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Abstract

In this thesis several topics on moduli problems of varieties with

symmetries are treated.

We show the existence of the coarse moduli scheme Mh[G] for Goren-

stein canonical models with Hilbert polynomial h which admit an ef-

fective action by a given finite group G. We also introduce a canonical

representation type decomposition Dh[G] of Mh[G] which is useful in

understanding the structure of Mh[G].

We explain the method to determine the irreducible components of

Mg(G), the locus inside Mg of smooth curves with an effective action

by a finite group G. We do explicit computations for the cases where

G is a cyclic or dihedral group.

Zusammenfassung

Ziel der vorliegenden Arbeit ist die Untersuchung von Modulraumprob-

lemen für Varietäten mit einer effektiven Gruppenwirkung einer gegebe-

nen endlichen Gruppe G. Die Arbeit besteht aus drei Teilen.

Im ersten Teil (Abschnitt 2 und 3) konstruieren wir das grobe Mod-

ulraum Schema für G-markierte Varietäten: Unter einer G-markierten

Varietät verstehen wir ein Tripel (X,G, α), wobei X eine projektive Va-

rietät, G eine endliche Gruppe und α : G×X → X eine treue Wirkung

ist. Genauer definieren wir den Modulfunktor MG
h , G-markierter kanon-

ischer Modelle mit Hilbert Polynom h und beweisen, dass es ein quasi-

projektives Schema Mh[G] gibt, welches grober Modulraum für MG
h ist.

Des weiteren zeigen wir die Existenz eines eigentlichen, endlichen Mor-

phismus von Mh[G] auf den gewöhnlichen Modulraum Mh, so dass das

Bild Mh(G), welches Varietäten entspricht, die eine effektive Gruppen-

wirkung von G besitzen, abgeschlossen in Mh ist. Für weitere Details,

siehe Abschnitt 2 und 3.

Im zweiten Teil (Abschnitt 4 - Abschnitt 7) bestimmen wir durch ex-

plizite Berechnungen die irreduziblen Komponenten von Mg(G) in Mg,

dem Modulraum algebraischer Kurven vom Geschlecht g ≥ 2, für bes-

timmte elementare Gruppen. Dies ist durch die Anwendung motiviert,

die Struktur des singulären Orts von Mg zu bestimmen. Es ist wohl

bekannt, dass der singuläre Ort von Mg aus Kurven mit nicht-trivialer
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Automorphismengruppe besteht. In [Cor87] und [Cor08] gab Cornalba

eine Beschreibung der irreduziblen Komponenten von Sing(Mg), indem

er die maximalen Orte glatter Kurven mit einer Wirkung einer zyklis-

chen Gruppe von Primzahlordnung untersuchte. Später untersuchte

Catanese in [Cat12] das analoge Problem für stabile Kurven und bes-

timmte die Komponenten des singulären Orts des Randes von Mg, dem

kompaktifizierten Modulraum.

In Abschnitt 4 wiederholen wir die allgemeine Theorie zur Bestimmung

der irreduziblen Komponenten von Mg(G), die wichtigsten Hilfsmitttel

hier sind Hurwitz Vektoren, assoziiert zu Galois Überlagerungen von

Kurven mit Galois Gruppe G.

In Abschnitt 5 bestimmen wir, unter Zuhilfenahme der Strukturtheorie

zyklischer Überlagerungen, die nicht-vollen zyklischen Untergruppen

der Abbildungsklassengruppe Mapg.

In Abschnitt 6 und 7 bestimmen wir die irreduziblen Komponenten von

Mg(Dn), wobei Dn die Diedergruppe ist, basierend auf den Resultaten

für Äquivalenzklassen von Dn-Hurwitz Vektoren in [CLP11].

Im dritten Teil (Abschnitt 8) führen wir die kanonische Zerlegung

nach dem DarstellungstypDh[G] von Mh[G] ein. Wir verwenden Hilbert

Auflösungen des kanonischen Rings G-markierter Varietäten um Dh[G]

zu untersuchen. Des Weiteren, im Falle algebraischer Kurven, wenden

wir die Chevalley-Weil Formel auf G-markierte Kurven an und geben

viele interessante Beispiele.

Key words: Coarse moduli space, G-marked variety, Gorenstein

canonical model, Moduli of curves.

MSC: 14C05, 14D22, 14H10, 14H15, 14H30, 14J10, 32G15
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1. Introduction

The aim of this thesis is to investigate moduli problems of varieties

which admit an effective action by a given finite group G. The the-

sis consists of three parts: in the first part (Section 2 and Section 3)

we construct the coarse moduli scheme Mh[G] for G-marked canoni-

cal models with Hilbert polynomial h; in the second part (Section 4

- Section 7) we do explicit computations to determine the irreducible

components of Mg(G), the locus inside Mg of the curves of genus g

admitting an effective action by certain elementary groups G; in the

third part (Section 8) we introduce the canonical representation type

decomposition Dh[G] of Mh[G].

1.1. G-marked moduli spaces. The moduli theory of algebraic va-

rieties was motivated by the attempt to fully understand Riemann’s

assertion in [Rie57] that the isomorphism classes of Riemann surfaces

of genus g > 1 depend on (3g − 3) parameters (called ”moduli”). The

modern approach to moduli problems via functors was developed by

Grothendieck and Mumford (cf. [MF82]), and later by Gieseker, Kollár,

Viehweg, et al (cf. [Gie77], [Kol13], [Vie95]). The idea is to define

a moduli functor for the given moduli problem and study the repre-

sentability of the moduli functor via an algebraic variety or some other

geometric object. For instance, in the case of smooth projective curves

of genus g ≥ 2, we consider the (contravariant) functor Mg from the

category of schemes to the category of sets, such that

(1) For any scheme T ,Mg(T ) consists of the T -isomorphism classes

of flat projective families of curves of genus g over the base T .

(2) Given a morphism f : S → T , Mg(f) : Mg(T ) → Mg(S) is

the map associated to the pull back.

It has been shown by Mumford that there exists a quasi-projective

coarse moduli scheme Mg for the functor Mg (cf. [Mum62]), in the

following sense:

there exists a natural transformation η : Mg → Hom(−,Mg), such

that

ηSpec(C) :Mg(Spec(C))→ Hom(Spec(C),Mg)

is bijective and η is universal among such natural transformations. This

means that the closed points of Mg are in one-to-one correspondence
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with the isomorphism classes of curves of genus g and given a family

X→ T of curves of genus g, we have a morphism (induced by η) from

T to Mg such that any (closed) point t ∈ T is mapped to [Xt] in Mg.

The definitions are the same in higher dimensions, if one replaces curves

of genus g ≥ 2 by Gorenstein varieties with ample canonical classes.

The existence of a coarse moduli space is then more difficult to prove,

we refer to [Vie95] and [Kol13] for further discussions.

For several purposes, it is important to generalize the method to moduli

problems of varieties which admit an effective action by a given finite

group G. Here we consider the concept of a G-marked variety, which is

a triple (X,G,α) such that X is a projective variety and α : G×X → X

is a faithful action. The isomorphisms between G-marked varieties are

G-equivariant isomorphisms (for more details, see Definition 2.1). In

similarity to the case ofMg, we study in this thesis the moduli functor

MG
h of G-marked Gorenstein canonical models with Hilbert polynomial

h such that, for any scheme T , MG
h (T ) is the set of T -isomorphism

classes of G-marked flat families of Gorenstein canonical models with

Hilbert polynomial h over the base T , and given a morphism f : S → T ,

MG
h (f) is the map associated to the set of pull-backs (cf. Definition 2.4).

We refer to the recently published survey article [Cat15, Section 10], for

some applications in the case of algebraic curves and surfaces; there the

author discusses several topics on the theory of G-marked curves and

sketches the construction of the moduli space of G-marked canonical

models of surfaces.

The main result of the first part is the following (also see Theorem 3.1):

Theorem 1.1. Given a finite group G and a Hilbert polynomial h ∈
Q[t], there exists a quasi-projective coarse moduli scheme Mh[G] for

MG
h , the moduli functor of G-marked Gorenstein canonical models with

Hilbert polynomial h.

This part is arranged as follows:

In Section 2 we introduce the definition of ”G-marked varieties” and

the associated moduli problem by defining the moduli functor MG
h for

a given group G and Hilbert polynomial h.

In Section 3 we first study two basic properties (boundedness and local

closedness) of the moduli functor MG
h .

Recall that a moduli functor of varieties M is called bounded if the ob-

jects in M(Spec(C)) are parameterized by a finite number of families
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(cf. Definition 3.2). In Corollary 3.23 we show that MG
h is bounded

by a family UG
N,h′ → HG

N,h′ over an appropriate subscheme of a Hilbert

scheme.

However the family UG
N,h′ → HG

N,h′ that we get in Corollary 3.23 may

not belong to MG
h (HG

N,h′), i.e., not every fibre of the family is a G-

marked canonical model. Here comes the problem of local closed-

ness: roughly speaking, a moduli functor M of varieties is called lo-

cally closed if for any flat projective family X → T , the subset {t ∈
T |[Xt] ∈ M(Spec(C))} is locally closed in T (see Definition 3.25 for

more details). We solve this problem in Proposition 3.26 by taking a

locally closed subscheme H̄G
N,h′ of HG

N,h′ and considering the restriction

of UG
N,h′ → HG

N,h′ to H̄G
N,h′ .

Then we apply Geometric Invariant Theory, obtaining the quotient

Mh[G] of H̄G
N,h′ by some reductive groups and prove that Mh[G] is the

coarse moduli scheme for our moduli functor MG
h .

1.2. Irreducible components of Mg(G). In the second part we in-

troduce the method to determine the irreducible components of Mg(G),

the locus inside Mg of the curves admitting an effective action by a

given finite group G. Moreover we do explicit computations for cyclic

and dihedral groups.

The computation is motivated by the application in determining the

structure of the singular locus of Mg. It is well-known that the sin-

gular locus of Mg consists of curves with non-trivial automorphism

groups. In [Cor87] and [Cor08] Cornalba gave a description of the

irreducible components of Sing(Mg) by studying the maximal loci of

smooth curves admitting actions by cyclic groups of prime order. Later

in [Cat12] Catanese studied the analogous problem for stable curves

and determined the components of the singular locus of the boundary

of Mg, the compactified moduli space.

Given two G-marked projective curves (C1, G) and (C2, G) of genus g,

they are said to have the same unmarked topological type if the un-

derlying (ramified) topological covers of C1 → C1/G and C2 → C2/G

are isomorphic (see Section 4). Given a topological type [ρ], the lo-

cus Mg,ρ(G) inside Mg(G) of curves admitting an effective action by

G with the topological type [ρ] is irreducible and closed (cf. [CLP15],
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Theorem 2.3), hence we see that Mg(G) is a union of irreducible closed

subsets:

Mg(G) =
⋃
[ρ]

Mg,ρ(G).

Then the problem of determining the irreducible components of Mg(G)

is then equivalent to determining when one locus of the form Mg,ρ(G)

contains another. Using Teichmüller theory, this problem can be inter-

preted as classifying the pair of subgroups H,H ′ of Mapg, the mapping

class group, satisfying the following condition (cf. Section 4):

(∗∗) H is isomorphic to G, H 6= G(H) and G(H) has a subgroup H ′,

which is isomorphic to G and different from H,

where G(H) :=
⋂
C∈Fix(H) Aut(C) and H acts on the Teichmüller space

Tg as a subgroup of Mapg.

The main tool we use in this part is the Hurwitz vector, roughly speak-

ing, a Hurwitz vector associated to a covering C → C/G is a vector with

entries in G which records the ramification behavior of the covering (cf.

Definition 4.2). The set of topological types is then in one-to-one cor-

respondence with the set of orbits of Hurwitz vectors by the action of

certain groups (for more details, see Definition 4.4).

The main result of this part is the following (cf. Theorem 7.14):

Theorem 1.2. Let G = Dn be the dihedral group of order 2n and let

H,H ′ be subgroups of Mapg, satisfying the condition (∗∗) and assume

δH := dimFix(H) ≥ 1.

Then G(H) ' Dn × Z/2 and H corresponds to Dn × {0}. The

group H ′ and the topological action of the group G(H) (i.e. its Hurwitz

vector) are as listed in the tables in 7.4.

In Section 4 we recall the general theory concerning the determina-

tion of the irreducible components of Mg(G).

In Section 5, using the structure theory of cyclic covers, we determine

the non-full cyclic subgroups of the mapping class group Mapg.

In Sections 6 and 7 we determine the irreducible components of Mg(Dn),

where Dn is the dihedral group, based on the classification results of

the equivalence classes of Dn-Hurwitz vectors given in [CLP11].
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1.3. The canonical representation type decomposition of MG
h .

In this part we study the moduli scheme Mh[G] (cf. Theorem 1.1) that

we have obtained in the first part via its canonical representation type

decomposition.

For a G-marked canonical model (X,G, ρ) (with Hilbert polyno-

mial h) and a natural number k, we have an induced representation

ρk : G → Aut(H0(X,ωkX)). The canonical representation type of

(X,G, ρ) is the set of representations {ρk} for all k large enough (more

precisely, the k’s satisfying Matsusaka’s big theorem, cf. [Mat86]).

One observes that the set of varieties inside Mh[G] with a fixed rep-

resentation type is a union of connected components of Mh[G] (cf.

[Cat13, Prop37]), hence we obtain a canonical representation type de-

composition Dh[G] of Mh[G] (cf. Definition 8.1) which decomposes

Mh[G] into subsets consisting of varieties of the same canonical repre-

sentation type.

The first result of this part is that the decomposition Dh[G] depends

only on finitely many ρk’s. To be more precise, in Proposition 8.8 we

show that there exists a natural number N = N(h,G) (in fact, we give

an effective bound), depending on the Hilbert polynomial h and the

group G, such that for any k ≥ N , the representation ρk is determined

by the ρi’s with i ≤ N . The main idea here is to consider the Hilbert

resolutions of the canonical rings of G-marked varieties with Hilbert

polynomial h (cf. Lemma 8.4).

Then we study the case of G-marked curves, where we have better

estimates and several interesting examples. The first recipe we use here

is the Chevalley-Weil formula (cf. Theorem 8.10): in Corollary 8.12 we

show that ρk determines ρk+|G|, while in Example 8.13 we give an ex-

ample showing that ρi and ρj may determine different decompositions

if |i− j| < |G|.
We are also interested in how far is the decomposition Dg[G] from the

decomposition of Mg[G] into connected components. In the case where

G is a nonabelian metacyclic group, we give an estimate of the number

of connected components inside (Mg[G])r,r, the component of the reg-

ular representation (cf. Definition 8.15), showing that the component

of Dg[G] may not be connected (cf. Proposition 8.17).
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2. G-marked varieties

In this paper we work over the complex field C. By a ”scheme” we

mean a separated scheme of finite type over C, a point in a scheme is

assumed to be a closed point. Moreover, G shall always denote a finite

group.

Definition 2.1 ([Cat15], Definition 181). (1) A G-marked (projective)

variety (resp. scheme) is a triple (X,G, ρ) where X is a projective

variety (resp. scheme) and ρ : G → Aut(X) is an injective homomor-

phism. Or equivalently, it is a triple (X,G, α) where α : X × G → X

is a faithful action of G on X.

(2) A morphism f between two G-marked varieties (X,G, ρ) and (X ′, G, ρ′)

is a G-equivariant morphism f : X → X ′, i.e., ∀g ∈ G, f ◦ ρ(g) =

ρ′(g) ◦ f .

(3) A family of G-marked varieties (resp. schemes) is a triple ((p : X→
T ), G, ρ), where G acts faithfully on X via an injective homomorphism

ρ : G→ Aut(X) and trivially on T ; p is flat, projective, G-equivariant;

and ∀t ∈ T , the induced triple (Xt, G, ρt) is a G-marked variety (resp.

scheme).

(4) A morphism between two G-marked families ((p : X → T ), G, ρ)

and ((p′ : X′ → T ′), G, ρ′) is a commutative diagram:

X
f̃−−−→ X′yp yp′

T
f−−−→ T ′

where f̃ : X→ X′ is a G-equivariant morphism.

(5) Let ((p : X → T ), G, ρ) be a G-marked family and let f : S → T

be a morphism. Denoting by XS (or f ∗X) the fibre product of f and

p, the action ρ induces a G-action ρS (or f ∗ρ) on XS such that ((pS :

XS → S), G, ρS) =: f ∗((p : X→ T ), G, ρ) is again a G-marked family.

Remark 2.2. Observe that, given a flat family of varieties X → T

with a group G acting on each fibre, we do not yet have a G-marked

family, i.e., we may not find an action of G on X. For any point t ∈ T ,

we can find a suitable analytic neighbourhood Dt such that the action

of G on Xt can be extended to an action on X|Dt → Dt. However if

one wants to extend the action to the whole family, there comes the

problem of monodromy: for another point t′ ∈ T , the extensions along
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two different paths connecting t and t′ may not result in the same

action on Xt′ .

Definition 2.3. A normal projective variety X is called a canonical

model if X has canonical singularities (cf. [Rei87]) and KX is ample.

Definition 2.4. Denote by Sch the category of schemes (over C). The

moduli functor of G-marked Gorenstein canonical models with Hilbert

polynomial h ∈ Q[t] is a contravariant functor:

MG
h : Sch→ Sets, such that

(1) For any scheme T ,

MG
h (T ) := {((p : X→ T ), G, ρ)| p is flat and projective, all fibres of p

are canonical models, ωX/T is invertible,

∀t ∈ T,∀k ∈ N, χ(Xt, ω
k
Xt) = h(k)}/ '

where ”'” is the equivalence relation given by the isomorphisms of

G-marked families over T (i.e., in the commutative diagram of 2.1 (4),

take T ′ = T and f = idT ).

(2) Given f ∈ Hom(S, T ), MG
h (f) : MG

h (T ) → MG
h (S) is the map asso-

ciated to the pull back, i.e.,

[((p : X→ T ), G, ρ)] 7→ [((pS : XS → S), G, ρS)].

Remark 2.5. In this article, whenever we write ((X → T ), G, ρ) ∈
MG
h (T ), we mean choosing a representative ((X → T ), G, ρ) from the

isomorphism class [((X→ T ), G, ρ)] ∈ MG
h (T ).

In the case where G is trivial, we denote by Mh the corresponding

functor.
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3. The coarse moduli space Mh[G]

We have defined the moduli functor MG
h of G-marked Gorenstein

canonical models with Hilbert polynomial h in the previous section (cf.

2.4), in this section we show the existence of a coarse moduli scheme

MG
h for MG

h . The main theorem of this section is the following:

Theorem 3.1. Given a finite group G and a Hilbert polynomial h ∈
Q[t], there exists a quasi-projective coarse moduli scheme Mh[G] for

MG
h , the moduli functor of G-marked Gorenstein canonical models with

Hilbert polynomial h.

3.1. Basic properties of MG
h . In this section we study two important

properties of the moduli functor MG
h : boundedness and local closedness.

The main results are (3.22), (3.23) for boundedness and (3.26) for local

closedness.

Definition 3.2. A moduli functor M of varieties is called bounded if

there exists a flat and projective family U → S over a scheme S such

that ∀[X] ∈ M(Spec(C)), X is isomorphic to a fibre Us for some s ∈ S.

(For a stronger definition, see [Kov09], Definition 5.1)

In the case where G is trivial boundedness is already known (cf.

[Kar00], [Mat86]). However we can not apply it directly to the general

case since we have an action by G. Here we introduce the notion of

”bundle of G-frames” to solve this problem.

Let Y be a scheme and E a locally free sheaf of rank n on Y . Set

V(E) := SpecY Sym(E∨),

the geometric vector bundle associated to E over Y (cf. [Har77]1, Ex-

ercise II.5.18).

Definition 3.3 (Frame Bundle). Let E be a locally free sheaf of rank n

on a scheme Y . In this paper we call (what is in bundle theory called)

the principal bundle associated to V(E) the frame bundle F(E) of E
over Y . For any y ∈ Y , the fibre F(E)y over y is called the set of frames

(i.e., bases) for the vector space E ⊗ C(y).

Hence F(E) is the open subscheme of V(HomOY (OnY , E)) such that

∀y ∈ Y , the fibre F(E)y corresponds to the invertible homomorphisms.

1The bundle V(E) defined here is in fact dual to that of [Har77].
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We denote a point in F(E) as a pair (y, ψ), where y is a point in Y and

ψ : Cn → E ⊗ C(y) is an isomorphism of C-vector spaces.

Remark 3.4. Let E be a locally free sheaf of rank n on Y : V(E) admits

a local trivialization ({Uα}, gαβ), where {Uα} is an open covering of Y

such that V(E)|Uα ' Uα × Cn, and gαβ : Uα ∩ Uβ → GL(n,C) are

cocycles for V(E). We have that F(E)|Uα ' Uα × GL(n,C) and the

maps

g̃αβ : Uα∩Uβ×GL(n,C)→ Uα∩Uβ×GL(n,C), (y,M) 7→ (y, gαβ(y)M)

are the gluing morphisms of F(E).

Proposition 3.5. Let E be a locally free sheaf of rank n on a scheme

Y and p : F(E) → Y the natural projection. There exists a tauto-

logical isomorphism φE : OnF(E) → p∗E of sheaves on F(E) such that

for any point z := (y, ψ) ∈ F(E), φE |{z} = ψ via the isomorphism

Hom(Cn, p∗E ⊗ C(z)) ' Hom(Cn, E ⊗ C(y)).

Proof. This proposition is well known (the idea is similar to that of

[Gro58]). Observe that p∗E has n global sections s1(E), ..., sn(E) such

that for any z = (y, ψ) ∈ F(E), si(E)⊗ C(z) = ψ(ei), where {ei}ni=1 is

the canonical basis of Cn and we identify p∗E⊗C(z) with E⊗C(y). Then

the universal basis morphism φE := (s1(E), ..., sn(E)) : OnF(E) → p∗E is

an isomorphism of locally free sheaves. �

Remark 3.6. The set of sections {si(E)}ni=1 (or equivalently, the iso-

morphism φE) satisfies the following compatibility conditions:

(1) Let f : X → Y be a morphism and let fF : F(f ∗E)→ F(E) be the

induced morphism: we have that f ∗F(si(E)) = si(f
∗E).

(2) Given an isomorphism l : E1 → E2 of locally free sheaves on Y , the

induced isomorphism lF : F(E1) → F(E2) commutes with the projec-

tions pj : F(Ej)→ Y , j = 1, 2. We have that l∗F(φE2) = p∗1(l) ◦ φE1 .

Definition 3.7. Let E be a locally free sheaf of rank n on a scheme

Y : we say that a group G acts faithfully and linearly on E if

(1) the action is given by an injective homomorphism ρ : G ↪→ AutOY (E);

(2) ∀y ∈ Y , the induced action ρy is a faithful G-representation on Cn.

In this case we call the pair (E , ρ) a locally free G-sheaf.

Definition 3.8. (1) Given φ ∈ Aut(Y ), let Γφ : Y → Y × Y be the

graph map of φ. The fixpoints scheme of φ (denoted by Fix(φ)) is the
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(scheme-theoretic) inverse image of ∆ by Γφ, where ∆ is the diagonal

subscheme of Y × Y .

(2) Given a G-action on Y , the fixpoints scheme of G on Y is:

Y G := ∩g∈GFix(φg),

where φg : Y → Y, y 7→ gy.

Remark 3.9. (1) Let f : X → Y be a G-equivariant morphism be-

tween two schemes on which G acts: we have a natural restriction

morphism f |XG : XG → Y G.

(2) Given a G-action on Y and a subgroup H of G, there is an induced

C(H)-action on Y H , where C(H) is the centralizer group of H in G.

Definition 3.10. Let (E , ρ) be a locally free G-sheaf of rank n on Y .

Given a faithful linear representation β : G→ GL(n,C), we define an

action (β, ρ) of G on HomOY (OnY , E): ∀g ∈ G, open subset U ⊂ Y, φ ∈
HomOY (OnY , E)(U) and s ∈ OnY (U); (gφ)(s) := ρ(g)φ(β(g−1)s). The

action (β, ρ) restricts naturally to F(E), we denote by F(E , G, ρ; β) the

corresponding fixpoints scheme: it is called the bundle of G-frames of

E associated to the action ρ with respect to β.

Remark 3.11. (1) Denoting by C(G, β) the centralizer group of β(G)

in GL(n,C), an easy observation is that ∀y ∈ Y , the fibre F(E , G, ρ; β)y
corresponds to the set of G-equivariant isomorphisms between the G-

linear representations β and ρy. Therefore we have that either

F(E , G, ρ; β)y = ∅, or F(E , G, ρ; β)y ' C(G, β).

(2) If β, β′ : G → GL(n,C) are equivalent representations (i.e., there

exists g ∈ GL(n,C) such that β′ = gβg−1), then we have that

F(E , G, ρ; β) ' F(E , G, ρ; β′).

Observe that if Y is connected and there exists y ∈ Y such that

F(E , G, ρ; β)y ' C(G, β), then F(E , G, ρ; β)y′ ' C(G, β) for all y′ ∈ Y
(See [Cat13], Prop 37), hence we have the following definition:

Definition 3.12. Let Y be a connected scheme and (E , ρ) a locally free

G-sheaf of rank n on Y . We say that (E , ρ) (or E if the action is clear

from the context) has decomposition type β, where β : G → GL(n,C)

is a faithful representation, if there exists y ∈ Y , such that ρy ' β.
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Definition 3.13 (Bundle of G-frames). Let (E , ρ) be a locally free G-

sheaf of rank n on a scheme Y . We define the bundle of G-frames of

E associated to ρ, denoted by F(E , G, ρ) (or F(E , G) when ρ is clear

from the context), as follows:

If Y is connected and E has decomposition type β, then F(E , G, ρ) :=

F(E , G, ρ; β).

In general we decompose Y into the union of connected components

Y = tYi and F(E , G, ρ) is the (disjoint) union of all the F(E|Yi , G, ρ|Yi).

Remark 3.14. Since we can vary β in its equivalence class, we see

from (3.11-2) that F(E , G) is unique up to isomorphisms.

Definition 3.15. Let (E , ρ) be a free G-sheaf of rank n on a scheme Y .

The action is said to be defined over C if there exists a G-equivariant

isomorphism φ : (OnY , β) → (E , ρ), where β : G → GL(n,C) is a

faithful representation.

Proposition 3.16. Let (E , ρ) be a locally free G-sheaf of rank n on

a connected scheme Y with decomposition type β. The projection p :

F(E , G)→ Y induces an action p∗ρ on p∗E. Then (p∗E , p∗ρ) is defined

over C : the morphism φE,G := φE |F(E,G) : (OnF(E,G), β)→ (p∗E , p∗ρ) is a

G-equivariant isomorphism, where φE is the universal basis morphism

defined in (3.5).

Proof. It is clear that φE,G is an isomorphism of sheaves, what remains

to show is that φE,G is G-equivariant. Since φE,G is an isomorphism

of locally free sheaves, it suffices to show that ∀(y, ψ) ∈ F(E , G),

φE,G|{(y,ψ)} is G-equivariant. By our construction in (3.5), we have that

p−1(y) ⊂ V(HomOY (OnY , E))Gy ' Hom(Cn, E ⊗ C(y))G, where the G-

action is (β, ρy). Under this isomorphism the point (y, ψ) corresponds

exactly to φE,G|{(y,ψ)}, hence φE,G|{(y,ψ)} is G-equivariant. �

Remark 3.17. Given a locally free G-sheaf (E , ρ) of rank n on Y ,

setting si(E , G) := si(E)|F(E,G), then {si(E , G)} and φE,G have similar

properties as {si(E)} and φE have in (3.6).

Proposition 3.18. Assume that Y is connected and (E , ρ) is a locally

free G-sheaf of rank n on Y with decomposition type β. Then there is

a natural C(G, β)-action on F(E , G) and Y is a categorical quotient of

F(E , G) by C(G, β).
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Proof. To see the C(G, β)-action, it suffices to notice that the actions β

and ρ on F(E) commute, i.e., ∀g ∈ G, β(g)ρ(g) = ρ(g)β(g) as elements

in Aut(F(E)).

From the definition of F(E , G), one observes that the projection p :

F(E , G) → Y is affine and C(G, β)-equivariant, therefore we may as-

sume that Y,F(E , G) are affine schemes and A (resp. B) is the coor-

dinate ring of Y (resp. F(E , G)). Since p is surjective and C(G, β)-

equivariant, we have that A ⊂ BC(G,β) ⊂ B. Noting that B is a finitely

generated C-algebra and C(G, β) is a reductive group (cf. 3.20), we

conclude thatBC(G,β) is a finitely generated C-algebra and SpecBC(G,β)

is the universal categorical quotient of F(E , G) by C(G, β) (see [MF82],

p.27). Now since every fibre of p is a closed C(G, β)-orbit (in fact iso-

morphic to C(G, β)), which must be mapped to a point in SpecBC(G,β),

for dimensional reasons we conclude that BC(G,β) is a finite A-module.

For any maximal ideal m of A, by the proposition of a universal categor-

ical quotient (cf. [MF82], p.4) we see that Spec(BC(G,β)⊗AC(m)) is the

categorical quotient of p−1(Spec(C(m))) ' C(G, β) by C(G, β), hence

BC(G,β) ⊗A C(m) = C, which implies that (BC(G,β)/A) ⊗A C(m) = 0.

By Nakayama’s lemma, we have that (BC(G,β)/A)m = 0, which implies

that A = BC(G,β). �

Before stating the Boundedness theorem, let us first recall the action

of general linear groups on Hilbert schemes (cf. [Vie95], Section 7.1).

Denote by Hn,h the Hilbert scheme of closed subschemes of Pn with

Hilbert polynomial h and by Un,h ⊂ Hn,h × Pn the universal family.

Let Φ : GL(n+ 1,C)×Pn → Pn be the natural action, so that there is

an action Ψ : GL(n + 1)×Hn,h → Hn,h such that ∀g ∈ GL(n + 1,C),

Un,h is invariant under the morphism Ψg × Φg.

Given a (finite) group G, a faithful representation of G on V := Cn+1

is given by an injective homomorphism β : G→ GL(n+1,C), or equiv-

alently, by a decomposition V =
⊕

ρ∈Irr(G) W
n(ρ)
ρ . Two representations

are equivalent (i.e. the images of G are conjugate as subgroups of

GL(n + 1,C)) if and only if they have the same decomposition type

(cf. [Ser77], Chap.2), hence the set of equivalence classes Bn of G-

representations on V is finite.

Definition 3.19. Given β : G → GL(n + 1,C) a faithful represen-

tation, it induces an action Ψ|β(G) of G on Hn,h. Define HG,β
n,h as the
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fixpoints scheme of the β(G)-action on Hn,h and denote by UG,β
n,h the

restriction of Un,h from Hn,h to HG,β
n,h .

Remark 3.20. (1) We have already seen that C(G, β), the centralizer

group of β(G) in GL(n+ 1,C), has a natural action on HG,β
n,h (cf. 3.9).

By Schur’s Lemma one obtains that C(G, β) ' Πρ∈Irr(G)GL(n(ρ),C),

hence C(G, β) is reductive.

(2) Let β, β′ be two equivalent representations, such that β′ = gβg−1

for some g ∈ GL(n+ 1,C), then HG,β
n,h is isomorphic to HG,β′

n,h via Ψg as

subschemes of Hn,h.

(3) Since UG,β
n,h (as a subscheme of HG,β

n,h × Pn) is invariant under the

action id × (Φ|β(G)), we obtain a G-marked family ((pβ : UG,β
n,h →

HG,β
n,h ), G, β).

Definition 3.21. Let V be a C-vector space of dimension n + 1. De-

noting by Bn the set of equivalence classes of G-linear representations

on V , we pick one representative in each equivalence class of Bn and

define:

((p : UG
n,h → HG

n,h), G,Bn) :=
⊔

[β]∈Bn

((pβ : UG,β
n,h → HG,β

n,h ), G, β),

where ”
⊔

” means a disjoint union.

Note that two different choices of representatives result in isomorphic

families.

By Matsusaka’s big theorem ([Mat86], Theorem 2.4), there exists an

integer k0 such that ∀[X] ∈ Mh(SpecC), ωk0X is very ample and has

vanishing higher cohomology groups, we fix one such k0 for the rest

of this section (we refer to [Siu93], [Dem96] and [Siu02] for effective

bounds on k0). Given a family (p : X→ T ) ∈ Mh(T ), by ”Cohomology

and Base change” (cf. [Mum70], II.5), p∗(ω
k0
X/T ) is a locally free sheaf

of rank h(k0). Moreover we have a surjection p∗p∗(ω
k0
X/T ) � ωk0X/T ,

which induces a T -embedding i : X ↪→ P(p∗(ω
k0
X/T )) such that ωk0X/T '

i∗(OP(p∗(ω
k0
X/T

))
(1)) (cf. [Har77], II.7.12). Assuming in addition that

p∗(ω
k0
X/T ) is trivial, the T -embedding becomes i : X ↪→ T × PN (N :=

h(k0) − 1). Setting h′(k) := h(k0k), there exists a morphism f : T →
HN,h′ such that X ' f ∗UN,h′ . Now taking the group action into account,

we have the following:
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Proposition 3.22 (Boundedness). Given ((p : X→ T ), G, ρ) ∈ MG
h (T ),

denote by ρ̄ the induced action of G on p∗(ω
k0
X/T ). Assume that p∗(ω

k0
X/T )

is trivial and ρ̄ is defined over C, then there exists f : T → HG
N,h′,

such that ((X → T ), G, ρ) ' f ∗((UG
N,h′ → HG

N,h′), G,BN), and ωk0X/T '
OT×PN (1)|X.

Proof. It suffices to prove the statement on each connected component

of T , hence we may assume that T is connected and p∗(ω
k0
X/T ) has

decomposition type β.

The action ρ̄ induces an action of G on ProjT (p∗(ω
k0
X/T )) = T × PN

such that the embedding i : X → T × PN is G-equivariant. Since by

assumption ρ̄ is defined over C, we may require that the action on

T × PN is given by π∗2(β), where π2 : T × PN → PN is the projection

onto the second factor. Now by the universal property of the Hilbert

scheme, there exists f : T → HN,h′ , such that i(X) = (f × IdPN )∗UN,h′ .

To complete the proof, it remains to show that f factors through HG,β
N,h′ ,

which is equivalent to the property that ∀g ∈ G,Ψβ(g) ◦ f = f ; again

by the universal property of the Hilbert scheme, this is equivalent to

showing that ∀g ∈ G, ((Ψβ(g) ◦ f) × idPN )∗UN,h′ = i(X). However we

have that

((Ψβ(g) ◦ f)× idPN )∗UN,h′ = (f × idPN )∗(Ψβ(g) × idPN )∗UN,h′

= (f×idPN )∗(idUN,h′×Φβ(g)−1)∗UN,h′ = (idT ×Φβ(g)−1)∗(f×idPN )∗UN,h′

= (idT × Φβ(g)−1)∗(i(X)),

which is simply i(X) as the embedding i : X→ T×PN is G-equivariant.

�

Combining (3.16) with (3.22), we have the following corollary:

Corollary 3.23. For any scheme T and ((p : X→ T ), G, ρ) ∈ MG
h (T ),

let q : F(p∗(ω
k0
X/T ), G)→ T be the bundle of G-frames of p∗(ω

k0
X/T ) over

T. Then the isomorphism φ
p∗(ω

k0
X/T

),G
induces a morphism

fX/T,k0,G : F(p∗(ω
k0
X/T ), G)→ HG

N,h′

such that

MG
h (q)((X→ T ), G, ρ) ' f ∗X/T,k0,G((UG

N,h′ → HG
N,h′), G,BN),

where N := h(k0)− 1, h′(k) := h(k0k).
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Remark 3.24. Given an isomorphism ((p : X1 → T ), G, ρ1) ' ((p :

X2 → T ), G, ρ2), we have an induced isomorphism l : p∗(ω
k0
X1/T

) →
p∗(ω

k0
X2/T

) of G-sheaves on T . Both p∗(ω
k0
X1/T

) and p∗(ω
k0
X2/T

) have de-

composition type β. Then l induces a C(G, β)-equivariant isomor-

phism: lF : F(p∗(ω
k0
X1/T

), G) → F(p∗(ω
k0
X2/T

), G). From (3.6), (3.17)

and the proof of (3.22) we have that fX1/T,k0,G = fX2/T,k0,G ◦ lF .

We have already shown that MG
h is bounded (in the sense of 3.23).

However in general HG
N,h′ may not be a parameterizing space for MG

h ,

i.e., some fibre of ((UG
N,h′ → HG

N,h′), G,BN) may not be a canonical

model. We will see that the set of points in HG
N,h′ over which the fibre

is a Gorenstein canonical model forms a locally closed subscheme H̄G
N,h′ .

In general such problems correspond to studying the local closedness

of the moduli functor.

Definition 3.25 ([Kov09], 5.C). A moduli functor of polarized va-

rieties M is called locally closed if the following condition holds: For

every flat family of polarized varieties (X → T,L), there exists a lo-

cally closed subscheme i : T ′ ↪→ T such that if f : S → T is any

morphism then f ∗(X→ T,L) ∈ M(S) iff f factors through T ′.

Here we do not state a general ”G-version” of local closedness, but

only consider the case of Hilbert schemes. For a general discussion, see

[Kol08], Corollary 24.

Proposition 3.26. Using the same notations as in (3.22), there ex-

ists a locally closed subscheme H̄G
N,h′ of HG

N,h′, satisfying the following

conditions:

(1) ((ŪG
N,h′ → H̄G

N,h′), G,BN) := ((UG
N,h′ → HG

N,h′), G,BN)|H̄G
N,h′
∈ MG

h (H̄G
N,h′).

(2) The morphism f that we obtained in (3.22) factors through H̄G
N,h′.

Proof. In the case where G is trivial the existence of H̄N,h′ follows from

the facts that the subset

{x ∈ HN,h′ | (ωk0UN,h′/HN,h′
)x ' (OHN,h′×PN (1)|UN,h′ )x}

is closed in HN,h′ (cf.[Mum70], II.5, Corollary 6) and being canonical

and Gorenstein is an open property (cf.[Elk81]).

In general we set H̄G,β
N,h′ := H̄N,h′

⋂
HG,β
N,h′ and H̄G

N,h′ :=
⊔
H̄G,β
N,h′ . For

condition (1), the fact that (ŪN,h′ → H̄N,h′) ∈ Mh(H̄N,h′) implies that

(ŪG
N,h′ → H̄G

N,h′) ∈ Mh(H̄
G
N,h′), now taking the action of G into account,
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we have that ((ŪG
N,h′ → H̄G

N,h′), G,BN) ∈ MG
h (H̄G

N,h′). Condition (2) is

satisfied for similar reasons. �

Remark 3.27. (1) Given (X1, G, ρ1), (X2, G, ρ2) ∈ MG
h (SpecC) such

that H0(ωk0X1
) and H0(ωk0X2

) have the same decomposition type β, by

(3.26) there exist fi : Spec(C)→ H̄G,β
N,h′ such that

(Xi, G, ρi) ' MG
h (fi)((Ū

G,β
N,h′ → H̄G,β

N,h′), G, β) for i = 1, 2.

From the proof of (3.22) we see that X1 and X2 are isomorphic as

G-marked varieties ⇐⇒ ∃g ∈ C(G, β) such that f1(Spec(C)) =

Ψgf2(Spec(C)).

(2) Notations as in (3.23). Assume that T is connected and p∗(ω
k0
X/T )

has decomposition type β and denote by Ψ′ the action of C(G, β) on

F(p∗(ω
k0
X/T ), G). From the proof of (3.16) we see that ∀g ∈ C(G, β),

Ψ′g × Φg leaves q∗X ' f ∗X/T,k0,G(ŪG,β
N,h′) invariant as a subscheme of

F(p∗(ω
k0
X/T ), G)× PN , i.e., (Ψ′g × Φg)f

∗
X/T,k0,G

(ŪG,β
N,h′) = f ∗X/T,k0,G(ŪG,β

N,h′).

This implies that

(Ψ′g×id)f ∗X/T,k0,G(ŪG,β
N,h′) = f ∗X/T,k0,G((id×Φg−1)(ŪG,β

N,h′)) = f ∗X/T,k0,G((Ψg×id)(ŪG,β
N,h′)).

Therefore we conclude that the morphism obtained in (3.23),

fX/T,k0,G : F(p∗(ω
k0
X/T ), G)→ H̄G,β

N,h′ ,

is C(G, β)-equivariant.

3.2. The Construction of Mh[G]. We have obtained a parameteriz-

ing space H̄G
N,h′ for the moduli functor MG

h , now we construct Mh[G] as

a quotient space of H̄G
N,h′ and show that it is the coarse moduli scheme

for MG
h .

In (3.20) we have seen that the group C(G, β) acts on HG,β
N,h′ : it is clear

that the subscheme H̄G,β
N,h′ is invariant under this action. The first goal

of this section is to show that the quotient H̄G,β
N,h′/C(G, β) exists (as a

scheme).

Setting SC(G, β) := SL(N+1,C)
⋂
C(G, β) and denoting by PGC(G, β)

the image of C(G, β) under the natural homomorphismGL(N+1,C)→
PGL(N + 1,C), we have a central extension:

1→ C∗ → C(G, β)→ PGC(G, β)→ 1.
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Since C∗ acts trivially on H̄G,β
N,h′ , we have

H̄G,β
N,h′/C(G, β) ' H̄G,β

N,h′/PGC(G, β).

On the other hand SC(G, β) maps surjectively onto PGC(G, β), hence

we have that H̄G,β
N,h′/PGC(G, β) ' H̄G,β

N,h′/SC(G, β). Therefore from

now on we consider H̄G,β
N,h′/SC(G, β) instead. (It is not difficult to

show that SC(G, β) is reductive.)

Lemma 3.28. SC(G, β) acts properly on H̄G,β
N,h′ and ∀x ∈ H̄G,β

N,h′, the

stabilizer subgroup Stab(x) is finite.

Proof. In the case where G is trivial the lemma is known by studying

the separatedness of the corresponding functor (cf. [Vie95], 7.6, 8.21;

[Kov09], 5.D). Now since SC(G, β) is a closed subgroup of SL(N+1,C)

and H̄G,β
N,h′ is a closed subscheme of H̄N,h′ which stays invariant under

the action of SC(G, β), the lemma follows immediately. �

In order to apply Geometric Invariant theory, we have to find an

SC(G, β)-linearized invertible sheaf on H̄G,β
N,h′ and verify certain stabil-

ity conditions (cf. [MF82], Chap.1).

Let us first look at the case where G is trivial: let p : ŪN,h′ → H̄N,h′ be

the universal family and define

λk0 := det(p∗(ω
k0
ŪN,h′/H̄N,h′

)).

A result of Viehweg (see [Vie95], 7.17) states that λk0 admits an SL(N+

1,C)-linearization and

H̄N,h′ = (H̄N,h′)
s(λk0),

where (H̄N,h′)
s(λk0) denotes the set of SL(N + 1,C)-stable points with

respect to λk0 . Then it is easy to obtain the following proposition:

Proposition 3.29. There exists a geometric quotient (MG,β
k0,h

, πβ) of

H̄G,β
N,h′ by SC(G, β), moreover:

(1) The quotient map πβ : H̄G,β
N,h′ →MG,β

k0,h
is an affine morphism.

(2) There exists an ample invertible sheaf L on MG,β
k0,h

such that π∗βL '
(λG,βk0

)n for some n > 0, where setting pβ := p|ŪG,β
N,h′

: ŪG,β
N,h′ → H̄G,β

N,h′ ,

λG,βk0
:= det((pβ)∗(ω

k0

ŪG,β
N,h′/H̄

G,β

N,h′
)).
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Proof. Noting that ωk0
ŪN,h′/H̄N,h′

|ŪG,β
N,h′
' ωk0

ŪG,β
N,h′/H̄

G,β

N,h′
(cf. [HK04], Lemma

2.6) and applying ”cohomology and base change”, we have that

λG,βk0
' λk0|H̄G,β

N,h′
.

Since H̄G,β
N,h′ (as a subscheme of H̄N,h′) is invariant under the SC(G, β)-

action, the SL(N+1,C)-linearization of λk0 induces a natural SC(G, β)-

linearization of λG,βk0
. By Lemma (3.28), we have that SL(N + 1,C)

acts properly on H̄N,h′ and SC(G, β) acts properly on H̄G,β
N,h′ . Noting

that a one-parameter subgroup µ : C∗ → SC(G, β) is also a subgroup

of SL(N + 1,C) and that H̄G,β
N,h′ is closed in H̄N,h′ , we see that for any

x ∈ H̄G,β
N,h′ , limt→0(µ(t)x) exists in H̄G,β

N,h′ if and only if it exists in H̄N,h′ .

Now by applying the Hilbert-Mumford criterion (cf. [MF82], Theorem

2.1), we see that

(H̄N,h′)
s(λk0) = H̄N,h′ ⇒ (H̄G,β

N,h′)
s(λG,βk0

) = H̄G,β
N,h′ .

Then the proposition follows from standard GIT methods (cf. [MF82],

Theorem 1.10). �

We are ready to prove the main theorem (3.1):

Proof of (3.1). We set

(1) Mh[G] :=
⊔

[β]∈BN

MG,β
k0,h

(note that if MG
h (SpecC) = ∅ then Mh[G] = ∅).

Let us make the following convention: for any natural transformation

θ : MG
h → Hom(−, Q), scheme T and [((p : X → T ), G, ρ)] ∈ MG

h (T ),

we write θT (X) or simply θ(X) as an abbreviation for θT ([((p : X →
T ), G, ρ)]).

Step 1. Construction of a natural transformation η : MG
h → Hom(−,Mh[G]):

Given T a scheme and ((p : X→ T ), G, ρ) ∈ MG
h (T ), it suffices to define

η on each connected component of T , hence we assume furthermore that

T is connected. We have the bundle of G-frames of p∗(ω
k0
X/T ) over T ,

q : F(p∗(ω
k0
X/T ), G)→ T . By (3.23) and (3.26) there exists a morphism

fX/T,k0,G : F(p∗(ω
k0
X/T ), G)→ H̄G,β

N,h′ such that

MG
h (q)((X→ T ), G, ρ) ' MG

h (fX/T,k0,G)((ŪG,β
N,h′ → H̄G,β

N,h′), G, β)

for some [β] ∈ BN . Setting

f̄X/T,k0,G := πβ ◦ fX/T,k0,G : F(p∗(ω
k0
X/T ), G)→MG,β

k0,h
,
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by (3.27-2) we see that f̄X/T,k0,G is C(G, β)-equivariant (where we take

the trivial action on MG,β
k0,h

). Since T is the quotient of F(p∗(ω
k0
X/T ), G)

by C(G, β) (cf. 3.18), there exists a (unique) morphism ηT (X) : T →
Mh[G] such that f̄X/T,k0,G = ηT (X) ◦ q. Note that by (3.24) ηT (X) is

independent of the representative family ((p : X → T ), G, ρ) that we

choose, hence ηT (X) is well defined.

In order to show that η is a natural transformation, let l ∈ Hom(S, T )

and let ((p : X→ T ), G, ρ) ∈ MG
h (T ): it suffices to show that

ηS(XS) = ηT (X) ◦ l.

Without loss of generality we assume that S and T are connected and

p∗(ω
k0
X/T ) has decomposition type β, now considering the following com-

mutative diagram:

F((pS)∗(ω
k0
XS/S

), G)
l̃−−−→ F(p∗(ω

k0
X/T ), G)yqS yq

S
l−−−→ T

,

from (3.6-1) and (3.17) we see that f̄XS/S,k0,G = f̄X/T,k0,G ◦ l̃. Since

f̄XS/S,k0,G, f̄X/T,k0,G and l̃ are all C(G, β)-equivariant, hence we have

ηS(XS) = ηT (X) ◦ l by (3.18).

Step 2. Mh[G] is the coarse moduli scheme for MG
h :

(1) ηSpecC induces a one-to-one correspondence between MG
h (SpecC)

and the set of (closed) points of Mh[G].

Surjectivity follows from (3.26), and injectivity follows from (3.27-1).

(2) The universal property of η.

Let θ : MG
h → Hom(−, Q) be another natural transformation: we

show that there exists a unique morphism γ : Mh[G] → Q such that

θ = Hom(γ) ◦ η.

For any [β] ∈ BN , the universal family ((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) ∈
MG
h (H̄G,β

N,h′) induces a morphism θH̄G,β

N,h′
(ŪG,β

N,h′) : H̄G,β
N,h′ → Q. For any

g ∈ C(G, β), we have that

(Ψg×idPN )((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) = (idH̄G,β

N,h′
×Φg−1)((ŪG,β

N,h′ → H̄G,β
N,h′), G, β)

as subschemes of H̄G,β
N,h′×PN , noting that the right hand side is isomor-

phic to ((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) as G-marked families, we see that

θH̄G,β

N,h′
(ŪG,β

N,h′) = θH̄G,β

N,h′
(ŪG,β

N,h′) ◦Ψg.
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This implies that θH̄G,β

N,h′
(ŪG,β

N,h′) is C(G, β)-equivariant, hence it induces

a (unique) morphism γβ : MG,β
k0,h
→ Q such that

θH̄G,β

N,h′
(ŪG,β

N,h′) = γβ ◦ ηH̄G,β

N,h′
(ŪG,β

N,h′).

Now we can define γ : Mh[G] → Q such that the restriction of γ to

each MG,β
k0,h

is γβ.

From the construction of γ we already saw that γ must be unique, it

remains to show that θ = Hom(γ) ◦ η. Given ((p : X → T ), G, ρ) ∈
MG
h (T ), let q : F(p∗(ω

k0
X/T ), G) → T be the bundle of G-frames of

p∗(ω
k0
X/T ), we assume again that T is connected and p∗(ω

k0
X/T ) has de-

composition type β. By (3.23) and (3.26) there exists

fX/T,k0,G : F(p∗(ω
k0
X/T ), G)→ H̄G,β

N,h′

such that

MG
h (q)((X→ T ), G, ρ) ' MG

h (fX/T,k0,G)((ŪG,β
N,h′ → H̄G,β

N,h′), G, β),

hence we have that

θ(q∗X) = θH̄G,β

N,h′
(ŪG,β

N,h′)◦fX/T,k0,G = γβ◦ηH̄G,β

N,h′
(ŪG,β

N,h′)◦fX/T,k0,G = γβ◦η(q∗X),

where the first and third equalities hold since θ and η are natural

transformations, the second equality holds by the construction of γβ.

Finally the fact that fX/T,k0,G and θH̄G,β

N,h′
(ŪG,β

N,h′) are C(G, β)-equivariant

⇒ θ(q∗X) is also C(G, β)-equivariant. By (3.18) ∃! l′ ∈ Hom(T,Q) such

that θ(q∗X) = l′ ◦ q, which implies that θT (X) = l′ = γβ ◦ ηT (X). �

As an application of our results, we show that the locus Mh(G) inside

Mh of varieties which admit an effective action by a group G is closed.

This has been proven in [Cat83], Theorem 1.8 for the case of surfaces,

the idea there generalizes naturally to higher dimensional cases.

Given a faithful representation β : G → GL(N + 1,C), we have a

natural inclusion iβ : H̄G,β
N,h′ ⊂ H̄N,h′ . Noting that the restriction of

the quotient map π : H̄N,h′ → Mh to H̄G,β
N,h′ is SC(G, β)-equivariant,

we obtain an induced morphism uG,βk0,h
: MG,β

k0,h
→ Mh. We define a

morphism uGh : Mh[G] → Mh such that uGh |MG,β
k0,h

= uG,βk0,h
. We denote

by Mh(G) the (scheme-theoretic) image of uGh in Mh. Then we can

interpret the problem into showing that uGh maps Mh[G] surjectively

onto Mh(G).



26

Corollary 3.30. The morphism uGh : Mh[G]→Mh is finite and maps

Mh[G] surjectively onto Mh(G); Mh(G) is a closed subscheme of Mh.

Proof. It is easy to see that uGh is quasi-finite: given a point [X] ∈
Mh, since Aut(X) is finite, then the set of injective homomorphisms

ρ : G→ Aut(X) is finite, hence (uGh )−1([X]), which corresponds to the

set of isomorphism classes of G-markings on X, is also finite.

For the remaining statements, it suffices to show that uGh is proper,

which is equivalent to showing that uG,βk0,h
: MG,β

k0,h
→ Mh is proper for

each [β] ∈ BN . Applying the valuative criterion of properness, we have

to prove that for every pointed curve (C,O) (not necessarily complete)

and for any commutative diagram

C? f ′−−−→ MG,β
k0,hyi yuG,βk0,h

C
f−−−→ Mh

where C? := C −{O}, there exists a unique l : C →MG,β
k0,h

making the

whole diagram commute.

By GIT we know that MG,β
k0,h

is quasi-projective and hence separated,

therefore the uniqueness of l is clear. For the existence of l, since

πβ : H̄G,β
N,h′ → MG,β

k0,h
is a quotient map of quasi-projective schemes, it

suffices to show that there exists a finite morphism v : (B,O′)→ (C,O)

and a morphism l′ : B → H̄G,β
N,h′ such that

(∗) uG,βk0,h
◦ πβ ◦ l′ = f ◦ v and πβ ◦ (l′|B?) = f ′ ◦ (v|B?),

where B? := B − {O′}.
Considering the quotient map π : H̄N,h′ →Mh, we can assume without

loss of generality that we have a morphism m : C → H̄N,h′ such that

f = π ◦m. Then we obtain a family (X → C) := m∗(ŪN,h′) ∈ Mh(C)

such that X ⊂ C × PN . The idea of constructing the morphism v :

(B,O′) → (C,O) is similar to that of (3.16). We consider first the

subspace

Z := {(t, A(t)|A(t)Xt corresponds to a point in H̄
G,β
N,h′} ⊂ C×GL(N+1,C).

By assumption we see that p1 : Z − p−1
1 (O) → C? is surjective, where

p1 : C × GL(n + 1,C) → C is the projection onto the first factor,

hence we can find a curve B′ inside Z, such that p1|B′ : B′ → C? is

surjective. For similar reasons as in (3.16), we get a G-marked family
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((p1|B′)∗X? → B′), G, β), where X? := X − XO. After possibly taking

the normalization of B′, we can extend the morphism p1|B′ to a mor-

phism v : (B,O′) → (C,O) and we see that (((v|B?)∗X? → B?), G, β)

is a G-marked family, where B? := B − {O′}.
We claim that the G-action on (v|B?)∗X? → B? can be extended to

an action on (X′ → B) := (v∗X → B). Since ωk0X′/B induces an em-

bedding i : X′ → B × PN , we see that the claim is equivalent to that

i(X′) is invariant under the action π∗2(β), where π2 : B × PN → PN is

the projection on to the second factor. After possibly shrinking B, we

can assume that B is connected and hence i(X′) is irreducible. The

fact that ((v|B?)∗X? → B?), G, β) is a G-marked family implies that

i((v|B?)∗X?) is invariant under π∗2(β), now from the irreducibility of

i(X′) we see that i(X′) is also invariant under the action π∗2(β).

Now we have a G-marked family ((X′ → B), G, β), by (3.22) we obtain

a morphism l′ : B → H̄G,β
N,h′ , it is easy to check that l′ satisfies (∗). �
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4. Irreducible components of Mg(G)

In the second part of this article (section 4 - section 7) we shall study

the locus Mg(G) inside Mg, the coarse moduli space of algebraic curves

of genus g ≥ 2, for certain elementary groups G. In this section we

recall some prerequisite results and give rough ideas about what we are

going to do in later sections.

A good approach to understanding the irreducible components of Mg(G)

is to view Mg as the quotient of the Teichmüller space Tg by the natural

action of the mapping class group Mapg:

π : Tg → Tg/Mapg = Mg.

Observe that

Mg(G) =
⋃
[ρ]

Mg, ρ(G),

where ρ : G ↪→ Mapg is an injective homomorphism, Mg, ρ(G) is the

image of the fixed locus of ρ(G) under the natural projection π and

ρ ∼ ρ′ iff they are equivalent by the equivalence relation generated by

the automorphisms of G and the conjugations by Mapg. We call this

equivalence class an unmarked topological type (cf. [CLP15], section

2). Since each Mg, ρ(G) is an irreducible (Zariski) closed subset of

Mg (cf. [CLP15], Theorem 2.3), in order to determine the irreducible

components of Mg(G), it suffices to determine the maximal loci of the

form Mg, ρ(G), i.e., to figure out when one locus contains another.

To be precise, our problem is: for which ρ and ρ′, does Mg, ρ′(G)

contain Mg, ρ(G)? Hence we determine the loci Mg, ρ(G) which are

not maximal whence the irreducible decomposition of Mg(G). The

above problem is equivalent to the classification of subgroups H,H ′ of

Mapg (g ≥ 2), where H and H ′ satisfy the following condition:

(∗) H,H ′ ' G,H 6= H ′ and Fix(H) ⊂ Fix(H ′).

Definition 4.1. For any finite subgroupH ⊂Mapg, set δH :=dimFix(H)

and let G(H) :=
⋂
C∈Fix(H) Aut(C) (Fix(H) corresponds to the com-

plex structures for which the action of H is holomorphic, whereas G(H)

is the common automorphism group of all the curves in Fix(H)).

If H = G(H) we call H full.

It is easy to see that condition (∗) is equivalent to the condition:

(∗∗) H is isomorphic to G and not full, G(H) has a subgroup H ′
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which is isomorphic to G and different from H.

For explicit computations, we need some general theory of Galois covers

of Riemann surfaces (cf. [Cat15], Section 5).

Definition 4.2 ([CLP11], Definition 1). A G-Hurwitz vector is an or-

dered sequence

v = (a1, b1, ..., ag′ , bg′ ; c1, ..., cr) ∈ G2g′+r

such that the following conditions are satisfied:

(i) ord(ci) = mi > 1 for all i;

(ii) G is generated by the components of v, usually we write G =

〈v〉;
(iii)

∏g′

i=1[ai, bi]
∏r

j=1 cj = 1.

We call the sequence (mi)
r
i=1 the type of v.

Definition 4.3. (1) Let G be a finite group acting effectively on a

curve C of genus g ≥ 2: we obtain a Galois cover p : C → C/G =: C ′

branched in r points on C ′ with branching indices m1, ...,mr. Denoting

by g′ the genus of C ′, the orbifold fundamental group of the cover is a

group with the following presentation:

T (g′;m1, ...,mr) := 〈α1, β1, ..., αg′ , βg′ ; γ1, ..., γr |Π[αj, βj]·Πγi = 1, γmii = 1〉.

In the case of g′ = 0, we set T (m1, ...,mr) := T (0;m1, ...,mr).

(2) The cover C → C/G is (topologically) determined by a surjective

homomorphism

µ : T (g′;m1, ...,mr)� G

such that f(γj) has order mj inside G (cf. [Cat15], Section 6). One

sees immediately that

v := [µ(α1), µ(β1), ..., µ(αg′), µ(βg′);µ(γ1), ..., µ(γr)]

is a G-Hurwitz vector, and we call it the Hurwitz vector associated to

µ.

In the rest of this section we only consider the case of g′ = 0.

Given a surjective homomorphism µ : T (m1, ...,mr)� G, the Hurwitz

vector associated to µ is not uniquely determined, since we can choose

different presentations for T (m1, ...,mr). For instance consider the

group T (m1, ...,mr) with the presentation 〈γ1, ...γr|Πγi = 1, γmii = 1〉.
For any 1 ≤ k < r, we have a set of generators {δi,k}: δi,k := αi if
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i 6= k, k + 1; δk,k := αkαk+1α
−1
k and δk+1,k := αk. This induces an

isomorphism between T (m1, ...,mr) and T (l1, ..., lr), where li = mi if

i 6= k, k + 1; lk = mk+1 and lk+1 = mk. Different choices of generators

correspond to the following braid group action on the set of Hurwitz

vectors.

Recall that Artin’s braid group on r strands has the presentation

Br := 〈σ1, ..., σr−1|∀1 ≤ i ≤ r−2, σiσi+1σi = σi+1σiσi+1;∀|j−i| ≥ 2, σiσj = σjσi〉.

The group Br acts on the set of Hurwitz vectors of length r as follows:

(v1, ..., vi, vi+1, ..., vr)
σi7→ (v1, ..., vivi+1v

−1
i , vi, ..., vr).

On the other hand, for any h ∈ Aut(G), we can compose µ with h,

which induces an Aut(G)-action on the set of G-Hurwitz vectors: given

v = (v1, ..., vr) a G-Hurwitz vector, define h(v) := (h(v1), ..., h(vr)).

Since these actions (by Br and by Aut(G)) commute, they induce an

action of the group Br × Aut(G) on the set of G-Hurwitz vectors of

length r.

Definition 4.4. Given two G-Hurwitz vectors v, v′ of length r, we say

that v and v′ are B.A.-equivalent if they are in the same Br×Aut(G)-

orbit.

Remark 4.5. Two Hurwitz vectors v and v′ determine the same un-

marked topological type iff they are B.A.-equivalent (cf. [CLP15], sec-

tion 2).

A natural question raises: when are two Hurwitz vectors B.A.-equivalent?

In the case where G is abelian, it is easy to answer this question since

the braid action corresponds to the permutation of entries and the au-

tomorphism group of G is also clear.

If the group G is not abelian, the question becomes much more diffi-

cult: even for the dihedral group Dn, it took effort to solve the problem

(cf. [CLP11], [CLP15]). Later in section 6 we shall come back to this

topic.

Now let us look again at the condition (∗∗): in order to do compu-

tation via Hurwitz vectors, we still have two questions.

(1) Denoting by vH(resp. vG(H)) the Hurwitz vector for the cover

C → C/H(resp. C → C/G(H)), which types of Hurwitz vectors

vH , vG(H) may occur?
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(2) Given a finite subgroup H ⊂ Mapg which is not full, what can we

say about G(H)?

Fortunately, the first question was answered by Magaard, Shaska, Sh-

pectorov, and Völklein in [MSSV02], we have the following theorem:

Theorem 4.6 ([MSSV02], 4.1). Let H $ K be two (finite) subgroups

of Mapg such that δH = δK =: δ. Given a general curve C ∈ Fix(H),

one of the following holds:

I) δH = 3, [K:H] = 2, and C → C/K is a covering of P1 branched

on 6 points, P1, . . . , P6, with branching indices all equal to 2. Moreover

the subgroup H corresponds to the unique genus two double cover of P1

branched on the 6 points.

II) δH = 2, [K:H] = 2, and C → C/K is a covering of P1 branched

on five points, P1, . . . , P5, with branching indices 2, 2, 2, 2, c5. Moreover

the subgroup H corresponds to a double cover of P1 branched on the 4

points P1, . . . , P4 with branching index 2.

III) δH = 1, there are 3 possibilities:

III − a) H has index 2 in K, and C → C/K is a covering of P1

branched on 4 points, P1, . . . , P4, with branching indices 2, 2, 2, 2d4,

where d4 > 1. Moreover the subgroup H corresponds to the unique

genus one double cover of P1 branched on the 4 points P1, . . . , P4.

III−b) H has index 2 in K, and C → C/K is a covering of P1 branched

on 4 points, P1, . . . , P4, with branching indices 2, 2, c3, c4, where c3 ≤ c4

and c4 > 2. Moreover the subgroup H corresponds to a genus zero dou-

ble cover of P1 branched on two points with branching index 2.

III − c) H is normal in K, K/H ∼= (Z/2)2, and C → C/K is a

covering of P1 branched on 4 points, P1, . . . , P4, with branching indices

2, 2, 2, c4, where c4 > 2. Moreover the subgroup H corresponds to the

unique genus zero cover of P1 with Galois group (Z/2)2 branched on

the 3 points P1, P2, P3 with branching index 2.

It is easy to see that in all cases of (4.6), we have that K = G(H),

hence we call the cases in (4.6) the cover types (of H and G(H)).

The second question is purely group-theoretic, from (4.6) we see that

there are 2 possibilities:

(i) for cases I), II), III-a), III-b) we have [G(H) : H] = 2;

(ii) for case III-c) we have that H C G(H) and G(H)/H ∼= (Z/2)2.

Given a finite group H, we call the possibilities of G(H) the group types
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(of H and G(H)).

Unfortunately, there is no general result on group types for an arbitrary

finite group, we will see the group types for cyclic groups in section 5

and for dihedral groups in section 7.

Now we have all the ingredients: given a finite group H, we compute

the possible equivalence classes of Hurwitz vectors for each cover type

and group type. For more details, see section 7 for the case of dihedral

groups.
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5. Cyclic covers of curves

In this section the we consider the case of cyclic groups: G = Z/d,

and we fix a generator γ of Z/d. We start by recalling the structure

theorem for cyclic covers of Riemann surfaces, then we compute the

group types for cyclic groups and determine the corresponding Hurwitz

vectors.

Theorem 5.1 ([Cat12], Theorem 1.1). (1) Let C be a smooth irre-

ducible projective curve, the datum of a pair (B, γ), where B is also a

smooth irreducible projective curve and γ is an order d automorphism

of B such that B/〈γ〉 ∼= C, is equivalent to the datum of reduced effec-

tive divisors D1, ..., Dd−1 on C without common components, and of a

divisor class L such that we have the following linear equivalence

dL ≡
∑
i

iDi

and moreover, setting m := gcd{d, {i|Di 6= 0}}, either m = 1 or,

setting d = mn, the divisor class

L′ :=
d

m
L−

∑
i

i

m
Di

has order precisely m in Pic(C).

(2) Let L be the geometric line bundle whose sheaf of regular sections

is OC(L). Then B is the normalization of the singular covering

B′ ⊂ L, B′ := {(y, z)|zd =
d−1∏
i=1

δii(y)}

where y ∈ C, z ∈ Ly and δi is a section of OC(Di) such that the zero

set of δi is Di. Moreover the action of γ on B′ is given by z 7→ e
2π
√
−1
d z.

Remark 5.2. Given a point p ∈ Di, we can choose t, a suitable local

coordinate near p, such that in an analytic neighbourhood of p we have

B′ = {(t, z)|zd = ti}. Setting mi := gcd(d, i), d = dimi and i = i′mi,

we see that B′ has mi branches at the point (0, 0), say one branch is

B′1 := {(t, z)|zdi = ti
′}. The morphism C ⊃ U → B′1 : x 7→ (xdi , xi

′
)

gives a normalization of B′1. Hence for the covering map B → C,

the inverse image of p has mi points and locally the map is given by

x 7→ xdi . We have the following observations.

(1) Let q ∈ B be a point lying over p: the stabilizer group of q is

generated by γmi , hence the branching index at the point p is equal to
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order(γmi) = di.

(2) Locally around q, the action of γmi is given by x 7→ e
2π
√
−1

di x.

Definition 5.3 ([Cat12], Definition 2.2). Let C be a smooth irreducible

projective curve of genus g on which Z/d acts faithfully, and set C ′ =

C/(Z/d), h := genus(C ′).

Denote by ki = deg(Di) for i = 1, ..., d − 1, and by (k1, ..., kd−1) the

branching sequence of γ. A change of generator of Z/d corresponds to

a (Z/d)∗-action on the sequence, we denote the resulting equivalence

class by [(k1, ..., kd−1)].

Definition 5.4 ([Cat12], Definition 2.3). Given a branching datum

corresponding to a sequence [(k1, ..., kd−1)], set

h := 1 +
2(g − 1)

2d
− 1

2

∑
i

ki(1−
gcd(i, d)

d
).

The branching datum is said to be admissible for d and g if the following

two conditions are satisfied:

(1)
∑

i kii ≡ 0 (mod d),

(2) h is a positive integer; or h = 0, gcd{d, {i|ki 6= 0}} = 1.

Remark 5.5. In section 4 we have introduced the notion of the B.A.−
equivalence relation of Hurwitz vectors. Now assuming the base curve

C ′ has genus 0, it is easy to see that in the cyclic cover caseB.A.−equivalence

classes of Hurwitz vectors are in one to one correspondence with equiv-

alence classes of admissible branching sequences.

Starting with an admissible branching sequence (k1, ..., kd−1), we con-

struct a vector

v := (γ, ..., γ︸ ︷︷ ︸
k1 times

, ..., γd−1, ..., γd−1︸ ︷︷ ︸
kd−1 times

).

Condition (1) of (5.4) is equivalent to that the product of all the entries

in v is 1, condition (2) is equivalent to that entries of v generate the

group Z/d; hence v is indeed a Hurwitz vector. Since Z/d is abelian,

the braid action on Hurwitz vectors corresponds to the permutation of

entries. Then one checks easily that the above construction induces a

1−1 correspondence between equivalence classes of admissible branch-

ing sequences and B.A.−equivalence classes of Hurwitz vectors.

Given an admissible branching datum [(k1, ..., kd−1)], there is a con-

nected complex manifold Tg;d,[(k1,...kd−1)] parameterizing the pair (C,Z/d)
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with branching datum [(k1, ..., kd−1)] (cf.(2.4) in [Cat12]). The rough

idea there is to consider Th,k, the Teichmüller space of curves of genus

h with k :=
∑

i ki marked points, there is a universal family of curves

over Th,k with k sections. Then by applying a relative version of (5.1),

we obtain a family of curves with the given branching datum.

We denote by Mg;d,[(k1,...,kd−1)] the image of Tg;d,[(k1,...kd−1)] in Mg.

Since Tg;d,[(k1,...kd−1)] is a connected manifold, we see that Mg;d,[(k1,...,kd−1)]

is an irreducible subvariety of Mg. Again we have that

Mg(Z/d) =
⋃

[(k1,...,kd−1)] admissible

Mg;d,[(k1,...,kd−1)].

Therefore to determine the irreducible components of Mg is equivalent

to determining the maximal loci of the form Mg;d,[(k1,...,kd−1)].

Assume that Mg;d,[(k1,...,kd−1)] ⊂Mg;d,[(k′1,...,k
′
d−1)] and [(k1, ..., kd−1)] 6=

[(k′1, ..., k
′
d−1)]. We pick a general curve C ∈Mg;d,[(k1,...,kd−1)], then there

exist two distinct subgroups H and H ′ of Aut(C) such that both H and

H ′ are isomorphic to Z/d and the image of Fix(H) (resp. Fix(H ′)) in

Mg is Mg;d,[(k1,...,kd−1)] (resp. Mg;d,[(k′1,...,k
′
d−1)]). This implies that H is

a proper subgroup of Aut(C) and Aut(C) = G(H). Therefore we can

apply (4.6).

First we determine the group type of (H,G(H)) . We have two cases:

G(H)/H ' Z/2 or G(H)/H ' (Z/2)2.

If G(H)/H ' Z/2, let γ be a generator of H and choose δ ∈ G(H)−
H, we have that δ2 = γk for some 0 ≤ k ≤ d− 1. Since H is a normal

subgroup, we have that δγδ−1 = γl, where l is an integer such that

gcd(l, d) = 1. Noting that γ = δ2γδ−2 = γl
2

and γk = δγkδ−1 = γkl,

we obtain the condition that l2 ≡ 1 mod d and d|(kl − k). It is easy

to check that these data determine the pair (H,G(H)):

Lemma 5.6. Let G(H) be a group containing an index 2 cyclic sub-

group H of order d. Then G(H) has the presentation:

{α, β|αd = 1, αk = β2, βα = αlβ}

such that 0 ≤ k, l < d, gcd(l, d) = 1, d|((l − 1)k) and l2 ≡ 1 mod d.

Moreover, γ := ᾱ is a generator of H.
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For the case of G(H)/H ' (Z/2)2, using similar arguments and with

additional assumptions it is easy to get the following:

Lemma 5.7. Let G(H) be a group containing a normal cyclic subgroup

H of order d such that G(H)/H ' (Z/2)2. Assume in addition that

there exist three elements b1, b2, b3 ∈ G(H) − H such that bi has or-

der 2 and the product b1b2b3 is contained in H. Then G(H) has the

presentation:

{α, β1, β2|αd = 1, β2
1 = β2

2 = 1, β1α = αl1β1, β2α = αl2β2, β1β2 = β2β1α
e1,2}

such that 0 ≤ l1, l2, e1,2 < d, gcd(li, d) = 1, l2i ≡ 1 mod d, d|(li+1)e1,2,

for i = 1, 2 and gcd(d, l1l2 + 1)|e1,2.

Moreover, γ := ᾱ is a generator of H; bi = β̄i, biγbi = γli for i = 1, 2

and b2b1b2 = b1γ
e1,2; b3 = b1b2γ

f , where f is an integer such that

0 ≤ f < d and d|((l1l2 + 1)f + e1,2).

Now we are ready to determine the non-maximal loci.

Proposition 5.8. Assume that g ≥ 2, d ≥ 3 and dimCMg;d,[(k1,...,kd−1)] ≥
1, then Mg;d,[(k1,...,kd−1)] is maximal for all admissible sequences [(k1, ..., kd−1)]

except for the following (possible) cases:

(1) Case III − b) (of 4.6).

(i) d = 2d′, G(H) ' H × Z/2. Denoting by γ a generator of H, the

Hurwitz vectors for G(H) are:

((e, 1), (e, 1), (γ−1, 0), (γ, 0))

and ((e, 1), (γd
′
, 1), (γd

′−1, 0), (γ, 0)).

(ii) Following the notations in (5.6), d = 2d′ = 8d̃, k = 2 and l = d′+1,

the Hurwitz vectors for G(H) are:

(δγ2d̃−1, δγ2d̃−1, γ−1, γ)

and (δγ2d̃−1, δγ6d̃−1, γ4d̃−1, γ).

(2) Case III − c) (of 4.6).

d = 2d′, following the notations in (5.7), the Hurwitz vector for G(H)

is

(b1, b2, b3, b3b2b1).

There are three possibilities:

(i) (l1, l2, e1,2) = (1, d− 1, 0);

(ii) 2|d′, (l1, l2, e1,2) = (1, d′ − 1, d′);

(iii) 2|d′, (l1, l2, e1,2) = (1 + d′, d− 1, d′) or (1 + d′, d′ − 1, 0).
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Moreover, in the above three cases f must satisfy the condition that

gcd(f, d) = 1.

Proof. Let H be an order d cyclic subgroup of Mapg such that Fix(H)

maps surjectively onto Mg;d,[(k1,...,kd−1)]. If Mg;d,[(k1,...,kd−1)] is not maxi-

mal, then there exists a subgroup H ′ ⊂ G(H) such that H ′ ' H and

H ′ 6= H. As we have seen in (4.6), there are two possibilities:

(a) [G(H) : H] = 2 (which corresponds to cases I, II, III − a, III − b
in 4.6), we see that [H ′ : H∩H ′] = 2, hence d must be an even number,

say d = 2d′. In this case H∩H ′ =< γ2 >. Applying (5.6) and choosing

an appropriate generator δ of H ′, we have that δ2 = γ2 and δγδ−1 = γl

such that gcd(l, d) = 1, l2 ≡ 1 mod d and d|2(l − 1). The condition

d|2(l− 1) is equivalent to that d′|(l− 1), hence we have either l = 1 or

l = d′ + 1, in the latter case we must have 2|d′ since gcd(l, d) = 1.

We determine all the elements of oder 2 in G(H). It is clear that γd
′
and

δd
′
have order two, and they are equal iff 2|d′. The other candidates are

of the form δγm (0 < m < d), and the equality 1 = (δγm)2 = γ(l+1)m+2

holds if and only if gcd(d, l+ 1)|2. Since d is even and gcd(d, l) = 1, we

have that 2| gcd(d, l+ 1), hence the only possibility is gcd(d, l+ 1) = 2.

If l = 1, this is automatically true, and we get m = 2d′ − 1 or d′ − 1.

If d′ is even and l = d′+ 1, we see that gcd(d, l+ 1) = 2⇔ gcd(d′, d
′

2
+

1) = 1⇔ 4|d′. In this case we get m = d′

2
− 1 or 3d′

2
− 1.

For case I of (4.6), if there exists a homomorphism µ : T (2, 2, 2, 2, 2, 2)→
G(H) which determines the cover C → C/G(H) (for some general

curve C ∈ Fix(G(H)), denoting by (v1, ..., v6) the Hurwitz vector as-

sociated to µ, then vi has order 2 for i = 1, 2, ..., 6. However from

the proceeding argument we see that the elements of order 2 in G(H)

generate a subgroup of order 2 or 4, hence f can not be surjective, this

case is excluded. Similarly one can also exclude cases II, III-a of (4.6).

For case III-b of (4.6), picking a general curve C ∈ Fix(H), the cover

C → C/G(H) has an associated Hurwitz vector v = (v1, v2, v3, v4), such

that G(H) =< vi >, v3, v4 ∈ H, v1, v2 /∈ H, Πvi = 1 and c1 = c2 = 2,

where ci := order(vi). If G(H) has only one element of order 2, which

must be γd
′
, we immediately get a contradiction, hence we have the

following two cases:

(α) δγδ−1 = γ, i.e., G(H) is commutative. We have that v1, v2 ∈
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{δγ−1, δγd
′−1}. If v1 = v2 = δγ−1, then we have v−1

3 = v4 = γk for some

integer k, the condition that G(H) =< vi > implies that gcd(k, d) = 1.

Now by applying the automorphism γk 7→ γ, δγ−1 → δγ−1, we see that

v ∼B.A. (δγ−1, δγ−1, γ−1, γ).

With similar argument, we get two more Hurwitz vectors

(δγ−1, δγd
′−1, γd

′−1, γ)

and

(δγd
′−1, δγd

′−1, γ−1, γ),

the latter being B.A.-equivalent to (δγ−1, δγ−1, γ−1, γ) via the auto-

morphism γ 7→ γ, δγ−1 7→ δγd
′−1.

(β) d′ = 4d̃ and δγδ−1 = γd
′+1. Note that for any integer k which is

coprime to d, the map δ 7→ δk, γ 7→ γk defines an automorphism of

G(H) fixing H. As in (α), we can show that v is B.A.-equivalent to

either

(δγ2d̃−1, δγ2d̃−1, γ−1, γ)

or

(δγ2d̃−1, δγ6d̃−1, γ4d̃−1, γ).

(b) If G(H)/H ' (Z/2)2 (which corresponds to the case III-c in 4.6),

let γ′ be a generator of H ′: we have that H ∩H ′ =< γ′2 > or < γ′4 >,

the latter being impossible since γ̄′ can not have order 4 in G(H)/H.

We also see that d is an even number, say d = 2d′. Following the

notations in (5.7), any element which is not contained in H has the

form biγ
mi , i = 1, 2, 3. Since biγ

mi /∈ H and (biγ
mi)2 = γ(li+1)mi , the

order of biγ
mi is 2d

gcd(d,(li+1)mi)
, where l3 :≡ l1l2 mod d.

We assume first that H ′ has a generator of the form b1γ
m1 for some

integer m1, then we have d = order(b1γ
m1) = 2d

gcd(d,(li+1)m1)
, which

implies that 2 = gcd(d, (l1 +1)m1), or equivalently 1 = gcd(d′, l1+1
2
m1),

hence gcd(d′, l1+1
2

) = 1. Combining with the condition that d|(l21 − 1),

we get d′|(l1− 1), therefore we have that l1 = 1 or d′+ 1, for the latter

case d′ must be even. If H ′ has a generator of the form b2γ
m2 , we

reduce it to the known case: setting b′1 = b2, b′2 = b2b1b2 and b′3 = b3,

we see that (b′1, b
′
2, b
′
3, b
′
3b
′
2b
′
1) is B.A.-equivalent to (b1, b2, b3, b3b2b1) and

b′1, b
′
2, b
′
3 also satisfy the condition of (5.7). If H ′ has a generator of the

form b3γ
m3 , similarly we can reduce it to the known case.

We need to determine the subgroup K := 〈b1, b2, b3〉. By (5.7) we have

b2b1b3 = γf , where f satisfies the condition that d|((l1l2 +1)f+e1,2), let
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ei,3 be an integer such that b3bib3 = biγ
ei,3 for i = 1, 2. One computes

easily that d|((l2 +1)f−e1,3) and d|((l1 +1)f−e2,3). Then we conclude

that any element in K must be of the form γjf , b1γ
j1f , b2γ

j2f or b3γ
j3f

for some integers j, j1, j2, j3. Therefore we see that the condition K =

G(H) is equivalent to that gcd(d, f) = 1. We have several cases:

(i) l1 = 1, e1,2 = 0. Then we have that d divides (l1l2 + 1)f + e1,2 ≡
(l2+1)f mod d. Since gcd(d, f) = 1, we get d|(l2+1), hence l2 = d−1.

In this case we have that G(H) ' Dd × Z/2, where Dd corresponds to

the dihedral group generated by γ and b2.

Using similar arguments as in (b)− (i), we obtain the following:

(ii) l1 = 1, e1,2 = d′. Then l2 = d′ − 1 providing that 2|d′.
(iii) 2|d′ and l1 = 1 + d′. We have that (e1,2, l2) = (0, d′ − 1) or

(d′, 2d′ − 1).

�
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6. Results on dihedral covers

In this section we have a quick review of the results of F. Catanese,

M. Lönne and F. Perroni on the B.A.-equivalence classes of Dn-Hurwitz

vectors. All contents of this section come from [CLP11] and [CLP15].

Recall that Dn, the dihedral group of order 2n, has a standard presen-

tation:

Dn = 〈x, y| xn = y2 = (xy)2 = 1〉.
We call the elements xi rotations and the elements yxi reflections.

Sometimes xiy will also be denoted by i for 0 ≤ i ≤ n− 1.

Remark 6.1. We have the following easy observations.

(1) The conjugacy class of xi is {xi, x−i}.
(2) If n is odd, any two reflections are conjugate; if n is even, two

reflections yxi and yxj are conjugate ⇐⇒ 2|(i− j).

Definition 6.2. Given a finite group G, denote by ξ1, ..., ξl the non-

trivial conjugacy classes of G, where l is the number of non-trivial

conjugacy classes of G. The Nielsen function ν(v) of a G-Hurwitz

vector (cf. 4.2) v = (a1, b1, ..., ag′ , bg′ ; c1, ..., cr) is a vector

ν(v) := (kξ1 , ..., kξl),

where kξj is the number of the ci’s in the conjugacy class ξj.

In the case of G = Dn, we make it more explicit.

If n = 2n′ + 1 is odd, ν(v) = (k, k1, ..., kn′), where k (resp. ki) is the

number of the ci’s in the conjugacy class of y (resp. xi).

If n = 2n′ is even, ν(v) = (ky, kxy, k1, ..., kn′), where ky (resp. kxy, ki)

is the number of the ci’s in the conjugacy class of y, (resp. xy, xi).

The Aut(G)-action on the set of Hurwitz vectors induces an action of

Aut(G) on the set N := {ν(v)|v is a Hurwitz vector}, the equivalence

class of ν(v) in N /Aut(G) will be denoted by [ν(v)].

Let π : X → Y be a Galois cover of compact connected Riemann

surfaces with Galois group Dn. Denote by g the genus of X and by

g′ the genus of Y . Let {y1, ..., yr} ⊂ Y be the branch locus of π with

branching indices m1, ...,mr. As explained in (4.3), π is (topologically)

determined by a surjective homomorphism:

µ : T (g′;m1, ...,mr)� Dn.

In the case that n = 2n′ is even, let ε : D2n′ → (Z/2)2 be the canonical

surjection onto the Abelianization, and let p : Z → Y be the degree 4
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covering associated to the composition µ′ := ε ◦ µ.

Observe that p is unramified iff none of the elements ci is a reflection

or a rotation xi with odd exponent i.

By the Hurwitz formula applied to µ and µ′, the geometrical property

that p is unramified is just a property of µ.

Definition 6.3 ([CLP11], Definition 2). The numerical type of a Dn-

Hurwitz vector v is defined as follows.

If n = 2n′ + 1 is odd, it is the pair (g′, [ν(v)]).

If n = 2n′ is even, there are two cases:

(I) If p is ramified, then the numerical type is again the pair (g′, [ν(v)]).

(II) if p is unramified, then consider the two dimensional subspace U of

H1(Y,Z/2) dual to the surjection H1(Y,Z/2)→ (Z/2)2 through which

µ′ factors.

Define ι ∈ {0, 1} to be = 0 if U is isotropic, and = 1 otherwise.

Then the numerical type is defined as the triple (g′, [ν(v)], ι).

Note that for g′ = 0, only case (I) occurs.

For our later use, we are mainly interested in the case of g′ = 0, we

have the following theorem, which is the main result of [CLP11].

Theorem 6.4 ([CLP11], Theorem 2). The group Br × Aut(Dn) acts

transitively on the set of Hurwitz vectors of a fixed numerical type,

hence dihedral covers of P1 of a fixed numerical type form an irreducible

closed subvariety of the moduli space.

More precisely, given v with ν(v) = (k, k1, ..., kn′) (resp. ν(v) =

(ky, kxy, k1, ..., kn′) ), set R :=
∑

i ki, and assume (w.l.o.g.) {h, k} =

{ky, kxy}, h ≤ k (observe that k, resp. k + h is even).

We have then, assuming throughout 0 < li ≤ li+1 ≤ n′, l = (l1, ..., lR)

and setting |l| :≡
∑

i li mod n:

i) v ∼B.A. (0, ..., 0, 1 + |l|︸ ︷︷ ︸
k

, xl1 , ..., xlR), if n = 2n′ + 1.

ii) v ∼B.A. (0, ..., 0︸ ︷︷ ︸
h

, 1, ..., 1, λ︸ ︷︷ ︸
k

, xl1 , ..., xlR), if n = 2n′ and h 6= 0.

Here λ = |l|+ ε, where ε ∈ {0, 1}, ε+ k ≡ 1 mod 2.

iii) v ∼B.A. (1, ..., 1, 3, λ︸ ︷︷ ︸
k

, xl1 , ..., xlR), if n = 2n′ and h = 0.

Here λ = |l|+ 3.

The following lemma is important for our later computations.
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Lemma 6.5. Every Dn-Hurwitz vector of length r of the form

v = (v1, ..., yx
a, yxb, yxc, ..., vr)

is B.A.-equivalent to

v′ = (v1, ..., yx
a′ , yxa

′
, yxc

′
, ..., vr)

or

v′′ = (v1, ..., yx
a′′ , yxb

′′
, yxb

′′
, ..., vr)

via braid moves that only affect the triple (yxa, yxb, yxc).

Proof. See [CLP11], Lemma 2.1. �

Remark 6.6. In regard to the case of g′ ≥ 1, in [CLP15] the authors

have defined a new homological invariant which allows them to tell

when two G-Hurwitz vectors are not B.A.-equivalent; for the case of

H = Dn, the dihedral group, they also found one representative vector

for each unmarked topological type.
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7. Irreducible components of Mg(Dn)

In this section we determine the irreducible components of Mg(Dn),

the main result is theorem (7.14), which is a joint work with Sascha

Weigl (cf. [LW16]).

As explained in section 4, the decomposition problem is equivalent

to the classification of subgroups H,H ′ of Mapg (g ≥ 2), where H and

H ′ satisfy the following condition:

(∗∗) H is isomorphic to Dn and not full, G(H) has a subgroup H ′,

which is isomorphic to Dn and different from H.

The content of this section is arranged as follows.

First we apply (4.6) and the Riemann-Hurwitz formula to obtain pairs

of dimensions (δH , δH′), which can occur under condition (∗∗).
Then we compute the group types of H and G(H). This is done by

classifying the index 2 subgroups of G(H), where G(H) is a finite group

containing two distinct index 2 subgroups which are isomorphic to Dn.

In the end of this section we classify the B.A.-equivalence classes of

Hurwitz vectors of the map C → C/G(H) ' P1 for each cover type

and group type, by giving one representative vector for each equiva-

lence class. The results are presented through tables.

7.1. A rough classification. Given a general curve C ∈ Fix(H) such

that C → C/H is a Galois cover branched on r points, we have that

δH = 3gC/H − 3 + r (cf. [CLP15], Theorem 2.3).

The case of δH = δH′ was studied in Corollary 7.2 of [CLP2]. We only

consider the case of δH < δH′ .

Since we have the condition (∗∗), which implies that δG(H) = δH , we

can apply Theorem (4.6). Moreover we apply the Riemann-Hurwitz

formula to each cover type to get the possible pairs (δH , δH′).

Corollary 7.1. Assume (∗∗) and moreover δH < δH′. Then the fol-

lowing pairs of dimensions (δH , δH′) can occur:

I) (3, 4), (3, 5).

II) (2, 3), (2, 4).

III − a) (1, 2).
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III − b) (1, 2), (1, 3).

III − c) None.

Proof. I) δH = 3.

By the Riemann-Hurwitz formula, we have

2g(C)− 2 = |G(H)|(−2 + 6 · 1

2
) = |H ′|(2(gC/H′ − 1) + k/2),

where k is the number of branching points of the cover C → C/H ′.

It is easy to see that (gC/H′ , k) = (2, 0), (1, 4) or (0, 8), corresponding

to δH′ = 3, 4, 5. Since we require δH < δH′ , the possible pairs are (3,4)

and (3,5).

II) δH = 2.

In this case C/H ′ → P1 is a double cover branched in at most 5 points.

Using the Riemann-Hurwitz formula, there are two cases:

(i) gC/H′ = 0 and C/H ′ → P1 is branched on 2 of the 5 points with

branching indices 2,2.

If c5 = 2 or P5 is not a branching point, we have δH′ = 3;

otherwise c5 is even and bigger than 2 and P5 is a branching point, we

get δH′ = 4.

(ii) gC/H′ = 1 and C/H ′ → P1 is branched in 4 of the 5 points with

branching indices 2,2,2,2.

The only possible case in which δH′ > 2 is that c5 is even and bigger

than 2 and P5 is one of the branching points. In this case δH′ = 3.

III) δH = 1.

III − a) Similar to case II), one gets that gC/H′ = 0, C/H ′ → P1 is a

double cover with one of the branching points P4 and δH′ = 2.

III−b) i) If c3 = 2, the only possibility is that c4 being even, gC/H′ = 0

and C/H ′ → P1 is a double cover with one of the branching points P4,

here δH′ = 2.

ii) c3 > 2, there are three possibilities:

α) c3 or c4 is even, one and only one point of P3 and P4 is a branching

point. This case is similar to III − b)− i), δH′ = 2.

β) Both c3 and c4 are even, gC/H′ = 0, and C/H ′ → P1 is a double

cover branched on P3 and P4. We have δH′ = 3.

γ) Both c3 and c4 are even, gC/H′ = 1, and C/H ′ → P1 is a double

cover branched on 4 points P1, . . . , P4. We have δH′ = 2.

III − c) We will give the proof in Lemma (7.7).

�
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7.2. The group type. From Theorem (4.6) we know that [G(H):H] =

2 except for the case III − c). Such a pair induces an exact sequence

1→ H → G(H)→ Z/2→ 1.

This type of extension, where H = Dn and G(H) has another subgroup

H ′ isomorphic to Dn, has been classified in [CLP15], Proposition 7.4.

There are 3 group types:

Group type 1) G(H) ∼= Dn×Z/2, and H corresponds to the subgroup

Dn × {0}.
Group type 2) n = 2d, G(H) ∼= D2n = 〈z, y|z2n = y2 = 1, yzy = z−1〉
and H = 〈x := z2, y〉.
Group type 3) n = 4h, where h is odd, and G(H) is the semidirect

product of H ∼= Dn with 〈β2〉 ∼= Z/2, such that the conjugation by β2

acts as follows:

y 7→ yx2, x 7→ x2h−1.

For each group type, we determine the index 2 subgroups of G(H)

and find out which of them are isomorphic to Dn.

Group type 1) Recall the standard presentation Dn = 〈x, y|xn = y2 =

1, yxy−1 = x−1〉 and set Cn := Z/n.

Note that H ∩H ′ is an index 2 subgroup of H and that H ∩H ′ /G(H).

In order to determine all the possible subgroups H ′, we have to under-

stand the index 2 subgroups K of H such that K / G(H).

a) K = Cn × {0} (this is the only case when n is odd).

Since G(H)/K ∼= (Z/2)2, there are two more index 2 subgroups of

G(H): H1,1 := 〈K, (e, 1)〉 and H1,2 := 〈K, (y, 1)〉 ∼= Dn.

b) If n = 2d, there are two more cases: K = 〈(x2, 0), (y, 0)〉 or K =

〈(x2, 0), (yx, 0)〉 (both are isomorphic to Dd).

Here we have 4 more index 2 subgroups ofG(H): H1,3 := 〈(x2, 0), (y, 0), (e, 1)〉,
H1,4 := 〈(x2, 0), (y, 0), (x, 1)〉, H1,5 := 〈(x2, 0), (yx, 0), (e, 1)〉, andH1,6 :=

〈(x2, 0), (yx, 0), (x, 1)〉. One checks easily that H1,4 and H1,6 are iso-

morphic to Dn and that H1,3 and H1,5 are isomorphic to Dn if and only

if d is odd.

Group type 2) Using similar arguments as for group type 1), we ob-

tain 2 more index 2 subgroups of G(H): H2,1 := 〈x〉 ∼= C2n and

H2,2 := 〈z2, yz〉 ∼= Dn.

Group type 3) There are 6 more index 2 subgroups of G(H): H3,1 :=
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〈Cn, (e, β2)〉, H3,2 := 〈Cn, (y, β2)〉, H3,3 := 〈(x2, 0), (y, 0), (e, β2)〉, H3,4 :=

〈(x2, 0), (y, 0), (x, β2)〉, H3,5 := 〈(x2, 0), (yx, 0), (e, β2)〉 and

H3,6 := 〈(x2, 0), (yx, 0), (x, β2)〉. Only H3,3 is isomorphic to Dn ( since

H3,3 = 〈(y, β2), (e, β2)〉).

7.3. Hurwitz vectors for C → C/G(H). We are ready to determine

the pairs (H,G(H)) satisfying condition (∗∗). As explained in section 4,

we find out all the possible Hurwitz vectors for the cover C → C/G(H).

Note that according to (4.6), we have that C/G(H) ' P1.

Definition 7.2. Let C → C/G(H) ∼= P1 be a Galois cover of a given

group type and cover type. We call a homomorphism

µ : T (m1, . . . ,mr)→ G(H)

admissible if it satisfies the following two conditions:

(1) µ is surjective, T (m1, ...,mr) is isomorphic to the orbifold funda-

mental group of C → C/G(H) and µ(γi) has order mi in G(H).

(2) µH := πH ◦ f : T (m1, . . . ,mr)→ G(H)/H corresponds to the cover

C/H → P1, where πH : G(H) → G(H)/H is the quotient homomor-

phism.

Definition 7.3. Let µ : T (m1, ...mr) → G and µ′ : T (l1, ...lr) → G

be admissible for a given cover type and group type. We say that µ is

equivalent to µ′ if their corresponding Hurwitz vectors are in the same

Br × Aut(G(H))H-orbit, where Aut(G(H))H denotes the subgroup of

Aut(G(H)) which leaves H invariant.

Remark 7.4. An admissible µ determines both the covers C → C/G(H)

and C → C/H, hence we require the equivalence relation to be gen-

erated by Br and Aut(G(H))H . It can happen that two admissible

homomorphisms have B.A.-equivalent Hurwitz vectors, but are not

equivalent (cf. Remark 7.13).

Example 7.5. Cover type III − b) and group type 1) (cf. Corollary

7.1)

i) c3 = 2, assume that n is even and c4 = n.

Consider the homomorphism µ : T (2, 2, 2, c4) → Dn × Z/2, γ1 7→
(yx, 1), γ2 7→ (e, 1), γ3 7→ (y, 0), γ4 7→ (x, 0).

One computes easily that δH1,2 = δH1,6 = 1 and δH1,4 = 2.

ii) c3 > 2, assume we have an admissible µ, then it is easy to see
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that µ(γ3) = (xi3 , 0) and µ(γ4) = (xi4 , 0). On the other hand, we

have µ(γ1), µ(γ2) ∈ {(yxk, 1), k ∈ Z; (xn/2, 1)(if n is even)}. Since

Πµ(γi) = 1, there are two possibilities:

(a) µ(γ1), µ(γ2) = (xn/2, 1), which implies Im(µ) ⊂ 〈(x, 0), (0, 1)〉, a

contradiction.

(b) µ(γ1) = (yxi1 , 1) and µ(γ2) = (yxi2 , 1), which implies Im(µ) ⊂
〈(x, 0), (y, 1)〉, again a contradiction.

Now we classify all admissible µ’s for the Galois cover C → C/G(H),

in the following way: for each cover type and group type, we construct

all possible Hurwitz vectors according to their branching behavior, as

given in Theorem (4.6).

Lemma 7.6. Group type 2) has no admissible µ for any cover type.

Proof. Cover type I)

Assume that we have an admissible µ : T (2, 2, 2, 2, 2, 2) → D2n, then

µH(γi) = 1 for i = 1, . . . , 6, which implies that µ(γi) ∈ {yz2k+1, z2l+1, k, l ∈
Z}. Moreover µ(γi) has order two, thus µ(γi) ∈ {yz2k+1, k ∈ Z}. We

find that Im(µ) ⊂ H2,2, a contradiction.

Cover type II)

If there exists an admissible µ : T (2, 2, 2, 2, c5)→ D2n, then we see that

µ(γi) ∈ {yz2k+1, k ∈ Z} for i = 1, 2, 3, 4 and µ(γ5) ∈ {z2l, l ∈ Z} (since

Πµ(γi) = 1), which implies that Im(µ) ⊂ H2,2, a contradiction.

Cover type III-a)

Given an admissible µ : T (2, 2, 2, 2d4) → D2n, we have that µ(γi) ∈
{yz2k+1, k ∈ Z}} for i = 1, 2, 3 and µ(γ4) ∈ {z2l+1, l ∈ Z}. However

the product Πµ(γi) 6= 1, a contradiction.

Cover type III-b)

i) c3 = 2. We have µ(γi) = yz2ki+1 for i = 1, 2, µ(γ3) = yz2k3 or zn and

µ(γ4) = z2k4 . If µ(γ3) = yz2k3 we find Πµ(γi) 6= 1; otherwise we have

µ(γ3) = zn, which implies Im(µ) ⊂ 〈yz, z2〉. In both cases we have no

admissible µ.

ii) c3 > 2. We have (µ(γ1), µ(γ2), µ(γ3), µ(γ4)) = (yz2k1+1, yz2k2+1, z2k3 , z2k4).

We see that Im(µ) ⊂ 〈yz, z2〉, a contradiction. �

Lemma 7.7. Group type 3) has no admissible µ for any cover type.
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Proof. First of all we determine the order 2 elements of the form (a, β2)

inG(H). One computes easily that (xj, β2)2 = (x2jh, 0) and (yxk, β2)2 =

(x2kh−2k+2, 0) 6= (e, 0). Therefore we conclude that (a, β2) has order two

⇔ a = xj and j is even.

Cover type I)

Now assume that we have an admissible µ, which implies that µ(γi) =

(x2ji , β2). On the other hand these elements are contained in the proper

subgroup 〈(x2, 0), (e, β2)〉, we see that µ can not be surjective, a con-

tradiction.

Cover type II)

If there exists an admissible µ, then we must have µ(γi) = (x2ji , β2) for i =

1, 2, 3, 4, and since Πµ(γi) = 1 it follows that Im(µ) ⊂ 〈(x2, 0), (e, β2)〉,
a contradiction.

Cover type III-a)

Assuming we have an admissible µ, we see that µ(γi) = (x2ji , β2) for i =

1, 2, 3. Since Πµ(γi) = 1 it follows that Im(µ) ⊂ 〈(x2, 0), (e, β2)〉, again

a contradiction.

Cover type III-b)

i) c3 = 2. We must have µ(γ1) = (x2j1 , β2), µ(γ2) = (x2j2 , β2),

µ(γ3) = (x2h, 0) or (yxk, 0) and µ(γ4) = (xl, 0) for some integer l 6= 2h.

If µ(γ3) = (x2h, 0), then Im(µ) ⊂ 〈(x, 0), (0, β2)〉; if µ(γ3) = (yxk, 0) we

see that Πµ(γi) 6= 1. In both cases we can not get an admissible µ.

ii) c3 > 2. Given an admissible µ, we have µ(γ1) = (x2j1 , β2), µ(γ2) =

(x2j2 , β2), µ(γ3) = (xk3 , 0) and µ(γ4) = (xk4 , 0) (k3, k4 6= 2h). One sees

immediately that Im(µ) ⊂ 〈(x, 0), (0, β2)〉, a contradiction. �

Lemma 7.8. Cover type III − c) has no admissible µ.

Proof. Assume that we have an admissible µ : T (2, 2, 2, c4)→ G(H).

Setting (b1, b2, b3, b4) := (µ(γ1), µ(γ2), µ(γ3), µ(γ4)), we have the follow-

ing observations.

(1) b2
1 = b2

2 = b2
3 = 1. Since b4 ∈ H and order(b4) = c4 > 2, we see that

b4 must lie in the (order n) cyclic subgroup of H, say b4 = xk; and we

also find n > 2.

(2) The fact that H is normal in G(H) implies that there exist integers

ki such that bixbi = xki and gcd(ki, n) = 1 for i = 1, 2, 3. Then one

computes easily that xkbi = bix
kki .

(3) The condition b1b2b3b4 = 1 ⇒ b1b2 = x−kb3, moreover (b1b2)2 =

x−kb3x
−kb3 = x−k−kk3 .
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Any element in Im(µ) has the form Πβi, where βi ∈ {xk, x−k, b1, b2, b3}.
Since b1b2b3b4 = 1, without loss of generality we can assume βi ∈
{xk, x−k, b1, b2}, which means that every element in Im(µ) is a word in

these four elements.

Using (2), we can ”move” all the x±k terms to the right end. Taking

(1) into account, we see that the elements are of the forms (b1b2)sxt,

b2(b1b2)sxt or (b1b2)sb1x
t for some integers s and t, now using (3), one

sees immediately that elements in Im(µ) have the form xj, b1x
j, b2x

j

or b3x
j. It turns out that y /∈ Im(µ), a contradiction. �

From the preceding arguments, we know that the only group type

to consider is Group type I), which means G(H) = Dn × Z/2 and

H = Dn × {0}. We denote by (e, 0) the neutral element of Dn × Z/2,

where Z/2 is additively generated by 1. The results are presented via

the Hurwitz vectors associated to the admissible µ′s.

Lemma 7.9. Classification of cover type I)

In this case the only admissible µ for n odd has the associated Hur-

witz vector

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (e, 1), (e, 1)).

For n even (n=2m) there are the following possibilities:

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (e, 1), (e, 1)),

v = ((y, 1), (yxm, 1), (yx, 1), (yx, 1), (xm, 1), (e, 1)),

v = ((y, 1), (yxm, 1), (yx2, 1), (yx2, 1), (xm, 1), (e, 1)),m odd.

For n = 2 there are the following:

v = ((y, 1), (y, 1), (x, 1), (x, 1), (e, 1), (e, 1)),

v = ((y, 1), (yx, 1), (x, 1), (x, 1), (x, 1), (e, 1)).

Proof. Since the cover C/H → P1 is branched in 6 points (cf. 4.6) we

need a Hurwitz vector with all entries having second component equal

to 1. So we have

v = ((yk1xl1 , 1), (yk2xl2 , 1), (yk3xl3 , 1), (yk4xl4 , 1), (yk5xl5 , 1), (yk6xl6 , 1))
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The first observation is that the condition 〈v〉 = G(H) implies that

there must exist j such that kj = 1. Therefore up to automorphism we

can assume

v = ((y, 1), (yk2xl2 , 1), (yk3xl3 , 1), (yk4xl4 , 1), (yk5xl5 , 1), (yk6xl6 , 1))

We consider the two cases n odd and n even separately.

i) n odd: Not all kj can be equal to 1, otherwise we cannot generate

the element (y, 0). Now the only element of order two of the form (xl, 1)

in G is (e, 1). So because of the product one condition v either looks

like

v = ((y, 1), (yxl2 , 1), (yxl3 , 1), (yxl4 , 1), (e, 1), (e, 1))

or

v = ((y, 1), (y, 1), (e, 1), (e, 1), (e, 1), (e, 1)),

the latter being excluded, since G(H) 6= 〈v〉.

The product one condition gives l2 + l4 ≡ l3 mod n. The condition

〈v〉 = G(H) implies gcd(l2, l3, l4, n) = gcd(l2, l4, n) = 1. Since the

second factor Z/2 of G(H) is abelian, we can apply Lemma (6.5) to

achieve that l3 = l4. Now v looks like

v = ((y, 1), (yxl2 , 1), (yxl4 , 1), (yxl4 , 1), (e, 1), (e, 1))

and again by the product one condition we obtain l2 ≡ 0 mod n

and therefore 1 = gcd(l2, l4, n) = gcd(l4, n).

So we can apply the automorphism (xl4 , 0) 7→ (x, 0), (y, 0) 7→ (y, 0)

to v and we can take

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (e, 1), (e, 1))

as a Hurwitz vector for the covering C → P1.

ii) n=2m is even: Recall the general form:

v = ((y, 1), (yk2xl2 , 1), (yk3xl3 , 1), (yk4xl4 , 1), (yk5xl5 , 1), (yk6xl6 , 1))

Again, first we distinguish the possible Hurwitz vectors by the (even

and positive) number of kj that are equal to 1. We call the element

ykxl a reflection if k ≡ 1 mod 2.

In the current case there exists m = n/2, which gives an extra order
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2 element (xm, 1) ∈ G(H). As in the odd case, 6 reflections cannot

occur. For the case of 2 reflections, assume, up to ordering,

v = ((y, 1), (yxl2 , 1), (xl3 , 1), (xl4 , 1), (xl5 , 1), (xl6 , 1)).

As before, (l3, l4, l5, l6) = (0, 0, 0, 0) is impossible. In the cases (l3, l4, l5, l6) =

(m,m, 0, 0) and (l3, l4, l5, l6) = (m,m,m,m) we get l2 = 0. In the

first case we can only have 〈v〉 = G(H) if n = 2. Also in the sec-

ond case we must have n = 2 but the elements (y, 1) and (x, 1) can-

not generate G(H) since the element (e, 1) is missing. In the cases

(l3, l4, l5, l6) = (m,m,m, 0) and (l3, l4, l5, l6) = (m, 0, 0, 0) we get l2 = m

which also implies that n = 2. So if n > 2 these cases do not occur.

The corresponding Hurwitz vectors are:

v = ((y, 1), (y, 1), (x, 1), (x, 1), (e, 1), (e, 1)),

v = ((y, 1), (yx, 1), (x, 1), (x, 1), (x, 1), (e, 1))

and

v = ((y, 1), (yx, 1), (x, 1), (e, 1), (e, 1), (e, 1)),

the third one being equivalent to the second one by an automorphism

of G(H) that fixes H.

Assume, for the case of 4 reflections, up to ordering

v = ((y, 1), (yxl2 , 1), (yxl3 , 1), (yxl4 , 1), (xl5 , 1), (xl6 , 1)).

Here we have the 3 cases: l5 = l6 = m, l5 = l6 = 0 and l5 = m, l6 = 0.

In the first two cases from the product one condition we get l2 +

l4 ≡ l3 mod n. To generate G(H) we must have gcd(l2, l3, l4, n) =

gcd(l2, l4, n) = 1.

Using Lemma (6.5) again, we arrive at

v = ((y, 1), (yxl2 , 1), (yxl4 , 1), (yxl4 , 1), (xm, 1), (xm, 1))

resp.

v = ((y, 1), (yxl2 , 1), (yxl4 , 1), (yxl4 , 1), (e, 1), (e, 1))

and so we get l2 ≡ 0 mod n. Now we have gcd(l2, l4, n) = gcd(l4, n) =

1 and we can apply the automorphism (xl4 , 0) 7→ (x, 0), (y, 0) 7→ (y, 0)

to v to arrive at

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (xm, 1), (xm, 1))
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resp.

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (e, 1), (e, 1)).

Using the automorphism (e, 1) 7→ (xm, 1), (y, 0) 7→ (yx−m, 0) we see

that these two are equivalent.

It remains to consider the case that l5 = m and l6 = 0, i.e.

v = ((y, 1), (yxl2 , 1), (yxl3 , 1), (yxl4 , 1), (xm, 1), (e, 1)).

We apply (6.5) again and it follows l2 = m. So we get

v = ((y, 1), (yxm, 1), (yxl, 1), (yxl, 1), (xm, 1), (e, 1)),

where gcd(l,m) = 1.

We have two sub-cases, i.e. gcd(l, n) = 1 and gcd(l, n) = 2. In the

first case we can use the automorphism (xl, 0) 7→ (x, 0), (y, 0) 7→ (y, 0)

to obtain

v = ((y, 1), (yxm, 1), (yx, 1), (yx, 1), (xm, 1), (e, 1)).

In the second case (where m must be odd) we can achieve

v = ((y, 1), (yxm, 1), (yx2, 1), (yx2, 1), (xm, 1), (e, 1)).

�

Lemma 7.10. Classification of cover type II)

Up to equivalence, the admissible µ’s are given by the Hurwitz vectors:

(1) c5 = 2,

v = ((y, 1), (yx, 1), (yx, 1), (e, 1), (y, 0)).

(2) c5 > 2,

v = ((y, 1), (yx−1, 1), (e, 1), (e, 1), (x, 0)), c5 = n;

v = ((y, 1), (yxm−1, 1), (xm, 1), (e, 1), (x, 0)), n = 2m, c5 = n;

v = ((y, 1), (yxm−2, 1), (xm, 1), (e, 1), (x2, 0)), n = 2m,m is odd, c5 = m.

Proof. Assume that we have an admissible µ : T (2, 2, 2, 2, c5) → Dn ×
Z/2 of cover type II). Then we must have:

v := (µ(γ1), µ(γ2), µ(γ3), µ(γ4), µ(γ5)) = ((a1, 1), (a2, 1), (a3, 1), (a4, 1), (a5, 0))

There are two possibilities:

(1) c5 = 2.

As argued in the previous lemma, we do the classification in terms of
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the number of reflections in {ai}, which can be either 2 or 4.

(i) There are 2 reflections.

(a) a5 is a reflection, W.L.O.G. we can assume that a1 is another re-

flection and a1 = yxl, a5 = y. It is clear that a2, a3, a4 ∈ {e, xn/2(if n is

even)}.
There are 4 cases (up to ordering): α) (a2, a3, a4) = (e, e, e), β) (a2, a3, a4) =

(xn/2, e, e), γ) (a2, a3, a4) = (xn/2, xn/2, e), δ) (a2, a3, a4) = (xn/2, xn/2, xn/2).

In cases α) and δ) we get no admissible µ since µ can not be surjective.

For cases β)andγ) (where n is even) we get that µ is admissible ⇐⇒
n = 2.

(b) a5 is not a reflection, first we conclude that n must be even and

a5 = xn/2. Using similar arguments as in (a), one finds that

v = ((y, 1), (yxl, 1), (a3, 1), (a4, 1), (xn/2, 0)), a3, a4 ∈ {e, xn/2}.

There are three cases, and one checks easily that in each case µ is

admissible if and only if n = 2.

(ii) There are 4 reflection.

a) a5 is a reflection. W.L.O.G. we assume

v = ((yxl1 , 1), (yxl2 , 1), (yxl3 , 1), (a4, 1), (y, 0)), a4 ∈ {e, xn/2(if n is even)}.

Again we apply Lemma (6.5) so that we can assume l2 = l3. Since µ is

admissible, using similar arguments as in the previous lemma, we have:

Case α) If a4 = e, then l1 ≡ 0 mod n and gcd(l2, n) = 1. Under the

automorphism (xl2 , 0) 7→ (x, 0), (y, 0) 7→ (y, 0), we get

v ∼ ((y, 1), (yx, 1), (yx, 1), (e, 1), (y, 0)).

Case β) n = 2m is even and a4 = xm. One gets l1 ≡ m mod (2m)

and gcd(l2−m, 2m) = 1. Using the automorphism (xl2−m, 0) 7→ (x, 0),

(y, 0) 7→ (y, 0), we can achieve

v ∼ ((yxm, 1), (yxm+1, 1), (yxm+1, 1), (xm, 1), (y, 0)).

Using the automorphism (of G(H)): (x, 0) 7→ (x, 0), (y, 0) 7→ (y, 0),

(e, 1) 7→ (xm, 1), one finds out that Case β) is equivalent to Case α).

b) a5 is not a reflection.

In this case we see that n must be even and

v = ((y, 1), (yxl2 , 1), (yxl3 , 1), (yxl4 , 1), (xn/2, 0)).
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It is easy to check that µ can not be surjective since (y, 0) is not con-

tained in Im(µ).

Up to now we have got all the admissible µ’s for the case n = 2 (since

n = 2 implies that c5 = 2). One checks easily that they are equivalent

to each other, since in this case G(H) is abelian.

(2) c5 > 2.

The element a5 must lie in the order n cyclic subgroup of H, say a5 =

xk (k 6= n
2

if n is even ).

(i) There are 2 reflections, W.L.O.G. we may assume

v = ((y, 1), (yxl, 1), (a3, 1), (a4, 1), (xk, 0)), a3, a4 ∈ {e, xn/2(if n is even)}.

There are 3 cases:

Case α) (a3, a4) = (e, e).

We get that l + k ≡ 0 mod n and gcd(k, n) = 1. Applying the auto-

morphism (xk, 0) 7→ (x, 0), (y, 0) 7→ (y, 0) we get

v ∼ ((y, 1), (yx−1, 1), (e, 1), (e, 1), (x, 0)).

Moreover we see that c5 = n.

Case β) n = 2m and (a3, a4) = (xm, e).

We get that l + k ≡ m mod 2m and gcd(k,m) = 1.

If gcd(k, n) = 1 (which is the unique case if 2|m), then

v ∼ ((y, 1), (yxm−1, 1), (xm, 1), (e, 1), (x, 0)).

Here we find c5 = n.

Otherwise gcd(k, n) = 2 (which may happen only if 2 - m), we have

that

v ∼ ((y, 1), (yxm−2, 1), (xm, 1), (e, 1), (x2, 0))

and c5 = m.

Case γ) n = 2m and (a3, a4) = (xm, xm).

We get that l + k ≡ 0 mod n, gcd(k, n) = 1 and

v ∼ ((y, 1), (yx−1, 1), (xm, 1), (xm, 1), (x, 0)).

Moreover, we see that c5 = n.

Using the automorphism (x, 0) 7→ (x, 0), (y, 0) 7→ (yx−m, 0), (e, 1) 7→
(xm, 1), we see that case α) is equivalent to Case γ).

(ii) There are 4 reflections.

One checks easily that µ can not be surjective since (y, 0) /∈ Im(µ). �
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Lemma 7.11. Classification of cover type III-a)

We have that n = 2m and d4 = m. Up to equivalence there is a unique

admissible µ with associated Hurwitz vector

v = ((y, 1), (yx−1, 1), (e, 1), (x, 1)).

Proof. Assume that µ : T (2, 2, 2, 2d4)→ Dn×Z/2 is admissible and of

cover type III-a). Then we must have

v := (µ(γ1), µ(γ2), µ(γ3), µ(γ4)) = ((a1, 1), (a2, 1), (a3, 1), (a4, 1)).

The condition d4 > 1 implies that a5 = xk for some integer k (k 6=
n/2 if n is even).

There can only be 2 reflections among a1, a2, a3. W.L.O.G. we can

assume

v = ((y, 1), (yxl, 1), (a3, 1), (xk, 1)), a3 ∈ {e, xn/2(if n is even)}.

Case a) a3 = e.

We get that l + k ≡ 0 mod n, gcd(k, n) = 1 and

v ∼ ((y, 1), (yx−1, 1), (e, 1), (x, 1)).

In this case 2d4 = n, it turns out that n must be even.

Case b) n = 2m and a3 = xm.

We get that l + k ≡ m mod n, gcd(l, n) = 1 and

v ∼ ((y, 1), (yx, 1), (xm, 1), (xm−1, 1)).

Using the automorphism (x, 0) 7→ (x−1, 0), (y, 0) 7→ (yx−m, 0), (e, 1) 7→
(xm, 1), we find that case a) is equivalent to case b). �

Lemma 7.12. Classification of cover type III-b)

We have that c3 = 2 and c4 = n. Up to equivalence there is a unique

admissible µ with associated Hurwitz vector

v = ((yx, 1), (e, 1), (y, 0), (x, 0)).

Proof. In Example (7.5) we saw that if a type III− b) cover has group

type 1), c3 must be 2, combining with the proof of Corollary (7.1) we

have that the case (δH , δH′) = (1, 3) does not occur.

Let µ : T (2, 2, 2, c4)→ Dn × Z/2 be admissible with cover type III-b).

We have that

v := (µ(γ1), µ(γ2), µ(γ3), µ(γ4)) = ((a1, 1), (a2, 1), (a3, 0), (a4, 0)).
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Since c4 > 2 we get that a4 = xk for some integer k. It is obvious that

there are two (and only two) reflections among a1, a2, a3.

(1) a3 is not a reflection. In this case n must be even, say n = 2m, and

we have a3 = xm. W.L.O.G. we may assume

v = ((y, 1), (yxl, 1), (xm, 0), (xk, 0)).

It is easy to see that (y, 0) /∈ Im(µ), therefore in this case there is no

admissible µ.

(2) a3 is a reflection. W.L.O.G we may assume

v = ((yxl, 1), (a2, 1), (y, 0), (xk, 0)), a2 ∈ {e, xn/2(if n is even)}.

There are two possibilities:

(i) a2 = e, we get that k ≡ l mod n, gcd(k, n) = 1 and

v ∼ ((yx, 1), (e, 1), (y, 0), (x, 0)), c4 = n.

(ii) n = 2m is even and a2 = xm, we get that k ≡ l + m mod n,

gcd(k, n) = 1 and

v ∼ ((yxm+1, 1), (xm, 1), (y, 0), (x, 0)), c4 = n.

Using the automorphism (x, 0) 7→ (x, 0), (y, 0) 7→ (y, 0), (e, 1) 7→
(xm, 1), we see that case (i) is equivalent to case (ii). �

Remark 7.13. If we drop the restriction on µH , it is easy to check that

the two Hurwitz vectors in III − a) and III − b) are B.A.-equivalent

(Consider the automorphism of G(H): (x, 0) 7→ (x, 1), (y, 0) 7→ (yx, 0),

(e, 1) 7→ (e, 1)).

7.4. Results. We present our results through tables. We have ob-

tained the representative vectors for the cover C → C/G(H) in (7.9),

(7.10), (7.11) and (7.12), there will be one table for each representative

vector . For the reader’s convenience we present a short list of notation:

v Hurwitz vector for the cover C → C/G(H)

vG/H′ Hurwitz vector for the double cover C/H ′ → C/G(H) = P1

gC/H′ Genus of C/H ′

δH′ Dimension of Fix(H ′)

vH′ Hurwitz vector for the cover C → C/H ′

We will use the following subgroups ofDn×Z/2, whereDn = 〈x, y | xn =

y2 = 1, yxy−1 = x−1〉 and e denotes the neutral element of Dn.
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Subgroup Generators

K (x, 0)

H1,1 K, (e, 1)

H1,2 K, (y, 1)

H1,3 (x2, 0), (y, 0), (e, 1)

H1,4 (x2, 0), (y, 0), (x, 1)

H1,5 (x2, 0), (yx, 0), (e, 1)

H1,6 (x2, 0), (yx, 0), (x, 1)

For compactness, we make the following conventions:

Whenever the groups H1,4, H1,6, H1,3, H1,5 occur, we assume that n =

2m, in the last 2 cases we additionally assume m to be odd. If H1,1

appears we are in the case n = 2. We identify the groups H1,3 and H1,5

with Dn by sending their respective generators in the given order to

xm+1, y, xm.

The cover types are those which appear in Theorem (4.6).

Theorem 7.14. Let H,H ′ be subgroups of Mapg, satisfying condition

(∗∗) and δH ≥ 1. Then G(H) ' Dn×Z/2, H corresponds to Dn×{0}.
The group H ′ and the topological action of the group G(H) (i.e. its

Hurwitz vector) are as listed in the following tables.

Remark 7.15. Given a cover C → C/H, the data consisting of gC/H
and the branching indices are called the signature of the cover. In

[BCGG03], Section 3 the authors computed the signatures for the pos-

sible non-maximal loci of the form Mg, ρ(Dn), which is a direct corollary

of our result.
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Cover type I)
(δH = 3, gC/H = 2, C → C/H is unramified)

v = ((y, 1), (y, 1), (yx, 1), (yx, 1), (e, 1), (e, 1)).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0,0,0,0,1,1) 0 5 (y,y,y,y,yx,yx,yx,yx)

H1,3 (0,0,1,1,0,0) 0 5 (yxm, yxm−2, yxm, yxm+2, xm, xm, xm, xm)

H1,4 (1,1,0,0,1,1) 1 4 (e,y;yx,yx,yx,yx)

H1,5 (1,1,0,0,0,0) 0 5 (yxm, yxm, yxm, yxm, xm, xm, xm, xm)

H1,6 (0,0,1,1,1,1) 1 4 (e,yx;y,y,y,y)

v = ((y, 1), (yxm, 1), (yx, 1), (yx, 1), (xm, 1), (e, 1)), n = 2m.

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 0, 0, 1, 1) 0 5 (y, y, yxm, xmy, yx, yx, yx, yx)

H1,3 (0, 1, 1, 1, 1, 0) 1 4 (xm+1, xm−1;xm, xm, yxm, yxm)

H1,4(m odd) (1, 0, 0, 0, 0, 1) 0 5 (yxm, xmy, yx, yx3, yx, xy, xm, xm)

H1,4(m even) (1, 1, 0, 0, 1, 1) 1 4 (xm, xmy; yx, yx, yx, yx)

H1,5 (1, 0, 0, 0, 1, 0) 0 5 (yx
m2−1

2 , yx
m2−1

2 , yxm, yxm, yxm, yxm, xm, xm)

H1,6(m odd) (0,1,1,1,0,1) 1 4 (xm+1, xm−1;xm, xm, y, y)

H1,6(m even) (0,0,1,1,1,1) 1 4 (e, xm−1y; y, y, xmy, yxm)

v = ((y, 1), (yxm, 1), (yx2, 1), (yx2, 1), (xm, 1), (e, 1)), n = 2m, m odd.

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 0, 0, 1, 1) 0 5 (y, y, yxm, yxm, yx2, yx2, yx2, yx2)

H1,3 (0, 1, 0, 0, 1, 0) 0 5 (xm, xm, yxm, yxm, yx−1, yx−3, yx−1, yx)

H1,4 (0, 0, 0, 0, 1, 1) 0 5 (y, y, yxm, yxm, yx2, yx2, yx2, yx2)

H1,5 (1, 0, 1, 1, 1, 0) 1 4 (x2, x−2;xm, xm, xmy, xmy)

H1,6 (0,1,0,0,0,1) 0 5 (y, y, x2y, x6y, x2y, yx2, xm, xm)
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For n = 2 we have two extra cases:

v = ((y, 1), (y, 1), (x, 1), (x, 1), (e, 1), (e, 1)).

H ′ vG/H′ gC/H′ δH′ vH′

H1,1 (1, 1, 0, 0, 0, 0) 0 5 (x, x, x, x, y, y, y, y)

H1,2 (0, 0, 1, 1, 1, 1) 1 4 (e, x; y, y, y, y)

H1,3 (0, 0, 1, 1, 0, 0) 0 5 (yx, yx, yx, yx, x, x, x, x)

H1,4 (1, 1, 0, 0, 1, 1) 1 4 (e, y;x, x, x, x)

H1,5 (1, 1, 1, 1, 0, 0) 1 4 (e, yx;x, x, x, x)

H1,6 (0,0,0,0,1,1) 0 5 (y, y, y, y, x, x, x, x)

v = ((y, 1), (yx, 1), (x, 1), (x, 1), (x, 1), (e, 1)).

H ′ vG/H′ gC/H′ δH′ vH′

H1,1 (1, 1, 0, 0, 0, 0) 0 5 (yx, yx, yx, yx, yx, yx, y, y)

H1,2 (0, 0, 1, 1, 1, 1) 1 4 (e, e; y, y, yx, yx)

H1,3 (0, 1, 1, 1, 1, 0) 1 4 (y, y;x, x, yx, yx)

H1,4 (1, 0, 0, 0, 0, 1) 0 5 (yx, yx, x, x, x, x, x, x, x, x)

H1,5 (1, 0, 1, 1, 1, 0) 1 4 (e, y;x, x, x, x)

H1,6 (0,1,0,0,0,1) 0 5 (y, y, x, x, x, x, x, x, x, x)

Cover type II)
(δH = 2, gC/H = 1)

(1) c5 = 2.

v = ((y, 1), (yx, 1), (yx, 1), (e, 1), (y, 0)), vH = (x, x−1; y, y).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 0, 1, 1) 0 3 (y, y, yx, yx, yx, yx)

H1,3 (0, 1, 1, 0, 0) 0 3 (yxm, yx−1, xm, xm, y, yxm+1)

H1,4 (1, 0, 0, 0, 1) 0 3 (yx, yx, yx, yx, y, y)

H1,5 (1, 0, 0, 0, 1) 0 3 (yxm, yx, yxm, yx−1, xm, xm)

H1,6 (0, 1, 1, 1, 1) 1 2 (e, yx; y, y)
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(2) c5 > 2.

v = ((y, 1), (yx−1, 1), (e, 1), (e, 1), (x, 0)), c5 = n, vH = (x−1, y;x, x).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 1, 1, 0) 0 3 (y, y, yx−1, yx−3, x, x)

H1,3 (0, 1, 0, 0, 1) 0 4 (yxm, yx−1, xm, xm, xm, xm, xm+1)

H1,4 (1, 0, 1, 1, 1) 1 3 (y, y;x2, yx3, yx)

H1,5 (1, 0, 0, 0, 1) 0 4 (yx−1, yxm−2, xm, xm, xm, xm, xm+1)

H1,6 (0, 1, 1, 1, 1) 1 3 (yx−1, yx−1;x2, yx2, y)

v = ((y, 1), (yxm−1, 1), (xm, 1), (e, 1), (x, 0)), n = 2m, vH = (xm−1, yxm;x, x).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 1, 1, 0) 0 3 (y, y, yxm−1, yxm−3, x, x)

H1,3 (0, 0, 1, 0, 1) 0 4 (yxm, yxm+2, yx, yx, xm, xm, x−2)

H1,4 (m odd) (1, 1, 0, 1, 1) 1 3 (xm−1, y;x2, xm, xm)

H1,4 (m even) (1, 0, 1, 1, 1) 1 3 (yxm, y;x2, yxm+3, yxm+1)

H1,5 (1, 1, 1, 0, 1) 1 3 (xm+1, y;x−2, xm, xm)

H1,6 (m odd) (0, 0, 0, 1, 1) 0 4 (y, yx−2, yxm−1, yxm−1, xm, xm, x2)

H1,6 (m even) (0, 1, 1, 1, 1) 1 3 (yx−1, yxm−1;x2, yx2, y)

v = ((y, 1), (yxm−2, 1), (xm, 1), (e, 1), (x2, 0)), n = 2m, m odd, c5 = m,

vH = (xm−2, yxm;x2, x2).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 1, 1, 0) 0 3 (y, y, yxm−2, yxm−6, x2, x2)

H1,3 (0, 1, 1, 0, 0) 0 3 (yxm, yxm−4, xm, xm, x2, x2)

H1,4 (1, 0, 0, 1, 0) 0 3 (yxm−2, yxm−6, xm, xm, x2, x2)

H1,5 (1, 0, 1, 0, 0) 0 3 (y, yx−4, xm, xm, x2, x2)

H1,6 (0, 1, 0, 1, 0) 0 3 (y, yx−4, xm, xm, x2, x2)
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For n = 2 we have one extra case.

v = ((yx, 1), (x, 1), (e, 1), (e, 1), (y, 0)), vH = (y, yx; y, y).

H ′ vG/H′ gC/H′ δH′ vH′

H1,1 (1, 0, 0, 0, 1) 0 3 (x, x, y, y, y, y)

H1,2 (0, 1, 1, 1, 1) 1 2 (x, x; yx, yx)

H1,3 (1, 1, 0, 0, 0) 0 3 (x, x, x, x, y, y)

H1,4 (0, 0, 1, 1, 0) 0 3 (yx, yx, x, x, y, y)

H1,5 (0, 1, 0, 0, 1) 0 3 (yx, yx, x, x, x, x)

H1,6 (1, 0, 1, 1, 1) 1 2 (yx, yx;x, x)

Cover type III-a)
(δH = 1, gC/H = 1)

v = ((y, 1), (yx−1, 1), (e, 1), (x, 1)), 2d4 = n = 2m, vH = (x−1, y;x2).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 0, 1, 1) 0 2 (y, yx2, yx−1, yx−1, x2)

H1,3 (0, 1, 0, 1) 0 2 (yxm, yx−1, xm, xm, xm+1)

H1,4 (1, 0, 1, 0) 0 1 (yx−1, yx−3, x, x)

H1,5 (1, 0, 0, 1) 0 2 (yx−1, yxm−2, xm, xm, xm+1)

H1,6 (0, 1, 1, 0) 0 1 (x, x, y, yx−2)

Cover type III-b)
(δH = 1, gC/H = 0)

v = ((yx, 1), (e, 1), (y, 0), (x, 0)), c4 = n = 2m, vH = (y, yx−2, x, x).

H ′ vG/H′ gC/H′ δH′ vH′

H1,2 (0, 1, 1, 0) 0 1 (yx, yx−1, x, x)

H1,3 (1, 0, 0, 1) 0 2 (xm, xm, y, yxm−1, xm+1)

H1,4 (0, 1, 0, 1) 0 2 (yx, yx−1, y, y, x2)

H1,5 (0, 0, 1, 1) 0 2 (yxm, yx−1, xm, xm, xm+1)

H1,6 (1, 1, 1, 1) 1 1 (yx, x;x2)
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8. Decompositions of Mh[G]

In the proof of theorem 3.1 (cf. 1) we saw that Mh[G] has a decom-

position which depends upon the choice of a sufficiently large natural

number k:

DGk,h : Mh[G] =
⊔

[β]∈BN

MG,β
k,h ,

Since given a G-marked family ((X → T ), G, ρ) over a connected base

T , the induced G-representations on H0(ωkXt) are all isomorphic to each

other for any t ∈ T (cf. [Cat13], Prop 37), each component of the

decomposition is a union of connected components of Mh[G].

Definition 8.1. (1) Given a space X with two decompositions D1 :

X =
⊔
i∈I Yi and D2 : X =

⊔
j∈JWj, where each Yi, Wj is a union of

connected components of X, their minimal refinement is defined as:

D1 ∩ D2 : X =
⊔

(i,j)∈I×J

Yi ∩Wj.

(2) The canonical representation type decomposition of Mh[G] is the

minimal refinement of all the above decompositions:

Dh[G] := ∩k∈KDGk,h,

where K denotes the set of natural numbers satisfying Matsusaka’s big

theorem (cf. [Mat86], Theorem 2.4).

Remark 8.2. Since Mh[G] is a quasi-projective scheme, we see im-

mediately that there exists a minimal natural number N(h,G) and

integers k1, ..., kN(h,G) such that

Dh[G] = ∩N(h,G)
i=1 DGki,h,

Several natural questions arise:

Question 1. What is an explicit bound for N(h,G)?

Question 2. Are the components of Dh[G] connected? or how many

connected components do they have?

To answer question 1, we provide first a method which works in

general, the main idea is to consider suitable Hilbert resolutions of

the canonical rings of varieties with a fixed Hilbert polynomial h (cf.

[Cat92], Section 2). Then in the case of algebraic curves we use the

Chevalley-Weil formula to obtain a more precise bound for N(h,G).



63

Since the functor Mh is bounded, there exists a minimal natural

number m = m(h) such that ∀X ∈ Mh(Spec(C)), H i(X,ωmX ) = 0 for

any i > 0 and the m-th pluricanonical map of X, φm : X → Pn , is an

embedding, where n := h(m)− 1. Recall that the canonical ring of X

is:

R = R(X,ωX) :=
⊕
k≥0

H0(X,ωkX)

Since ωX is ample, R is a finite graded module over the graded ring

A := Sym(H0(X,ωmX )). The degree k direct summand of R (resp. A)

is denoted by Rk (resp. Ak).

Remark 8.3. Assuming a group G acts on X, we have naturally in-

duced actions on R and A. It is easy to see that these actions are

compatible in the following sense:

(1) ∀k ∈ N, Ak (resp. Rk) is a G-invariant subspace of A (resp. R).

(2) ∀g ∈ G, ak1 ∈ Ak1 and ak2 ∈ Ak2 , g(ak1ak2) = (gak1)(gak2) (the

same holds for R).

(3) ∀g ∈ G, ak1 ∈ Ak1 and uk2 ∈ Rk2 , g(ak1uk2) = (gak1)(guk2).

Denoting by δ the depth of R as an A-module, by Hilbert’s syzygy

theorem we have a minimal free resolution of R of length n+ 1− δ (cf.

[Gre89], Theorem 1.2):

0→ Ln+1−δ → Ln−δ → · · · → L1 → L0 → R→ 0.

Now taking the action of G into account, we have the following:

Lemma 8.4. Let A = C[x0, ..., xn] and let M be a finite graded A-

module. Assuming that we have actions of G on A andM such that 8.3

(1), (2) and (3) are satisfied, then there exists a minimal G-equivariant

free resolution of M:

0→ Ln+1−δ → Ln−δ → · · · → L1 → L0 →M→ 0,

where δ is the depth of M as an A-module. Moreover, Li is a direct

sum:

Li =
⊕

χ∈Irrchar(G)

sχ⊕
j=1

A(−nχ,i,j)⊗ Vχ,

where Irrchar(G) denotes the set of irreducible characters of G and Vχ
is the irreducible representation associated to χ.
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Proof. SinceM is a finitely generatedA-module, there exists a minimal

integer k1 such that Mk1 6= 0. We have a natural G-equivariant A-

module morphism:

ψ1 : A(−k1)⊗Mk1 →M,

where the action on the left hand side is: g(a⊗m) = (ga)⊗ (gm).

NowM/Im(ψ1) is again a finitely generated graded A-module and G-

module, hence we have η̄2 : A(−k2) ⊗ (M/Im(ψ1))k2 → M/Im(ψ1),

which can be lifted to a G-equivalent homomorphism η2 : A(−k2) ⊗
M′

k2
→M, where k2 > k1 is the minimal integer such that (M/Im(ψ1))k2 6=

0, and M′
k2

is a G-invariant subspace of Mk2 which maps isomor-

phically onto (M/Im(ψ1))k2 . We repeat the process and (since M
is finitely generated) after a finite number of steps we obtain L0 =

⊕l0ν=1A(−kν)⊗M′
kν

(we setM′
k1

=Mk1) and a surjectiveG-equivariant

morphism d0 : L0 � M. By decomposing M′
kj

into irreducible G-

subspaces we get the promised form of L0. From our construction, we

see that L0 is a finitely generated graded-A-module and G-module sat-

isfying 8.3 (3).

We define Li and di for i ≥ 1 inductively: assuming that we already

have di−1 : Li−1 → Li−2 and ker(di−1) is a finitely generated graded

A-module and G-module satisfying 8.3 (3), we repeat the construction

process of d0 and get di : Li � ker(di−1) ⊂ Li−1. By Hilbert’s syzygy

theorem we have Ln−δ+2 = 0. From our construction it is clear that

the resulting resolution is minimal. �

Setting N ′(h,G) := m+ max{nχ,i,j}, from (8.4) we have the follow-

ing:

Proposition 8.5. For any k > N ′(h,G), the G-representation on Rk

is determined by the representations onR1, ...,RN ′(h,G), hence N(h,G) ≤
N ′(h,G).

In order to find an explicit bound on N(h,G), we estimate the inte-

gers m and max{nχ,i,j} separately.

The problem of finding an effective bound on m is the so called ”ef-

fective Matsusaka problem”. Kollár has shown in [Kol93] that m ≤
2(d+ 3)(d+ 2)!(2 +d), where d := deg(h) = dimX. If we only consider

canonically polarized manifolds, we have better results (cf. [Dem96],

[Siu02]): we would like to mention the result by Angehrn and Siu, they
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have shown that m ≤ (d+ 1)(d2 + d+ 4)/2 + 2 (cf.[AS95]).

To determine max{nχ,i,j}, we recall first the notion of the Castelnuovo-

Mumford regularity (cf. [Mum66], Lecture 14).

Definition 8.6. Let F be a coherent sheaf on Pn: F is said to be

s-regular if H i(Pn,F(s− i)) = 0 for all i > 0, the regularity of F is the

minimal natural number with this property.

The regularity of a graded A-moduleM is the regularity of its associ-

ated sheaf M̃.

Let s be the regularity of R as an A-module: we have the following

inequalities.

Lemma 8.7. Notations as in (8.4). For any i, j and χ,

i ≤ nχ,i,j ≤ i+ s.

Proof. See [Cat92], Section 2. �

An immediate consequence is that

Proposition 8.8. max{nχ,i,j} ≤ s+ n+ 1− δ ≤ s+ n+ 1.

We refer to [Mum66], Lecture 14 for the fact that given a Hilbert

polynomial h, ∀X ∈ Mh(Spec(C)), the regularity of R(X,ωX) (as an

A-module) is bounded by a polynomial in the coefficients of h(mx).

Observe that, the ring R is a direct sum of graded A-submodules:

R =
m−1⊕
j=0

R(j),

where R(j) :=
⊕

i≥0Rj+mi. Hence we have the following proposition:

Proposition 8.9. For large k, the G-representation on Rk is deter-

mined by the representation on Rm and the representations on the lower

degree summands Rl whose degree l lies in the same modulo m congru-

ence class of k.

In the rest of this section we answer question 1 and question 2 for

algebraic curves using topological methods. In the case of curves we

use genera instead of Hilbert polynomials, for instance, for curves of

genus g ≥ 2 the corresponding moduli space is denoted by Mg[G].
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From now on C shall denote a smooth projective curve of genus

g ≥ 2. Moreover we assume that a finite group G acts effectively on

C, we denote by C ′ the quotient curve C/G and by g′ the genus of C ′.

The Galois cover p : C → C ′ is branched in r points (r = 0 if p is

unramified) on C ′ with branching indices m1, ...,mr. The cover p has

an associated Hurwitz vector v = (a1, b1, ...ag′ , bg′ ; c1, ...cr) of type (mi)

(cf. 4.3).

The main ingredient in comparing DGk,g for different k’s is the follow-

ing version of the Chevalley-Weil formula:

Theorem 8.10 (Chevalley-Weil, cf.[CW34]). Let (C,G, φ) be a G-

marked curve and let v = (a1, b1, ...ag′ , bg′ ; c1, ...cr) be a Hurwitz vector

associated to the cover C → C/φ(G).

Denote by χφk the character of the representation φk : G → H0(ωkC)

which is induced naturally by φ, and let χρ be the character of an ir-

reducible representation ρ : G → GL(Wρ). We have the following

formulae:

(1) 〈χφ1 , χρ〉 = χρ(1G)(g′ − 1) +
r∑
i=1

mi−1∑
α=1

αNi,α

mi

+ σ,

where setting ξmi := exp(2πi/mi), Ni,α is the multiplicity of ξαmi as

eigenvalue of ρ(ci), and σ = 1 if ρ is trivial, otherwise σ = 0.

(2) 〈χφk , χρ〉 =
2k

|G|
χρ(1G)(g−1)−χρ(1G)(g′−1)−

r∑
i=1

mi−1∑
α=0

Ni,α
[−α− k]mi

mi

.

Here k ≥ 2 , [n]mi ∈ {0, ...,mi−1} is the congruence class of the integer

n modulo mi.

Remark 8.11. The Chevalley-Weil formula given in 8.10 is not in the

original form of [CW34], but in the form of [FG15], theorem 1.11.2

Using (8.10), we see that

〈χφk+|G| , χρ〉 − 〈χφk , χρ〉 = 2χρ(1G)(g − 1) for k ≥ 2

and

〈χφ1+|G| , χρ〉 − 〈χφ1 , χρ〉 = 2χρ(1G)(g − 1)− σ,

2The authors proved the formula for k = 1, but with their method one easily

obtains the formula for any k. I am thankful to C. Gleißner for bringing these

formulae to my attention.
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which is independent of the action φ. Hence we have the following:

Corollary 8.12. For curves of genus g ≥ 2 and a finite group G,

DGk,g and DGk+|G|,g give the same decomposition of Mg[G] for any k ≥ 1.

Therefore we have Dg[G] = ∩|G|k=1DGk,g and N(g,G) ≤ |G|.

The next example shows that DGk1,g and DGk2,g could be different if

|k1−k2| < |G|, hence Dg[G] might be a proper refinement of each DGk,g.

Example 8.13. In this example G = Z/3Z = {0, 1̄, 2̄} and g = 6. Let

χi : G→ C∗, 1̄ 7→ ξi3, i = 1, 2 be the nontrivial irreducible characters of

G. Consider two G-marked curves (C1, G, φ) and (C2, G, φ
′) of genus g

with associated Hurwitz vectors

v = (1̄, 0, 0, 2̄; 2̄, 1̄) and

v′ = (1̄, 1̄, 2̄, 2̄, 1̄, 1̄, 2̄, 2̄).

Using (8.10), one computes easily that χφ1 = 2χtriv + 2χ1 + 2χ2, χφ2 =

5χtriv + 5χ1 + 5χ2, χφ3 = 9χtriv + 8χ1 + 8χ2; χφ′1 = 3χ1 + 3χ2, χφ′2 =

5χtriv + 5χ1 + 5χ2 and χφ′3 = 11χtriv + 7χ1 + 7χ2. Hence we see that

DG2,6 is different from DG1,6 and DG3,6.

We answer now Question 2. The idea is to consider the topological

types of G-actions on curves. The following observations are important:

Remark 8.14.

1) Using (8.10), we see that if two G-marked curves have the same

marked3 topological type (i.e., the equivalence class of the topo-

logical G-actions on a compact Riemann surface with a given

genus, cf. [Cat15], 11.2), then they must have the same repre-

sentation type for all k ≥ 1.

2) Given a G-marked family of curves over a connected base, then

the marked topological types are all the same for any G-marked

curve in the family (cf. [Cat15], chapter 11).

3) Given two G-marked curves of genus g such that G acts freely

on both curves, from (8.10) we see that the respectively induced

G-representations on H0(ωk) are the same for all k. Moreover

both representations on H0(ωk) are direct sum of regular G-

representations for k ≥ 2.

3The word ”marked” means that we do not allow automorphisms of G.
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Definition 8.15. (1) Given a finite group G, we denote by χr.r the

character of the regular representation of G on the group algebra C[G]

induced by left translation of G.

(2) The component of the regular representation (Mg[G])r.r of Mg[G]

(with respect to the decomposition Dg[G]) is the subscheme of Mg[G]

consisting of the G-marked curves [(C,G, φ)] of genus g such that there

exists a sequence of natural numbers {nk}, such that χφk = nkχr.r for

all k ≥ 2.

Recall that a split metacyclic group G is a split extension of two

cyclic groups, or equivalently G has the following presentation:

G = 〈x, y|xm = yn = 1, yxy−1 = xr〉

where m,n and r are positive integers such that rn ≡ 1 mod m.

Using the above observations and assuming G is a nonabelian split

metacyclic group, we give a lower bound for the number of connected

components of (Mg[G])r.r.

Denote by MTF(G, g) the set of marked topological types of free G-

actions on a compact Riemann surface of genus g. By 8.14. 2) and 3)

we see that (Mg[G])r.r has at least |MTF(G, g)| connected components.

In the case that G is a nonabelian split metacyclic group, we have

the following result of Edmonds.

Theorem 8.16 ([Edm83], Theorem 1.7). Given G a nonabelian split

metacyclic group, then there is a bijection B : MTF(G, g)→ H2(G,Z).

With our preceding discussion, we immediately have the following:

Proposition 8.17. Let G be a nonabelian split metacyclic group: ∀g ≥
2, (Mg[G])r.r has at least |H2(G,Z)| connected components.

In the end we provide a formula to compute H2(G,Z) for a split

metacyclic group G.

Lemma 8.18. H2(G) = Z/dZ, where d =
gcd(m, r−1) gcd(m, Σn−1

i=0 r
i)

m
.

Proof. See [Edm83], Lemma 1.2. �
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Mathématique de France (1958), Vol.86, page 137-154.
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Zusätzlich erkläre ich hermit, dass ich keinerlei frühere Promotionsver-
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