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Abstract

The main objective of the research work presented in this thesis was to develop a

better understanding of the kinetics of crystal growth phenomenon where atomistic

and microscale are tightly coupled as nucleation. To that end a new material sci-

ence concept on atomistic length and di�usive time scales was developed further

and applied to the fundamental studies of the nucleation kinetics for the binary

alloy system beyond classical nucleation theory. The theoretical approach used in

this thesis is the phase-�eld crystal (PFC) method. The originally introduced PFC

approach [7] can only model certain classes of material systems with Poisson's ra-

tio of 1/3. Thus, it requires an appropriate extension of this approach to overcome

these limitations and to extend the applicability of this approach to a wider range of

material systems. This extension of the originally introduced PFC model to develop

a more generalized model with the capability to model material systems of arbi-

trary Poisson's ratio [8, 9], is one of the important aims of this thesis. Furthermore,

questions around the numerical e�ciency as well as the recovery of physical details

associated with the scale-bridging approach are also addressed by the development

of the complex amplitude formalism which demonstrates the explicit connection be-

tween the PFC and PF models [10]. This development of a scale-bridging approach

is an important aim of this thesis which facilitates the further advancement towards

multi-scale modelling of microstructural evolution phenomena in a wide range of ma-

terial systems. Finally, an application is presented which concerns a fundamental

approach to study the nucleation mechanisms associated with binary systems moti-

vated by their higher industrial relevance. This study successfully demonstrated the

usefulness of the �nite system size approach for a precise assessment of the equilib-

rium properties of the curved liquid-solid interface as well as the nucleation barriers

beyound the predictions based on the classical nucleation theory and non-classical

Tolman formula [12].
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1 Thesis overview

Over the past several decades, a tremendous amount of research has gone into the

development of fundamental understanding of the nucleation kinetics and the evo-

lution of successive initial microstructure formation processes which play a key role

in the determination of material properties. The speci�c features of the resulting

microstructures are often directly related to the metastable equilibrium state of the

system, which usually arises during the processing stage. Many formalisms for cal-

culating the equilibrium states were established by Gibbs, Boltzmann and others.

However, there are many systems which never reach an equilibrium mainly due to the

existence of metastable states. The presence of such nonequilibrium states strongly

in�uences several material properties, for example, the Hall-Petch equation shows

that the yield strength of polycrystalline materials varies as the inverse square of the

average grain size [1, 2]. Therefore, the fundamental understanding of the complex

dynamics of such systems out of equilibrium has always fascinated researchers due

to its wide range of applications in materials science [3, 4, 5]. A classical example

of such an application is solidi�cation, which is an important step in the processing

route of several materials. In order to describe the basics of the solidi�cation pro-

cess, it is very important to understand the complex phenomena of nucleation and

the phase transformations occuring during the solidi�cation process as initial stages

determining characteristic material length scales and their properties. Although the

basic principles of nucleation and phase transformation processes are well known,

still many details about these processes require further explanation. Hence, the un-

derstanding of the process of nucleation and successive microstructure formation is

of signi�cant importance to guide optimal design aiming at speci�c microstructural

properties [6].
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1 Thesis overview

1.1 Thesis outline

In this section, the outline of the topics covered in the following chapters of this

thesis is presented. The organization of this thesis is structured in the following

way:

Chapter 2 focuses solely on the basic introduction and further development of the

theoretical approaches employed in this work. More speci�cally, it provides a de-

tailed theoretical description of the PFC method along with its main features and

important developments that have been made in recent years. It also highlights the

relationship between the phenomenological model parameters and the real material

properties which provides the physical justi�cation to the model. Finally, impor-

tant recent applications of the PFC approach as well as certain limitations of the

originally introduced PFC model [7] in terms of its applicability to model material

systems with Poisson's ratio other than 1/3 are also presented in this chapter. Thus,

the objective of this chapter is to set the context for the main research topics covered

in this thesis in order to justify the importance of the research work presented in

the following chapters as well as to present a detailed picture of the development of

the theoretical foundations used in this thesis.

In chapter 3, a detailed derivation of the newly developed anisotropic phase-�eld

crystal (APFC) model, which has the capability of simulating isotropic as well as

anisotropic materials with arbitrary Poisson's ratio, is presented. Since the appli-

cability of the originally derived PFC model [7] was limited to a certain class of

material systems with Poisson's ratio of 1/3, therefore, it restricts the use of the

PFC approach to model certain classes of materials with Poisson's ratio other than

1/3 such as steel and iron (with Poisson's ratio in a range of 0.21 - 0.3). The newly

developed APFC model addresses this issue due to its capability to model mate-

rials with arbitrary Poisson's ratio and thus extends the applicability of the PFC

approach to a wider range of material systems. Additionally, the APFC is fully

calibrated through the derivation of its model parameters from the the dynamical

density functional theory (DDFT), which originally provided one physical justi�ca-

tion to the model [8]. The analysis of the stable state phases and the corresponding

2



1.1 Thesis outline

phase diagram for the APFC model is also presented in this chapter. Furthermore,

to address questions concerning the computational e�ciency as well as the transi-

tion to microscopic scale, the derivations of the amplitude formulation for the APFC

model is also presented, which explicitly demonstrates the connection between the

APFC model and the standard phase-�eld models and thus enhances the compu-

tational e�ciency by building a bridge in the multiple-scale spirit. Most parts of

this chapter, including the mathematical derivations and the simulation results, are

already published in [8, 9, 10].

Chapter 4 focuses on the application of the PFC method to study the nucleation

kinetics associated with binary systems as a step in the direction of industrially rel-

evant material systems. In this study, the focus was not on the capacity to model

arbitrary Poisson's ratio, but rather on establishing a precise assessment of the nu-

cleation mechanisms beyond predictions based on classical nucleation theory (CNT).

More speci�cally, a quantitative analysis of the equilibrium properties of the liquid-

solid interface by means of a PFC model for binary alloys [1] is presented in this

chapter. The details of the method used for the investigations of the equilibrium

properties and the corresponding simulations results are also discussed. The main ob-

jective of this chapter is to establish the usefulness of the �nite system size approach

to study the liquid-solid phase transition as it was successfully demonstrated as a

quantitative route to assess the nucleation kinetics associated with a liquid-vapour

system as well as to assess a detailed picture of the nucleation kinetics beyond CNT.

The main results presented in this chapter are published in [11, 12].

Finally, chapter 5 summarizes the key �ndings from the simulations carried out in

this thesis and presents a brief concluding discussion as well as a possible future

extension of the work presented in this thesis.
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2 Theoretical background

This chapter focuses on the fundamental development of the modeling approaches

used in the following chapters and thus provides the theoretical framework for the

work presented in this thesis. More speci�cally, a detailed review of the origins of

the PFC method in the context of its phenomenological as well as the theoretical

development is presented in this chapter. The deviation of the parameters of the

originally introduced PFC model by means of the classical DFT provides the phys-

ical justi�cation to the model. The derivation of important material properties in

terms of parameters of the PFC model is discussed in detailed. Furthermore, im-

portant limitations of the originally introduced PFC model and the corresponding

further extensions to address these issues, are also discussed. Thus, this theoretical

discussion provides the foundation to elaborate the physics behind the simulation

results presented in the following chapters of this thesis.

2.1 Overview of the PFC method

A well known mathematical description for the dynamics of systems out of equilib-

rium was developed by Stefan and Boltzmann [13]. Since then, the problems which

involve a moving sharp interface between two phases are termed as Stefan problem.

This formalism was based on the basic laws of energy conservation and heat trans-

portation. In the last few decades, several solutions are proposed for the continuum

sharp interface Stefan problems.

Another continuum approach to model such systems has followed the introduction

of the PF approach. This approach has its origin in the Ginzburg-Landau [14] and

Cahn-Hilliard [15] theories on the interface between the solid and its melt. It di�ers
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2 Theoretical background

from the Stefan problem in a way that it implicitly tracks the liquid and solid phases

as well as the interface through a continuum order parameter �eld. The PF method

couples a set of uniform order parameters to one or more di�usion �elds (such as

temperature or concentration) and the time evolution of the relevant order parame-

ters is governed by a dissipative dynamics, driven by a free energy functional. In this

approach, the evolution process is described through one order parameter which is a

continuous function of space and time, and is known as phase-�eld variable ψ(x, t).

The constant values of the phase-�eld variable (locally) represent the presence of

liquid or solid phases. However, close to the interface between two phases, the val-

ues of ψ changes smoothly. Due to this smooth interface between the phases, the

PF method is also known as the di�use interface approach. It allows to model and

investigate the dynamics of the interface, that change the topology during evolution

of ψ with time without the need of explicit tracking of the interface. For a problem

related to a two-component system, this phase-�eld variable represents the local

composition of both components. The simplest form of the energy functional for

this approach is based on the Landau form of the free energy functional and can be

expressed as

F =

∫
V

[
ε2

2
|
−→
∇ψ|2 + f(ψ)

]
dV , (2.1)

where the integration extends over the �xed volume V. The �rst term in the free

energy functional expression penalizes for the existence of the interface between the

phases whereas the second term, which is commonly known as the double well free

energy, accounts for the bulk free energy for various phases and sets the equilibrium

states of these phases. The corresponding dynamical evolution of the �eld equation

can be expressed as

∂ψ

∂t
= M

(
δF

δψ

)
+ η , (2.2)

whereM represents the mobility of the system and η is a Gaussian random variable.
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2.1 Overview of the PFC method

For a detailed review of the PF modeling approach and its important applications,

the readers are referred to [3, 15]. The PF formalism has been successfully applied to

the study of solidi�cation phenomena [16, 17, 18, 19, 20] as well as several complex

phenomena which can not be described with the traditional Stefan approach such

as non-equilibrium interfaces [21], multi-phases [22, 23] and defects [24].

While the PF method has proved remarkably successful there are many properties

of materials which are directly controlled by the elasticity and symmetry, therefore,

elasticity, multiple crystal orientations, grain boundaries and dislocations need to be

incorporated into the free energy in order to model such systems. In other words, for

a more comprehensive description of such systems, the free energy functional needs

to be minimized by a periodic �eld which will naturally ensure the inclusion of the

elastic energy and symmetry properties of that periodic �eld. Since the traditional

PF models are usually formulated in terms of �elds that are spatially uniform in

equilibrium, it eliminates many physical features that arise due to the periodic nature

of crystalline phases such as multiple orientations, elastic and plastic deformation

and anisotropy. The explicit incorporation of these features into the traditional

PF models leads to a very complicated model [25] to deal with and this limitation

indicates a notable restriction of the PF models. Therefore, for a proper description

of the crystalline phases, a spatially uniform phase �eld is not a good representation

since it neglects properties associated with the symmetries of a crystal lattice such

as elastic and plastic deformability.

To overcome the weaknesses of the traditional PF methods, very recently a new

extension to the traditional PF models has emerged in the form of the PFC method

which accounts for microscopic details of crystalline solids and elastic e�ects [1, 7,

26, 27, 28]. In this method the phase-�eld variable, which is constant in the bulk

phase in the PF approach, is replaced by a �eld that exhibits the periodic crystal

structure of the solid phase. The PFC method operates on atomic length scales and

di�usive time scale and thus lies in between the traditional PF models and atomistic

models.

The PFC model is capable of modeling a wide range of complex phenomena in-

volving equilibrium as well as nonequilibrium phenomena on atomic length scales.

7



2 Theoretical background

Unlike the traditional PF models, the periodic nature of φ naturally incorporates

many physical e�ects such as elastic and plastic deformations, anisotropic interfacial

energy and crystal orientations, which need to be explicitly incorporated into the

free energy of the traditional PF models. The di�usive time scale of PFC models

is much larger compared to the characteristic time scale of MD simulations. Thus,

it is a computationally more e�cient alternative to MD simulations for problems

where atomic to continuum scale in�uences are tightly coupled. For a simple ap-

plication such as di�usion in gold or copper it runs 106 - 108 times faster than the

corresponding MD simulations [29]. In that sense it provides, from the point of view

of multiscale materials modelling, an interesting link between the traditional PF

method [31, 32] and the MD due to the fact that it operates on atomic length scales

and di�usive time scales. The phenomenological as well as the theoretic development

of the PFC method are discussed in the following section.

2.1.1 Phenomenological development

From the point of view of the phenomenological development, the PFC method is for-

mulated from the concepts of the Ginzburg-Landau model for order-disorder phase

transformations [33] and the Swift-Hohenberg [34] formulation of an amplitude ap-

proach to describe systems, where the stable states are periodic, as e.g. the case

for the Rayleigh-Benard convection. The mathematical derivation is based on an

order parameter φ(x, t), usually considered as density function, which represents the

physical probability density of the position of atoms. This order parameter describes

several physical quantities such as density �eld, concentration and crystalline order

etc. For example, for a well documented case of solidi�cation: consider a material

which is disordered at high temperature and has two stable phases at low tempera-

ture. Upon quenching the material from high to low temperature, grains of di�erent

stable phases will arise and evolve in competition with each other. For such a system,

φ represents the relative mass fraction of various phases and the constant value of

φ represents the presence of both stable phases. A simple way to approximate the

free energy functional is via the sum of a bulk term and a gradient term to represent

contributions from inhomogeneities. The simplest form of the energy functional for

8



2.1 Overview of the PFC method

this approach can be expressed as

F =

∫
V

f(φ)dr, (2.3)

where f(φ) is the free energy density. Unlike traditional PF models, the free energy

functional in PFC method is constructed for the equilibrium state characterized

by a non-uniform order parameter which represents crystalline phase by a periodic

function. Elder et al. proposed such a free energy functional for the PFC method

to study the pattern formation problems at atomistic level [7]. Typical form of the

free energy functional is given by following expression:

f(φ) = f0(φ) +
φ

2
(q0

2 +∇2)2φ, (2.4)

where (f0(φ) + 1
2
q0

2φ2) is the bulk contribution which re�ects the thermodynamics

of an in�nite system, the gradient term in the expression describes the energy associ-

ated with interfaces and q0 is a constant parameter which represent the wavelength

of the system. The operator (q0
2 + ∇2)2 in Eq. (2.4) is similar to one used in the

Swift-Hohenberg (SH) equation [34] and it favors the gradient of the order param-

eter The bulk contribution term can be written in the form of polynomial function

of the order parameter which is similar to the Landau free energy expression, i.e.

f0(φ) = α
φ2

2
+ β

φ4

4
+ ..., (2.5)

where coe�cients α and β are similar to the ones used in the Landau free energy

expression [33] and α is proportional to the undercooling. The phase-�eld variable

φ can have two equilibrium phases, i.e. a liquid phase with uniform pro�le and

a crystalline phase with periodic pro�le, which may further have several patterns

depending on the system. The corresponding evolution equation for the PFC model

can be derived by assuming dissipative dynamics with mass conservation, i.e.

9



2 Theoretical background

∂φ

∂t
= M∇2

(
δF

δφ

)
+ η , (2.6)

where M represents the mobility of the system and η is the stochastic thermal

�uctuations.

The strength of the PFC method lies in the fact that it has the ability to explicitly

track the atomic scale motion of a process during temporal evolution over di�usive

time scales, e.g. the evolution of defects as well as the local atomic arrangement of

atomics can be naturally captured by the PFC description because of its atomic scale

resolution. Due to this ability, it can naturally incorporate many crystallographic

e�ects emerging directly from the atomic scale, e.g. elastic and plastic deforma-

tions and topological defects such as dislocations [7, 26], which would have to be

explicitly incorporated into the free energy of the traditional PF models. Fig. 2.1

demonstrates the ability of the PFC approach to track defects explicitly at atomic

level.

Figure 2.1: PFC based simulations of the crystal growth with defects in the resulting mi-
crostructure.

One of the practical challenges to the PFC method in its phenomenological develop-

10



2.1 Overview of the PFC method

ment was the modeling of real material systems and the di�culty to directly relate

the model parameters with the material properties. To address these issues and to

develop a better understanding of the methodological concepts of the PFC method,

a veri�cation of its phenomenological parameters via a fully established methodology

as the classical density functional theory (DFT), was an important step [35].

2.1.2 Theoretical development

As outlined above, the PFCmodel was originally introduced [7] using the phenomeno-

logical arguments. Then it was further veri�ed via a calibration of its phenomenolog-

ical parameters based on the DFT [35, 36]. The theoretical development of the PFC

method presented in this section follows [29, 30]. It is based on the classical DFT

of freezing proposed by Ramakrishnan and Yussou� [35] and reviewed by Singh et

al. [37]. This theory uses the structure factor of the liquid phase as input and then

predicts a periodic density �eld for the solid phase and also de�nes the coexistence

of both phases. This formulation provides the physical justi�cation to the PFC

model by establishing the relationship between the phenomenological parameters

of the free energy functional of the originally introduced PFC model and the real

physical properties of the material such as the elastic constants, lattice constant of

crystalline phase and isothermal compressibility of the liquid phase [1]. Due to the

periodic nature of the order parameter of the PFC model, it can be interpreted as

the atomic density �eld of the system.

The �rst attempt to derive the PFC model from the classical DFT was proposed

by Elder et al. [1]. The free energy expression of the PFC model is formulated

by considering the Helmholtz free energy derived by expanding around the density

of the liquid ρ̄, corresponding to the liquid phase lying on the liquid side of the

coexistence region. The free energy functional can be written in a generalized form

as

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] + Fext [ρ(r)] , (2.7)

11
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where Fid [ρ(r)] is the non-interacting ideal gas component of the free energy func-

tional, Fex [ρ(r)] is the excess energy component which corresponds to the higher

order interactions and Fext [ρ(r)] represents the potential energy of the interaction

with external �eld. The expression for the free energy of a non-interacting ideal gas

is given by

Fid [ρ(r)] = kBT

∫
drρ(r)

{
ln
[
ρ(r)Λ3

]
− 1
}

, (2.8)

with Λ denoting the thermal de Broglie wavelength, T is the temperature and kB is

the Boltzmann constant. The expression for the Fext [ρ(r)] can be written as

Fext [ρ(r)] =

∫
drρ(r)V (r, t) . (2.9)

where V (r, t) is the external one-body potential. It is important to mention here

that an exact expression for the Fex [ρ(r)] cannot be derived for most of the real

systems, however, the contribution from the interactions between the particles can

be approximated by expanding the total free energy in terms of the n-point direct

correlation function c(n)0 , which is de�ned as:

c
(n)
0 (r1, ...rn; [ρ]) = (kBT )−1

δnFex [ρ(r)]∏i=n
i=1

δρ(ri)
. (2.10)

In the context of freezing, a well known approach is to approximate the by a func-

tional Taylor expansion up to second order around a uniform density ρ̄, that cor-

responds to the reference liquid phase density. By using the two point correlation

function c(2)0 and substituting all components into Eq. (2.7), the total free energy of

the system can be expressed as:

12



2.1 Overview of the PFC method

F [ρ(r)]

kBT
=

F (ρ̄)

kBT
+ (kBT )−1µ̄

∫
∆ρ(r)dr +

∫ (
ρ(r)ln

[
ρ(r)

ρ̄

]
−∆ρ(r)

)
dr

− 1

2

∫
dr1dr2∆ρ(r1)c

(2)
0 (r1, r2; [ρ̄])∆ρ(r2). (2.11)

where µ̄ is the chemical potential of the reference state, ∆ρ(r) = ρ(r) − ρ̄. This

expression is only valid for small ∆ρ(r), therefore, this approximation of classical

DFT indicates only the emergence of crystalline phases and can not fully describe

the crystalline phase for the solidi�cation process. The basic features of the free

energy functional expression, Eq. (2.11) can be elaborated further by de�ning the

non-dimensional atomic number density �eld n = (ρ− ρ̄)/ρ̄ and expanding the local

portion of the free energy up to the fourth order, i.e.

(1 + n)ln(1 + n)− n =
1

2
n2 − 1

6
n3 +

1

12
n4. (2.12)

The resulting expression for the free energy functional can be rewritten as:

F [ρ(r)]

kBT
=

∫ (
n

[
1− ρ̄c(2)0

2

]
n− 1

6
n3 +

1

12
n4 − ...

)
dr. (2.13)

The above expression can be further simpli�ed by expanding the two point correla-

tion function c(2)0 in a Taylor series around k = 0, i.e.

ˆ
c
(2)
0 = Ĉ0 + Ĉ2k

2 + Ĉ4k
4 + ..., (2.14)

where C0, C2 and C4 are the �tting constants, k is the amplitude of the reciprocal

vector and the hat represents the Fourier transform of the corresponding parameter.

The above expression corresponds to Ĉ = (Ĉ0 − Ĉ2∇2 + Ĉ4∇4 − ...)δ(r1 − r2) in

real space. This approximation is relevant assuming that n varies much slower

compared to the range of C. By assuming terms up to k4, the material properties

can be parameterized by three variables, Ĉ0, Ĉ2 and Ĉ4, i.e. lattice constant R ∼

13
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Figure 2.2: Fourier transform of the two point direction correlation function for a typical liquid.
The dashed line represents the approximation to k4 order. Figure follows from [29].

[(̂|Ĉ4|/C2)
1/2], bulk modulus of the crystal E ∼ [ρ̄C2

2/|Ĉ4|] and the liquid isothermal

compressibility Bl ∼ [1−ρlĈ0]. A sketch of Ĉ for a typical liquid is shown in Fig. 2.2.

The term with k = 0 in Fig. 2.2 represents the liquid phase isothermal compress-

ibility and the height and position of the �rst peak is related to the bulk modulus

of the solid phase and the lattice constant, respectively. With these approximations

Eq. (2.13) can be further simpli�ed as:

F [ρ(r)]

kBT
=

∫ (
n
Bl

2
n+

Bs

2
n(2R2∇2 +R4∇4)n− t

3
n3 +

v

4
n4...

)
dr. (2.15)

It is important to mention that with the level of simpli�cation, it might not be

enough to de�ne all materials with only three parameters (Ĉ0, Ĉ2 and Ĉ4). The

originally introduced PFC model can predict a triangular phase in two dimensions

and bcc structures in three dimensions [38]. These approximations can be further

improved by using a higher order correlation function.
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2.1 Overview of the PFC method

2.1.3 Phase properties

The equilibrium phases and the corresponding phase diagram for the PFC model can

be calculated by applying the minimization procedure to the free energy functional

[29]. To do so, a one-mode approximation technique is used to expand the atomic

number density of the solid phase n in Fourier series and then the free energy is

minimized with respect to the parameters of this expansion. For the originally

introduced two-dimensional PFC model, the free energy expression is minimized by

three di�erent states by employing a periodic function of the atomic density �eld,

namely, a constant density phase (liquid phase), one-dimensional periodic function

(stripe phase) and a two-dimensional periodic function (triangular phase). The

general two-dimensional periodic solution for the coexistence of liquid and stripes

phases or stripes and triangular phases can be investigated by minimizing the free

energy with the corresponding expansion of the density �eld. The atomic density

�eld can be expanded around n0 in order to illustrate a generalized case for the

liquid and triangular phases, i.e.

n = n0 +
∑
n1,n2

ηe(i
~Gj ·~r) + C.C, (2.16)

where C.C is the complex conjugate, G is the sum of the reciprocal lattice vectors

(~v1, ~v2) which determine the geometry of the crystal lattice, i.e.

G = n1~v1 + n2~v2, (2.17)

and η is the amplitude of the given reciprocal lattice vector. The reciprocal lattice

vectors for a triangular system can be written as:
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~v1 =
2π

a

(
x̂+

1√
3
ŷ

)

~v2 =
2π

a

(
2√
3
ŷ

)
, (2.18)

where a is the lattice constant. A one-mode approximation, i.e. an expansion to

the lowest order harmonics, corresponds to the technique of retaining only those

reciprocal vectors which have a length of 2π/(a
√

3/2). These vectors correspond to

the (v1, v2) pair, (1,0), (0,1) and (1,−1). Keeping only the lowest order set reduces

the one-mode approximation to the following expression

n = n0 + A

[
1

2
cos

(
2qy√

3

)
− cos(qx) cos

(
qy√

3

)]
, (2.19)

where q = 2π/(a
√

3/2). Substituting the one-mode approximation expression into

the free energy functional and then minimizing with respect to qeq and the amplitude

A gives

qeq =

√
3

2

Atri =
4

15v

(
t− 3vn0 +

√
t2 − 15va(Bl −Bs) + 12n0v(2t− 3vn0)

)
, (2.20)

and Aliq = 0 for the liquid phase. The free energy of the solid and liquid phase can

be calculated by using the above minimization procedure and then the coexistence

region can be calculated by using the common tangent formulation. The correspond-

ing phase digram as well as the detailed mathematical derivation can be found in

[29].
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2.1 Overview of the PFC method

2.1.4 Elastic constants

As discussed above, one of the main features of the PFC method is the natural

incorporation of the elastic energy into its free energy functional. More precisely,

the elastic properties of the system can be evaluated by considering the deformations

away from the equilibrium states. Following the procedure described by Elder et al.

[7], the elastic constants can be determined by deforming the lattice under shear,

bulk or deviatoric deformations and then calculating the corresponding change in

energy, i.e. the cost of energy for the deformation. For the originally introduced

two-dimensional PFC model [26], the expressions for the bulk, shear and deviatoric

deformations can be obtained by considering:

(x, y) → (x/[1 + σ], y/[1 + σ])

(x, y) → (x+ σy, y)

(x, y) → (x[1 + σ], y[1− σ]), (2.21)

respectively, where σ is the dimensionless deformation. Eq. (2.21) can be substituted

into the one-mode approximation expression Eq. (2.19) for the triangular lattice

system in order to obtain modi�ed expressions for these deformations. The resulting

expressions for the bulk, shear and deviatoric deformations case are

nb = n0 + A

[
1

2
cos

(
2qy√

3[1 + σ]

)
− cos

(
qx

1 + σ

)
cos

(
qy√

3[1 + σ]

)]
,

ns = n0 + A

[
1

2
cos

(
2qy√

3

)
− cos(q[x+ σy]) cos

(
qy√

3

)]
,

nd = n0 + A

[
1

2
cos

(
2qy[1− σ]√

3

)
− cos (qx[1 + σ]) cos

(
qy[1− σ]√

3

)]
,(2.22)
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respectively. By substituting Eq. (2.22) into the free energy functional expression

and solving with respect to the amplitude A and then further expanding around

σ = 0 leads to the �nal expression for the free energy corresponding to the bulk,

shear and deviatoric deformations [7], i.e.

Fbulk = F0 +
4

3
(q2eqAeq)

2σ2 + f(σ3) + ...

Fshear = F0 +
1

6
(q2eqAeq)

2σ2 + f(σ3) + ...

Fdeviatoric = F0 +
2

3
(q2eqAeq)

2σ2 + f(σ3) + .... (2.23)

qeq and Aeq are de�ned by Eq. (2.20). These energy expressions can be compared

with the standard equations to establish a connection with the elastic constants by

following the approach used in [7, 29]. This comparison results into the following

expressions for the elastic constants of an isotropic system:

C11

3
= C12 = C44 =

q4eqA
2
eq

3
. (2.24)

For these coe�cients the resulting Poisson's ratio is ν = 1/3. This derivation demon-

strates that the parameters of the PFC model can be adjusted to match the given

experimental system in order to establish the connection with the real material sys-

tems. However, it is important to mention that the Poisson's ratio calculated for

the originally introduced PFC model is always 1/3 which limits its applicability to

a certain class of material systems. An essential focus of this thesis is the further ex-

tension of this approach to model systems with arbitrary Poisson's ratio as discussed

from sect. 2.4 onwards.
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2.2 Amplitude expansion of the PFC model and its connection with the PF models

2.2 Amplitude expansion of the PFC model and its

connection with the PF models

The PFC method was introduced to create a bridge between the atomistic ap-

proaches and the traditional PF models which operates on length scale considerably

larger than that of the PFC method. Although the PFC method is considered as

a computationally more e�cient tool compared to other atomistic approaches, the

atomic length-scale �uctuations of the atomic density �eld still restrict its appli-

cability to capture experimentally observable length scales since it demands high

computational resources. Thus, the need of high computational resources certainly

would make it di�cult to model larger-scale microstructure problems in materials

science.

Several e�orts have been made to address issues concerning the computational ef-

�ciency of the PFC method by successfully bridging the atomistic and continuum

scales [39, 40, 41, 42, 43]. The main techniques that have been widely used in

this context are the so called quick and dirty renormalization group [44, 45, 46]

and the multiple scale analysis [41]. An important technique based on the multiple

scale analysis approach was proposed by Goldenfeld et al. [44, 45, 46], commonly

known as the amplitude expansion technique for the PFC method, where the ampli-

tudes are coupled to the average atomic density �elds. The motivation behind this

technique can be demonstrated by considering a simple example of a liquid-solid

interface in which the interface can be described by only tracking the amplitude, i.e.

by smoothly varying the amplitude from a �nite value in the crystalline phase to

zero value in the liquid phase. Fig. 2.3 illustrates the basic idea of the amplitude

expansion technique.

The amplitude expansion formulation has been successfully developed for the stan-

dard PFC model of triangular crystal symmetry [39] and for the binary PFC model

with triangular, bcc, and fcc crystal symmetries [41]. Athreya et al. developed

a further extension to the amplitude expansion technique by introducing a hybrid

algorithm that solves the amplitude equation using a polar representation of the

amplitude [46]. This methodology demonstrated that the amplitude can vary on
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Figure 2.3: Smooth variation of the amplitude of the density �eld from a �nite value in the
crystalline phase to zero in the liquid phase.

the same scale as the atomic density �eld at any crystal orientation. This newly

introduced hybrid approach increased the computational e�ciency by three orders

of magnitude compared to the simulations performed for the growth of solid precip-

itates using a uniform grid in two dimensions [46].

Apart from increasing the computational e�ciency, these coarse-graining approaches

have recently been further exploited to derive an evolution equation for these am-

plitudes in order to establish a connection between parameters of the PFC model

and the traditional PF models. This connection relates the parameters of the PFC

model with the traditional PF models and thus provides more physical justi�cation

to the phenomenological phase-�eld order parameter. More speci�cally, the complex

amplitudes in a small deformation limit can be related to the order parameter of

traditional PF models. This complex amplitude has a value of zero in the liquid

phase and a �nite value in the solid phase. Similar to the order parameter of the

PF model, the amplitude varies near dislocations and liquid/solid surfaces. These

amplitude formulations can retain many salient atomistic level features while oper-

ating on larger scale than that of the original PFC model, which is currently outside

the focus of the standard PF approach [40].

Recently these amplitude expansion approaches have been widely used to describe

various important phenomena such as solidi�cation of multiple crystallites using an

adaptive mesh [46], segregation and alloy solidi�cation [40], liquid-solid interface
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2.3 Limitations of the originally introduced PFC model

[38] and pattern formation phenomena [47, 48, 49].

The capability of the amplitude formulations, given the length scales and time scales

on which it operates, allows a way to develop a better understanding of how and

where the microscopic parameters enter mesoscale theories. Thus it opens a possibil-

ity to study applications which involve experimentally relevant microstructural phe-

nomena on a desired length scale. Following a similar concept, a detailed derivation

of the amplitude representation of a newly developed PFC model [10] is discussed

in sect. 3.5.

2.3 Limitations of the originally introduced PFC

model

The PFC approach has been widely applied to model crystallization and a variety of

other important materials science phenomena taking place at atomic length scales

and di�usive time scales. Some of the important applications reported in the sci-

enti�c literature include the elastic and plastic deformation of materials [27, 50],

crystal growth phenomena [51, 52], �uid crystal interfaces [53, 54], melting [55],

the structure [26, 55] and dynamics of grain boundaries [52, 56], crack propagation

problems [26] and the glass formation processes [57].

Although the PFC model has successfully been used to study several of these im-

portant phenomena, there are certain limitations which restrict its applicability to

a speci�c class of material systems with �xed Poisson's ratio. In PFC method, the

elastic behavior of material systems is modeled through the adjustment of its model

parameters to match the elastic moduli of a given experimental system, as discussed

in previous sections. The detailed derivation of the elastic constants based on the

originally introduced PFC model (discussed in sect. 2.1.4) revealed that the Pois-

son's ratio calculated for this model is always 1/3. Thus the applicability of the

originally introduced PFC model [7] is restricted to systems with the Poisson's ratio

of 1/3, which excludes several important material systems with higher industrial

relevance such as steel and iron with Poisson ratios in a range of 0.21 − 0.3 and
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which also exist as anisotropic or sheared lattice systems.

Moreover, since in the originally introduced PFC model the physical properties of

the material systems are de�ned by only three parameters, it also restricted the

model to describe only certain crystal lattice structures, which include a triangular

symmetries in two dimensions and bcc symmetry in three dimensions [38]. Later

developments indicated that there are regions of stability for fcc and hcp structures

[59] and other crystal symmetries 1. Thus, in order to extend the applicability of

the PFC approach to a wider class of material systems, there was a demand for a

more generalized PFC model capable of addressing such shortcomings.

2.4 Further development of the PFC method

Based on the brief review of limitations of the originally introduced PFC model

discussed in the previous section, one aim of this thesis was the further extension

of the applicability of the model to allow a quantitative study of thermodynamic

properties of material systems with arbitrary Poisson's ratio as well as to model

the anisotropic crystal structures other than the ones captured by the originally

introduced PFC model. To do so, here the PFC approach is extended further by

developing a generalized PFC model with a capability of modeling both isotropic and

anisotropic crystal lattice systems of arbitrary Poisson's ratio as well as condensed

matter systems built-up from non-spherical units such as anisotropic systems with

oriented particles [8, 60]. This recently introduced model, known as anisotropic

phase-�eld crystal model (APFC), is an extension of the PFC model proposed by

Elder et al. [7] to a conservative, anisotropic Langevin equation. The APFC model is

fully calibrated from the dynamical density functional theory (DDFT), i.e. its model

parameters are derived from the DDFT, which provides the physical justi�cation

for the model [8]. This derivation highlights how the APFC model includes the

dynamics of the anisotropic particles obtained from the DDFT. Thus the newly

1Other crystal symmetries implying to protein crystals in a membrane could principally be ob-
tained by including higher order correlation functions, as suggested by P. F. Tupper et al.
[58].
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developed APFC model has the ability to model both isotropic as well as anisotropic

crystal lattice systems with arbitrary Poisson's ratio, which consequently extends

the applicability of the PFC approach to a wider class of material systems. The

detailed derivation as well as the evaluation of its model parameters is discussed

in chapter 3. Moreover, in order to address issues concerning the computational

e�ciency, the amplitude expansion formulation for the APFC model and the explicit

connection of its model parameters with the traditional PF models is also presented

and discussed in chapter 3. Furthermore, the application of the PFC model to

study the fundamental concepts associated with the nucleation mechanisms in binary

systems are discussed in chapter 4 as a step further in the direction of industrially

relevant material systems. The main focus of this study is to assess a detailed picture

of the nucleation mechanisms beyond the predictions bassed on the CNT.
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arbitrary Poisson's ratio∗

The previous chapter provided the basic overview of the PFC theory and highlighted

important applications and limitations of the originally introduced PFC model. Al-

though, the PFC method has been applied to a wide range of problems in material

science from atomic-to-microscale, however, in the form originally introduced in [7],

the model is only capable of modeling materials with Poisson's ratio of 1/3, as dis-

cussed in chapter 2. Apart from this limitation, the use of the PFC method is also

numerically limited by the resolution of small atomistic length scales and the large

simulation time steps required in case of slow system relaxation. To address these

limitations, two further development directions were demanded: (a) an extension of

the PFC model to a more generalized model with a capability to model material

systems of arbitrary Poisson's ratio; and (b) an amplitude expansion formulation to

address the computational e�ciency issues. The aim of this chapter is to develop a

more generalized theoretical model within the framework of the PFC method with

the capability of modeling material systems with arbitrary Poisson's ratio as well as

to further derive the amplitude formulation for this model in order to address the

numerical e�ciency issues and thus to extend the applicability of the PFC approach

to a wider range of material systems.

This chapter presents a detailed derivation of the newly developed APFC model

which has the capability of simulating isotropic as well as anisotropic material sys-

tems with arbitrary Poisson's ratio. This chapter is organized as follows. Firstly,

a detailed derivation of the APFC model is presented in sect. 3.1, which includes

the evaluation of its model parameters as well as the derivation of elastic constants

∗Parts of this chapter are already published in [8, 9, 10].
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in terms of its model parameters. Then, in sect. 3.2, the DDFT based calibration

of the APFC model is presented, which provides the physical justi�cation for the

model. In sect. 3.3, some unique features of the APFC are explored by showing

some typical simulation results along with a precise phase diagram for the APFC

model. Then, to address questions concerning its computational e�ciency, an am-

plitude formulation for the APFC model is derived and explored further by means

of a quantitative analysis of the corresponding simulation results in sect. 3.5. This

amplitude formulation of the APFC model explicitly demonstrates the connection

between the APFC model and the standard PF models and thus enhances the com-

putational e�ciency by building a bridge upon the multiple-scale approach. Finally,

the important concluding remarks are summarized in sect. 3.6.

3.1 Investigation of the APFC model

In this section, the APFC model is introduced and the evaluation of its model pa-

rameters is explicitly discussed. The analytical expressions of the elastic constants

in terms of the model parameters are also presented, which emphasises the applica-

bility of the APFC model to simulate isotropic as well as anisotropic crystal lattice

systems of arbitrary Poisson's ratio.

3.1.1 The APFC model

The original PFC model derived by Elder et al. [7] is based on the following equation

of motion:

∂φ

∂t
= M∇2

(
δF

δφ

)
, (3.1)

where M is the mobility. The functional (in dimensionless form)
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F =

∫
V

(
φ

2

[
r + (1 +∇2)2

]
φ+

φ4

4

)
dr (3.2)

can be extended to an anisotropic PFC model by replacing the laplacian with more

general di�erential operators which allow spatial anisotropy. Doing so, the following

free energy functional can be obtained for the APFC model

F =

∫
V

(
φ

2

[
r + 1 + aij

∂2

∂xi∂xj
+ bijkl

∂4

∂xi∂xj∂xk∂xl

]
φ+

φ4

4

)
dr , (3.3)

where φ is the phase �eld, r represents the undercooling, aij is a symmetric matrix

and bijkl is a fourth rank tensor with the symmetry of an elastic tensor: i↔ j, k ↔
l, (i, j)↔ (k, l).

From the free energy functional of the APFC model, the corresponding Langevin

di�erential equation of motion for anisotropic lattice system can be written as

ρ
∂φ

∂t
= M∇2

([
r + 1 + aij

∂2

∂xi∂xj
+ bijkl

∂4

∂xi∂xj∂xk∂xl

]
φ+ cφ3

)
. (3.4)

The APFC model can be reduced to the original isotropic PFC model [7] by setting

the anisotropic parameters a11 = a22 = 2 and b1111= b1122= b2222 = 1.

An anisotropic triangular stationary state solution to the APFC model can be con-

structed for a triangular state

φ = φ0 + φ1(cos(k1x) cos(k2y/
√

3)− 1/2 cos(2k2y/
√

3), (3.5)

where φ0 and φ1 are the amplitude of the phase-�eld and k1 and k2 represent the

wave numbers. The free energy expression can be obtained by substituting Eq. (3.5)

in Eq. (3.3), i.e.
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F = (3/16)φ2
1r − (3/16)φ0φ

3
1 + (1/2)φ2

0 + (1/4)φ4
0

+(1/2)rφ2
0 + (9/16)φ2

0φ
2
1

+(1/12)φ2
1b1212k

2
1k

2
2 − (1/4)φ2

1a22k
2
2 + (1/8)φ2
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Minimizing the above free energy expression with respect to the wave numbers, i.e.

k1 and k2 yields

k21 =
3(3a11b1111 − a22b1122)

(9b1111b2222 − b21122)

k22 =
3(3a22b2222 − a11b1122)

(9b1111b2222 − b21122)
. (3.7)

The derivative of the free energy with respect to the amplitude φ1 is

Fφ1 = (45/128)φ3
1 + (1/6)φ1b1122k

2
1 +

(1/4)φ1b2222k
2
1 − (1/2)φ1a11k1 + (1/4)φ1b1111k

2
2 −

(1/2)φ1a22k2 + (9/8)φ2
0φ1 − (9/16)φ0φ

2
1 + (3/8)φ1r + (3/8)φ1. (3.8)

The solution for stationary state can be obtained by setting this derivative to zero.

The resulting expression for the amplitude φ1 is

φ1 =
4

5

(
φ0 +

1

3

√
−15(r +R1)− 36φ2

0

)
, (3.9)
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3.1 Investigation of the APFC model

where

R1 = 1− 2(3(a211b1111 + a222b2222)− 2b1122a11a22)

(9b1111b2222 − b21122)
. (3.10)

For the case of equal wave numbers, i.e. k1 = k2 = qt, the resulting expression for

qt is

q2t =
3(a11 + a22)

2b1122 + 3(b1111 + b2222)
, (3.11)

which reduce to qt =
√

3/2 for the isotropic case, i.e. by setting a11 = a22 = 2 and

b1111= b1122= b2222 = 1. Finally, the derivative of the free energy with respect to the

amplitude φ1 using qt from Eq. (3.11) transforms to

Fφ1(qt) = (3/32)φ1b1122 + (3/8)φ1r

+(9/64)φ1b2222 − (3/8)φ1a11 + (9/8)φ2
0φ1

+(3/8)φ1 + (45/128)φ3
1 − (3/8)φ1a22

+(9/64)φ1b1111 − (9/16)φ0φ
2
1. (3.12)

A solution for stationary state similar to Eq. (3.9) can be obtained by setting the

derivative of the free energy expressed in Eq. (3.12) to zero, where

R1(qt) = 1 + (1/4)b1122 + (3/8)(b1111 + b2222)− (a11 + a22). (3.13)

Unlike the originally introduced PFC model [7], Eq. (3.3) of the APFC model can

29



3 Modeling of anisotropic materials with arbitrary Poisson's ratio

model the whole range of Poisson ratios (even di�erent from 1/3). The relevance of

this point for material science is high, since several materials usually have Poisson

ratios in the range of [0 − 0.5] such as steel and iron have Poisson ratios in the

range of [0.21 − 0.3]. Even negative Poisson ratios are known for material systems

called anti-rubber, dilational materials [61, 62] or auxetics [63], as reviewed in [64].

More recently, so called gum metals [65] displaying ideal strength in bulk form are

discussed intensively for their not yet understood interesting mechanical behavior,

which also comes along with Poisson's ratio di�erent from 1/3. To contribute to

a more detailed mechanistic understanding of such material systems based on the

APFC model, a detailed analysis of the derivation of its Poisson's ratio range is

presented in the following section.

3.1.2 Elastic properties

In order to further elaborate the applicability of the APFCmodel to material systems

of arbitrary Poisson's ratio, the elastic properties are evaluated in terms of its model

parameters by using the procedure described by Elder et al [7]. The modi�ed forms

of Eq. (3.5) for bulk, shear and deviatoric deformations are

φb = φ(x/(1 + σ), y/(1 + σ))

φs = φ(x+ σy, y)

φd = φ(x(1 + σ), y(1− σ)), (3.14)

respectively, where σ is the dimensionless deformation. The free energies for these

three deformations can be calculated from Eq. (3.3) by using the stationary state

parameters k1 and k2 from Eq. (3.7). To obtain the elastic constants, the second

order derivative of the free energies (Fb, Fs, Fd) are calculated for the three defor-

mations with respect to the dimensionless deformation. The following expressions

can be obtained by using the stationary state parameters, i.e. k1 and k2:
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1

2

d2Fb
dσ2

= C11 + C12 =
1

12
(φ1)

2(15(k42b1111 + k41b2222)

− 9(a11k
2
1 + k22a22) + 10k22k

2
1b1122)

1

2

d2Fs
dσ2

=
C44

4
=

1

4
(φ1k1)

2(b1111k
2
2 − a22 + k21b1122) (3.15)

1

2

d2Fd
dσ2

= C11 − C12 =
1

12
(φ1)

2(15(k41b2222 + k42b1111)

− 9(k22a22 + k21a11) + 2k22k
2
1b1122).

Finally from the above equation, the Poisson's ratio for the two-dimensional case

can be de�ned as function of the model parameters, i.e.
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where k1 and k2 are de�ned by Eq. (3.7).

The free energies for these three deformations Fb, Fs, Fd can also be calculated by

Eq. (3.3) using the stationary state parameter qt from Eq. (3.11). The corresponding

resulting expressions are

1
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

This yields the Poisson's ratio for the two dimensional case as

ν =
C12

C11

=
2

3

b1122
(b1111 + b2222)

. (3.18)

It is important to mention that for the isotropic version of PFC model, the above

expression transforms to ν = 1/3.

In order to further demonstrate the capacity of the APFC model in three dimensions,

the model is treated for the bcc lattice system developed in the work [38] for isotropic

material system. The crystal density �eld can be expressed as

φ = φ0 + 4φ1 [cos(qtx) cos(qty) + cos(qtx) cos(qtz) + cos(qty) cos(qtz)] . (3.19)

The corresponding free energy expression can be obtained by substituting Eq. (3.19)

in Eq. (3.3), i.e.

F = (3/4)φ3
1φ0 + (3/8)φ2

1r + (9/8)φ2
0φ

2
1

+(3/8)φ2
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1. (3.20)

Minimizing the above free energy expression with respect to φ1 and qt yields

q2t =
a11

b1111 + b1122
, (3.21)
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φ1 = − 2

15
φ0 −

1

15

√
−5(r +R2)− 11φ2

0, (3.22)

where

R2 = 1 + (1/2)(b1111 + b1122)− 2a11. (3.23)

For the isotropic case, the parameters transform to q2t = 1/2, R2 = 0.

Finally, the resulting elastic relations for the three deformation variants in three

dimensions can be calculated by using the procedure mentioned above for the two-

dimensional case, i.e.

1

2

d2Fb
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=
3

2
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2
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The resulting expression for the Poisson's ratio in terms of the model parameters

for the three-dimensional case can be written as

ν =
C12

C11 + C12

=
1−Q
2 +Q

(3.25)

where

Q =
2b1111 − b1122

(b1111 + b1122)2
. (3.26)

It can be seen that the Poisson's ratio becomes negative at b1122 < (1/2)b1111. The
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

resulting expressions for the Poisson's ratio reveal that, depending on the parameters

of the APFC model, the whole range of Poisson ratios can be obtained and thus, a

wide class of material systems can be modeled by the APFC model.

This section provided a detailed introduction of the APFC model. Just as the

original PFC model was legitimated via recovery of important material parameters,

particularly elastic one, it is demonstrated here how the elastic parameters for the

APFC model can be recovered. A second important legitimation for PFC models is

its full calibration via DDFT. This is demonstrated, as well, in the following section

via original work on the calibration for the APFC model. The DDFT is the time-

dependent analogue of the static DFT which provides its dynamic generalization

[37, 66, 67, 68]. The DDFT can be regarded as a high level of microscopic description,

which has been successfully used as a fully established classical approach to justify

and to calibrate coarse-grained models as the PFC model [1, 51]. The PFC method

can be understood as a truncated form of the DDFT. In general, there are two

di�erent aspects of the PFC modeling, i.e. statics aspect based on a free-energy

expression for order parameters and a dynamical aspect that describes the time

evolution of the order parameters by a di�usion or continuity equation [51]. The

static free energy expression was �rst derived and justi�ed from DFT by Elder et al.

[1] (as discussed in chapter 2), while the corresponding dynamics was derived from

the DDFT by van Tee�elen et al. [51]. A similar approach is used to calibrate the

APFC model via DDFT in the following section.

3.2 DDFT based calibration of the APFC model

In this section, the DDFT based derivation of the parameters of the APFC model

is presented which provides physical justi�cation for the model. This DDFT based

calibration of the APFC model is developed by Hartmut Löwen in the joint work

[8]. This derivation is based on the methodology proposed recently by van Tee�elen

et al [51] for radially symmetric interactions, however, in this current derivation it

is generalized to anisotropic interactions and leads to the publication [8].
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3.2 DDFT based calibration of the APFC model

Cartesian coordinates r = (x1,x2, ...,xd) are used in the following derivation with

d as the spatial dimension. The anisotropic colloids are assumed to be completely

aligned in space. The hard ellipsoids with �xed orientation are formally equivalent

to hard-sphere systems by scaling, however, this equivalence is no longer valid if

interactions are soft and involve an explicit energy scale. In general, an anisotropic

function, u(r) is taken as the interaction pair potential between two aligned particles.

There are several examples which demonstrate this kind of anisotropic interactions

with �xed orientations, such as the oriented hard spherocylinders [69], charged rods

[70, 71], anisotropic Gaussian potentials [72], board-like colloidal particles [73], col-

loidal molecules [74], as well as patchy colloids [75] and proteins [76, 77]. Henceforth

the inversion symmetry is assumed as

u(−r) = u(r). (3.27)

Here, the DDFT for anisotropic situations [78] is generalized from the isotropic case.

The corresponding dynamical evolution of the time-dependent one-particle density

�eld ρ(r, t) is:

ρ̇(r, t) = (kBT )−1∇ ·
[
Dρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
, (3.28)

where kBT is the thermal energy, ∇ = (∂/∂x1, ∂/∂x2, ..., ∂/∂xd) is the d dimensional

gradient and D = diag(D1,D2, ...,Dd) denotes the diagonalized di�usion tensor

with the anisotropic short-time translational di�usivities of the anisotropic particle.

In general, for any given (hydrodynamic) shape of the particle, the corresponding

explicit expressions for Di are available in [79, 80]. Furthermore, in Eq. (3.28),

F [ρ(r, t)] is the equilibrium density functional which can be splited as

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] + Fext [ρ(r)] , (3.29)

where

Fid [ρ(r)] = kBT

∫
drρ(r)

{
ln
[
ρ(r)Λd

]
− 1
}

, (3.30)
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

with Λ denoting the thermal de Broglie wavelength. The external part involves an

external one-body potential V (r, t) and is given by

Fext [ρ(r)] =

∫
drρ(r)V (r, t) . (3.31)

The excess part Fex[ρ(r)] embodies the nontrivial correlations between particles and

must be further approximated. Therefore, to approximate it further, small devia-

tions of the inhomogeneous density pro�le around a homogeneous reference density

ρ is assumed. In this limit, the leading approximation for Fex [ρ(r)] is given by the

Ramakrishnan and Yussou� [35] expression:

Fex [ρ(r)] ' Fex(ρ)− kBT

2

∫ ∫
drdr′∆ρ(r)∆ρ(r′)c

(2)
0 (r− r′; ρ) , (3.32)

where c(2)0 (r − r′; ρ) is the anisotropic direct correlation function of the �uid at

density ρ which possesses the same symmetry as the underlying pair potential u(r).

In particular, it is inversion symmetric, i.e.

c
(2)
0 (−r, ρ) = c

(2)
0 (r, ρ). (3.33)

Moreover, ∆ρ(r) = ρ(r)− ρ. In Fourier space Eq. (3.32) reads

Fex[ρ(r)] = Fex(ρ)− kBT (2π)d

2

∫
dk∆ρ̃(k)∆ρ̃(−k)c̃

(2)
0 (k, ρ) (3.34)

with ∼ denoting a Fourier transform. The direct correlation function c(2)0 (k, ρ) can

be expanded in terms of k around k = 0 (Alternatively �tting procedures can be

used, e.g. around the �rst peak of c(2)0 (k, ρ)). This leads to the Taylor expansion in

Fourier space
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3.2 DDFT based calibration of the APFC model

c̃
(2)
0 (k, ρ) = Ĉ0 +

d∑
i,j=1

aijkikj +
d∑

i,j,k,l=1

bijklkikjkkkl + . . . , (3.35)

corresponding to a gradient expansion in real-space. Inversion symmetry Eq. (3.33)

enforces all odd orders to vanish. Possible additional symmetries in the shape of

particles will lead to the corresponding restrictions on the tensorial coe�cients aij
and bijkl as discussed below. Inserting this expansion into Eq. (3.28) resulted in the

following expression for ρ̇(r, t):

ρ̇(r, t) = ∇ ·D∇ρ(r, t) +∇ · D∇
[
(kBT )−1V (r, t)

− (Ĉ0 −
d∑

i,j=1

aij
∂2

∂xi∂xj
+

d∑
i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
)ρ(r, t)

]
.(3.36)

By using the constant mobility approximation, i.e. ρ(r, t) = ρ in front of the func-

tional derivatives in Eq. (3.28) and by approximating

Fid [ρ(r)] ≈ kBTρ

∫
dr
{1

2
φ(r, t)2 − 1

6
φ(r, t)3 +

1

12
φ(r, t)4 − const.

}
(3.37)

with φ(r, t) = ∆ρ(r, t)/ρ, the �nal expression for φ̇(r, t) can be written as

φ̇(r, t) = ρ∇ · D∇

[
φ(r, t)− 1

2
φ(r, t)2 +

1

3
φ(r, t)3 + (kBT )−1V (r, t)

− ρ(Ĉ0 −
d∑

i,j=1

aij
∂2

∂xi∂xj
+

d∑
i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
)φ(r, t)

]
. (3.38)

This expression exactly reduces to the APFC model for the special case with d = 2
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

and a neglected cubic term in the ideal gas functional expansion in Eq. (3.37). As

a remark the latter was retained in other variants of the PFC model [1, 53]. With

that, the parameters of the APFC model are fully derived and justi�ed from the

DDFT, however, this derivation illustrates to be a more realistic approximation for

anisotropic di�usivities. Furthermore, if Eq. (3.37) is used, some approximations

can be avoided but these were not found to change the results signi�cantly for spher-

ical interactions [51]. A second remark concerns the phenomenological symmetry

arguments for the expansion coe�cients aij and bijkl of the APFC model.

The orientation of the �xed particles is assumed to be set by a single unit vector ~E

only. The free energy is invariant under space inversion. This is the case for d = 2

and for rotationally symmetric particles in d = 3. Then, any gradient term in the

scalar free energy functional must involve an even number of gradients due to space

inversion symmetry. For the rotational symmetry of space, only combinations of
~E · ~∇ and ~∇ · ~∇ are required to be nonvanishing in the functional. Therefore the

only possibility for physically relevant gradient terms is

d∑
i,j=1

aij
∂2

∂xi∂xj
= λ1( ~E · ~∇)2 + λ2∆ (3.39)

and

d∑
i,j,k,l=1

bijkl
∂4

∂xi∂xj∂xk∂xl
= λ3( ~E · ~∇)4 + λ4( ~E · ~∇)2∆ + λ5∆

2, (3.40)

where λ1, λ2, λ3, λ4, and λ5 are scalar prefactors. Thus the number of independent

degrees of freedom in aij and bijkl is reduced down to 5. In case, if there are di�erent

�xed vectors, i.e. ~E and ~B, then there are correspondingly more terms allowing for

more freedom in aij and bijkl. This is realized, e.g. for biaxial colloidal particles in

two crossed external �elds along ~E and ~B.
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3.3 Investigation of characteristic morphological features

3.3 Investigation of characteristic morphological

features

In this section, a phase diagram is established as �rst step to access the fundamental

phase transition features of the APFC model. The stable state phases obtained from

numerical simulations are investigated with respect to characteristic morphological

features. As initial condition, a square domain is de�ned with a sphere in the center

to initialize the nucleus. Periodic boundary conditions are used on all sides of the

square box. Fig. 3.1 demonstrates the initial conditions used in simulations. The

results presented in this sections are based on the simulations performed with a

speci�c set of model parameters de�ned in [8], i.e. a11 = a22 = 2, b1111 = b2222 =

b1122 = 1 and b1212 = 0. The constant values are also used for the mobility and the

parameter c, i.e. M = 1 and c = 1 in these simulations. However, a typical set of

values is used for the anisotropic parameter s and the undercooling parameter r in

order to investigate the in�uence of the anisotropy and undercooling on the overall

crystal growth phenomena as well as on the resulting microstructures.

Simple explicit numerical schemes are used to ensure the convergence of results and

to obtain a reasonably well approximated solution. A forward Euler scheme is used

for the time derivative with a su�ciently small time step of ∆t =0.00075 to ensure

the stability of the scheme, whereas, the Laplace operators are approximated by

using a second order di�erence scheme given by

∇2φ =
(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j

)
/(∆x)2. (3.41)

The simulations are performed for 512 times 512 numerical grid units with ∆x is

chosen as π/4. Convergence of simulation results is ensured via convergence studies.
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

Figure 3.1: A square simulation box of size 512 x 512 with a sphere in the center to initialize
the nucleus.

3.3.1 Anisotropic e�ects

The anisotropy of the material at the atomic scale is quanti�ed by a dimensionless

parameter s which can be de�ned in terms of the model parameters as

s = −b1112
b1111

. (3.42)

The e�ect of the anisotropic parameter on the resulting microstructures is studied by

performing numerical simulations with s = 0 and s = 0.3. The boundary conditions

as well as values used for all other model parameters in these simulations are the

same as given in the beginning of sect. 3.3. The results obtained for both cases after

60,000 time steps are demonstrated in Fig. 3.2.

As expected the simulation results obtained for the isotropic case resulted in a sym-
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3.3 Investigation of characteristic morphological features

Figure 3.2: Simulation results of crystal growth calculated for r = −0.4 and (a) s = 0
(isotropic case) and (b) s = 0.3 (anisotropic case).

metric triangular phase morphology. However, in order to further demonstrate the

anisotropic e�ects, the form of triangles in the resulting microstructures obtained

for both isotropic and anisotropic case are analyzed. The form of a triangle is de-

termined in terms of the three internal angles of the triangle. The results show

that the triangular phase obtained in case of s = 0, i.e. without any anisotropy,

consists of triangles with all three internal angles of 60o each. However, the triangu-

lar phase obtained for the anisotropic case contains triangles with dissimilar sides.

This underlines the capability of the APFC model to give rise to truly anisotropic

morphologies. In the following, the e�ect of the anisotropy on the resulting mi-

crostructures is analyzed in a more quantitative manner by calculating the internal

angles of the triangles for the microstructures obtained from simulations performed

with various values of anisotropic parameter. Fig. 3.3 demonstrates the variation of

the internal angles as function of the anisotropic parameter.

The anisotropic crystal lattices obtained from the APFC model can be qualitatively

compared with the distorted lattices found from experimental investigation of the

structures formed in aqueous dispersions of charged colloidal spheres [81] and the

phase behavior of highly charged colloidal spheres in a con�ning wedge geometry

[82].
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Figure 3.3: Form of triangles in the �nal triangular phase obtained with various values of
anisotropic parameter.

3.3.2 Undercooling e�ects

When a liquid is supercooled just below the melting temperature the crystal starts

to grow and this growth of the crystal is directly related to the undercooling in

the system. Depending on the undercooling, which quanti�es the distance from

the phase-equilibrium line in the phase diagram, the resulting �nal states can have

di�erent morphologies.

In this section, the rate of crystal growth from a supercooled liquid state is investi-

gated. In the APFC model r represents the undercooling. Simulations are performed

with various values of r in order to investigate the e�ect of r on the resulting mi-

crostructures. However, for simplicity, a constant value of anisotropic parameter

s is used in these simulations. The initial condition used in these simulations are

the same as described in sect. 3.3). The simulation results showed that the rate

42



3.3 Investigation of characteristic morphological features

Figure 3.4: Simulation results of crystal growth after 60,000 time steps for s = 0 and (a)
r = −0.2 and (b) r = −0.4.

of crystal growth decreases with an increase in the value of r, which demonstrates

that r truly represents the undercooling in the APFC model. The simulation results

obtained with s = 0 (isotropic case) for two typical values of r, i.e. with r = −0.4

and r = −0.2, after 60,000 time steps are depicted in Fig. 3.4.

3.3.3 Phase diagram

In this section, the in�uence of the anisotropy and undercooling on the stable state

phase is investigated in detail. More speci�cally, simulations are performed with

various values of s and r to obtain the corresponding stable state phases for the

phase diagram in s-r space. Fig. 3.5 demonstrates the resulting phase diagram in

s-r space. Fig. 3.5 illustrates that the stable state phase always consists of stripes

if s ≥ 0.25 irrespective of the r value. The co-existence phases is found only in case

of s = 0.125 and r ≤ −0.5, while for other values of s and r, the stable state consist

of a triangular phase.

Typical resulting microstructures for various points of the phase diagram obtained

after 1000000 time steps with dt = 0.00075 are illustrated in Fig. 3.6. These mor-

phologies re�ect the evolution of a crystal of triangular phase at s = 0 and r = −0.25
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Figure 3.5: The resulting phase diagram for the APFC model in s-r space.

and the evolution of a crystal of the stripe phase simulated at s = 0.5 and r = −0.25.

3.3.4 A quantitative study of the impact of anisotropy on the

resulting microstructures

In this section, the impact of the anisotropy (expressed as shear deformation, i.e.

φs = φ(x, y + sx)) on the resulting microstructures obtained from the APFC model

is further investigated in a more quantitative manner. More speci�cally, numerical

simulations are performed with a certain set of parameter values (given in the begin-

ning of sect. 3.3) and varying the anisotropic parameter s. For simpli�cation, the

stripe phases are used as a reference case in order to demonstrate the in�uence of the

anisotropy on the resulting microstructures in the following simulations. The initial
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3.3 Investigation of characteristic morphological features

Figure 3.6: Typical morphologies obtained from the APFC model (a) the crystal growth simu-
lated at s = 0 and r = −0.25 and (b)the solidi�cation of a crystal of the stripe phase simulated
at s = 0.5 and r = −0.25.

conditions for the following numerical simulations are the same as given in sect. 3.3,

however, a relatively smaller simulation box of 256 x 256 is used in these simulation.

Typical stable state phase morphologies of stripe phases obtained from simulations

performed with various values of the anisotropic parameter s are depicted in Fig. 3.7.

Fig. 3.7 demonstrates that the distance between the neighboring stripes decreases

with an increase of s. In order to further investigate the dependence of the distance

between the neighboring stripes on the anisotropy s in a more quantitative manner,

the dimensionless distance between the neighboring stripes d (in units of the lattice

parameter a0 = 10∆x) obtained from simulations is plotted for various values of s

in Fig. 3.8.

The in�uence of s on the stripe morphology can be described best by a Boltzmann

function, which in general form can be expressed as

y = A2 +
A1 − A2

1 + exp
[
x−x0
α

] (3.43)
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

Figure 3.7: Typical stable morphologies obtained from simulations performed with (a) s = 0.25,
(b) s = 0.5, (c) s = 0.75 and (d) s = 1.
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3.4 Further evaluation of model parameters
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Figure 3.8: The distance between the neighboring stripes for various values of anisotropic
parameter s.

with four constant parameters, i.e. A1,A2,x0 and α. The values for these parameters

are obtained from the curve �tting technique which yields the following function to

describe the dependence of d on s:

d = 0.106 + 0.394/[1 + exp(
s− 0.82

0.16
)]. (3.44)

3.4 Further evaluation of model parameters

In this section, the evaluation of model parameters of the APFC model is explicitly

discussed. The anisotropy is considered as a shear of a triangle lattice in the follow-

ing derivation. This anisotropy of the material at the atomic scale is quanti�ed by a
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

dimensionless parameter s which represents the shear of the lattice and the param-

eters a1 and a2 de�ne the tensions in x and y directions, respectively. This detailed

evaluation provides the de�nition of all components of the matrix aij and the tensor

bijkl of the free energy functional of the APFC model expressed in Eq. (3.3) in terms

of s, a1 and a2. In addition to the previous section where the components of the

tensor bijkl were de�ned as �xed values, this detailed evaluation considered a more

generalized case to further elaborate the model parameters. The main objective of

this section is to establish the connection between various model parameters in order

to develop a better understanding of the model.

The dimensionless free energy functional of APFC model in Eq. (3.3) can be ex-

pressed in the following anisotropic form:

F =

∫
V

(
φ

2

[
r + (1 +

−→
∇s

2
)2
]
φ+

φ4

4

)
dr , (3.45)

where φ is the phase �eld, r represents the undercooling and ∇s is the anisotropic

gradient term. For an anisotropic triangular crystal lattice, the APFC model uses

the following atomic function (one more approximation)

φ = φ0 + φ1

[
cos(k1x) cos

(
k2

(y + sx)√
3

)
+

1

2
cos

(
2k2

(y + sx)√
3

)]
, (3.46)

where φ0 and φ1 are the average value and the amplitude of the phase �eld, k1 and

k2 are the wave numbers and s is a parameter which quanti�es the anisotropy of the

material at the atomic scale. As it is clear from Eq. (3.46) the unit vector of the

crystal lattice ~ey is shifted to the anisotropic vector ~esy = ~ey− s~ex due to the shear s
in x-direction. Therefore, the corresponding anisotropic gradient term in Eq. (3.45)

is de�ned in 2D as

−→
∇s = a1∇x~ex + a2∇y~e

s
y. (3.47)
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3.4 Further evaluation of model parameters

where a1 and a2 represent the extension of the crystal lattice in x and y directions.

Here and in the following ∇i, ∇ij, ∇ijkl represents the partial derivatives. The above

equation can be further expanded to obtain an expression for the gradient square

term in 2D, i.e

−→
∇s

2
= a21∇xx|~ex|2 + 2a1a2∇xy(~ex · ~esy) + a22∇yy|~esy|2, (3.48)

Eq. (3.48) can be rewritten by introducing the vector product calculated as (~ex ·~esy) =

−s · 1 + 1 · 0 = −s and the vector norm |~esy| =
√

1 + s2, i.e

−→
∇s

2
= a21∇xx − 2a1a2s∇xy + a22(1 + s2)∇yy. (3.49)

Similarly Eq. (3.49) can be further expanded to obtain an expression for ∇4
s, i.e

−→
∇s

4
= (
−→
∇s

2
)2 = a41∇xxxx − 4a31a2s∇xxxy

+ 2a21a
2
2(1 + s2)∇xxyy + 4a21a

2
2s

2∇xyxy

− 4a1a
3
2s(1 + s2)∇xyyy + a42(1 + s2)2∇yyyy.

(3.50)

For the simplest case (as discussed in [8]), the derivatives used in the free energy

functional of the APFC model can be expanded in the following form

aij
∂2

∂xi∂xj
= a11

∂2

∂x2
+ 2a12

∂2

∂x∂y
+ a22

∂2

∂y2
(3.51)

and
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

bijkl
∂4

∂xi∂xj∂xk∂xl
= b1111

∂4

∂x4
+ 4b1112

∂4

∂x3∂y
+ 2b1122

∂4

∂x2∂y2

+4b1212
∂4

∂x2∂y2
+ 4b1222

∂4

∂x∂y3
+ b2222

∂4

∂y4
. (3.52)

The components of the matrix aij and the tensor bijkl of the APFC model can be

evaluated by comparing the coe�cients of Eq. (3.49) and Eq. (3.50) with Eq. (3.3),

i.e.

a11 = a21,

a22 = a22(1 + s2),

a12 = −a1a2s, (3.53)

and

b1111 = a41,

b1112 = −a31a2s,

b1122 = a21a
2
2(1 + s2),

b1212 = a21a
2
2s

2,

b1222 = −a1a32s(1 + s2),

b2222 = a42(1 + s2)2. (3.54)

Eq. (3.53) and Eq. (3.54) demonstrate that all the model parameters can be ex-

pressed in terms of three independent parameters, namely s, a1 and a2 with s de-

�nes shear and the parameter a1 and a2 de�ne the tensions in x and y directions,

respectively.
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3.5 Bridging the PF and PFC approaches for anisotropic systems

3.5 Bridging the PF and PFC approaches for

anisotropic systems

The use of the PFC method is often limited to small systems due to the high com-

putational demand since it needs 8 − 10 spatial grid points per atomic spacing as

discussed in sect. 2.2. To overcome this computational limitation and to extend

the applicability the PFC model, the concept of amplitude expansion (introduced

by Goldenfeld et al. [44, 45]) is widely used. In this concept, the amplitudes are

coupled to the average atomic density �eld. Following a similar concept, the am-

plitude representation of the APFC model is derived for a triangular crystal lattice

[11] in this section. Furthermore, the method of multiple-scale analysis (discussed

in [39, 40]) is used to further exploit the amplitude expansion technique in order to

derive the relationship between the amplitude equation for the APFC model and

the standard PF model with elasticity e�ects, which provides an explicit connection

between the PF and PFC modeling approaches.

A comparison of the simulation results for an anisotropic crystal growth obtained

from the originally introduced APFC model and the newly derived amplitude repre-

sentation of APFC model is also presented in order to illustrate the capacity of the

amplitude representation to model the similar characteristic features as well as to es-

tablish its link to the standard PF model. Thus, the amplitude expansion presented

in this section leads to a computationally more e�cient model and highlighted its

potential as a bridge between the PF and PFC models with anisotropic interface

energies and kinetics.

3.5.1 Amplitude expansion of the APFC model

In this section the evolution equation of the APFC model is transformed to the

evolution equation for the slowly varying amplitudes which describe the triangular

crystalline system. The evolution equation for the APFC model given by Eq. (3.4)

can also be expressed in the following form:
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

∂φ

∂t
= ∇2

(
Λ0
sφ+ rφ+ cφ3

)
, (3.55)

where Λ0
s = (1 +∇2

s)
2.

For a periodic structure the atomic density �eld (φ) can be expressed (in one-mode

approximation) with three amplitudes ηj in the complex form as

φ = φ0 +
3∑
j=1

ηje
(i~qj ·~r) +

∑
η∗j e

(−i~qj ·~r), (3.56)

where ~qj are the principle reciprocal lattice vectors and η∗j is the complex conjugate.

The model equations will be developed only for the lowest-order amplitudes which

are needed to reconstruct a given crystal symmetry as well as the elastic and plastic

e�ects in solidi�cation.

The free energy of the APFC model given by Eq. (3.45) is minimized by a triangular

lattice Eq. (3.46) in two-dimensional case, from which the principle reciprocal lattice

vectors can be derived. The cosine parts of Eq. (3.46) can be rewritten as

cos (k1x) cos

(
k2

(y + sx)√
3

)
+

1

2
cos

(
2k2

(y + sx)√
3

)
= (3.57)

−1

2
cos

(
qeq

(
−x− (sx+ y)√

3

))
+

1

2
cos

(
qeq

(
x− (sx+ y)√

3

))
+

1

2
cos

(
2qeq

(y + sx)√
3

)
.

The corresponding set of principle reciprocal lattice vectors are given by
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3.5 Bridging the PF and PFC approaches for anisotropic systems

Figure 3.9: The principle reciprocal-lattice vectors of the anisotropic triangular lattice.

~q1 = qeq

((
−1− 1√

3
s

)
~ex −

1√
3
~ey

)
=

{
−
√

3

2
− 1

2
s;−1

2

}
,

~q2 = qeq

((
1− 1√

3
s

)
~ex −

1√
3
~ey

)
=

{√
3

2
− 1

2
s;−1

2

}
,

~q3 = qeq

(
2√
3
s~ex +

2√
3
~ey

)
= {s; 1} . (3.58)

These principle reciprocal lattice vectors are illustrated in Fig. 3.9. A minimal

model of a triangular lattice can be constructed by considering only the lowest order

reciprocal lattice vectors which correspond to ~q1 and ~q2 and ~q3 = −~q1 − ~q2.
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

The equation of motion for the amplitudes is determined by using a standard method

of multiple-scale analysis [46, 83] in the limit of small parameter χ which is −r in
case of the APFC model. The density �eld amplitudes ηj need to be expanded in a

power series in χ1/2 and substituted into Eq. (3.55) to obtain dynamical equations

at each order of χ. These equations can be further solved by using a standard

solvability condition [83] for complex amplitudes of the lowest-order reciprocal lattice

vectors and to all orders in χ. The corresponding resulting equations for the complex

amplitudes ηj is given by

∂ηj
∂t

= Lj

[
Λ0
j,sηj + (3cφ2

0 + r)ηj + 3cηj(2
3∑

k=1

|ηk|2 − |ηj|2) + 6cφ0

3∏
k 6=j

η∗k

]
, (3.59)

where

Lj = ∇2 + 2i~qj ·
−→
∇ − |~qj|2 ≈ −|~qj|2,

Λ0
j,s = (∇̂2

j,s + 1)2. (3.60)

The expression for the Lj can be simpli�ed as Lj = −|~qj|2 for a long-wavelength

approximation. The complex operator ∇̂2
j,s is derived from the Laplace operator

Eq. (3.48) in the following form

∇̂2
j,s = ∇xx + 2iqj,x∇x − q2j,x

−2s (∇xy + i [qj,x∇y + qj,y∇x]− qj,xqj,y)

+
(
1 + s2

) (
∇yy + 2iqj,y∇y − q2j,y

)
. (3.61)

The above expression can be further simpli�ed as

54



3.5 Bridging the PF and PFC approaches for anisotropic systems

∇̂2
j,s = ∇2

s + 2i~qj ·
−→
∇s −

[
q2j,x − 2sqj,xqj,y +

(
1 + s2

)
q2j,y
]

− 2siqj,y∇x + s22iqj,y∇y

= ∇2
s + 2i~qj ·

−→
∇s − 2siqj,y (∇x − s∇y)− 1, (3.62)

where the expression
[
q2j,x − 2sqj,xqj,y + (1 + s2) q2j,y

]
is equal to 1 for all vectors ~qj.

Using the anisotropic gradient

−→
∇s = ∇x~ex +∇y (~ey − s~ex) (3.63)

and the relation

~qj ·
−→
∇s = ~qj ·

−→
∇ − sqj,x∇y, (3.64)

the Eq. (3.62) can be expressed as:

∇̂2
j,s = ∇2

s + 2i~qj ·
−→
∇ − 2is (qj,x∇y + qj,y∇x) + 2is2qj,y∇x − 1. (3.65)

The newly derived equation of motion Eq. (3.59) can be written in a form of a PF

model, i.e.

∂ηj
∂t

= −|~qj|2
δF

δη∗j
, (3.66)
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with the free energy functional

F =

∫
V

{
1

2
(3cφ2

0 + r)A2 +
3c

4
A4 +

3∑
j=1

(
|(∇̂2

j,s + 1)ηj|2 −
3c

2
|ηj|4

)

+ 6cφ0

[
3∏
j=1

ηj +
3∏
j=1

η∗j

]}
d~r , (3.67)

where A2 = 2
∑3

j=1 |ηj|2. This energy can be compared to the previously developed

representation [39, 40] with exception of the anisotropic gradient term.

3.5.2 Connection between the APFC model and traditional

PF models

For a small deformation limit, the amplitudes ηj can be written in the form

ηj = ψei~qj ·~u, (3.68)

where ψ is a phase-�eld variable which changes from 0 (in liquid phase) to a �nite

value (in solid phase) and ~u = {ux,uy} is a vector which describes the displacement

of atoms from a perfectly ordered crystal lattice. The connection with the standard

PF model can be established by substituting ηj into Eq. (3.67) and expanding it

up to the lowest-order nontrivial gradients in ψ. The resulting equation for the

evolution of the phase-�eld variable can be expressed as

∂ψ

∂t
=

∑
j

|~qj|2
[
4
(
~qj ·
−→
∇s − sqj,y (∇x − s∇y)

)2
ψ − 6(3cψ2

0 + r)ψ

− 12cφ0ψ
2 − 45cψ3 − 4

(
Aj +Bjs+ Cjs

2
)2
ψ
]

. (3.69)

The �rst gradient term in Eq. (3.69) represents the anisotropy and the last term in
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3.5 Bridging the PF and PFC approaches for anisotropic systems

brackets accounts for the linear elastic energy. The terms Aj, Bj and Cj depend

on the displacement vector which could be obtained in each step of the simulation

by solving the mechanical equilibrium equations. The above evolution equation con-

tains the terms of the standard PF model such as the gradient term, the double well

potential term and the chemical driving force. With the elastic energy contribution,

the above evolution equation becomes similar to the recently developed PF models

with elastic e�ects [84, 85]. Additionally, it contains the elastic terms which follow

from the interaction of the small deformations with the lattice anisotropy s which

provides the anisotropic elastic constants.

In order to further illustrate the terms appeared in the equation for the evolution

of the phase-�eld variable (as given by Eq. (3.69)), the term Aj is de�ned from the

second term of Eq. (3.62) as

Aj =
(
~qj ·
−→
∇
)

(~qj · ~u)

= (qj,x∇j,x + qj,y∇y) (qj,xux + qj,yuy)

= q2j,xUxx + qj,yqj,x∇yux + qj,xqy∇xuy + q2j,yUyy

= q2j,xUxx + q2j,yUyy + 2qj,yqj,x

(
∇yux +∇xuy

2

)
= q2j,xUxx + q2j,yUyy + 2qj,yqj,xUxy, (3.70)

where ui are the components of the displacement vector and Uij are the components

of the strain tensor and Uxy = 1
2

(∇xuy +∇yux). These components of the displace-

ment vector and strain tensor can be obtained from the mechanical equilibrium

equations. The sum
∑

j |~qj|2A2
j can be calculated as

∑
j

|~qj|2A2
j =

∑
j

(
q2j,x + q2j,y

) (
q4j,xU

2
xx + q4j,yU

2
yy + 4q2j,xq

2
j,yUxy

+ 2q2j,xq
2
j,yUxxUyy + 4q3j,yqj,xUyyUxy + 4q3j,xqj,yUxyUxx

)
. (3.71)
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The above expression can be further simpli�ed for an isotropic case by using s = 0,

i.e.

∑
j

A2
j =

3

4

[
3

2
U2
xx +

3

2
U2
yy + 2U2

xy + UxxUyy

]
. (3.72)

This resulting expression is comparable to the equation derived for an isotropic

binary PFC model [41].

Similarly, second and third terms (Bj and Ci) can also be evaluated on the similar

lines from the third and fourth terms of Eq. (3.62), i.e.

Bj = (qj,x∇y + qj,y∇x) (~qj · ~u)

= (qj,x∇y + qj,y∇x) · (qj,xux + qj,yuy)

= q2j,x∇yux + qj,xqj,yUxx + qj,xqj,yUyy + q2j,y∇xuy, (3.73)

and

Cj = qj,y∇y (~qj · ~u)

= qj,y∇y (qj,xux + qj,yuy)

= qj,yqj,x∇yux + q2j,yUyy. (3.74)

Finally, from the above expressions of Bj and Ci, the important gradient term can

be calculated as
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∑
j

|~qj|2B2
j =

∑
j

(
q2j,x + q2j,y

) (
q2j,xq

2
j,y (Uxx + Uyy)

2 + q4j,x (∇yux)
2 + q4j,y (∇xuy)

2

+ 2q3j,xqj,y (∇yux) (Uxx + Uyy) + 2q3j,yqj,x (∇xuy) (Uxx + Uyy)

+ 2q2j,xq
2
j,y (∇yux) (∇xuy)

)
(3.75)

and ∑
j

|~qj|2C2
j =

∑
j

(
q2j,x + q2j,y

) (
qj,yqj,x∇yux + q2j,yUyy

)
. (3.76)

3.5.3 Evaluation of computational e�ciency

In this section, a detailed analysis of the computational e�ciency is performed by

comparing the simulation results obtained from the originally introduced APFC

model based on Eq. (3.55) with the PF model expressed by eq. (3.69) without elastic

terms. More speci�cally, the growth of a crystalline phase from the liquid phase

is simulated with the evolution equations based on both the originally introduced

APFC model and the phase-�eld evolution equation by initialization a small crystal

nucleus in the center of a square simulation box of size 512 x 512. The phase-�eld

evolution equation is further simpli�ed by omitting the term sqj,y (∇x − s∇y) which

is responsible for the gradient anisotropy. Fig. 3.10 illustrates the results obtained

from the simulation performed with the originally introduced APFC model and the

amplitude evolution equation for s = 0.2, r = −0.25, c = 1 and φ0 = 0.28 without

elastic e�ects.

Fig. 3.10 clearly demonstrates that the resulting crystalline phase has a pronounced

anisotropic form extended in the direction of ~esy. The anisotropic strength which

is characterized by the parameter s, can be compared to the standard twofold

anisotropy in the phase-�eld model. Furthermore, the anisotropic growth kinetic

in the phase-�eld representation is related to the anisotropy of the crystal inter-

plane distances for various crystal facets (just like the APFC model) and hence to

the anisotropic surface energy.
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3 Modeling of anisotropic materials with arbitrary Poisson's ratio

Figure 3.10: The anisotropic crystal simulated by (a) the APFC model and (b) the amplitude
evolution equation.

The comparison of the simulation results obtained for both cases shows that the

phase-�eld evolution equation follows the evolution of the crystal calculated from the

APFC model without resolving the details of atomic structure and with smoothening

of the crystal edges. However, for a quantitative comparison of the computational

e�ciency, the CPU time of both simulations is calculated for a typical run of 20,000

steps with dt = 0.00075. The comparison shows that simulations performed with

the APFC model took 10 minutes to reach the typical reference state, whereas,

simulations performed with the phase-�eld amplitude evolution equation took only

1 second to reach the similar state. Thus it can be concluded that the computational

e�ciency is increased by 600 times in case of the phase-�eld amplitude evolution

equation. This increase in computational e�ciency illustrates that the newly derived

amplitude evolution equation allows a fast estimation of the solidi�cation behavior

of anisotropic crystals and crystals under applied stress by building a bridge upon

the multiple-scale approach.
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3.6 Discussion

In this chapter, the basic formulation of the APFC model is presented along with the

DDFT based calibration of the model, i.e. the derivation of its model parameters

from the DDFT which provided the physical justi�cation for the model. The unique

feature of the APFC model, that it can simulate isotropic as well as anisotropic

materials with arbitrary Poisson's ratio, is highlighted by demonstrating the sim-

ulation results obtained with various set of model parameters. These distinguish

features of the APFC model overcome the limitations of the originally introduced

PFC model [7] (which can only model materials with Poisson's ratio of 1/3) and thus

allows further extension of the applicability of the PFC approach to a wider class of

material systems. In particular, this o�ers the chance of prospectively contributing

to a mechanistic understanding of material systems of recent interest such as gum

metals or dilational materials.

Furthermore, the amplitude formulation of the APFC model is also presented which

can be applied to dynamics of two-phase systems with anisotropic properties. In

particular, the relationship between the amplitude evolution equation and the corre-

sponding evolution equation for the standard PF models with elasticity is established

which bridges the PF and PFC approaches for anisotropic crystals and thus provides

an explicit connection between the APFC model and the standard PF models. More-

over, the simulation results demonstrated that these amplitude evolution equations

increased the computational e�ciency by many times and are capable of performing

fast simulations of the solidi�cation of anisotropic crystals and crystals under stress

with additional elastic e�ects by building a bridge upon the multiple-scale approach.

Thus, the deviation of the amplitude formulation for the APFC model provided on

one hand a tremendous enhancement in the computational e�ciency as well as a

bridge between the PFC and traditional PF models on the other hand.
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4 Investigating the equilibrium properties

of the liquid-solid interface ∗

The previous chapter demonstrated the development of a more generalized APFC

model within the framework of the PFC method with the capability of modeling

material systems with arbitrary Poisson's ratio [8, 9, 10]. This chapter goes a step

further by focusing on the basic application of this thesis to study nucleation mech-

anisms associated with binary systems which certainly have higher industrial rele-

vance. Particularly it is applied here to advance beyond classical nucleation theory

(CNT).

Most of the binary systems rely heavily on the physics associated with the important

morphological features of interface boundaries between di�erent phases at atomistic

level in order to achieve desired properties. In particular, liquid-solid interfaces

play an important role in a number of phenomena encountered in physical processes.

The understanding of structural and thermodynamic aspects of liquid-solid inter-

faces is a key element to understand various phenomena such as vaporization and

condensation transformations, because interface boundaries play an important role

in recrystallization. The role of interfaces is not only restricted to the growth pro-

cess, since interfaces are also an important feature of the resulting microstructures

which indeed play a vital role in determining the material properties. One of the

most important interfacial properties is the surface tension, which is a key ingredient

to determine the behavior and control of several phenomena of high industrial appli-

cations [86]. For example, nanoparticles can be directed to self-assemble into thin

�lms at an oil/water interface by manipulating the solid/water and solid/oil surface

tensions [87]. Therefore, keeping in mind the importance of liquid-solid interfaces

∗Parts of this chapter are already published in [11, 12].
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and associated surface energies, the motivation behind this chapter is to establish

a new methodological approach, that can get hand on interfacial energies beyond

classical predictions.

There have been many theoretical attempts to estimate the surface tension, but,

these estimates only re�ect an approximate value of the surface tension due to the

number of assumptions used in these calculations. In contrast, several simulation

techniques provide the possibility to compute the surface tension with much higher

accuracy. In particular, the PFC method derives its attractiveness from the fact that

unlike other traditional methods, it allows to model and simulate the dynamics of

interfaces without any explicit tracking of the interface [1, 7]. This chapter presents

a detailed investigation of the curved liquid-solid interface using the �nite system

size approach. More speci�cally, a quantitative analysis of the liquid-solid surface

tensions of critical nuclei and nucleation barriers is presented in this chapter. A

two-dimensional PFC model for binary systems based on Elder et al. [1] is used to

study critical nuclei near the liquid-solid phase boundary. The main aim of these

investigations is to establish the usefulness of the �nite box size approach (as evolves

in [88, 89, 90]) to the study of critical nuclei for the liquid-solid transition as well

as to address the problem of de�ning droplet radii in a two-component mixture.

In addition to that, these investigations are also aimed to obtained a more precise

assessment of crystal nucleation in the context of binary systems beyond predictions

based on CNT.

This chapter is organized as follows. Firstly, a brief overview of the theoretical

aspects of the crystalline growth process via metastable nuclei and the existing the-

oretical models, is presented in sect. 4.1. Then a detailed description of the PFC

model for binary alloys is presented in sect. 4.2. Then, the development of the

phase diagram by considering the one-mode approximation technique and full dy-

namics is presented in sect. 4.3. The method used to extract the surface energy

from the free energy of a �nite size simulation box containing a crystal cluster in

equilibrium with the surrounding liquid phase as well as liquid droplets in equilib-

rium with the surrounding solid phase, is discussed in sect. 4.4. The free energies

of the curved liquid-solid interface and the nucleation barriers are calculated for

various cluster sizes depending on the initial supersaturation and the corresponding
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4.1 Theoretical picture of crystalline growth process via metastable nuclei

equilibrium solid fraction in sect. 4.7 and 4.8. Furthermore, a comparison of sim-

ulation results with the CNT and the well established non-classical Tolman theory

is also presented. Finally, the important concluding remarks from this study are

summarized in sect. 4.9.

4.1 Theoretical picture of crystalline growth

process via metastable nuclei

The formation of a crystalline phase in an undercooled melt proceeds via the ap-

pearance and disappearance of nanoscopic crystalline nuclei. Once these nuclei have

reached a certain size, commonly known as critical size, they are able to grow. The

time scale for entering this particular growth regime is mainly determined by the

di�erence of the grand free energy between the critical nucleus and the reference

state of the homogeneous undercooled melt. This di�erence of the grand free energy

is commonly termed as nucleation barrier. The use of the notion of free energy

for such a nonequilibrium process implicitly means the use of a picture of quasi-

equilibrium changes making up the process. Furthermore, these critical nuclei are

described as saddle point solutions in the free energy landscape in the context of

a mean-�eld picture for the quasi-equilibrium changes. For a proper description of

crystalline growth process, it is very important to develop a better understanding

of the kinetics associated with the nanoscopic crystalline nuclei [12].

In general, proper investigation of metastable con�gurations through numerical sim-

ulations does require large system sizes in order to ensure a reasonable solution.

Simulation performed for such large system sizes poses many new challenges con-

cerning the computational e�ciency. To overcome this limitation, a relatively new

technique known as �nite size approach, has been proposed and is being widely used

in a very successful manner.
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4 Investigating the equilibrium properties of the liquid-solid interface

4.1.1 Finite size e�ect approach

This approach suggests that instead of determining metastable con�gurations in

large volumes or boxes, a smaller simulation box with a �xed particle number

(i.e. the canonical ensemble) may be utilized to stabilize critical nuclei. This has

been demonstrated successfully as a quantitative route in Monte-Carlo (MC) simu-

lations to assess the nucleation barriers for the nucleation of liquid droplets in vapor

[88, 89, 90], and it works equally well using DFT [89, 90]. For a given box size,

the transitions from supersaturated vapor to undersaturated liquid follow the sub-

sequent sequence:

supersaturated vapor→ liquid droplets→ liquid cylinders→ planar liquid slabs→
vapor cylinders → vapor droplets → undersaturated liquid,

as the number of particles are increased in the box (i.e. increase in the density from

the one of the coexisting vapor to the one of the coexisting liquid) [91]. Therefore,

droplets with a radius falling into a limited range can be stabilized for a given �nite

box size. A larger range of droplet radii can be obtained by combining the droplet

stability windows of boxes with di�erent sizes. After the successful implementation

of this approach in the investigation of nucleation of liquid droplets in vapor, it

can be stated that this route should also work for crystal nucleation in the liquid

phase, as long as there is a density di�erence between the coexisting crystal and

liquid phases. Furthermore, this technique can also be used for analyzing solid-solid

demixing [92].

4.1.2 Existing theoretical models

In 1990's, several non-classical relations were developed to describe the dependence

of the surface energy on the undercooling as well the critical nucleus size beyond

the predictions based on CNT. Some well recognized non-classical theories in this

context include the modi�ed self-consistent classical theory [93, 94], the �eld theo-
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4.1 Theoretical picture of crystalline growth process via metastable nuclei

retic approaches based on the DFT [95, 96, 97] and the Granasy's di�usion interface

theory (DIT) [98, 99]. The promising features of these existing theories are summa-

rized by Granasy et al. in a recent review [100]. Furthermore, these non-classical

theories [94, 101] also proposed phenomenological dependence of the surface tension

on the nucleus size.

A well established non-classical thermodynamic theory to describe the surface ten-

sion for a liquid droplet existing in equilibrium with the vapour phase was developed

by Tolman [102]. This theory suggests that the curvature dependence of the surface

tension of small droplets can be described as

γ(r) =
γ∞

1 + δT
r

, (4.1)

where the phenomenological length scale δT being the famous Tolman length. It is

still di�cult to give δT a precise meaning in the context of statistical mechanics [91]

and the dependence of δT on temperature is also still under discussion [103, 104, 105].

The details of all important developments in this context are summarized by Tröster

et al. in a recent review [90]. The interfacial free energy of small crystalline particles

is also expected to depend on size, due to the decrease in the average number of

solid neighbors for molecules on curved surfaces relative to that on a planar interface

[106].

4.1.3 Support from computational studies

The theoretical picture of the crystalline growth process has received support from

simulation work in which slow variables (reaction coordinates, such as radius of

particles or particle numbers in crystalline nuclei) are de�ned and quasi-equilibrium

averages are computed with respect to all other variables [107, 108]. Results for

the nucleation barrier ∆Ω from such computations are often interpreted using the

expression from CNT:
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4 Investigating the equilibrium properties of the liquid-solid interface

∆Ω = −∆µρcV + γA, (4.2)

where V and A are the volume and surface area of the nucleus, ∆µ is the chemical

potential di�erence between the undercooled liquid and the crystalline state in the

nucleus, ρc is the crystal density in the nucleus and γ is the surface tension. For

further simpli�cation, γ can be assumed to be the surface tension of a planar liquid-

solid interface (γ∞). However, some recently reported simulation results indicate

deviations from this approximation depending on size and shape of the nuclei [108].

Furthermore, even if γ∞ is strictly not constant (as it would be in the liquid-vapor

case), it depends on the orientation of the crystal with respect to the interface normal

[12].

Therefore, it is desirable to analyze critical crystalline nuclei in mean-�eld theories

where they are not as elusive as in simulations. In DFT, reliable functionals are

usually nonlocal in the particle density �eld and computationally much expensive

technique, thus, due to its high computational resources requirements, the investi-

gation of critical crystalline nuclei have not been performed yet. However, quite

a number of investigations exists for a liquid droplet nucleation in supersaturated

vapor (for recent work see e.g. Ref. [109]). As an alternative to the CDFT, the PFC

method being local in the order parameter �eld can be used as a computationally

more e�cient approach to address such a problem. Nevertheless, direct methods

to determine saddle points corresponding to a critical nucleus are still not easy to

handle and they are also rather time consuming. For the simplest one-component

PFC model in three dimensions, this has been done for one particular undercooled

state [110]. Furthermore, a two-dimensional study of critical nuclei at walls using

direct methods for saddle point location is also reported by G. I. Toth et at. [111]

and R. Backofen et at. [112]. Even though the PFC model is computationally much

more accessible and an attractive alternative to the still more demanding nonlocal

DDFT calculations for crystals, the equilibration of the droplet solutions is occasion-

ally slow. However, the PFC simulations in conjunction with the �nite system size

technique certainly can have prospective to assess more sophisticated systems with

perhaps a variety of shapes of critical nuclei.
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4.2 PFC model for binary systems

4.2 PFC model for binary systems

A two-dimensional PFC model for binary systems based on Elder et al. [1] is used to

investigate the equilibrium properties of the liquid-solid interface. This model has

been chosen due to its potential for future investigations, i.e. besides a liquid-solid

transition its phase diagram has an eutectic point and thus it can also be used to

investigate the solid-solid phase transition. To that end the following representation

follows [1, 12].

Free energy functional and systems dynamics

A binary system composed of two components A and B is considered with each

component having its own representative (coarse-grained) atomic number densities,

i.e. ρA and ρB, respectively. The free energy of such a binary system includes the

contribution from the energy of the density �elds of both components and their

interaction. The dimensionless and shifted atomic density �eld, n, and the relative

concentration �eld, c, are introduced to simplify the model. The dimensional atomic

density �eld and the concentration �eld can be expressed as,

n =
ρA + ρB
ρ̄A + ρ̄B

− 1,

c =
ρB − ρA
ρ̄A + ρ̄B

, (4.3)

where ρ̄A and ρ̄B are the average atomic number densities of components in the

liquid phase.

The free energy functional for a binary system is derived in [1] in the form

F =

∫
F (n, c)d~r, (4.4)
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4 Investigating the equilibrium properties of the liquid-solid interface

with the total free energy density

F (n, c) =
n

2

[
Bl +Bs(2R2∇2 +R4∇4)

]
n− t

3
n3 +

v

4
n4

+ Γc+
w

2
c2 +

ξ

2
c3 +

u

4
c4 +

ε2

2
|~∇c|2 + ..., (4.5)

where t, v, Γ, w, ξ, u and ε are constant model parameters. However, Bl, Bs and

R depend on the concentration and can be expressed by Taylor expansion. For

simplicity, it is assumed that Bl
0, B

s
0, B

l
2, R0 and R1 are the only non-zero Taylor

coe�cients. These non-zero Taylor coe�cients can be expressed as

Bl = Bl
0 +Bl

2c
2,

Bs = Bs
0,

R = R0 +R1c. (4.6)

Here, the di�erence ∆B0 = Bl
0 − Bs

0 plays the role of a shifted and rescaled tem-

perature. The gradient terms in front of n favor crystalline order with a lattice

constant of order R. If R1 6= 0, the lattice constant will be concentration dependent

(lattice mis�t). It can be assumed that this model can describe a solid solution since

the prefactor of the gradient term |~∇c|2 is positive (free energy cost for a spatially

varying concentration) and a term ∝ c∇4c is absent.

Considering substitutional di�usion between both components A and B, i.e. equal

mobility of the components, results in decoupled dynamical equations for n and c.

Moreover, the dynamical equations can be further simpli�ed by assuming a constant

mobility (M). The resulting dynamical equations (introduced in [1]) can be written

as

∂n

∂t
= M∇2 δF

δn
, (4.7)

∂c

∂t
= M∇2 δF

δc
. (4.8)
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The derivative of the free energy with respect to the atomic density can be obtained

by using the free energy expression Eq. (4.5), i.e.

δF
δn

= nBl − tn2 + vn3 +
Bs

0R
2

2

[
(2∇2 +R2∇4)n

]
+

Bs
0

2

[
2∇2(nR2) +∇4(nR4)

]
(4.9)

and the derivative of the free energy with respect to the concentration �eld, i.e.

δF
δc

= Bl
2cn

2 + 2Bs
0nR1R

[
∇2 +R2∇4

]
n

+ Γ + wc+ ξc2 + uc3 − ε2∇2c. (4.10)

4.3 Equilibrium phase properties

In this section, a brief explanation of the method of the evaluation of the equilibrium

phase diagram for the free energy functional of the binary PFC model using one-

mode approximation and the coarse-graining assumption (according to the ref.[1]),

is presented. The method is further extended by taking into account the periodic

variation of the concentration in the bulk state at the scale of the atoms and develop-

ing the full phase diagram in a n-c-space (discussed in sect. 4.3.2) . The isothermal

section of the calculated phase diagram is used for the investigation of the interface

tension as discussed in the following sections of this chapter.

4.3.1 Phase diagram based on the coarse-graining assumption

The phase diagram of the binary PFC model has been studied in [1] using the coarse-

graining assumption that c varies more smoothly (on a larger length scales) than n.

Thus, in bulk crystalline states n varies periodically while c is constant and coexisting
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4 Investigating the equilibrium properties of the liquid-solid interface

phases can be characterized by a constant average total density n0, an equality of

the chemical potential µc = ∂F/∂c and the pressure p = µnn + µcc − F (n, c) at

coexistence values cl and cs of the concentration in liquid and solid phases. In other

words, the conditions for the existence of a stationary solution correspond to the

equality of chemical and grand potentials. The calculation of the bulk free energy

can be simpli�ed using the one-mode approximation (as discussed in [1]). This

technique is applied to initialize the total density n in the solid phase as

n = n0 + A
[
0.5 cos(2qy/

√
3)− cos(qx) cos(qy/

√
3)
]

. (4.11)

Inserting this expression into Eq. (4.5) and then minimizing with respect to q and

A gives the equilibrium wave number and the minimized amplitude:

qeq =

√
3

2R
,

Amin =
4
(
t− 3vn0 +

√
t2 + 24tvn0 − 36v2n2

0 − 15v∆B
)

15v
(4.12)

where ∆B = Bl −Bs = ∆B0 +Bl
2c

2.

It is important also to mention that the lattice constant a can be de�ned in terms

of qeq as:

a = 2π/qeq = 4πR/
√

3 . (4.13)

Substituting Eq. (4.12) into Eq. (4.5) and using n0 = 0 gives an expression for the

free energy density of the solid phase that is minimized with respect to crystal lattice

constant and amplitude, i.e.
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Fs = Γc+
w

2
c2 +

ξ

2
c3 +

u

4
c4 +

3

16
∆BA2

min −
t

16
A3

min +
45v

512
A4

min. (4.14)

In liquid-solid coexistence region, the free energy of the liquid phase can be compared

with the free energy of the solid phase. The expression for the mean �eld free energy

for the liquid phase can be obtained from Eq. (4.14) by setting n0 = 0, i.e.

Fl = Γc+
w

2
c2 +

ξ

2
c3 +

u

4
c4. (4.15)

The Maxwell's construction rule is then used to identify the liquid-solid coexistence

lines. Using this technique, it has been found for the exemplary choice n0 = 0 in

both phases that for w > 0 there are two separate branches in the phase diagram

(temperature-concentration [∆B0-c] plane) [1]. For temperatures above a critical

one, ∆B0 > ∆B0,1, there is liquid-solid coexistence, for temperatures below a sec-

ond critical one, ∆B0 < ∆B0,2, there is solid-solid demixing. Both branches are

separated in temperatures ∆B0,1 > ∆B0,2 for w being larger than a certain thresh-

old value w0. For w < w0, the two branches meet and ∆B0,1 = ∆B0,2 = ∆B0,c

corresponds to a eutectic temperature. Fig. 4.1 demonstrates an example of the one-

mode phase diagram in the eutectic regime for the parameters given in Table 4.1.

The calculations based on [1] results in a dotted line at ∆B0,c ≈ 0.0282 in Fig. 4.1

which shows the location of the eutectic temperature, above this line there is possible

liquid-solid coexistence and below is the solid-solid coexistence. The dashed lines in

Fig. 4.1 indicate a metastable solid-solid transition and the full line at ∆B0 = 0.05

indicates where nucleation is investigated in this chapter.
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4 Investigating the equilibrium properties of the liquid-solid interface

Figure 4.1: The phase diagram of the model in one-mode approximation, using n0 = 0 and
the parameters given in Table 4.1. It follows Figure 3 in [1].

4.3.2 Further development of the full phase diagram in

n-c-space

The coarse-graining assumption (discussed in sect. 4.3.1) used in the development

of the one-mode phase diagram [1] is not valid strictly, i.e. the concentration �eld

also vary periodically for a bulk crystal. Therefore, coexistence is characterized by

a pair of variables (nl, cl) and (ns, cs) for liquid and solid density and concentration,

respectively, where nl 6= ns in general. It is important to mention that at coexistence,

the values for both chemical potentials µc = ∂F/∂c, µn = ∂F/∂n and the pressure

p = µnn+ µcc− F (n, c) must agree in the liquid and solid phase.
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4.3 Equilibrium phase properties

Validation of PFC results through mode expansion technique

The calibration of the PFC model for binary alloys based on the classical DFT was

proposed by Elder et al. [1]. More speci�cally, its connection with the DFT was

established through the parameterization of the direct two-point correlation function

which enters in DFT by the quantities which are related to the elastic energy stored

in the solid and liquid phases, as well as the lattice constant of the material systems

[1].

However, in order to further extend the one-mode phase diagram (shown in Fig. 4.1)

and to develop a full phase diagram in n-c space, the co-existence data obtained from

the PFC simulations needs to be veri�ed through some well established method. A

fast routine for determining crystal solutions with minimized free energy is most

crucial for obtaining coexistence in order to verify the PFC results. This can be found

by expanding both n and c in reciprocal lattice modes of a triangular lattice and

rewriting the free energy Eq. (4.5) in terms of these modes. Then F is minimized by

using the simulated annealing method (as described in Ref. [113]) and a truncation

to 5 modes. This free energy routine was subsequently employed to determine the

phase boundaries via the Maxwell construction. The set of numerical equations for

the equality of pressure and the two chemical potentials on the liquid and solid

side was solved with a Newton-Raphson method. This DDFT type expansion is

developed and applied by Martin Oettel in the joint work [12]. More speci�cally,

the coexistence data (chemical potentials µn and µc as well as the free energies of

phases) obtained from the PFC code is validated through a close comparison with

the values calculated from the mode expansion technique for the given ceq and neq
0 .

The di�erence of the resulting values obtained from both methods is found to be

smaller than 0.1%.

Isothermal phase diagram

The following summarizes the further results by which the PFC method is estab-

lished and employed in the �nite system size technique for fundamentals of nucle-

ation theory (it follows [12]). For a speci�c set of model parameters (as given in
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Table 4.1) used in the following investigations, the equilibrium densities of phases

at coexistence (neq, ceq0 ) at the temperature ∆B0 = Bl
0 − Bs

0 = 0.05 are calculated

according to the procedure described above. The corresponding isothermal section

of the phase diagram is presented in Fig. 4.2. The range of the mean density and the

mean composition (n̄0, c̄) used to perform simulations in this chapter is illustrated

by a dashed line and the liquid-solid coexistence line are shown as dotted lines in

Fig. 4.2.

Figure 4.2: The isothermal section of the phase diagram at ∆B0 = 0.05 for the parameters
given in Table 4.1. Figure already published in [12]
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4.4 Method of the investigation of the interfacial

energy

4.4.1 A theoretical picture

In this section, the method of the extraction of the interfacial free energy FI and
the interface line tension fI = FI/l (where l is the circumference of the interface)

from the numerical data is discussed in detail following [12]. Fig. 4.3 illustrates the

de�nitions of some necessary parameters used in this section.

Figure 4.3: (a) A planar solid slab and (b) a solid nucleus with radius r stabilized in the �nite
simulation box. Figure already published in [12].

Fig. 4.3(a) indicates that the chemical potentials for the two species are constant

across the simulation box and are at the coexistence values µcoex
n[c],slab. The densities n

and c for the solid (s) and liquid (l) phase corresponds to their bulk coexistence val-

ues ncoex
l[s],slab and c

coex
l[s],slab. Similarly, Fig. 4.3(b) indicates that the chemical potentials
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4 Investigating the equilibrium properties of the liquid-solid interface

for the two species are constant across the simulation box but di�erent from the slab

coexistence values, µcoex
n[c],drop 6= µcoex

n[c],slab. The densities n and c for the solid (s) and

liquid (l) phase are at their coexistence values ncoex
l[s],drop and ccoexl[s],drop. It is important

to mention that for both (drop and slab) con�gurations, the coexisting densities for

the solid (liquid) phase ncoex
l[s],drop[slab] and c

coex
l[s],drop[slab] are de�ned as the bulk densities

in the solid (liquid) phase having the chemical potentials µcoex
n,drop[slab] and µ

coex
c,drop[slab]

using a solid (liquid) unit cell. The simulation results showed that for larger nuclei

the average densities extracted from the center of the nucleus agrees with the pure

bulk densities, however, for smaller nuclei, this is not necessarily the case.

As it is well-known from droplet thermodynamics, there is some arbitrariness in the

de�nition of the interface tension due to the freedom in the choice of radius r [90].

However, an excess grand free energy of a solid droplet can be uniquely de�ned as

the di�erence in grand potential, Ω =
∫
d~r(F−µnn(~r)−µcc(~r)), between the system

with droplet and the system without droplet at the same chemical potentials µcoex
n,drop

and µcoex
c,drop (which gives rise to the densities ncoex

l,drop and ccoexl,drop in the bulk liquid):

∆Ω =

∫
box

d~r
[
F (n(~r), c(~r))− Fl(ncoex

l,drop, ccoexl,drop)

−µcoex
n,drop(n(~r)− ncoex

l,drop)− µcoex
c,drop(c(~r)− ccoexl,drop)

]
.

(4.16)

Here, the densities n(~r), c(~r)) and the corresponding free energy density F (n(~r), c(~r))

are evaluated from the full stable droplet solution in the �nite box with volume Abox.

In physical terms, this excess grand free energy is the nucleation barrier and it does

not depend on the choice of a dividing surface between liquid and solid. It contains

a contribution proportional to the droplet volume Adrop (which has the dimension

of an area in the current 2D system). For large droplets (thermodynamic limit) it

is clear that this contribution is proportional to the grand free energy di�erence of

the bulk solid and liquid phase, i.e.
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∆Ωdrop = Ωsol,drop(ncoex
s,drop, ccoexs,drop)− Ωliq,drop(ncoex

l,drop, ccoexl,drop), (4.17)

where the bulk average solid densities ncoex
s,drop, c

coex
s,drop correspond to the chemical

potentials µcoex
n,drop and µ

coex
c,drop evaluated over Adrop. The interfacial free energy FI for

smaller droplets can be expressed by de�ning a dividing surface between solid and

liquid (thus de�ning Adrop) and then subtracting this bulk contribution ∆Ωdrop from

the nucleation barrier ∆Ω, i.e.

FI = ∆Ω−∆Ωdrop

=

∫
box

d~r (F (n(~r), c(~r))− (4.18)∫
box\drop

d~r F coex
l −

∫
drop

d~r F coex
s −

µcoex
n,drop(N −Nl −Ns)− µcoex

c,drop(C − Cl − Cs) .

Here, F coex
s = Fs(n

coex
s,drop, ccoexs,drop) is the solid free energy density of the coexisting solid

(extractable from a solid unit cell with the average densities given by ncoex
s,drop and

ccoexs,drop) and F
coex
l = Fl(n

coex
l,drop, ccoexl,drop) is the liquid free energy density (obtained by

evaluation of Eq. (4.5) with the liquid coexisting densities). Capital N 's correspond

to integrated densities, i.e. N =
∫
box

d~r n(~r), Nl = ncoex
l,drop(Abox − Adrop), Ns =

ncoex
s,dropAdrop, and likewise for capital C's. This interface free energy FI depends on

the choice of radius r which enters in the extend of the drop domain and in the

integrated densities. The particular choice of r with the condition

µn(Nl +Ns −N) + µc(Cl + Cs − C)|r=requim = 0

(4.19)

de�nes a generalized equimolar dividing surface. The equimolar dividing surface

is known from one-component systems by the condition that the excess number of
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particles relative to the thermodynamic bulk values in the drop and outside the drop

adds up to zero. By considering only the density �eld n(~r), this condition reads:

0 =

∫
box

d~r(n(~r)− ncoex
s,drop) +

∫
box\drop

d~r(n(~r)− ncoex
l,drop)

= N −Ns −Nl . (4.20)

Thus the generalized condition for the equimolar dividing surface, given by Eq. (4.19),

weighs the one-component condition with the values of the chemical potentials. By

using r = requim de�ned by Eq. (4.19), the intuitive results state that the interface

free energy is the total free energy minus the sum of bulk free energy of solid drop

and liquid:

FI,equim =

∫
box

d~r (F (n(~r), c(~r))

−
∫
drop

d~r Fs −
∫
box\drop

d~r Fl. (4.21)

This intuitive result only holds for the generalized equimolar surface de�ned by

Eq. (4.19).

4.4.2 Interfacial energy based on numerical analysis

In the numerical analysis, a circular droplet is de�ned in the center of the simula-

tion domain as initial con�guration. Numerical simulations are performed for the

following two cases:

(1) A circular solid droplet surrounded by the liquid phase for solid fractions less

than 50.

(2) A circular liquid droplet surrounded by the solid phase for solid fractions greater

than 50.
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In order to reach the stable coexistence state, the initial values of n0 and c for the

liquid and solid phases are chosen such that these values for the liquid phase corre-

spond to the lower end point of the dashed line in Fig. 4.2, whereas, for the solid

phase, these values correspond to a point on the dashed line continued into the solid

region (these values are larger than the equilibrium coexistence values).

The average values of the densities c̄ and n̄ of the system are calculated from inte-

gration over the simulation box, i.e.

ḡ =
1

Abox

∫
box

d~r g(~r). (4.22)

The average values of the densities c̄ and n̄ depend on the initial parameters as

c̄ = cins Ps + cinl (1− Ps),

n̄ = nins Ps + ninl (1− Ps), (4.23)

and remain constant during the simulation run. Here, Ps ∈ [0, 1] is the solid fraction

and Pl = 1− Ps is the liquid fraction.

The equimolar solid/liquid fractions and the corresponding equimolar radius of the

droplet are recalculated at the end of each simulation run until the stable state

is reached (which indicates that the droplet is in equilibrium with the surround-

ing phase). The resulting solid phase fraction is calculated by using the condition

expressed in Eq. (4.19), i.e.

Ps,equim =
µcoex
n (n̄− ncoex

l ) + µcoex
c (c̄− ccoexl )

µcoex
n (ncoex

s − ncoex
l ) + µcoex

c (ccoexs − ccoexl )
. (4.24)

The corresponding equimolar radius is calculated as
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4 Investigating the equilibrium properties of the liquid-solid interface

requim =

√
AboxPs[l],equim√

π
(4.25)

for the solid and the liquid droplet, respectively. The equimolar excess energy density,

FI,equim = FI,equim/Abox, is evaluated from Eq. (4.21) by using the equimolar radius,

i.e.

FI,equim = F̄ − (F coex
s Ps,equim + F coex

l Pl,equim) (4.26)

where F̄ is the average free energy density of the system. The corresponding inter-

facial energy per unit length for the equimolar excess energy de�ned in Eq. (4.26),

is calculated as

fI,equim(r) =
FI,equim
2πrequim

. (4.27)

For a slab crystal con�guration with two planar interfaces, the interfacial tension is

calculated as

f slab
I,equim =

FI,equim
2Ly

, (4.28)

where Ly is the width of the simulation box.

4.5 Simulation parameters

The governing equations (4.7) and (4.8) are numerically solved in 2D on a domain

of size Lx × Ly. Taking into account the triangular crystal structure, Lx = La and

Ly =
√

3/2La are de�ned as the length and the width of the domain, respectively.

82



4.6 Liquid-solid coexistence

The number of discretization points in one unit cell (with dimensions of a2
√

3/2) is

chosen to be 9 for these simulations. Therefore, the discretization size used in these

simulations is ∆x = a/9. A forward Euler scheme is used for the time derivative

with a su�ciently small time step of ∆t = 0.0015 to ensure the stability of the

scheme. Periodic boundary conditions are used on all boundaries of the simulation

box. The values of the model parameters used in these simulations are given in

Table 4.1.

Bl
0 Bl

2 Bs
0 R0 R1 t v Γ w ξ u ε

1.05 -1.8 1.0 1.0 0.0 0.6 1.0 0.0 0.008 0.0 4.0 1.1

Table 4.1: Values of the model parameters used in the simulations.

The initial values of n0 and c for the liquid and solid phases are given in Table 4.2.

These initial values correspond to the lower end point of the dashed line (for the

liquid phase) and point on the dashed line continued into the solid region of the

isothermal phase diagram shown in Fig. 4.2.

ninl nins cinl cins
-0.006 0.01505 0.10363 0.178066

Table 4.2: Initial values of n0 and c for the liquid and solid phases.

Typical initial states with respect to various values of solid fractions Ps are shown

in Fig. 4.4.

4.6 Liquid-solid coexistence

The equilibrium properties of solid nuclei are analyzed by stabilizing the circular

solid crystals of various radii in the surrounding liquid phase. The initial solid

phase fraction value Ps is varied from 0 to 1 for each system size, i.e. L = 20 unit

cells, 30 unit cells ... 70 unit cells in order to study the e�ect of solid phase fractions

Ps and the system size L on the �nal results. The dimensions of the simulation
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4 Investigating the equilibrium properties of the liquid-solid interface

Figure 4.4: Typical initial states for the system size L = 30 unit cells and (a) Ps = 0.1, (b)
Ps = 0.9, (c) Ps = 0.5 and (d) Ps = 0.5 (slab con�gurations). The x-axis represents Lx/∆x
whereas the y-axis represents Ly/∆y .
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4.6 Liquid-solid coexistence

domain is chosen to be much larger compared to the lattice constant a in order to

minimize the boundary e�ects on the simulation results. As an example, a typical

crystal of the solid phase in equilibrium with the surrounding liquid phase, obtained

from simulations performed with Ps = 0.2 for L = 30 unit cells, is depicted in

Fig. 4.5.

Figure 4.5: The resulting (a) atomic density �eld and (b) the concentration �eld of a stabilized
solid crystal in the surrounding liquid phase obtained from the simulations performed with
Ps = 0.2 and L = 30 unit cells. The x-axis represents Lx/∆x whereas the y-axis represents
Ly/∆y . Figure already published in [12].

In order to analyze the equilibrium properties of a liquid droplet (a system with solid

fractions more than 50 %), simulations are initialized by placing a liquid droplet

in the simulation box. The liquid droplets of various radii are stabilized in the

surrounding solid phase. An example of a typical liquid droplet in equilibrium with

the surrounding solid phase, obtained from simulations performed with Ps = 0.8

and L = 30 unit cells, is shown in Fig. 4.6.

The precision of the chemical potentials (µn and µc) for both phases at coexistence

state is ensured up to the 8th digit after the decimal point. The resulting values

of the chemical potentials (µn and µc) for the liquid and solid phase at coexistence

state for Ps = 0.2 are given in Table 4.3. Such a precision is needed for further

determination of the interface tension and the nucleation barriers.
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4 Investigating the equilibrium properties of the liquid-solid interface

Figure 4.6: The resulting (a) atomic density �eld and (b) the concentration �eld of a stabilized
liquid droplet in the surrounding solid phase obtained from the simulations performed with
Ps = 0.8 and L = 30 unit cells. The x-axis represents Lx/∆x whereas the y-axis represents
Ly/∆y . Figure already published in [12].

µcoex
n,l µcoex

n,s µcoex
c,l µcoex

c,s

-0.00775424 -0.00775424 0.00440647 0.00440647

Table 4.3: Typical values of the chemical potentials (µn and µc) for both phases at coexistence
state with Ps = 0.2.

4.7 In�uence of droplet size on the interfacial

energy

The equimolar excess energy FI,equim is calculated from Eq. (4.26) for the set of

model parameters given in Table 4.1. The resulting equimolar excess free energy

density and its areal density FI,equim/(LxLy) is plotted as a function of the solid

phase fraction in Fig. 4.7. For Ps ≤ 0.5 (solid droplet surrounded by the liquid

phase) and �xed system size, the areal density of the excess free energy increases

with increasing solid fraction because of the increase in the circumference of the

droplet. For Ps > 0.5 (liquid droplet surrounded by the solid phase), the situation is

reverse, i.e. the circumference of the droplet as well as the excess free energy decrease

with increasing solid fractions in the system. The simulation results also show that
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4.7 In�uence of droplet size on the interfacial energy

the equimolar excess free energy density curves obtained for di�erent system sizes

di�ers from each other, since the excess energy density is inversely proportional to
√
Abox (as follows from Eqs. (4.26) and (4.28)).

The results from numerical simulations also demonstrated that it is impossible to

stabilize droplets with Ps > 0.1 for system sizes smaller than 60 unit cells (here the

droplet distance to the box boundaries becomes smaller than 15 a), which may be

due to the in�uence of the neighbouring droplets through the used periodic boundary

conditions.
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Figure 4.7: Equimolar excess free energy density (FI ,equim/Abox) as a function of the solid
fraction (Ps,equim) for various system sizes. Figure already published in [12].

The scaling of the interfacial energy with the droplet radius and the independence on

the system size can be better seen by considering the interface line tension fI,equim
which is calculated from the equimolar excess energy by using Eq. (4.28). The
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4 Investigating the equilibrium properties of the liquid-solid interface

resulting equimolar interfacial tension as function of the equimolar droplet radius is

plotted in Fig. 4.8.
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Figure 4.8: Equimolar interfacial line tension (fI ,equim) as a function of the equimolar radius of
the droplet (requim) obtained from simulation performed for various system sizes. The dotted
line is the interface tension for the slab con�guration. Figure already published in [12].

The simulation results for fI,equim approximately follow a master curve which demon-

strates the possibility to extract droplet interface tensions by deliberately using �nite

system size approach. For the investigated model, the equimolar interface tension

shows a steep rise for requim/a > 3 and smoothly reaches the value of the slab in-

terface tension (for L = 70 unit cells) which is calculated as f slab
I,equim = 0.00217978.

This slab tension value is indicated by a dotted red line in Fig. 4.8.
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4.7 In�uence of droplet size on the interfacial energy

Comparison of simulation results with CNT and non-classical theories

The behavior of the interfacial line tension curves obtained from the simulations

can be compared with CNT (shown as a constant value f slab
I independent of requim)

as well as to the well-established non-classical Tolman theory which describes the

dependence of the interfacial tension on the radius through curvature expansions

(originally developed for liquid droplets in vapor in three dimensions) [90]. The

expression which describes the dependence of the interfacial energy on the equimolar

radius of the droplet obtained from the simulation results (through curve �tting), is

approximated as:

fI,equim = γ∞

(
1− δP

r
+

1

A1

[
δP
r

]2
− 1

A2

[
δP
r

]3)
, (4.29)

where r is the equimolar radius (requim) and the values of the other �tting parameters

used in the above expression as well as the correlation coe�cients are given in

Table 4.4.

δP A1 A2 γ∞ (PFC) Corr. Coe�.
1.19 a 1.84150 8.6246 0.002901 0.99952

Table 4.4: Values of the �tting parameters for the resulting expression of interfacial energy
obtained from PFC based simulations.

The �t of the master curve obtained from simulations, i.e. Eq. (4.29), and the

equations based on Tolman's theory, i.e. Eq. (4.1), is shown in Fig. 4.8. The

parameters of the Tolman formula, i.e. δT and γ∞ are estimated from the �ts as

2.7604a and 0.003930, respectively. The interfacial tension values obtained for the

Tolman formula are indicated by dotted blue lines in Fig. 4.8.

The comparison of simulation results with the Tolman formula illustrated in Fig. 4.8

shows that the Tolman formula [102] �t very well with the simulation results but

only for a certain range of droplet radius and it could not explain the behaviour of

interfacial energy for the smaller range of droplet radius. This comparison clearly
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4 Investigating the equilibrium properties of the liquid-solid interface

demonstrates that the numerical PFC results can not be fully described with the

non-classical curvature expansion based on the non-classical Tolman formula. The

di�erence allows for further realization of physical interpretation and it still needs

to be investigated more closely with more experiments and DDFT.

4.8 Calculation of the grand potential di�erence

In addition to the radial dependence of the interfacial tension, the grand potential

di�erence ∆Ω (nucleation barrier) is also calculated by using the procedure discussed

in section 4.7. This grand potential di�erence can be written as a sum of bulk and

surface contributions:

∆Ω = ∆Ωequim
drop + 2πrequimfI,equim, (4.30)

where ∆Ωequim
drop = πr2equim∆ωdrop with ∆ωdrop being the di�erence in the grand poten-

tial density of solid and liquid phases at (droplet) coexistence. The resulting values

of ∆Ω as a function of the equimolar radius are plotted in Fig. 4.9.

The resulting nucleation barriers obtained from the simulations are also compared

with the nucleation barrier based on the CNT (∆ΩCNT), i.e.

∆ΩCNT = πrequimf
slab
I,equim. (4.31)

The above expression is derived from Eq. (4.30) by the capillary condition ∆p =

f slab
I,equim/requim, where ∆p = −∆ωdrop is a pressure di�erence between interior and

exterior of the droplet.

It can be seen in Fig. 4.9 that the resulting values of ∆Ω lies below ∆ΩCNT. The

di�erence between the ∆Ω and ∆ΩCNT values is partly due to the droplet interfacial

tension (for small radii) being smaller than the slab tension. The second reason is

the dependence of pressure di�erence ∆ωdrop on the nucleus radius. Fig. 4.9 also
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Figure 4.9: The di�erence in grand potential (nucleation barrier) ∆Ω as a function of the
equimolar radius requim calculated from the numerical simulations for various system sizes and
the predictions based on CNT (∆ΩCNT). Figure already published in [12].

demonstrates that the nucleation barrier results for various system sizes fall on a

master curve and thus provides a consistency validation.

4.9 Discussion

In this chapter, a precise assessment of the equilibrium properties of the curved

liquid-solid interface as well as the nucleation barriers by means of the PFC method

for a binary system is presented. The phase diagram of the model is further ex-

tended and a full phase diagram in n-c space is developed by validating the PFC

simulation results in close comparison with the results obtained from the mode ex-
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4 Investigating the equilibrium properties of the liquid-solid interface

pansion technique. Furthermore, the critical liquid and solid nuclei (droplets) were

investigated in a PFC model for a binary system in two dimensions. In an in�nite

system, such critical nuclei correspond to metastable states (saddle points) in the

free energy landscape. Instead of a numerical search for these saddle points, the idea

of stabilizing critical droplets in �nite systems was employed. In general, the simula-

tion results demonstrate the usefulness of the �nite system size approach to extract

droplet size-dependent interface tensions and nucleation barriers also for liquid-solid

phase transitions. The approximate independence of these quantities on the system

size was exempli�ed by the simulation results. The calculation of droplet interface

tensions requires the speci�cation of a dividing interface (the droplet radius). A

natural extension of the well-known equimolar surface de�nition for one-component

systems was used in these simulations, which however requires the knowledge of the

species chemical potentials under droplet equilibrium conditions. The simulation re-

sults demonstrated that the dependence of the interface tension on the generalized

equimolar radius can not be fully described with the CNT and non-classical Tolman

formula. Even though the PFC model is computationally much more accessible and

an attractive alternative to the still more demanding non-local DFT calculations

for crystals, the equilibration of the droplet solutions is occasionally slow. However,

as demonstrated here in conjunction with PFC simulations, the �nite system size

technique certainly has prospective to assess also more sophisticated systems with

perhaps a richer composition or variety of shapes of critical nuclei.
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5 Summary

The purpose of this dissertation was the development of a more comprehensive

understanding of the kinetics associated with the nucleation and successive initial

microstructure evolution phenomena through a combination of theoretical model

development and the application of these models to explore characteristic material's

morphological features. Although the PFC method, introduced only a decade ago,

has already proven itself as an attractive computational alternative to model various

crystal growth phenomena, several important issues about the model's conceptual

frame, remain unsolved from both theoretical and practical perspectives. In this

work, some of these issues concerning the applicability limitation as well as the

computational e�ciency of the PFC model were addressed.

Summary

The applicability of the originally introduced PFC model [7] is limited to model

materials with Poisson's ratio of 1/3, as discussed in chapter 2. To overcome this

limitation and in order to extend the applicability of the PFC approach to a wider

class of material systems, a more generalized theoretical model (APFC model) within

the framework of the PFC method was developed (chapter 3). The APFC model has

the capability of simulating isotropic as well as anisotropic crystal lattice systems

of arbitrary Poisson's ratio [8]. The parameters of the APFC model were derived

from DDFT which provided the physical justi�cation for the model. The anisotropy

in the system was quanti�ed through speci�c model parameters and the theoretical

derivation of the elastic constants in terms of the model parameters demonstrated

that the parameters of the APFC model can be adjusted to match the given system

in order to establish the connection with the real material systems [9]. The features
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5 Summary

of the stable state phases of the APFC model were investigated through numerical

simulations and the resulting morphologies were further analysed with respect to

their characteristic morphological features. The simulation results of the stable

state phases were summarized in form of a phase diagram of the model.

Apart from the above mentioned limitation, the use of the PFC method is quite

often limited to certain applications because the periodic �eld of the PFC model

demands higher computational resources, since it needs 8 − 10 spacial grid points

per atomic spacing. Several new algorithms were developed to address these com-

putational e�ciency issues [42, 43]. In order to address the numerical e�ciency

issues and to establish a link with the standard PF models, the amplitude formu-

lation for the APFC model was derived (chapter 3). The simulations performed

with the resulting complex amplitude evolution equations maintained many of the

salient features from the microscopic theory. In particular, the connection between

the amplitude evolution equations and the standard PF models (with elasticity)

is established which bridges the PF and PFC approaches for anisotropic crystals

[10]. Sample simulations of these amplitude equations demonstrated that this sim-

ple model can e�ectively model solidi�cation of isotropic as well as anisotropic with

relatively much higher computational e�ciency.

The dissertation is �nished by going a step further and switching the focus from mate-

rial systems with arbitrary Poisson's ratio to nucleation mechanisms associated with

binary systems which certainly have higher industrial relevance (chapter 4). More

speci�cally, a PFC model for binary alloys [1] was used to investigate the liquid-solid

surface tensions of critical nuclei and nucleation barriers using �nite system size ap-

proach [11, 12]. For these investigations, an extended phase diagram was developed

based on the binary PFC model. Critical liquid and solid nuclei (droplets) were sta-

bilized in �nite systems of various sizes, however, the calculated interface tension as

function of the nucleus radius was found to be independent of the system size. The

natural extension of the well-known equimolar surface de�nition was used to spec-

ify the dividing interface (the droplet radius). The simulation results demonstrated

that the nucleus size dependence of the liquid-solid interface tension as well as of the

nucleation barrier can not be fully described with the CNT and non-classical Tolman

formula. Therefore, a new phenomenological expression (based on the simulation
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results) was introduced in chapter 4 to describe the dependence of the liquid-solid

interface tension on the nucleus radius. Moreover, these investigations established

the usefulness of the �nite box size approach to study the droplet size-independent

interface tensions and nucleation barriers for the liquid-solid transition as well as to

address the problem of de�ning droplet radii in a two-component mixture, as it was

successfully demonstrated as a quantitative route in MC simulations [88, 89, 90] as

well as in DFT [89, 90] to study the liquid-vapor system.

Future outlook

The research work presented in this dissertation contributed to the development of

a better understanding of the nucleation kinetics as well as the initial microstruc-

ture formation from basic physics perspectives which includes model development,

extension of existing model and the application of these models to study important

physical phenomena which resulted in new scaling relations and the interpretation

of these relations in close interaction with the existing theories. Despite all these

advances, still a wide range of avenues remain which need further investigations and

relevant model extensions. The following are only some selected issues of the many

possible directions of future research.

The APFC model, which has been developed to model material systems with ar-

bitrary Poisson's ratio, can be extended to a three-dimensional model in order to

explore more features of the model. The APFC model can also be further extended

in the direction of a two component model for binary mixtures. This extension

would bring many more practical applications within the range of the model such

as phase transformation, grain growth in anisotropic systems with multiple crystal

orientations. A closer calibration of the APFC model to the colloids used in exper-

iments would be desirable to facilitate an exact matching of numerical results with

the experimental �ndings. This experimental comparison can also provide ways to

test di�erent boundary interaction conditions which leads to derive a theory for a

consistent boundary condition formulation describing wetting angles, which is still

an open issue as discussed in more detail in [60].
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Furthermore, the �nite size technique, which has been successfully established for

liquid-solid systems, can be applied to solid-solid systems in order to investigate

the equilibrium properties of the solid-solid phase transition (a process for which

an accurate quantitative description is still lacking in the PFC formalism). The

model used to perform simulation in chapter 4 has been chosen due to its potential

for future investigations, i.e. besides a liquid-solid transition its phase diagram has

an eutectic point and thus it can also be used to investigate the solid-solid phase

transition. The �nite system size technique can be further used for the extraction

of properties of critical nuclei in more sophisticated density functional models or

in other systems with perhaps a richer composition or variety of shapes of critical

nuclei. With respect to speci�c material science phenomenon where atomic and

microscale are tightly coupled, PFC is lately discussed as good candidate to explore

details of grain boundary dynamics.

Overall, this research has set a stage for a wide range of relevant and interesting

future studies that will support the development of a better understanding of these

complex physical phenomena.
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6 Zusammenfassung

Die vorliegende Arbeit soll einen Beitrag für die Erschlieÿung eines umfassenderen

Verständnisses der Kinetik leisten, welche mit der Keimbildung und den anschlieÿen-

den anfänglichen Mikrostrukturentwicklungsphenomänen verbunden ist. Dabei wer-

den die charakteristischen morphologischen Besonderheiten durch die Kombination

von Entwicklung und Anwendung theoretischer Modelle erläutert. Obwohl sich das

PFC-Modell, welches erst vor 10 Jahren eingeführt wurde, bereits als eine attraktive

computertechnische Alternative für die Modellierung verschiedener Kristallwachs-

tumsphänomene bewährt hat, bleiben hinsichtlich des Modells verschiedene wichtige

Punkte, die die theoretischen als auch die praktischen Perspektiven betre�en, un-

gelöst. In dieser Arbeit werden einige dieser Punkte in Bezug auf die Anwendungs-

grenzen des PFC-Modells sowie die Rechnere�zienz angegangen.

Zusammenfassung

Die Anwendbarkeit des ursprünglich entwickelten PFC-Modells [7] ist, wie in Kapi-

tel 2 erläutert, auf die Modellierung von Werksto�en mit einer Poissonzahl von 1/3

begrenzt. Um diese Anwendungsgrenze zu überwinden und die Anwendbarkeit der

PFC-Methode auf eine breite Klasse von Materialsystemen zu erweitern, wurde ein

allgemeineres theoretisches Modell (APFC-Modell) im Rahmen der PFC-Methode

entwickelt (Kapitel 3). Mittels des APFC-Modells können isotropische als auch

anisotropische Materialien mit unterschiedlichen Poissonzahlen simuliert werden [8].

Die Parameter des APFC-Modells wurden von der DDFT abgeleitet, welche die

theoretische Begründung für das Modell lieferte. Die Anisotropie im System wurde

durch spezi�sche Modellparameter quanti�ziert. Darüber hinaus zeigte auch die the-

oretische Herleitung der elastischen Konstanten in Bezug auf die Modellparameter,
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dass die Poissonzahl als Funktionen der Anisotropieparameter ist [9]. Die einzi-

gartigen Charakteristika der stabilen Zustandsphasen wurden mittels numerischer

Simulationen untersucht und die daraus resultierenden Morphologien wurden weiter

in Bezug auf ihre charakteristischen morphologischen Eigenschaften analysiert. Die

Simulationsergebnisse der stabilen Zustandsphasen wurden in Form eines Phasendi-

agramms des Modells zusammengefasst.

Abgesehen von den bereits erwähnten Grenzen ist die Verwendung der PFC-Methode

ziemlich oft limitiert, da die periodische Struktur des PFC-Modells höhere Rechn-

erressourcen aufgrund der notwendigen 8-10 räumlichen Gitterpunkte pro Atom-

zwischenraum erfordert. Verschiedene neue Algorithmen wurden entwickelt, um

dieses Problem der Computere�zienz anzugehen [42, 43]. Um das Thema der

numerischen E�zienz zu bewältigen und um eine Verbindung zum Standard-PF-

Modell herzustellen, wurde die Amplitudenformulierung für das APFC-Modell en-

twickelt (Kapitel 3). Die Simulationen, welche mit der resultierenden komplexen

Amplituden-Evolutionsgleichung durchgeführt wurden, enthalten viele der hervorste-

henden Merkmale aus der eher mikroskopischen Theorie. Insbesondere wird die

Verbindung zwischen den Amplitudengleichungen und dem Standard-PF-Modell mit

Elastizität hergestellt, was eine Brücke zwischen der PF- und der PFC-Methode

für anisotropische Kristalle schlägt [10]. Beispielsimulationen dieser Amplitudengle-

ichungen demonstrierten, dass dieses einfache Modell e�ektiv die Erstarrung von

anisotropischen Kristallen mit relativ hoher Rechnere�zienz modellieren kann.

Den Abschluss der Arbeit bildet eine quantitative Studie der Keimbildungskinetik

in Verbindung mit �üssig-fest Grenz�ächen für binäre Legierungen (Kapitel 4).

Hier wurde ein PFC-Modell für binäre Legierungen verwendet [1], um die �üssig-

fest-Ober�ächenspannung eines kritischen Keims und die Keimbildungsbarrieren

mit Hilfe einer Methode von �niten Systemgröÿen zu untersuchen [11, 12]. Für

diese Untersuchungen verwendete PFC-Modell wurde ein Phasendiagramm entwick-

elt. Kritische �üssige und feste Keime (Droplets) wurden in �niten Systemen ver-

schiedener Gröÿe stabilisiert, jedoch konnte ermittelt werden, dass die berechnete

Ober�ächenspannung als Funktion des Keimradius unabhängig von der System-

gröÿe ist. Die normale Erweiterung der bekannten equimolaren Ober�ächendef-

inition wurde für die Spezi�zierung der trennenden Grenz�äche (Dropletradius)
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verwendet. Die Simulationsergebnisse zeigten, dass die Keimgröÿenabhängigkeit

der �üssig-fest-Ober�ächenspannung als auch die Keimbildungsbarriere nicht voll-

ständig mit Hilfe der CNT und der nichtklassischen Tolman-Formel beschrieben

werden kann. Daher wurde in Kapitel 4 ein neuer phänomenologischer Ausdruck

eingeführt, der die Abhängigkeit der �üssig-fest-Grenz�ächenspannung vom Keim-

radius beschreibt. Darüber hinaus begründen diese Untersuchungen den Nutzen der

�Finite-Box-Size- Methode� für die Untersuchung der gröÿenunabhängigen Droplet-

Grenz�ächenspannung sowie der Keimbildungsbarrieren für den �üssig-fest-Übergang

und spricht auÿerdem das Problem der De�nition der Droplet-Radien in einer Zweikom-

ponentenmischung an. Dies wurde bereits erfolgreich mit Hilfe einer quantitativen

Methode in MC-Simulationen [88, 89, 90] als auch in der DFT [89, 90] für die Un-

tersuchung des �üssig-Gas-Systems demonstriert.

Ausblick

Die hier dargestellte Forschungsarbeit lieferte einen Beitrag zur Entwicklung eines

besseren Verständnisses der Keimbildungskinetik als auch der anfänglichen Mikrostruk-

turentwicklung aus fundamentaler physikalischer Sicht. Sie schlieÿt die Modellen-

twicklung, die Weiterentwicklung vorhandener Modelle sowie die Anwendung dieser

Modelle für die Untersuchung wichtiger physikalischer Phänomene ein, was in neuen

Skalenrelationen sowie der Interpretation dieser Relationen in engen Zusammenspiel

mit den bereits existierenden Theorien resultiert. Trotz all dieser Fortschritte bleibt

eine groÿe Auswahl an Möglichkeiten erhalten, welche weitere Untersuchungen und

relevante Modellerweiterungen benötigen.

Das APFC-Modell, welches für die Modellierung vonWerksto�en mit unterschiedlichen

Poissonzahlen entwickelt wurde, kann zu einem 3D-Modell erweitert werden, um

mehr Charakteristika dieses Modells zu erforschen. Das APFC-Modell kann auÿer-

dem auch weiter in Richtung eines Zweikomponentenmodell für binäre Mischungen

erweitert werden. Diese Erweiterung würde noch mehr praktische Anwendungen

innerhalb der Grenzen des Modells nach sich ziehen, zum Beispiel Phasenumwand-

lungen oder Kornwachstum in anisotropen Systemen mit multiplen Kristallorien-

tierungen. Eine engere Kalibrierung der APFC-Modells für Kolloide wie sie in Ex-
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perimenten verwendet werden, wäre wünschenswert, um einen exakten Abgleich

der numerischen Ergebnisse mit den experimentellen zu ermöglichen. Dieser exper-

imentelle Vergleich kann auch Wege für den Test verschiedener Randbedingungen

aufweisen, was zur Ableitung einer Theorie für eine konsistente Randbedingungsfor-

mulierung führen kann. Das stellt einen noch o�enen Punkt dar, wie genauer in [60]

erläutert.

Die Finite-Size-Methode, welche erfolgreich für �üssig-fest-Systeme eingeführt wurde,

kann auf fest-fest-Systeme angewendet werden, um die Gleichgewichtseigenschaften

des fest-fest-PhasenÜbergangs zu untersuchen (ein Prozess mit einer akuraten quan-

titativen Beschreibung fehlt im PFC-Formalismus noch). Das in Kapitel 4 verwen-

dete Modell weist in Phasendiagramm, neben dem untersuchten �üssig-fest Über-

gang, zum Beispiel auch einem eutektischen Punkt auf. Damit eignet es sich eben-

falls für die weitere Erforschung von fest-fest Phasenübergängen. Die Finite-Size-

Methode kann darüber hinaus für die Bestimmung der Eigenschaften eines kritis-

chen Keimes in anspruchsvolleren Dichtefunktionalmodellen oder in anderen Syste-

men mit mehr Komponenten oder unterschiedlichen Formen des kritischen Keimes

angewendet werden.

Insgesamt konnte mit der vorliegenden Arbeit eine Voraussetzung für eine bre-

ite Auswahl an relevanten und interessanten Untersuchungen gescha�en werden,

welche die Entwicklung eines besseren Verständnisses dieser komplexen physikalis-

chen Phänomene unterstützt.
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