2, and for all λ ∈ (0, 1).

From the definition of convex functions one obtains the following implications.
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2.4. Convex optimization

Remark 2.4.3. Given a convex set D ⊂ R and a convex function φ : D → R, D ⊂ Rn,
we obtain the implications

φ strongly convex =⇒ φ strictly convex =⇒ φ convex.

Along with the definition of convex functions, we additionally define concave functions.

Definition 2.4.4 (Concave functions). The function φ : D → R, defined on a convex set
D ⊂ Rn, is called concave, if −φ is convex.

Strict and strong concavity are defined analogously. Observe that there exist functions
which are neither convex nor concave.10

For differentiable functions, there exist equivalent convexity characterizations based on the
first and the second derivative.

Lemma 2.4.5. Let D ⊂ Rn be convex. Let φ : D → R be continuously differentiable and
let ∇φ denote the gradient of φ.

(i) φ is convex, if and only if

f(y2) ≥ f(y1) + (y2 − y1)
T∇f(y1)

for all y1,y2 ∈ D,

(ii) If

f(y2) > f(y1) + (y2 − y1)
T∇f(y1)

for all y1,y2 ∈ D with y1 6= y2, then φ is strictly convex,

(iii) φ is strongly convex with parameter α, if and only if

(∇f(y2)−∇f(y1))
T (y2 − y1) ≥ α‖y2 − y1‖2 (2.20)

for all y1,y2 ∈ D.

Lemma 2.4.6. Let D ⊂ Rn be convex. Let φ : D → R be twice continuously differentiable
and let ∇2φ denote the Hessian of φ.

(i) φ is convex, if and only if ∇2φ(y) � 0 for all y ∈ D, i.e., the matrix ∇2φ(y) is
positive semidefinite for all y ∈ D.

(ii) If ∇2φ(y) � 0 for all y ∈ D, then φ strictly convex, i.e., ∇2φ(y) is positive definite
for all y ∈ D.

(iii) φ is strongly convex with parameter α > 0, if and only if ∇2φ(y) − αI � 0 for all
y ∈ D, where I denotes the identity matrix.

10Consider for example the function φ : R→ R defined as φ(x) = sinx.
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Chapter 2. Basic definitions on predictive control and convex optimization

A proof of Lemma 2.4.5 and Lemma 2.4.6 is given in [15, Proposition A.39 – A.40] and
in [14, Proposition B.5].

Example 2.4.7. The function φ1 : R → R, φ1(y) = y is convex according to Defini-
tion (2.4.2) (i) but Inequality (2.18) is satisfied with equality for all y1,y2 ∈ Rn and thus,
φ1 is not strictly convex. The function φ2 : R → R, φ2(y) = ey is strictly convex, since
∇2φ2(y) = ey � 0 for all y ∈ R. However, ey → 0 for y→ −∞ and hence, there exists no
parameter α > 0 such that ey−α � 0 for all y ∈ R. The function φ3 : R→ R, φ3(x) = y2

is strongly convex, since ∇2φ3(y) = 2 and ∇2φ3(y)−α � 0 holds for all y ∈ R and α = 2.

2.4.2 Properties of convex functions

Convex functions defined on convex sets guarantee favorable conditions in the context of
optimization problems with respect to the existence and uniqueness of local and global
minima.

Definition 2.4.8. Let D ⊂ Rn and φ : D → R. Then φ(y?) ∈ R is called local minimum
of φ, if there exists an ε > 0 such that

φ(y?) ≤ φ(y) (2.21)

holds for all y ∈ D∩Bε(y?).11 If Equation (2.21) is satisfied for all y ∈ D, then φ(y?) ∈ R
is called global minimum of φ. For a local (global) minimum φ(y?), y? ∈ D is called local
(global) minimizer of the function φ. The minimum of a function is denoted by φ? = φ(y?).

Theorem 2.4.9. Let D ⊂ Rn be closed and convex and let φ : D → R be twice continuously
differentiable.

(i) If φ is convex, then every local minimum of φ is also a global minimum.

(ii) If φ is strictly convex, then φ has at most one global minimum.

(iii) If φ is strongly convex, then the unique global minimum of φ is attained.

Proof. (i) Let y? ∈ D be a local minimizer. Assume that y? is not a global minimizer,
i.e., there exists a y ∈ D such that φ(y) < φ(y?). Along with the convexity of φ,
this implies

φ(λy + (1− λ)y?) ≤ λφ(y) + (1− λ)φ(y?) < λφ(y?) + (1− λ)φ(y?) = φ(y?)

for all λ ∈ (0, 1]. This contradicts the assumption that y? is a local minimum.

(ii) Assume there exist two global minima, φ(y?) = φ(y]) with y?,y] ∈ D, y? 6= y]. Due
to the convexity of D and the strict convexity of φ, it holds that 1

2(y? +y]) ∈ D and

φ

(
1

2
(y? + y])

)
<

1

2
φ(y?) +

1

2
φ
(
y]
)

= φ(y?)

which contradicts the assumption that y? is a global minimizer.
11The set Bε(y?) defines a ball with radius ε > 0 centered at y?, i.e., Bε(y?) = {y ∈ Rn|‖y− y?‖ < ε}.
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2.4. Convex optimization

(iii) If D is compact, then the global minimum of φ is attained. By (ii), the global
minimum is unique. Hence, we assume that D is unbounded.

If ∇φ(y?) = 0 then ∇2φ(y?) � αI implies that y? is a local minimizer. Moreover,
by (ii) y? is the unique global minimizer. Assume that φ does not attain its global
minimum. Let y ∈ D be arbitrary and yf ∈ D be arbitrary and fixed. Using the
Taylor expansion we obtain the expression

φ(y) = φ(yf ) +∇φ(yf )(y − yf )T +
1

2
(y − yf )∇2φ(ξ)(y − yf )T

for a ξ ∈ D. With the characterization of strongly convex functions from Lemma 2.4.6
(iii), this provides the estimate

φ(y) ≥ φ(yf ) +∇φ(yf )(y − yf )T +
α

2
‖y − yf‖2. (2.22)

The function ϕ : Rn → R,

ϕ(y) = φ(yf ) +∇φ(yf )(y − yf )T +
α

2
‖y − yf‖2

attains its global minimum for y satisfying the condition

0 = ∇ϕ(y) = ∇φ(yf ) + α(y − yf ).

Using the solution y] = − 1
α∇φ(yf ) + yf in Inequality (2.22) leads to the estimate

φ(y) ≥ φ(yf ) +∇φ(yf )T (y] − yf ) +
α

2
‖y] − yf‖2

= φ(yf ) +∇φ(yf )T
(
− 1

α
∇φ(yf )

)
+
α

2

∥∥∥∥− 1

α
∇φ(yf )

∥∥∥∥2
= φ(yf )− 1

2α
‖∇φ(yf )‖2

which implies that φ is lower bounded, i.e., φ(y) > m > −∞ for all y ∈ D and
m ∈ R chosen appropriately.

Let y ∈ D be arbitrary and yf ∈ D be arbitrary and fixed. Then from the definition
of strong convexity (Equation (2.19) for λ = 1/2) we obtain

1

4
α ‖y − yf‖2 + 2m− φ(yf ) ≤ 1

4
α ‖y − yf‖2 + 2φ

(
1

2
y +

1

2
yf

)
− φ(yf ) ≤ φ(y)

which implies that φ(y)→∞ for ‖y‖ → ∞ since 2m−φ(yf ) is fixed. For all r ∈ R>0

such that D∩Br(0) 6= ∅, the set D∩Br(0) is compact and hence, φ : D∩Br(0)→ R
attains its minimum. Due to the condition φ(y) → ∞, φ : D → R attains its
minimum.
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Theorem 2.4.9 (iii) guarantees that the minimum of a strongly convex function defined on
a closed and convex set is attained. Similarly, for a strict convex function defined on a
closed and compact set, we know that at most one global minimum exists. If the set is
additionally compact, then the continuity of the function and the strict convexity ensure
that the minimum is attained. Hence, in the following chapters, we either consider strictly
convex functions defined on convex and compact sets, or strongly convex functions defined
on convex and closed sets to make sure that the unique global minimum is attained.

2.4.3 Convex optimization

As pointed out in the last section, convex functions defined on convex sets have desirable
properties with respect to optimization. The optimization problem

min
y∈Rn

φ(y)

s.t. y ∈ D

is said to be convex if the function φ : Rn → R and the set D ⊂ Rn are convex. By
introducing the functions χ : Rn → Rm1 and c : Rn → Rm2 , m1,m2 ∈ N, optimization
problems can equivalently be represented using equality and inequality constraints

min
y∈Rn

φ(y)

s.t. χ(y) = 0

c(y) ≤ 0

and the functions h and c are defined such that

D = {y ∈ Rn|χ(y) = 0 ∧ c(y) ≤ 0}

is satisfied. A special form of inequality constraints are polyhedral constraints. In this
case, c is defined as c(y) = Ay− b for a matrix A ∈ Rn×m1 and a vector b ∈ Rm1 . Equality
constraints can always be written as inequality constraints by using the definition

c(y) =

(
χ(y)

−χ(y)

)
. (2.23)

From the representation (2.23) we obtain that the set D can only be convex if the c is
affine.

Example 2.4.10 (Affine function). A function c : Rn → R,

h(y) := Ay + b (2.24)

for A ∈ Rn×m1 and b ∈ Rm1 is called affine. Since

c(λy1 + (1− λ)y2) = λh(y1) + (1− λ)h(y2)

holds for all y1,y2 and for all λ ∈ (0, 1), affine functions are convex but not strictly convex.
Moreover, −h is affine and hence convex.
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In Chapters 5 to 7 we concentrate on distributed optimization algorithms for convex op-
timization problems. Leveraging the properties introduced in the last section, efficient al-
gorithms have been developed, such as interior point or sequential quadratic programming
algorithms (see for example [17] or [78]) to compute the solution of convex optimization
problems. In this thesis, the underlying optimization algorithms to solve a single optim-
ization problem will be considered as a black box algorithm. The focus of this thesis is
to decompose a single optimization problem into several smaller problems and to develop
algorithms with guaranteed performance if the smaller problems are solved instead of the
original one.

19





Chapter 3

A network of residential energy
systems

With economically viable residential storage on the horizon, researchers have in recent
years moved from the analysis of relatively rudimentary and largely uncoordinated battery
energy storage systems [74] to systems of increasing scale and sophistication [52], [54], [98],
[48], [82], [79]. In this chapter, a dynamical model of a small-scale residential energy system
is introduced. The dynamical system is the basis for the remainder of this thesis. For the
numerical evaluation of our approach, we use the dataset [1] provided by the Australian
electricity company Ausgrid.1 The dataset is described in Section 3.2. The chapter is
closed by comparing different control structures for electricity networks.

3.1 The energy transition

Electricity distribution networks, originally designed for one-way power flow from large
generators to residential customers via transmission and distribution networks, have to
cope with many challenges that come along with the energy transition.
An electricity grid classically consists of several central, mainly fossil fuel-based power
plants, such as coal-fired or natural gas plants, which are coupled through the transmis-
sion grid to the energy providers, which again are connected to residential and industrial
consumers via a distribution network and are responsible to cover their energy demand (see
Figure 3.1). The average power consumption ŵ in kilowatt ([kW]) of residential customers
is more or less periodic over a single day. In Figure 3.2 (top), the power consumption wi
of i = 1, . . . , 100 residential customers from the Ausgrid dataset (see Section 3.2) and the
average consumption ŵ =

∑I
i=1wi during a single day and during a week is visualized.

One can observe characteristic maximal peaks in the power demand in the morning and
in the early evening as well as valleys in the demand around noon and during the night.
The periodic behavior and the centralized power generation make it relatively easy for
the energy providers to balance the power generation and the power demand and hence,

1Visit http://www.ausgrid.com.au for more information on Ausgrid.



Chapter 3. A network of residential energy systems

Power plant

Power plant

Energy
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Figure 3.1: Electricity distribution network for a one-way power flow. Residents obtain energy
from their energy provider which cover their demand from centralized power plants. On the left, the
overall network, and on the right, a single energy provider responsible for the connected residents.

maintain voltage stability and prevent power outages and blackouts in the electricity grid.
The energy transition has led to a rapid change in the classical distribution grid over the
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Figure 3.2: Power and average power consumption and generation of 100 residents during a single
day (left) and during a week (right). The power is generated using solar photovoltaic panels. One
can observe a periodic behavior in the average consumption as well as in the average generation
profile.

past years. The growing impact of decentralized renewable energy technologies like photo-
voltaic panels and wind turbines shifts power generation from centralized power plants to
decentralized sustainable power generation, necessitating a flexible grid. For example in
2015, the power generation from renewable energies covered 32.6% of the gross electricity
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3.1. The energy transition

consumption in Germany compared to 17% in 2010 [4].
In Figure 3.2 (bottom), the power generation of 100 residents with rooftop solar photovol-
taic installations is visualized. Not surprisingly, the power generation follows a periodic
behavior with a peak at the middle of the day. Additionally, the deviation in the generated
power during a day is rather significant, which makes the long term prediction of power
generation from photovoltaic panels (and also wind turbines) difficult.
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Figure 3.3: Average power demand of 100 residents during a single day (left) and during a week
(right). One can observe a periodic behavior and characteristic peaks in the morning and in the
afternoon.

To maintain the network stability under these changing conditions, the energy provider has
to cope with several new conditions in the network. The shift from centralized to decent-
ralized generation makes the coordination of a rapidly changing network more challenging.
Additionally, in case of an increased power demand, the power generation of photovoltaic
panels and wind turbines cannot be controlled to increase the power generation, since the
generation depends solely on the intensity of the sun and the wind, respectively. Moreover,
the reaction time of central coal-fired and nuclear power plants in general is too slow to
balance these unpredictable shortages while staying profitable. If one compares the peaks
of power consumption with the peaks of power generation in Figure 3.2 one also observes
that the peak times do not coincide. Hence, the energy from solar photovoltaic panels
is mainly generated at times where the demand is low and, consequently the variation
between minimal and maximal demand is increased (see Figure 3.3). In our dataset, there
are even days, where the power demand is below zero, i.e., power is pushed back into the
grid.
Several publications tackle these problems from different point of views, see for example
the recent survey paper [31] and [100] and the references therein. Here, we concentrate on
the incorporation of additional distributed storage devices in the electricity network and
we concentrate on a single energy provider and its customers as visualized in Figure 3.4
on the left. We assume that every customer connected to the energy provider has energy
consuming devices, photovoltaic panels to generate power and a storage device to store
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Figure 3.4: Electricity grid with a single energy provider connected to a number of RESs. The
RESs not only consume power, but are also able to generate and store power. If they are used in
the correct way, the batteries help to shave the peaks in the average power demand.

energy. A customer equipped with these devices will be denoted as a residential energy
system (RES) throughout this work. In this case, an RES is a consumer as well as a
producer, and energy can be exchanged between the individual RESs. The local grid is not
disconnected from the main grid and the task of the energy provider remains maintenance
of network stability and to provide enough energy for the users. If the batteries are used in
a coordinated way, they can be used to flatten the aggregated power demand and to help
the energy provider accomplish his task. This means coordination of the battery usage of
the RESs is necessary for peak-shaving. In the case where all RESs charge their batteries
to increase the overall energy demand, the energy surplus turns into an energy shortage.
A similar effect can happen if all batteries are discharged to prevent a shortage. On the
contrary, if the batteries are used in a certain coordinated way, the peaks in the energy
demand profile can be reduced significantly. Hierarchical distributed algorithms for the
coordination of distributed RESs will be the main contribution in the following chapters.
Before these algorithms are introduced, the dataset which will be used to visualize our
findings, is introduced in the following.

3.2 The Ausgrid dataset

To simulate the dynamical behavior of the electricity grid visualized in Figure 3.4, we
use a dataset provided by the Australian electricity company Ausgrid. Among others,
the publicly available dataset [1] contains the power consumption and power generation
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3.2. The Ausgrid dataset

of 300 customers in New South Wales, Australia, recorded from 1 July 2010 to 30 June
2011. Every customer is equipped with a smart meter measuring the energy consumption
and generation on a 30 minutes time scale. Hence, the data models the electricity grid in
Figure 3.4 without batteries. The data shown in the Figures 3.2, 3.3 and 3.4 are also based
on the dataset. A comprehensive study of the dataset which contains more information
than just the consumption and the generation profiles can be found in [84], giving a closer
insight to the data and also explaining how the dataset can be used for further research.
In our analysis, we only consider the sequence2 of power consumption3

w(·) ∈ R300×17520

and the sequence of power generation

g(·) ∈ R300×17520

of the 300 customers. The 300 customers are referenced using the index i ∈ N300. To
specify a certain time step, the index k ∈ N is used. We make the assumption that
the power consumption and power generation, measured in kilowatt ([kW]), are constant
between two consecutive time steps k and k + 1.
In Figure 3.5, the aggregated power consumption, generation and demand from 1 July
2010 to 30 June 2011 is shown. For the consumption

∑300
i=1wi(k), we observe a max-

imal peak of 419.669[kW] at 6:30pm of May 8 and a minimal peak of 0[kW] at 2:30am
of March 4. Even though extreme peaks are rare, a significant difference between the
summer and winter months can be observed. The average consumption during the whole
year is given by 119.512[kW]. The aggregated generated power

∑300
i=1 gi(k) varies signific-

antly between 0[kW] and 208[kW]. The average power generation is given by 36.277[kW].
The energy provider has to compensate the fluctuations in the aggregated power demand∑300

i=1 (wi(k)− gi(k)). The maximal peaks of consumed power are only reduced slightly
but the aggregated energy demand is less than zero at 2818 out of 17520 time steps which
means at around 16% of the time, the energy provider has to handle a reverse power flow.
In the next section, we equip the residences with a storage device turning the residences
into residential energy systems (RESs). Hence, if the proper incentives are provided by
the energy provider to the RESs the storage devices can be used to flatten the deviations.

Remark 3.2.1. In [84], the dataset is analyzed to generate a clean dataset by removing
data corresponding to residents with anomalous measurements. This means, the authors
remove customers without consumption during certain time intervals and customers with
power generation below a certain threshold. Removing the anomalous measurements is not
necessary in our application since isolated storage devices without a consumer or residents
without photovoltaic panels can also still be part of the electricity grid. The third group of
customers which is removed in the reference are customers generating energy during times

2To really obtain sequences w(·) = (w(k))k∈N and g(·) = (g(k))k∈N the finite dataset is periodically
extended.

3The sequence of power consumption is the sum of the static load and the elastic load of given in the
dataset.
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Figure 3.5: Aggregated power consumption, generation and demand of 300 residences. The ag-
gregated profiles are visualized with a sampling rate of 30 minutes. The averages over the whole
year are indicated with a black line.

without sun which should not be possible using photovoltaic panels. In our application, the
photovoltaic panels could be replaced for example by wind turbines.

3.3 Network stability: the energy provider perspective

With the proposed dataset, we can now summarize the problem which will be considered
in the next chapters. As already mentioned, the focus is on the interaction between a
single energy provider and its customers which either act in a cooperative way to achieve a
common goal, or act selfishly and non-cooperatively, optimizing only their own well-being.
Regardless of the behavior of the customers, we assume that the energy provider bears
the responsibility of a reliable energy supply. Hence, we investigate the stability of the
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3.4. Modeling of a residential energy system

electricity grid from the energy provider point of view and not from the view of a single
customer. This implies that we are not interested in the power demand of an individual
system, but in the average power demand

ẑ(·) =
1

I

I∑
i=1

zi(·)

of the overall network. Stability of the network in this context means that the vertical
deviations in the average power demand have to be as small as possible. The energy
provider is interested in minimizing the maximal and minimal peaks in the average power
demand to keep the variations on a minimal level. In this context, we are looking for a
control in the scale of minutes or hours fitting to the available dataset. This should not
be confused with frequency control in the scale of seconds or milliseconds, considered, for
example, in [52], [42] or [71].
To achieve the goal of a flattened energy demand, we introduce an additional degree of
freedom in the electricity network in the form of energy storage devices.

3.4 Modeling of a residential energy system

The power demand zi(k) in [kW] of a resident i ∈ NI = {1, . . . , I} at time k ∈ N is defined
through its power consumption and its power generation, i.e.,

zi(k) = wi(k)− gi(k).

We treat the resident as a residential energy system (RES) by introducing an input variable
ui which can be used to manipulate the power demand zi(k) via

zi(k) = wi(k)− gi(k) + ui(k).

The input ui can be interpreted in different ways. ui can represent local generators which
influence the power demand by increasing or decreasing the power generation depending
on the overall demand (e.g. [60]). The input ui can also represent a controllable load which
can be shifted between different time steps k and is discussed in several papers on demand
response or demand-side management (e.g. [69]). Moreover, ui can belong to a storage
device which is used to store a surplus of energy when necessary and provides energy in
times of shortages. In the following subsection ui refers to storage devices.

3.4.1 Residential energy systems using storage devices

In recent years we have seen an increasing development and variety of residential energy
storages such as batteries (see for example pv magazine [2] for a list of batteries available on
the market). Although we concentrate on rechargeable batteries for the model dynamics,
we keep the dynamics flexible and general to be able to capture other storage devices as
well, i.e., batteries can be replaced, for example, by gravitational potential energy storages
or fuel cells depending on the grid under consideration. Consistent with the dataset, we
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Chapter 3. A network of residential energy systems

consider discrete dynamics in the time scale of minutes and hours instead of continuous
dynamics covering every detail. Nevertheless, the general formulation makes our approach
very flexible with respect to the underlying storage device. Similar models are used in the
work [59], [102], and in the works [8, 9, 10].

The simplified residential energy system

A basic simplified model of RES i ∈ NI is defined through the dynamics

xi(k + 1) = xi(k) + Tui(k), (3.1a)

zi(k) = wi(k)− gi(k) + ui(k). (3.1b)

The model is introduced in [109] and [108] and adds a second Equation (3.1a) to the power
demand (3.1b), representing the storage device. Here, xi denotes the state of charge (SOC)
of the battery in kilowatt hours ([kWh]) and the input ui is the battery charge/discharge
rate in [kW]. With the input ui, the already introduced power demand zi depending on
the fixed load and generation sequences (wi(k))k∈N and (gi(k))k∈N is flexible and can be
manipulated. Here, T represents the length of the sampling interval in hours ([h]). The
individual systems are coupled through their demand to the other systems and connected
with a single energy provider at the point of common coupling visualized in Figure 3.4.
Additionally, the constraints on the battery capacity

0 ≤ xi(k) ≤ Ci (3.2)

and on the maximal charge/discharge rate

ui ≤ ui(k) ≤ ui (3.3)

for all k ∈ N were introduced. The model dynamics gives a very simplified view of an
electricity grid. However, even though it does not capture any characteristics of a specific
storage device, the dynamics is descriptive and can capture the interplay between the
individual RESs and the energy provider and hence, turn out to be useful to visualize and
interpret distributed control concepts.

The generalized residential energy system

The conversion of energy either from the battery to the grid or from the grid to the battery
is always connected to loss depending on the energy conversion efficiency. Additionally,
the electric charge has to be converted from alternating current to direct current if the
battery is charged from the grid but not if the battery is charged from the solar panels.
Hence, a different efficiency can be expected in these cases. To capture these effects, we
split the input variable into three variables

ui =

 ui1
ui2
ui3

 =

 u+wi
u
+g
i

u−i

 ∈ R3
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3.4. Modeling of a residential energy system

and introduce the energy efficiencies

Bi = T ·
(
cEi1 cEi2 1

)
= T ·

(
cE+w

cE+g
1
)
∈ R1×3

≥0 .

The variable u+wi ∈ R≥0 represents charging from the grid, u+gi ∈ R≥0 represents charging
from the solar panels and u−i ∈ R≥0 represents discharging of the battery. (We use the
subscripts ·w and ·g to indicate that charging the storage device from the grid increases
the consumption w, and charging the storage device from the energy generated in the solar
panels decreases the energy which is fed into the grid.) The constants cE+w

, cE+g
∈ (0, 1]

define the energy efficiency of the storage device. The loss of energy when the battery is
discharged is captured in the equation of the communication variables4

zi(k) = Diui(k) + wi(k)− gi(k)

with

Di =
(

1 1 cEi3

)
=
(

1 1 cEi−

)
∈ R1×3

and cEi− ∈ (0, 1].
Even if the battery is not used, i.e., ui ≡ 0, the storage device loses energy. We assume
that the loss of energy depends on the state of charge of the battery and the temperature
of the battery [97, Ch. 7]. If the battery is not used, we assume that the temperature is
constant, and hence, does not influence the state of charge of the battery. The uncontrolled
dynamics, therefore, only depends on the state of charge of the battery, i.e.,

xi(k + 1) = Aixi(k)

for Ai = cEix ∈ (0, 1]. In total, the time-varying discrete-time system in form (2.1) is given
by

xi(k + 1) = Aixi(k) +Biui(k), (3.4a)

zi(k) = Diui(k) + si(k) (3.4b)

where si(k) = wi(k)− gi(k) .

Remark 3.4.1. In [27], the authors provide characteristics for several storage devices. For
example the self-discharge of a Li-ion battery is specified with 0.1%–0.3% during a single
day. Using a discretization of T = 0.5[h] leads to a constant cEix > 0.999 and thus, the loss
of energy for Li-ion batteries is negligible. Moreover, the cycle efficiency of Li-ion batteries
is higher than 90%, i.e., the losses in the (dis-)charging process are less than 10% [27].

Rewriting the constraints (3.3) in the extended input variables u+wi , u+gi and u−i leads to

ui ≤ u−i (k) ≤ 0,

0 ≤ u+wi (k) + u
+g
i (k) ≤ ui,

0 ≤ u+wi (k),

0 ≤ u
+g
i (k),

4Note that the loss of energy can equivalently be captured in the dynamics of the storage device. In
this case one has to define cEi−

∈ [1,∞).
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Chapter 3. A network of residential energy systems

for all k ∈ N. Since u+gi depends on the amount of energy generated by the solar panels,
additionally the constraint

u
+g
i (k) ≤ g(k)

needs to be introduced.
A constraint which is not modeled so far is the fact that the battery cannot be charged
and discharged at the same time. This condition is captured by the nonlinear equality
constraints (

u+wi (k) + u
+g
i (k)

)
· u−i (k) = 0. (3.5)

for all k ∈ N.
Since we are using a coarse sampling time in the magnitude of 30 minutes, it is reasonable
to assume that the battery switches from charging to discharging, and vice versa, within
the given time interval. Thus, we introduce a different condition than (3.5). When the
battery switches between charging and discharging, only a fraction of the time interval
is used to charge/discharge the battery. Let λ, (1 − λ) ∈ [0, 1] represent the time of the
interval used for charging/discharging. Then, the upper and lower bounds for charging
and discharging have to be adapted, i.e.,

u−i (k) ≥ (1− λ)ui

u+wi (k) + u
+g
i (k) ≤ λui

which is equivalent to

u−i (k)

ui
≤ (1− λ)

u+wi (k) + u
+g
i (k)

ui
≤ λ

if ui < 0 and ui > 0 holds. To avoid the variable λ, we combine the constraints and obtain
the upper and lower bounds

0 ≤
u−i (k)

ui
+
u+wi (k) + u

+g
i (k)

ui
≤ 1.

for the charging and discharging rate.
In summary, the generalized dynamics of RES i are given by

xi(k + 1) = Aixi(k) +Biui(k), (3.6a)

zi(k) = Diui(k) + si(k) (3.6b)

with

Ai = cEix , Bi = T ·
(
cE+w

cE+g
1
)
, and Di =

(
1 1 cEi−

)
,
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3.4. Modeling of a residential energy system

subject to the constraints

0 ≤ xi(k) ≤ Ci,

ui ≤ u−i (k) ≤ 0,

0 ≤ u+wi (k) + u
+g
i (k) ≤ ui,

0 ≤ u+wi (k) ≤ ui
0 ≤ u

+g
i (k) ≤ gi(k),

0 ≤ u−i (k)
ui

+
u+wi (k)+u

+g
i (k)

ui
≤ 1.

(3.7)

Remark 3.4.2. Note that the system dynamics defines a time-varying dynamical system
subject to linear inequality constraints. The inequalities (3.7) contain redundant informa-
tion and can be written in a more compact way if necessary.

The nonlinear residential energy system

In the algorithms introduced in the following chapters, we concentrate on the linear dy-
namics (3.6) together with the linear constraints (3.7). Nevertheless, in Chapter 5 we
propose a distributed optimization algorithm which is able to handle nonlinear dynamics
and nonlinear constraints (see Algorithm 7). To this end, we give a possible extension for
the dynamics of the RESs.
In general any dynamical system of the form (2.1) can be used to model RESs connected
only through their energy demand

∑I
i=1 zi. In principle, partial differential equations or

delay differential equations can also be used to model the dynamics of the batteries. Here,
we restrict ourselves to an extension of the dynamics (3.6a) by additional nonlinear terms.
If batteries are used extensively, they can heat up quite quickly. Hence, we assume that
the temperature of the battery depends on the charging/discharging rates. A strong usage
leads to high temperatures and corresponding losses which we assume to be quadratic and
which modify (3.6a) to be

xi(k + 1) =Aixi(k) +Biui(k)− TcHi
((

u+gi (k) + u+wi (k)
)2

+ u−i (k)2
)

depending on the constant cHi ∈ R≥0. Additionally, batteries are usually only used within
a certain interval of their capacity. If the SOC of the battery is above or below that value,
batteries are in general less efficient. To incorporate this effect, we add another term to
the dynamics

xi(k + 1) =Aixi(k) +Biui(k)

− TcHi
((

u+gi (k) + u+wi (k)
)2

+ u−i (k)2
)

+ T

(
cCi−
xi(k)

u−i (k)−
CicCi+

Ci − xi(k)

(
u+gi (k) + u+wi (k)

))
(3.8)

with constants cCi− , cCi+ ∈ R≥0. If the battery reaches its capacity Ci or is almost empty,
it becomes ineffective and energy in the charging/discharging process is lost. In Figure 3.6
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Chapter 3. A network of residential energy systems

the effects of the constants cCi− and cCi+ are visualized for the charging and discharging
process of a battery. For cCi+ > 0 the maximal capacity Ci is not reached anymore. If the
battery is discharged, the losses increase with decreasing SOC of the battery.
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Figure 3.6: Charging (left) and discharging (right) curves of the battery model (3.8) with capacity
C = 2[kWh]. The battery is charged (left) with u+w + u+g ≡ 0.2 and discharged (right) with
u− ≡ −0.2 depending on the constants cC− and cC+

. The other constants are set to 1 except for
cH = 0.

For the constraints, we have to make sure that

u+wi (k) + u
+g
i (k) ≥ 0

charges the battery, i.e., the energy loss has to be smaller than 100%. This can be modeled
by the constraints

(
cE+w cE+g 0

)
ui(k)− cHi

(
u+wi (k) + u

+g
i (k)

)2
−

CicCi+
Ci − xi(k)

(u+wi (k) + u
+g
i (k)) ≥ 0.

Likewise, when the battery is discharged, the losses have to be taken into account for the
lower bound of the discharging rate

u−i (k)− cHu−i (k)2 +
cC−
xi(k)

u−i (k) ≥ ui.

In [97, Section 7.1.13], it is argued that the maximal charging/discharging rate depends on
the SOC of the battery. The maximal charging rate decreases when the battery reaches
its maximum capacity and the maximal discharging rate decreases with the SOC of the
battery. These effects can be incorporated using the state dependent constraints(

xi(k)
Ci

)α
ui ≤ umi (k) ≤ 0,

0 ≤ u+wi + u
+g
i (k) ≤

(
1− xi(k)

Ci

)α
ui

(3.9)
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3.4. Modeling of a residential energy system

with α ∈ [1,∞). The factor (xi(k)/Ci) ≤ 1 and (1− (xi(k)/Ci)) ≤ 1, respectively, ensure
that the maximal charging and discharging rate can only be used when the battery is
charged completely or when the battery is completely empty. Depending on α, the effects
increase when the battery is almost empty or close to its maximal capacity. In these cases,
for large values of α the maximal rates drop significantly for xi(k)/Ci and 1− (xi(k)/Ci)

approaching 0. The parameter α for the charging and discharging rate can of course be
chosen differently.

3.4.2 Additional approaches in smart grid applications

As already discussed, the input u used for peak-shaving can be interpreted in different
ways. In the remainder of this section we further discuss approaches from the literature
and the connection to our model.
In the papers [8, 9, 10] a similar model to our network of RESs is proposed and a similar
optimization problem is discussed. The authors propose a linear model to minimize the
electricity costs of customers which are coupled through the aggregated energy demand.
Some customers are able to store energy, and some customers have dispatchable energy
generation units. While the focus of the paper [8] is on the demand-side, i.e., the electricity
cost reduction of single customers in a day-ahead market, our focus is on the supply side
aiming to obtain a smooth load profile, and hence the role of a central entity (CE) or a grid
operator is much stronger in our setting. The day-ahead pricing scheme considered in [8] is
also applicable to our setting. In this thesis, electricity costs are only discussed in Chapter 6
in the form of a real-time pricing scheme. The authors of [8] motivate their problem from
a game theoretic point of view. To find a Nash equilibrium of their corresponding min-
imization problem, a proximal point algorithm is used (see [92] or [81], for example) with
guaranteed performance properties. In [9] the authors extend their work by considering a
non-cooperative setting and by using an asynchronous communication structure between
the customers and the CE. In [10] additional coupling constraints between the consumers,
similar to the setting in Chapter 7, are considered. Moreover, a reoptimization algorithm
on a shrinking horizon is proposed. The simulations in [8, 9, 10] are not considered in a
MPC context with a moving horizon. Only a fixed time interval of a single day is taken
into consideration.

Controllable loads

Controllable or elastic load refers to a power demand which is not fixed to a certain time
schedule. A recent study [12] suggests that up to 60% of the consumption of a household,
in the form of appliances such as air conditioners and refrigerators, is elastic or schedulable.
Therefore, an alternate, but complementary approach to the use of energy storage devices
to reduce the grid variations involves energy consumption scheduling [101], [68, 69], [90].
Similar to the storage devices, the degree of freedom in the load w can be used to manipulate
the demand z.
In [101] the authors propose an algorithm to coordinate demand of a consumer cooper-
ative via an iterative hierarchical distributed optimization scheme. The total demand of
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a single consumer during the time interval under consideration is known and constant,
but the demand of individual consumers can be shifted from one time step to another as
long as individual convex constraints are satisfied. The consumers optimize their power
demand based on virtual prices sent by a CE. The virtual prices and the power demands
are updated iteratively until convergence is obtained. The proposed distributed optim-
ization algorithm converges to the solution of a corresponding centralized optimization
problem and minimizes the total costs of the cooperative. Different from the distributed
optimization algorithms discussed in Chapter 5 to 7 the CE has to communicate with
every consumer individually. The proposed algorithm only works under the assumption
that the total power demand over the prediction horizon is constant. Thus, storage devices
including losses cannot be considered. In contrast to our work, the authors only consider a
single optimization problem at a fixed time step. The setting is not embedded in a receding
horizon scheme.
In [68, 69], the authors propose a model, where each appliance of a residence is considered
separately. In this case, an energy consumption scheduler is proposed to optimally schedule
the load of the different appliances to minimize electricity costs. Likewise, in [70] the
authors propose a model by considering every appliance individually and solve a mixed-
integer problem to compute an energy schedule.
Since our focus is on the dynamical behavior of the overall electricity grid and not on the
behavior of a single residence and a single optimization problem, we use a formulation
which is easier to handle in the dynamical behavior by aggregating the elastic load in a
single appliance. Nevertheless, the concepts of elastic loads are still captured, and the
proposed algorithms can be easily extended to more complex systems. We assume, that
the load of a RES consists of the consumption or static load wi(·), already introduced
at the beginning of this chapter, plus additional controllable load denoted by wci(·) in
[kWh] for all i ∈ NI . As in the static case, we assume wci(·) to be given sequences for
all i ∈ NI . As already motivated, controllable load is attached to a certain time interval.
More precisely, we assume that wci(k) has to be scheduled during the time interval from
k−N + 1 to k for a given N ∈ N, i.e., wci(k) has its deadline at time k but can already be
scheduled in the N time steps before the deadline. Introducing the input uci ∈ R in the
power demand

zi(k) = Diui(k) + si(k) + uci(k) (3.10)

leads to time-dependent constraints

k∑
j=0

wci(j)−
k−1∑
j=0

uci(j) ≤ uci(k) ≤
k+N−1∑
j=0

wci(j)−
k−1∑
j=0

uci(j) (3.11)

for all k ∈ N and for each RES i ∈ NI . Observe that at time k, uci(j) is fixed for all j < k,
rather than a control variable, since it is a control action that has been applied.
To model that only a certain amount of the controllable load can be scheduled at a fixed
time step, we introduce the lower and upper bounds

wci ≤ uci(k) ≤ wci (3.12)
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for all k ∈ N and given bounds wci , wci ∈ R for all i ∈ NI . We assume that the wci , wci
are chosen such that conditions (3.11) and (3.12) can be simultaneously satisfied.
For q ∈ {0, . . . , N − 1} and i ∈ NI the constraints (3.11) simplify to the expressions

λqi (k) :=

k+q∑
j=0

wci(j)−
k−1∑
j=0

uci(j) ≤
k+q∑
j=k

uci(j), (3.13a)

Λqi (k) :=

k+min{q+N,N}−1∑
j=0

wci(j)−
k−1∑
j=0

uci(j) ≥
k+q∑
j=k

uci(j). (3.13b)

The term min{q +N,N} reflects that at a given time instant k only the controllable load
of the future N ∈ N time steps is known and hence, only controllable load with a deadline
in the next N time steps are covered by the dynamical bounds. Observe that the bounds
can be easily updated by

λqi (k + 1) = λqi (k) + wci(k + q + 1)− uci(k) and (3.14)

Λqi (k + 1) = Λqi (k) + wci(k + min{q +N,N})− uci(k). (3.15)

Using λqi and Λqi avoids the possible confusion whether uci(k) is a control variable which
still needs to be set, or if uci(k) is a fixed value.
Observe that the model of controllable load can be easily coupled with the battery model
since the input uci as well as the bounds are decoupled from the inputs in the battery
model. Simulations of a network of RESs with storage devices and controllable loads are
provided in Section 4.6.3.

Remark 3.4.3. The presented approach makes a couple of assumptions which are necessary
to keep the model simple and to be able to compute solutions in a reasonable time. The
model does not capture, for example, that once a dishwasher starts it has to run for a
certain amount of time and cannot be stopped and started throughout the given scheduling
window. Additionally, the dishwasher has to run for a fixed amount of time and the running
time cannot be stretched on the whole scheduling window only using a little amount of
power the whole time. The simplification avoids that every appliance has to be considered
individually. Extending the model in this direction makes a general analysis of the results
impossible in the context of this thesis. In practice, appliances like air conditioning systems
and refrigerators are very flexible and thus, can compensate for the inflexibility of other
machines.
Another assumption, which is implied by the constraints (3.13), is that controllable load
with a closer deadline is handled first. Once again, neglecting this assumption, would lead
to a model where every appliance has to be considered individually.

Vehicle to grid installations and local generators

A large number of papers have investigated the impact of electric vehicles in future smart
grids (see e.g. [57], [111], [38], [65], [93]). The batteries in the electric vehicles can either
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be used as a controllable load or as a storage device which is only temporarily available
for the RES. In the context of controllable loads, the fleet of electric vehicles is often used
in the so-called valley-filling, i.e., the batteries of the cars are charged at times of low
demand and high generation of renewable energy [64, 65]. In this setting, the cars have to
be charged in a certain time window which can be realized by our model of controllable
load.
Using the electric vehicles as a temporary storage device as in [38] can be implemented in
our network of RESs by using time-varying constraints on the upper and lower capacity of
the battery, i.e.,

Ci(k) ≤ xi(k) ≤ Ci(k),

where now xi(k) represents the state of charge of the battery of the electric vehicle and
(Ci(k))k∈N, (Ci(k))k∈N ⊂ R represent time-varying bounds of RES i ∈ NI . At times k ∈ N
where the vehicle is not connected to the grid, we set Ci(k) = Ci(k) = 0. If the car is
idle, we set Ci(k) = 0 and Ci(k) = Ci according to the model in Section 3.4.1. At times
where the car is needed, one can set Ci(k) = Ci(k) = Ci to ensure that the battery is fully
charged at time k.
In the same way as electric vehicles can be used in valley-filling to increase the power
demand, local generators such as diesel generators, can be implemented in the network to
reduce high peak demands by providing additional power.
Generators can be included by introducing an additional input ugeni ∈ [0, Gmax] in the
dynamics of the power demand zi for all i ∈ NI , with a maximal power generation Gmax ∈
R>0. To capture the slow dynamics of a generator, the constraints

|ugeni (k + 1)− ugeni (k)| ≤ ugeni ,

ugeni ∈ R>0 for all i ∈ NI and for all k ∈ N are, for example, used [59] to bound the
difference in the power generation in two consecutive time steps.
To summarize, the model introduced in Section 3.4.1 is quite general and covers many
models considered in the smart grid literature. Moreover, the battery model can be easily
extended on a local level of a single RES without changing the structure of the overall grid,
only connected through the aggregated power demand

∑I
i=1 zi.

3.5 Control architectures of the electricity grid

For the control of electricity grids, many information exchange structures are possible [91].
Most of them can be described by one of the structures given in Figure 3.7 and in Figure 3.8.
In the centralized setting, Figure 3.7 (left), the energy provider takes all the decisions for
the RESs. In this case, a central controller is considered to compute the optimal solution
of the overall problem based on the data provided from the RESs. The individual RESs
play no role in the decision making process of how to charge or discharge their battery
and only have to execute the decision taken by the grid operator or the CE. This setting
is very inflexible with respect to changes in the network. The central controller needs to
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Figure 3.7: Centralized (left) and decentralized (right) control structure of the electricity grid.

be adapted every time a local RES changes its settings. A centralized MPC scheme is, for
example, used in [50] for the optimal operation of an isolated microgrid. In this thesis, a
centralized MPC algorithm is discussed in the next chapter in Section 4.1.1.
In the decentralized control framework (Figure 3.7 right) on the other hand, every RES
acts on its own. Either selfishly, with respect to its own goals, or cooperatively to achieve
a common goal. Regardless of the goals, the main difference compared to the centralized
setting is that there is no possibility to exchange information between the RESs and the
grid operator. The grid operator cannot influence the decisions made by the individual
participants of the grid. On the other hand, these limitations in the control from the
grid operator point of view makes the network very flexible with respect to RESs settings.
Decentralized control schemes are usually discussed in papers where the well-being of a
single RES is considered and not the performance of the overall grid. For example in [49],
an economic MPC scheme is proposed to minimize the electricity costs of a heat pump in
a building. We discuss a decentralized control setting in Section 4.1.2.

Figure 3.8: Hierarchical distributed (left) and distributed (right) control structure of the electricity
grid. The red lines indicate communication and show a communication between the RESs and the
CE (left) and a neighbor-to-neighbor communication (right).

In the distributed control framework in Figure 3.8, usually two settings are distinguished.
In the hierarchical structure, Figure 3.8 (left), every RES is connected to the CE like a grid
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operator similar to the centralized setting. But in contrast to the centralized framework,
the RESs have their own controller and can individually make their decisions. The CE
ensures that important information is communicated between the RESs. This allows a
flexibility of decentralized settings with additional structure due the information exchange.
In Chapters 5 to 7, hierarchical distributed optimization algorithms are proposed and
analyzed for this framework.
In the distributed control framework visualized in Figure 3.8 (right), the CE may or may
not exist. In this setting, every RES has its own controller and can communicate with its
neighbors. In this context, algorithms and assumptions are usually derived based on the
underlying graph connecting the RESs. Control architectures with neighbor-to-neighbor
communication are, for example, considered [60, 61], [26] and in [59]. In this thesis, we
only analyze the hierarchical distributed framework and not the distributed framework
since we put the focus on the interaction between energy provider and RESs and not on
the interaction between RESs.

Remark 3.5.1. Often, a proposed control scheme cannot be characterized exactly into
centralized, decentralized, or distributed settings. Moreover, the expressions centralized,
distributed and decentralized are used differently in different fields and different publications
depending on the application. This section has introduced these notions as they are used in
the upcoming chapters.

It is worth mentioning that the modeling of the RESs in Section 3.4 together with the
problem formulation in Section 3.3 allows for all three different control concepts. The
RESs are physically decoupled, i.e., only the unconstrained power demand zi is influenced
by all the RESs. Hence, decentralized control schemes are possible but one would expect
that the result with respect to the problem formulation in Section 3.3 improves with the
amount of information exchanged between the RESs. For our setting, this can be observed
in the numerical simulations in the Sections 4.6 and 5.5.
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Chapter 4

Predictive control in the context of
smart grids

In [109], it is argued that a simple rule-based controller is not able to exploit the degrees of
freedom in terms of storage devices in the electricity grid introduced in Section 3.4. To have
a significant impact on the overall power demand

∑I
i=1 zi(·), sophisticated control schemes

are necessary. In this chapter, we formalize the concept of MPC introduced in Section 2.3,
in the context of small scale electricity grids. In particular we formalize economic MPC
characteristics of the underlying control problem by considering appropriate cost functions
to satisfy the goals of the energy provider. In this context, the mathematical formulation
of the goal of the energy provider of peak-shaving is defined.

4.1 Centralized and decentralized predictive control

In (2.6) and (2.7), the notion of the average cost functionals were introduced. In this
section, we give a specific choice for the cost functionals starting with the centralized
control setting and then continuing with the decentralized setting. Moreover, we compare
the two approaches and emphasize their advantages and disadvantages.
Throughout this chapter we assume that the communication variable is one-dimensional,
i.e., zi ∈ R for all i ∈ NI , which conforms with the system dynamics introduced in
Section 3.4. An extension to the case zi ∈ Rp, p ∈ N, for all i ∈ NI , is straightforward.

4.1.1 The centralized control setting

Assume that the sequence of partial sums (SN )N∈N,

SN :=
1

N

N−1∑
j=0

ŵ(j)− ĝ(j) (4.1)

is convergent, i.e., the overall average demand exists and is given by ζ := limN→∞ SN .
Then a natural choice for the running costs for peak-shaving is to penalize the deviation
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from the average at every time instant, i.e.,

`(z) =

(
1

I

I∑
i=1

zi − ζ

)2

=
(
ẑ − ζ

)2
. (4.2)

As already pointed out, w(·) and g(·) correspond to the power consumption and the power
generation, respectively, and can thus only be estimated up to some hours into the future.
Hence, the average demand at time k has to be computed based on w(k;N) and g(k;N)

for a given prediction horizon N ∈ N. We define the reference value for the centralized
running costs at time k as

ζ̂(k) =
1

NI

I∑
i=1

k+N−1∑
j=k

wi(j)− gi(j) =
1

N
(ŵ(k;N)− ĝ(k;N))1T (4.3)

and the running costs `k : RI → R is given by

`k(z) =

(
1

I

I∑
i=1

zi − ζ̂(k)

)2

=
(
ẑ − ζ̂(k)

)2
.

With this definition, the cost functional1 for the centralized control structure at time k is
defined as

JN (x(k),u(k;N)) =

k+N−1∑
j=k

(ẑ(j)− ζ̂(k))2 =
∥∥∥ẑ(k;N)− ζ̂(k)1

∥∥∥2 . (4.4)

Observe that the cost functional is time-varying due to the reference value ζ̂(k). The
CMPC algorithm is summarized in Algorithm 2. The CMPC algorithm is applicable to
any system dynamics introduced in Section 3.4. The system dynamics only indirectly
appears in the definition of the admissible set Uk,N (x0). The performance of Algorithm 2
is analyzed in Section 4.6.

4.1.2 The decentralized control setting

The difference between the decentralized and the centralized control setting lies in the
communication and in the place where the decision is taken. In decentralized control, no
information is exchanged between the individual RESs and hence every RES is completely
independent from a CE and the other participants in the network. This implies that RES
i, i ∈ NI , is only able to optimize its power demand zi with respect to its own predicted
average demand

ζi(k) =
1

N

k+N−1∑
j=k

(wi(j)− gi(j)) =
1

N
(wi(k;N)− gi(k;N))1T , (4.6)

1Here the cost functional instead of the average cost functional is used to simplify the notation. Observe
that the cost functional and the corresponding average cost functional have the same minimizers u?(k;N).
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Algorithm 2 Centralized model predictive control algorithm
RES i, i ∈ NI :

1. Measure the current state xi(k) ∈ Xi, set xi,0 = xi(k) and predict the power demand
and the power generation wi(k;N), gi(k;N).

2. Send xi,0, wi(k;N) and gi(k;N) to the CE.

Central Entity:

3. Compute the average power demand

ζ̂(k) =
1

N
(ŵ(k;N)− ĝ(k;N))1T

to define the running costs `k and the objective function JN .

4. Solve the OCP

u?(k;N) ∈ argmin u(k;N)∈Uk,N (x0)JN (x0,u(k;N)) (4.5)

to obtain u?i (k;N) for all i ∈ NI .

5. Define the feedback µi(x(k)) := u?i (k) and send µi(x(k)) to the individual RESs.

Shift the horizon by setting k = k + 1 and go to step 1.

which gives rise to the local running costs `ki : R→ R defined by

`ki (zi) = (zi − ζi(k))2 (4.7)

and the local objective functions

Ji,N (xi(k),ui(k;N)) =

k+N−1∑
j=k

`ki (zi(j)) = ‖zi(k;N)− ζi(k)1‖2 . (4.8)

The corresponding procedure is given in Algorithm 3. Instead of one optimization problem
in centralized control, I optimization problems have to be solved in every time step of
the decentralized algorithm. Additionally, since no communication between the systems
is necessary, the CE vanishes. To be able to compare Algorithm 2 and Algorithm 3 on a
quantitative level, we have to introduce appropriate performance metrics.

4.2 Performance metrics and the cost functional

In this section, several performance metrics for the MPC algorithms are motivated. Addi-
tionally, alternative cost functionals are discussed to shift the focus to different performance
metrics.
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Algorithm 3 Decentralized model predictive control algorithm
RES i, i ∈ NI :

1. Measure the current state xi(k) ∈ Xi, set xi,0 = xi(k) and predict the power demand
and the power generation wi(k;N), gi(k;N).

2. Compute the average power demand

ζi(k) =
1

N
(wi(k;N)− gi(k;N))1T

to define the running costs `ki and the objective function Ji,N

3. Solve the OCP

u?i (k;N) ∈ argmin
ui(k;N)∈Uk,Ni (xi,0)

Ji,N (xi,0,ui(k;N)).

to obtain u?i (k;N).

5. Define the feedback µi(xi(k)) := u?i (k).

Shift the horizon by setting k = k + 1 and go to step 1.

4.2.1 Performance metrics of predictive control schemes

As emphasized in Chapter 3, the main objective is on peak-shaving from the energy pro-
vider point of view. Moreover, since it is not possible to solve the average functional (2.7)
on an infinite horizon, we use closed-loop solutions zµ(0;N ) of a simulation of lengthN ∈ N
or open-loop solutions z?(k;N) over the prediction horizon N to measure the performance.

Remark 4.2.1. Performance estimates for zµ(·) based on the open-loop solutions z?(k;N)

and based on the length of the prediction horizon N ∈ N are beyond the scope of this thesis.
Thus, we use performance metrics on the finite closed-loop solution zµ(0;N ), where N ∈ N
denotes the number of considered time steps. To be able to compare the results of the closed-
loop solution and the open-loop solution z?(k;N) and to show that the properties from the
open loop carry over to the closed loop we additionally consider performance metrics for
the open-loop solutions.

The peak-to-peak (PTP) variation is defined as the difference between the maximal and
the minimal power demands

max
k=0,...,N−1

ẑµ(k)− min
k=0,...,N−1

ẑµ(k) (PTP)

max
j=k,...,k+N−1

ẑ?(j)− min
j=k,...,k+N−1

ẑ?(j) (PTPk)

either for the closed-loop or for the open-loop solution. The mean-quadratic-deviations
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(MQDs)

1

N

∥∥∥∥ẑµ(0;N )− ẑµ(0;N )1T

N
1

∥∥∥∥2 , (MQD)

1

N

∥∥∥∥ẑ?(k;N)− ẑ?(k;N)1T

N
1

∥∥∥∥2 , (MQDk)

in the closed-loop and in the open-loop formulation, measure the quadratic deviation from
the average power demands 1

N ẑµ(0;N )1T and 1
N ẑ?(k;N)1T , respectively. The MQD re-

sembles the cost function JN except for the computation of the average demand. Observe
that in the case with losses in the battery model, the power demand z is not constant over
the time interval of consideration and hence cannot be computed by

1

N
(ŵ(0;N )− ĝ(0;N ))1T and

1

N
(ŵ(k;N)− ĝ(k;N))1T ,

respectively. The average loss of energy (LOE) can be measured by

1

N

(
(ẑµ(0;N ))1T − (ŵ(0;N )− ĝ(0;N ))1T +

1

T
(x̂(0)− x̂µ(N ))

)
, (LOE)

1

N

(
(ẑ?(k,N))1T − (ŵ(k;N)− ĝ(k;N))1T +

1

T
(x̂(k)− x̂?(k +N))

)
. (LOEk)

Since the storage devices should not be used to waste energy, the loss of energy should be
as small as possible, even if it is not covered in the cost functional.
Peak-shaving of the aggregated power demand can also be interpreted as the minimization
of the deviation in consecutive time steps k and k + 1, for this purpose we additionally
define the averaged smoothing factors (ASFs)

1

N − 1

N−2∑
k=0

(ẑµ(k + 1)− ẑµ(k))2 , (ASF)

1

N − 1

N−2∑
j=k

(ẑ?(j + 1)− ẑ?(j))2 . (ASFk)

4.2.2 Extensions of the objective function

The performance metrics motivate the definition of different objective functions JN and
Ji,N , for i = 1, . . . , I, respectively. The LOE can be taken into consideration by addition-
ally penalizing the usage of the batteries. In this case, for η > 0, ν > 0,

JN (x(k),u(k,N)) = η
∥∥∥ẑ(k;N)− ζ̂(k)1

∥∥∥2 + ν
I∑
i=1

‖ui(k;N)‖2 (4.9)

penalizes the charging and discharging behavior of the RESs. The parameters η and ν can
be used to shift the focus from optimizing with respect to PTP and MQD to LOE. To
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obtain good performance with respect to ASF, the cost functional

JN (x(k),u(k;N)) =

N−2∑
j=k

(ẑ(j + 1)− ẑ(j))2 (4.10)

is defined.2 More generally, the cost functional

JN (x(k),u(k;N)) = (ẑ− ζ(k))Q(ẑ− ζ(k))T (4.11)

for a positive semidefinite matrix Q ∈ RN×N and a reference vector ζ(k) ∈ RN can be
used. For example, (4.10) is realized through ζ(k) = 0 and

Q =



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1


.

The local objective functions in the decentralized setting in Section 4.1.2 can be extended
in a similar way. Most of our numerical results will use (4.4). However, it should be noted
that the cost functional can be replaced and the results in the following will still hold.

4.3 Comparison of centralized and decentralized control

In the centralized MPC Algorithm 2, the CE takes all decisions for the overall system. The
OCP (4.5) is based on the knowledge of the admissible sets Uk,Ni (xi,0) for all i ∈ NI , and
the average ζ̂(k) defines the average of all systems. Hence, the CE has all the information
defining the dynamical behavior of the electricity grid, which implies that a good result
with respect to the performance metrics can be expected. Due to the coupling in the
objective function, RESs with a high/low demand can compensate for other RESs.
In the decentralized MPC Algorithm 3, in contrast, the RESs are decoupled and they
take their decisions independent of the other RESs in the network. Furthermore, only
the deviation from the individual average demand ζi(k) is penalized which prevents that
one RES compensates for other RESs. Hence, regarding the performance, the centralized
control setting is expected to lead to better results than the decentralized setting. This gap
in the performance is also visualized in Section 4.6 where the two algorithms are compared.
However, the knowledge of all components by the CE also contains disadvantages. Every
RES has to report its system dynamics and its constraints to the CE, which might be
undesirable for the customers for reasons of privacy of data. If a single RES changes
its system dynamics or constraints, for example, by adding an additional storage device
or power generation unit, these changes have to be reported to the CE and the whole

2Note that the cost functional (4.9) cannot be written in terms of running costs `k. Regardless, the
cost functional can be used to define an OCP solved at every time step in a receding horizon scheme.
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controller has to be modified. The same situation occurs if the network is enlarged by
a new RES, making the whole approach very inflexible for electricity grids with rapidly
changing components.
Moreover, the dimension of the optimization problem grows linearly with the number of
RESs connected to the grid. This implies a cubic increase of the complexity of the OCP
due to the size of the underlying linear system solved in the optimization algorithm.3 4

Therefore, the CMPC algorithm is not suitable for real-time applications with a high
number of RESs but can be used as a benchmark to assess the quality of different control
approaches.
In the decentralized MPC algorithm no information on the system dynamics and the
constraints is shared, i.e., privacy of data is not an issue. Also, changes in the system
dynamics only have impact on the local level and the local controller which makes the
control approach very flexible. Furthermore, the dimension of the OCPs is independent of
the number of RESs. Every RES has its own controller performing the optimization steps
in parallel. Hence, the size of the grid has no impact on the real-time applicability in this
control setting.

4.4 From the open-loop to the closed-loop solution

In MPC, a feedback controller is computed by iteratively solving OCPs, i.e., open-loop
solutions are used to define the feedback law µ. In this section, we point out three properties
of MPC which arise when we consider the closed-loop solution instead of the open-loop
solution. In Section 4.4.1, we discuss non-unique solutions in the OCP. In Section 4.4.2,
we introduce the concept of warm-start which is commonly used in the MPC context to
reduce the computational complexity and in Section 4.4.3 we investigate the robustness of
MPC and in particular robustness with respect to our application in smart grids.

4.4.1 Non-uniqueness of the optimizer z?

The centralized cost functional (4.4), JN : RI×N → R,

JN (z(k;N)) =

∥∥∥∥∥ 1

I

I∑
i=1

zi(k;N)− ζ̂(k)

∥∥∥∥∥
2

,

defined in the communication variables z(k;N) instead of x(k) and u(k;N), is convex but
not strictly convex. Hence, even though a unique minimum

J?kN = minz(k;N) JN (z(k;N))

s.t. z(k;N) ∈ Dk,N (x(k))

3The cubic increase refers to an implementation without exploiting any structure. Depending on the
optimization problem it might be possible to decrease the complexity by exploiting sparsity for example.

4Possible algorithms are for example sequential quadratic programming (SQP) or interior point meth-
ods [78].
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exists under suitable convexity and compactness conditions on the set

u(k;N) ∈ Uk,N (x(k))

and suitable conditions on the dynamics (2.2), the minimizer z?(k;N) such that J?N (k) =

JN (z?(k;N)) holds, does not have to be unique. The choice of the optimizer z?(k;N) is
not important for the solution of the OCP, but it may have an impact on the closed-loop
solution, since the admissible set Uk+1,N (x(k + 1)) at the next time step depends on the
choice of the optimizer z?(k;N). We illustrate this scenario in the following example.

Example 4.4.1. Consider the simplified system dynamics

xi(k + 1) = xi(k) + ui(k)

zi(k) = ui(k) + si(k)

for i = 1, 2 and fix the horizon N = 2. The initial states are set to xi(0) = 1 and the first
elements of the time-dependent sequences are given by si(0; 3) = (1 1 − 1) for i = 1, 2.
The dynamics and the inputs are subject to the constraints

xi(j) ∈ [0, 2], ui(j) ∈ [−1, 1]

for i = 1, 2 and j ∈ N.
For the time instant k = 0, we get

ζ̂(0) =
1

2 · 2

2∑
i=1

1∑
j=0

si(j) = 1.

Hence, the OCP

J?02 = min
z(0;2)

J2(z(0; 2))

s.t. x(0) = (1 1)T

x(j + 1) = x(j) + u(j) for j = 0, 1

z(j) = u(j) + s(j) for j = 0, 1

x(j) ∈ [0, 2]2 for j = 0, 1

u(j) ∈ [−1, 1]2 for j = 0, 1

leads to the optimal value J?0N = 0 which is, for example, obtained for

J?02 = J2(z
?(0; 2)) = J2(z

??(0; 2))

defined through the trajectories

u?(0; 2) =

(
0 0

0 0

)
, z?(0; 2) =

(
1 1

1 1

)
,

and

u??(0; 2) =

(
1 0

−1 0

)
, z??(0; 2) =

(
2 1

0 1

)
.
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At time instant k = 1, the average power demand is given by ζ̂(1) = 0. If we define the
feedback µ?(x(0)) = u?(0), the initial state x(1) = (1 1)T is obtained. The corresponding
OCP at time k = 1 is defined as

min
z(1;2)

J2(z(0; 2))

s.t. x(1) = (1 1)T

x(j + 1) = x(j) + u(j) for j = 1, 2

z(j) = u(j) + s(j) for j = 1, 2

x(j) ∈ [0, 2]2 for j = 1, 2

u(j) ∈ [−1, 1]2 for j = 1, 2

with optimal solution J?2 (1) = J2(z
?(1; 2)) = 0 and

u?(1; 2) =

(
−1 1

−1 1

)
, z?(1; 2) =

(
0 0

0 0

)
.

In contrast, if we define the feedback µ??(x(0)) = u??(0), the initial state is given by x(1) =

(2 0)T leading to the OCP

min
z(1;2)

J2(z(1; 2))

s.t. x(1) = (2 0)T

x(j + 1) = x(j) + u(j) for j = 1, 2

z(j) = u(j) + s(j) for j = 1, 2

x(j) ∈ [0, 2]2 for j = 1, 2

u(j) ∈ [−1, 1]2 for j = 1, 2.

Since the battery of RES 2 is empty, an optimal solution is given by

u??(1; 2) =

(
−1 1

0 1

)
, z??(1; 2) =

(
0 0

1 0

)
,

i.e., J??12 = J2(z
??(1; 2)) = 1

4 > J?12 . This implies that different optimal open-loop solutions
can lead to different closed-loop solutions and different performances.

Remark 4.4.2. This result motivates the investigation of the performance of the MPC
closed-loop solution depending on the optimization algorithm. For example, active set
methods, such as sequential quadratic programming, or interior point methods (see [78]
and [17]) may lead to different solutions.

4.4.2 Warm-start

The real-time applicability of MPC algorithms strongly depends on the complexity of the
OCP solved at every time instant. Since algorithms like interior point methods or sequential
quadratic programming iteratively compute an optimal solution, the number of iterations
to satisfy a given stopping criteria has a significant impact on the overall computation
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time. The number of iterations can be reduced by a good initial guess z0(k;N) which is
close to an optimal solution, i.e.,

∥∥z0(k;N)− z?(k;N)
∥∥ is small and z?(k;N) denotes an

optimal solution of the OCP at time k.
Here, MPC provides a natural strategy for the initialization of z0(k + 1;N) based on the
optimal solution z?(k;N) from the previous time instant. This method, called warm-start,
can be used in our context as well. Let z?i (k;N) and z?i (k + 1;N) denote two consecutive
optimal solutions for i ∈ NI . Since the underlying optimization problems only differ in the
initial value xi(k) and xi(k+ 1), respectively, and in the shifted sequences wi(·) and gi(·),
we expect that the reference value and the optimal communication variables only change
slightly, i.e., ζ̂(k) ≈ ζ̂(k+ 1) and z?(j)x(k) ≈ z?(j)x(k+1)

5 for all j ∈ {k+ 1, . . . , k+N −1}.
Hence, we define the initialization

z0(j)x(k+1) := z?(j)x(k)

u0(j)xi(k+1) := u?(j + 1)x(k)

for all j ∈ {k+ 1, . . . , k+N − 1}. The values u0(k+N)x(k+1) and z0(k+N)x(k+1) have to
be chosen such that u0(k+1, N) ∈ Uk+1,N (x(k+1)) and z0(k+1, N) ∈ Dk+1,N (x(k+1)),
depending on the dynamics of the model. For details on warm-start in MPC, see [46,
Subsection 10.5].

4.4.3 Robustness of model predictive control schemes

The model dynamics (2.1) used to predict the dynamical behavior of a RES cannot capture
all the details of a real storage device in general. Moreover, the prediction of the power
demand relies on a perfect knowledge of the future power generation and power consump-
tion. Since this assumption, is not realistic, we have to assume that the system dynamics is
only modeled up to a certain accuracy and is subject to additional unknown disturbances
which have to be compensated by the MPC feedback.
MPC computes a feedback iteratively by solving an OCP at every time step, adjusting
the errors made through the unknown deviations in the dynamics and hence possesses
certain inherent robustness properties even if the dynamics are only approximated. In
this section, we investigate how the robustness properties of MPC in the context of the
proposed electricity grid can be examined. We concentrate on uncertainties in the predicted
sequencesw(·) and g(·) where potentially the biggest inaccuracies occur due to errors in the
weather forecast and due to the attitude of the consumers who might spontaneously change
their consumption patterns during the day. To this end, we introduce the disturbance
sequences (ri(k))k∈N ⊂ R and (di(k))k∈N ⊂ R and the disturbances (∆rk,i)k∈N ⊂ RN and
(∆dk,i)k∈N ⊂ RN for all i ∈ NI . We assume that the disturbance sequences are of a special
form relating ri(·) and (∆rk,i)k∈N, and di(·) and (∆dk,i)k∈N, respectively, for all i ∈ NI .

Assumption 4.4.3. Let (ri(k))k∈N and (di(k))k∈N be sequences of independently and
identically normally distributed random variables with zero mean and standard deviation

5We use the notation z(j)x(k) and z(j)x(k+1) to indicate, that z(j)x(k) is an element of the vector z(k;N)

and z(j)x(k+1) is an element of the vector z(k + 1;N). The same holds for the input u.

48



4.4. From the open-loop to the closed-loop solution

κ ∈ R≥0 for all i ∈ NI . Then the disturbances ∆ri(k;N) and ∆di(k;N) at time k ∈ N are
defined as

∆rk,i := (∆rk,i(1), . . . , ∆rk,i(N))

∆dk,i := (∆dk,i(1), . . . , ∆dk,i(N))

with

∆rk,i(j + 1) := ∆rk,i(j) + ri(k + j), ∆rk,i(1) := 0, (4.12a)

∆dk,i(j + 1) := ∆dk,i(j) + di(k + j), ∆dk,i(1) := 0, (4.12b)

for j = 1, . . . , N − 1.

Hence at a certain time step k instead of the real power consumption w(k,N) and the real
power generation, only the disturbed vectors

w̃i(k;N) := wi(k;N) + ∆ri(k;N), (4.13a)

g̃i(k;N) := gi(k,N) + ∆di(k;N), (4.13b)

are known. The disturbed MPC algorithm using the perturbed datasets (4.13) is given
in Algorithm 4. The disturbance sequences constructed in this way capture two properties

Algorithm 4 Disturbed model predictive control

1. Measure the current state xi(k) ∈ Xi, set xi,0 = xi(k) and predict w̃i(k;N), g̃i(k;N)

for all i ∈ NI .

2. Compute the average power demand ζ̂(k) and solve the OCP based on the knowledge
of w̃i(k;N), g̃i(k;N).

3. Define the feedback µi(k) := u?i (k) and implement µi(k) in the system dynamics
without disturbances wi(k;N), gi(k;N).

Shift the horizon by setting k = k + 1 and go to step 1.

which are appropriate to the application of our smart grid model. The standard deviation
increases with the time index j representing that the weather forecast and the consumption
patterns are more reliable for time steps in the near future, and due to the construction, the
probability that the weather changes dramatically between two consecutive time steps is
small. The impact of perturbed data in centralized and decentralized MPC is numerically
analyzed in Section 4.6.4 using Monte-Carlo simulations.

Remark 4.4.4. Note that the disturbance sequences (4.12) satisfy the properties of a
Wiener process [44, Chapter 4.1 and Chapter 7.1].
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4.5 Prediction of power consumption and power generation

The prediction of reliable forecasts of the power consumption w(·) and the power genera-
tion g(·) is a topic on its own. There is a broad literature addressing the topic of forecasts
in the context of smart grids. In [67], five consumption forecasting techniques are presen-
ted and compared to each other. More recent works on consumption forecasting models
are presented in [86], [5] and [104]. In [51], an overview of different methods to forecast
photovoltaic power generation is provided. Methods are split in short-term forecasts, ran-
ging from 30 minutes to 6 hours, and long-term forecasts over several days. For short-term
predictions, cloud covering is considered whereas in the long term predictions numerical
weather predictions based on associated models are used. The photovoltaic power genera-
tion is predicted based on weather forecasts [63] using methods like machine learning [94]
and neural networks [113]. The paper [50] incorporates predictions of power generation
and load forecasts into an MPC context of a microgrid. Throughout this thesis, we assume
that the sequences w(·) and g(·) or at least the approximations defined in Equation (4.13)
are known. Nevertheless, in the case where the sequences are not known, the algorithms
proposed in the cited papers can still be used in the MPC formulations to predict w(k;N)

and g(k;N) at every time step k.

4.6 Numerical simulations

In this section, the numerical performance of the decentralized and the centralized control
scheme is analyzed. To simplify the analysis, we focus on the linear model dynamics (3.1),

xi(k + 1) = xi(k) + Tui(k)

zi(k) = wi(k)− gi(k) + ui(k)

subject to the constraints (3.2) and (3.3) for all i ∈ NI . For the charging and discharging
rates the constants −ui = ui = 0.3 are used for all i ∈ NI . Moreover, the battery capacities
are set to Ci = 2, the initial state of charge of the batteries is set to xi(0) = 0.5 for all
i ∈ NI , the discretization parameter is set to T = 0.5 and the cost functionals (4.4)
and (4.8)

JN (x(k),u(k;N)) =
∥∥∥ẑ(k;N)− ζ̂(k)1

∥∥∥2 , Ji,N (xi,0,ui(k;N)) = ‖zi(k;N)− ζi(k)1‖2

are used for all i ∈ NI . The CMPC Algorithm 2 and the DeMPC Algorithm 3 are
implemented in MATLAB6.7

4.6.1 Comparison of decentralized and centralized control

In Section 4.3, we argued that the CMPC Algorithm 2 outperforms the DeMPC Al-
gorithm 3. In Figure 4.1 and Figure 4.2, the open-loop solutions of a single OCP cor-

6See http://mathworks.com
7The MATLAB functions quadprog and fmincon using an interior point algorithm were applied to the

minimization problems to compute optimal solutions.
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responding to step 2 of Algorithm 2 and Algorithm 3 for a setting of 50 RESs and a
prediction horizon of N = 48 are compared to the uncontrolled setting. We observe in
Figure 4.1, that both approaches reduce the minimal and maximal peaks in the average
demand profile ẑ significantly. Nevertheless, due to the additional information available
in the centralized OCP, as already expected, the centralized open-loop solution outper-
forms the decentralized open-loop solution. Since in the decentralized setting every RES
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Figure 4.1: Optimal solution of a single optimization problem using a centralized and a decentral-
ized algorithm. As a reference the uncontrolled demand and the reference value are visualized.
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Figure 4.2: The open-loop trajectories of the batteries (left) and the optimal charging/discharging
behaviors (right) corresponding to the power demand in Figure 4.1.

penalizes the difference to the local reference ζi instead of the global average ζ̂ the lack of
information results in an open-loop solution, where on average, the bounds on the charging
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and discharging rates are not active. This leads to the fact that the capacities of the bat-
teries are not fully used. In contrast, in the centralized OCP one can observe that either
the battery constraints or the constraints on the charging/discharging rate are active at
time steps where the open-loop solution in Figure 4.1 has a deviation from the reference
value. Thus, in the centralized setting, the potential of the batteries is fully used, whereas
in the decentralized setting possible performance improvements are lost due to the lack of
information.
The same conclusions can be drawn from the closed-loop solutions of Algorithm 2 and 3
visualized in the Figures 4.3–4.5 for a simulation of 1 month (30 days). On the left the full
simulation and on the right the first three days of the simulation are visualized. Again, both
approaches reduce the fluctuations in the average power demand significantly compared to
the uncontrolled setting and CMPC outperforms DeMPC. The results with respect to the
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Figure 4.3: Average power demand of 50 RESs simulated over 30 days (left) and the first 3 days
(right).
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Figure 4.4: Average state of charge of 50 RESs simulated over 30 days (left) and the first 3 days
(right).
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Figure 4.5: Average charging/discharging profiles of 50 RESs simulated over 30 days (left) and
the first 3 days (right).

performance metrics are summarized in Table 4.1. In the MPC closed-loop simulation, the
PTP value is reduced from 1.4020 to 0.8020 which is the maximal reduction possible with
the constraints −ui = ui = 0.3 for all i ∈ NI . To further reduce the vertical fluctuations,
the bounds have to be increased. Observe that even though the performance with respect

open loop N = 48 closed loop N = 1440

Uncontrolled DeMPC CMPC Uncontrolled DeMPC CMPC
PTP 1.2798 0.8253 0.6789 1.4020 0.9152 0.8020

MQD 0.0922 0.0356 0.0138 0.0529 0.0193 0.0052

ASF 0.0121 0.0058 0.0046 0.0074 0.0039 0.0011

Table 4.1: Performance metrics of the centralized and the decentralized MPC algorithm.

to the measures MQD and ASF are not covered explicitly by the cost functional, the
performances are improved significantly compared to the uncontrolled setting.

4.6.2 The impact of the prediction horizon

In the first simulation we fixed the prediction horizon N = 48. In Figure 4.6 the perform-
ance of the centralized and the decentralized MPC algorithm are visualized with respect
to the prediction horizon N varying from N = 6 (i.e., 3 hours) to N = 60 (i.e., 30 hours).
Again, the performance is measured for 50 RESs and a simulation length of N = 1440

times steps (i.e., 30 days). For the PTP performance, we observe that a prediction horizon
of N = 18 is enough to obtain the optimal value of the centralized setting. In the de-
centralized control setting, also the biggest improvements with respect to the PTP values
can be observed in a prediction horizon between 6 and 18. Nevertheless, the results still
slightly improve for bigger horizons.
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Figure 4.6: Performance metrics for centralized and decentralized MPC depending on the predic-
tion horizon N .

4.6.3 Controllable loads

In Section 3.4.2, we argued that the model can be extended to handle controllable loads
by adding an additional degree of freedom. In Figure 4.7, the closed-loop solution of the
CMPC algorithm is visualized using the system dynamics (3.10)

xi(k + 1) = xi(k) + ui(k)

zi(k) = wi(k)− gi(k) + ui(k) + uci(k)

for i = 1, . . . , 20. Here, uci represents the controllable loads which have to satisfy the
constraints (3.12) for wci = 0 and wci = 1 and the time-varying constraints (3.11) for
all i ∈ N20. For the CMPC simulation in Figure 4.7, the scheduling window N is set to
N = 6. We assume that 30% of the load is controllable and is hidden in the additional
input uci . Thus, we define w(·) := 0.7 ·w(·) and the remaining 0.3 ·w(·) are covered by uc.
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Figure 4.7: Performance of CMPC including controllable loads.

As expected, the additional degree of freedom improves the performance of the centralized
and the decentralized control scheme. In Figure 4.8, the performance metrics in terms of
the scheduling window N are visualized. The controllable loads have very little impact on
the ASF since the objective function is not chosen according to this criteria. Moreover,
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we observe that for N > 18 in the centralized setting and for N > 30 in the decentralized
setting almost no improvement can be observed and hence, the controllable load does not
have to be predicted more than 9 or more than 15 hours in advance. In the centralized
setting, the PTP value is not reduced any further since the reference signal ζ̂(·) changes
over time as well.
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Figure 4.8: Performance metrics for centralized and decentralized MPC including controllable
loads.

4.6.4 Robustness verification via Monte-Carlo simulations

To verify the robustness of the CMPC scheme (Algorithm 2) and the DeMPC scheme
(Algorithm 3) a Monte-Carlo simulation using 1000 realizations of perturbed sequences
w̃(·) and g̃(·) is used in Algorithm 4 to simulate the system dynamics of 20 RESs over
a week (i.e., 336 MPC iterations). The perturbed sequences are constructed according
to Assumption 4.4.3 with standard deviations κ = 0.1, 0.2, . . . , 0.5. The simulations with
inaccurate forecast are compared to the nominal case, i.e., κ = 0. Moreover, in Table 4.2
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ẑ
in

[k
W

]

0 24 48 72 96 120 144 168

Time in hours [h]

0

0.5

1

1.5

2

x̂
in

[k
W

h
]

Figure 4.9: Impact of inaccurate forecasts on the average power demand ẑ (left) and the average
battery profile x̂ (right) for κ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} compared to the nominal trajectory using the
CMPC Algorithm 2 combined with Algorithm 4. The areas show the maximal and minimal values
of the Monte-Carlo simulation.
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standard performance metrics (max./av./min)
deviation κ PTP MQD ASF

CMPC 0 0.81/0.81/0.81 0.008/0.008/0.008 2.9/2.9/2.9 ×10−3

0.1 0.81/0.81/0.81 0.010/0.009/0.008 3.2/2.9/2.4 ×10−3

0.2 0.81/0.81/0.81 0.016/0.011/0.009 3.7/3.1/2.4 ×10−3

0.3 0.89/0.81/0.81 0.021/0.014/0.010 4.4/3.5/2.7 ×10−3

0.4 1.00/0.81/0.81 0.026/0.017/0.012 5.2/4.2/3.3 ×10−3

0.5 1.10/0.83/0.81 0.031/0.020/0.013 6.2/5.0/3.9 ×10−3

DeMPC 0 0.97/0.97/0.97 0.028/0.028/0.028 8.1/8.1/8.1 ×10−3

0.1 1.09/1.02/0.95 0.034/0.031/0.029 8.6/8.2/7.7 ×10−3

0.2 1.18/1.06/0.97 0.039/0.035/0.032 9.1/8.3/7.8 ×10−3

0.3 1.25/1.10/0.99 0.043/0.038/0.034 9.5/8.6/7.9 ×10−3

0.4 1.30/1.12/1.00 0.046/0.041/0.036 10.0/9.0/8.1 ×10−3

0.5 1.35/1.15/1.02 0.049/0.043/0.037 10.6/9.3/8.3 ×10−3

Table 4.2: Performance metrics of the Monte-Carlo simulations using different standard deviations
κ in the inaccurate forecast.
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Figure 4.10: Maximum, average and minimum performance metrics using a Monte-Carlo simu-
lation with 1000 perturbed sequences. Between the dashed lines are 90% of the solutions.

and in Figure 4.10 the performance results are summarized. Even for large disturbances
the MPC algorithms provide good results.

4.6.5 The computational complexity

Whereas CMPC outperforms DeMPC in performance, DeMPC clearly outperforms CMPC
in terms of the computational complexity. In Figure 4.11, the computational complexity
of centralized and decentralized MPC depending on the number of RESs is visualized. The
figure shows the average computational time in seconds of 100 minimization problems. The
dashed lines show the maximal and the minimal computation times. The computational
complexity of CMPC grows nonlinearly which makes the method intractable if the number
of RESs becomes too big. On the other hand the computational complexity of the decent-
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4.6. Numerical simulations
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Decentralized MPC

Figure 4.11: Computational complexity of centralized and decentralized MPC. The lines show the
average computation time of 100 OCPs and the dashed lines show the maximal and the minimal
computation time.

ralized MPC algorithm grows linearly with a moderate slope even though the optimization
problems corresponding to the individual RESs were solved sequentially. If the minimiz-
ation problems are solved in parallel by every RES individually, then the computational
complexity is constant and hence the applicability of DeMPC is independent of the size of
the network.
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Chapter 5

A cooperative distributed
optimization algorithm

In Chapter 4, we introduced a centralized and a decentralized MPC approach. CMPC
outperforms DeMPC but is no longer suitable if the number of RESs is large, due to the
computational complexity of the OCP

u?(k;N) ∈ argmin u(k;N)∈Uk,N (x0)JN (x0,u(k;N)). (5.1)

In this chapter, we fix the time instant k ∈ N and concentrate on the solution of a single
OCP. We propose a hierarchical distributed optimization algorithm, which iteratively com-
putes an optimal solution of the problem (5.1) while keeping the flexibility of the decent-
ralized setting. Before we give the algorithm and a proof of convergence, we introduce
necessary concepts for the optimization problem.
The well-known curse of dimensionality encountered when trying to solve large-scale optim-
ization problems has led to several workarounds including various distributed optimization
algorithms. In the control literature, this approach was initiated in the thesis of Tsitsiklis
[99] (see also [15]), wherein decentralized optimization schemes with or without communic-
ation between agents or processors were studied. Recent works in the field of multi-agent
systems, particularly in the field of consensus, have seen a resurgence of interest in the area
of distributed optimization, see for example [35, 55, 58, 75, 76, 77, 114] and the references
therein. Much of this work assumes the existence of a global cost function decompos-
able into the sum of cost functions for each agent. This allows individual agents to solve
optimization problems locally and, under various communication schemes and topologies,
to arrive at a globally optimal solution without the need to solve a (potentially large)
optimization problem centrally.
A notable recent exception is [26], where the global cost functional is not separable, similar
to the cost functionals considered in this thesis. In [26], it is assumed that each agent
knows the global cost function, but only has access to its local decision variables and
local constraint set. Furthermore, [26] assumes a global coupled inequality constraint
where each agent knows its (functional) contribution to the coupling constraint. In this
setting, [26] presents a distributed optimization algorithm based on a neighbor-to-neighbor
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communication. More importantly, it is shown that this distributed optimization algorithm
converges to the solution of the global optimization problem. In contrast to [26], the
algorithm presented here relies on the presence of a CE all agents communicate with.
This chapter is structured as follows. In Section 5.1, we introduce basic notations and
definitions necessary for the remainder of the chapter. In Section 5.2, a hierarchical dis-
tributed optimization algorithm is presented and convergence properties of the algorithm
are shown. In Section 5.3, the application of the distributed optimization algorithm based
on the linear model of the RESs introduced in Chapter 3 is discussed. In Section 5.4, the
algorithm is extended to nonlinear model dynamics. The chapter is concluded with nu-
merical simulations in Section 5.5 analyzing the performance of the proposed optimization
algorithm in the context of MPC.

5.1 Assumptions and notations

To solve the OCP (5.1) in a distributed way, we exploit the convexity properties given in
Section 2.4.1. Since we concentrate on a single OCP at a fixed time instant k ∈ N and a
fixed prediction horizon N ∈ N, we omit the index k and N in the notations whenever it
does not lead to ambiguity. The OCP (5.1) is written in the unknowns u = u(k;N) but the
performance is measured in the variables z(·). Now, let us rewrite the optimization problem
in the variables z = z(k;N) using the definition of the admissible set Dk,N (x0) (cf. (2.4)).
Similar to the notation used for the variables, we omit the initial value x0 in the notation
of the set Dk,N (x0) in this chapter, i.e., we write D = Dk,N (x0) and Di = D

k,N
i (xi,0).

Accordingly, the optimal control problem (5.1) is rewritten as

min G(z)

s.t. z ∈ D (5.2)

for a function G : RpI×N → R. For i = 1, . . . , I, we define the mappings z 7→ pi such that1

pi =
(
zT1 . . . zTi−1 zTi+1 . . . z

T
I
)T ∈ Rp(I−1)×N . (5.3)

We then define the local objective functions gi(·;pi) : Rp×N → R as

gi(zi;pi) := G(z) (5.4)

for all i ∈ NI . In order to obtain a convex optimization problem (5.2), the function G has
to be convex and the set D has to be convex. To ensure convexity of D, we impose the
following assumptions on the system dynamics.

Assumption 5.1.1. We assume that the local systems dynamics (2.1) satisfy the following
properties for all i ∈ NI :

• The sets Ui ∈ Rmi are compact and convex and the sets Xi ∈ Rni are convex for all
i = 1, . . . , I.

1Alternatively the notation z−i = pi is used in the literature for the definition in Equation (5.3) for all
i ∈ NI
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• The functions fi : Xi×Ui → Rni are affine in xi ∈ Xi and ui ∈ Ui for all i = 1, . . . , I,
i.e.,

fi(xi, ui) = Aixi +Biui

for given matrices Ai ∈ Rni×ni and Bi ∈ Rni×mi .

• The functions hi : Xi × Ui × Rp → Rp are affine in xi ∈ Xi and ui ∈ Ui for fixed
si ∈ Rp for all i = 1, . . . , I, i.e.,

hi(xi, ui; si) = Cixi +Diui + ci(si)

for given matrices Ci ∈ Rp×ni , Di ∈ Rp×mi and given functions ci : Rp → Rp.

• Additionally, we assume that the local systems satisfy a feasibility assumption. For
all i ∈ NI , for all prediction horizons N ∈ N, for all time steps k ∈ N and for all
initial values xi(k) ∈ Xi, we assume that there exists ui(k;N) ∈ Uk;Ni (xi(k)) such
that xi(k;N) ∈ XN

i holds.

Lemma 5.1.2. If Assumption 5.1.1 holds, then the sets Di are convex and compact for all
i ∈ NI .

Proof. For a fixed initial value xi,0 = xi(k) ∈ Xi, i ∈ NI , the sets

X
N
ix0

=

xi ∈ XN
i

∣∣∣∣∣∣
xi(j + 1) = fi(xi(j), ui(j))

xi(j + 1) ∈ Xi, ui(j) ∈ Ui(xi(j))
∀ j = k, . . . , k +N − 1

 (5.5)

are convex and compact since fi is affine (and continuous), Ui is convex and compact and
Xi is convex. This implies that Di is compact due to the continuity of hi. The convexity
follows immediately from the convexity and compactness of Ui and X

N
ix0

and the linearity
of fi and hi for all i ∈ NI .

5.2 The hierarchical distributed optimization algorithm

5.2.1 The distributed optimization algorithm

In this section, we propose a hierarchical distributed optimization algorithm (see Al-
gorithm 5) to solve optimization problems of the form (5.2). Instead of solving one min-
imization problem, several iterations are performed at every time step k in which every
system i ∈ NI minimizes the local objective function gi(·;pi) for changing parameters pi.
The CE broadcasts the communication variables and computes the variable stepsize θ in
every iteration. The hierarchical distributed optimization algorithm splits the optimization
problem into local optimization problems, where the number of unknowns is independent
of the number of systems in the network, and an optimization problem for the CE. The
optimization problem of the CE has only one unknown, namely the stepsize. Observe that
only the communication variables zi are broadcast among the systems and only subsystem
i ∈ NI makes use of the set Di. In other words, no knowledge of the system dynamics of
the other subsystems is necessary to compute a solution.
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Algorithm 5 Hierarchical cooperative distributed optimization algorithm
Input:

• Subsystem i, i ∈ NI : Define the admissible set Di based on the initial state
xi(k) ∈ Xi and the time-dependent quantity si(k;N).

• CE: Define the number of subsystems I, the prediction horizon N , the maximal
iteration number `max ∈ N ∪ {∞} and a desired precision ε ∈ R≥0.

Initialization:

• Subsystem i, i ∈ NI : Define and transmit z?1i , z
1
i ∈ Di.

• CE: Set the iteration counter ` = 1 and G1 =∞, receive z1i , i ∈ NI .

Main loop:
Phase 1 (CE): Receive, z?`i i = 1, 2, . . . , I.

• Compute the stepsize θ` = argmin
θ∈[0,1]

G(θz?` + (1− θ)z`).

• Compute z`+1 := θ`z?` + (1− θ`)z` and evaluate the performance index

G`+1 := G(z`+1). (5.6)

• If |G`+1 −G`| < ε or ` ≥ `max holds, terminate the main loop. Otherwise, transmit
z`+1 to the subsystems.

Phase 2 (Subsystem i, i ∈ NI): Receive z`+1.

• Define p`+1
i (see Equation (5.3))

• Solve the local minimization problem

z
?`+1

i = argmin
zi∈Di

gi(zi;p
`+1
i ). (5.7)

• Transmit z?`+1

i .

Increment the iteration counter ` = `+ 1 and repeat the loop.

Remark 5.2.1. In Algorithm 5 the communication of the variable z ∈ RpI×N from the CE
to all the subsystems i ∈ NI is necessary. For special cases of the algorithm we show how
the amount of data communicated by the CE can be reduced significantly (see Algorithm 6).
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5.2.2 Convergence of the distributed optimization algorithm

In this section, we prove convergence of Algorithm 5 to the optimal solution of the min-
imization problem (5.2). To this end, we first formalize the crucial steps and the involved
functions of the algorithm. Throughout this section, we assume that Di ⊂ Rp is convex,
compact and non-empty for all i ∈ NI . The set D ∈ RpI×N is defined as D = D1× . . .×DI
and thus, is also convex, compact and non-empty.
Let the global objective function G : D → R be continuous and convex on D and let the
local functions gi(·;pi) : Di → R be strictly convex for fixed parameters pi for all i ∈ NI .
Then, the local minimizer

z?i := argmin
zi∈Di

gi(zi;pi)

is unique according to Theorem 2.4.9. Due to the continuity of G, gi is continuous in pi.
Since gi(·,pi) is additionally strictly convex the uniqueness of the minimizer z?i implies
that the mapping

pi 7→ z?i (5.8)

from the parameters to the minimizers is continuous for all i ∈ NI . (A corresponding result
in a more general setting can be found in [11, Ch. 1], for example.) As a first step of proving
convergence, we show that the sequence (G`)`∈N computed in (5.6) is non-increasing.

Lemma 5.2.2. Let G : D → R be continuous and convex and let the local functions
gi(·;pi) : Di → R be strictly convex for all parameters pi and for all i ∈ NI . Then the
sequence (G`)`∈N generated by Algorithm 5 is non-increasing, i.e., G`+1 ≤ G` holds for all
` ∈ N. If, additionally, z?` 6= z`, then G`+1 < G` holds. Hence, the sequence (G`)`∈N is
monotonically decreasing until Algorithm 5 stops.

Proof. Since z?`i is the global minimum of gi(·;p`i), and since gi(·;p`i) is strictly convex, it
holds that

gi(z
?`
i ;p`i) ≤ gi

(
1

I
z?`i +

(
1− 1

I

)
z`i ;p

`
i

)
≤ gi(z`i ;p`i)
= G(z`)

for all i ∈ NI . For i ∈ NI , we define the vectors

∆zi =

(
0T . . . 0T

(
z?`i − z`i

)T
0T . . . 0T

)T
. (5.9)

With this definition, G`+1 can be written in the form

G(z`+1) = G
(
z` + θ`

(
z?` − z`

))
= G

(
z` + θ`

I∑
i=1

∆zi

)
.
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Since θ` ∈ [0, 1] is chosen optimal with respect to z?` and z`, we obtain the estimate

G

(
z` + θ`

I∑
i=1

∆zi

)
≤ G

(
z` +

1

I

I∑
i=1

∆zi

)
= G

(
1

I

I∑
i=1

(
z` + ∆zi

))
. (5.10)

Applying Jensens inequality to the convex function G permits to extract the sum out of
the function yielding the estimate

G

(
1

I

I∑
i=1

(
z` + ∆zi

))
≤ 1

I

I∑
i=1

G
(
z` + ∆zi

)
(5.11)

and allowing to identify the local objective functions

G
(
z` + ∆zi

)
= gi

(
z?`i ;p`i

)
for all i ∈ NI . Since z?` is the solution of the local optimization, the inequality

gi

(
z?`i ;p`i

)
≤ gi

(
z`i ;p

`
i

)
holds for all i ∈ NI . This leads to the result

1

I

I∑
i=1

G
(
z` + ∆zi

)
=

1

I

I∑
i=1

gi

(
z?`i ;p`i

)
≤ 1

I

I∑
i=1

gi

(
z`i ;p

`
i

)
=

1

I

I∑
i=1

G
(
z`
)
.

which implies the assertion

G`+1 = G(z`+1) ≤ G(z`) = G`.

In the case z?`i 6= z`i for at least one index i ∈ NI we obtain

gi

(
z?`i ;p`i

)
< gi

(
z`i ;p

`
i

)
due to the strict convexity of gi

(
·;p`i

)
which implies G`+1 < G`.

The proof of Lemma 5.2.2 shows that the constant stepsize θ` = 1
I also leads to a non-

increasing sequence providing an alternative way to update z`. This immediately follows
from the estimate (5.10) and from Inequality (5.11). The result is briefly summarized in
the following corollary.

Corollary 5.2.3. Let G : D → R be continuous and convex and let the local functions
gi(·;pi) : Di → R be strictly convex for all parameters pi and for all i ∈ NI . Then the
sequence (G`)`∈N generated by Algorithm 5 using the constant stepsize θ` = 1

I is non-
increasing. If, additionally, z?` 6= z`, then G`+1 < G` holds. Hence, the sequence (G`)`∈N
is monotonically decreasing until Algorithm 5 stops.
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Since the sequence (G`)`∈N ⊂ R is non-increasing, it is straightforward to show that the
sequence is convergent.

Corollary 5.2.4. Let G : D → R be continuous and convex and let the local functions
gi(·;pi) : Di → R be strict convex for all parameters pi and for all i ∈ NI . Then, the
sequence (G`)`∈N ⊂ R of Algorithm 5 converges as ` → ∞, i.e., there exists an G] ∈ R
such that lim`→∞G

` = G] holds.

Proof. The function G is continuous, convex and defined on a compact set. This implies
that the minimum G? = minz∈DG(z) is attained (Theorem 2.4.9). Since (G`)`∈N is mono-
tonically decreasing by Lemma 5.2.2 and bounded from below by G?, (G`)`∈N converges,
i.e., lim`→∞G

` = G].

In Lemma 5.2.2 and Corollary 5.2.4 we have shown that the sequence (G`)`∈N is converging.
Our remaining task, which is the main result of this section, is to demonstrate that the
limit of the sequence (G`)`∈N is equal to the solution of (5.2) if we additionally assume
that G is differentiable.

Theorem 5.2.5. Let G : D→ R be continuously differentiable and convex and let the local
functions gi(·;pi) : Di → R be strictly convex for all parameters pi and for all i ∈ NI .
The limit G] of the sequence (G`)`∈N generated by Algorithm 5 coincides with the unique
solution G? = minz∈DG(z) of the OCP (5.2).

Proof. Let z? denote a solution of (5.2), i.e., G? = G(z?). For any z̃ with

G(z̃) > G? (5.12)

one step of Algorithm 5 with z`i = z̃i for i = 1, . . . , I yields

G(z`+1) < G(z̃) (5.13)

or

G(z`+1) = G(z̃) (5.14)

due to Lemma 5.2.2. If Equation (5.14) holds, we additionally obtain from Lemma 5.2.2
that z`+1

i = z̃i for all i ∈ NI , i.e., Algorithm 5 is stationary. To show that this case cannot
happen while (5.12) simultaneously holds, we define the function φ : [0, 1]I → R,

φ(η) :=G

(
z̃ +

I∑
i=1

ηi∆zi

)
,

using the definition

∆zi =
(

0T . . . 0T (z?i − z̃i)
T 0T . . . 0T

)T
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for all i ∈ NI , similar to Equation (5.9). With the notation 1 = (1, . . . , 1) ∈ RI , it holds
that

φ(1) = G? < G(z̃) = φ(0). (5.15)

Since G is convex, φ is convex and the directional derivative of φ in 0 ∈ RI with respect
to η = 1 is less than zero, i.e.,

0 > 〈gradφ(0),1〉 =
I∑
i=1

∂φ

∂ηi
(0). (5.16)

Inequality (5.15) implies the existence of an index i ∈ NI such that z?i 6= z̃i and, thus,
0 > ∂φ

∂ηi
(0) holds. However, the i-th system updates in this case z̃i, which contradicts

the assumption z`+1
i = z̃i. Hence, Inequality (5.13) holds for all z̃i ∈ Di, i = 1, . . . , I,

satisfying Inequality (5.12).
The function G is continuous and defined on a compact set. Therefore, there exists an
(admissible) accumulation point z] of the sequence (z`)`∈N satisfying the equality

G(z]) = G].

Now, it is clear that G] ≥ G?. To show that G] = G?, assume to the contrary that
G] > G?. Since the solutions of the local optimization problems depend continuously on the
parameters pi, as per (5.8), and the function G is continuous, the descent property (5.13)
at the accumulation point z] implies the existence of an ε > 0 such that the inequality

G(z`+1) < G] (5.17)

is satisfied whenever z` ∈ Bε(z]) holds.2 Since z] is an accumulation point, there exists an
index ` ∈ N such that z` ∈ Bε(z]) holds and, thus, Inequality (5.17) holds. However, due
to the monotonicity of the sequence (G`)`∈N (Lemma 5.2.2), this contradicts the definition
of G]. Therefore, the assertion G] = G? holds.

Theorem 5.2.5 is the main result of this section. Since G] coincides with G?, the perform-
ance of CMPC and cooperative distributed model predictive control (DiMPC) are equal if
Algorithm 5 is used in the distributed control setting.
In the remainder of this section, we consider a specific form of the objective function. We
assume that there exists a function G : D̂→ R such that

G(z) = G

(
1

I

I∑
i=1

zi

)

for all z ∈ D and D̂ ⊂ Rp×N is defined as

D̂ :=

{
ẑ ∈ Rp×N

∣∣∣∣∣ẑ =
1

I

I∑
i=1

zi, zi ∈ Di ∀ i ∈ NI

}
.

2Bε(z
]) represents the open ball of radius ε > 0 centered at z].

66



5.2. The hierarchical distributed optimization algorithm

Since Di is convex and compact for all i ∈ NI the set D̂ is also convex and compact. If
the function G is convex and the local functions gi(·;pi) are strictly convex for all i ∈ NI ,
then also G is strictly convex in ẑ.

Example 5.2.6. The centralized cost functional (4.4) penalizing the deviation from a given
reference ζ̂ ∈ R can be written in the form

G(z) =

∥∥∥∥∥ 1

I

I∑
i=1

z− 1ζ̂

∥∥∥∥∥
2

(5.18)

or in the average variables

G(ẑ) =
∥∥∥ẑ− 1ζ̂∥∥∥2 . (5.19)

The function G is convex but not strictly convex for I > 1 whereas G is strictly convex in
ẑ.

Due to the strict convexity of G and the convexity and compactness of the set D̂, the global
minimizer ẑ? ∈ D and the global minimum G

? are unique (see Theorem 2.4.9). This result
is summarized in the following corollary.

Corollary 5.2.7. Let G : D̂ → R be continuously differentiable and strictly convex and
let the local functions gi(·;pi) : Di → R be strictly convex for all parameters pi and for
all i ∈ NI . Then Algorithm 5 applied to the objective function G satisfies the following
properties.

• The minimum

G? = G
?

= min
ẑ∈D̂

G (ẑ)

and the minimizer

ẑ? = argmin
ẑ∈D̂

G (ẑ)

are unique.

• For the sequences (z`i)`∈N, i = 1, . . . , I, the convergence

1

I

I∑
i=1

z`i = ẑ` → ẑ?

for `→∞ holds.

So far, we have shown that (G`)`∈N, (G
`
)`∈N and (ẑ`)`∈N converge. As a final step, it

would be desirable if it could additionally be shown that (z`i)`∈N converges for all i ∈ NI .
Unfortunately, we can only show that the difference between two consecutive solutions, z`i
and z`−1i , converges to zero for `→∞.
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Theorem 5.2.8. Let G : D̂→ R be continuously differentiable and strictly convex and let
the local functions gi(·;pi) : Di → R be strictly convex for all parameters pi and for all
i ∈ NI . Let (z`i)`∈N, i ∈ NI , be the sequence generated by Algorithm 5. Then, the stepsize
‖∆z`i‖ with ∆z`i := z`i − z`−1i converges to zero for `→∞.

Proof. Let ε > 0. We define the set

Nε =
{
ẑ ∈ D̂

∣∣G(ẑ) ≤ G(ẑ?) + ε
}
.

Let δ > 0. Then there exists an ε > 0 such that

Nε ⊂ Bδ(ẑ?).

due to the strict convexity of G and the compactness of Di, i ∈ NI . From Corollary 5.2.7,
we obtain the convergence ẑ` → ẑ? for ` → ∞. Let δ > 0 be arbitrary. Then there exists
an ` ∈ N and an ε > 0 such that ẑ` ∈ Bδ(ẑ?), or equivalently ẑ`− ẑ? ∈ Bδ(0), and ẑ` ∈ Nε.
For the local objective function, we obtain the estimate

gi(z
?`
i ;p`i) ≤ gi(z`i ;p`i) = G(ẑ`) ≤ G(ẑ?) + ε

which implies

ẑ` − 1

I
z`i +

1

I
z?`i ∈ Nε ⊂ Bδ(ẑ?).

Therefore, we can conclude that for all sufficiently large `(
ẑ? − ẑ` +

1

I
z`i −

1

I
z?`i

)
−
(
ẑ? − ẑ`

)
=

1

I

(
z`i − z?`i

)
∈ B2δ(0),

i.e., ‖z`i − z?`i ‖ → 0 for ` → ∞. Finally, we obtain ‖z`+1
i − z`i‖ → 0 for ` → ∞ using the

definition of z`+1
i

z`+1
i − z`i = (θ`z?`i + (1− θ`)z`i)− z`i = θ`(z?`i − z`i)

for θ` ∈ [0, 1].

5.3 Application to residential energy systems

In Section 4.3, the advantages and disadvantages of a centralized control approach in the
context of smart grids were discussed. In the previous section, we presented a hierarchical
distributed optimization algorithm which splits the optimization problem into local tasks
performed by subsystems and a global task performed by the CE. In the limit, Algorithm 5
recovers the optimal solution of the centralized control approach. In this section, we
investigate advantages of the distributed control algorithm over the centralized approach
in the context of the electricity grid introduced in Chapter 3.
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5.3.1 The communication structure of the distributed optimization al-
gorithm

Algorithm 5 consists of three main steps which we investigate in the following. The com-
putation of an optimal solution of the local problems (5.7) by subsystems or the RESs, a
solution of the optimization problem of the CE to obtain the stepsize θ` and the commu-
nication between the RESs and the CE.

General properties using the objective function G

The optimization problems of the RESs only depend on the parameters pi and the local
system dynamics (2.1) of the individual RESs, i.e., the system dynamics of RES i, which
define the set Di, is private and does not need to be known by the other RESs and
the CE. For this reason, similar to the decentralized setting, the local system dynamics
can be changed without changing any component other than the local controller of the
corresponding RES.
The global optimization problem in Phase 1 is an optimization problem in one single vari-
able θ ∈ [0, 1] and hence, can be solved efficiently, sometimes even explicitly, independent of
the size of the overall network. Moreover, the CE only requires the variables z to compute
the next iterate. The variables ui and xi remain private for all i ∈ NI .
The number of variables that have to be transmitted grows linearly with the number of
RESs or the dimension of z. Moreover, the communication variables do not remain private
between the RESs, since every system needs to know z` to define p`i . This might prevent
customers to join a network using Algorithm 5. Through the objective function G, these
problems can be circumvented.

Properties using the objective functions G

For objective functions of the form G(z) = G(ẑ), the number of transmitted variables can
be made independent of the number of RESs in the network. More precisely, it is sufficient
that every RES sends pN values to the CE and the CE publishes Np+1 values. Moreover,
the CE does not have to send the Np+ 1 values to the RESs individually but only has to
make sure that Np+ 1 values are publicly available and can be accessed by every RES.
The reduction to Np+ 1 values works as follows: In the case of the function G, instead of
the parameters pi ∈ R(I−1)p×N , i = 1, . . . , I, we can define the average parameters

p̂i =
1

I

I∑
l=1

zl −
1

I
zi = ẑ− 1

I
zi (5.20)

for i = 1, . . . , I, and write the local objective functions with parameters p̂i, i.e., gi(·; p̂i).
As a consequence, the dimension of the parameters p̂i ∈ Rp×N is independent of I. To
avoid the communication with every RES in iteration ` of Algorithm 5, observe that p̂`+1

i =

ẑ`+1 − 1
I z

`+1
i , i.e., the individual parameter p`+1

i is obtained from the general information
ẑ`+1 plus a local information. Even though only z?`i is known to RES i, it holds that
z`+1
i := θ`z?`i + (1 − θ`)z`i and hence, z`+1

i can be computed easily if the stepsize θ` is
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known in every iteration ` ∈ N. By publishing ẑ`+1 and θ` in every iteration `, every RES
is able to compute p̂`+1

i independent of the size of the network. Algorithm 5 is rewritten
for the special case of G(z) = Ĝ(ẑ) in Algorithm 6. In this case, the variables z`i are only

Algorithm 6 Hierarchical cooperative distributed optimization for a network of RESs
Input:

• RES i, i ∈ NI : Define the admissible set Di based on the initial state xi(k) ∈ Xi

and the time-dependent quantity si(k;N).

• CE: A continuously differentiable and strictly convex function G, number of RESs I,
prediction horizon N , maximal iteration number `max ∈ N ∪ {∞}, desired precision
ε ∈ R≥0.

Initialization:

• RES i, i ∈ NI : Define and transmit z?1i , z
1
i ∈ Di.

• CE: Set the iteration counter ` = 1 and G1 = ∞, receive z1i , i ∈ NI and compute
ẑ1 = 1

I
∑I

i=1 z
1
i .

Main loop:
Phase 1 (CE): Receive z?`i for i ∈ NI .

• Compute ẑ?` = 1
I
∑I

i=1 z
?`
i .

• Compute the stepsize θ` = argmin
θ∈[0,1]

G(θẑ?` + (1− θ)ẑ`).

• Compute ẑ`+1 := θ`ẑ?` + (1− θ`)ẑ` and evaluate the performance index

G`+1 := G(ẑ`+1). (5.21)

• If |G`+1 −G`| < ε or ` ≥ `max holds, terminate the algorithm. Otherwise, transmit
ẑ`+1 and θ` to the RESs.

Phase 2 (RES i, i ∈ NI): Receive ẑ`+1 and θ`.

• Compute z`+1
i = θ`z?`i + (1− θ`)z`i

• Solve the local minimization problem

z
?`+1

i = argmin
zi∈Di

gi

(
zi; ẑ

`+1 − 1

I
z`+1
i

)
.

• Transmit z?`+1

i .

Increment the iteration counter ` = `+ 1 and repeat the loop.
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known to RES i and the CE, but not to the other RESs. Privacy is maintained since only
a single RES has access to the average demand ẑ`+1 from which no individual information
of other RESs can be recovered. The communication structure of Algorithm 6 is visualized
in Figure 5.1.

Central Entity

Compute ẑ?`

Compute θ`

Compute ẑ`+1

RES 1

Update z`+1
1

Compute z
?`+1

1

ẑ`+1, θ`

RES I
Update z`+1

I
Compute z

?`+1

IRES 2

Update z`+1
2

Compute z
?`+1

2

· · ·

Iteration `, Phase 1 Public data Iteration `, Phase 2

z
?`+1

1 z
?`+1

2 z
?`+1

I

Figure 5.1: Communication structure of Algorithm 6.

Remark 5.3.1. In Algorithm 6 the optimal states x?i and the optimal input u?i for i ∈ NI
can either be recovered from the system dynamics and the optimal power demand z?i or by
computing x`+1

i = θ`x?`i + (1 − θ`)x`i and u`+1
i = θ`u?`i + (1 − θ`)u`i in every iteration `

similar to the update of z`.

5.3.2 Numerical complexity of the distributed optimization algorithm

The numerical complexity for the central entity

In Algorithm 6, the CE has to solve the optimization problem

argmin
θ∈[0,1]

G(θẑ?` + (1− θ)ẑ`) (5.22)

in the unknown θ subject to box constraints independent of the number of systems I.
This implies that the numerical complexity is independent of the number of RESs if we
neglect the effort to compute the average ẑ`+1. For many convex objective functions, the
minimization problem with respect to θ can be solved explicitly, e.g. for the function

G(ẑ) =
∥∥∥ẑ− ζ̂1∥∥∥2 (5.23)

with ζ̂ ∈ R, an explicit solution can be computed.

Example 5.3.2. The optimal stepsize θ in iteration ` of Algorithm 6 for the cost func-
tion (5.23) can be computed by projecting the expression

θ̃ =

(
ẑ?` − ẑ`

) (
ẑ` − ζ̂1

)T
(ẑ?` − ẑ`) (ẑ?` − ẑ`)

T
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to the interval [0, 1], i.e., θ = max{0,min{θ̃, 1}}. In order to show this, define the function

φ(θ) = G(θẑ?` + (1− θ)ẑ`)

=
(
ζ̂1− ẑ` − θ

(
ẑ?` − ẑ`

))(
ζ̂1− ẑ` − θ

(
ẑ?` − ẑ`

))T
.

Since φ is strictly convex, the assertion follows by setting φ′(θ) = 0 and projecting the
resulting θ on the interval [0, 1]. The derivative is given by

φ′(θ) = −2 ·
(
ẑ?` − ẑ`

)(
ζ̂1− ẑ` − θ

(
ẑ?` − ẑ`

))T
(5.24)

= 2θ ·
(
ẑ?` − ẑ`

)(
ẑ?` − ẑ`

)T
− 2 ·

(
ẑ?` − ẑ`

)(
ζ̂1− ẑ`

)T
(5.25)

from which the assertion follows. In the case where the explicit expression for θ` is not
defined, i.e., (

ẑ?` − ẑ`
)(

ẑ?` − ẑ`
)T

= 0,

we have ẑ?` = ẑ` and according to Lemma 5.2.2, z?`i = z`i for all i ∈ NI which implies that
the algorithm already found the minimum.

The goal of Algorithm 5 and 6 is not to reduce the computational complexity of the CE
to a minimum but to render the complexity independent of the number of RESs. Instead
of one unknown θ one can also consider the case that every system i ∈ NI belongs to a
cluster m ∈ NM , for a fixed M ∈ N which will be denoted by zm,i. Every cluster has its
own variable θm ∈ [0, 1] and θT = (θ1 . . . , θM ). Without loss of generality, we assume that
systems are ordered and we define

ZTm =
(
zTm,m1

. . . zTm,mI
)

for the clusters m = 1, . . . ,M and

ZT =
(
ZT1 . . . ZTM

)
.

For θ ∈ [0, 1]M , a clustering and given communication variables z?`i and z`i for i = 1, . . . , I,
we define

Z(θ) =

 θ1Z
?`
1

...
θMZ?`M

+

 (1− θ1)Z`1
...

(1− θM )Z`M

 .

The minimization problem

argmin
θ∈[0,1]

G(θZ?` + (1− θ)Z`)
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of the CE in Algorithm 5 can be replaced by

argmin
θ∈[0,1]M

G(Z(θ)).

In this case the CE has to solve a convex optimization problem in M variables subject
to box constraints. The computational complexity is still independent of the number of
systems and only depends on the number of clusters. The clusters can be used to increase
the speed of convergence and is a generalization of the caseM = 1 described in Algorithm 5.
The generalization can also be applied to the function G and the variables ẑ.

The numerical complexity for the residential energy systems

The optimization problem of the RESs in every iteration ` ∈ N is of the same complexity
as the optimization problem of the decentralized control scheme considered in Chapter 4.
Whereas in the decentralized control setting at every time instant only one optimization
problem has to be solved, in Algorithm 6 multiple optimization problems have to be solved
until the stopping criteria are reached. However, our numerical simulations indicate that a
few iterations ` are sufficient to obtain good results if the warm-start technique introduced
in Section 4.4.2 is used in the MPC context (see Section 5.5.1 for the numerical results).
Moreover, the numerical results in Section 5.5.1 show that the number of iterations ` only
grows moderately with the number of RESs.

5.4 Extension to non-convex optimization

Currently, Algorithm 5 (or Algorithm 6, respectively) is not applicable to nonlinear dy-
namics, i.e., throughout this chapter we made the assumption that fi is linear for all i ∈ NI
(cf. Assumption 5.1.1). Imposing linear dynamics leads to a convex optimization problem
introduced in Section 2.4. For nonlinear dynamics, it is not guaranteed that local optima
are also global optima which makes finding a global optimal solution even more difficult
in the centralized case. Additionally, Algorithm 5 uses convex combinations of the form

x`+1
i = θ`x?`i + (1− θ)x`i , u`+1

i = θ`u?`i + (1− θ)u`i , z`+1
i = θ`z?`i + (1− θ)z`i ,

for all i ∈ NI and θ ∈ [0, 1], which can only be used due to the linearity of the functions
fi, hi and the convexity of the sets Xi and Ui for all i ∈ NI . If these assumptions are
dropped, it cannot be assured that x`i and u`i are feasible for all ` ∈ N and for all i ∈ NI .
Nevertheless, the idea of Algorithm 5 is still applicable to find at least a suboptimal solution
of the underlying non-convex optimization problem. We generalize the Assumptions 5.1.1
to obtain an algorithm which is applicable to the nonlinear dynamics (3.8).

Assumption 5.4.1. In the remainder of this section, we assume that the local system
dynamics satisfy the following properties for all i ∈ NI .

• The sets Ui ∈ Rmi are compact and convex and the sets Xi ∈ Rni are non-empty for
all i = 1, . . . , I.
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• The functions fi : Xi × Ui → Rni are continuous in xi ∈ Xi and ui ∈ Ui for all
i = 1, . . . , I

• The functions hi : Xi × Ui × Rp → Rp are affine in xi ∈ Xi and ui ∈ Ui for fixed
si ∈ Rp for all i = 1, . . . , I, i.e.,

hi(ui; si) = Diui + ci(si)

for given matrices, Di ∈ Rp×mi and given functions ci : Rp → Rp.

• Additionally, we assume that the local systems satisfy a feasibility assumption. For
all i ∈ NI , for all prediction horizons N ∈ N, for all time steps k ∈ N and for all
initial values xi(k) ∈ Xi, we assume that there exists ui(k;N) ∈ Uk;Ni (xi(k)) such
that xi(k;N) ∈ XN

i holds.

With these assumptions, we modify Algorithm 5. In particular, the stopping criterion of
the CE is changed and a new feasibility variable ν`i ∈ {0, 1} is introduced for each RES
i ∈ NI . The updated formulas are given in Algorithm 7. Since we still assume that Ui is
convex, it holds that

u`+1
i = θ`u?`i + (1− θ)u`i (5.26)

is feasible for all i ∈ NI and for all ` ∈ N. The same holds for the variable zi due to
the definition of the function hi(ui; si) = Diui + ci(si) for all i ∈ NI . Since fi is possibly
nonlinear, we have

θ`x?`i (j + 1) + (1− θ)x`i(j + 1) 6= fi(θ
`x?`i (j) + (1− θ)x`i(j), u`+1

i (j)), (5.27)

in general. For this reason, we define

x`+1
i (j + 1) = fi(x

`+1
i (j), u`+1

i (j)) (5.28)

for j = k, . . . , k+N−1, where x`+1
i does not need to satisfy the constraints x`+1

i ∈ XN
i for

all i ∈ NI . If we disregard the feasibility of x`+1
i , we still obtain a monotonically decreasing

sequence (G`)`∈N due to the computation of z` even though it might not correspond to
a feasible state x`. Even if x` in iteration ` is infeasible, i.e., x` /∈ XN the algorithm is
continued as if it were feasible. The feasibility can be easily verified by the RESs. To this
end, we define the boolean variable νi ∈ {0, 1}, which is sent to the CE in every iteration
`, and is set to ν`i := 0 if x`i /∈ XN

i and is set to ν`i := 1 if x`i ∈ XN
i for i = 1, . . . , I.

In the case that ν`i = 0 for at least one RES i ∈ NI , a feasible solution in iteration ` can
be obtained through the definition

x?`i (j + 1) = fi(x
?`
i (j), u?`i (j)) (5.29)

for j = k, . . . , k +N − 1 and for i = 1, . . . , I. Thus, in every iteration u?` and x?` defined
through Equation (5.29) are feasible even if x`+1 according to Equation (5.28) is infeasible.
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Algorithm 7 Hierarchical distributed optimization for nonlinear dynamics
Input: Define the admissible sets Di based on the initial states xi(k) ∈ Xi and the time-
dependent quantities si(k;N). Set the number of RESs I, the prediction horizon N , the
maximal iteration number `max ∈ N ∪ {∞} and the desired precisions ε1, ε2, δ > 0.
Main loop:
Phase 1 (CE): Receive z?`i and ν`i , i = 1, . . . , I.

• Compute the stepsize θ` = argmin
θ∈[0,1]

G(θz?` + (1− θ)z`).

• Compute z`+1 = θ`z?`+(1−θ`)z` and evaluate the performance indices G?` = G(z?`)

and G`+1 = G(z`+1).

• If |G`+1 −G`| < ε1,

• If ν`i = 1 for all i ∈ NI , transmit θ` and terminate the algorithm.

• If there exits an i ∈ Ni such that ν`i = 0 and |G?` −G`| < ε2, transmit θ` := 1

and terminate the algorithm.

• Otherwise transmit θ` and z`+1.

• If ` = `max or θ` < δ

• If ν`i = 1 for all i ∈ NI , transmit θ` and terminate the algorithm.

• If there exists an i ∈ NI with ν`i = 0, transmit θ` := 1 and terminate the
algorithm.

• Otherwise transmit θ` and z`+1.

Phase 2 (RES i, i ∈ NI): Receive θ` and z`+1

• Update the input and the communication variables i.e.,

u`+1
i = θ`u?`i + (1− θ`)u`i and z`+1

i = θ`z?`i + (1− θ`)z`i .

• Compute x`+1
i based on u`+1

i , i.e.,

x`+1
i (j + 1) = fi(x

`+1
i (j), u`+1

i (j)), j = k, . . . , k +N − 1.

• If x`+1
i ∈ XN

i (i.e., x`+1
i is feasible), set ν`+1

i = 1. Otherwise, set ν`+1
i = 0.

• Define p`+1
i as in Equation (5.3).

• Solve the minimization problem z
?`+1

i = argmin
zi∈Di

gi(zi;p
`+1
i ) to obtain a minimizer.

• Transmit z?`+1

i and ν`+1
i .

Increment the iteration counter ` = `+ 1 and repeat the loop.
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Hence, if we encounter that z` is a local minimum, i.e., θ` = 0, or numerically θ` ≤ δ for
a given precision δ > 0, Algorithm 7 is terminated by the CE with z`+1

i , u`+1
i and x`+1

i if
x`+1
i ∈ XN or with z

?`+1

i , u?`+1

i and x
?`+1

i (corresponding to θ` = 1) if x`+1
i /∈ XN .

In the case that the algorithm does not run into infeasibility in iteration `, i.e., x`+1 ∈ XN ,
and additionally |G`+1 − G`| < ε1 holds for a given ε1 > 0, then Algorithm 7 is stopped
similar to Algorithm 5. Moreover, if x`+1 /∈ XN but |G?` − G`| < ε2 for a given ε2 > 0,
Algorithm 7 is also stopped and z?` , u?` and x?` are returned.
Even though we will not investigate the convergence properties of Algorithm 7 for nonlinear
dynamics here, the numerical results in Section 5.5.2 show its applicability to the nonlinear
model of RESs introduced in Chapter 3.

5.5 Numerical simulations

In this section, we analyze the performance and computational complexity of DiMPC using
the hierarchical distributed optimization algorithms introduced in the preceding sections.
In the first part of the section, we focus on the performance compared to CMPC, and in
the second part we concentrate on the performance for different system dynamics of the
RESs.
We emphasize that all conclusions presented in the following sections are solely based on
the obtained numerical results with the dataset presented in Chapter 3.

5.5.1 Distributed MPC using hierarchical distributed optimization

To demonstrate the performance of the hierarchical distributed optimization Algorithm 6
we use the linear model dynamics (3.1),

xi(k + 1) = xi(k) + Tui(k)

zi(k) = wi(k)− gi(k) + ui(k)

subject to the constraints (3.2) and (3.3) for all i ∈ NI . For the charging and discharging
rates the constants −ui = ui = 0.3 are used for all i ∈ NI . Moreover, the battery capacities
are set to Ci = 2, the initial state of charge of the batteries is set to xi(0) = 0.5 for all
i ∈ NI and the discretization parameter is set to T = 0.5.3 For the definition of the cost
functional we use Equation (4.4), i.e.,

JN (x(k),u(k;N)) =
∥∥∥ẑ(k;N)− ζ̂(k)1

∥∥∥2
or, equivalently, in the notation of Algorithm 6

G(ẑ) =
∥∥∥ẑ− ζ̂1∥∥∥2 .

3We point out that individual parameters ui, ui and Ci, i ∈ NI , do not change the performance of the
algorithms. The results presented in this section are also valid for non-homogeneous grids with individual
parameters. Individual parameters were tested by adding random numbers to the values used in this
section.
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Unless specified otherwise, all minimization problems involved in the numerical experiments
are solved using the Interior Point Optimizer (IPOPT) [103] and the HSL mathematical
software library [3] to solve the underlying linear systems of equations.

Benefits of warm-start and variable θ

In Theorem 5.2.5, we showed that the optimal value G? obtained by the centralized OCP
coincides with the value lim`→∞G

` obtained by the distributed optimization Algorithm 6.
In Figure 5.2, we visualize the number of iterations of this algorithm for the first two days of
a simulation length of N = 144, and 20 RESs, which are necessary to ensure the accuracy
|G`(k)−G?(k)| ≤ 10−i for i = 1, . . . , 5. Additionally, Figure 5.2 shows the importance of
the variable stepsize θ. If the fixed value θ = 1/I is used instead of a variable θ according
to the minimization problem (5.22), approximately twice as many iterations are necessary
to obtain a certain accuracy. The variable stepsize θ in combination with warm-start
reduces the number of iterations even further. Table 5.1 gives associated numerical values.
Note that for all accuracies there are time instances at which the warm-start initialization
already satisfied the termination criterion of the algorithm. Hence, when using warm-start
the minimal number of iterations is always 0.

without warm-start with warm-start
θ = 1/I variable θ θ = 1/I variable θ

average number of iterations
ε = 10−1 8.61 3.81 1.59 0.27
ε = 10−2 23.90 15.05 13.57 1.44
ε = 10−3 59.33 33.04 28.20 3.86
ε = 10−4 99.85 51.44 42.02 7.67
ε = 10−5 142.69 65.89 55.56 11.57
maximal number of iterations
ε = 10−1 12 6 20 3
ε = 10−2 42 24 63 16
ε = 10−3 86 46 107 38
ε = 10−4 131 67 152 58
ε = 10−5 176 89 197 69
minimal number of iterations
ε = 10−1 6 3 0 0
ε = 10−2 10 6 0 0
ε = 10−3 13 11 0 0
ε = 10−4 14 16 0 0
ε = 10−5 16 19 0 0

Table 5.1: Number of iterations needed to obtain a certain accuracy for variable and fixed θ, with
and without warm-start.
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a) Variable θ b) Variable θ and warm-start
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c) Fixed θ d) Fixed θ and warm-start
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Figure 5.2: Number of iterations needed to ensure |G`(k)−G?(k)| ≤ 10−i for i ∈ {1, 2, . . . , 5} at
time k with variable stepsize θ according to Remark 5.3.2 (top) and with fixed θ = I−1 (bottom) as
well as with (right) and without warm-start (left). G? denotes the solution of the CMPC problem.

In Figure 5.3, we visualize

1

N

N−1∑
k=0

|G`(k)−G?(k)|,

i.e., the average deviation from the optimal solution computed by the CMPC algorithm
in iteration `. The average is taken with respect to the simulation length N = 144.
The figure illustrates the rate of convergence of the hierarchical distributed optimization
algorithm using fixed θ = 1/I and variable θ with and without warm-start. We obtain
linear convergence in all cases and variable θ clearly outperforms the method with fixed θ.
After the accuracy of the optimizer is reached, the results do not improve anymore.

Impact of the Number of RESs

In Figure 5.4 the influence of the number of RESs instead of the accuracy is analyzed. We
vary the number of RESs from 10 to 300 in steps of 10 and count the number of iterations
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Figure 5.3: Average speed of convergence of the hierarchical distributed optimization algorithm for
different settings.

until the accuracy |G`−G?| ≤ 10−2 is obtained with and without warm-start. On average
the optimization algorithms using warm-start clearly outperform the algorithm without
warm-start independent of the number of RESs. However, we also observe that in the
worst case, the algorithm with warm-start requires more iterations than the one without.
The number of iterations is not independent of the number of systems. The number of
iterations seems to increase sublinearly with respect to the number of RESs (for more than
50 RESs).
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Figure 5.4: Average number of iterations needed to obtain the accuracy |G` − G?| ≤ 10−2 for a
different number of RESs with and without warm-start for fixed and for variable θ. The dashed
lines show the maximal and minimal number of iterations to obtain the accuracy |G`−G?| ≤ 10−2.
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Imperfect Optimization

In Figure 5.4 we see that the algorithm needs about 15 iterations on average to obtain an
accuracy of 10−2 in the setting of 100 RESs, variable θ, and warm-start. However, if we
do not iterate up to a certain accuracy and, instead, always solve a fixed number of OCPs
at every time step, we conclude that 2 optimization steps are already sufficient to obtain a
closed-loop performance which is close to CMPC (cf. Figure 5.5 and Table 5.2). To obtain
a comparable result without warm-start, about 10 optimization steps are necessary. Note
that Figure 5.5 only shows the first 3 days of a simulations of one week (i.e., N = 336). The
missing time steps show a similar behavior and are not visualized to keep the illustration
simple. The results for the DiMPC simulations were obtained in MATLAB using a setting
of 100 RESs.

Simulations without warm-start Simulations with warm-start
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ẑ
in

[k
W

]

CMPC
DiMPC with 10 local optimizations

0 24 48 72 96

Time in hours [h]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ẑ
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Figure 5.5: Performance of DiMPC for imperfect optimization without warm-start (left) and with
warm-start (right) compared to CMPC.

Remark 5.5.1. For the considered dataset in this section, i.e., the 144 samples and a
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PTP MQD ASF
Uncontrolled setting 1.1016 0.0505 0.0057
DeMPC 0.7011 0.0187 0.0029
CMPC 0.5016 0.0032 0.0007
DiMPC with warm-start
2 local optimizations 0.5026 0.0035 0.0008
5 local optimizations 0.5023 0.0033 0.0007
10 local optimizations 0.5023 0.0033 0.0006
DiMPC without warm-start
2 local optimizations 0.6712 0.0103 0.0036
5 local optimizations 0.5999 0.0060 0.0013
10 local optimizations 0.5638 0.0046 0.0009

Table 5.2: Performance of DiMPC with imperfect optimization (with and without warm-start)
compared to CMPC and DeMPC. For the DiMPC algorithm the RESs solve a fixed amount of
optimization problems at every time step k.

variable number of RESs, the values G? are in the interval [0.054, 1.850]. A large (small)
G? corresponds to a large (small) deviation from the average ζ̂. Therefore, we use the
absolute error ∣∣∣G` −G?∣∣∣ ≤ ε
instead of the relative error ∣∣∣G` −G?∣∣∣ ≤ ε ·G?
as a measure of the quality of the results. If G? is small the performance with respect to
our metrics is good even if the relative error might still be large. The choice ε = 10−2

seems to be reasonable for our application for most of the numerical simulations, but can
be replaced by any other value.

5.5.2 Distributed MPC for different model dynamics

In this section we investigate the performance of DiMPC using the hierarchical distributed
optimization Algorithm 6 and 7, respectively, for different system dynamics. In particular
we demonstrate that not only the simple model dynamics can be handled by the proposed
algorithm. For nonlinear dynamics, the DiMPC approach also clearly outperforms the
DeMPC approach. In this section we use a setting of 300 RESs and a simulation length
of one month (N = 1440 and T = 0.5) with initial conditions xi(0) = 1 for all i ∈ N300.
The simulations are performed in MATLAB. We consider three different system dynamics
defined in Section 3.4.1.
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Chapter 5. A cooperative distributed optimization algorithm

Linear system dynamics without losses

As a reference, we use the simplified system dynamics without losses

xi(k + 1) = xi(k) + Tui(k),

zi(k) = wi(k)− gi(k) + ui(k)

subject to the box constraints

0 ≤ xi(k) ≤ 2

−0.3 ≤ ui(k) ≤ 0.3

for all i ∈ N300.

Linear system dynamics with losses

The linear system with losses is defined as

xi(k + 1) = xi(k) + 0.95u+i (k) + u−i (k),

zi(k) = wi(k)− gi(k) + u+i (k) + 0.95u−i (k)

for all i ∈ N300. Here, we consider that 5% of the power is lost in the charging and in the
discharging process representing a cycle efficiency of the storage device of circa 90%. The
constraints are defined as

0 ≤ xi(k) ≤ 2,

−0.3 ≤ u−i (k) ≤ 0,

0 ≤ u+i (k) ≤ 0.3,

0 ≤ −u−i (k) + u+i (k) ≤ 0.3

Nonlinear system dynamics

The nonlinear system dynamics are defined by Equation (3.8)

xi(k + 1) = xi(k) + 0.95u+i (k) + u−i (k)− 0.1 · T
(
u+i (k)2 + u−i (k)2

)
+ T

(
0.1u−i (k)

ε+ xi(k)
−

0.2u+i (k)

2− 2ε− xi(k)

)
zi(k) = wi(k)− gi(k) + u+i (k) + 0.95u−i (k)

for all i ∈ N300. The parameter ε = 10−2 is included for numerical reasons to prevent the
division by zero and to allow the storage device to be fully charged or fully discharged. In
addition to the linear constraints

0 ≤ xi(k) ≤ 2,

−0.3 ≤ u−i (k) ≤ 0,

0 ≤ u+i (k) ≤ 0.3,

0 ≤ −u−i (k) + u+i (k) ≤ 0.3.
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5.5. Numerical simulations

we introduce the nonlinear constraints

0.95u+i (k)− 0.1u+i (k)2 − 0.2

2− 2ε− xi(k)
u+i (k) ≥ 0

u−i (k)− 0.1u−i (k)2 +
0.1

ε+ xi(k)
u−i (k) ≥ −0.3.

motivated in Section 3.4.1.

Numerical results

The numerical results comparing the performance of DeMPC and DiMPC for different sys-
tem dynamics are summarized in Table 5.3 and visualized in Figure 5.6. The results for the
DiMPC setting are obtained using the hierarchical distributed optimization Algorithm 6
and 7, respectively. In Figure 5.6, only the first three days of the simulation are shown.
The remaining days show a similar behavior.

PTP MQD ASF LOE
Uncontrolled 1.2031 0.0560 0.0043 0
DeMPC
Linear model (without losses) 0.8022 0.0198 0.0018 0
Linear model (with losses) 0.8116 0.0203 0.0019 0.0067
Nonlinear model 0.8544 0.0297 0.0019 0.0399
DiMPC
Linear model (without losses) 0.6067 0.0049 4.62 ×10−4 0
Linear model (with losses) 0.6214 0.0054 4.98 ×10−4 0.0066
Nonlinear model 0.6463 0.0089 5.93 ×10−4 0.0244

Table 5.3: Performance of distributed and decentralized MPC for different model dynamics and a
simulation of one month (N = 1440, T = 0.5).

As expected, the linear model without losses leads to the best results. Nevertheless, the
results of the linear model with losses and the nonlinear model show only a slight deteri-
oration. In all the cases, the DiMPC approach outperforms the DeMPC approach without
communication (see Table 5.3). Even if up to 10% of the power is lost in the linear model
with losses, the difference in the battery profile x̂ with respect to the model without losses
is negligible (see Figure 5.6). As already seen in Figure 3.6, in the nonlinear dynamics, the
battery capacities Ci, i ∈ N300, reduce, i.e., due to the losses, the maximal SOC can not be
reached. It is worth pointing out that in the case with losses, it is not unusual to have times
k where û+(k) 6= 0 and û−(k) 6= 0. This does not only appear in the average variables,
but is also observed in the individual variables of the RESs, i.e., we have u+i (k) 6= 0 and
u−i (k) 6= 0 for RESs i ∈ N300 and time steps k ∈ NN . This implies that wasting energy
can lead to an improved performance with respect to the proposed cost functional.
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Figure 5.6: Performance of DeMPC and DiMPC for different model dynamics. For model dy-
namics considering losses, the input is split in u+ and u−.
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Chapter 6

Relaxed distributed optimization
using the dual gradient method

In Chapter 5, we proposed a distributed optimization algorithm to solve an optimization
problem of the form

min
zi

φ
(

1
I
∑I

i=1 zi

)
s.t. zi ∈ Di ∀i = 1, . . . , I

(6.1)

for a convex function φ : RN → R and convex sets Di ⊂ RN for all i ∈ NI . The proposed
algorithm assumes that subsystems cooperate to find a global minimizer of the optimization
problem (6.1), via communication with a CE. In the context of a network of RESs, the
approach discussed in Chapter 5 assumes that the RESs are willing to help the CE or the
grid provider in peak reduction, without optimizing with respect to their own objectives.
In this chapter, we introduce a distributed dual ascent algorithm, based on the dual gradi-
ent method [14], to solve a relaxation of the optimization problem (6.1). The dual ascent
algorithm offers a non-cooperative interpretation of the solution process.
Similar to the algorithm in the previous chapter, the dual ascent algorithm computes the
optimal solution by exchanging the information between the RESs and the CE. In contrast
to the cooperative setting, we give a real-time-pricing interpretation of the algorithm where
on one hand, the CE stabilizes the grid by minimizing the vertical deviations in the power
demand, and on the other hand, the RESs minimize their electricity costs.
To this end, instead of a flat pricing scheme, where the electricity price is independent of
the time of the day, we investigate a negotiation based real-time-pricing scheme, where the
price of energy is variable and is based on the aggregated power demand ẑ over a certain
time interval. In this pricing scheme, RESs can for example react on variable prices by
changing their consumption patterns by shifting flexible or controllable loads to times with
lower prices or, as will be considered here, by using storage devices like batteries to store
energy at times where energy is cheap and use it at times where energy is expensive. In
this case, the CE is still responsible for stabilizing the grid but if the correct price signals
are sent to the RESs, they indirectly help in the stabilization process and, additionally,
can benefit from reduced electricity prices.



Chapter 6. Relaxed distributed optimization using the dual gradient method

The price-based control scheme presented in this chapter is an alternative of the earlier
work in [108, 109] and [20]. In these papers, the authors propose an algorithm based on
a so-called Market Maker, see [39], [13], [95]. The Market Maker implements a simple
iterative strategy to set prices for buying and selling electricity within a network of RESs.
Whereas in [108, 109], the convergence of the Market Maker algorithm cannot be shown
in general, in this thesis, we establish such convergence for the price-based approach using
dual decomposition.

In [68], the authors propose an approach for real-time electricity prices with a similar
motivation, i.e., peak reduction and cost minimization. In this paper, the prices are set
by the energy provider without a negotiation process and the consumer, or the RES in
our notation, minimizes its electricity costs by anticipating future electricity prices. In
[89], a similar dual decomposition algorithm to create time-varying adaptive prices is used.
However, a different smart grid model is used without local storage devices. Instead, it is
assumed that at every time instant k ∈ N customers have a lower and an upper bound on
their power demand zi(k), i ∈ NI . Then customers maximize their welfare by maximizing
their power demand zi (based on a strictly increasing utility function) minus the costs for
electricity. In this case, there is no coupling between two consecutive time steps k and
k+ 1 and every time instant can be considered independently. Thus, local storage devices
cannot be handled with this approach.

In [102], a game theoretic approach for real-time pricing is presented. The authors consider
micro-storage devices, similar to the batteries used in this thesis, for peak-shaving and cost
reduction. In contrast to our approach, customers optimize their battery usage based on
predicted prices without a negotiation process with the energy provider. The authors in
[112] optimize the schedule for controllable loads instead of the optimal usage of batteries.
In this reference, a different distributed optimization algorithm with the same communic-
ation structure as the one proposed in our work is used. The approach is not embedded
in a receding horizon scheme. In [38], a similar distributed dual ascent algorithm in the
context for the optimal charging of electric vehicles is considered. The algorithm, however,
is not used to model real-time electricity prices and the algorithm is not used in an MPC
context. In the context of MPC, dual decomposition algorithms for quadratic separable
cost functions are considered in [33, 34, 40, 41], for example.

The remainder of this chapter is structured as follows. In Section 6.1, the Lagrangian
function and duality are introduced. In Section 6.2, the dual ascent algorithm is defined
and convergence properties of the algorithm are given. Furthermore, it is shown how the
algorithm can be implemented in a distributed way. Section 6.3 explains the application of
the distributed dual ascent algorithm for a network of RESs. In particular, a cooperative
and a non-cooperative implementation of the algorithm are discussed. Here, the non-
cooperative scheme introduces a real-time pricing mechanism for electricity prices. The
chapter is concluded in Section 6.4 with numerical simulations demonstrating the open-loop
and the closed-loop performance of the dual ascent algorithm using the pricing scheme.
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6.1. The Lagrangian function and duality

6.1 The Lagrangian function and duality

Similar to Chapter 5, we concentrate on the solution of a single OCP at a fixed time
instant k. To introduce the notion of duality and the Lagrangian, we define the primal
optimization problem

min
y∈D

φ(y)

s.t. 0 = χ(y) := AyT − b.
(P)

with a convex function φ : Rn → R, a convex set D ⊂ Rn and a matrix A ∈ Rm×n
and a vector b ∈ Rm defining linear equality constraints χ : Rn → Rm. The Lagrangian
L : Rn × Rm → R of the primal problem (P) is defined as

L(y, λ) = φ(y) + λ(AyT − b). (6.2)

The variables λ ∈ Rm are called Lagrange multipliers. Given the primal problem (P) and
the Lagrangian (6.2), we can define the dual function ψ : Rm → R ∪ {−∞} ,

ψ(λ) = inf
y∈D
L(y, λ), (6.3)

and the dual problem

max
λ∈Rm

ψ(λ). (D)

Observe that ψ is defined as an extended real-valued function since the infimum does not
need to be finite for all y ∈ D. The primal problem (P), the Lagrangian (6.2) and the
dual problem (D) are related through the following results which allow a characterization
of the optimal solution of the primal problem (P) based on the solution of the dual (D),
and vice-versa. The results and corresponding proofs can, for example, be found in [15,
Appendix C].

Theorem 6.1.1 (Duality theorem). If the primal problem (P) has an optimal solution y?,
then the dual problem (D) has an optimal solution λ? and the optimal values are equal,
i.e.,

φ(y?) = φ? = ψ? = ψ(λ?).

Theorem 6.1.2 (Saddle point theorem). For the primal problem (P) and the dual prob-
lem (D), the following holds: y? is optimal for the primal problem (P) and λ? is optimal
for the dual problem (D) if and only if the saddle point condition

L(y?, λ) ≤ L(y?, λ?) ≤ L(y, λ?) (6.4)

holds for all y ∈ D and for all λ ∈ Rm.
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Chapter 6. Relaxed distributed optimization using the dual gradient method

Hence, with these two theorems, if an optimal solution of the dual problem is known, a
solution of the primal problem can be computed based on the Lagrangian by solving the
minimization problem

y? ∈ argmin
y∈D

L(y, λ?). (6.5)

The advantage of the minimization problem (6.5) over the original primal problem (P) is
that the constraints χ(y) = 0 do not have to be taken into account. Likewise, if y? is
known an optimal solution of the dual problem is obtained by solving the unconstrained
problem

λ? ∈ argmax
λ∈Rm

L(y?, λ). (6.6)

Moreover, if the function φ is strictly convex and D is convex and compact, the primal
problem has a unique optimal solution y? (by Theorem 2.4.9) and thus, the dual problem
also has an optimal solution λ?. We exploit these properties in the dual ascent algorithm
introduced in the next section.

6.2 The dual ascent method

6.2.1 Definition and convergence of the dual ascent method

Instead of solving the primal optimization problem (P) directly, we take a look at an
optimal solution of the dual problem (D) from which an optimal solution of the primal
problem is obtained. If the dual function ψ is known, the dual problem (D) can be solved by
a gradient ascent method. The key idea is to find a sequence (λ`)`∈N such that ψ(λ`+1) >

ψ(λ`) holds for all ` ∈ N. Typically, directions (d`)`∈N satisfying the ascending condition

d`∇ψ(λ`)T > 0 (6.7)

are computed to fulfill this task, e.g. d` = ∇ψ(λ`) is a possible choice. Then, the gradient
method is defined by

λ`+1 = λ` + c`d` (6.8)

using a sequence (c`)`∈N of suitable stepsizes. Here, we distinguish between the following
two cases:

• Constant stepsize c > 0: c` = c for all ` ∈ N.

• Diminishing stepsize: a sequence (c`)`∈N satisfying

c`
`→∞−→ 0 and

∑∞

`=0
c` =∞, (6.9)

e.g. the harmonic numbers c` = 1/(`+ 1).
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Convergence of the gradient method can be proven under Lipschitz continuity of the gradi-
ent ∇ψ [14, Proposition 1.2.3 and Proposition 1.2.4].

Theorem 6.2.1 (Convergence of the dual ascent method). Assume the existence of a
Lipschitz constant L > 0 such that

‖∇ψ(λ1)−∇ψ(λ2)‖ ≤ L‖λ1 − λ2‖

holds for all λ1, λ2 ∈ Rm. Let (λ`)`∈N be generated according to (6.8) with ascent dir-
ections (d`)`∈N satisfying (6.7). In addition, let one of the following two conditions be
satisfied.

• Constant stepsize: There exists ε > 0 such that

ε ≤ c` ≤ (2− ε) · |d
`∇ψ(λ`)T |
L‖d`‖2

and d` 6= 0 holds for all ` ∈ N.

• Diminishing stepsize: There exist positive scalars c1, c2 such that the stepsize
(c`)`∈N satisfies (6.9) and

c1‖∇ψ(λ`)‖2 ≤ d`∇ψ(λ`)T , ‖d`‖2 ≤ c2‖∇ψ(λ`)‖2.

Then, either ψ(λ`) → −∞ for ` → ∞ or (ψ(λ`))`∈N converges to a finite value and
∇ψ(λ`)→ 0 for `→∞. Furthermore, every accumulation point of (λ`)`∈N is a stationary
point of ψ.

6.2.2 The dual ascent algorithm

Before we present the dual ascent algorithm, we show first how an ascent direction can
be computed. Since a closed expression of the dual function ψ and its derivative ∇ψ is
not known, we use the Lagrangian to compute ∇ψ(λ`) for a given Lagrange multiplier
λ` ∈ Rm. The corresponding results read as follows [14, Prop. 6.1.1].

Theorem 6.2.2. Let φ : Rn → R be strongly convex and suppose that yλ ∈ D is the unique
minimizer of the Lagrangian L(·, λ) for a given λ ∈ Rm over the convex and closed set D.
Then, the dual function ψ : Rm → R ∪ {∞} is continuously differentiable and satisfies

∇ψ(λ) = AyTλ − b.

To show the Lipschitz-continuity of ∇ψ necessary for the convergence statement in The-
orem 6.2.1, a few definitions and auxiliary results are needed.

Definition 6.2.3. For the dual function ψ : Rm → R∪{−∞}, we define the finite domain
of ψ as

Dψ := {λ ∈ Rm|ψ(λ) > −∞} .
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Based on Definition 6.2.3, concavity of the dual function can be shown, cf. [14, Proposition
5.1.2].

Proposition 6.2.4. The finite domain Dψ of the dual function ψ : Rm → R ∪ {−∞} is
convex and ψ is concave.

Proof. Let y ∈ D, λ1, λ2 ∈ Dψ, and β ∈ [0, 1] be given. Then, the linearity of the
Lagrangian with respect to the Lagrange multiplier λ implies that

L(y, βλ1 + (1− β)λ2) = βL(y, λ1) + (1− β)L(y, λ2).

Taking the minimum on both sides leads to the estimate

min
y∈D

L(y, βλ1 + (1− β)λ2) ≥ min
y∈D

βL(y, λ1) + min
y∈D

(1− β)L(y, λ2)

which by definition is equivalent to

ψ(βλ1 + (1− β)λ2) ≥ βψ(λ1) + (1− β)ψ(λ2),

i.e., ψ is concave. Furthermore, for λ1, λ2 ∈ Dψ, the last inequality implies ψ(βλ1 + (1 −
β)λ2) > −∞, and thus, βλ1 + (1 − β)λ2 ∈ Dψ for all β ∈ [0, 1], which shows convexity
of Dψ and completes the proof.

With the help of Theorem 6.2.2, an ascent direction can be computed by first minimizing
the Lagrangian for a fixed λ and then evaluating the function χ. Theorem 2.4.9 provides
characteristics to ensure that the assumption on the uniqueness of the minimizer of the
Lagrangian L(·, λ) are satisfied for a fixed λ. Hence, we either require that φ is strongly
convex on a closed convex domain or we demand that φ is strictly convex on a compact
and convex domain. It remains to show that ∇ψ is Lipschitz continuous. To this end, the
following general property of projections is required [14, Proposition 2.1.3].

Theorem 6.2.5 (Projection Theorem). Let the set D ⊂ Rn be non-empty, closed, and
convex.

(a) For y ∈ Rn, there uniquely exists [y]+ ∈ D satisfying

[y]+ = argmin
v∈D

‖v − y‖.

This vector [y]+ is called the projection of y on D.

(b) The mapping η : Rn → D defined by η(y) = [y]+ is continuous and nonexpansive,
i.e., ∥∥[y1]

+ − [y2]
+
∥∥ ≤ ‖y1 − y2‖

for all y1,y2 ∈ Rn.

90



6.2. The dual ascent method

Theorem 6.2.6. Consider the primal problem (P) with closed and convex domain D.
Assume that φ is continuously differentiable and strongly convex with parameter α according
to (2.19). Then, the dual ψ is concave and ∇ψ is Lipschitz continuous with Lipschitz
constant L := ‖A‖2 /α.

Proof. The following proof is based on ideas presented in [28]. Let y1,y2 ∈ D, y1 6= y2.
Using Inequality (2.20) and the Cauchy-Schwartz inequality yields

α‖y1 − y2‖2 ≤ (∇φ(y1)−∇φ(y2))(y1 − y2)
T ≤ ‖∇φ(y1)−∇φ(y2)‖ · ‖y1 − y2‖ ,

or equivalently

‖y1 − y2‖ ≤
1

α
‖∇φ(y1)−∇φ(y2)‖ . (6.10)

For fixed λ, the minimizer ỹλ of the Lagrangian L(·, λ) on Rn, i.e.,

ỹλ := argmin
y∈Rn

L(y, λ),

(see also Theorem 6.2.2) is given by the solution of

∇φ(ỹλ) +ATλT = 0. (6.11)

Since φ is strongly convex, the Lagrangian L(·, λ) is also strongly convex and ỹλ is unique.
Using (6.11) to substitute the gradient ∇φ(·) in (6.10) yields

α‖yλ1 − yλ2‖ ≤
∥∥−ATλT1 +ATλT2

∥∥ ≤ ‖A‖ ‖λ1 − λ2‖ .
With Theorem 6.2.5, we obtain the estimate

‖yλ1 − yλ2‖ =
∥∥[ỹλ1 ]+ − [ỹλ2 ]+

∥∥
≤ ‖ỹλ1 − ỹλ2‖

≤ ‖A‖
α
‖λ1 − λ2‖ , (6.12)

where yλ1 and yλ2 denote the unique minimizer of the Lagrangian for fixed Lagrange
multiplier subject to the constraint set D. Since the gradient of the dual function can be
evaluated using the expression ∇ψ(λ) = AyTλ − b, one obtains the estimate

‖∇ψ(λ1)−∇ψ(λ2)‖ = ‖(AyTλ1 − b)− (AyTλ2 − b)‖
≤ ‖A‖‖yλ1 − yλ2‖. (6.13)

Combining Equation (6.12) and (6.13) provides the Lipschitz continuity estimate

‖∇ψ(λ1)−∇ψ(λ2)‖ ≤
‖A‖2

α
‖λ1 − λ2‖

which shows the assertion.

With the results presented in this section the dual ascent algorithm can be stated and is
summarized in Algorithm 8.
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Algorithm 8 Dual ascent algorithm
Input:

• Strongly convex function φ : Rn → R,

• Non-empty, closed and convex set D ⊂ Rn, and

• Linear coupling χ : Rn → Rm, χ(y) = AyT − b with A ∈ Rm×n and b ∈ Rm.

Initialization: Set ` = 0 and λ0 ∈ Rm.
Main loop:

• Solve the minimization problem

y` := argmin
y∈D

(
φ(y) + λ`AyT

)
. (6.14)

• Compute an ascent direction d`, e.g. d` = χ(y`).

• Choose a stepsize c` according to Theorem 6.2.1 and update the Lagrange multiplier

λ`+1 = λ` + c` · d`.

Increment the iteration counter ` = `+ 1 and repeat the loop.

6.2.3 The distributed dual ascent algorithm

The dual ascent Algorithm 8 is an efficient method, if the solution of the minimization
problem (6.14) can be obtained easily or if the objective function is φ is separable, and
hence, the minimization problem (6.14) can be solved in a distributed way. Here, we
will introduce a distributed dual ascent algorithm after we give a proper definition of a
separable functions.

Definition 6.2.7 (Separable functions). Let φ : Rn → R be a function in the variables

y = (y1,y2, . . . ,yI)

with yi ∈ Rni , i ∈ NI and n =
∑I

i=1 ni. Then, φ is called separable if there exist functions
φi : Rni → R, i ∈ NI , such that

φ(y) =
I∑
i=1

φi(yi)

holds for all y ∈ Rn.

We assume that the objective function φ : Rn → R can be written in the form

φ(y) = φ

(
1

I

I∑
i=1

yi

)
+

1

I

I∑
i=1

φi(yi)
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for strongly convex functions φ : RN → R, and φi : RN → R, i ∈ NI , and N ∈ N. Since the
function φ and the function φi depend on the variable yi for i ∈ NI , the function φ is not
separable. Nevertheless, by introducing the variables â ∈ RN and the linear constraints
χ : RI×N × RN → RN ,

χ(y, â) = − 1

I

I∑
i=1

yTi + âT ,

we observe that the minimization problem

min
y∈D

φ(y)

is equivalent to the minimization problem

min
â∈RN , yi∈Di

φ (â) + 1
I
∑I

i=1 φi(yi)

s.t. − 1
I
∑I

i=1 y
T
i + âT = 0

(6.15)

for Di ⊂ RN , i ∈ NI , defined such that D = D1 × . . . × DI . The Lagrangian of the
minimization problem (6.15) is given by

L(y, â, λ) = φ (â) + λâT +
1

I

( I∑
i=1

φi(yi)− λyTi

)
, (6.16)

and thus, the Lagrangian L(·, ·, λ) is separable for fixed Langrange multipliers λ ∈ RN .
This implies that a solution of the optimization problem (6.14) can be obtained by solving
the minimization problems

â?λ = argmin
â∈RN

(
φ(â) + âλT

)
and

y?λi = argmin
yi∈Di

(
φi(yi)− yiλ

T
)

for i ∈ NI in parallel. Since φ and φi, i = 1, . . . , I, are strongly convex by assumption,
also the functions φ(â) − âλT and φi(yi) + yiλ

T , i = 1, . . . , I are strongly convex for
fixed λ ∈ RN . The corresponding distributed dual ascent algorithm is summarized in
Algorithm 9.

Remark 6.2.8. The distributed dual ascent algorithm can be applied to the more general
problem

min
yi∈Di

I+1∑
i=1

φi(yi) s.t.
I+1∑
i=1

Aiy
T
i − b = 0

where φi : Di → R, Di ⊂ Rni , ni ∈ N, for i = 1, . . . , I + 1, and Ai ∈ Rm×ni, i =

1, . . . , I + 1 and b ∈ Rm. Since we consider optimization problems in the unknowns zi and
ẑ = 1

I
∑I

i=1 zi, i ∈ NI , we use the notation used in Algorithm 9 for simplicity of exposition.
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Algorithm 9 Distributed dual ascent algorithm
Input:

• Strongly convex functions φ : RN → R and φi : RN → R, i = 1, . . . , I,

• Non-empty, closed and convex sets Di ⊂ RN , i = 1, . . . , I, and

• Linear coupling χ : RN(I+1) → RN , χ(y, â) = − 1
I
∑I

i=1 y
T
i + âT .

Initialization: Set ` = 0 and λ0 ∈ Rm.
Main Loop:
Phase 1 (Subsystem i, i ∈ NI): Receive λ`

• Solve the minimization problem

y`i := argmin
yi∈Di

(
φi(yi)− λ`yTi

)
(6.17)

and send y`i to the CE.

Phase 2 (CE): Receive y`i for all i = 1, . . . , I

• Solve the minimization problem

â`i := argmin
â∈RN

(
φ(â) + λ`âT

)
. (6.18)

• Compute an ascent direction d`, e.g. d` := χ(y`, â`).

• Choose a stepsize c` according to Theorem 6.2.1 and update the Lagrange multiplier

λ`+1 := λ` + c` · d`

and broadcast λ`+1.

Increment the iteration counter ` = `+ 1 and repeat the loop.

6.3 The dual ascent algorithm for a network of RESs

In this section we show how the distributed dual ascent Algorithm 9, can be applied to
the network of RESs introduced in Chapter 3. In particular, we consider the linear model
dynamics

xi(k + 1) = αixi(k) + T
(
βiu

+
i (k) + u−i (k)

)
(6.19a)

zi(k) = si(k) + u+i (k) + γiu
−
i (k) (6.19b)
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subject to the constraints

0 ≤ xi(k) ≤ Ci (6.20a)

ui ≤ u−i (k) ≤ 0 (6.20b)

0 ≤ u+i (k) ≤ ui (6.20c)

0 ≤ u−i (k)
ui

+
u+i (k)
ui

≤ 1 (6.20d)

introduced in Section 3.4. Together with the system dynamics and the constraints, we
recall the sets Di, i ∈ NI , and D = D1 × . . . × DI defined by Equation (2.4) at a fixed
time instant k ∈ N. Since the system dynamics (6.19) and the constraints (6.20) are linear,
the sets Di, i ∈ NI , and the set D are convex and compact (cf. Lemma 5.1.2).1 In the
following section, we show how the distributed dual ascent Algorithm 9 can be used to find
an approximation of the optimal solution of the minimization problem

argmin
zi∈Di

∥∥∥∥∥ 1

I

I∑
i=1

zi − 1ζ̂

∥∥∥∥∥
2

(6.21)

considered in the previous chapter.

6.3.1 Cooperative application of the dual ascent algorithm

To be able to apply Algorithm 9, we rewrite the optimization problem (6.21) and introduce
the variables

â = ẑ =
1

I

I∑
i=1

zi.

Thus, the optimization problem (6.21) can be equivalently written as

argmin
z∈D, â∈RN

G(â)

s.t. χ(z, â) = 0
(6.22)

with G : RN → R, G(â) = η
2

∥∥∥â− 1ζ̂∥∥∥2 for fixed η > 0 and χ : RI×N × RN → RN ,

χ(z, â) = 1
I
∑I

i=1 z
T
i − âT . Note that the scaling η > 0 only changes the minimum G

? but
not the (possibly non-unique) minimizers (z?, â?).
Since the function G does not depend on the variables z, the objective function is not
strongly convex and thus, the assumptions of the dual ascent algorithm are not satisfied.

1The results presented in the following also hold under the more general setting of Assumption 5.1.1, We
use the particular system dynamics (6.19) subject to the constraints (6.20), in particular, for illustrations
in Section 6.4 showing numerical results. For non-convex sets Di, i ∈ NI , convergence of the distributed
dual algorithm cannot be guaranteed.
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Chapter 6. Relaxed distributed optimization using the dual gradient method

Therefore, we define the functions Fi : RN → R, Fi(zi) = 1
I
δ
2‖zi‖

2 for i = 1, . . . , I and
δ > 0, and define the relaxed optimization problem

argmin
z∈D,â∈RN

G(â) +
∑I

i=1 Fi(zi)

s.t. χ(z, â) = 0.
(6.23)

The problem (6.23) is only an approximation of the original problem (6.22) and only in
the case η > 0 and δ = 0 the minimizers of the original problem are recovered. However,
for the relaxed problem (6.23) convergence of Algorithm 9 can be shown if the stepsize is
chosen appropriately. Before the corresponding result is given we introduce the notation
K : RI×N × RN → R,

K(z, â) = G(â) +
I∑
i=1

Fi(zi)

for the overall objective function.

Theorem 6.3.1. Let the functions G : RN → R, Fi : RN → R, i ∈ NI and χ : RI×N ×
RN → RN be defined as

G(â) =
η

2

∥∥∥â− 1ζ̂∥∥∥2 , Fi(zi) =
1

I
δ

2
‖zi‖2 and χ(z, â) = − 1

I

I∑
i=1

zTi + âT (6.24)

for a given reference ζ̂ ∈ RN and given parameters η > 0 and δ > 0. Furthermore, let the
ascent direction d` in Algorithm 9 be defined as d` = χ(z`, â`). Additionally, assume that
the sequence (c`)`∈N is defined such that

ε ≤ c` ≤ (2− ε)
min

{
δ
I , η
}

1
I + 1

. (6.25)

for a fixed sufficiently small ε > 0. Then the following holds:

(i) The sequence (z`, â`)`∈N converges to the unique optimal solution of the minimization
problem (6.23), i.e., (z`, â`)→ (z?, â?) for `→∞.

(ii) The sequence (z`, â`)`∈N approaches primal feasibility, i.e., χ(z`, â`)→ 0 for `→∞
and every accumulation point λ? of (λ`)`∈N is an optimal solution of the dual problem.

Proof. We show that the overall objective function K is strongly convex and we compute
the Lipschitz constant of the gradient of the dual function according to Theorem 6.2.6 from
which the results follow. The Hessian of the function K is given by

∇2K(z, â) =


δ
I I

. . .
δ
I I

ηI
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and hence, K is strongly convex with parameter

α = min

{
δ

I
, η

}
(6.26)

with respect to Lemma 2.4.6. The strong convexity implies uniqueness of the primal
solution (z?, â?) (cf. Theorem 2.4.9) and the existence of an optimal dual solution λ? (see
Theorem 6.1.1). For the constraints χ, we use the notation

A :=
[
− 1
I I · · · − 1

I I I
]

to obtain

χ(z, â) = A


zT1
...
zTI
âT

 .

Since A · AT =
(
1
I + 1

)
I holds, we obtain the norm ‖A‖ =

√
1 + 1

I which provides the
Lipschitz constant

L =
1
I + 1

min
{
δ
I , η
} (6.27)

of the dual function ψ according to Theorem 6.2.6. The gradient of the dual function is
given by ∇ψ(λ) = χ(zλ, âλ) where (zλ, âλ) ∈ D×RN denotes the unique minimizer of the
optimization problem

(zλ, âλ) = argmin
(z,â)∈D×RN

L(z, â, λ)

(see Theorem 6.2.2). The concavity of the dual function implies that every stationary
point λ? (i.e., ψ(λ?) = χ(zλ? , âλ?) = 0) of the sequence (λ`)`∈N is a maximum of the
dual problem due to Lemma 2.4.5 (i). Furthermore, Theorem 2.4.9 (i) implies that λ?

corresponds to a global maximum. Finally, the saddle point Theorem 6.1.2 implies the
convergence (z`, â`)→ (z?, â?) for `→∞. This concludes the proof.

Remark 6.3.2. Note that the functions Fi, i ∈ NI , can be defined in a different way. For
example the functions

Fi(zi) =
1

I
δ

2
‖zi − ζi1‖2 ,

with ζi = 1
N si1

T similar to the decentralized control setting (cf. Equation (4.6)), lead to the
same stepsize condition (6.25). If other strongly convex functions are used, the condition
on the stepsize might change.
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Theorem 6.3.1 guarantees convergence for every η > 0, δ > 0 of the distributed dual ascent
Algorithm 9 if the stepsize c` is chosen according to (6.25). Nevertheless, only for fixed
η > 0 and δ → 0 (or equivalently η → ∞ and δ > 0 fixed) a solution of the original
problem (6.21) is recovered. In Section 6.4.1, the implication of δ → 0 is investigated
numerically.
To obtain a good approximation of the original problem, it is necessary to choose a small
δ (if we additionally assume that η = 1 is fixed). Unfortunately, a small δ leads to a small
Lipschitz constant L, and hence a small stepsize and slow convergence. This effect even
increases with the number of RESs in the network since the term δ/I in the definition
of the Lipschitz constant (6.27) goes to zero. Even though the theoretical bound on the
stepsize becomes quite small for large networks, numerically, larger stepsizes can often be
used to obtain good results. If we use the residual

r` := −ẑ` + â` (6.28)

in the `-th iteration of Algorithm 9, we can define an alternative stepsize rule which
guarantees convergence.

Corollary 6.3.3. If the stepsize (c`)`∈N in Algorithm 9 is defined as

c`+1 =

 c` if
∥∥r`+1

∥∥ < ∥∥r`∥∥
max

{
c`

2 ,
min{ δI ,η}

1
I+1

}
if
∥∥r`+1

∥∥ ≥ ∥∥r`∥∥ (6.29)

and c0 > 0, then the convergence properties of Theorem 6.3.1 hold.2

Proof. The result follows immediately from Theorem 6.3.1 since the stepsize decreases until
the condition (6.25) is satisfied for all following iterations `.

The stepsize rule of Corollary 6.3.3 is used in the numerical simulations in Section 6.4. In
our setting, the stopping criterion is met in most of the cases with a stepsize

c` ≥ 2
min

{
δ
I , η
}

1
I + 1

,

i.e., the condition (6.25) is not satisfied, and less iterations are necessary to obtain a
solution of the optimization problem (6.23).

Remark 6.3.4. For the function G(â) = η
2‖â − ζ̂1‖2, the update â`+1 of the CE in

Algorithm 9 can be computed explicitly as â`+1 = ζ̂1− 1
ηλ

`.

Remark 6.3.5. The results in this section focus on the function G(â) = ‖â − 1ζ̂‖2.
However, we point out that similar results can be derived for arbitrary strongly convex
functions G defined on convex and closed sets.

2Although the stepsize rule is only heuristic, the stepsize rule of Corollary 6.3.3 significantly reduces
the average number of iterations in our numerical simulations.
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6.3.2 Price-based non-cooperative dual ascent application

Algorithms 5 and 6 in Chapter 5 implicitly include the assumption that the RESs and the
CE cooperate to achieve a common goal. The distributed dual ascent algorithm 9 offers a
different interpretation of the objective functions. The local optimization problem (6.17)
of RES i

z`+1
i := argmin

zi∈Di

(
Fi(zi)− λ`zTi

)
solely depends on the variables zi and the dual variables λ defined by the CE. The minim-
ization problem does not depend on the variables of the other RESs. Thus, the dual ascent
algorithm can be interpreted as a non-cooperative algorithm, where every RESs optimizes
its own costs and the CE can influence the decisions of the RESs by means of the dual
variable λ.
In this section, we give a non-cooperative interpretation of the dual ascent algorithm in the
form of a negotiation process between the CE or the energy provider and the RESs. We
show how the energy provider can reduce the fluctuations in the average power demand
with real-time electricity price signals. Thus, the dual ascent algorithm corresponds to a
negotiation of electricity prices until a price signal is found, which is accepted by the CE
and the RESs.

Assumptions on the objective function

To be able to give an interpretation of electricity costs in Algorithm 9, we have to start
with assumptions on the objective function. We describe the energy price at a certain time
by a function p : R → R depending on the amount of energy used in the corresponding
time interval. Furthermore, we assume that the following holds:

• The function p is increasing, i.e., a higher energy demand leads to higher costs, and

• if the power demand is 0 then also the costs have to be 0.

Linear costs

The simplest case is to consider linear costs, i.e., at a certain time the energy price can be
described by the function

p(z; c) = Tcz

depending on the sampling time T and a constant c ∈ R≥0 chosen by the energy provider
based on the average power demand ẑ. With respect to Algorithm 9 these costs are realized
rewriting the original minimization problem (6.21) into the form

min
z∈D, â∈RN

∥∥∥â− 1ζ̂∥∥∥2
s.t. 1

I
∑I

i=1 z
T
i − âT = 0.
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Indeed, this minimization problem implies local updates of the form

â?λ = argmin
â∈RN

(∥∥∥â− 1ζ̂∥∥∥2 − âTλ

)
z?λi = argmin

zi∈Di
ziλ

T

(cf. Equations (6.17) and (6.18) in Algorithm 9) and we can identify c(k) = λ(k)/T as the
parameter of the CE defining the price for electricity at a fixed time instant k. As already
argued for the minimization problem (6.23), in this case, the local functions Fi satisfy
Fi ≡ 0 for all i ∈ NI , which are convex but not strongly convex. Thus, the assumptions of
Algorithm 9 are not satisfied so that convergence cannot be guaranteed. In fact, even if a
diminishing stepsize is used in Algorithm 9, and the sequence (λ`)`∈N seems to converge,
the sequence (ẑ`)`∈N does not converge since already small changes in the vector λ imply
that it is beneficial to use all the capacity of the battery at a time step λ(j) instead of
λ(m) if λ(j) > λ(m).
This behavior can also be observed in the Market Maker approach presented in [108],
where the authors propose a price-based negotiation algorithm with linear cost functionals.
Even though the algorithm improves the closed-loop behavior compared to a decentralized
control scheme, convergence of the proposed approach could not be shown. As a remedy,
we propose an approach where the electricity prices contain an additional penalty term.

Linear costs with quadratic penalty term

To circumvent the problems of linear costs, we propose linear costs with an additional
quadratic penalty term

p(z; c) := T · a
(
z + b (z − c)2 − bc2

)
, (6.30)

for a, b, c ∈ R>0. The price still contains the linear term az, but in addition, the demand
deviating from a given reference c is penalized. Either a power demand above the reference
is penalized by additional costs, or the earning is reduced if too much energy is sold to the
grid operator. In particular, p(0; c) = 0, i.e., zero demand does not incur any energy costs.
Since, p(·; c) is not monotonically increasing on R the constants a and b have to be fixed by
the CE such that p(·; c) is monotonically increasing on the domain of interest and higher
demand leads to higher costs. This is always possible since both the net consumption
profiles (s`i)`∈N and the battery capacities Ci , i ∈ NI , are bounded.
Minimizing the electricity costs with respect to the function p(·; c) over the prediction
horizon N ∈ N can be achieved by the minimization problem

min
z∈D,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
∑I

i=1

(
ρ1zTi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

(6.31)

100



6.3. The dual ascent algorithm for a network of RESs

for η, ρ, δ ∈ R>0. In the context of Algorithm 9, the optimization problems of the CE and
of the RESs read

â?λ = argmin
â∈RN

(
η

2

∥∥∥â− 1ζ̂∥∥∥2 + âλT
)
,

z?λi = argmin
zi∈Di

(
ρ1zTi +

δ

2
‖zi‖2 − ziλ

T

)
.

The functions Fi(zi) = 1
I

(
ρ1zTi + δ

2 ‖zi‖
2
)
, i ∈ NI , are strongly convex due to the quad-

ratic term3 and hence, Algorithm 9 is applicable. More importantly, the objective function
of RES i ∈ NI can be written in the form

ρ1zTi +
δ

2
‖zi‖2 − ziλ

T = ρ1zTi +
δ

2

∥∥∥∥zi − 1

δ
λ

∥∥∥∥2 − 1

2δ
λλT

providing the price interpretation p(·; c) by identifying the parameters

a =
ρ

T
, b =

1

2
· δ
T
, c(k) =

1

δ
λ(k). (6.32)

The constant term 1
2δλλ

T does not have any impact on the minimizer z?λi and thus, it does
not have to be considered in the minimization problem. In summary, minimization of the
electricity costs over the prediction horizon N is equivalent to solving the minimization
problem (6.17). The price contains the linear component Taz, but is also constructed
such that deviations from a given reference value c are penalized. The latter means that a
power demand above this reference incurs extra costs and that feeding in too much energy
reduces the earning per unit. In Figure 6.1, the price for electricity is visualized for fixed
parameters a and b.4 If λ(k) and consequently also c(k) is small, energy is expensive and
vice-versa. Figure 6.1 additionally shows that it is possibly to obtain prices, which are
almost linear, but in contrast to linear prices, convergence of the dual ascent algorithm is
guaranteed. Note that the parameters ρ and δ can be set individually for every RES, e.g.
specific contracts depending on the respective demand profiles. In Section 6.4.2, numerical
simulations investigating the pricing scheme are provided. In particular, the impact of
batteries on the price signals c are investigated and the benefits on the electricity costs are
discussed.

Remark 6.3.6. Note that an additional linear term ρ1zTi does not change the convexity
properties of a function. Consequently, Theorem 6.3.1 also holds for Fi(zi) = ρ1T zi +
δ
2 ‖zi‖

2, i ∈ NI .

Remark 6.3.7. The objective function G(â) = ‖â − 1ζ̂‖2 can be replaced by any other
strongly convex function. Also constraints on â ∈ A for a closed and convex set A ⊂ RN
can be included as long as feasibility of the optimization problem is guaranteed.

3In particular the functions are strongly convex with parameter α = δ/I according to the Lemma 2.4.6.
4The parameters chosen here are just for illustration. The value used for a can be scaled arbitrarily to

obtain realistic energy prices.
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Figure 6.1: Visualization of the electricity cost function p(·; c) (left) and p(·; ·) (right) from (6.30)
for a = 2.2 and b = 0.0091 (corresponding to ρ = 1.1, δ = 0.02 and T = 0.5). In the area of
interest, the price is almost linear with respect to c and the demand z. The nonlinearity of the cost
function can still be seen in p(z; 50) (left).

6.3.3 General properties of the (non-)cooperative control setting

In this section, we highlight properties of the cooperative control setting, and the non-
cooperative control setting using real-time prices. We discuss similarities and differences
of both schemes and investigate how the performance (with respect to the performance
metrics) deteriorates if a non-cooperative scheme is used instead of a cooperative scheme.
The cooperative optimization Algorithm 6 introduced in Chapter 5 returns an optimal
solution of the original minimization problem

min
zi∈Di

∥∥∥ 1
I
∑I

i=1 zi − 1ζ̂
∥∥∥2 . (6.33)

With the distributed dual ascent Algorithm 9, we obtain an approximation of the solution
of (6.33) by solving the minimization problem

min
zi∈Di,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

(6.34)

for fixed η, δ ∈ R>0 in a cooperative way. As already pointed out, for η = 2 and δ → 0, an
optimal solution of the original problem is recovered. To obtain a price interpretation, we
introduced the minimization problem

min
zi∈Di,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
∑I

i=1

(
ρ1T zi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

(6.35)

with η, δ, ρ ∈ R>0. This problem can be solved using a non-cooperative interpretation of
Algorithm 9.
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In this subsection, we concentrate on characteristic properties of the cooperative optimiza-
tion problems (6.33) and (6.34), and the non-cooperative optimization problem (6.35). In
particular, we concentrate on properties, which have to be considered in an MPC closed-
loop implementation.

Implications of the monotonicity of electricity prices

According to our assumption, the price function p(·; c) is monotonically increasing, i.e.,
feeding in energy results in a profit in the non-cooperative setting. This implies that the
battery of each RES is empty at the end of the prediction horizon,5 i.e., xi(k+N) = 0 for
all i ∈ NI , whereas in the cooperative setting the state of charge of the batteries xi(k+N)

for all i ∈ NI is determined by the optimization criteria. This is one characteristic, which
distinguishes the optimal cooperative solution from the optimal non-cooperative solution.
In the cooperative control setting, the additional constraints xi(k+N) = 0 can be included
by using the constraints

D0
i =

zi ∈ RN

∣∣∣∣∣∣∣∣
xi(k) = x0i , xi(k +N) = 0

System dynamics (6.19)
Constraints (6.20)
∀j = k, . . . , k +N − 1


instead of Di for all i ∈ NI to ensure that the battery is empty at the end of the prediction
horizon. If the state of charge of the battery at the end of the prediction horizon is known,
then the energy used in the prediction window is known up to losses in the battery model
and it can be used to simplify the objective function. To illustrate this property, we consider
the simplified dynamics (6.19) without losses, i.e., αi = βi = γi = 1 for all i ∈ NI . Here,
the empty battery at the end of the prediction horizon implies that the energy demand is
constant for all feasible demand profiles zi ∈ Di, i.e.,

1zTi =
xi(k)

T
+

k+N−1∑
j=k

si(j).

This allows for the following equivalent characterization of the set of minima in the co-
operative setting:

argmin
zi∈D0

i

∥∥∥ẑ− ζ̂1∥∥∥2 = argmin
zi∈D0

i

‖ẑ‖2 − 2ζ̂1T ẑ +Nζ̂2 = argmin
zi∈D0

i

‖ẑ‖2 .

5We assume that the prediction horizon N and the maximal discharging rate ui, i ∈ NI , are chosen
such that the battery can always be discharged within the prediction horizon.
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Analogously, for the non-cooperative problem one obtains

min
zi∈Di

η

2

∥∥∥ẑ− 1ζ̂∥∥∥2 +
1

I

I∑
i=1

(
ρ1zTi +

δ

2
‖zi‖2

)

= argmin
zi∈D0

i

η

2
‖ẑ‖2 + ηζ̂1ẑT +

η

2
Nζ̂2 +

1

I

I∑
i=1

(
ρ1zTi

)
+

δ

2I

I∑
i=1

‖zi‖2

= argmin
zi∈D0

i

η

2
‖ẑ‖2 +

δ

2I

I∑
i=1

‖zi‖2 .

This implies that the set of optimal solutions is independent of the reference value ζ̂. In
particular, no a priori knowledge of the average demand is needed in the case without
losses in the battery model. Furthermore, observe that the constant ρ disappears in the
objective function since it only appears in the linear term and does not have an impact on
the minimizer. Nevertheless, ρ is necessary to obtain the price-interpretation and monotone
electricity costs. We summarize these results in the following corollary.

Corollary 6.3.8. Consider the system dynamics (6.19) subject to the constraints (6.20)
and let αi = βi = γi = 1 for all i ∈ NI . Additionally, let η, ρ, γ ∈ R>0 be fixed. Then the
following equivalences hold.

(i) The original cooperative minimization problem:

argmin
zi∈D0

i

∥∥∥ 1
I
∑I

i=1 zi − 1ζ̂
∥∥∥2 ⇐⇒ argmin

zi∈D0
i

∥∥∥ 1
I
∑I

i=1 zi

∥∥∥2 .
(ii) The relaxed cooperative optimization problem:

argmin
zi∈D0

i ,â∈RN
η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

⇐⇒
argmin

zi∈D0
i ,â∈RN

η
2

∥∥∥ 1
I
∑I

i=1 zi

∥∥∥2 + 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0.

(iii) The non-cooperative optimization problem:

argmin
zi∈Di,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
∑I

i=1

(
ρ1T zi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

⇐⇒
argmin

zi∈D0
i ,â∈RN

η
2

∥∥∥ 1
I
∑I

i=1 zi

∥∥∥2 + 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0.
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The derivations show that the minimizer of the relaxed problem (6.34) only differs from the
minimizer of the non-cooperative problem (6.35) because of the constraint xi(k +N) = 0

for all i ∈ NI independent of the parameter ρ (if a model without losses is considered).
Moreover, if δ is chosen small, we can expect that a good approximation of a minimizer of
the original problem (6.33) is obtained.
If losses are considered, the term 1zTi is not constant for all zi ∈ D0

i anymore. Hence,
for smaller constants βi and γi, the impact of the linear term in the non-cooperative
optimization problem increases (see Section 6.4.2).

The reference value ζ̂

The reference value ζ̂(k) = 1
N ŝ(k;N)1T (see Equation (4.3)) at time instant k is computed

by the CE based on the predicted power consumption wi(k;N) and the predicted power
generation gi(k;N) of the RESs i ∈ NI . In the cooperative setting we assume that the
RESs report the correct parameters si = wi − gi, i ∈ NI to the CE. In contrast to
this, in the non-cooperative setting we have to assume that the RESs may send the wrong
information to the CE to benefit from lower electricity prices. Thus, in the non-cooperative
setting, ζ̂ has to be computed based on z instead of s.
One way to do this, is to replace the reference value ζ̂ by 1

N ẑ1T in the function G (and
use that ẑ = â).6 In this case the function G reads

G(â) =
η

2

∥∥∥∥â− 1

N

(
â1T

)
1

∥∥∥∥2
=
η

2

(
ââT − 2

N

(
â1T

)
â1T +

1

N2

(
â1T

)2
11T

)
=
η

2

(
ââT − 2

N

(
â1T

) (
1âT

)
+

N

N2

(
â1T

) (
1âT

))
=
η

2
â

(
I − 1

N

(
1T1

))
âT . (6.36)

The matrix
(
1T1

)
/N has the eigenvalues 1 with multiplicity one and 0 with multiplicity

N − 1. This implies that I −
(
1T1

)
/N has the eigenvalues 1 with multiplicity N − 1 and

0 with multiplicity one, i.e., the Hessian ∇2G is not positive definite, G is not strongly
convex and Algorithm 9 cannot be applied.
Since the function (6.36) cannot be used in the non-cooperative setting of Algorithm 9,
we define the reference value ζ̂ depending on z` in a different way. In the price-based
non-cooperative control setting of Algorithm 9 the CE computes the reference value

ζ̂` =
1

N
ẑ`1T

and solves the minimization problem

â?λ = argmin
â∈RN

(
η

2

∥∥∥â− 1ζ̂`∥∥∥2 + âTλ

)
6Note that in general ŝ1T 6= ẑ1T if losses in the battery model are considered.
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in iteration ` ∈ N. The advantage of a changing average is that the RESs cannot send wrong
information in the first iteration on their power demand z0 to manipulate the reference
value ζ̂.

Warm-start and the stepsize selection

Similar to the algorithm introduced in Chapters 4 and 5, one can use warm-start (see
Section 4.4.2) in the receding horizon context of Algorithm 9 to reduce the number of
iterations at every time instant. Here, we use the optimal Lagrange variables at time
instant k

λ?k(k;N) = (λ?k(k), . . . , λ?k(k +N − 2), λ?k(k +N − 1))

to initialize the Lagrange multipliers at time k + 1 as

λ0k+1(k + 1;N) := (λ?k(k + 1), . . . , λ?k(k +N − 1), λ?k(k +N − 1)) .

With the choice λ0k+1(k + N) = λ?k(k + N − 1) it is safeguarded that the price function
p(·;λ0k+1(k +N)/δ) is monotonically increasing on the domain of interest.
The stepsize at a fixed time instant k is selected according to Corollary 6.3.3. If we proceed
from time instant k to k + 1 we initialize c0k+1 by c0k+1 = 2 · cend

k where cend
k denotes the

stepsize of Algorithm 9 at the iteration where the stopping criteria is satisfied. This makes
sure that the stepsize does not only decrease but also increases again at the next time
instant.

6.4 Numerical simulations

In this section, we examine the performance of the distributed dual ascent Algorithm 9.
Throughout this section we consider a setting of I = 100 RESs defined through the system
dynamics (6.19) and the constraints (6.20). In the simulations using the minimization
problem (6.31) (corresponding to the real-time prices (6.30)), we vary the number of RESs
with a battery. For RESs with a battery, we choose the constraints Ci = 4, ui = −ui = 1

and the initial conditions xi(0) = 0. (For the RESs without the battery we set Ci = 0.)
Additionally, we vary the loss of energy from βi = γi = 1 to βi = γi = 0.95 to βi = γi = 0.9

for all i = 1, . . . , 100, and investigate the impact of losses.

6.4.1 The impact of the relaxation parameter δ

The original optimization problem

min
zi∈Di

∥∥∥ 1
I
∑I

i=1 zi − 1ζ̂
∥∥∥2

(see the minimization problem (6.33)) considered in the preceding chapter by Algorithm 6,
cannot be solved using the distributed dual ascent Algorithm 9 since the assumptions on
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the objective function are not satisfied. Instead the relaxed problem

min
zi∈Di,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
δ
2

∑I
i=1 ‖zi‖

2

s.t. − 1
I
∑I

i=1 z
T
i + âT = 0

(see the optimization problem (6.34)) is solved by Algorithm 9 for fixed η, δ ∈ R>0. In
Figure 6.2, the open-loop solution for η = 1 and varying δ compared to the solution of
the original optimization problem (6.33) is shown. For this simulation, every RESs is
equipped with a battery without losses (i.e., βi = γi = 1 for all i ∈ NI). For a decreasing
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Figure 6.2: Comparison of the solution of the centralized optimization problem and the
relaxed optimization problem for different relaxation parameters δ.

parameter δ the difference between the solution ẑ of the original optimization problem
and the relaxed optimization problem is shrinking. For δ = 0.005 the difference in the
solutions is negligible (see Figure 6.2 (right)). The corresponding performance metrics are
summarized in Table 6.1. Here, we observe that the parameter δ = 0.1 is already small
enough to obtain results such that the difference to the original problem formulation are
insignificant. The same conclusions can be drawn for the setting with losses, i.e., βi 6= 1

and γi 6= 1 for i ∈ NI .

6.4.2 Price-based MPC simulations

In Figure 6.2 and in Table 6.1 we have seen that in the cooperative application of the
distributed dual ascent Algorithm 9, the performance of the original problem using Al-
gorithm 6 is recovered if the parameter δ is chosen small enough.
In this section we concentrate on the difference between the cooperative optimization
Algorithm 6 and the non-cooperative application of Algorithm 9, i.e., we investigate the
difference in the solution of the original optimization problem

min
zi∈Di

∥∥∥ 1
I
∑I

i=1 zi − 1ζ̂
∥∥∥2
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PTP MQD ASF
Uncontrolled 1.1016 0.0879 0.0093

δ = 0 0.5016 0.0100 0.0025

Distributed dual ascent Algorithm 9
δ = 1 0.5531 0.0198 0.0028

δ = 0.1 0.5016 0.0110 0.0022

δ = 0.01 0.5016 0.0100 0.0024

δ = 0.005 0.5016 0.0100 0.0025

Table 6.1: Performance of the open-loop solution of the original problem (δ = 0) compared to the
solution using the dual ascent Algorithm 9 for different relaxations δ.

(see the minimization problem (6.33)) and the price-based optimization problem

min
zi∈Di,â∈RN

η
2

∥∥∥â− 1ζ̂∥∥∥2 + 1
I
∑I

i=1

(
ρ1T zi + δ

2 ‖zi‖
2
)

s.t. − 1
I
∑I

i=1 zi + â = 0

(see the optimization problem (6.35)) with η = 1, ρ = 1.1 and δ = 0.02. In particular, we
examine the open-loop and the closed-loop solutions depending on the number of RESs
with a battery. From the point of view of the energy provider or the CE, we consider the
performance metrics, and from the point of view of an individual RES, we consider the
energy prices and the savings.

Open-loop simulations

In Figure 6.3, we compare the solution of the original cooperative optimization problem
with the solution of the non-cooperative problem for a different number of batteries in the
overall system and different constants βi and γi, i ∈ N100. We vary the number of batteries
from 0 to 100 in steps of 10. The red line corresponds to the setting where every RESs has
a battery.
We observe that for the case without losses, the solution of cooperative control and non-
cooperative control only varies slightly due to the penalty term δ

2‖zi‖
2 and due to the

empty battery at the end of the prediction horizon in the non-cooperative setting. As
argued in Section 6.3.3, the additional linear term in the cost functional does not influence
the optimal power demand profile. Since xi(0) = 0, the deviation from the average in the
first 2 hours cannot be compensated.
While in the cooperative setting the performance does not deteriorate if losses are con-
sidered and if enough storage devices are in the network, in the non-cooperative setting
the performance worsens with the loss of energy. If the losses are too big and the gradient
in the corresponding electricity costs is too small, it does not pay off to store energy at
one time instant to use it at a different time instant. Nevertheless, even if βi = γi = 0.9

and hence 19% of the energy is lost, the deviation of the aggregated power demand from
the average can be reduced significantly.
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Cooperative (left) and non-cooperative (right) optimal power demand without losses
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Figure 6.3: Comparison of the cooperative and the non-cooperative solution of a single optimization
problem with increasing number of batteries in the network (blue lines) and increasing losses (top
to bottom). The red line indicates the setting where every RES owns a battery.

Remark 6.4.1. The deviation can be reduced even further if a bigger slope in the price
function p with respect to the parameter c is considered (see Figure 6.1).

The optimal dual variables λ? corresponding to the non-cooperative settings in Figure 6.3
(right) are shown in Figure 6.4.
In Figure 6.5, the performance metrics of the non-cooperative open-loop solutions are
illustrated. The usage of storage devices significantly improve the results — even if losses
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Figure 6.4: Optimal dual variables λ? of a single optimization problem corresponding to the case
without losses (left), βi = γi = 0.95 (middle) and βi = γi = 0.9.

are taken into account. If 60% of the RESs own a battery the results do not improve
anymore. In the case were only a small number of RESs have a battery, the losses do not
have a big impact on the performance.
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Figure 6.5: Performance metrics of the non-cooperative open-loop solution. If a certain amount
of RESs is equipped with a battery, the performance does not improve anymore.

Not only the energy provider benefits from the smoothened aggregated power demand, the
individual RESs can benefit as well from lower energy prices, if the prices which result
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from the case without batteries are taken as a reference. In Figure 6.6 (left), the average
electricity costs7 for the RESs are shown depending on the number of RESs with a battery.
Figure 6.6 (right) shows that, on average, the costs can be reduced up to 14% in the case
without losses and up to 8% if γi = βi = 0.9.
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Figure 6.6: Average open-loop electricity costs for every RES and savings with respect to the
number of batteries in the network.

Figure 6.7 shows the savings of the individual systems if 1%, 20%, 50% and 100% of the
RESs own a battery. Not only the RESs with a battery reduce their costs, but also most
of the RESs without a battery benefit if a significant amount of batteries is installed. If
significantly many participants own a battery, the effect of single systems is reduced. This
can be observed, for example, looking at RES 1. Moreover, we point out, that even though
most of the RESs can reduce their costs, there exist single RESs with increased costs.
Figure 6.7 corresponds to the setting without losses. The cases with loss of energy show a
similar behavior.

Closed-loop simulations

Although we cannot prove that the open-loop results carry over to the closed loop, we use
a simulation of N = 387 time steps8 to verify that the closed loop performs as expected.
In Figure 6.8, the closed-loop solution for 100 RESs is visualized. In this setting only
50 RESs are equipped with batteries. The average over the state x̂(0;N ) and the in-
put û(0;N ) = û+(0;N ) + û−(0;N ) is only with respect to the RESs with a battery.
As one already expects from the open-loop control problem, the peaks in the average de-
mand ẑ(0;N ) are decreased significantly. If losses are considered in the battery model,
then the battery capacities are not fully used since it does not pay off to buy and sell
energy if the gradient in the cost functional is small.

7To obtain realistic energy prices, the numbers can be scaled arbitrarily in Figure 6.6 (left).
8The number of time steps is chosen such that xi(0) = xi(N ) = 0 for all i ∈ NI . This is important to be

able to calculate the overall savings of the individual systems. (To be able to pick N such that xi(N ) = 0

holds for all i ∈ NI , the closed-loop was simulated for a bigger number of time instants than N = 387.)
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Figure 6.7: Savings of the individual RESs. Green bars indicate the RESs with batteries and blue
bars indicate the RESs without batteries. Observe that not all RESs benefit from batteries. (The
results correspond to the setting without losses.)

In Figures 6.9 and 6.10, the closed-loop counterparts of Figures 6.5 and 6.6 are presented.
Again, we obtain the same qualitative results as in the open-loop setting. Nevertheless,
in Figure 6.10 we observe that the average savings are significantly lower compared to the
open-loop problem. We like to point out, that this occurs due to the high peaks on the
first day of the simulation and is not a reason of the closed-loop simulation compared to
the open-loop simulation in general.
The closed-loop counterpart of Figure 6.7 is given in Figure 6.11. We obtain the same
qualitative behavior as in the open-loop case. The results from the point of a view of a
single system, RES 1, are additionally summarized in Table 6.2. If RES 1 is the only RES
with a storage device, the expected savings are high. The effect decreases with the increase
of RESs equipped with storage devices.
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Figure 6.8: Closed-loop trajectories of the non-cooperative control problem for different parameters
βi and γi for the case that 50% of the RESs are equipped with a battery.

Average savings (left) and average savings in percent (right)
RES 1% 20% 50% 100%

1 23.69 11.69 4.74 3.49

2− 20 0.10 13.02 7.27 6.26

21− 50 0.12 2.77 6.35 5.25

50− 100 0.08 2.97 4.91 5.89

RES 1% 20% 50% 100%

1 15.93% 7.87% 3.19% 2.34%

2− 20 0.09% 11.67% 6.52% 5.61%

21− 50 0.11% 2.59% 5.92% 4.90%

50− 100 0.07% 2.52% 4.18% 5.01%

Table 6.2: Average closed-loop savings of the groups of RESs with respect to the percentage of
RESs with batteries in the system. (The results correspond to the setting without losses.)
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Figure 6.9: Performance measures of the closed-loop control problem for a simulation of length
N = 387 with and without losses in the battery model.
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Figure 6.10: Average closed-loop electricity costs for every RES and savings with respect to the
number of installed batteries.
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Figure 6.11: Closed-loop savings of the individual RESs. Green bars indicate the RESs with
batteries and blue bars indicate the RESs without batteries. Observe that not all RESs benefit from
batteries. (The results correspond to the setting without losses.)
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Chapter 7

The alternating direction method of
multipliers

In Chapter 5, we introduced a cooperative hierarchical distributed optimization algorithm
which we used in a receding horizon scheme to obtain a DiMPC algorithm for a network
of RESs. In Chapter 6, we explained how a relaxed version of the optimization problem
considered in Chapter 5 can be solved using a distributed dual ascent algorithm. Fur-
thermore, we gave a non-cooperative interpretation of the dual ascent algorithm using a
real-time pricing scheme. However, with the dual ascent algorithm, only an approxima-
tion of the original optimization problem can be solved. Moreover, we have seen that the
maximal stepsize of the dual ascent algorithm goes to zero if the number of RESs and/or
the relaxation parameter δ goes to zero.
In this chapter, we introduce a different algorithm based on dual decomposition, the al-
ternating direction method of multipliers (ADMM), which is applicable to the original
minimization problem without the need of a strictly convex objective function. Here, we
consider again a cooperative algorithm. But in contrast to Chapter 5, ADMM can handle
additional coupling constraints among the RESs in the optimization problem, which of-
fers additional possibilities in the problem formulation. The presentation of the ADMM
approach is based on [16], but can largely also be found in [15].
Applications of ADMM in the context of electricity networks are discussed in [87] for
example. In [87], ADMM is used to coordinate the charging of a fleet of electric vehicles
connected to the grid. The authors introduce optimization problems for valley-filling,
peak-shaving and an optimization problem to minimize the electricity costs for charging
the fleet of electric vehicles. The authors only consider a single time instant k ∈ N and
ADMM is not embedded in the receding horizon context. In this chapter, we investigate
the closed-loop performance of DiMPC using ADMM and in particular demonstrate the
flexibility in the objective function of the CE.
This chapter is structured as follows. In Section 7.1, the optimization problem under
consideration is formulated and ADMM is introduced. Furthermore, a proof of convergence
of the scheme is provided. In Section 7.2, we show how the algorithm can be applied to
the network of RESs before we give explicit examples of applications in Section 7.3. The
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chapter concludes with numerical simulations in Section 7.4.

7.1 ADMM: problem formulation and convergence results

In this section, we define the optimization problem under consideration throughout this
chapter. Afterwards, necessary concepts for describing ADMM are introduced before a
proof of convergence to an optimal solution is given. In the last part of the section, the
original ADMM formulation is rewritten to obtain a simplification with respect to the
communication structure of the algorithm.

7.1.1 Problem formulation

We consider a minimization problem of the form

(z?, σ?) ∈ argmin
(z,σ)

∑I
i=1 Fi(zi) +G

(
1
I
∑I

i=1 zi

)
+H(σ)

s.t. A 1
I
∑I

i=1 z
T
i +BσT − b = 0

zi ∈ Di ∀ i = 1, . . . , I
σ ∈ S

(7.1)

where Fi : RN → R denote objective functions of the individual RESs i = 1, . . . , I,
G : RN → R is the objective function coupling the individual RESs and H : RM → R
is an objective function of the CE in the artificial variable σ ∈ RM . We assume that a
(possibility non-unique) minimizer (z?, σ?) of the minimization problem (7.1) exists. The
sets Di ⊂ RN for i = 1, . . . , I and S ⊂ RM are convex, closed and non-empty. The RESs
are not only coupled through the objective function G, but additionally through linear
equality constraints defined by the matrices A ∈ RN×q, B ∈ RM×q and the vector b ∈ Rq.1
As a first step to decouple the objective function, we introduce copies of the variables
ai = zi, for i = 1, . . . , I, and rewrite the minimization problem (7.1) as

(z?,a?, σ?) ∈ argmin
(zi,ai,σ)

∑I
i=1 Fi(zi) +G

(
1
I
∑I

i=1 ai

)
+H(σ)

s.t. A 1
I
∑I

i=1 a
T
i +BσT − bT = 0

zi ∈ Di ∀ i = 1, . . . , I
σ ∈ S
zi − ai = 0 ∀ i = 1, . . . , I.

(7.2)

For the overall objective function, we use the notation

K(z,a, σ) =

I∑
i=1

Fi(zi) +G

(
1

I

I∑
i=1

ai

)
+H(σ), (7.3)

1Throughout this chapter we assume that zi is one-dimensional for all i ∈ NI to simplify the notation.
The extension of the results to the case zi ∈ Rp, p ∈ N, is straightforward.
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where K : RI×N × RI×N × RM → R, and we define K? = K(z?,a?, σ?) as the optimal
solution of problem (7.2). The variables a ∈ RI×N and σ ∈ RM are assigned to the CE.
We define the set

P =

{
(a, σ) ∈ RI×N × S

∣∣∣∣∣A 1

I

I∑
i=1

aTi +BσT − bT = 0

}

and again rewrite the minimization problem

(z?,a?, σ?) ∈ argmin
(zi,ai,σ)

∑I
i=1 Fi(zi) +G (â) +H(σ)

s.t. (a, σ) ∈ P
zi ∈ Di
zi − ai = 0 ∀i = 1, . . . , I,

where the variables (a, σ) and zi are only coupled through the constraints zi − ai = 0 for
all i ∈ NI . The augmented Lagrangian Lρ : D × P × RI×N → R of the minimization
problem is defined as

Lρ(z,a, σ, λ) =

I∑
i=1

Fi(zi) +G (â) +H(σ) +

I∑
i=1

λi(zi − ai)
T +

ρ

2

I∑
i=1

‖zi − ai‖2

for ρ > 0. For ρ = 0, the usual definition of the Lagrangian from Equation (6.2) is
recovered. Even if the functions Fi, i ∈ NI and G are not strongly convex, the term
ρ
2

∑I
i=1 ‖zi − ai‖2 ensures strong convexity in z and a of the augmented Lagrangian.

Remark 7.1.1. The functions Lρ(·,a, σ, λ) and Lρ(z, ·, σ, λ) are strongly convex for ρ > 0

if the functions Fi, i ∈ NI , the function G and the function H are convex.

Equivalently, the augmented Lagrangian can be written in the variables ν := λ/ρ as

Lρ(z,a, σ, ν) =

I∑
i=1

Fi(zi) +G (â) +H(σ) +
ρ

2

I∑
i=1

‖zi − ai + νi‖2 −
ρ

2

I∑
i=1

νiν
T
i .

With these definitions one iteration of the ADMM algorithm consists of the three steps

z`+1
i ∈ argmin

zi∈Di
Lρ(z,a`, σ`, ν`) for all i = 1, . . . , I, (7.4a)

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

Lρ(z`+1,a, σ, ν`), (7.4b)

ν`+1
i = ν`i +

(
z`+1
i − a`+1

i

)
for all i = 1, . . . , I, (7.4c)

which are repeated iteratively for ` ∈ N similar to the dual ascent Algorithm 8. The first
step, minimization problem (7.4a), is solved by the RESs in parallel. The minimization
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Chapter 7. The alternating direction method of multipliers

problem (7.4b) and the update (7.4c) are executed by the CE. Using the definition of the
Lagrangian and omitting the constant terms, the updates read

z`+1
i ∈ argmin

zi∈Di
Fi(zi) +

ρ

2

∥∥∥zi − a`i + ν`i

∥∥∥2 for all i = 1, . . . , I, (7.5a)

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

G (â) +H(σ) +
ρ

2

I∑
i=1

∥∥∥z`+1
i − ai + ν`i

∥∥∥2 , (7.5b)

ν`+1
i = ν`i +

(
z`+1
i − a`+1

i

)
for all i = 1, . . . , I. (7.5c)

The ADMM formulation (7.5) simplifies the original problem,2 but the complexity of the
optimization problem (7.5b) of the CE increases with the number of RESs in the network.
In other words, the complexity of the centralized control setting has only been shifted to
the CE. Before we simplify the ADMM formulation by reducing the number of variables,
we prove convergence of ADMM towards an optimal solution of the original problem (7.1)
in the general form (7.5).

7.1.2 Definitions and notations

Before we provide a convergence result of ADMM, we give several definitions which are
necessary for the proof.

Definition 7.1.2 ([36], Definition 5). A function φ : Rn → R ∪ {∞} is called proper if it
is not everywhere ∞ that is, there exists an y ∈ Rn such that φ(y) ∈ R. Such a function
is called closed if the epigraph

epi(φ) := {(y, t) ∈ Rn × R|φ(y) ≤ t}

is closed.

For the problems considered in this thesis, we can use the following connection between
the epigraph of a function φ and convexity of φ.

Remark 7.1.3 ([17]). A function is convex if and only if its epigraph is a convex set.

Additionally, we need the definition of a subderivative.

Definition 7.1.4. Let φ : Rn → R ∪ {∞} be an extended real-valued function. A vector
y ∈ Rn is called a subderivative of φ at y? ∈ Rn, if

y(y − y?)T ≤ φ(y)− φ(y?)

for all y ∈ Rn. The set of subdifferentials of φ at y? is denoted by

∂φ(y?) := {y ∈ Rn|y(y − y?)T ≤ φ(y)− φ(y?), ∀y ∈ Rn}.
2Observe that (7.5b) is an unconstrained minimization problem in the variables a ∈ RI×N , whereas the

original problem is a constrained optimization problem in the variables z ∈ RI×N .
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7.1. ADMM: problem formulation and convergence results

Remark 7.1.5. For a convex differentiable function φ : D → R (D ⊂ Rn open) the
subdifferential and the derivative coincide, i.e.,

{Dφ(y)} = ∂φ(y).

The subdifferentials give a simple interpretation of a global minimizer y? of a function φ
through the inequality

0 = 0(y − y?)T ≤ φ(y)− φ(y?)

for all y ∈ Rn. Hence, we can state the following remark.

Remark 7.1.6. y? is a minimizer of the convex function φ if and only if 0 ∈ ∂φ(y?).

The last result we need is a linearity result on subdifferentials for which we have to define
the domain of a function and the relative interior of convex sets.

Definition 7.1.7. Let φ : Rn → R ∪ {∞} be an extended real-valued function. We define
the domain of the function φ as

dom(φ) := {y ∈ Rn|φ(y) <∞}.

Definition 7.1.8 (Relative interior of convex sets). For a convex set D ⊂ Rn, we define
the relative interior of D

ri(D) := {y ∈ D|∀y ∈ D ∃λ > 1 : λy + (1− λ)y ∈ D}.

Theorem 7.1.9 ([88], Theorem 23.8). Let φi : Rn → R ∪ {∞}, i = 1, . . . , I, be proper
convex functions and let

φ = φ1 + . . .+ φI .

If ∩mi=1ri(dom(φi)) 6= ∅, then

∂φ(y) = ∂φ1(y) + . . .+ ∂φI(y)

for all y ∈ Rn.

7.1.3 Convergence of the alternating direction of multipliers method

With the definitions given in the preceding section, we show convergence of ADMM using
the updates (7.5) under suitable assumptions on the functions Fi, i ∈ NI , G and H and
on the sets P and Di, i ∈ NI .

Assumption 7.1.10 ([16], Assumption 1 and 2). Suppose the following conditions hold:

(i) The functions Fi : RN → R ∪ {∞}, i = 1, . . . , I, G : RN → R ∪ {∞} and H : Rm →
R ∪ {∞} are closed, proper, and convex.
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Chapter 7. The alternating direction method of multipliers

(ii) The unaugmented Lagrangian L0 has a saddle point, i.e., there exist (z?,a?, σ?, λ?),
not necessarily unique, for which

L0(z?,a?, σ?, λ) ≤ L0(z?,a?, σ?, λ?) ≤ L0(z,a, σ, λ?) (7.6)

holds for all z,a ∈ RI×N , σ ∈ Rm and λ ∈ RI×N .

Remark 7.1.11. Convex functions subject to non-empty, convex and compact constraints
satisfy Assumption 7.1.10, for example. If the functions Fi, i ∈ NI , G and H are convex,
then the function K, defined in Equation (7.3), is convex as well. Since convex functions
attain their minimum on compact sets, there exists a (possibly non-unique) primal optimal
solution (z?,a?, σ?). This implies the existence of an optimal dual solution λ? satisfying
the saddle point condition (ii) (see Theorem 6.1.2 and Theorem 6.1.1).

Theorem 7.1.12 ([16], Chapter 3). Under the Assumptions 7.1.10, the ADMM iterates
satisfy the following:

• The residual r` := z` − a` converges to zero for `→∞, i.e., r` → 0 for `→∞ and
the iterates z` and a` approach feasibility.

• The sequence (K(z`,a`, σ`))`∈N converges to the optimal value K? of problem (7.1)
for `→∞.

• The dual variables λ` converge to the optimal dual point λ? for `→∞.

Proof. We give the proof presented in [16] adapted to our notation and setting.
We define the function L : RI×N × RI×N → R,

L(a, λ) = ρ
I∑
i=1

‖ai − a?i ‖
2 +

1

ρ

I∑
i=1

‖λi − λ?i ‖
2 ,

penalizing the deviation from the unknown optimal primal and dual variables a? and λ?.
We show, by using Lyapunov-like arguments, that L satisfies

L`+1 = L(a`+1, λ`+1) ≤ L(a`, λ`) = L`

and thus, convergence of the sequences (a`)`∈N and (λ`)`∈N can be obtained. Assume that
the following inequalities hold:

L`+1 − L` ≤− 1

ρ

I∑
i=1

‖λ`+1
i − λ`i‖2 − ρ

I∑
i=1

‖a`+1
i − a`i‖2, (7.7a)

K`+1 −K? ≤
I∑
i=1

(
ρ
(
a`+1
i − a`i

)(
a?i − a`+1

i − r`+1
i

)T
− λ`+1

i r`+1T

i

)
, (7.7b)

K? −K`+1 ≤
I∑
i=1

λ?
T

i r`+1
i . (7.7c)
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7.1. ADMM: problem formulation and convergence results

Then inequality (7.7a) guarantees a decrease of L` in every iteration if (a`+1, λ`+1) 6=
(a`, λ`) is satisfied. Since L` ≤ L0, from the definition of L, it follows that (λ`)`∈N and
(a`)`∈N are bounded sequences. Summing up the Inequalities (7.7a) over ` ∈ N leads to

L0 ≥
∞∑
`=0

(
1

ρ

I∑
i=1

‖λ`+1
i − λ`i‖2 + ρ

I∑
i=1

‖a`+1
i − a`i‖2

)
, (7.8)

which implies that (λ`)`∈N and (a`)`∈N are Cauchy sequences and in particular, there exists
λ] ∈ RI×N , such that λ` → λ] holds for ` → ∞. Since λ] is a stationary point of the
ADMM iterations (7.5), it follows from the saddle point condition (7.6) that λ] = λ?.
Inequality (7.8) additionally implies the convergence

r`+1
i =

1

ρ

(
λ`+1
i − λ`i

)
→ 0, a`+1

i − a`i → 0 (7.9)

for `→∞ for all i ∈ NI . Applying these results to the Inequalities (7.7b) and (7.7c) leads
to ∣∣∣K` −K?

∣∣∣→ 0 (7.10)

for `→∞. From Equation (7.10), we obtain the convergence of the objective function.
It remains to show that the Inequalities (7.7a) to (7.7c) hold. Inequality (7.7c) can be
derived from Assumption 7.1.10 (ii). It holds that

K? = L0(z?,a?, σ?, λ?)
≤ L0(z`+1,a`+1, σ`+1, λ?)

=

I∑
i=1

Fi(z
`+1
i ) +G

(
â`+1

)
+H(σ`+1) +

I∑
i=1

λ?i (z
`+1
i − a`+1

i )T

= K`+1 +

I∑
i=1

λ?i

(
r`+1
i

)T
.

To show inequality (7.7b), we use Equation (7.4a) defining the zi update

z`+1
i = argmin

zi∈Di
Lρ(z,a`, σ`, λ`).

(Observe that the minimizer z`+1 is unique according to Remark 7.1.1.) With Remark
7.1.6, a necessary and sufficient condition for z`+1

m , m ∈ NI , to be a minimizer of the
Lagrangian L is

0 ∈ ∂zmLρ(z`+1,a`, σ`, λ`).
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Chapter 7. The alternating direction method of multipliers

Together with Theorem 7.1.9, this implies

0 ∈∂zmLρ(z`+1,a`, σ`, λ`)

=∂zm

( I∑
i=1

Fi(z
`+1
i ) +G

(
â`
)

+H(σ`) +
I∑
i=1

λ`i(z
`+1
i − a`i)

T +
ρ

2

I∑
i=1

∥∥∥z`+1
i − a`i

∥∥∥2)

=
I∑
i=1

∂zmFi(z
`+1
i ) + ∂zmG

(
â`
)

+ ∂zmH(σ`)

+

I∑
i=1

∂zm

(
λ`i(z

`+1
i − a`i)

T
)

+
ρ

2

I∑
i=1

∂zm

(∥∥∥z`+1
i − a`i

∥∥∥2)
=∂zmFm(z`+1

m ) + ∂zm

(
λ`m(z`+1

m − a`m)T
)

+ ∂zm

(
ρ

2

∥∥∥z`+1
m − a`m

∥∥∥2)
=∂zmFm(z`+1

m ) + λ`m + ρ
(
z`+1
m − a`m

)
.

The update for the dual variable (7.5c) (together with the scaling λm = ρνm)

λ`+1
m = λ`m + ρ(z`+1

m − a`+1
m ) ⇐⇒ λ`m = λ`+1

m − ρ(z`+1
m − a`+1

m )

implies

0 ∈∂zmFm(z`+1
m ) + λ`+1

m − ρ(z`+1
m − a`+1

m ) + ρ
(
z`+1
m − a`m

)
⇐⇒ 0 ∈∂zmFm(z`+1

m ) + λ`+1
m + ρ

(
a`+1
m − a`m

)
.

Hence, z`+1
m ∈ Dm minimizes the expression

Fm(zm) +
(
λ`+1
m + ρ

(
a`+1
m − a`m

))
zTm.

We repeat the same arguments for the pair (a, σ) by considering the minimization problem

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

Lρ(z`+1,a, σ, λ`).

(According to Remark 7.1.1, a`+1 is unique but σ`+1 does not have to be unique.) In this
case, we obtain the condition on the subdifferential

0 ∈∂(a,σ)Lρ(z`+1,a`+1, σ`+1, λ`)

⇐⇒ 0 ∈∂(a,σ)G
(
â`+1

)
+ ∂(a,σ)H(σ`+1)−


λ`1
...
λ`I
0

− ρ


z`+1
1 − a`+1

1
...

z`+1
I − a`+1

I
0



⇐⇒ 0 ∈
(
∂aG

(
â`+1

)
∂σH(σ`+1)

)
−


λ`1
...
λ`I
0

− ρ


z`+1
1 − a`+1

1
...

z`+1
I − a`+1

I
0

 .
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With λ` = λ`+1 − ρ
(
z`+1 − a`+1

)
, we obtain

0 ∈
(
∂aG

(
â`+1

)
∂σH(σ`+1)

)
−


λ`+1
1 − ρ

(
z`+1
1 − a`+1

1

)
...

λ`+1
I − ρ

(
z`+1
I − a`+1

I

)
0

− ρ


z`+1
1 − a`+1

1
...

z`+1
I − a`+1

I
0



⇐⇒ 0 ∈
(
∂aG

(
â`+1

)
∂σH(σ`+1)

)
−


λ`+1
1
...

λ`+1
I
0


which means (a`+1, σ`+1) minimizes

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

G (â) +H(σ)−
I∑
i=1

λ`+1aTi . (7.11)

Summing up the results, we obtain the two inequalities

G
(
â`+1

)
+H(σ`+1)−

I∑
i=1

λ`+1
i a`+1T

i ≤ G (â?) +H(σ?)−
I∑
i=1

λ`+1
i a?

T

i

and
I∑
i=1

(
Fi(z

`+1
i ) +

(
λ`+1
i + ρ

(
a`+1
i − a`i

))
z`+1T

i

)
≤
I∑
i=1

(
Fi(z

?
i ) +

(
λ`+1
i + ρ

(
a`+1
i − a`i

))
z?

T

i

)
.

With the notation

K`+1 =

I∑
i=1

Fi(z
`+1
i ) +G

(
â`+1

)
+H(σ`+1),

K? =
I∑
i=1

Fi(z
?
i ) +G (â?) +H(σ?),

the two inequalities add up to

K`+1+

I∑
i=1

((
λ`+1
i + ρ

(
a`+1
i − a`i

))
z`+1T

i

)
−
I∑
i=1

λ`+1
i a`+1T

i

≤K? +
I∑
i=1

((
λ`+1
i + ρ

(
a`+1
i − a`i

))
z?

T

i

)
−
I∑
i=1

λ`+1
i a?

T

i ,
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which is equivalent to the expression

K`+1 −K? ≤
I∑
i=1

((
λ`+1
i + ρ

(
a`+1
i − a`i

))(
z?i − z`+1

i

)T)
−
I∑
i=1

λ`+1
i

(
a?i − a`+1

i

)T
=
I∑
i=1

(
ρ
(
a`+1
i − a`i

)(
z?i − z`+1

i

)T
+ λ`+1

i

(
z?i − a?i − z`+1

i + a`+1
i

)T)
.

In the limit, z?i = a?i holds for all i ∈ NI . Additionally, with the definition of the residuals
r`+1
i = z`+1

i − a`+1
i the inequality simplifies to

K`+1 −K? ≤
I∑
i=1

(
ρ
(
a`+1
i − a`i

)(
z?i − z`+1

i

)T
− λ`+1

i r`+1T

i

)
.

Using z?i = a?i and z`+1
i = r`+1

i + a`+1
i leads to the expression

K`+1 −K? ≤
I∑
i=1

(
ρ
(
a`+1
i − a`i

)(
a?i − a`+1

i − r`+1
i

)T
− λ`+1

i r`+1T

i

)
which shows that inequality (7.7b) holds.
As a last step, we show that (7.7a) is satisfied. Adding the Inequalities (7.7b) and (7.7c)
and multiplying by 2 leads to

0 ≥ 2
I∑
i=1

(
λ`+1
i − λ?i

)
r`+1T

i + 2
I∑
i=1

ρ
(
a`+1
i − a`i

)(
r`+1
i +

(
a`+1
i − a?i

))T
. (7.12)

We first concentrate on the term

2
(
λ`+1
i − λ?i

)
r`+1T

i . (7.13)

The updates of the dual variables are given by

λ`+1
i = λ`i + ρr`+1

i , r`+1
i =

1

ρ

(
λ`+1
i − λ`i

)
.

With these definitions, the expression (7.13) can be expanded to

2
(
λ`+1
i − λ?i

)
r`+1T

i = 2
(
λ`i + ρr`+1

i − λ?i
)
r`+1T

i

= 2
(
λ`i − λ?i

)
r`+1T

i + 2ρ
∥∥∥r`+1

i

∥∥∥2
=

2

ρ

(
λ`i − λ?i

)(
λ`+1
i − λ`i

)T
+ 2ρ

∥∥∥r`+1
i

∥∥∥2
=

2

ρ

(
λ`i − λ?i

)(
λ`+1
i − λ`i

)T
+

1

ρ

∥∥∥λ`+1
i − λ`i

∥∥∥2 + ρ
∥∥∥r`+1

i

∥∥∥2
=

2

ρ

(
λ`i − λ?i

)(
(λ`+1
i − λ?i )− (λ`i − λ?i )

)T
+

1

ρ

∥∥∥(λ`+1
i − λ?i )− (λ`i − λ?i )

∥∥∥2 + ρ
∥∥∥r`+1

i

∥∥∥2
=

1

ρ

∥∥∥λ`+1
i − λ?i

∥∥∥2 − 1

ρ

∥∥∥λ`i − λ?i ∥∥∥2 + ρ
∥∥∥r`+1

i

∥∥∥2 .
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As a second step, we rewrite the second term of inequality (7.12) plus the additional term

ρ
∥∥∥r`+1

i

∥∥∥2 obtained in the last equation:

ρ
∥∥∥r`+1

i

∥∥∥2 + 2ρ
(
a`+1
i − a`i

)(
r`+1
i +

(
a`+1
i − a?i

))T
= ρ

∥∥∥r`+1
i

∥∥∥2 + 2ρ
(
a`+1
i − a`i

)(
r`+1
i +

(
(a`+1
i − a`i) + (a`i − a?i )

))T
= ρ

∥∥∥r`+1
i

∥∥∥2 + 2ρ
(
a`+1
i − a`i

)
r`+1T

i + 2ρ
∥∥∥a`+1

i − a`i

∥∥∥2 + 2ρ
(
a`+1
i − a`i

)
(a`i − a?i )

T

= ρ
∥∥∥r`+1

i + a`+1
i − a`i

∥∥∥2 + ρ
∥∥∥a`+1

i − a`i

∥∥∥2 + 2ρ
(

(a`+1
i − a?i )− (a`i − a?i )

)
(a`i − a?i )

T

= ρ
∥∥∥r`+1

i + a`+1
i − a`i

∥∥∥2 + ρ
∥∥∥a`+1

i − a`i

∥∥∥2 + 2ρ(a`+1
i − a?i )(a

`
i − a?i )

T − 2ρ
∥∥∥a`i − a?i

∥∥∥2
= ρ

∥∥∥r`+1
i + a`+1

i − a`i

∥∥∥2 + ρ
∥∥∥(a`+1

i − a?i )− (a`i − a?i )
∥∥∥2

+ 2ρ(a`+1
i − a?i )

T (a`i − a?i )− 2ρ
∥∥∥a`i − a?i

∥∥∥2
= ρ

∥∥∥r`+1
i + a`+1

i − a`i

∥∥∥2 + ρ
∥∥∥a`+1

i − a?i

∥∥∥2 − ρ∥∥∥a`i − a?i

∥∥∥2 .
Summing up the results leads to

0 ≥1

ρ

I∑
i=1

∥∥∥λ`+1
i − λ?i

∥∥∥2 − 1

ρ

I∑
i=1

∥∥∥λ`i − λ?i ∥∥∥2
+ ρ

I∑
i=1

∥∥∥r`+1
i + a`+1

i − a`i

∥∥∥2 +

I∑
i=1

ρ
∥∥∥a`+1

i − a?i

∥∥∥2 − ρ I∑
i=1

∥∥∥a`i − a?i

∥∥∥2 .
Here, we can identify the function L, and obtain the estimate

L(a`, λ`)− L(a`+1, λ`+1) ≥ ρ
I∑
i=1

∥∥∥r`+1
i + a`+1

i − a`i

∥∥∥2
or equivalently

L(a`+1, λ`+1) ≤ L(a`, λ`) +
I∑
i=1

(
−ρ
∥∥∥r`+1

i

∥∥∥2 − ρ∥∥∥a`+1
i − a`i

∥∥∥2 − 2ρr`+1
i (a`+1

i − a`i)
T

)
.

(7.14)

From the minimization problem (7.11), we obtain the two inequalities

G
(
â`+1

)
+H(σ`+1)−

I∑
i=1

λ`+1
i a`+1T

i ≤ G
(
â`
)

+H(σ`)−
I∑
i=1

λ`+1
i a`

T

i

G
(
â`
)

+H(σ`)−
I∑
i=1

λ`ia
`T

i ≤ G
(
â`+1

)
+H(σ`+1)−

I∑
i=1

λ`ia
`+1T

i ,

127



Chapter 7. The alternating direction method of multipliers

which lead to the estimate

−
I∑
i=1

λ`+1
i a`+1T

i −
I∑
i=1

λ`ia
`T

i ≤ −
I∑
i=1

λ`+1
i a`

T

i −
I∑
i=1

λ`ia
`+1T

i

or

−
I∑
i=1

(λ`+1
i − λ`i)(a`+1

i − a`i)
T ≤ 0

equivalently. With the residual ρr`+1
i = λ`+1

i − λ`i we obtain

−ρ
I∑
i=1

r`+1
i (a`+1

i − a`i)
T ≤ 0

which can be used in (7.14)

L(a`+1, λ`+1) ≤ L(a`, λ`)−
I∑
i=1

ρ
∥∥∥r`+1

i

∥∥∥2 − I∑
i=1

ρ
∥∥∥a`+1

i − a`i

∥∥∥2
= L(a`, λ`)−

I∑
i=1

1

ρ

∥∥∥λ`+1 − λ`
∥∥∥2 − I∑

i=1

ρ
∥∥∥a`+1

i − a`i

∥∥∥2
and shows that inequality (7.7a) holds.

Theorem 7.1.12 provides convergence of the ADMM iterates to the optimal solution K? of
the optimization problem (7.1). The rate of convergence is not considered here. We refer
to [29], where the authors investigate computational aspects of ADMM and examine the
number of iterations to satisfy a given stopping criteria in the MPC context.
In the next section, we show how the steps (7.5) can be implemented efficiently such that
the number of unknowns in the optimization problems are independent of the number of
RESs.

7.1.4 Simplification of the ADMM formulation

The ADMM iterates can be solved in a distributed manner since Equation (7.5a) decom-
poses into I separable optimization problems which can individually be solved by their
respective RESs in parallel. The optimization problem (7.5b)

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

G (â) +H(σ) +
ρ

2

I∑
i=1

∥∥∥z`+1
i − ai + ν`i

∥∥∥2
cannot be separated due to the coupling in the function G. However, it is possible to make
the number of unknowns in this problem independent of the number of RESs I by using
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the averaged variables â ∈ RN instead of a ∈ RI×N . In order to show this, we rewrite the
minimization problem (7.5b) in the form

(a`+1, σ`+1) ∈ argmin
(a,σ)∈P

Lρ
(
z`+1,a, σ, λ`

)
= argmin

(â,σ)∈P
G (â) +H(σ) +

ρ

2

∥∥∥z`+1 − a
∥∥∥2 +

I∑
i=1

λ`
T

i (z`+1
i − ai)

= argmin
(a,σ)∈P

G (â) +H(σ) +
I∑
i=1

ρ

2

∥∥∥z`+1
i − ai

∥∥∥2 + λ`
T

i (z`+1
i − ai)

= argmin
(a,σ)∈P

G (â) +H(σ) +
ρ

2

I∑
i=1

∥∥∥∥λ`iρ + z`+1
i − ai

∥∥∥∥2 . (7.15)

To continue, we require the following lemma.

Lemma 7.1.13. For c,yi ∈ RN , i = 1, . . . , I, the minimizer of the optimization problem

min
vi∈RN

I∑
i=1

‖vi − yi‖

s.t.
1

I

I∑
i=1

vi = c (7.16)

is given by vi = yi + c− ŷ for all i ∈ NI where ŷ = (1/I)
∑I

i=1 yi.

Proof. For yi = 0 for all i ∈ NI , the triangular inequality implies

‖I · c‖ = min
vi,

1
I
∑I
i=1 vi=c

∥∥∥∥∥
I∑
i=1

vi

∥∥∥∥∥ ≤ min
vi,

1
I
∑I
i=1 vi=c

I∑
i=1

‖vi‖

and equality is obtained for vi = c for all i ∈ NI . For the general case, we use the
coordinate transformation vi = vi − yi. Then the equality constraint (7.16) reads

1

I

I∑
i=1

vi =
1

I

I∑
i=1

vi −
1

I

I∑
i=1

yi = c− ŷ

which shows the assertion.

Applying this result to the minimization problem (7.15) and fixing the variables â =
1
I
∑I

i=1 ai and σ, we see that the optimal solution satisfies

λ̂`

ρ
+ ẑ`+1 − â =

λ`i
ρ

+ z`+1
i − ai (7.17)

129



Chapter 7. The alternating direction method of multipliers

for all i ∈ NI with the definition λ̂ = 1
I
∑I

i=1 λi. Hence, the minimization problem (7.15)
can be rewritten as

min
(â,σ)

G (â) +H(σ) + ρ
2

∑I
i=1

∥∥∥ λ̂`ρ + ẑ`+1 − â
∥∥∥2

s.t. (â, σ) ∈ P̂,
(7.18)

where the number of optimization variables is independent of the number of RESs and the
set P̂ is defined as

P̂ =
{

(â, σ) ∈ RN × S |Aâ +Bσ − b = 0
}
. (7.19)

Furthermore, if we use Equation (7.17) together with the scaling λ = ρν in the update of
the Lagrange multipliers (7.5c) we obtain

λ`+1
i = λ`i + ρ

(
z`+1
i − a`+1

i

)
= λ̂` + ρ

(
ẑ`+1 − â`+1

)
,

which implies that λi = λj holds for all i, j ∈ NI after the first iteration. Hence, the
Lagrange multiplier λ ∈ RI×N can be replaced by a Lagrange multiplier λ̂ ∈ RN and the
update of the dual variable λ̂ is also independent of the number of RESs.
With these considerations, which follow the arguments given in [16, Chapter 7.3], the
updates of Equation (7.5b) and (7.5c) reduce to the minimization problem

argmin
(â,σ)∈P̂

G (â) +H(σ) +
ρ · I

2

∥∥∥∥∥ λ̂`ρ + ẑ`+1 − â

∥∥∥∥∥
2

and the update

λ̂`+1 = λ̂` + ρ(ẑ`+1 − â`+1).

The update (7.5a) of the variables zi of the individual RESs given by the solution of the
minimization problem

argmin
zi∈Di

Fi(zi) +
ρ

2

∥∥∥∥∥zi +
λ̂`

ρ
− a`i

∥∥∥∥∥
2

involves the variable ai which differs for all i ∈ NI and as a consequence has to be trans-
mitted to every RES individually. To avoid the need to communicate the individual ai,
i ∈ NI , we define

Π` :=
λ̂`

ρ
+ ẑ` − â`.

Now, Equation (7.17) can be rewritten in the form

λ`i
ρ
− a`i = −z`i +

λ̂`

ρ
+ ẑ` − â` = −z`i + Π`.
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If the variable Π` is known by the individual systems then the update z`+1
i can be computed

by

argmin
zi∈Di

Fi(zi) +
ρ

2

∥∥∥zi − z`i + Π`
∥∥∥2 (7.20)

without the knowledge of individual variables specific to RES i. We now have all the neces-
sary components to be in the position to summarize the ADMM algorithm and construct
the DiMPC algorithm using ADMM at every time instant in the context of a network of
RESs.

7.2 ADMM for a network of residential energy systems

7.2.1 The hierarchical distributed optimization algorithm

Algorithm 10 summarizes the ideas presented in the previous section and breaks down the
ADMM iterates into tasks which have to be carried out by the individual RESs in parallel,
and tasks which have to be executed by the CE or the grid operator.
Algorithm 10 provides several properties that are desirable for our application including:

• Only the parameter Π is transmitted to the RESs and not the energy demand zi. This
implies that privacy of data between the individual RESs is maintained. Furthermore,
the dimension of Π is independent of the number of RESs. Thus, the communication
overhead scales well with the size of the network.

• The number of unknowns in the optimization problem of the grid operator is inde-
pendent of the number of RESs. Hence, the computational complexity of the CE
and the RESs is independent of I.

• The RESs do not need to know the objective functions G and H defined by the CE.
This allows the CE to modify the objective function without communicating this to
the RESs.

7.2.2 ADMM in the receding horizon context

The last point in the preceding list is of particular interest when Algorithm 10 is embedded
in a receding horizon scheme described in Algorithm 11, since it allows the grid operator
to change the objective function at every time instant k ∈ N without changing the network
or communication structure and without changing the optimization problem on the local
level. Moreover, the grid operator does not need to react to changes in the local system
dynamics or to changes in the constraints, i.e., changes in the set Di, i ∈ NI .

7.3 Situation-based control of a network of RESs

The degree of freedom in choosing the objective function G and H and the linear coupling
constraints in every MPC step offer different possibilities to apply the ADMM algorithm.

131



Chapter 7. The alternating direction method of multipliers

Algorithm 10 Hierarchical distributed optimization algorithm
Initialization: Set ` = 0 and define Π0 ∈ RN , λ0 ∈ RN and z0i ∈ Di arbitrarily.
Main loop:
Phase 1 (RES i, i ∈ NI): Receive Π`.

• Solve the minimization problem

z`+1
i = argmin

zi∈Di
Fi(zi) +

ρ

2

∥∥∥zi − z`i + Π`
∥∥∥2

and send z`+1
i to the CE.

Phase 2 (CE): Receive z`+1
i , i = 1, . . . , I.

• Compute the average ẑ`+1 = 1
I
∑I

i=1 z
`+1
i .

• Solve the minimization problem

(â`+1, σ`+1) ∈ argmin
(â,σ)∈P̂

(
G (â) +H(σ) + ρ·I

2

∥∥∥ẑ`+1 − â + λ̂`

ρ

∥∥∥2 ).
• Update the Lagrange multiplier

λ̂`+1 = λ̂` + ρ
(
ẑ`+1 − â`+1

)
.

• Compute and broadcast

Π`+1 = ẑ`+1 − â`+1 +
λ̂`+1

ρ
.

Increment the iteration counter ` = `+ 1 and repeat the loop.

In this section, we discuss several applications for the network of RESs introduced in
Chapter 3.
Similar to the degree of freedom of the CE, the RESs can choose their cost functions Fi,
i ∈ NI , individually, as long as the assumptions of Theorem 7.1.12 (i.e., the functions
Fi have to be convex for all i ∈ NI) are satisfied. Fi could for example be defined such
that the usage of a storage device is penalized to extend its lifetime. Alternatively, the
operational costs of a storage device could be modeled in the function Fi. Since we are
interested in the performance of the network of RESs from the point of view of the CE
and since the functions Fi have an impact on the overall cost function

K(z,a, σ) =
I∑
i=1

Fi(zi) +G

(
1

I

I∑
i=1

ai

)
+H(σ)

defined in Equation (7.3), we use the functions Fi ≡ 0 in the following if not mentioned
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Algorithm 11 Situation-based distributed model predictive control

1. Initialization:
RES i, (i ∈ NI):

• Measure the initial state of charge of the battery xi(k) = xi,0 and predict the
values si(k;N).

CE:

• Define the objective functions G and H.

2. Distributed optimization: Apply Algorithm 10 to compute the optimal input
u?i (k;N) for i = 1, . . . , I.

3. Apply u?i (k) for i = 1, . . . , I.

Increment the time index k = k + 1 and go to step 1.

otherwise. We focus on the dynamics

xi(k + 1) = αixi(k) + T
(
βiu

+
i (k) + u−i (k)

)
, (7.21a)

zi(k) = si(k) + u+i (k) + γiu
−
i (k) (7.21b)

subject to the constraints

0 ≤ xi(k) ≤ Ci, (7.22a)

ui ≤ u−i (k) ≤ 0, (7.22b)

0 ≤ u+i (k) ≤ ui, (7.22c)

0 ≤ u−i (k)
ui

+
u+i (k)
ui

≤ 1. (7.22d)

7.3.1 Vertical fluctuations

The standard setting considered in this thesis, penalizing the deviation from the average
demand, is realized by the function G : RN → R,

G(â) =
∥∥∥â− 1ζ̂∥∥∥2 . (7.23)

Introducing the artificial variables σ is not necessary and hence, H is not needed. Similar,
the functions Fi are defined as Fi ≡ 0 for all i ∈ NI . Since in this case the variable â ∈ RN
is unconstrained, the update of the CE is simply given by

â`+1 =
1

2 + ρI

(
2ζ̂ + ρI

(
ẑ`+1 +

1

ρ
λ`
))

.
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7.3.2 Temporary islanded operation of a network of RESs

We consider the case that the network of RESs represents a residential neighborhood
connected to the main grid through a point of common coupling visualized in Figure 7.1.
One of the benefits of a network of RESs, also called microgrid in this context, is the

∑I
i=1 zi

zI

z2

z1

...
RES I

RES 2

RES 1

S

Main Grid

Figure 7.1: Visualization of a network of RESs. A number of I ∈ N RESs connected to the main
grid through a point of common coupling. We assume that the RESs can be disconnected from the
main grid through the switch S.

potential to disconnect it from the main distribution network represented by the switch
S in Figure 7.1. This is referred to as islanding, whereby the microgrid maintains normal
operation using only the locally stored energy and energy locally generated by renewable
generation units.
In this section, we propose an optimization problem to cover the problem of islanded
operation of a microgrid with limited or even no conventional generation. At the start of
and during islanded operation, it is vital to know the maximal allowable time window for
which the microgrid is able to locally maintain supply on its own without any need for
conventional generation or connection to the grid. More precisely, we set up an optimal
control problem which serves two purposes. When solved once at time k with initial battery
state x(k), its solution tells us the number of time steps k̄ ∈ N the grid can be operated in
islanded mode after a given time instant k + k?, k? ∈ N. When solved iteratively within
Algorithm 11, it yields the control strategy for keeping the microgrid in islanded mode
from k + k? to k + k? + k̄.
We have the following two distinct applications in mind:

• k? ≥ 1: A scheduled disconnection from the grid for an a priori specified time window.

• k? = 0: An unscheduled disconnection.
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The main difference between the two cases is that in the first scenario the microgrid can
specifically prepare itself in advance by charging the batteries until time k+k?, neglecting
(possibly conflicting) other objectives. Despite this difference, both settings can be handled
with the proposed methodology by adequately adapting the objective function and the
constraints in Algorithm 10. Scheduled or forced islanded operation of a microgrid is for
example also discussed in the paper [62]. Here, our approach can be used to calculate when
the isolated microgrid will run out of energy and when additional generators have to be
used to ensure a power supply without outages.
The possibility of disconnecting the grid at time k? is equivalent to the existence of zi ∈ Di
(for i ∈ NI) such that 1

I
∑I

i=1 zi(k + k?) ≤ 0 is satisfied, i.e., the overall power demand is
less or equal to zero at time k?. To find the maximal consecutive number of time steps from
k+ k? to k? + q? (q? ≥ 0) such that 1

I
∑I

i=1 zi(k+ k? + q) ≤ 0 holds for all q ∈ {0, . . . , q?},
we define the following minimization problem.

Definition 7.3.1. For a given time index k? ∈ {0, . . . , N −1}, set M = N −k? and define
the grid disconnection problem as

(â?, σ?) ∈ argmin
(â,σ)∈P̂

H(σ)

with

P̂ =
{

(â, σ) ∈ RN × RM
∣∣(0 I)â− σ ≤ 0 ∧ σ ∈ S = RM≥0

}
(7.24)

and the objective function H : RM≥0 → R is defined as

H(σ) =

M∑
q=1

(M + 1− q)κ · σ(q)

for a positive constant κ > 0.

Remark 7.3.2. In Definition 7.3.1 the functions G and Fi are tacitly defined as G ≡ 0

and Fi ≡ 0 for all i ∈ NI .

Remark 7.3.3. To be consistent with the definition of the minimization problem (7.1), one
has to introduce slack variables to obtain an equivalent formulation with equality constraints
instead of inequality constraints. For simplicity, we stick to the formulation using inequality
constraints but point out, that a reformulation with equality constraints can be obtained
easily.

Now we show that the number of leading zeros of a possibly non-unique optimal solution
σ? provides the maximal disconnection time if the weighting factor κ > 0 is chosen ap-
propriately. Observe that the objective function H is linear and places a heavier penalty
on the smaller indices of σ. To give an illustrative motivation for the choice of the ob-
jective function and the choice of κ, we assume that for all i ∈ NI , αi = 1 in the system
dynamics (7.21) before we prove the general case in Theorem 7.3.4.
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Since the weighting parameters in the objective function H are positive, the constraint
σ ∈ RM≥0 implies â(k + k? − 1 + q) = σ?(q) for all optimal σ? with â(k + k? − 1 + q) ≥ 0,
q ∈ NM . For simplicity, consider an isolated (power) exchange between σ(q1) > 0 and
σ(q2) (q1 < q2, q1, q2 ∈ NM ) of a feasible solution σ. Due to the linear system dynamics,
reducing σ(q1) by γiε leads to an increase of σ(q2) by εβ−1i in the case that losses have
maximal impact. This is, for example, the case if

â(k + k? − 1 + q1) = σ(q1) and â(k + k? − 1 + q2) = σ(q2)

and â(k + k? − 1 + q1) can only be decreased by using a smaller u−i (k + k? − 1 + q1) by
at least one RES i (i.e., discharge ε more from the battery at time k + k? − 1 + q1) and
simultaneously increase u+i (k + k? − 1 + q2) (i.e., charge ε more at time k + k? − 1 + q2).
Charging more at time k+k?−1 + q2 could, for example, be necessary to prevent that the
battery constraints (6.20a) are violated at time steps k + k? − 1 + q for q > q2. Moreover,
these considerations show that decreasing σ(q1) by γiε can always be compensated by
maximally increasing σ(q2) by ε/βi.
If this power exchange results in a new feasible σ̃ with

σ̃(q1) = σ(q1)− γiε and σ̃(q2) = σ(q2) + ε/βi

and σ̃(q) = σ(q) for all q ∈ NM\{q1, q2}, and since q1 < q2 by assumption, κ has to be
chosen such that the value of the objective function decreases, i.e., H(σ̃) < H(σ) holds.
Hence, we obtain the estimate

0 > H(σ̃)−H(σ) = −(M + 1− q1)κγiε+ (M + 1− q2)κε/βi (7.25)

or equivalently,

γi · βi >
(
M + 1− q2
M + 1− q1

)κ
.

Since this inequality has to hold for arbitrary q1 < q2, q1, q2 ∈ NM the estimate

γi · βi >
(
M − 1

M

)κ
>

(
M + 1− q2
M + 1− q1

)κ
has to be satisfied and leads to the condition

κ >
log(γ · β)

log
(
M−1
M

) .
That this condition indeed suffices for the system dynamics (7.21) subject to the con-
straints (7.22) is rigorously shown in the following theorem.

Theorem 7.3.4. Consider the grid disconnection problem defined in Definition 7.3.1. For
an arbitrary optimal solution (â?, σ?) ∈ P̂ and an arbitrary feasible solution (â], σ]) ∈ P̂,
we define q?, q] ∈ {1, . . . ,M+1} as the maximal indices such that, for all q < q?, σ?(q) = 0
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and, for all q < q], σ](q) = 0. Let β := mini=1,...,I{βi} and γ := mini=1,...,I{γi} define the
maximal losses of the battery models.
If κ is chosen such that

κ > log (β · γ)
/

log

(
M − 1

M

)
(7.26)

then q? ≥ q] holds, i.e., the grid can be disconnected for at most q? − 1 time steps.

Proof. Assume that αi = 1 and let (â?, σ?) ∈ P̂ be an optimal solution of the minimization
problem with κ chosen according to Equation (7.26). Let q? denote the index of the first
entry of σ? which is unequal to zero, i.e., we have σ?(q) = 0 for all q < q? and σ?(q?) > 0.

(In the case σ? = 0, the statement of the theorem is trivially satisfied and hence, we can
assume that q? ≤M .)
Assume there exists a feasible solution (â], σ]) ∈ P̂ such that σ](q) = 0 holds for all q < q]

and q? < q]. We will show that the existence of (â], σ]) contradicts the optimality of
(â?, σ?). We assume without loss of generality that

â?(k + k? − 1 + q) = σ?(q) and â](k + k? − 1 + q) = σ](q)

holds for all q with â?(k + k? − 1 + q) ≥ 0 and â](k + k? − 1 + q) ≥ 0, respectively.
Since σ](q?) = 0 and σ?(q?) = â(k + k? − 1 + q?) > 0 there is an index i ∈ NI such that

u+?i (k + k? − 1 + q?) > 0 or u−?i (k + k? − 1 + q?) > ui,

i.e., one of the constraints (7.22b) and (7.22c) is not active and it is possible to decrease

u+?i (k + k? − 1 + q?) and/or u−?i (k + k? − 1 + q?)

to reduce z?i (k + k? − 1 + q?) and consequently also â(k + k? − 1 + q?) and σ?(q?). If we
reduce u−?i (k + k? − 1 + q?) by ε > 0, i.e.,

ũ−?i (k + k? − 1 + q?) := u−?i (k + k? − 1 + q?)− ε (7.27)

then the state xi decreases to

x̃?i (k + k? − 1 + q) := x−?i (k + k? − 1 + q)− ε (7.28)

for all q > q?. If

x−?i (k + k? + q) > 0 for all q > q?

then u−?i (k+ k?− 1 + q?) can be changed without violating the constraints (7.22) and the
variable σ?(q?) can be reduced by γi · ε/I which contradicts the optimality of σ?. The
same argument applies if it is possible to change u+?i (k + k? − 1 + q?).
Hence, we can assume, that it is only possible to change

u−?i (k + k? − 1 + q?) (or u+?i (k + k? − 1 + q?), respectively)
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by simultaneously changing

u−?i (q) (or u+?i (q))

at a time instant q < k+ k?− 1 + q? or q > k+ k?− 1 + q?. Note that one of these options
needs to be possible due to the existence of the solution (â], σ]) and since the constraints
of the systems are decoupled, one can concentrate on one RES i ∈ NI only.
If it is possible to increase x?i (q) by increasing u−?i (q) or u+?i (q) at time steps q < k +

k? − 1 + q? without increasing σ?(q) for all q < k + k? − 1 + q? (i.e., there exist time
steps q < k+ k?− 1 + q? such that â?(q) can be increased without changing σ?), then this
strategy increases in particular x?i (k + k? − 1 + q?). Hence, it is possible to decrease

u+?i (k + k? − 1 + q?) or u−?i (k + k? − 1 + q?)

without violating the constraints x?i (q) ≥ 0 for q > k + k? − 1 + q?, i.e., σ?(q?) can be
reduced which violates the optimality of σ?.
If the strategy (7.27) leads to x−?i (k+k?−1+q) < 0 for some q > q?, again a contradiction
to optimality can be derived based on the estimate (7.25) and the choice of κ by decreasing
σ?(q?) and increasing σ?(q) for q > q?. Hence, (â], σ]) ∈ P̂ does not exist, which completes
the proof for αi = 1 for all i ∈ NI .
Assume that αi < 1 for at least one i ∈ NI . The strategy of reducing σ(q?) by increasing
â?(q) for q < q? is applicable in the same way as in the case αi = 1. Moreover, if σ(q?)

can be decreased using the idea of Equation (7.28) and simultaneously increasing σ(q) for
q > q?, then the amount of energy which is lost due to self-discharge for q > q? decreases
(i.e., the corresponding u+?i (k+k?− 1 + q?) or u−?i (k+k?− 1 + q?) can be decreased more
before x+?i (k + k? − 1 + q)− ε = 0 becomes active) which increases the amount σ(q?) can
be reduced.

It has been shown in Theorem 7.3.4 that an optimal pair (â?, σ̂?) provides the maximal
disconnection time if κ is chosen such that Condition (7.26) holds. However, for very
large M , large values of κ are required, which lead to a numerically unstable scaling of
the cost function H. Nevertheless, if a maximal disconnection time can be estimated, the
presented approach can be easily generalized such that κ remains reasonably sized, e.g. if
the maintenance work requires at most eight hours of the 24 hours within the prediction
horizon N . Moreover, numerical experiments indicate that κ = 1 works well even if
Condition (7.26) is violated.

Remark 7.3.5. If no losses are considered, i.e., β = γ = 0, then any value κ > 0 can
be used in the objective function H. For the values M = 48 and β = γ = 0.95, we obtain
κ > 4.88 from Condition (7.26).

Remark 7.3.6. If the maximal desired duration of the islanded mode is a priori specified,
the constraints

(
0 I 0

)
â− σ ≤ 0 can be used instead of

(
0 I

)
â− σ ≤ 0 to obtain

a smaller value M and hence, a smaller κ.

Remark 7.3.7. Since the objective function is convex and defined on a convex and com-
pact set (compactness of S can be easily enforced), Assumptions 7.1.10 hold according to
Remark 7.1.11 and convergence of Algorithm 10 can be concluded from Theorem 7.1.12.
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7.3.3 Peak-detection

In this subsection, we propose a minimization problem to detect and to flatten the maximal
and minimal peaks in the average power demand in the prediction horizon, i.e., we want
to minimize

max

{
1

I

I∑
i=1

zi

}
−min

{
1

I

I∑
i=1

zi

}
.

If the maximal and minimal peaks are known to the energy provider, it can estimate an
upper and a lower bound of power it needs to be able to provide in the next hours. If the
interval of the power demand is smaller, then the interval containing the security margin
of the energy provider also becomes smaller. The corresponding optimization problem is
given by the formulation

(z?,a?) ∈ argmin
(zia)

(max {â} −min {â})

s.t. ai ∈ RN ∀ i = 1, . . . , I
zi ∈ Di ∀ i = 1, . . . , I
zi − ai = 0 ∀ i = 1, . . . , I.

To obtain a differentiable objective function, we introduce the variables σ+, σ− ∈ R, σ =

(σ+ σ−), and rewrite the optimization problem

(z?,a?, σ?) ∈ argmin
(z,a,σ)

s+ − s−

s.t. ai ∈ RN ∀ i = 1, . . . , I
zi ∈ Di ∀ i = 1, . . . , I
zi − ai = 0 ∀ i = 1, . . . , I
â ≤ 1σ+, â ≥ 1σ−.

which can be solved by Algorithm 10 using the definitions Fi ≡ 0 for all i ∈ NI , G ≡ 0,
H(σ) = σ(1)− σ(2) and

P̂ =

{
(â, σ) ∈ RN × R2

∣∣∣∣( I

−I

)
âT +

(
1T 0

0 −1T

)
σT ≤

(
0

0

)}
.

7.3.4 Power balance

If a sufficient number of local generators are considered in the network of RESs the min-
imization problem

z? ∈ argmin
z

∑I
i=1 Fi(zi)

s.t. 1
I
∑I

i=1 zi = 0

zi ∈ Di ∀ i = 1, . . . , I
(7.29)

can be considered. Here, the focus is on the minimization of the costs for energy generation
and hence, the functions Fi : RN → R, i ∈ NI , need to be defined accordingly. The
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minimization problem can be interpreted as minimizing individual costs or maximizing
individual profit while maintaining power balance and consequently stability of the grid.
By introducing the variable a and the function G ≡ 0, we obtain the minimization problem

(z?,a?) ∈ argmin
(z,a)

∑I
i=1 Fi(zi) +G(â)

s.t. â = 0

zi ∈ Di ∀ i = 1, . . . , I
zi − ai = 0 ∀ i = 1, . . . , I

which implies that the optimal solution of the minimization problem of the CE in every
iteration is given by â = 0 and hence, the update of the Lagrange multiplier λ̂ reduces to

λ̂`+1 = λ̂` + ρẑ`+1

for all ` ∈ N and Π`+1 is defined as

Π`+1 = ẑ`+1 +
λ̂`+1

ρ
.

In the power balance problem one has to make sure that an optimal solution of the op-
timization problem (7.29) exists, i.e., local generators need to be able to provide enough
power at every instant k.

7.3.5 Time-varying tube constraints

Instead of a power balance requiring that 1
I
∑I

i=1 zi = 0 holds, we can also consider a
scenario where the energy provider wants to keep the power demand within a certain
interval, i.e.,

c ≤ 1

I

I∑
i=1

zi ≤ c

for possibly time-varying bounds c, c ∈ RN while the RESs minimize their costs using the
functions Fi, i ∈ NI . With G ≡ 0, the optimization problem

(z?,a?) ∈ argmin
(z,a)

∑I
i=1 Fi(zi) +G(â)

s.t. c ≤ â ≤ c

zi ∈ Di ∀ i = 1, . . . , I
zi − ai = 0 ∀ i = 1, . . . , I

can be used to capture this setting. To avoid infeasibility of the minimization problem we
relax the inequality constraints to

c− σ ≤ â ≤ c + σ
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for σ, σ ∈ RN≥0, σ := (σ σ) and include a function H : R2N
≥0 → R penalizing the deviation

from σ = 0, e.g. H(σ) = ‖σ‖2. The overall optimization problem reads

(z?,a?, σ?) ∈ argmin
(z,a,σ)

∑I
i=1 Fi(zi) +H(σ)

s.t. (â, σ) ∈ P̂
zi ∈ Di ∀ i = 1, . . . , I
zi − ai = 0 ∀ i = 1, . . . , I

(7.30)

with

P̂ =

{
(â, σ) ∈ RN × R2N

∣∣∣∣( −II
)
âT − σT ≤

(
−cT
cT

)}
.

The optimal variables σ? can be used to change the bounds c and c at the next time step.
If σ? = 0 holds, the bounds −c and c can be decreased. If σ? 6= 0 holds, σ? can be an
indicator for the energy provider to decide at which time steps in the prediction horizon an
increased or decreased external power generation is necessary. To additionally smoothen
the power demand profile within the bounds, the function

G(â) = â



1 −1

−1 2
. . .

. . . . . . . . .
. . . 2 −1

−1 1


âT (7.31)

with an appropriate weighting can be included in the objective function. The function G
penalizes the quadratic deviation between two consecutive elements â(k+ j)− â(k+ j−1)

for j = 1, . . . , N − 2.

7.4 Numerical simulations

In this section, we visualize the results obtained by Algorithm 10 and Algorithm 11. We
consider a setting of 300 RESs using the system dynamics (7.21) and the constraints (7.22).
We concentrate on the temporary islanded operation of the RESs introduced in Sec-
tion 7.3.2 and on the setting with time-varying tube constraints introduced in Section 7.3.5.
All numerical simulations in this chapter are performed using MATLAB.

7.4.1 Islanded operation of a microgrid

In Figure 7.2, the open-loop solution of Algorithm 10 using the objective functions

G(â(0; 48)) +H(σ) = ηp

23∑
j=0

(
â(j)− ζ̂

)2
+
I
20

24∑
q=1

(25− q)κσ(q)
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and Fi(z(0; 48)) ≡ 0 is visualized for η1 = 0 and η2 = 103 and κ = 2.5. Considering the
definitions given in Section 7.3.2, the objective function can be used to calculate the length
of the time interval the microgrid can operate in islanded mode with a disconnection time
k? = 24. In the case ηp = 0, only the maximal disconnection time is computed and in the
case ηp = 103, the deviation from the average demand ζ̂ = s(0; 48)1T /48 is additionally
penalized before the RESs are disconnected from the main grid.
For the simulation, the constants defining the dynamics and the constraints of the RESs
are set to Ci = 4[kWh], −ui = ui = 0.9, (αi, βi, γi) = (0.96, 0.94, 0.98) and x0i = 2[kWh],
for i ∈ N300. Moreover, we use a discretization of T = 0.5[h] and a prediction horizon of
N = 48. The parameter ρ in the ADMM formulation is set to ρ = 10. For the given initial
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Algorithm 1: η = 0
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Figure 7.2: Visualization of the variable σ and the average values x̂, ẑ, and û = û+ + û− for a
single minimization problem with different weights for the function G. The microgrid is disconnec-
ted after 12 hours and can stay islanded for 5 hours. Additionally, the uncontrolled power demand
without storage devices is shown for comparison.

state and the given parameters, the grid can be disconnected for 5 hours. In the case η 6= 0,
the vertical grid load is additionally minimized in the first 12 hours. Observe that at the
time the microgrid must be reconnected, the average state of charge of the batteries is still
at 50%. This implies that the requirement that the microgrid is reconnected is not due to
a shortage of locally stored energy but rather due to the maximal discharging rate being
too small to satisfy the demand.
In Figure 7.3, the closed-loop performance of the receding horizon Algorithm 11 is visual-
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ized. The grid operator wants to disconnect the grid after 48 time steps, i.e., k?(k) = 47−k
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Figure 7.3: Visualization of the average values x̂, ẑ, and û = û+ + û− for a simulation of 50

hours. During the first 24 hours, the deviation with respect to the average demand is penalized
and the maximal disconnection time is computed. Afterwards, the microgrid is disconnected for 14
time steps (7 hours) before the deviation from the average is penalized again. The controlled power
demand (blue) can be compared to the uncontrolled power demand (cyan) in the second graph.

for k = 0, 1, . . . , 47. Therefore, the peak-to-peak variation is penalized and the disconnec-
tion time is maximized using the functions

G(â(k; 48)) +H(σ) = 10

47∑
j=k

(
â(j)− ζ̂(k)

)2
+
I
20

k∑
q=1

(k − q + 1)σ(q)

(and Fi(z(k; 48)) ≡ 0 for all i ∈ NI and for all k ∈ N).
After 24 hours (or k = 47), the grid is disconnected and stays disconnected for 14 time
steps, the maximal time in islanded mode. After the RESs are connected again, the
simulation is continued by minimizing the deviation from the average using the objective
function

G(â(k; 48)) = 10
k+47∑
j=k

(
â(j)− ζ̂(k)

)2
.
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As already pointed out, since only the cost function of the grid operator changes in the
receding horizon scheme, the RESs do not need to change their setting on the local level.
Even though κ = 1 does not satisfy condition (7.26) of Theorem 7.3.4, the maximal
disconnection time is returned, which shows that condition (7.26) is very conservative
in our application.

7.4.2 Time-varying tube constraints

In Figure 7.4, the closed-loop solution corresponding to the setting introduced in Sec-
tion 7.3.5 is visualized. For the simulation, the constants of the 300 RESs are set to
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Figure 7.4: The visualization of the closed-loop solution for time-varying tube constraints, intro-
duced in Section 7.3.5, is shown in red. The graph on top shows the average power demand ẑ of the
uncontrolled setting (cyan) compared to the controlled setting with smoothing (black) and without
smoothing (blue). The corresponding states x̂ and the inputs û = û+ + û− are shown in the middle
and in the lower graphic.

Ci = 2[kWh], −ui = ui = 0.3[kW], (αi, βi, γi) = (1, 1, 1) (i.e., we consider the case without
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losses) and x0i = 1[kWh]. The discretization parameter is set to T = 0.5[h], the predic-
tion horizon N = 48 is used and the MPC algorithm is simulated for three days, i.e.,
N = 144. The lower bound of the tube, which can be seen in Figure 7.4 (top) in red
switches between the values 0.15[kW] and 0.55[kW] and the upper bound switches between
0.45[kW] and 0.85[kW].3 The uncontrolled setting is compared to the receding horizon
solution of the minimization problem (7.30), with and without the use of the function G
defined in (7.31). (In the setting with G, the parameter ρ = 0.05 and in the setting without
G, the parameter ρ = 0.5 are used, respectively.)
We observe that with the chosen time-varying bounds, the closed loop solutions are inside
the tube for all time steps. In the case where G is used according to Equation (7.31), we
obtain a smoother trajectory ẑ(0; 144).
Again, we point out that only the CE has to change its minimization problem at every
time step. The RESs have no information about the tube constraints and do not need to
adapt their respective minimization problems.

3The definition of the tubes reflect the four daily peaks in the uncontrolled setting (see Figure 3.3) and
are chosen to illustrate our approach. They can be replaced by any other definition of time-varying lower
and upper bounds if desired.
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Chapter 8

Conclusions

In this chapter, we compare the hierarchical distributed optimization algorithms presented
in Chapters 5 to 7 and discuss possible topics for future research.

8.1 Comparison of the distributed optimization algorithms

In Chapters 5 to 7, we discussed three hierarchical distributed optimization algorithms to
iteratively solve a single optimization problem at a fixed time instant k ∈ N. All three
algorithms have a similar structure regarding the distribution of the tasks between the
RESs and the CE. The RESs solve an optimization problem solely based on the knowledge
of their local system dynamics, their local constraints and the information communicated
by the CE. The CE solves a simple optimization problem in every iteration, i.e., the number
of unknowns and the number of constraints in the optimization problem are independent of
the size of the network. Additionally, the CE is responsible for communication of necessary
information between the RESs. Similar to the unknowns in the optimization problem of
the CE, the number of variables sent by the CE to the RESs are independent of the
number of RESs. Furthermore, personal data of a single RES remains private and cannot
be recovered from the communicated data.
In the algorithms considered in Chapter 5, an average of the primal solution ẑ` and the step-
size θ` is transmitted and the primal problem is solved directly, whereas in the algorithms
in Chapters 6 and 7, the dual variables are communicated and the optimal primal solution
is recovered from the optimal dual solution. This makes the algorithms based on dual
decomposition in Chapters 6 and 7 more flexible, since the RESs do not need to know the
objective function or the goal of the minimization problem. However, it also makes the
optimization problem less transparent for the RESs. The flexibility offers the CE several
degrees of freedom, but the non-transparency might prevent the RESs to join the network
coordinated by the CE and being willing to share their data with the CE. Instead, in
the distributed optimization problem in Chapter 5, the RESs have access to the overall
objective function and thus, the algorithm provides more transparency while keeping local
information private among the RESs.
The dual ascent algorithm (Chapter 6) is only able to solve a relaxed formulation of the
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original optimization problem if the objective function is not strongly convex. Moreover,
the stepsize to update the Lagrange multipliers in every iteration has to be chosen carefully
to ensure convergence. Furthermore, it decreases when the size of the network grows. In
the primal algorithm (Chapter 5), the stepsize is optimized in every iteration. Thus, an a
priori stepsize selection depending on the number of RESs in the network is not necessary.
Nonetheless, the dual ascent algorithm offers a non-cooperative price-based interpretation
of the optimization process and is more flexible than the primal algorithm with respect to
the choice of the objective function and additional constraints.
The ADMM algorithm (Chapter 6) circumvents the problems of the dual ascent algorithm
by including an additional term in the Lagrangian. Hence, the stepsize, which is defined
through the parameter ρ, is independent of the size of the network. However, the speed of
convergence strongly depends on the choice of ρ and stepsize rules in the context of ADMM
are still a topic of ongoing research. The ADMM algorithm is the most flexible algorithm
considered in this thesis. Yet, a non-cooperative price-based interpretation introduced for
the dual ascent algorithm is not applicable due to the additional coupling, which ensures
strong convexity properties of the augmented Lagrangian.

8.2 Future work

In Chapter 4, MPC schemes for time-varying discrete-time systems were introduced. While
the numerical simulations in the Chapters 4 to 7 indicate that the MPC closed-loop costs

V µ
∞(x(0)) = lim inf

k→∞

1

k

∞∑
j=0

`(xµ(j), µ(j))

perform well compared to the (unknown) infinite horizon costs

V∞(x(0)) = lim
k→∞

lim
u(0;k)∈U0,∞(x(0))

1

k

k∑
j=0

`(xu(j), u(j)),

a rigorous proof for the performance of MPC for time-varying discrete-time systems could
not be derived. In the recent paper [30], the authors derive performance estimates for
linear discrete-time systems along with strictly convex running costs `, by showing that
the corresponding OCP is strictly dissipative. In [73], the authors provide performance
guarantees, based on dissipativity, for economic MPC for the periodic operation of discrete-
time system. Combining both results provides promising ideas for the derivation of closed-
loop performance guarantees of time-varying discrete-time systems.
In the Chapters 5 to 7, we presented three different hierarchical distributed optimization
algorithms, each of which has its own strengths and advantages over the others. How-
ever, several other distributed optimization algorithms are discussed in the literature and
could also be considered in this thesis. Proximal point algorithms (or proximal methods)
compose another class of algorithms which could also be considered additionally (see for
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example [81],[59],[92]). A comprehensive study and comparison of distributed optimiza-
tion algorithms and their equivalences is beyond the scope of this thesis but nevertheless,
constitutes to a goal of future research in this area.
Most of the distributed optimization algorithms can only handle convex optimization prob-
lems, i.e., optimization problems with convex objective functions defined on convex sets.
In Chapter 5, the proposed hierarchical algorithm is extended to handle non-convex con-
straints. Even though the convergence properties of the algorithm are not investigated in
this thesis, the numerical results look promising. A rigorous proof of convergence can be
a next step towards the direction of non-convex distributed optimization.
In [53], the authors recently proposed a distributed optimization algorithm for non-convex
optimization problems for non-convex objective functions and non-convex constraints,
which converges to a local optimal solution. The proposed algorithm allows for an ex-
tension of the network of RESs to more complicated dynamics and more complicated
objective functions and will be investigated in one of our next steps.
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Acronyms

Acronyms

ADMM alternating direction method of multipliers
ASF averaged smoothing factor

CE central entity
CMPC centralized model predictive control

DeMPC decentralized model predictive control
DiMPC distributed model predictive control

IPOPT Interior Point Optimizer

LOE loss of energy

MPC model predictive control
MQD mean-quadratic-deviation

OCP optimal control problem

PTP peak-to-peak

RES residential energy system

SOC state of charge
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Glossary

Glossary

0 zero vector of appropriate dimension, i.e., 0 = (0, . . . , 0)

1 all one vector of appropriate dimension i.e., 1 = (1, . . . , 1)

Bε(y) open ball of radius ε > 0 around y ∈ Rn, i.e., Bε(y) = {y| ||y − y|| < ε}

D
k,N
i (xi,0) zi ∈ Dk,Ni (xi,0) ⊂ Rp×N (admissible set with respect to zi)

I identity matrix of appropriate dimension
I number of residential energy system I ∈ N

N prediction horizon N ∈ N
N natural numbers (including zero), i.e., N = {0, 1, 2, 3, . . .}
NI natural numbers ≤ I, i.e., NI = {1, . . . , I}
|| · || 2-norm of a vector

R real numbers
R≥0 non-negative real numbers, i.e., R≥0 = {y ∈ R|y ≥ 0}
R>0 positive real numbers, i.e., R>0 = {y ∈ R|y > 0}

s exogenous data of the overall system; s ∈ Rd
si exogenous data of system i ∈ NI ; si ∈ Rdi

Ui input constraints ui ∈ Ui ⊂ Rmi
u input of the overall system; u ∈ Rm

U
k,N
i (xi,0) ui ∈ Uk,Ni (xi,0) ⊂ UNi (admissible set with respect to ui)

ui input of system i ∈ NI ; ui ∈ Rmi

Xi state constraints xi ∈ Xi ⊂ Rni
x state of the overall system; x ∈ Rn
XN
i xi ∈ XN

i ⊂ Rni×N (admissible set with respect to xi)
xi state of system i ∈ NI ; xi ∈ Rni

z communication variable of the overall system; z ∈ RpI
zi communication variable of system i ∈ NI ; zi ∈ Rp
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