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Zusammenfassung 

Die vorliegende Doktorarbeit behandelt die Herstellung von (bio)abbaubaren Materialien mit 

antibakteriellen Eigenschaften zur Verwendung in unterschiedlichen Bereichen, wie z.B. 

Verpackungsmaterialien, Komposttüten, Hygieneprodukten, oder auch Bioglass®-Gerüsten für 

das ‚Tissue Engineering‘.  

Die verschiedenen Wege zur biologischen Abbaubarkeit und antimikrobiellen Eigenschaften 

zu kombinieren sind in den drei Teilen dieser Arbeit dargelegt. In allen Teilen der Arbeit wurde 

ein Polyguanidinsalz als antibakterieller Wirkstoff eingesetzt, da Polyguanidine für ihre 

antimikrobielle Wirkung gegen Gram-positive und Gram-negative Bakterien, Pilze und Viren 

bekannt sind. Die Synthese von Oligoguanidin mit niedrigem Molekulargewicht erfolgte über 

Polykondensation. Die antibakterielle Aktivität von wasserlöslichem Oligoguanidin wurde mit 

Hilfe von Tests zur Bestimmung der minimalen Hemmkonzentration (MHK) und der 

minimalen bakteriziden Konzentration (MBK) nachgewiesen. Als biologisch abbaubare 

Materialen wurden aliphatische Polyester und 45S5 Bioglass® eingesetzt. In der gesamten 

Arbeit wurden die Techniken Polymersynthese, Extrusion und Beschichtung für die Produktion 

von neuen antimikrobiellen und bioabbaubaren Materialien verwendet. 

Eine große Herausforderung dieser Arbeit ist die Herstellung von neuen Materialien mit 

antibakterieller Aktivität ohne Verlust der Bioabbaubarkeit. Um dieses Ziel zu erreichen, wurde 

im ersten Teil ein Polyguanidinsalz, als antimikrobielles Material, in Polycaprolacton, als 

abbaubarem Matrix Material, immobilisiert. Wegen der Aminendgruppe (-NH2) konnte 

Oligoguanidin hydrochlorid als Initiator genutzt werden, um das Lacton zu öffnen. Die Struktur 

der gebildeten Blockcopolymere wurde mittels 2D-NMR und MALDI-ToF-MS Analyse 

nachgewiesen. Das auf diese Weise hergestellte Copolymer besitzt eine starke antibakterielle 

Aktivität. Das Copolymer zeigt außerdem enzymatische Abbaubarkeit. Der Polycaprolacton-

Block wurde nach kurzer Inkubationszeit komplett abgebaut. Kombiniert mit der niedrigen 

Zytotoxizität sind viele Anwendungen für das Material denkbar: Als Additiv für 

Lebensmittelverpackungen, für Tissue Engineering oder Gentransfektion. 

Der zweite Teil beschäftigt sich mit der Extrusion des bioabbaubaren Polymers Poly(butylen-

adipat-co-terephthalat) (PBAT) mit dem antibakteriellen Additiv Polyhexamethylen 

guanidinhydrochlorid (PHMG). PBAT ist ein bioabbaubarer aliphatisch-aromatischer Polyester 
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mit guten mechanischen Eigenschaften, weshalb es häufig als Matrixmaterial benutzt wird, um 

es mit anderen Polymeren zu mischen. In dieser Arbeit wurde PBAT durch Beimischen von 

PHMG eine antimikrobielle Wirkung hinzugefügt. Das Highlight der Arbeit ist die Balance 

zwischen antibakteriellen Eigenschaften und biologischer Abbaubarkeit. Nach der 

Schmelzextrusion mit einer wässrigen Lösung des antibakteriellen Zusatzes, wurden die 

mechanischen Eigenschaften gegenüber dem reinen Matrixmaterial sogar verbessert. Der Blend 

PBAT/PHMG zeigt biologische Abbaubarkeit im Kompost und zudem langanhaltende 

antibakterielle Aktivität. Wegen der verbesserten mechanischen Eigenschaften kann das 

Material direkt als Verpackungsmaterial und für Komposttüten verwendet werden.  

Im dritten Teil dieser Arbeit wurde das antibakterielle Polymer Poly-p-xylylenguanidin-

hydrochlorid (PPXG) als Beschichtungsmaterialien auf Oberflächen von Bioglasgerüsten für 

Knochen eingesetzt. PPXG ist ein neues Polyguanidinsalz, das durch Polykondensation von 

Guanidinhydrochlorid und p-Xylylendiamin synthetisiert wurde. Das neu hergestellte PPXG 

mit aromatischen Gruppen zeigt höhere Thermostabilitäten als aliphatische Polyguanidinsalze 

und auch einen höheren Glasübergang. Allerdings schränkt der unflexible Benzolring die 

Wechselwirkung mit der Bakterienmembran ein, sodass eine schwächere antibakterielle 

Aktivität gegenüber den flexibleren Alkylketten beobachtet wurde. Die antibakterielle Aktivität 

von PPXG wurde mittels MHK und MBK Tests bestimmt. Außerdem wurde  die antibakterielle 

Wirkung von beschichteten Bioglassgerüsten mit Kirby-Bauer- und zeitabhängigen Tests 

quantifiziert. Mit 10 mg mL-1 antibakteriellem Polymer inkorporiertes Bioglass® zeigte eine 

stark antibakterielle Aktivität gegen die Gram-positiven Bakterien B. subtilis und einen 

hemmenden Effekt gegen die Gram-negativen Bakterien E. coli. Wegen der niedrigen 

Zytotoxizität der antimikrobiellen Beschichtungen zeigt das Bioglass® Bioaktivität und in vitro 

Biokompatibilität bei MG-63 Zellen. 
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Summary 

The present thesis covers the preparation of (bio)degradable materials with antimicrobial 

properties, which has a broad range of applications, e.g. packaging materials, compost bags, 

hygienic products or Bioglass® scaffolds for tissue engineering. 

Selected routes to combine (bio)degradability and antimicrobial properties are comprised in the 

three parts of this work. In all parts of this work polyguanidine salts are used as antimicrobial 

materials, which are well-known antimicrobial agents against Gram-positive and Gram-

negative bacteria, fungi and viruses. Polyguanidine hydrochloride is synthesized by step-

growth reaction to produce low molecular weight polymers. The antibacterial activity of water-

soluble polyguanidine is determined by minimum inhibition concentration (MIC) and minimum 

bactericidal concentration (MBC) tests. As (bio)degradable materials aliphatic polyesters and 

45S5 Bioglass® were chosen. Throughout the work, polymer synthesis, extrusion or coating 

techniques were employed to produce new antimicrobial and (bio)degradable materials. 

A major challenge of this work was the production of new materials with antibacterial activity 

without sacrificing (bio)degradability. In the first part, polyguanidine salts as antibacterial 

material were immobilized in (bio)degradable polycaprolactone (PCL) to achieve this goal. Due 

to the amine end group (-NH2), polyguanidine hydrochloride (PHMG) can be used as an 

initiator to open the caprolactone ring for the synthesis of block copolymers of PHMG and 

polycaprolactone. The structure of the block copolymer has been confirmed by 2D-NMR and 

MALDI-ToF MS analysis. The copolymer has high antibacterial activity and a fast antibacterial 

action. Reduction of bacterial cells was higher than 3 log levels in a short period of time. The 

copolymer also showed enzymatic degradability. The polycaprolactone block completely 

degraded within hours. Because of its low cytotoxicity, the new material has many potential 

applications, e.g. additive for food packaging, tissue engineering or gene transfection. 

The second part deals with the formation of antibacterial (bio)degradable polymers by melt 

blending of PHMG and poly(butylene adipate-co-terephthalate) (PBAT). PBAT is a 

(bio)degradable aliphatic-aromatic polyester with good mechanical properties, which is often 

utilized as the matrix material for blending with other functional polymers, to create 

multifunctional materials. In this work, the antimicrobial additive was added by physical 

blending of an aqueous solution into molten PBAT. The highlight of this part is the achieved 
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balance between antibacterial properties and (bio)degradability. After melt extrusion with an 

aqueous solution of the antibacterial additive, the mechanical properties of the new material 

were even improved. The PBAT/PHMG blends showed (bio)degradability in compost and 

permanent antibacterial activity. Due to the enhanced mechanical properties, the material can 

be directly applied as packaging material or in compost bags. 

In the third part of this thesis the antibacterial polymer poly(p-xylylene guanidine) 

hydrochloride (PPXG) as additive is coated on the surface of bioactive glass scaffolds for bone 

tissue engineering. PPXG is a new polyguanidine salt, which was synthesized by 

polycondensation of guanidine hydrochloride and p-xylylene diamine. The new PPXG with 

aromatic group shows higher thermal stability than the aliphatic counterpart and it exhibits a 

higher glass transition temperature. However, the inflexible benzene ring limits the interaction 

between polymer chain and bacterial membrane, hence leading to weaker antibacterial activity 

compared to PHMG. The antibacterial activity of PPXG was determined by MIC and MBC 

tests. The antibacterial activity of Bioglass® was determined by Kirby-Bauer and time-

dependent tests. Bioglass® loaded with 10 mg mL-1 antibacterial polymer shows strong 

antibacterial activity against Gram-positive bacteria B. subtilis and an inhibiting effect against 

Gram-negative bacteria E. coli. Because of the low cytotoxicity of the antimicrobial polymer, 

coated Bioglass® scaffolds still showed bioactivity, i.e. in vitro biocompatibility in MG-63 cells. 
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List of symbols and abbreviations 

°C degree Celsius  

APCI atmospheric pressure chemical ionization 

ATR-IR  attenuated total reflectance spectroscopy 

B. subtilis bacillus subtilis 

C  concentration  

CFU colony-forming unit 

DMSO dimethyl sulfoxide 

DSC differential scanning calorimetry 

E. coli Escherichia coli 

EDX energy-dispersive X-ray spectroscopy 

g gram  

GCG genipin cross-linked gelatin 

GPC gel permeation chromatography 

H hour 

H2O water 

HSQC heteronuclear single quantum coherence spectroscopy 

kg kilogram 

kV kilovolt 

M meter 

MALDI matrix-assisted laser desorption/ionization  

MBC minimal bactericidal concentration 

MeOD methanol-d4 

MeOH methanol 

MG-63 Osteoblast-like cells 

MIC minimal inhibitory concentration 

min minute 

mL milliliter 

Mn number average molar mass 

MPa mega pascal 

Mw weight average molar mass 
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n degree of polymerization 

NMR nuclear magnetic resonance 

PBAT poly(butylene adipate-co-terephthalate) 

PBH poly(hydroxybutyrate) 

PCL polycaprolactone 

PDI polydispersity index 

PEI polyetherimide 

PET poly(ethylene terephthalate) 

PG polyguanidine hydrochloride 

PHMG poly(hexamethylene guanidine) hydrochloride 

PLA poly(lactic acid) 

PLLA poly(L-lactide) 

PPXG poly(p-xylylene guanidine) hydrochloride 

PU polyurethane 

PVA poly(vinyl alcohol) 

ROP ring-opening polymerization 

s second 

SEM scanning electron microscopy  

T temperature 

T5% temperature at which 5% weight loss took place 

Td decomposition temperature  

Tg glass transition temperature 

TGA thermogravimetric analysis 

TPS thermoplastic starch 

WST water soluble tetrasodium 

wt% weight percent 

ε-CL ε-Caprolactone 

μm  micrometer 

ρ density  
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1 Introduction 

The present thesis deals with the investigation of new materials combining (bio)degradability 

with antibacterial properties. These new materials could be of interest for pharmacological and 

food-related products, like bioscaffolds and food packaging.  

The work involves synthesis of new materials and their characterization in terms of structure, 

mechanical properties, thermal stability, (bio)degradability and antibacterial properties. In 

chapter 3 a polyguanidine (PG) was used as macroinitiator to synthesize a polycaprolactone-b-

polyguanidine block copolymer (PCL-b-PHMG) by ring-opening polymerization (ROP). 

PHMG is one of the very intensively investigated antimicrobial polycations, which was used as 

antimicrobial material in this work. Due to the low molecular weight, the copolymer PCL-b-

PHMG did not show good mechanical properties. In chapter 4 the typical (bio)degradable 

aliphatic-aromatic polyester PBAT, which has relatively high molecular weight and 

advantageous mechanical properties, was blended as matrix material with the antimicrobial 

additive PHMG. Furthermore, chapter 5 presents a new application of biocidal PG, which was 

incorporated into 45S5 bioactive glass scaffolds as antimicrobial coating. 
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1.1 Motivation and aim  

Every year global production of synthetic polymers reaches approximately 140 million tonnes.1 

Since their extreme stability, the degradation cycles of synthetic materials are limited. Plastic 

pollution has been recognized as a major problem. Therefore, (bio)degradable materials have 

been highly investigated in the past decades. They are used for various applications such as 

food packaging materials,2,3 compost bags,4 medical sutures, drug delivery vehicles or scaffolds 

for tissue engineering5. Meanwhile, the contamination with microorganisms in food and water 

or bacterial infections by medical devices are always a huge risk in our daily life. The aim of 

this work is to combine antibacterial property with (bio)degradability in one, generating dual 

functional polymers. 

The challenge of this work was the synthesis and processing of (bio)degradable materials with 

a high antibacterial activity. (Bio)degradation takes place through the action of enzymes or 

chemical decomposition associated with living organisms like bacteria fungi, etc.6 However, 

the guanidine based cationic polymers present excellent growth inhibition against bacteria, 

fungi and virus.7–9 Therefore, the focus was to find a balance between antibacterial activity and 

(bio)degradability, which can keep the antimicrobial activity, while controlling the rate of 

(bio)degradation. 
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1.2 Overview of (bio)degradable polymers 

1.2.1 (Bio)degradable polyesters 

(Bio)degradable polymers have a long history because of their wide range of applications. They 

can be divided into two groups, synthetic and natural polymers. Polysaccharides and proteins 

are typical natural (bio)degradable polymers obtained from renewable sources,10 while aliphatic 

polyesters, polyphosphoesters (PPE), aliphatic polycarbonates and poly(amino acids) are 

typical synthetic (bio)degradable polymers.11 Compared to the natural (bio)degradable 

polymers, the synthetic polymers exhibit more potential of improvement, because for 

biologically derived (bio)degradable polymers a chemical modification is usually difficult or is 

likely causing the alteration of the bulk properties. For designed synthetic (bio)degradable 

polymers a variety of properties can be obtained and further modifications are possible without 

altering the bulk properties. In the past decades, the properties of (bio)degradable polymers 

could be successfully adapted to the requirement of their application through variation of the 

synthetic methods.1  

Among synthetic biodegradable polymeric materials, polyesters represent one of the most 

promising families due to interesting applications as biomedical and degradable packaging 

materials. This thesis deals with the synthesis of biodegradable aliphatic polyesters with 

antibacterial function and blends of biodegradable aliphatic polyesters with antibacterial 

additives. In the 1960s biodegradable poly(L-lactide) (PLLA) was identified as a biocompatible 

and bioresorbable material.12 PLLA and polyglycolide were chosen to form the basis of many 

medical applications, like body implants, surgical sutures and drug delivery devices.13–15 

However, those polyesters initially were developed with low molecular weight and poor 

mechanical properties. In recent years, due to a number of requirements for marketing 

(bio)degradable polyesters, alternatives to commodity plastics have been investigated.16,17 The 

synthetic methods and techniques were renewed. ROP of lactones, lactides and cyclic diesters 

have yielded polyesters with very high molecular weight and good mechanical properties 

(Scheme 1-1).18–20 In order to modify or improve the properties, various polymer architectures 

and blends have also been intensively studied.21,22 
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Scheme 1-1. Monomers for the preparation of polyester derivatives. 

In addition to (bio)degradable aliphatic polyesters, (bio)degradable aliphatic-aromatic 

polyesters have also been investigated extensively. PBAT is a typical (bio)degradable aliphatic-

aromatic polyester (Scheme 1-2), which is prepared by polycondensation of 1,4-butanediol and 

a mixture of adipic and terephthalic acid. PBAT has been produced on an industrial scale by 

BASF (Germany), Eastman chemical (USA).23 BASF’s Ecoflex® has a long-chain branched 

structure, while Easter Bio® from Eastman chemical is highly linear in structure. In this work 

Ecoflex® blends were studied. Ecoflex® as matrix polymer has also been blended with other 

bio-based polymers, like starch or poly(lactic acid) (PLA). These new polymer blends exhibited 

interesting property profiles, like improved mechanical toughness or faster degradability.23 It 

has a broad range of applications, like organic waste bags, shopping bags, agricultural foils, 

household films, coated paper board and stiff foamed packaging.24  

 

Scheme 1-2. Chemical structure of poly(butylene adipate-co-terephthalate). 
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1.2.2 Synthesis of (bio)degradable polyesters 

The traditional synthetic method for polyesters is the polycondensation using diacids or acid 

derivatives and diols. Each growth step of the polycondensation involves elimination of small 

molecules, like H2O, HCl, MeOH etc. The reaction temperature of polymerization in bulk, i.e. 

without solvent, depends on the melting temperature of monomers and mostly the reactions 

need high temperature and long reaction times. A polycondensation with high conversion is 

very difficult to achieve because of side-reactions and the volatilization of monomers causing 

a stoichiometric imbalance of reactants. The stoichiometric imbalance between reactive acid 

and hydroxy groups is the main reason for causing low molecular weight of synthetic polyesters. 

However, for good mechanical properties a high molecular weight is required. The 

volatilization of reactants can be compensated by a slight excess of one monomer, to precisely 

control the stoichiometric balance of the reactants in the mixture. In addition chain extension 

agents are usually used to produce the desired molecular weight by polycondensation. In 2000, 

Ranucci et al. reported high molecular weight poly(ester carbonate)s. Firstly an 

dihydroxyterminated oligo(propylene succinate) was obtained by traditional synthesis with a 

molar ratio of 1,3-propanediol to succinic acid of 1.02 (Scheme 1-3a).25 A high molecular 

weight poly(ester-carbonate) was synthesized by polycondensation with the chain extension 

agent bischloroformate, resulting in a final Mn of 30,000 and Mw of 48,000 (Scheme 1-3b). 
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Scheme 1-3. (a) Polycondensation of dihydroxyterminated oligomeric propyl succinate. (b) Chain extension 

reaction by the dichloroformate route.25 

The ROP as a renewed synthetic method to obtain high molecular weight polyesters, was 

intensively studied in the last 50 years. Compared to polycondensation, the ROP of lactones is 

an advantageous choice for the synthesis of biocompatible and (bio)degradable polyesters, 

because they usually have a higher molecular weight and a lower polydispersity. In the first 

part of this thesis the new antibacterial polycaprolactone was synthesized by ROP. The 

antibacterial PHMG was used as a macroinitiator for the ROP of polycaprolactone. The 

mechanism has been reported by Oledzka et al. in 2011, whereas the guanidine and p-amino 

functional groups in amino acids have been used as initiators for L-lactide and caprolactone 

polymerizations. This reaction mechanism can be classified as anionic ROP.26,27 
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The mechanism of ROP of lactones depends on the catalyst, which may lead to anionic, cationic, 

monomer-activated or coordination-insertion ROP. Anionic ROP starts with an attack of the 

ionic species at the carbonyl carbon of the monomer ring and subsequently the ring is opened 

giving an ion at the chain end.28 The drawback of the anionic ROP is that the intramolecular 

transesterification, i.e. back-biting, which only yields low molecular weight polymers. Scheme 

1-4 shows the mechanism of the initiation step of anionic ROP.  

 

Scheme 1-4. Mechanism of initiation step of anionic ROP.29 

The formation of a cationic ROP (Scheme 1-5) happen via a bimolecular nucleophilic 

substitution (SN2) reaction, which involves the addition of cationic center to a monomer 

molecule.20 

 

Scheme 1-5. Mechanism of initiation step of cationic ROP.29 

Scheme 1-6 shows the mechanism of the initiation step for monomer-activated ROP. The 

monomer is activated by a catalyst and subsequently added onto the polymer chain end. 

 

Scheme 1-6. Mechanism of the initiation step of the monomer-activated ROP.30,31 

The coordination-insertion is a pseudo-anionic ROP (Scheme 1-7). The reaction starts with the 

coordination of the monomer to the catalyst and the monomer inserts into a metal-oxygen bond 

of the catalyst. The growing chain is connected to the metal center through an alkoxide 

bond.29,28 
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Scheme 1-7. Mechanism of the initiation step for coordination–insertion ROP.29 

In addition to this, radical ROP is also often used for synthesis of (bio)degradable polyesters. 

During radical ROP a constant volume is maintained, which is interesting for application such 

as tooth fillings, coatings and accurate molding of electrical and electronic components.30 There 

exist several vinyl substituted cyclic monomers undergoing radical ring-opening 

polymerization, e.g. ketene acetals32 and phenyl vinyl oxiranes.33–35  
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1.2.3 Application of (bio)degradable polyesters 

In order to overcome the environmental problems associated with synthetic plastic waste, the 

requirement of (bio)degradable plastics is ever growing in the last decades. Table 1-1 shows an 

overview of applications and volumes for the whole (bio)degradable polymer market in 2007 

and 2015. 

Table 1-1. Application and volumes of (bio)degradable polymers.23 

Application Volume 2007 (kt) Volume 2015 (kt) Comment 

Organic waste bags and 

shopping/carrier bags 
16 131 

Most established 

segment 

Packaging including foam 42 248 
Food and non-

food packaging 

Mulch film and 

horticulture 
7 21 - 

Sum 65 400 - 

 

Among the commercialized (bio)degradable polymeric materials, PCL is a very useful 

biomedical polyester, which is used in tissue engineering, drug delivery and release systems36 

and the production of surgical sutures.27 In addition, PCL has been promoted as a soil 

degradable container material,37,38 which can be used as a thin-wall tree seedling container.12 

Through the copolymerization with other cyclic monomers, like glycolide,39 L-lactide,40 

dioxepan-2-one41 etc. its physical properties and degradability has been modified for different 

applications. Regarding property modifications, many PCL blends were studied, too. PCL with 

starch and its derivatives can been used in shopping bags.42 PCL/polypropylene and 

PCL/polyethylene blends spun into fibers show higher tenacity and are dyeable with dispersed 

dye formulation.43 The here presented copolymers of PCL a linear polyguanidine, which have 

high antibacterial activity, are suitable as additive of food packaging or hygienic applications. 

In general, polymers can undergo degradation either by surface erosion or by bulk erosion.44 In 

the next chapter 1.2.4 the two different (bio)degradable mechanisms will be explained in detail. 

PCL is reported to undergo surface erosion.45 When used as implant for in-vivo application, it 

will erode from the surface only and become smaller while keeping its original geometric shape. 

The predictability of the erosion process in drug delivery is also an advantage of surface eroding 

polymers.46  
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Compared to aliphatic polyesters, the (bio)degradable copolymers consisting of aliphatic and 

aromatic units show better physical and mechanical properties. In this thesis a (bio)degradable 

aliphatic and aromatic polyester “Ecoflex”, which has been used on an industrial scale, was 

studied as matrix polymer in blends with antibacterial additive. Ecoflex® and its blends from 

BASF are used as short-lived plastic films like organic waste bags, cling films or in paperboard 

coatings for completely compostable paper cups.23 Ecoflex®/PLA and Ecoflex®/starch blends 

are the two commercially most important Ecoflex®/biopolymer blends. The blend of Ecoflex® 

with starch compounds is used to enhance the mechanical and thermal properties as well as 

hydrophobicity of compounded materials. The temperature resistance of Ecoflex®/starch blends 

is improved by more than 60 °C, which delivers the optical stability of organic waste bags 

during storage and biowaste collection. Ecoflex® is a soft (bio)degradable material, which is an 

ideal material to efficiently reduce the stiffness of brittle (bio)degradable materials like PLA. 

The stiffness of PLA is reduced by 25 %, with an addition of 20 % Ecoflex®. BASF sells 

compostable and bio/based Ecoflex®/PLA blends under the trade name Ecovio®, which can be 

use as plant pots, seed/fertilizer tape and binding materials, foams and nets. From degradation 

tests in compost (discussed in chapter 4) Ecoflex® shows the (bio)degradable mechanism “bulk 

erosion”. The advantage is that the size of the polymer will remain constant for a considerable 

portion of time during its application.  

  



Introduction 

17 

 

1.2.4 Degradation of polyesters 

A (bio)degradable plastic is defined by the ASTM (American Society for Testing and Materials) 

as “A plastic designed to undergo a significant change in its chemical structure under specific 

environmental conditions resulting in a change of properties that may vary as measured by 

standard test methods appropriate to the plastic and the application in a period of time, that 

determines its classification, in which the degradation results from the action of microorganisms 

occurring naturally such as bacteria, fungi, and algae.”47 However, this definition is only 

suitable for biotically driven degradation of (bio)degradable plastics. If the abiotic molar mass 

reduction occurs by hydrolysis of linear polyesters or the oxidation, degradation of polyolefins 

prior to the bioassimilation, these mechanisms are not included in the definition. Therefore 

hydro-biodegradation and oxo-biodegradation are two major parallel classes of (bio)degradable 

plastics, which are defined as ”biodegradation in which polymer chain cleavage is primarily 

due to hydrolysis or oxidation which may be mediated by abiotic chemistry, microorganisms 

or a combination of both.”48 Figure 1-1 shows the general features of hydro- and oxo-

(bio)degradable polymeric materials. The mechanisms of biodegradation depend on the nature 

of the polymer and the environment.49,50 The nature of polymer defines the surface and bulk 

conditions like surface area, hydrophilic and hydrophobic properties, chemical structure, 

molecular weight and molecular weight distribution, glass transition temperature, melting 

temperature, modulus of elasticity, crystallinity and crystal structure etc.51 

There exist two different erosion mechanisms for (bio)degradable polymers depending on the 

above mentioned characteristics. The first can be described as a bulk degradation process, if 

water diffuses into the polymer matrix faster than the polymer is degraded. The hydrolysable 

bonds of the whole polymer matrix are divided homogeneously, leading to a homogenous 

decrease of the average molecular weight of the polymer. The other mechanism is surface 

erosion, which is present, when water diffuses slower into the polymer matrix than the 

degradation rate of the polymer. The degradation occurs only at the surface layer. Thus a 

molecular weight change of the bulk sample is not observed. Surface erosion is a heterogeneous 

process, which has a strong dependency on surface condition of the sample.52  
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Figure 1-1. General features of hydro- and oxo-(bio)degradable polymeric materials53. 

The biodegradation behavior of aromatic/aliphatic polymers has been very well studied. PBAT 

is a completely degradable aromatic/aliphatic polyester and used as compost bags, agricultural 

films and packaging materials. Many studies show, that aromatic compounds degrade under 

nitrate-reducing, iron-reducing, sulfate-reducing, and methanogenic conditions.54 However the 

information of biodegradation behavior of aromatic compounds under anaerobic conditions is 

very limited.55 Scheme 1-8 shows the mechanism of aerobic biodegradation process of benzene, 

which involves the oxidation by molecular oxygen. By oxidation intermediates are produced, 

which enter central metabolic pathways including the Krebs Cycle and β-oxidation.56–58 The 

benzene ring is hydroxylated by microorganisms using oxygen, which leads to the subsequent 

fission of the ring. The major step of degradation is the elimination of the double bond of the 

ring between two hydroxylated carbon atoms (ortho pathway), or adjacent to a hydroxylated 

carbon atom (meta pathway), or in an indole ring.54 

 

Scheme 1-8. Aerobic benzene biodegradation. 
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1.2.5 Biodegradation test methods 

(bio)degradable polymers, as environmentally friendly materials, claim to be degraded by 

attack of microorganisms. Therefore, the biodegradation behavior must be proved by using 

scientifically based and generally accepted methods. 

The biodegradation testing of chemicals has been carried out for over 30 years. Generally the 

tests can be subdivided in principle into three categories: field tests, simulation tests and 

laboratory tests, as shown in Figure 1-2.59  

 

Figure 1-2. Schematic overview of biodegradation tests for polymeric materials.59 

The biodegradation behavior of polymers depends not only on the properties of the materials 

but also on the environmental conditions such as temperature, pH-value or humidity. Field tests 

represent the ideal practical environmental conditions, by burying polymers in soil and compost 

or placing it in a lake or river. However, field tests have also some disadvantages. For example, 

the test conditions of the environment are not controllable and the analytical methods are very 

limited. In most cases it is only possible to evaluate visible changes or to measure weight loss 

on the polymer specimen. Therefore, instead field tests various simulation tests have been used 

to measure the (bio)degradability of polymers. In simulation tests, the biodegradation takes 

place in compost, soil or lake-, river-, sea-water in a controllable environment within a 

laboratory. During testing more analytical methods are available than for the field tests. 

Examples of such qualitative and quantitative analyses of residues and intermediates are the 

determination of CO2 evolution or O2 consumption. Another advantage of simulation tests is, 
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that the testing time can be reduced by changing the testing parameter, e.g. increasing microbial 

activity, temperature or humidity etc. in order to accelerate degradation.  

Composting tests are common simulation tests, particularly for (bio)degradable packaging 

materials. Table 1-2 shows the norms of composting tests of polymers from ASTM, ISO 

(International organization for standardization); EN (European Norm) and Japanese Greenpla.60 

All these standards define basic requirements for packaging and packaging materials to be 

identified as (bio)degradable and compostable in industrial composting facilities. European 

Norm EN 13432, the American ASTM D 6400-04 and the Japanese GreenPla are the most 

important standards, while the international standard ISO 17088, is analogous to ASTM D 

6400-04 standard, based on ISO 14855-1:2005 and ISO 14855-1:2007, which became effective 

in 2008.60 It can be used worldwide. According to ISO 14855 the controlled composting test is 

the most important proof of ultimate aerobic (bio)degradability. It is also the central part of 

every standard named above for (bio)degradable polymers.23 

Table 1-2. Norms for composting test of (bio)degradable polymers. 

EN 134329 

(European) 

Requirements for packaging recoverable through composting and biodegradation. 

Test scheme and evaluation criteria for the final acceptance of packaging. 

ASTM D 6400-04 

(American) 

Standard Specification for Compostable Plastics. 

GreenPla. 

(Japanese) 

The generic term for (bio)degradable plastics, raw materials and products that 

contain (bio)degradable plastics. 

ISO 17088 Specifications for compostable plastics. 

ISO 14855-1:2005 Determination of the ultimate aerobic biodegradability of plastic materials under 

controlled composting conditions—method by analysis of evolved carbon dioxide-

part 1: general method. 

ISO 14855-2:2007 Determination of the ultimate aerobic biodegradability of plastic materials under 

controlled composting conditions—method by analysis of evolved carbon dioxide-

part 2: gravimetric measurement of carbon dioxide evolved in a laboratory-scale test. 

The laboratory biodegradation tests are the most reproducible tests. In most cases, synthetic 

media and inoculated media with either a mixed microbial population or individual microbial 

strains are used, which are especially optimized for polymers. Because of those reasons, in 

laboratory tests, polymers often show a much higher degradation rate than within field tests. It 

is only possible to derive limited conclusions on the absolute degradation rate of materials in 

nature.59 However these tests are always widely used for many systematic investigations of 

polymeric (bio)degradability.  

Enzymatic biodegradation tests are typical laboratory biodegradation tests, which are very 

useful in examining the kinetics of depolymerization, oligomer and monomer release from a 
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polymer chain under different conditions or types of purified enzymes, respectively. Enzymatic 

test methods have been widely used for studying the hydrolysis of aliphatic polyesters,61–63 

starch plastics or packaging materials containing cellulose.64–67 For example, the commercially 

available lipase from Pseudomonas cepacia is often chosen to quantify the degradation 

behavior.62,68,69  
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1.3 Antibacterial materials 

1.3.1 Cationic antibacterial compounds 

Cationic compounds are the most promising candidates of all antimicrobial materials. For 

example, cationic surfactants, lipids, peptides and natural or synthetic polymers have been 

intensively studied as antimicrobial agents. Table 1-3 shows structure of some cationic 

surfactants, lipids, polymers and their assemblies.70 Those compounds display antimicrobial 

properties by either themselves or in combinations with inert materials such as natural polymers. 

Due to the high antimicrobial activity and low toxicity, they fulfill a major requirement for 

biomedical applications as well as for food packing, preservation and antifouling applications.7 

Table 1-3. Antimicrobial cationic compounds and assemblies. 

Cationic molecule or assembly Name 

 

Dioctadecyldimethylammonium 

bromide (DODAB) 

A B 

Cationic bilayer fragment (A) 

Large cationic vesicle (B) 

 

Hexadecyltrimethylammonium 

bromide (CTAB) 

 

 

CTAB micelle 

 

Poly (diallyldimethyl) ammonium 

chloride (PDDA) 

A high number of interesting antibacterial cationic polymers have been synthesized in the recent 

years.71,72 The antimicrobial activity of cationic polymers depends on the nature of polymer 

such as molecular weight, molar mass, polydispersity, water solubility and the amphiphilic 

balance of polymer chains.73 The target of antibacterial cationic polymers is to destroy the 

membrane of Gram-positive and Gram-negative bacteria cells. Mostly the same cationic 

polymer shows higher antibacterial activity for Gram-positive bacteria than Gram-negative 

bacteria. This can be explained by different features of bacterial cell walls. Gram-positive cell 

walls have one single phospholipid bilayer surrounded by a murein sacculus, whereas Gram-
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negative cell walls have a unique outer membrane, which develops a barrier function, shown in 

Figure 1-3. 

 

Figure 1-3. Simplified illustration of Gram-positive and Gram-negative bacterial cell walls. 

PG exhibits excellent antimicrobial activity against Gram-positive and Gram-negative 

bacteria,7 fungus,9 and virus8, which is a typical antimicrobial cationic polymer.74 Table 1-4 

shows some chemical structures of polyguanidine hydrochlorides. Compared to aliphatic PG, 

the aromatic groups in the polymer chains of PPXG limit the dispartment into the lipid 

membrane and lead to a weaker adsorption compared to flexible alkyl polymer chains.75 

However the limited antimicrobial activity led to a low cytotoxicity, which is an advantage for 

application of tissue engineering material. In Chapter 5 PPXG is used as an antimicrobial 

coating on Bioglass® scaffolds, which showed antibacterial activity and biocompatibility with 

low cytotoxicity. Increased hydrophobicity of the polymer chains from C4 to C8 leads to better 

dispartment in the hydrophobic parts of phospholipids of bacterial cell membrane. Furthermore, 

it causes stronger adsorption on the membrane surface, which improves the antibacterial 

properties. After adsorption, the phospholipids were rearranged causing the disorganization of 

cell membrane. The hydrophobic parts of polymer insert into the membrane core that lead to 

the aggregation of phospholipids around the polymer chain. The membrane destabilizes, while 

a hole is formed. As a result, the intracellular content is discharged and the bacteria cell dies.76,77  
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Table 1-4. Polyguanidine hydrochloride derivatives.78–80 

Name Structure of Polymer 

polyhexamethylene guanidine hydrochloride 

(PHMG) 
 

Polytetramethylene guanidine hydrochloride 

(PTMG) 
 

Polyoctamethylene guanidine hydrochloride 

(POMG) 
 

poly(m-xylyleneguanidine) hydrochloride 

(PMXG) 
 

poly(p-xylyleneguanidine) hydrochloride 

(PPXG) 
 

Poly(cyclohexane guanidine) hydrochloride  

(PCHG) 
 

Poly(tetraethylenepentamine guanidine) 

hydrochloride (PTEPAG)  

 

Of all PGs, PHMG has been the most extensively studied. It was used for many years as an 

antiseptic in medicine and in recent years it also found application in swimming pool 

sanitization, treatment for cooling systems to prevent infection,81 as solid surface cleaner in 

food industry, the treatment of heating eggs to prevent salmonella infection,82,83 impregnation 

of gauze wound-dressing to avoid the Pseudomonas infection84 and as a durable anti-odor 

material in textiles.85 Polyguanidine hydrochloride is synthesized by melt polycondensation 

with equimolar amounts of diamine and guanidine hydrochloride.86 since the low molecular 

weight, PHMG has been also considered as a promising antimicrobial additive blending with 

other matrix materials, which have good mechanical properties.4,87 In Chapter 4 the new 

antimicrobial Ecoflex® is described, which was obtained by melt extrusion with an aqueous 

PHMG solution. 
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1.3.2 Polyguanidine based antibacterial materials 

PG can be easily prepared by step-growth reaction. The first patent about oligoguanidine 

compounds as antibacterial agents was filed in the 1940s.88 PG was synthesized either by 

polycondensation89 or polyaddition,90 respectively. The starting materials can either consist of 

monomeric guanidines, isocyanide dihalides, guanido acid esters, cyanogen halides or 

dicyanamides, respectively.88 The respective reactions are represented by the following 

examples in (a)-(e) (R may be aliphatic or aromatic): 

Polycondensation: 

 

(a) A mixture of a diamine and a guanidine in equivalent proportions is heated for 2 to 12 h 

at temperatures ranging from 130 °C to 180 °C. The polycondensation reaction begins 

with the evolution of ammonia.  

 

(b) Polycondensation of an isocyanide dihalide and a diamine started in dry benzene or 

other inert solvents in the presence of an equivalent amount of postassium carbonate at 

45 °C. Subsequently, the reagents are separated from the solvent and further 

polymerized under nitrogen for 9 h at 180 °C.  

 

(c) The self-condensation of a guanido ester produces a polyacyl guandine. The 

polymerization is allowed to take place under the same conditions as in (a). The reaction 

begins with the evolution of alcohol. The amount of alcohol evolved is as a measure of 

the extent of polymerization. 
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Polyaddition: 

 

(d) To a cyanogen halide dissolved in absolute ethanol is added an equimolar quantity of 

diamine dissolved in an anhydrous alcoholic solution. After 1 h of heating the solution 

is concentrated under reduced pressure and the residue is further polymerized at 175 °C. 

 

(e) An N, N’-dicyanamide and a diamine are allowed to react under the same condition as 

in (a) without small molecule elimination. 
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1.3.3 Antibacterial test methods 

In this thesis, standard methods, which are described and classified by the German Institute for 

Standardization (DIN) (Deutsches Institut für Normung) and American Type Culture 

Collection (ATCC) norms, were used to evaluate the antibacterial activity of polymeric 

materials by Gram-positive bacteria B. subtilis (ATCC 11774) and Gram-negative bacteria 

E.  coli (ATCC 11229). 

Usually, the first quantitative test to identify the antibacterial activity of water soluble polymers 

or polymer suspensions are MIC and MBC tests, which are carried out according to the DIN 

58940-6 and DIN 58940-7 norms. MIC describes the minimal amount of inhibition of the 

visible bacteria growth and MBC corresponds to the amount that is required to kill more than 

99.9 % bacteria. The test methods are described below and the schematic illustration is shown 

in Figure 1-4. Firstly, a serial dilution of polymer is added in a 24-wells plate from high 

concentration, for example 2000 µm mL-1, to zero, as blank sample. Then a bacterial suspension 

with 106-107 cfu/mL is added in every well. After 24 h at 37 °C incubation the wells are visually 

evaluated for turbidity. The lowest concentration of the well that is transparent is defined as 

MIC. For determining the MBC, 100 µL last three transparent suspensions are chosen to be 

spread on new agar plates. After another 24 h incubation at 37 °C colony formation shows up 

and the lowest concentration with biocidal activity is taken as MBC.  

 

Figure 1-4. Schematic illustration of MIC and MBC tests of antibacterial polymers. 

The next important method is the shaking flask test, which is used to evaluate the rate of 

bacterial reduction by the polymers, e.g. antibacterial polymers with release mechanism. It is a 
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so-called time-dependent test. Of course, the method is also adaptable to a polymer solution 

and suspension with different concentration or a water insoluble material. The process of the 

shaking flask test is shown in Figure 1-5. Firstly, the sample is added in a sterilized centrifugal 

tube with 1.5 mL bacterial suspension (106-107 cfu/mL) and incubated for a defined time 

interval. Then a tenfold dilution series of specimens from 100 to 10-3 out of the bacterial 

suspension is spread on new agar plates. After 24 hours at 37 °C incubation, the number of 

colonies is counted. With a relative cell density of inoculum the percentage or logarithmic 

stages reduction of bacterial cells is calculated. The formula for calculation is shown below. 

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [%] =  
𝐴 − 𝐵

𝐴
 × 100 % 

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 [log 𝑠𝑡𝑎𝑔𝑒𝑠] =  − log (
𝐵

𝐴
) 

𝐴 = 𝑐𝑜𝑙𝑜𝑛𝑦 𝑐𝑜𝑢𝑛𝑡𝑏𝑙𝑎𝑛𝑘;  𝐵 = 𝑐𝑜𝑙𝑜𝑛𝑦 𝑐𝑜𝑢𝑛𝑡𝑠𝑎𝑚𝑝𝑙𝑒 

 

Figure 1-5. Schematic illustration of the shaking flask test. 

The Kirby-Bauer test is another standard method to determine the antibacterial activity of 

surface and leaching behavior. The Kirby-Bauer test process is illustrated schematically in 

Figure 1-6. Firstly, 100 µL of a bacterial suspension with concentrations between 106-

107 cfu/mL is spread on an agar plate, on which the specimen and a blank sample are placed. If 

the sample shows leaching effect, after overnight incubation, a “zone of inhibition” is formed, 

in which bacteria colony formation is absent. After removing the sample with a swab, the 

sample is transferred to a new agar plate. If after 24 hours of incubation no bacterial colony has 

grown on the agar plate, all bacteria under the sample were killed due to surface contact. In 

contrast, with the blank sample after incubation the colonies should grow.  
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Figure 1-6. Schematic illustration of the Kirby-Bauer test. 

 

1.4 (bio)degradable polymers with antimicrobial activity 

Materials of food packaging or medical applications have a significant risk of contamination 

with bacteria coming from the material itself or the surrounding environment. To reduce the 

risk, it is possible to combine the antimicrobial activity and (bio)degradability in one material. 

The formation of antimicrobial (bio)degradable polymers can be achieved by several methods: 

1) Use of (bio)degradable polymers with inherently antimicrobial properties. 

2) Coating or adsorbing antimicrobial materials onto polymer surface. 

3) Immobilization of antimicrobial agents onto (bio)degradable polymers by ion or 

covalent bonds. 

4) Incorporation of leaching or non-leaching antimicrobial agents directly into polymer 

matrix. 

The simplest method is to directly use a polymer, which possesses both properties, e.g. poly-L-

lysine3 and chitosan.91 Chitosan is a polymer, which is the deacetylated form of chitin with 

repeating units of disaccharides having amino group, (1,4)-2-amino-2-deoxy-β-D-glucan.92,93 

Chitosan is commercially available as packaging material for food and medical 

applications.92,94,95 Zheng and Zhu studied the relationship between molecular weight and 

antimicrobial activity of chitosan. In their report chitosan with molecular weight below 305 kDa 

was investigated. For Gram-positive bacteria S. aureus the antimicrobial effect was enhanced 

with increasing molecular weight, whereas for Gram-negative bacteria E.coli the antibacterial 

activity decreased with increasing molecular weight. The reason may be, that the relative short 

polymer chains can easily enter the microbial cell and better interact with the metabolism of the 

cell.93 Makarios-Laham and Lee reported that chitosan-based antimicrobial films as packaging 

materials containing 10% chitosan are degraded and broken down in the soil environment.92 

Berkeley reported that chitosan-hydrolyzing enzymes (chitosanases) are produced by many 
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bacterial genera, all of which can be found in soil. Green antibacterial agents can also be 

produced by natural flora, e.g. bamboo or ginkgo etc. Recently a new patent showed that a 

mixture of bamboo, ginkgo and aloe leaf can be used as natural antimicrobial agent as coating 

materials.96 

The second strategy is coating or adsorbing antimicrobial agents onto a (bio)degradable 

material surface. If the antimicrobial agent has low molecular weight, poor mechanical 

properties or cannot tolerate the temperature during polymer processing, coating or adsorbing 

it on the surface of a stable substrate is a very beneficial method. It can not only supply the 

antibacterial property, but also offer mechanical strength and temperature tolerance from the 

matrix materials. At the beginning of the development of these materials, fungicides were 

incorporated into waxes to coat the surface of fruits or quaternary ammonium salts were coated 

on shrink films to pack vegetables.97 Recently, a lot of antimicrobial coatings or adsorbing 

materials have been studied intensively not only for food industry but also for wound healing 

and medical devices. For example, a quaternary ammonium-modified triethoxysilane was 

coated on cotton textile, which shows antimicrobial activity against Gram-positive and Gram-

negative bacteria and non-leaching effect.98 Kinninmonth et al. reported that different essential 

oils can be used as antimicrobial agents, which are adsorbed on porous silicate materials and 

then added to polymer materials to produce antimicrobial polymers.99 In this thesis, an 

antimicrobial polymer was also used as a coating material for scaffolds for bone tissue 

engineering. 

Immobilization of antimicrobial agents onto polymers by covalent attachment is another 

strategy. Jao et al. reported that a PBAT film was treated with ozone to activate the surface, 

onto which the antimicrobial agent chitosan was subsequently grafted. The modified PBAT 

film exhibits also a superior biocompatibility for clinical applications.100 In our workgroup L. 

Tan et al. have designed hydantoin-containing polymers based on enzymatic degradable 

polyesters, prepared by two different routes. The first route involves the dihydroxylation of 

hydantoin and subsequent transesterification with dimethyl succinate and 1,4-butanediol to 

synthesize an aliphatic polyester. After chlorination, the copolyester shows antibacterial 

activity and enzymatic degradability (Scheme 1-9).101  
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Scheme 1-9. Synthesis of monomer and copolyesters containing hydantoin and the chlorination process. 

For the second route, a (bio)degradable polyester was synthesized by ring-opening 

polymerization, which was used to attach antibacterial hydantoin moieties via click chemistry 

by a copper(I)-catalyzed azide-alkyne cycloaddition reaction.102 In the first step, cyclohexanone 

was functionalized with an alkyne group and subsequently expanded via BAEYER-VILLIGER 

oxidation to give the alkyne-carrying caprolactone derivative. After copolymerization with pure 

ε-caprolactone, the azide-containing hydantoin was attached to the alkyne groups of the 

copolymer in the presence of a Cu(I) catalyst (Scheme 1-10).  
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Scheme 1-10. Synthesis of side-chain hydantoin-containing PCL by ROP and click chemistry. 

Both polyesters were successfully functionalized with covalently bound hydantoin, and thus 

they show antibacterial activity and enzymatically degradability. In a similar manner, 

copolymerization of monomers functionalized with cationc salts to produce (bio)degradable 

polymers with antimicrobial activity is also described in literature. Kanazawa et al. synthesized 

such aliphatic polyesters by polycondensation of a mixture of ethylene glycol, dimethyl 

terephalate and various alkyl tributylphosphonium salts.103 Guanidine salts have also been used 

as biocidal functional groups. However due to the low molecular weight and good water 

solubility, most guanidine salts lost the effectiveness during time. In this work, the non-leaching 

effect was targeted for the newly developed antimicrobial and (bio)degradable polymer to avoid 

fading of antimicrobial activity. As a hypothesis, the introduction of a covalent bond between 

the guanidine salt and the matrix polymer as a measure to avoid leaching, was enunciated (see 

chapter 3). 
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For many applications of antimicrobial (bio)degradable materials, good mechanical properties 

are always important. Therefore, a (bio)degradable matrix polymer with good mechanical 

properties is required. Incorporation of antimicrobial agents directly through physical blending 

into a (bio)degradable material, which has good mechanical properties, is one of the most 

effective methods for providing an antimicrobial (bio)degradable polymer. The antimicrobial 

agents can be incorporated into matrix polymers by thermal polymer processing, like extrusion 

or injection molding. For heat-sensitive antimicrobials like enzymes and volatile compounds 

solution blending is a suitable method. For example, functional nanocomposites with 

antimicrobial properties were produced by incorporating silver or copper nanoparticles into the 

(bio)degradable matrix polymers.104,105 The nanocomposites are prepared by solution casting 

and show high antimicrobial activity and (bio)degradability. In addition, the (bio)degradable 

polymer PBAT was extruded with antimicrobial PHMG and thermoplastic starch (TPS).4 

Blending with starch led to more hydrophilicity of the material, which increased the rate of 

biodegradation. The extruded polymer showed antimicrobial activity and biodegradation in soil. 

However in most cases, the disadvantage is deteriorating mechanical properties with increased 

amount of additive. PBAT, as a favored matrix material, is usually used for compounding with 

antimicrobial agents. In chapter 4 of this thesis the commercial polymer material PBAT was 

utilized as matrix material for a modified simple extrusion process, where PHMG was blended 

into the matrix as aqueous solution. Highlight of this work are the enhanced mechanical 

properties of the extruded antibacterial Ecoflex®. Although there was no covalent bond formed 

during the extrusion, the extrudate with high percentage of antimicrobial additive showed little 

leaching effect.  
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2. Cumulative Part of Dissertation 

This thesis focuses on the preparation and characterization of antimicrobial and (bio)degradable 

polymeric materials. A balance between antimicrobial activity and (bio)degradability was 

studied, which can keep the antimicrobial activity, while controlling the rate of (bio)degradation. 

The dissertation consists three interdependent chapters, in which all new polymeric materials 

exhibit those two properties: antimicrobial activity and (bio)degradability.   

A lot of antimicrobial polymers have cationic and amphiphilic features. The 

hydrophobic/hydrophilic balance of polymer chains affects the antimicrobial activity and 

selectivity. In most cases, they are water soluble, therefore if the antimicrobial additive is not 

immobilized on the (bio)degradable polymer, the material loses the antimicrobial activity 

during the interaction with microorganisms in humid environment. Hence, the introduction of 

covalent bonds was chosen as strategy in order to avoid the leaching effect and this strategy is 

discussed in detail in chapter 3.  

However, we obtained only low molecular weight block copolymers of PHMG-b-PCL (chapter 

3). Because of that, the antimicrobial material exhibits poor mechanical properties and cannot 

be used for food packaging or medical applications. Therefore, as a new strategy, blending of a 

high molecular weight polymer and the low molecular weight antimicrobial agent was pursued, 

whereas the choice of a good matrix material is crucial. (Chapter 4) 

Further, in chapter 5 a new antimicrobial biodegradable material “45S5 Bioglass®” (45S5 BG) 

was prepared by loading with antimicrobial additive. The prepared 45S5 BG scaffolds also combine 

the antimicrobial activity and biocompatibility. They have the potential to become the new general 

BG scaffolds for bone tissue engineering. 
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2.1 Oligomeric dual functional antibacterial polycaprolactone 

This work has already been published: 

Hui Wang,a Christopher V. Synatschke,a Alexander Raup,b Valérie Jérôme,b Ruth Freitagb and 

Seema Agarwal*a, “Oligomeric dual functional antibacterial polycaprolactone”, Polymer 

Chemistry, 2014, 5, 2453-2460. 

Specific contributions by authors: 

The planning and the execution of the synthetic and analytical work and antibacterial tests were 

done by me. The manuscript was written by me. Christopher V. Synatschke helped me to 

measure the MALDI-ToF MS. Alexander Raup and Valérie Jérmôe, from the group of Prof. 

Ruth Freitag determined the cytotoxicity via MTT-tests. Prof. Seema Agarwal did the final 

manuscript revision and was in charge for general guidance concept, design and supervision for 

this project.  
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The aim of this part is the synthesis of a new (bio)degradable polymer with antimicrobial 

property. In this paper a new synthetic route for ring-opening polymerization of ε-CL initiated 

by PG end groups is presented. Antibacterial oligomeric PHMG with a molecular weight of 

3000 Da, carrying primary amine groups at the chain end, was used as macroinitiator, opening 

the ε-caprolactone ring in order to yield the block copolymer polycaprolactone-b-polygudnidine 

hydrochloride (PCL-b-PHMG). (Scheme 2-1) PCL as commercial material has been 

extensively used in agriculture, medicine, pharmacy, biomedical and packaging industry. 

Scheme 2-1. Ring opening polymerization of ε-polycaprolactone using PHMG as macroinitiator. 

With different ratios of PHMG to ε-CL as well as with different polymerization times the block 

length of PCL is controllable. (Table 2-1)  

Table 2-1. Details of oligomers synthesized by ROP of CL using poly(hexamethylene guanidine) hydrochloride 

(PHMG) macroinitiator for 24 h: copolymer composition, molar mass, PDI and yield. 

Sample PHMG:PCL 

(molar ratio in 

copolymer) 

Mn,NMR Mn
b Mw

b PDIb (Mw/Mn) Yield % 

1 0.72:1 2800 2700 3300 1.2 80 

2 0.67:1 2900 2700 3400 1.2 93 

3c 2.71:1 1700 2000 2500 1.3 52 

4 1.68:1 1900 2200 2900 1.3 94 

a CL:PHMG feed ratio was 77:23 (sample 1), 32:68 (samples 2 and 3), 50:50 (sample 4).  

b determined by MALDI-ToF-MS, c Time of polymerization for sample 3 was 8 h. 

PHMG has good water solubility and PCL is relatively hydrophobic. Therefore the copolymer 

shows temperature dependent solubility of an upper critical solution temperature (UCST)-type 

in polar solvents such as methanol. The formation of copolymer was confirmed by 2D-NMR 

and MALDI-ToF-MS. A step growth reaction was proven by MALDI-ToF-MS (Figure 2-2). 

The repeating units of the copolymer can be found in the spectrum.  
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Figure 2-2. (a) Full MALDI-TOF MS spectrum and (b) enlargement of 950-1100 m/z region of sample 2. 

The copolymer showed high antibacterial activity and fast antibacterial action against Gram-

positive bacteria B. subtilis and Gram-Negative bacteria E. coli. To produce a stable polymer 

suspension, 60 mg of the polymer were dissolved in 10 mL DMSO at 40 °C followed by dialysis 

against Millipore water at room temperature. The different concentrations were prepared by 

diluting the original suspension with water. Because of the different ratio of PHMG to PCL, 

sample 3 shows higher antibacterial activity than sample 2, which has a longer PCL block. 

Sample 2 showed MIC values of 87.5 mg mL-1 and 50 mg mL-1, and MBC of 87.5 mg mL-1 and 

(a) 
(a) 

(b) 
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100 mg mL-1 for E. coli and B. subtilis, respectively. Sample 3 shows a MIC of 37.5 mg mL-1 

and 25 mg mL-1, and MBC to 62.5 mg mL-1 and 50 mg mL-1 for E. coli and B. subtilis, 

respectively. Figure 2-3 and 2-4 depict the speed of antibacterial action against E. coli and B. 

subtilis. Both samples show fast antibacterial effect. Even sample 2 with the lowest mole 

percentage of PHMG killed 99% of the bacteria after 30 min at a concentration of 100 µg mL- 1 

and it even killed 98.0 % of the bacteria after 60 min, at a concentration as low as 10 µg mL- 1. 

 

Figure 2-3 and 4.Time-dependent reduction of bacteria in suspension of B. subtilis (lift) and E.coli (right) with an 

initial cell density of 106 cfu ∙ mL-1 upon contact Samples 2 with concentrations of --∎-- 1000 μg ∙ mL-1, --▲--

100 μg ∙ mL-1, ----10 μg ∙ mL-1 and Samples 3 with concentrations of --□-- 1000 μg ∙ mL-1  --△--100 μg ∙ mL-1, -

---10 μg ∙ mL-1 at ambient temperature, given in log stages. 

(Bio)degradability of this copolymer was confirmed by an enzymatic degradation test. 

Copolymers were incubated in phosphate buffer with lipase from pseudomonas cepacia at 37 °C. 

The molar mass of the degrading polymer was monitored by MALDI-ToF-MS. Figure 2-5 

shows the degradation after 24 h, while the PCL block was almost completely degraded. 
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Figure 2-5. Degradation percentage of polymer chain. 

A MTT assay was used to determine the cytotoxicity of the copolymer, using L929 cells. 

Compared to L-PEI 25 kDa and pure antibacterial PHMG, the PHMG-b-PCL copolymer 

showed high LD50 values indicating low cytotoxicity. (Figure 2-6) 
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Figure 2-6. (b) LD50 doses for the PHMG-based polymers and l-PEI 25 kDa, used as reference. The data 

represent mean ± s.d. from three independent experiments. Polymers yielding cytotoxicity with l-PEI and 

pairwise are indicated by # and *, respectively. 

In conclusion, block copolymers of PHMG-b-PCL were prepared by ring-opening 

polymerization with the antimicrobial macroinitiator PHMG. Chemical structures of the 

resulting copolymers were confirmed by 2D NMR spectroscopy and MADLI-ToF-MS. The 

combination of PHMG and PCL exhibited high antibacterial activity, (bio)degradability and 

low cytotoxicity. Due to the low molecular weight the new material has the potential utilization 

as compatible antimicrobial additive for (bio)degradable polyesters. 
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2.2 Biodegradable aliphatic-aromatic polyester with antibacterial 

property  

This work has already been submitted: 

Hui Wang, Markus Langner, Seema Agarwal*, “Biodegradable aliphatic-aromatic polyester 

with antibacterial property”, Polymer Engineering & Science, 2016, DOI: 10.1002/pen.24347. 

Specific contributions by authors: 

The planning and the execution of the extrusion, analytical work, compost degradation and 

antibacterial tests were done by me. The manuscript was written by me. Markus Langner 

assisted to record the SEM images. Prof. Seema Agarwal did the final manuscript revision and 

gave general guidance concept, design and supervision for this project.  
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PBAT is a commercially available (bio)degradable polyester (commercial name Ecoflex®), 

which has been extensively used as food packaging material or compost bags. In this work, for 

the coextrusion of PBAT with PHMG a reactive blending was anticipated, leading to covalent 

linkages between PBAT and the antimicrobial additive, eventually suppressing leaching of the 

low molecular weight species during application. The antibacterial aliphatic-aromatic polyester 

PBAT was extruded using a twin-screw extruder. PHMG (Mn = 3900, Mw = 6000, Ð = 1.6) was 

employed as antibacterial additive in four different amounts, 1.7, 4.3, 8.5 and 12.9 wt% for the 

extrusion with Ecoflex®. The corresponding extrudates are referred to as PHMG-Eco1.7, 

PHMG-Eco4.3, PHMG-Eco8.5 and PHMG-Eco12.9, respectively. 

T5% (temperature at which 5% weight loss took place) of Ecoflex® is higher than 350 °C. The 

extruded antibacterial Ecoflex® also showed high thermal stability. The T5% of PHMG-Eco12.9 

is at 330 °C. After mixing with PHMG the Tg and Tm of all samples were at -28 °C and 115 °C, 

respectively. The melting enthalpy and crystallinity of the extrudates decreased with increasing 

amount of PHMG. 

SEM micrographs of PHMG-Eco1.7 and PHMG-Eco12.9 (Figure 2-7) show phase-separated 

morphology at the surface with some smooth patches. 

 

 

 

  

 

Figure 2-7. SEM micrographs of the extruded PBAT-Eco (a-b), PHMG-Eco1.7 (c-d) PHMG-Eco12.9 (e-f). 

Figure 2-8 shows the typical stress-strain curves of extruded samples. After Extrusion the 

PHMG-Eco samples exhibited increased elongation at break and E-modulus without sacrificing 

the breaking stress. 
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Figure 2-8. Stress-strain curves of PBAT-Eco and PHMG-Eco 1.7 and 12.9 (a) and corresponding bar chart of 

mechanical properties (b). 

All PHMG-Eco samples were tested for antibacterial activity using the Kirby-Bauer test. 

(Figure 2-9) For Gram-positive bacteria B. subtilis PHMG-Eco8.5 showed an inhibitory effect. 

PHMG-Eco12.9 exhibited strong antibacterial activity against both, Gram-positive and Gram-

negative bacteria. Only PHMG-Eco12.9 showed a small inhibition zone indicating leaching of 

antibacterial material. According to an experiment, which was used to quantify the leaching 

effect by stirring the samples in water at 37 °C, after 7 days only 3 wt% PHMG leaching was 

observed, which also explains the long lasting antibacterial activity.  
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B.subtilis 106 cfu/mL (Gram-positive) 

  

E.coli 106 cfu/mL (Gram-negative) 

  

Figure 2-9. Kirby-Bauer test using B.subtilis and E.coli for sample extruded PBAT-Eco (Ecoflex®) and PHMG-

Eco1.7 (1), PHMG-Eco4.3 (2), PHMG-Eco8.5 (3), PHMG-Eco12.9 (4). (a) and (b) after 24 hours incubation, (c) 

and (d) after removing the incubated samples, (e) and (f) bacterial growth on a new agar plate after transferring 

swab from area under the samples. 

The compostability of the extrudates was investigated using highly active compost from an 

industrial composting plant. As shown in Figure 2-10, after 60 days PBAT-Eco showed some 

cracks and the film became very brittle. After 100 days PHMG-Eco disintegrated eventually 

and mixed with the compost. GPC was used to quantify the compostability of the samples. 

Since the GPC elugram of Ecoflex® was not unimodal, we compared the Mp rather than Mn or 

Mw value. Figure 2-11 shows a decreased Mp of pure Ecoflex® and PHMG-Eco12.9 during the 

composting test. Although for PHMG-Eco12.9 the degradation took longer time, after 30 days, 

a very significant decrease in molar mass was observed by GPC measurements. 
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Figure 2-10. The surface of polymer films after at different time by burying in compost at 60 °C. 
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Figure 2-11. Decreased peak average molar mass (Mp) of PBAT-Eco and PHMG-Eco with time during compost 

test. 

Figure 2-12 shows the Kirby-Bauer test for PHMG-Eco12.9 after one and two months of burial 

in compost. PHMG-Eco12.9 exhibits an excellent permanent antibacterial effect against 

B.subtilis and E.coli even after long degradation time.  
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Figure 2-12. Kirby-Bauer test using E.coli and B. subtilis for sample, 1: PBAT-Eco after degradation one month, 

2: PHMG-Eco12.9 after degradation one month, 3: PHMG-Eco12.9 after degradation two months, (a, b) after 24 

hours incubation, (c, d) after removing the incubated samples, (e, f) bacterial growth on a new agar plate after 

transferring swab from area under the samples. 

In conclusion, new antibacterial Ecoflex® was obtained by non-reactive extrusion blending. 

Although no covalent bonds were formed, the antimicrobial extrudate, even with high amounts 

of additive (12.9 wt%), show little leaching effect, because of the hydrophobicity of matrix 

material. The new material showed (bio)degradability in compost and even after two months 

degradation it was still showing antibacterial activity. The elongation-at-break and stress to 

strain of PHMG-Eco samples were also significantly enhanced. The new antibacterial function 

gives Ecoflex® a broader range of applications, e.g. it can be directly used for food packaging 

or compost bags. 

  

B. subtilis 

E. coli 
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2.3 Antibacterial 45S5 Bioglass®-based scaffolds reinforced with 

genipin cross-linked gelatin for bone tissue engineering 

This work has already been published: 

Wei Li,a Hui Wang,b Yaping Ding,c Ellen C. Scheithauer,a Ourania-Menti Goudouri,a Alina 

Grünewald,a Rainer Detsch,a Seema Agarwalb and Aldo R. Boccaccini*a, “Antibacterial 45S5 

Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue 

engineering”, J. Mater. Chem. B, 2015, 3, 3367-3378. 

Specific contributions by authors: 

The polymer synthesis, characterization, antibacterial tests and XRD measurements of scaffolds 

were done by me. I wrote parts of the manuscript. Wei Li prepared and characterized the 

Bioglass® scaffold. The degradation test was done by Ellen C. Scheithauer. Cell biology tests 

were performed by Alina Grünewald and Rainer Detsch. Yaping Ding helped to measure the 

SEM, FTIR and mechanical properties. Prof. Aldo R. Boccaccini and Prof. Seema Agarwal did 

the final manuscript revision and gave general guidance and supervision for this project. 

  

http://pubs.rsc.org/en/results?searchtext=Author%3AWei%20Li
http://pubs.rsc.org/en/results?searchtext=Author%3AHui%20Wang
http://pubs.rsc.org/en/results?searchtext=Author%3AYaping%20Ding
http://pubs.rsc.org/en/results?searchtext=Author%3AEllen%20C.%20Scheithauer
http://pubs.rsc.org/en/results?searchtext=Author%3AOurania-Menti%20Goudouri
http://pubs.rsc.org/en/results?searchtext=Author%3AAlina%20Gr%C3%BCnewald
http://pubs.rsc.org/en/results?searchtext=Author%3AAlina%20Gr%C3%BCnewald
http://pubs.rsc.org/en/results?searchtext=Author%3ARainer%20Detsch
http://pubs.rsc.org/en/results?searchtext=Author%3ASeema%20Agarwal
http://pubs.rsc.org/en/results?searchtext=Author%3AAldo%20R.%20Boccaccini
http://pubs.rsc.org/en/results?searchtext=Author%3AEllen%20C.%20Scheithauer
http://pubs.rsc.org/en/results?searchtext=Author%3AAlina%20Gr%C3%BCnewald
http://pubs.rsc.org/en/results?searchtext=Author%3AAldo%20R.%20Boccaccini
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In this publication a new antimicrobial 45S5 BG was reported, showing a third example of 

biodegradable materials that were given antimicrobial activity by loading with PG. There exists 

always a huge risks of contamination and infection during scaffold implantation.87 Since 45S5 

BG is an ideal material as bone tissue engineering scaffold106–108 it was chosen as matrix 

material, which was firstly coated with genipin cross-linked gelatin (GCG) (which maintained 

high porosity of 93%) to give mechanical strength. Considering the requirement of 

antimicrobial activity, the scaffolds were furthermore coated with PPXG, to yield a hybrid 

material being biodegradable and antimicrobial. The highly interconnected pore structure of the 

GCG coated scaffolds was observed by SEM. Figure 2-13 shows the degradation behavior of 

the scaffolds. Crosslink gelation significantly decreases the dissolution/degradation rate of 

gelatin films in SBF at 37 °C. For up to 7 days GCG coated and uncoated 45S5 BG scaffolds 

have similar weight loss, slowing down after 7 days. The formation of hydroxyapatite (HA) on 

the scaffold surface compensates the weight loss caused by dissolution, thus reducing the 

overall degradation rate of the 45S5 BG scaffolds. The 12 wt% higher weight loss of GCG 

coated scaffolds compared to uncoated scaffolds after 14 days is due to the loss of GCG coating 

(15 wt%). 

 

Figure 2-13. Degradation behaviors in SBF of GCG films, uncoated and GCG coated 45S5 BG scaffolds. 

For in vitro bioactivity tests the scaffolds were immersed in SBF at 37 °C for 1, 3, 7, 14 and 28 

days. Afterwards, FTIR, XRD and SEM were used to characterize the HA formation on the 

scaffolds. XRD spectra (Figure 2-14) show, that growing HA peaks (e.g. at 2 = 25.8 and 

31.7) were observed on coated scaffolds after immersion in SBF for 7, 14 and 28 days. The 

crystallinity of the scaffolds, corresponding to the Na4Ca4(Si6O18) and Na2Ca4(PO4)2SiO4 
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phases, decreased with increasing immersion time in SBF. SEM images show, that after 7 days 

the struts were almost fully covered by HA crystals, which can be clearly recognized by their 

well-known globular and cauliflower-like shape. 

 

Figure 2-14. XRD spectra of GCG coated 45S5 BG scaffolds before (0 d) and after immersion in SBF for 3, 7, 

14 and 28 days. 

GCG coated 45S5 BG scaffolds exhibit improved mechanical properties, which were 

investigated by a uniaxial compressive strength test. The compressive strength of GCG coated 

scaffolds (1.04 ± 0.11 MPa) is significantly higher than that of uncoated scaffolds (0.04 ± 0.01 

MPa). The work of fracture increased from 5.0 ± 1.1 Nmm to 285.6 ± 23.3 Nmm after coating. 

Antibacterial properties of the scaffolds were evaluated by the Kirby-Bauer test and time-

dependent shaking flask test. With the Kirby-Bauer test (Figure 2-15) the zone of inhibition 

was visually evaluated on the plate. Both samples without antibacterial polymer PPXG did not 

show any zone of inhibition to B. subtilis and E. coli. Furthermore, after the samples were 

transferred to new agar plate, they did not show any antibacterial activity. GCG coated scaffolds 

loaded with PPXG showed an increasing zone of inhibition as the PPXG concentration 

increased. They also showed antibacterial activity against B. subtilis. Scaffolds loaded with 30 

and 50 µg/mL PPXG exhibited antibacterial activity against E.coli, whereas scaffolds coated 

with 10 µg/mL PPXG showed an inhibitor effect against E.coli. The time-dependent shaking 

flask test is used to determine the enduring antibacterial activity of an implant (Figure 2-16). 

All scaffolds coated with PPXG killed more than 95% of B. subtilis and E. coli within 2 hours 

and this antibacterial effect was kept for 6 hours. Even scaffolds loaded with 10 μg/mL PPXG 

showed antibacterial activity, however after 2 hours the E.coli began to grow. 
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Figure 2-15. Kirby-Bauer test using B. subtilis and E. coli for samples 1: uncoated scaffold without PPXG, 2: 

GCG coated scaffold without PPXG, 3: GCG coated scaffold loaded with 10 µg/mL PPXG, 4: GCG coated 

scaffold loaded with 30 µg/mL PPXG, and 5: GCG coated scaffold loaded with 50 µg/mL PPXG. (a) and (b): 

after incubation for 24 h, (c) and (d): area under the incubated samples, (e) and (f): smears on agar plate 

(bacterial growth after transferring swab from area under the samples to a new agar plate). 

 

Figure 2-16. Time-dependent shaking flask test results of samples 3: GCG coated scaffold loaded with 10 

µg/mL PPXG, 4: GCG coated scaffold loaded with 30 µg/mL PPXG, and 5: GCG coated scaffold loaded with 

50 µg/mL PPXG. 

Firstly the in vitro biocompatibility of PPXG, genipin and GCG was characterized by evaluating 

the cell proliferation and cell morphology of MG-63 cells. Mitochondrial activity was measured 

using the water soluble tetrasodium (WST) test. As shown in Figure 2-17, the mitochondrial 

activity of MG-63 cells significantly decreases with increasing PPXG concentration. The cell 

shape, cell membrane integrity and nucleus integrity cultured in 10 µg/mL PPXG solution are 

quite similar to that of the control sample. MG-63 cells exhibited 51% and 59% mitochondrial 
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activity at 50 µg/mL genipin and a GCG amount of 1 mg/mL, respectively. The mitochondrial 

activity decreased with an increasing amount of GCG. Compared to the control sample, there 

is an obvious reduction of viable cells, however the cell shape is still similar to that of the 

control group. 

 

Figure 2-17. Mitochondrial activity measurement of MG-63 cells in the presence of PPXG, genipin and GCG at 

different concentrations after 2 days of cultivation. The values are mean ± standard deviation. The asterisks 

indicate significant difference. *** P<0.001. 

Biocompatibility of 45S5 BG scaffolds was also evaluated, as shown in Figure 2-18. The 

mitochondrial activity of MG-63 cells on GCG coated 45S5 BG scaffolds is higher than on 

uncoated 45S5 BG scaffolds after 2 weeks of cultivation. Figure 2-19 shows the result of the 

WST assay, which also indicates, that GCG coating may have a slightly positive effect on the 

cell proliferation of MG-63 cells (Figure 2-19). As summary of biocompatible tests, GCG 

coated 45S5 BG scaffolds, as well as the GCG coating itself, show compatibility with MG-63 

cells even at a relatively low concentrations. 
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Figure 2-18. Mitochondrial activity measurement of MG-63 cells on GCG coated 45S5 BG scaffolds after 2 

weeks of incubation, using uncoated 45S5 BG scaffolds as a control. The values are mean ± standard deviation. 

 

Figure 2-19. CLSM images of MG-63 osteoblast-like cells on the surfaces of (a) uncoated and (b) GCG coated 

45S5 BG scaffolds after 2 weeks of cultivation. The cells were stained red and the 45S5 BG surface can be seen 

in green. 

In conclusion, the GCG coated 45S5 BG scaffolds showed the improved mechanical properties 

and bioactivity. After loading with PPXG, the scaffolds exhibited excellent antibacterial 

activity against Gram-positive and Gram-negative bacteria. PPXG shows biocompatibility at 

low concentration, evaluated by an in vitro biocompatibility test to MG-63 cells. The new 45S5 

BG scaffolds are promising candidates for bone tissue engineering applications. 
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Dual functional antibacterial and biodegradable caprolactone (CL) based oligomers were 

prepared by ring-opening polymerization of caprolactone using polyguanidine 

macroinitiator. Primary amino (–NH2) end-groups of linear poly(hexamethylene 

guanidine) hydrochloride (PHMG) acted as initiating sites for caprolactone 

polymerization leading to block copolymers which combine antibacterial properties of 

PHMG with degradability provided by PCL. The block structure of the material was 

confirmed with 2D NMR and MALDI-ToF-MS. Further, the material exhibited 

temperature dependent solubility (upper critical solution temperature) in polar solvents 

like methanol. The oligomers showed high antibacterial activity (reduction of bacterial 

cells was more than 3 log stages) even at short incubation times depending on the 

concentration and PHMG:PCL ratio while maintaining enzymatic degradability and 

biocompatibility.  

Introduction 

Lot of research efforts are being carried out in the field of antibacterial polymers as microbial 

contamination is the serious concern in many areas like medical devices, sanitation, food 

packaging and storage. The most common and widely studied antibacterial polymers are 

polycations with quaternary ammonium and phosphonium groups. The mechanism of 

antibacterial action is complex and starts with the interaction of positively charged polymer 

either with the cytoplasmic membrane of Gram-positive bacteria or the outer membrane of 

Gram-negative strains followed by the hole-formation killing bacteria.[1] Depending on 

molecular weight, spacer length (the length between the active biocidal unit and the polymer 

backbone), the counter ion and the hydrophilicity / hydrophobicity ratio of the polymeric 

biocides showed different reaction time against bacteria and universality in killing both Gram-

positive and Gram-negative bacteria. For more detailed information, the reader is referred to 

some excellent reviews. [1-3] Also, biodegradable polymers with enzymatically or hydrolytically 

cleavable linkages like polycaprolactone (PCL), polylactide (PLA) etc. (belonging to the class 

of polyesters) are in high demand for various biomedical applications and as environmental 

friendly materials for packaging etc.[4-6] For many application areas of biodegradable polymers 

like sutures, implants, wound coatings etc. on one side and packaging, food storage etc. on the 

other side, it is reasonable to have antibacterial functionality besides biodegradability. Such 

novel dual functional polymers would certainly have an edge over the conventional polyesters 
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at present in use for many of such applications. For these applications the antimicrobial moiety 

should be active while attached to the polymer.  

The concept of having a biodegradable antimicrobial polymer with hydrolysable moiety 

together with antibacterial units in its inactive form is reported in the literature for the smart 

release of active ingredients on demand. Such systems are important for targeted antibacterial 

action. They make use of hydrolysable ester units either as linker between the biocide and 

polymer backbone or in the backbone attaching biocide units together. Poly(vinyl alcohol-

peptide linker-gentamicin) is one such polymer, which has degradable peptide units attaching 

biocide (gentamicin) to the polymer backbone.[7,8] The enzyme proteinases from wounds 

infected with bacteria like Pseudomonas aeruginosa can cleave the linker releasing the 

antibiotic. In these cases the biocides are present in their inactive form in the polymers and were 

released after degradation of either linker or polymer backbone and brought biocides in the 

active form. There is hardly any literature on dual functional polyesters (hydrolysable and 

antibacterial) with inherent antimicrobial functionality. One of the broad aims in our research 

group is to provide dual functional antibacterial and biodegradable polymers.  Recently we 

prepared a dual functional antimicrobial biodegradable polyester using N-halamine as the 

biocidal unit. Polyesters of dimethyl succinate (DMS), 1,4-butanediol (BDO) and 3-[N,N-di(β-

hydroxyethyl)aminoethyl]-5,5-dimethylhydantoin (H-diol) were made via a two-step melt 

polycondensation reaction. (H-diol) was used as antibacterial comonomer. The resulting 

polyesters were biocompatible as determined by cell viability studies and showed an 

antibacterial activity against E. coli.[9] N-Halamines are biocidal against a broad range of 

microorganisms and show regenerable biocidal activity upon exposure to bleach.[10-12] In 

another study, the possibility of introducing antibacterial functionality to PCL, a highly studied 

biomaterial by a combination of ROP and click chemistry is recently shown by us. There a 

series of novel antibacterial poly(-caprolactone)-graft-hydantoin copolymers were 

successfully prepared by a copper()-catalyzed click reaction of azide-functionalized hydantoin 

with poly(-caprolactone) bearing pendent alkyne functionalities and characterized in terms of 

polymer structure, and thermal, mechanical, antibacterial and biodegradable properties.[13] 

Kamigaito and Kuroda et al. have recently shown the formation of oligomeric antibacterial 

biodegradable material with degradable ester linkages in the backbone and quaternary 

ammonium groups in the side chain by a multi-step reaction scheme. The polymers had low 

molar mass in the range Mn (number average molar mass) 1200-6000 g • mol-1 and showed low 

to good antibacterial activity depending upon the structure without mentioning the time of 

antibacterial action.[14]  
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We report here a simple method of making highly active and efficient oligomeric antibacterial 

degradable material with ester linkages and guanidine antibacterial units in the polymer 

backbone. Both linear and ring polyguanidines are highly efficient and active antibacterial 

polymers against a wide range of microorganisms, while exhibiting low toxicity.[15-16] The use 

of polyguanidines as antibacterial additives for biodegradable polyesters is hindered by the 

phase-separation and in-homogenous mixing due to the polarity difference between the two. 

Polyguanidines are synthesized through the condensation of diamines with guanidine 

hydrochloride and possess different chain ends like primary amino ( –NH2), and guanidine (-

NH-C(NH)+-NH2) groups.[17-19] The linear oligoguanidine based on hexamethylenediamine and 

guanidinehydrochloride was used as a macroinitiator for ring-opening polymerization of 

caprolactone for the formation of polycaprolactone based antibacterial materials in the present 

work. The guanidine and p-amino functional groups in amino acids L-arginine and L-citrulline 

previously have been shown as ROP initiator for L-lactide and CL polymerizations.[20] The 

resulting amphiphilic block copolymers could be utilised as additives / compatibilizers for polar 

antibacterial polyguanidines and non-polar degradable polyesters for providing dual functional 

antibacterial biodegradable polyesters.  

Experimental 

Materials 

Hexamethylenediamine (98%), guanidine hydrochloride (99.5%) and ε -caprolactone were 

purchased from Sigma-Aldrich. Chloroform, pentane and dimethyl sulfoxide were distilled 

prior to use. Linear PEI (25 kDa) was from Polysciences, Inc. (Warrington, Pennsylvania, 

USA). 3-(4,5-Dimethylthyazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT), was purchased 

from Sigma-Aldrich. Cell culture materials, medium and solutions were from PAA 

Laboratories. 

Characterization 

Nuclear magnetic resonance (NMR) spectroscopy 

1H (400.13 MHz) and 13C (100.21 MHz) spectra were recorded on a Bruker DRX-400 

spectrometer at 60 ℃ using MeOD (99.8% D, Carl Roth GmbH), D2O (99.8% D, Carl Roth 

GmbH) and CDCl3 (99.8% D, stabilized with Ag, Carl Roth GmbH) as solvent. All chemical 

shifts  (δ ) are reported relative to tetramethylsilane (TMS) as internal reference. 1H-13C 

heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond 

coherence (HMBC) experiments were performed on a Bruker DRX-500 spectrometer, with a 
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5mm multinuclear gradient probe at 60 ℃ using MeOD (99.8% D, Carl Roth GmbH) as solvent.  

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 

(MALDI-ToF-MS) 

MALDI-TOF MS analysis was performed on a Bruker Reflex III apparatus equipped with a N2 

laser (λ = 337 nm) in linear mode at an acceleration voltage of 20 kV. Indole-3-acetic acid 

(IAA, Fluka, 99.0%) was used as a matrix material. Samples were prepared with the dried 

droplet method from Methanol solution by mixing matrix und polymer in a ratio of 20: 5 (v/v) 

and applying approximately 1 μL to the target spot. 

Homopolymerization of hexamethylenediamine and guanidine hydrochloride (PHMG)[18] 

The homopolymerization of hexamethylenediamine and guanidine hydrochloride was carried 

out by melt polycondensation and the product is designated as PHMG. A mixture of guanidine 

hydrochloride (8.21 g, 85.00 mmol) and hexamethylenediamine (9.88 g, 85.00 mmol) was 

combined in a dry 100 mL three necked round bottom flask equipped with a thermometer and 

a reflux condenser. The reagents were heated up to 150 °C. The ammonia gas at ca. 80 °C 

started evolving showing start of the polycondensation reaction. The reaction was stopped after 

5 hours by cooling in an ice bath and the polymer obtained (yellowish transparent solid) was 

structurally characterized by NMR. MALDI-TOF MS was used to determine the molar mass 

and chain ends of PHMG as described in results and discussion part. 

1H NMR: 500 MHz, D2O; δ (ppm) = 1.40 (br s, -CH2(CH2)2NH-); 1.48 (br s, -CH2CH2NH2); 

1.56 (br s, -CH2CH2NH-); 2.59 (br s, -CH2NH2); 3.16 (br s, -CH2NH). 

13C NMR: 125 MHz, D2O; δ (ppm) = 25.53 (-CH2(CH2)2NH-);  28.00 (-CH2CH2NH-); 30.97 

(-CH2CH2NH2); 40.43 (-CH2NH2); 41.17 (-CH2NH-); 155.79, 156.82  (-C(NH)-). 

Copolymerization of PHMG and caprolactone (CL)   

The copolymers were obtained from ROP of CL using PHMG as macroinitiator (Scheme 

3- 1).  

 

Scheme 3-1. Ring opening polymerization of ε-polycaprolactone using PHMG as macroinitiator. 
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In a typical reaction, Caprolactone (1 mL, 9.5 mmol, 77 wt%) and synthesized 

Poly(hexanethyleneguanidine) PHMG) (0.5 g, 23 wt%) were placed under argon in a reaction 

flask. The reaction mixture was stirred at 160 °C for different intervals of time. After a desired 

time period, the reaction mixture was diluted with CHCl3 and precipitated in about 200 mL of 

pentane. The copolymers were dried under vacuum at room temperature to constant weight.  

Enzymatic Degradability  

In general, 100 mg copolymer was suspended in 5 mL phosphate buffered saline (PBS) buffer 

(pH = 7.4) and Lipase from Pseudomonas Cepacia (0.3 mg∙mL-1) NaN3 solution. It was then 

placed at 37 ºC with shaking for different time periods. The mixture was then lyophilized. The 

remaining solid was characterized using MALDI-ToF-MS. 

Antibacterial activity 

Escherichia coli (E. coli, DSM No. 1077, K12 strain 343/113, DSMZ) as Gram-negative test-

organism and Bacillus subtilis (B. subtilis, DSM No. 2109, ATCC 11774, ICI 2/4 strain, DSMZ) 

as Gram-positive representative were used to evaluate the antibacterial activity of copolymers. 

Tryptic soy broth (Sigma Aldrich) was used as nutrient for E. coli (30 g • L-1 in distilled water 

for liquid nutrient; 15 g • L-1 agar-agar in addition for nutrient agar plates) and peptone/meat 

extract medium for B. subtilis (5 g • L-1 peptone and 3 g • L-1 meat extract in distilled water for 

liquid nutrient; 15 g • L-1 agar-agar in addition for nutrient agar plates). Both strains were 

preserved on nutrient agar plates and liquid cultures were grown by inoculation of liquid 

nutrient with a single bacteria colony using an inoculation loop. The inoculated broth was 

incubated with shaking at 37 °C until the optical density at 578 nm had increased by 0.125 

indicating a cell density of 107-108 cfu∙ mL-1. To obtain the final bacterial suspensions the 

inoculated broth was diluted with liquid nutrient to an approximate cell density of 

106 cfu • mL- 1. Firstly the Antibacterial activity of copolymer was determined by minimal 

inhibitory concentration (MIC), which is the minimal concentration required to inhibit bacteria 

growth, and minimal bactericidal concentration (MBC), which corresponds to the minimal 

concentration needed to kill at least 99.9 % of the bacteria cells.  

A water suspension of copolymers was made for antibacterial tests by dissolving 60 mg in 10 

mL DMSO at 40  °C followed by dialysis against Millipore water at room temperature. A 

dilution series of the copolymer suspension each 500 μg • mL-1 were prepared in a sterile 24 

well plate (Greiner bio-online) and then equal volume of the 106 cfu ∙ mL-1 inocula of E. coli or 

B. subtilis was added. After 24 h of incubation at 37 °C the wells were visually evaluated for 

bacteria growth. The lowest concentration which remained transparent was taken as MIC. To 
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determine the MBC, 100 μL solution was removed from each clear well and spread on nutrient 

agar plates and incubated for further 24 h at 37 °C. The lowest concentration of biocide at which 

no colony formation was observed, was taken as MBC. Each test was done in quadruplicate. 

The speed of antibacterial activity was determined by shaking flask method [21-22]: polymer 

suspension in water of 10 μg ∙ mL-1,100 μg ∙ mL-1 and 1000 μg ∙ mL-1 were incubated with equal 

volumina of bacteria suspension at ambient temperature in microcentrifuge tubes and contact 

times of 2, 5, 10, 30, and 60 min were chosen. After defined time intervals, 100 μL specimens 

were drawn and spread on nutrient agar plates. After incubation at 37 °C for 24 h, colonies were 

counted and the reduction was calculated relative to the initial cell density of the inoculum. 

Cytotoxicity Test Using MTT Assay 

Mammalian Cell Lines and Culture Conditions 

The L929 (CCL-1, ATCC) cell line was used in the cytotoxicity experiments. The L929 cells 

were maintained in MEM cell culture medium supplemented with 10% fetal calf serum (FCS), 

100 μg/mL streptomycin, 100 IU • mL-1 penicillin, and 4 mM L-glutamine. Cells were 

cultivated at 37 ℃ in a humidified 5% CO2 atmosphere. 

MTT Assay 

The cytotoxicity of the polymer (PHMG) and of the samples 2, and 3 in DMSO was tested 

using L929 murine fibroblasts according to the norm ISO 10993-5 using 1 mg • mL-1 MTT-

stock solution. The polymers were tested in a concentration range from 0 to 1.0 mg/mL in 96-

well plates. A of polymers was used as described for antibacterial tests. The cells were seeded 

at a density of 1×104 cells per well 24 h prior to the experiment. As 100% viability control, 

untreated cells were used. For each dilution step, eight replicates were used. After dissolving 

the metabolically formed formazan crystals in isopropanol, the absorbance was measured using 

a plate reader (Genios Pro, Tecan) at a wavelength of 580 nm. For data evaluation, SigmaPlot 

11.0 (Systat Software GmbH) software was used, the x-scale was plotted logarithmically, and 

a nonlinear fit was run to obtain the lethal dose 50 (LD50) values. Group data are reported as 

mean ± s.d. 

Statistical Analysis  

Group data are reported as mean ± s.d. Statistical evaluation of the MTT results was performed 

done using the software SigmaPlot 11.0 (Systat Software GmbH). The one-way ANOVA with 

Bonferroni t-test was used to determine whether data groups differed significantly from each 

other. Statistical significance was defined as having P < 0.05. 
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Results and Discussion 

The antibacterial oligomeric product of melt condensation between hexamethylenediamine and 

guanidine hydrochloride (PHMG) had a number-average molar mass (Mn), weight average 

molar mass (Mw) and polydispersity (PDI) of 1300, 1600 and 1.3 respectively, as determined 

by MALDI-ToF-MS using polystyrene standard of 20kDa. MALDI-ToF-MS was also used to 

confirm the structure and chain ends of PHMG.[18] Three different types of oligomeric linear 

chain structure were found: PHMG with p-amino groups and guanidine groups at both chain-

ends respectively, as well as PHMG chain with one guanidine and p-amino group as the chain-

ends (Figure 3-1). 

 

 

Figure 3-1. MALDI-ToF-MS of PHMG shows a linear structure of poly(hexamethyleneguanidine 

hydrochloride) (PHMG) with different type of chain ends. 

The PHMG was then used as a macroinitiator for ring-opening polymerization (ROP) of 

caprolactone at 160 ℃ (Table 3-1). Varying block lengths were prepared through different 

ratios of PHMG macroinitiator and CL as well as polymerization times. PHMG:CL (32 wt% : 

68 wt% in feed) showed an increase in yield from 52 % to about 94 % by increasing the reaction 

time from 8 to 24 h with increase in molar mass (Mw) from 2500 to 3400 as measured by 

MALDI-ToF-MS. The PHMG homopolymer was completely soluble in water and methanol. 

In contrast the reaction product of PHMG with CL showed temperature dependent solubility of 
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upper critical solution temperature (UCST)-type in polar solvents like methanol (for 

temperature dependent solubility please see Figure 3-S1 in supplementary information). A 

thorough investigation of the temperature dependent solubility aspects of this material are 

exceeding the scope of the present work and will be conducted in the future.  

1H-NMR spectra of the copolymers were taken in MeOD at 60 ℃. A representative 1H NMR is 

shown in Figure 3-2. The characteristic proton signals of PHMG and PCL units were present 

and are marked in the spectrum. The signals of PCL were present at: ppm 4.08 (-OCH2C(O)-), 

2.23 (-C(O)CH2-), ppm 1.64-1.66 (-C(O)CH2CH2CH2-) and (-CH2OC(O)-) and ppm 1.41 (–

C(O)CH2CH2CH2CH2-). The signal centered at ppm 3.23 was from –NHC(NH)NHCH2- of 

PHMG. The other signals of PHMG were in overlap at ppm 1.64-1.66 and 1.41 with PCL as 

shown in figure 3-2. The overlap of signals was obvious from the integration ratios between 

various peaks. The integration ratio was: 2:2:6:4 for signals at ppm 4.08:2.33:1.64:1.41. When 

it would have been only from PCL then the expected ratio is: 2:2:4:2. 2D HMQC was used for 

assigning peak position in 13C NMR (Figure 3-3) (For HMQC please see Figure 3-S2 in 

supplementary information). The overlapping signals of PHMG and PCL in 1H NMR were 

analysed using 2D NMR technique like 1H-13C heternuclear multiple bond correlation HMBC 

(see Figure 4). The signal at ppm 1.41 besides showing 1 and 2 bond correlations of PCL also 

showed very significant cross-peaks (A) and (B) with  carbon signals at ppm 41.22 (-

NHC(NH)NHCH2-) and ppm 25.96. This confirmed the presence of protons of oligoguanidine 

(-NH-C(NH)NHCH2CH2-) (2) at ppm 1.41 together with –C(O)CH2CH2CH2- (a) of PCL. The 

overlapping signal at ppm 1.64-1.66 also showed correlations of both PCL (C,D,E) and 

oligoguanidines (F) corresponding to PCL protons b and e as well protons 1 of PHMG. The 

proof of formation of copolymers was the presence of an extra cross-coupling signal (G) by 

coupling of –CH2NHC(O)- protons (3’) of oligoguanidine with carbonyl carbon. The cross-

coupling of –CH2NHC(O)- with carbonyl carbon in addition to coupling with carbons 1 and 2 

of oligoguanidine (H,I) showed the presence of a linking unit between oiligoguanidine and 

PCL. The copolymer composition was determined to be 0.72:1 (molar ratio) PHMG : PCL. The 

integration of peaks at ppm 4.08 and 3.23 was used for calculation of copolymer composition. 

Other copolymers with varied molar ratio of PHMG and PCL were also synthesized (Table 3-

1) and analysed in a similar way. 
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Figure 3-2. 1H NMR spectrum of PHMG-b-PCL (Sample 2, Table 3-1) synthesized by condensation 

polymerization. The spectrum was measured in MeOD at 60 °C. 

 

Figure 3-3. 13C NMR spectrum of PHMG-b-PCL (Sample 2, Table 3-1) synthesized by condensation 

polymerization. The spectrum was measured in MeOD at 60 °C. 
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Figure 3-4. 2D 1H-13C correlation NMR experiment HMBC in MeOD, at 60 °C of sample 2 with labeled cross 

resonances. 

Table 3-1. Details of oligomers synthesized by ROP of CL using  poly(hexamethylene guanidine) hydrochloride 
(PHMG) macroinitiator for 24 ha: copolymer composition, molar mass, PDI and yield. 

Sample PHMG:PCL 

(molar ratio in copolymer) 

Mn,NMR Mn
b Mw

b PDIb (Mw/Mn) Yield %  

1 0.72:1 2800 2700 3300 1.2 80  

2 0.67:1 2900 2700 3400 1.2 93  

3* 2.71:1 1700 2000 2500 1.3 52  

4 1.68:1 1900 2200 2900 1.3 94  

a CL:PHMG feed ratio was 77:23 (sample 1), 32:68 (samples 2 and 3), 50:50 (sample 4). 

b determined by MALDI-ToF-MS 

* Time of polymerization for sample 3 was 8 h. 

Furthermore, the formation of copolymers was also confirmed by MALDI-ToF-MS (reflectron 

mode).[23] The MALDI spectrum of the product showed a step growth reaction resulting in 

copolymer repeating units as shown in Figure 3-5 and Table 3-2. According to this, the reaction 

was not hindered and compounds were not a physical blend of PHMG and PCL but block 

copolymers, formed by ring-opening polymerization. However in this spectrum the signals of 

homo oligoguanidine (PHMG) with two guanidine hydrochloride end groups were also found 

as guanidine could not start the ROP of CL. 
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Figure 3-5. (a) Full MALDI-TOF MS spectrum and (b) enlargement of 950-1100 m/z region of sample 2. 

(b) 
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Table 3-2. Experiment and theoretical m/z values for the first peak in the isotopic distributions of the zoom 
spectrum in Figure 3-5b and their assignments. 

m/zexpt ion assignment formula m/ztheor △m/z 

957.8 [X1Y7 + H]+ [C49H88N4O14H]+ 957.6 0.2 

969.9 [X2Y5* + H]+ [C50H96N6O10H]+ 969.7 0.2 

979.1 [X6Y1 + H]+ [C48H103N19O2H]+ 978.9 0.2 

984.9 [X2Y6 + H]+ [C50H93N7O12H]+ 984.7 0.2 

1012.0 [X3Y5 + H]+ [C51H98N10O10H]+ 1011.8 0.2 

1039.0 [X4Y4 + H]+ [C52H103N13O8H]+ 1038.8 0.2 

1048.1 [X7 + H]+ [C49 H109N24H]+ 1047.9 0.2 

1056.9 [X1Y7* + H]+ [C55H101N5O14H]+ 1056.7 0.2 

1066.1 [X5Y3 + H]+ [C65H128N16O10H]+ 1065.9 0.2 

1071.9 [X1Y8 + H]+ [C55H98N4O16H]+ 1071.7 0.2 

1084.0 [X2Y6*+H]+ [C56H106N8O12H]+ 1083.8 0.2 

1093.1 [X6Y2+H]+ [C54H113N19O4H] 1092.9 0.2 

1099.0 [X2Y7+H]+ [C56H103N7O14H] 1098.8 0.2 

 

 

PCL is a well-known biodegradable polymer and we investigated the enzymatic degradation 

behaviour of the copolymers. The copolymers were incubated at 37 ℃ in phosphate buffer with 

lipase from pseudomonas cepacia for different time intervals. The molar mass of the polymer 

was monitored by MALDI-ToF-MS after different time intervals (4, 8, 24 h). The decrease in 

molar mass was shown in Figure 6 (MALDI-ToF-MS spectra are shown in Figure 3-S3). After 

24 h the PCL part was almost completely degraded, indicating enzymatic degradation of the 

PCL block. 
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Figure 3-6. Relative decrease of polymer molar mass by lipase from pseudomonas cepacia. 
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Furthermore we investigated the antibacterial properties of the materials. The copolymers 

showed high antibacterial activity as proved by low MIC (minimal inhibitory concentration; 

the minimal concentration required to inhibit bacteria growth), and MBC (minimal bactericidal 

concentration; minimal concentration needed to kill at least 99.9 % of the bacteria cells) values. 

The copolymer with PHMG:PCL molar ratio of 0.67:1 (Table 3-3) showed MIC values of 87.5 

μg ∙ mL-1, 50 μg ∙ mL-1 and MBC of  87.5 μg ∙ mL-1, 100 μg ∙ mL-1 for two bacteria, E.coli and 

B. subtilis, respectively. The antibacterial effect was dependent upon the ratio of PHMG:PCL. 

The presence of more PHMG (PHMG:PCL ratio of 2.71:1 (Table 3-3)) reduced MIC to 37.5 

μg ∙ mL-1, 25 μg ∙ mL-1 and MBC to 62.5 μg ∙ mL-1, 50 μg ∙ mL-1 for E. Coli and B. subtilis 

respectively, indicating a correlation between PHMG content and antibacterial activity. In 

comparison, the pure PHMG oligomer showed MIC values of 7.81 μg ∙ mL-1, 1.25 μg ∙ mL-1 

and MBC values of 7.81 μg ∙ mL-1, 1.96 μg ∙ mL-1 for E. coli and B. subtilis, respectively. 

Table 3-3. MIC and MBC values of PHMG-b-PCL regarding 105-106 cfu ∙ mL-1 E. coli and B. subtilis. 

PHMG:PCL 

(molar ratio) 

MICE.Coli 

[μg∙mL-1
] 

MBCE.Coli 

[μg∙mL-1
] 

MICB.subtilis 

[μg∙mL-1
] 

MBCB.subtilis 

[μg∙mL-1
] 

0.67:1 87.5 87.5 50 100 

2.71:1 37.5 62.5 25 50 

 

Besides high antibacterial activity, a fast action time is also an important property of biocidal 

polymers. The speed of antibacterial action, a time dependent test of antibacterial effect was 

conducted for samples 2 and 3 as generic representative. The reduction of the viable cell count 

of Gram-positive and Gram-negative bacteria is depicted in logarithmic stages with different 

concentrations (Figure 3-7 and 3-8). The reduction of bacterial cells was more than 3 log stages, 

which corresponds to killing 99.9% of bacteria. Figure 3-7 displays the reduction in Gram-

positive bacteria by samples 2 and 3. Both polymers killed more than 99.9% B. subtilis at 100 

μg ∙ mL-1 after 60 minutes. Sample 3 even at concentration of 10 μg ∙ mL-1 after 2 minutes killed 

more than 99.9% bacteria. Figure 3-8 depicts the speed of antibacterial action towards E. coli 

as Gram-negative bacteria. Both copolymers killed more than 99.9% bacteria at a concentration 

of 1000 μg ∙ mL-1 after 10 minutes. Even sample 2 with the lowest mole percentage of PHMG 

killed 99% bacteria after 30 min at concentration of 100 μg·ml-1 and 98.0% E. coli after 60 

min, at concentration of 10 μg·ml-1. The polymers under study were also qualitatively tested 

for antibacterial activity during enzymatic degradation process. The antibacterial activity was 

not disturbed by the presence of lipase from pseudomonas cepacia as shown in the Figure 3-S4 

and showed no bacterial colonies on agar plate.  
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Figure 3-7. Time-dependent reduction of bacteria in a suspension of B. subtilis with an initial cell density of 106 

cfu ∙ mL-1 upon contact Samples 2 with concentrations of --∎-- 1000 μg ∙ mL-1, --▲--100 μg ∙ mL-1, ----10 μg ∙ 

mL-1 and Samples 3 with concentrations of --□-- 1000 μg ∙ mL-1  --△--100 μg ∙ mL-1, ----10 μg ∙ mL-1 at 

ambient temperature, given in log stages. 
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Figure 3-8. Time-dependent reduction of bacteria in a suspension of E.coli with an initial cell density of 106 cfu ∙
 mL-1 upon contact Samples 2 with concentrations of --∎-- 1000 μg ∙ mL-1, --▲--100 μg ∙ mL-1, ----10 μg ∙ mL-

1and Samples 3 with concentrations of --□-- 1000 μg ∙ mL-1 --△--100 μg ∙ mL-1, ----10 μg ∙ mL-1 at ambient 

temperature, given in log stages. 

In order to obtain a first idea concerning the cytotoxicity of these materials towards mammalian 

cells and tissues the standard MTT assay was performed and compared with 1-PEI 25 kDa as 

reference. Therefore, the L929 cells were exposed to PHMG and PHMG-b-PCL (sample 2 and 

3) for 24h. The addition of the polymers in the concentration range 0 to 1 mg ∙ mL-1 affects the 
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cellular metabolic activity in a concentration-dependent manner (Figure 3-9). Under these 

conditions, the LD50 were 10.8 ± 2.0 µg ∙ mL-1, 22.9 ± 2.2 µg ∙ mL-1 and 27.6 ± 5.2 µg ∙ mL-1 

for cells treated with the PHMG, sample 2 and 3, respectively. Whereas, PHMG shows 

cytotoxicity comparable to l-PEI (12.3 ± 0.6 µg ∙ mL-1), the copolymers have two fold higher 

LD50 and are therefore less cytotoxic. 

 

PEI PHMG sample 3 sample 2

0

10

20

30

40

# #

# #

**

L
D

5
0

 [


g
/m

L
]

 

Figure 3-9. Cytotoxicity of the PHMG-based polymers in L929 cells. (a) Incubation period was 24 h and cell 

seeding density 1 x 104 cells/well. () linear PEI, () PHMG, () sample 2 and () sample 3. (b) LD50 doses 

for the PHMG-based polymers and l-PEI 25 kDa, used as reference. The data represent mean ± s.d. from three 

independent experiments. Polymers yielding cytotoxicity with a statistically significant difference (One-way 

ANOVA, P < 0.05) from those obtained with l-PEI and pairwise are indicated by # and *, respectively. 

  

(a) 

(b) 
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Conclusions 

A simple method of preparing dual functional antibacterial and degradable copolymers 

(PHMG-b-PCL) is shown. The p-NH2 chain-ends of antibacterial homo-polyguanidine (poly 

(hexamethylene guanidine) hydrochloride) acted as ring-opening polymerization initiator for 

caprolactone providing amphiphilic block copolymers. Various analytic techniques like 1D and 

2D NMR spectroscopy, MADLI-ToF-MS were used to analyze the chemical structure of the 

polymers. The copolymers showed complete degradation of PCL block at 37 ℃ in phosphate 

buffer with lipase from pseudomonas cepacia and showed antibacterial action against both 

Gram-positive and Gram-negative bacteria. These oligomers could be highly interesting 

antibacterial additive for biodegradable polyesters. The amphiphilic nature (hydrophilic 

(PHMG) and hydrophobic (PCL polyester) block is expected to provide good compatibility 

during blending of antibacterial polyguanidines with biodegradable aliphatic polyesters which 

otherwise are not compatible. 

Moreover, MTT data showed that the tested copolymers are significantly less toxicity than l-

PEI and thus might therefore also be suitable for putative utilization in the biomedical field. 
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Supplementary Information 

Oligomeric dual functional antibacterial polycaprolactone 

Hui Wang, a Christopher V. Synatschke,a Alexander Raup,b Valérie Jérôme,b Ruth Freitag,b and 
Seema Agarwal*a 
 

Solubility in methanol 

Turbidity measurements were performed on a custom-modified Tepper turbidity photometer 

TP1-D at a wavelength of 670 nm, a cell path length of 10 mm and magnetic stirring. The 

heating program started at 60 °C and proceeded via cooling to 4 °C at a constant rate of 

1.0 °C/min followed by reheating to the starting temperature with the same rate. The inflection 

point of the transmittance curve was considered as cloud point. It was graphically determined 

by the maximum of the first derivative of the heating or cooling curve, respectively. 

Figure 3-S1 displays the turbidity measurement of the Sample 2 (1.0 wt%) in MeOH. The cloud 

point upon cooling was about 9 °C. The phase transition upon heating was broad, between 4°C 

and 30 °C, which made it difficult to define cloud point. The phase transitions were complete 

and reversible.  
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Figure 3-S1: Solubility measurements of 1.0 wt% MeOH solution of the Sample 2 with Mw = 3400 g/mol and 

PDI of 1.2. The heating rate was 1.0 °C/min. 
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Figure 3-S2. 2D 1H-13C correlation NMR experiment (heteronuclear single-quantum coherence HMQC, 600 or 

150 MHz, MeOD, at 60 ℃ of sample 2). 
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Figure 3-S3. MALDI-TOF MS of copolymer 2 and PHMG after and before enzymatic degradation. 

 

Monitoring of antibacterial activity  during enzymatic degradation process 

In general, 100 mg copolymer was taken in a suspension of 2 mL phosphate buffered saline 

(PBS) buffer (pH = 7) with bacteria of cell density of 106 cfu • mL-1 (Escherichia coli or Bacillus 

subtilis). This mixture was then placed at 37 ºC with shaking for different time intervals. After 

defined time intervals, 100 μL specimens were drawn and spread on nutrient agar plates. 

Incubation for 24 h at 37 ℃ showed no bacterial colonies. 
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Figure 3-S4: Antibacterial testing during polymer degradation process. 
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Abstract 

Fast acting antibacterial property was introduced to aliphatic-aromatic polyester in the 

present work without sacrificing its compostability, thermal stability and mechanical 

properties. Antibacterial poly(hexamethylene guanidine) hydrochloride (PHMG) was 

melt mixed with Ecoflex® using a twin-screw extruder in different amounts. The non-

reactive blending and uniform mixing was confirmed by nuclear magnetic resonance 

(NMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM) 

and energy-dispersive X-Ray spectroscopy (EDX) analysis. The influence of antibacterial 

agent on compostability, mechanical properties and thermal stability was studied. The 

presence of PHMG changed slightly the degradation profile of Ecoflex® retaining the 

extent of degradation almost the same. The antibacterial PBAT showed high thermal 

stability (degradation starts around 330oC), stress at break 17 – 20 MPa, modulus 89 – 

127 MPa and elongation at break more than 700% depending upon the amount of PHMG. 

The combination of antibacterial activity with biodegradability makes this material a very 

interesting candidate for many different applications including packaging. 

Introduction  

For the past few decades, intensive research has been carried out in the field of environmentally 

friendly biodegradable and biocompatible polymers such as polyesters, polyanhydrides, 

poly(ester amide)s, biodegradable polyurethanes,  etc.. Among them, the highly investigated 

class of biodegradable materials is aliphatic and aliphatic-aromatic polyesters such as 

poly(caprolactone) (PCL),[1–3] poly(glycolide) (PGA),[4,5] poly(lactide) (PLA)[6,7] and 

poly(butylene adipate-co-terephthalate) (PBAT). These polyesters find applications in various 

fields , for example  food packaging, [8–10] compost bags, medical sutures, nano- or microscale 

drug delivery vehicles and temporary scaffolds for tissue regeneration.[11–13] For many of 

                                                 
1 Supporting Information is available online from the Wiley Online Library or from the author. 

http://www.macros.wiley-vch.de/
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these applications, there exists a huge risk of contamination with bacteria coming from the 

material itself or the surrounding environment. Especially true for food and medical 

applications. Hence besides biodegradability, antibacterial activity of the engineered material 

would be add on to the properties profile. Antibacterial activity can be introduced into 

biodegradable materials using diverse strategies. A simple method is use of biodegradable 

polymers that are inherently antimicrobial e.g. chitosan. Chitosan (𝛽-(1,4)-2-amino-2-deoxy-

D-glucose) has excellent biocompatibility, biodegradability and antibacterial property,[14] 

therefore it has been widely employed as food packaging material.[15–18]  

Furthermore, the synthetic polymers can be modified by covalently attaching antibacterial units. 

The immobilization of antimicrobial units on polymers by covalent linkages is possible using 

different methods. For example, the antibacterial polymers can be grafted on biodegradable 

polymers as shown for grafting of chitosan on poly(butyleneadipate-co-terephthalate) 

(PBAT).[19] Click chemistry or direct polycondensation can also be used for introducing 

antibacterial moieties such as hydantoin and quaternary ammonium groups to biodegradable 

polymers.[20,21]  Further, antibacterial additives such as Nisin, a peptide from Lactococcus 

lactis and metal nanoparticles can also be used for imparting antibacterial activity to a 

biodegradable polymer as shown for PBAT and polylactide.[19,22] In most of the literature 

studies, antibacterial action is shown but its influence on biodegradability of the original 

material is not investigated. It is an interesting question that how biodegradability might be 

influenced by the presence of antibacterial additives. Recently, we combined biodegradable 

polycaprolactone (PCL) with an antibacterial polyguanidine (poly(hexamethyleneguanidine) 

hydrochloride, PHMG) in the form of a block copolymer.[23] The amine and guanidine end-

groups of PHMG were used for ring-opening polymerization (ROP) of caprolactone for joining 

antibacterial PHMG block to PCL. The polymers showed antibacterial activity without losing 

the enzymatic degradability of PCL.  Unfortunately, the designed polymers with additional 

antibacterial units possess low molar mass and therefore could not be used for mechanical 

characterization. Polyguanidines, in general are highly active antibacterial polymers against 

Gram-positive and Gram-negative bacteria.[24,25] One of the highly researched and used 

polyguanidines is PHMG made by condensation of hexamethylene diamine with guanidine 

hydrochloride.[26–28]  

Keeping in view our broad aim of making dual functional (antibacterial-biodegradable) 

polymers, in the present work we studied in details melt blending of PHMG with a 

commercially available biodegradable polyester PBAT (commercial name Ecoflex®). It was 
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interesting to study if the reactive blending via transamination reaction using terminal amine 

and guanidine groups of PHMG with ester units of PBAT at high temperature in an extruder 

leading to covalent immobilization was possible or not. The effect of different amounts of 

PHMG on immobilization as reflected in leaching behavior, antibacterial activity, 

compostability and mechanical properties of PHMG-Ecoflex® system was studied. 

Experimental 

Materials  

Hexamethylenediamine (98%) and guanidine hydrochloride (99.5%) were purchased from 

Sigma-Aldrich. Ecoflex® F A1200 was a gift from BASF, Germany. Hexafluoroisopropanol 

(HFIP), chloroform and pentane were distilled prior to use. PHMG was made by condensation 

of hexamethylenediamine and guanidinehydrochloride in the following way: [23,29]  A mixture 

of guanidine hydrochloride (374.9 g, 3.92 mol) and hexamethylenediamine (414.6 g, 3.57 mol) 

was heated up to 110 °C in a dry three-necked round bottom flask equipped with a thermometer, 

a KPG-stirrer, and a water condenser. After 1 hour the temperature was raised to 190 °C and 

stirred at this temperature for 4 hours. After this a vacuum of 250 mbar was applied for 1 hour 

to remove volatiles by cooling in an ice bath and the polymer obtained (transparent solid) was 

structurally characterized by NMR. Gel permeation chromatography (GPC) was used to 

determine the molar mass and molar mass distribution of PHMG as described in results and 

discussion part.  

PHMG was mixed in different amounts with Ecoflex® using an 11 mm (diameter) twin-screw 

extruder (Thermo Scientific Process 11). The barrel had a length/diameter ratio of 40/1 and 

eight zones with independent temperature control. The diameter of single die is 2 mm. The 

temperature profile during extrusion was 150/150/160/170/180/180/180/190 ℃ from the barrel 

section after the feed throat to the die. Materials were fed separately into the extruder feed throat 

either gravimetrically (Ecoflex®) or volumetrically (PHMG 67 wt% solution). Feed rate for 

Ecoflex® was 634-755 g/h and screw speed was 18 rpm (revolutions per minute). Feed rates for 

PHMG solution were controlled with a pump (Thermo Scientific Masterflex P/S) at 13.5, 30.4, 

50.7, 84.4 g/h, corresponding to screw speeds of 0.4, 0.9, 1.5, 2.5 rpm, respectively.  
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Characterization 

Molecular characterization 

1H and 13C spectra were recorded on a Bruker DRX-500 using HFIP as a solvent. A capillary 

with CDCl3 (99.8% D, stabilized with Ag, Carl Roth GmbH) was inserted in NMR tube. All 

chemical shifts (δ) are reported relative to tetramethylsilane (TMS) as internal reference. 

IR spectra were measured with a Digilab Excalibur FTS-3000 with a Pike Miracle ATR unit 

(ZnSe crystal) and analysed by WinIRPro software version 3.3. 

Elemental (CHN) analyses were carried out on an elementar Vario EL III instrument. 

Molar masses and mass distributions of the polymers were determined by GPC in HFIP at 23 ℃ 

using an Agilent 1200 series system equipped with a PSS, PGG (7 𝜇m) 50 mm × 8 mm2 pre 

column and PPS, PFG 300 Å (7  𝜇m) 30 mm × 0.8 mm2 columns with 0.05 M potassium 

trifluotacetate as eluent at a flow rate of 0.5 mL min-1 and poly(methyl methacrylate) (PMMA) 

as standard. The spectra were analysed by software PSS WinGPC Unity, Build 1321. 

Thermal Analysis was performed on a Mettler Toledo thermal analyzer comprising 821 DSC 

and Libra 209 TG modules. By recording thermogravimetric (TG) traces in nitrogen 

atmosphere with a flow rate of 60 mL∙ min-1, the thermal stability was determined; a sample 

size of 12 ± 2 mg and a heating rate of 10 K ∙ min-1 was used for each measurement. The 

temperature of thermal decay (Td) was taken as the inflection point of the TG curve. Differential 

scanning calorimetry (DSC) was performed in nitrogen atmosphere (flow rate 80 mL min-1) 

with a heating rate of 20 K min-1; the inflection point of the baseline in the second heating cycle 

was taken as glass transition temperature (Tg). 

Leaching test 

The films (~70 mg each) were stirred in water (10 mL) at 37 °C for different intervals of time 

(24, 72 and 168 hours). After this they were dried in vacuum at 60 °C till constant weight. The 

difference of the original and observed mass was taken as the amount of leachable material. 

Degradation test in compost 

For the degradation test in compost the extruded polymers were first pressed at 180 °C to 0.2 

mm thick plates and cut to size 35 mm × 22.5 mm. The films were buried in compost at 60 ℃ 

with intermediate aeration. A mixture of mature compost was derived from an industrial 

composting plant in Buchstein, Germany. Samples were taken periodically to determine 

chemical (by NMR, IR, GPC analysis) and physical (optical inspection) changes.  
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Mechanical Testing  

Mechanical properties of extrudates were carried out on an Instron 5565 (Instron, Canton, MA) 

with a speed of 0.3 mm/min to determine E-moduli and then under tension with a crosshead 

speed of 80 mm/min using 1 kN loading cell at room temperature. At least five samples were 

tested for each measurement. The dog bone specimens (width: 5.08 mm, thickness: 2.00 mm, 

length: 30 mm) were injection molded in an injection molding machine. The temperatures of 

barrel and mold were kept at 180 °C and 40°C respectively, and a specific injection pressure of 

10 and 12 bar was applied.  

EDX (Energy-dispersive X-ray spectroscopy) and SEM (Scanning electron microscope)  

A scanning electron microscope (SEM, Zeiss LEO 1530, EHT= 3 kV) was used to observe the 

morphology of cross-section of extruded polymers. The pictures were recorded using an optical 

microscope (VHX 2000). A lithium drifted Silicon (SiLi) detector was used for energy 

dispersive X-ray analysis. 

Antibacterial test 

Antibacterial activity was tested by Kirby-Bauer test using E. coli (DSM No. 1077, K12 strain 

343/113, DSMZ) as the Gram-negative and B. subtilis (DSM No. 2109, ATCC 11774, ICI 2/4 

strain, DSMZ) as the Gram-positive test organism. For antibacterial tests the extruded polymers 

were first pressed at 180 °C to 0.2 mm thick plates and cut to size 1 cm2.[29,30]  

The time dependent antibacterial activity was determined by shaking flask method. 10 mg 

polymer film was incubated with 1.5 mL bacteria suspension at ambient temperature in micro-

centrifuge tubes with contact times of 1 h and 3 h. After defined time intervals, 100 mL 

specimens were drawn and spread on nutrient agar plates. After incubation at 37 °C for 24 h, 

colonies were counted and the reduction was calculated relative to the initial cell density of the 

sample.[23,29] 

Results and Discussion  

PHMG (number average molar mass (Mn) = 3900, weight average molar mass (Mw) = 6000, 

molar mass distribution (Ð) = 1.6) was melt mixed in different amounts to Ecoflex® (Mn = 

56600, Mw = 117000, Ð = 2.1 (Figure 4-S1)) in an extruder using a 69 wt% solution in water. 

Pure Ecoflex® was also extruded under similar conditions only with water for comparison 

purposes. The resulting extrudates had 1.7, 4.3, 8.5 and 12.9 wt% of PHMG as determined by 

elemental analysis. The corresponding extrudates are designated as PHMG-Eco1.7, PHMG-

Eco4.3, PHMG-Eco8.5 and PHMG-Eco12.9, respectively in the following text. The Ecoflex® 
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molar mass was not affected by extrusion with water as observed by GPC, implying hydrolytic 

stability under extrusion conditions. The PHMG-Eco samples showed biomodal GPC curves 

with an additional peak at low molar masses which increased with an increase in PHMG in the 

samples (Figure 4-1). The presence of PHMG was also evident in the extruded samples from 

1H and 13C-NMR characterization (Figures 4-S2 and 4-S3).  
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Figure 4-1. GPC curves of Ecoflex® and its extrudates with poly(hexamethylene guanidine) hydrochloride. 

The PBAT-Eco samples were highly thermally stable. The samples with low amount of PHMG 

(PHMG-Eco1.7) showed one step degradation with T5% (temperature at which 5% weight loss 

took place) more than 350oC (Figure 4-2).  The sample with high amounts of PHMG (PHMG-

Eco4.3, PHMG-Eco8.5, PHMG-Eco12.9) although showed two step degradation but still with 

high thermal stability (T5% 330oC). There was no significant change in the glass transition 

temperature (Tg) and melting point (Tm) of Ecoflex® after mixing with PHMG.(Figure 4-3) The 

Tg and Tm were observed at -28 °C and 115 °C, respectively for all samples. PHMG is an 

amorphous polymer with Tg 32 °C. Although all samples were semicrystalline but the presence 

of PHMG interfered with the crystallization behavior of Ecoflex®. The crystallinity of PHMG-

Eco was calculated based on the theoretical melting enthalpy of 100% crystalline Ecoflex® 

(melting enthalpy is 114 J/g for 100% crystalline Ecoflex®).[31,32] A decrease in melting 

enthalpy and crystallinity with increased amount of PHMG in extrudates was observed. (Figure 

4-4)  
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Figure 4-2. TGA traces of Ecoflex
®

, PHMG-Eco and PHMG. 
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Figure 4-3. DSC traces of samples with different PHMG contents. 



 Publications  

89 

 

-2 0 2 4 6 8 10 12 14 16
8

9

10

11

12

13

14

15

16

17

18

 Weight percent of PHMG in Blend / %

Melting enthalpy / gram extrudate

Melting enthalpy / gram Ecoflex in extrudate

H
ea

t 
o

f 
fu

si
o

n
 /

 J
g

-1

8

10

12

14

16

18

 
C

ry
st

a
ll

in
it

y
 /

 %

Melting enthalpy / gram Ecoflex in extrudate

Percent Crystallinity / gram Ecoflex in extrudate

 

Figure 4-4. Decrease of melting enthalpy and total % crystallinity / g extrudate and / g Ecoflex
®

 in samples with 

increased amount of amorphous PHMG. 

Figure 4-5 shows SEM micrographs of the cross-section of PHMG-Eco1.7 and PHMG-Eco12.9. 

The samples showed phase-separated morphology all over the surface with some smooth 

patches which was further studied using EDX analysis.  

PBAT-Eco PHMG-Eco1.7 PHMG-Eco12.9 

   

 

 

 

Figure 4-5. SEM micrographs of the extruded PBAT-Eco (a-b), PHMG-Eco1.7 (c-d) PHMG-Eco12.9 (e-f). 
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Quantitative EDX results of the compositional weight percent of carbon, nitrogen, oxygen, 

chlorine on six different positions including single spots and area are shown in Figure 4-6 and 

Table 4-S1. The most interesting element is chlorine, because the antibacterial additive PHMG 

contains large amounts of chloride as counter ion. The spots and areas were selected at different 

places as shown in figure 4-6. The weight percent of chlorine was almost constant (~9-10%) all 

over the sample and about 25-26% on smooth patches. This suggests presence of PHMG all 

over the surface with more accumulation at few places. 
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Figure 4-6. SEM photograph of PHMG-Eco12.9 (a) and results of EDX-analysis (b) for the six measuring points 

of two different phases of the cross-section. 

The typical stress-strain curves of extruded pure Ecoflex® and PHMG-Eco samples are 

presented in figure 4-7.  Ecoflex® showed a breaking stress of 18 MPa and 587 % elongation at 

break. The addition of PHMG showed increased elongation at break and E-modulus without 

sacrificing the breaking stress. 
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Figure 4-7. Stress-strain curves of PBAT-Eco and PHMG-Eco 1.7 and 12.9 (a) and corresponding bar chart of 

mechanical properties (b). 

Pure PHMG exhibits high antibacterial activity as proved by low MIC (minimal inhibitory 

concentration) and MBC (minimal bactericidal concentration) values. The PHMG showes MIC 

values of 3.9 μ g mL-1and 0.98 μ g mL-1, and MBC values of 3.9 μ g mL-1and  

0.98 μ g mL-1 for E.coli and B.subtilis, respectively. The extruded samples were tested for 

antibacterial activity using the Kirby-Bauer Test (Figure 4-8 (a) and (b)) and observed for zone 

of inhibition. Only PHMG-Eco12.9 showed an obvious small zone of inhibiton indicating 

leaching of antibacterial material and killing both E. coli and B. subutilis. A separate set of 

experiment was used to quantify the leaching by stirring the samples in water at 37 °C for 

different intervals of time. 1 and 3 wt% leaching was observed for  PHMG-Eco12.9 after 1 and 

7 days, respectively. The PHMG-Eco12.9 contains approximately 12.9  wt% of PHMG. The 

reduced leaching (only 3% leaching in 7 days) might be due to the encapsulation of polar 
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PHMG by hydrophobic Ecoflex®. There were no signs of covalent linakge of PHMG with 

Ecoflex® after melt mixing in extruder from GPC curves (Figure 4-S1) and NMR spectra 

(Figure 4-S2 and 4-S3).  

A swab from the area under the samples (Figure 4-8 (c) and (d)) after Kirby-Bauer test was 

further transferred to a new agar plate using a sterile inoculation loop. After 24 hours incubation, 

the colony formation was visually inspected. As shown in Figure 4-8 PHMG-Eco12.9 showed 

no growth of bacterial colonies with B.subtilis  and reduced E.coli colonies. The growth of 

B.subtilis  was also inhibited using an extrudate with 8.5 wt% of PHMG.  

Time dependent antibacterial activity of extruded samples was also determined by shaking flask 

test. Figures 4-S4 and 4-S5 show colony formation on the Agar-plate after 1 hour and 3 hours 

incubation in E. coli and B.subtilis  (106 cfu mL-1) suspension. For Gram-negative bacteria 

E.coli after 3 hours the colony formations for PHMG-Eco8.5 and PHMG-Eco12.9 are relatively 

less than blank sample PBAT-Eco showing bacterial inhibition behavior. For Gram-positive 

bacteria B.subtilis after 1 h the bacterial reduction was about 50 % using sample PHMG-Eco 

8.5 and PHMG-Eco 12.9.  After 3 h PHMG-Eco 8.5 showed the stable bacterial inhibition effect, 

without increasing of bacterial colony and PHMG-Eco 12.9 showed the antibacterial activity, 

meanwhile the bacteria reduction attained 77 %. 

B.subtilis 106 cfu/mL (Gram-positive) 

 
E.coli 106 cfu/mL (Gram-negative) 

 
Figure 4-8. Kirby-Bauer test using B.subtilis and E.coli for sample extruded PBAT-Eco (Ecoflex®) and PHMG-

Eco1.7 (1), PHMG-Eco4.3 (2), PHMG-Eco8.5 (3), PHMG-Eco12.9 (4). (a) and (b) after 24 hours incubation, (c) 

and (d) after removing the incubated samples, (e) and (f) bacterial growth on a new agar plate after transferring 

swab from area under the samples.  
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Composability of extruded samples was carried out using highly active compost from a local 

industrial composting plant in comparison to pure Ecoflex®. Qualitative analysis was performed 

by observation of cracks on the surface of buried films at different time intervals (Figure 4-9). 

Pure Ecoflex® which was taken as positive reference material showed some cracks after 60 days 

of burial and the film became very brittle. The cracks increased further with time and after about 

100 days it broke in small pieces mixed with compost. The molar mass of Ecoflex® before and 

after laying in compost was followed by GPC (Figure 4-10). The peak average molar mass (Mp) 

decreased from 62100 to 32800, 19800, 16000 in 30, 60, 100 days, respectively (Figure 4-11). 

Since the GPC curve was not unimodal for Ecoflex® we preferred to compare Mp rather than 

Mn or Mw. PHMG-Eco samples were also compostable. Since antibacterial activity was shown 

only by PHMG-Eco8.5 and PHMG-Eco12.9, the degradation data of other extruded samples is 

not provided. Although, it took longer for degradation to be noticed visually in the samples with 

PHMG but a very significant decrease in molar mass was obvious from GPC measurements 

even after 30 days. 
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Figure 4-9. The surface of polymer films after different time by burying in compost at 60 °C. 
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 Figure 4-10. GPC profiles of films of PBAT-Eco (a) and PHMG-Eco12.9 (b) before and after 30, 60 and 100 

days in compost storage. 
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Figure 4-11. Decreased peak average molar mass (Mp) of PBAT-Eco and PHMG-Eco with time during compost 

test. 
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The extruded PHMG-Eco12.9 film showed not only strong antibacterial activity against both 

types of bacteria (B.subtilis and E.coli), but also exhibited the excellent permanent antibacterial 

effect for long periods during degradation. The samples buried in compost were tested after 

different intervals of time for antibacterial activity. The samples (PHMG-Eco12.9) were taken 

out from compost after 1 and 2 months, respectively and tested by Kirby-Bauer test for 

antibacterial activity. The sample was highly active against B. subtilis even after 2 months of 

burial in compost (Figure 4-12).  For Gram-negative bacteria E. coli the sample PHMG-Eco12.9 

showed inhibitory effect. Recently, the blends of Ecoflex® and starch-PHMG were tested for 

degradability in soil burial test and showed only 2.3% Ecoflex® weight loss within 3 months 

but showed antimicrobial growth inhibition against E. coli. during the entire three-month bury 

test period. [33] 

 
Figure 4-12. Kirby-Bauer test using E.coli and B. subtilis for sample, 1: PBAT-Eco after degradation one month, 

2: PHMG-Eco12.9 after degradation one month, 3: PHMG-Eco12.9 after degradation two months, (a, b) after 24 

hours incubation, (c, d) after removing the incubated samples, (e, f) bacterial growth on a new agar plate after 

transferring swab from area under the samples. 

 

4. Conclusions  

Semi-crystalline Ecoflex® was mixed with different amounts of amorphous antibacterial 

PHMG by non-reactive extrusion blending. The extrudates show high antibacterial activity 

against both Gram-positive and Gram-negative bacteria depending upon the amount of PHMG 

and are still compostable. Furthermore, the modulus and elongation at break of the blends are 

improved as the crystallinity is decreased with higher amounts of additive without sacrificing 

B. subtilis 

E. coli 
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thermal stability. The blends possess a significantly higher elongation-to-break and also show 

higher ratio of stress to strain than pure Ecoflex®. The combination of antibacterial activity with 

biodegradability make this material a very interesting candidate for many different applications 

including packaging. 
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Figure 4-S1. GPC curve of PHMG. 
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Figure 4-S2.1H NMR spectra of Ecoflex® and PHMG-Eco12.9. 

 
Figure 4-S3.13C NMR spectra of Ecoflex® and PHMG-Eco12.9. 
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Table 4-S1. Elemental composition of PHMG-Eco12.9 in weight percent of carbon and chlorine of six spectra 

determined by EDX-analysis. 

 C / wt% Cl / wt% 

spectrum 1 50  26  

spectrum 2 49  23  

spectrum 3 51  20  

spectrum 4 80  10  

spectrum 5 80  10  

spectrum 6 79  9  

 

 
Figure 4-S4. Reduction of bacteria in a suspension of E.coli with an initial cell density of 106 cfu mL-1 upon 

contact after 1 and 3 hours. 

 
Figure 4-S5. Reduction of bacteria in a suspension of B.Subtilis with an initial cell density of 106 cfu mL-1 upon 

contact after 1 and 3 hours. 
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For mechanical properties at least five samples were tested for each measurement. 

PBAT-Eco: 

 E modulus 

(Mpa) 

Tensile strength 

(Mpa) 

Elongation at 

break 

(%) 

1 81 18 551 

2 86 19 619 

3 89 19 634 

4 88 18 580 

5 87 19 549 

mean value 86 19 587 

Standard deviation 2.99 0.64 39.03 

 

PHMG-Eco1.7 

 E modulus 

(Mpa) 

Tensile strength 

(Mpa) 

Elongation at 

break 

(%) 

1 85 20 733 

2 89 20 697 

3 89 19 683 

4 91 20 726 

5 89 20 705 

mean value 89 20 709 

Standard deviation 1.95 0.33 20.53 

  



 Publications  

102 

 

PHMG-Eco12.9 

 E modulus 

(Mpa) 

Tensile strength 

(Mpa) 

Elongation at 

break 

(%) 

1 136 150 645 

2 125 18 734 

3 133 16 780 

4 124 17 710 

5 120 17 659 

mean value 128 17 706 

Standard deviation 6.62 0.89 55.10 
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Abstract 

45S5 Bioglass® (BG) scaffolds with high porosity (>90%) were coated with genipin cross-

linked gelatin (GCG) and further incorporated with poly(p-xylyleneguanidine) 

hydrochloride (PPXG). The obtained GCG coated scaffolds maintained the high porosity 

and well interconnected pore structure. A 26-fold higher compressive strength was 

provided to 45S5 BG scaffolds by GCG coating, which slightly retarded but did not inhibit 

the in vitro bioactivity of 45S5 BG scaffolds in SBF. Moreover, the scaffolds were made 

antibacterial against both Gram-positive and Gram-negative bacteria by using 

polyguanidine, i.e. PPXG in this study. Osteoblast-like cells (MG-63) were seeded onto 

PPXG and GCG coated scaffolds. PPXG was biocompatible to MG-63 cells at a low 

concentration (10 μg/mL). MG-63 cells were shown to attach and spread on both uncoated 

and GCG coated scaffolds, and the mitochondrial activity measurement indicated that 

GCG coating had no negative influence on the cell proliferation behavior of MG-63 cells. 

The developed novel antibacterial bioactive 45S5 BG-based composite scaffolds with 

improved mechanical properties are promising candidates for bone tissue engineering. 

Keywords: 45S5 Bioglass®, scaffold, antibacterial, polyguanidine hydrochloride, bone tissue 

engineering 

Introduction 

Tissue and organ failure is a major health problem. Among them, bone is one of the most 

common tissues necessitating replacement or repair as bone failure can widely result from 

trauma, tumor, bone related diseases or aging.1 Using scaffolds made from engineered 

biomaterials is an effective approach to restore function of damaged bone or to regenerate bone 

tissues.2 An ideal scaffold should act as a temporary template to support cell activity and to 

induce extracellular matrix deposition until new bone forms in the defect sites.3, 4 The essential 

properties that an ideal scaffold should possess for bone tissue engineering applications have 

been comprehensively discussed in detail in the literature,2, 5-7 and include suitable mechanical 

properties, bioactivity and 3D pore architecture. 

45S5 BG-based scaffolds fabricated by the foam replication method meet several important 

properties of an ideal bone tissue engineering scaffold, due to the intrinsic bioactivity, 

biocompatibility, osteogenic and angiogenic effects of 45S5 BG, and the high porosity and 

interconnected large pore structure derived from the foam replication method.8-12 The high 

porosity and large pore size of such scaffolds are favorable for osteogenesis and vascularization 

throughout the entire 3D structure.12, 13 However, the high porosity also limits the mechanical 

properties of the scaffolds.11 Besides the concern of mechanical properties, antibacterial action 

should also be taken into consideration since the risk of infection exists during scaffold 
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implantation which may eventually lead to implantation failure. To this end, in previous efforts 

45S5 BG scaffolds have been coated with polymers (e.g. poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHBV)14 or polycaprolactone (PCL)/chitosan15), and these polymers were 

shown to not only enhance the mechanical properties of the scaffolds without significantly 

sacrificing the porosity and pore size but also impart an antibiotic release function to the 

scaffolds. It is worth noting that the compressive strength of these coated scaffolds (0.1–0.2 

MPa) although improved, still falls close to the lower bound of the values for cancellous bone.16 

Therefore, the relatively low mechanical properties still limit the potential application of these 

coated scaffolds. 

The present research aims at developing 45S5 BG-based scaffolds with a novel coating based 

on gelatin for increased mechanical properties (compressive strength and work of fracture) and 

antibacterial effect. Gelatin, a water soluble natural polymer, has been shown to be able to 

considerably improve the mechanical properties of bioactive glass/ceramic scaffolds due to its 

strengthening and toughening effects which can be linked to a micron-scale crack-bridging 

mechanism.17, 18 However, gelatin, in its original state, dissolves/degrades rapidly in aqueous 

solution,19, 20 which may lead to the quick loss of its reinforcing effects on scaffolds. In order 

to decrease the dissolution/degradation rate, gelatin has been chemically cross-linked with 

crosslinking reagents, such as glutaraldehyde or genipin.19-21 Genipin was reported to be much 

less cytotoxic than glutaraldehyde.22 Therefore, in the present study, genipin is selected as the 

crosslinking agent for gelatin which will be used for coating the 45S5 BG scaffolds prepared 

by the foam replication method. 

As mentioned above, an antibiotic release function can be incorporated into the scaffolds in 

order to reduce and combat bacterial infection, which is one of the major complications 

associated with implants.23, 24 However, the emergence of resistance of bacteria to antibiotics 

becomes a common phenomenon, because inappropriate antibacterial treatment and overuse of 

antibiotics accelerate the evolution of resistant strains.25 Therefore, there is a particular interest 

in the development of new biocides in order to fight infections. Biocidal cationic polymers, 

such as polyguanidines, have attracted considerable attention for their high antibacterial activity 

and low toxicity to humans, and they have been widely investigated or used as disinfectants or 

biocides in ophthalmology, water systems, topical wounds and environments.26-29 The 

antibacterial action of the polyguanidines starts with the interaction of positively charged 

polymer molecules with the bacteria which carry a net negative charge on their surface due to 

negatively charged lipids in the cell membrane, and followed by the hole-formation i.e., 
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perturbations of the polar headgroups and hydrophobic core region of the lipids membranes 

killing the bacteria.30, 31 

Based on the facts discussed above, in order to incorporate an effective antibacterial function 

to the gelatin coated 45S5 BG-based scaffolds, poly(p-xylyleneguanidine) hydrochloride 

(PPXG), which belongs to the polyguanidines, was used as the antibacterial agent. To the best 

of our knowledge, polyguanidine has not been used as antibacterial agent in bone tissue 

engineering scaffolds, this work was thus dedicated to fabricate and characterize 45S5 BG 

scaffolds which were coated with genipin cross-linked gelatin (GCG) and then incorporated 

with PPXG. This study is focused on the investigation of the antibacterial effect and 

biocompatibility that PPXG can confer to the 45S5 BG scaffolds. In addition, the influence of 

GCG coating on the mechanical properties and bioactivity of the 45S5 BG scaffolds was also 

studied. 

Materials and methods 

Preparation of 45S5 BG scaffolds 

Commercially available melt-derived 45S5 BG powder (mean particle size ~5 µm) and 

polyurethane (PU) foams (45 pores per inch, Eurofoam, Troisdorf, Germany) were used for 

preparing the scaffolds by foam replication method.11, 32 In brief, the slurry was prepared by 

dissolving 6% w/v polyvinyl alcohol (PVA) (Mw ~30,000, Merck, Darmstadt, Germany) in 

water, and followed by adding 45S5 BG powder to the PVA solution up to a concentration of 

50 wt%. PU foams were immersed and rotated in the slurry, and then taken out from the slurry. 

The extra slurry was completely squeezed out from the foams. The foams were left to dry at 

room temperature followed by repeating the procedure described above one more time. The 

obtained green bodies were heated at 400 °C for 1 h to decompose the PU foams, and then at 

1100 °C for 2 h to densify the glass network. The heating and cooling rates used were 2 °C/min 

and 5 °C/min, respectively. 

Synthesis and antibacterial activity of PPXG 

PPXG was synthesized by condensation polymerization of p-xylylenediamine and guanidine 

hydrochloride in melt according to the literature.29, 33 A dry 100 mL three necked round bottom 

flask equipped with a thermometer and a reflux condenser was charged with guanidine 

hydrochloride (6.18 g, 50.00 mmol) and p-xylylenediamine (4.78 g, 50.00 mmol). The reagents 

were heated up to 150 °C. The polycondensation reaction was stopped after 5 hours by cooling 
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the reaction flask in an ice bath and the polymer was obtained as a colorless transparent solid. 

The polymer was structurally characterized using 1D (1H and 13C), 2D heteronuclear single 

quantum coherence (HSQC) NMR and atmospheric pressure chemical ionization (APCI) 

spectroscopic techniques (Figures 5-S1 and 5-S2; see electronic supplementary information 

(ESI)). The molecular weight of the polymer (Mn: 2200, Mw: 2500, PDI: 1.12) was determined 

by MALDI-TOF MS (Figure 5-S3). In addition, the thermal behavior of the polymer was 

analyzed using differential scanning calorimetry (DSC) and thermogravimetry (TG) (Figures 

5-S4 and 5-S5). 

Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were 

evaluated to determine the antibacterial activity of PPXG. A dilution series of the PPXG 

solution starting from 1000 µg/mL, each 500 µL was prepared in a sterile 24 well plate (Greiner 

bio-online).  Equal volume of bacteria (Bacillus subtilis (B. subtilis) or Escherichia coli (E. 

coli); 106 cfu/mL) were added and incubated for 24 h at 37 °C. After this the wells were visually 

evaluated for bacteria growth. The lowest concentration which remained transparent was taken 

as the MIC. To determine the MBC, 100 µL of solution was removed from each clear well and 

spread on nutrient agar plates and incubated for a further 24 h at 37 °C. The lowest concentration 

of biocide at which no colony formation was observed was taken as the MBC. Each test was 

done in quadruplicate. 

Incorporation of GCG coating and PPXG 

Gelatin-genipin solution at a concentration of 5 % w/v was prepared by dissolving gelatin (type 

A, Sigma-Aldrich, St. Louis, MO, USA) and genipin (Wako, Osaka, Japan) together in a 

distilled water-ethanol mixture (5 vol% ethanol) under magnetic stirring at 50 °C. The amount 

of genipin in the gelatin-genipin mixture was 1 wt%. The 45S5 BG scaffolds were then 

completely immersed in the gelatin-genipin mixture solution for 1 min under a vacuum 

condition, and then dried at room temperature for 1 day and subsequently the above coating 

procedure was repeated one more time. 

In order to load different amount of PPXG directly into the GCG coated scaffolds, PPXG was 

dissolved in methanol at concentrations of 40, 120 and 200 µg/mL, respectively. Then 0.5 mL 

PPXG solution of each concentration was dripped onto the GCG coated scaffolds from different 

sides, followed by drying at room temperature for 1 day. 
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Characterization of scaffolds 

Morphology and porosity 

The microstructure of scaffolds before and after GCG coating was characterized using scanning 

electron microscopy (SEM) (LEO 435 VP, Cambridge, UK and Ultra Plus, Zeiss, Germany). 

Samples were sputter coated with gold in vacuum. SEM was also used to observe the scaffold 

surfaces after immersion in simulated body fluid (SBF) and after cell cultivation. 

The porosity of scaffolds before (p1) and after (p2) coating with GCG was calculated by 

equations (1) and (2): 

p1 = 1 − M1/(ρBGV1) (1) 

p2 = 1 − (M1/ρBG + (M2 − M1)/ρGCG)/V2 (2) 

where M1 and M2 are the mass of the scaffolds before and after coating, respectively; V1 and V2 

are the volume of the scaffolds before and after coating, respectively; ρBG (= 2.74 g/cm3) is 

considered as the density of sintered Bioglass® and ρGCG (= 1.3 g/cm3) is the density of genipin 

cross-linked gelatin.34 

Structural analysis 

The chemical structure of the scaffold surfaces was investigated by FTIR (Nicolet 6700, 

Thermo Scientific, USA). Spectra were recorded in the absorbance mode in the range of 2000 

and 400 cm-1 with a resolution of 4 cm-1. For FTIR measurements, the scaffolds were ground, 

mixed with KBr (spectroscopy grade, Merck, Germany) and pressed into pellets. The pellets 

consisted of 1 mg of sample and 200 mg of KBr. Scaffolds were also characterized using XRD 

(Bruker D8 ADVANCE Diffractometer, Cu Kα). Data were collected over the 2 range from 

20° to 60° using a step size 0.02°. For XRD measurements, the scaffolds were also ground and 

measured in powder form. 

Mechanical properties 

Zwick/Roell Z050 mechanical tester was used to determine the mechanical properties of the 

scaffolds before and after coating with GCG. The crosshead speed was 0.5 mm/min. Due to the 

wide range of compressive strength, load cells with 50 N and 1 kN loading capacity were used 

for measuring the uncoated and GCG coated scaffolds, respectively. The samples were in 

dimensions of 10 mm × 8 mm × 8 mm. During compressive strength test, the scaffolds were 

pressed in the 10 mm direction until the strain reached 70%. The maximum stress of the 

obtained stress–strain curve before densification was used to determine the compressive 

strength. The work of fracture (Wab) of the scaffolds, which is related to the energy necessary 
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to deform a sample to a certain strain, was estimated from the area under the load-displacement 

curve until 70% strain. At least five samples were tested, and the results were given as mean ± 

standard deviation. 

In vitro bioactivity and degradation tests 

The in vitro bioactivity test was performed using the standard procedure described by Kokubo 

et al.35 The scaffolds with dimensions of 10 mm × 8 mm × 8 mm were immersed in 50 mL of 

SBF and maintained at 37 °C in a shaking incubator (90 rpm) for 1, 3, 7, 14 and 28 days. The 

SBF was replaced twice a week during the test. Once removed from the incubator, the scaffolds 

were rinsed with deionized water and left to dry at room temperature. Afterwards, SEM, XRD 

and FTIR were used to assess the hydroxyapatite (HA) formation on the scaffolds. Weight loss 

of the samples was calculated by equation (3): 

Weight loss (%) = (M1 - M2)/M1 × 100% (3) 

where M1 and M2 are the mass of the samples before and after immersion in SBF, respectively. 

In addition to uncoated 45S5 BG scaffolds, the degradation behavior of pure GCG films was 

also studied in SBF following the procedure as described above for comparison with the 

degradation behavior of GCG coated 45S5 BG scaffolds. GCG films were prepared by drying 

the GCG solution used for coating scaffolds in a petri dish. 

Antibacterial test 

Antibacterial activity was characterized by Kirby-Bauer test and time-dependent shaking flask 

test.  E. coli (DSM No. 1077, K12 strain 343/113, DSMZ) as Gram-negative and B. subtilis 

(DSM No. 2109, ATCC 11774, ICI 2/4 strain, DSMZ) as Gram-positive test organism were 

used.29 Tryptic soy broth (TSB) (Sigma-Aldrich, Germany) was used as nutrient for E. coli (30 

g∙L-1 in distilled water for liquid nutrient; 15 g∙L-1 agar-agar in addition for nutrient agar plates) 

and peptone/meat extract medium for B. subtilis (5 g∙L-1 peptone and 3 g∙L-1 meat extract in 

distilled water for liquid nutrient; 15 g∙L-1 agar-agar in addition for nutrient agar plates). Both 

strains were preserved on nutrient agar plates and liquid cultures were grown by inoculation of 

liquid nutrient with a single bacteria colony using an inoculation loop. The inoculated broth 

was incubated under shaking at 37 °C until the optical density at 578 nm had increased by 0.125 

indicating a cell density of 107–108 cfu∙mL-1. To obtain the final bacterial suspensions the 

inoculated broth was diluted with liquid nutrient to an approximate cell density of 106 cfu∙mL-1. 
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Kirby-Bauer test 

To determine the antibacterial activity, samples of approximate 10 mm (width) × 10 mm (length) 

were placed on a nutrient agar plate previously inoculated with 100 µL inoculum and incubated 

at 37 °C for 24 h. The plates were visually evaluated for a zone of inhibition and colony 

formation on the surface of the sample. The samples were removed from the incubated agar 

plate and a swab from the area under the samples with a sterile inoculation loop was transferred 

to a new TSB agar plate. After incubation for 24 h at 37 °C, the colony formation was visually 

checked. 

Time-dependent shaking flask test 

The time-dependent antibacterial activity was determined by the shaking flask method: samples 

incorporated with different amount of PPXG were incubated with equal volume of bacteria 

suspension at ambient temperature in microcentrifuge tubes, and contact times of 60, 120, 240 

and 360 min were chosen. After each time interval, 100 μL specimens were drawn and spread 

on nutrient agar plates. After 24 h at 37 °C incubation, colonies were counted and the reduction 

was calculated relative to the initial cell density of the inoculum.29 

In vitro biocompatibility test 

In vitro biocompatibility tests were carried out using human osteosarcoma cell line MG-63 

(Sigma-Aldrich, Germany). Cells were cultured at 37 °C in a humidified atmosphere of 95% 

air and 5% CO2 in DMEM (Dulbecco's modified Eagle's medium, Gibco, Germany) containing 

10 vol.% fetal bovine serum (FBS, Sigma-Aldrich, Germany) and 1 vol.% 

penicillin/streptomycin (Gibco, Germany). Cells were grown to confluence in 75 cm2 culture 

flasks (Nunc, Denmark), and afterwards harvested using Trypsin/EDTA (Gibco, Germany) and 

counted by a hemocytometer (Roth, Germany). 

PPXG is water soluble and dissolves in aqueous medium rather quickly. Since the pH of BG 

scaffolds needs to be regulated in aqueous medium before seeding the cells, PPXG preloaded 

on GCG coated 45S5 BG scaffolds will not be present on the scaffold anymore after the pH 

regulation step. Therefore, in this study, the in vitro biocompatibility tests were carried out in 

two steps rather than directly on GCG coated 45S5 BG scaffolds loaded with PPXG. Firstly, a 

preliminary test was performed on PPXG, genipin and GCG in order to understand the behavior 

of MG-63 cells in the presence of these individual components of the GCG coated 45S5 BG 

scaffolds. This test was carried out in a short term (2 days), because these components will 

rather quickly dissolve in the cell culture medium which thus makes long term test impossible 



 Publications  

112 

 

as the cell culture medium needs to be changed every few days. Cell cultivation in the well plate 

without any material was used as a control. Secondly, MG-63 cells were directly cultured onto 

the uncoated and GCG coated 45S5 BG scaffolds. Uncoated 45S5 BG scaffolds were used as a 

control.  

For preparing the samples, PPXG, genipin and GCG were sterilized by filtering their respective 

solution through a 0.22 µm syringe filter. PPXG was dissolved in distilled water, while genipin 

or gelatin-genipin mixture was dissolved in a distilled water-ethanol mixture solution (5 vol% 

ethanol). Uncoated 45S5 BG scaffolds were sterilized at 160 °C for 2 h in a furnace 

(Nabertherm, Germany). GCG coated 45S5 BG scaffolds were prepared by using sterilized 

GCG solution and sterilized uncoated 45S5 BG scaffolds. 

In vitro biocompatibility of PPXG, genipin and GCG 

Various amounts of PPXG (6 µg, 18 µg and 30 µg), genipin (30 µg) and GCG (0.6 mg and 3 

mg) were obtained by adding different volumes of their respective solution into a 48-well cell 

culture plate and left to dry in the sterile bench. 60000 MG-63 cells in 0.6 mL cell culture 

medium were seeded into each well, and cells were cultivated for 2 days without change of the 

culture medium. Therefore, the tested concentration of PPXG was 10 µg/mL, 30 µg/mL and 50 

µg/mL, genipin was 50 µg/mL, and GCG was 1 mg/mL and 5 mg/mL. Water soluble 

tetrasodium (WST) test, a colorimetric assay, was used to assess the cell viability. After cell 

cultivation, cell culture medium was removed and samples were washed with 0.5 mL phosphate 

buffered saline (PBS). Afterwards, 0.25 mL WST medium (containing 1 vol% of WST reagent 

(Cell Counting Kit-8, Sigma) and 99 vol% of DMEM medium) was added and incubated for 2 

h. After incubation, 0.1 mL of the supernatant was transferred to a 96-well culture plate and 

spectrometically measured using a microplate reader (PHOmo, anthos Mikrosysteme GmbH, 

Germany) at 450 nm. To analyze the adherent growth of cells on the samples, green Calcein 

AM (Molecular Probes, The Netherlands) cell-labelling solution were used for staining the 

cytoplasm of the cells. After removing the cell culture medium, 0.25 mL staining solution (0.5 

vol% of  dye labelling solution and 99.5 vol% of PBS) was added and incubated for 30 min. 

Afterwards, the solution was removed and the samples were washed with 0.5 mL PBS. Cells 

on the surfaces were fixed by 3.7 vol.% paraformaldehyde. Samples were washed again and 

blue fluorescent DAPI (4’,6-diamidino-2-phenylindole dihydrochloride, Roche, Basel, 

Switzerland) was added to label the nuclues. After 5 minutes of incubation, the solution was 

removed and the samples were left in PBS for microscopic viewing using a fluorescence 

microscope (Axio Scope, ZEISS, Germany).  



 Publications  

113 

 

In vitro biocompatibility of scaffolds 

Scaffolds (6 mm × 6 mm × 4 mm) were soaked in DMEM medium to regulate the pH value. 

To evaluate the cell behavior of osteoblast-like cells on the scaffolds, 0.3 million MG-63 cells 

in 0.6 mL cell culture medium were seeded on each scaffold, and cells were cultivated for 2 

weeks with change of culture medium every 2–3 days. After cell cultivation, mitochondrial 

activity, cell distribution, cell attachment and cell morphology were determined. Mitochondrial 

activity was measured using WST test as described in section 2.7.1. To visualize the adherent 

grown cells on the scaffolds, Vybrant™ cell-labelling solution (Molecular Probes, The 

Netherlands) was used. After incubation, cell culture medium was removed and staining 

solution (5 µL dye labelling solution to 1 mL of growth medium) was added and incubated for 

15 min. Afterwards the solution was removed, the samples were washed with PBS and cells on 

the surfaces were fixed by 3.7 vol.% paraformaldehyde. Samples were washed again and left 

in PBS for microscopic viewing with a confocal scanning laser microscope (CSLM, Leica TCS 

SP5 II, Germany). The CLSM images were taken from the outside surface of the scaffolds. For 

cell morphology characterization, cells on scaffolds were fixed in 3 vol.% paraformaldehyde, 

3 vol.% glutaraldehyde (Sigma-Aldrich, Germany) and 0.2 M sodiumcacodylate (Sigma-

Aldrich, Germany). After dehydration through incubation with a series of graded ethanol series 

(30, 50, 70, 80, 90, 95 and 100 vol.%), the samples were critical point dried with CO2 (EM 

CPD300, Leica, Germany) and sputtered with gold. The cell morphology was analyzed by SEM. 

Statistical analysis 

All quantitative data were expressed as the mean ± standard deviation. Statistical analysis was 

performed with one-way analysis of variance (ANOVA) using Microsoft Excel 2010 

(Microsoft, Redmond, WA, USA). A value of P<0.05 was considered statistically significant. 

Results and discussion 

Morphology of scaffolds 

Typical morphologies of the uncoated (Figure 5-1(a)–(b)) and GCG coated (Figure 5-1(c)–(d)) 

45S5 BG scaffolds were observed by SEM. The uncoated scaffolds (Figure 5-1(a)) exhibited a 

highly interconnected pore structure. The porosity and pore size were determined to be 95% 

and 200–550 µm, respectively. After coating with GCG (Figure 5-1(c)), the interconnected pore 

structure of the scaffolds was maintained since only very few pores were clogged by the coating, 

and the porosity slightly decreased to 93%. The amount of GCG in the coated scaffolds was 

determined to be 15 ± 2 wt%. As shown in the cross section image at a high magnification, the 

strut of the scaffold is homogeneously covered by the GCG coating (Figure 5-1(d)), and the 
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GCG coating firmly adheres to the strut (Figure 5-1(d)–(e)), which is qualitatively confirmed 

by the fact that the GCG coating did not peel off during cutting the scaffolds. Moreover, it is 

worth noting that the voids of the hollow struts, which result from the burning out of 

polyurethane during the foam replication method (Figure 5-1(b)),11 were mostly filled with the 

GCG (Figure 5-1(d)). This filling effect could be attributed to the infiltration of the polymer 

solution into the hollow struts under the applied vacuum condition for coating the scaffolds, 

and it means many defects and cracks on the struts can be "repaired" by the GCG coating, as 

evidenced by the quite smooth surface of the GCG coated strut (Figure 5-1(e)), thus expecting 

a positive contribution to the mechanical behavior of the scaffolds. 

  

  

  

Figure 5-1. SEM images of 45S5 BG scaffolds (a)–(b) before and (c)–(e) after coating with GCG. 
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Degradation behavior 

Gelatin films without any crosslinking completely dissolved at 37 °C in SBF within a few 

minutes, which would lead to the loss of their potential strengthening and toughening effects as 

coating on scaffolds. Therefore, the main aim to crosslink gelatin is to decrease its 

dissolution/degradation rate. GCG films only exhibited 24% weight loss after immersion in 

SBF for 1 day, and their weight loss increased to 62% after 7 days (Figure 5-2). GCG films 

were still present in SBF after 14 days, but they already broke up into small gelatinous blue 

pieces which therefore made the weight loss measurement impossible. Also, only small 

gelatinous blue pieces were visible in the SBF solution after 28 days. The decrease of 

dissolution/degradation rate of gelatin after crosslinking with genipin has also been reported in 

other studies.21 It should be pointed out that although the dissolution/degradation behavior of 

GCG film cannot be considered as GCG coating existed on the 45S5 BG scaffolds equally, it 

still could represent the gradual dissolution/degradation trend of GCG coating. Actually, this 

gradually dissolution/degradation trend of GCG coating on 45S5 BG scaffolds can be proved 

by the FTIR results of GCG coated scaffolds before and after immersion in SBF for different 

times. As shown in Figure 5-3, compared to the spectra of uncoated 45S5 BG scaffolds, two 

new bands can be observed at 1660 cm-1 and 1540 cm-1. These bands are identified as amide 

C=O stretching vibration (amide I) and amide N–H bending vibration (amide II),21, 36, 37 which 

indicate the presence of gelatin, in this particular case genipin cross-linked gelatin (GCG). The 

intensity of the amide I band (1660–1650 cm-1) and amide II band (1540 cm-1) decreased and 

almost disappeared as immersion time in SBF increased, suggesting the gradual 

dissolution/degradation of the GCG coating. 

As shown in Figure 5-2, the weight loss of uncoated 45S5 BG scaffolds increases with 

immersion time; however the degradation rate is reduced with immersion time. The degradation 

of bioactive glass/ceramic-based scaffolds consists of the partial dissolution of the glass and 

crystalline phases and the formation of HA on the scaffold surface.38 The rapid weight loss at 

initial immersion times is due to the fast dissolution of 45S5 BG surface upon immersion in 

SBF. As the immersion time increases, HA begins to form on the 45S5 BG scaffolds,14 which 

compensates the weight loss caused by dissolution and therefore reduces the overall degradation 

rate of the 45S5 BG scaffolds. The weight loss of GCG coated 45S5 BG scaffolds was similar 

to that of uncoated 45S5 BG scaffolds for up to 7 days, and then increased faster after 7 days. 

The weight loss caused by the dissolution of the 45S5 BG surface should be slower in the 

presence of GCG coating at the initial immersion stage; however the GCG coating begins to 
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gradually dissolve upon immersion in SBF which therefore results in the overall weight loss of 

the GCG coated 45S5 BG scaffolds increasing and eventually it becomes similar to that of the 

uncoated 45S5 BG scaffolds. As suggested by the dissolution/degradation behavior of the GCG 

film, the GCG coating on the 45S5 BG scaffolds is also likely to largely dissolve/degrade in 

SBF after 7 days. Moreover, as HA forms on both uncoated and GCG coated 45S5 BG scaffolds 

after 7 days, the higher weight loss of GCG coated scaffolds over uncoated scaffolds is assumed 

to be mainly attributed to the loss of the GCG coating. To a certain extent, this assumption is 

confirmed by the fact that the 12 wt% difference of the weight loss of uncoated and GCG coated 

scaffolds after 14 days of immersion in SBF is close to the amount (15 wt%) of GCG in the 

coated scaffolds. 

 

Figure 5-2. Degradation behaviors in SBF of GCG films, uncoated and GCG coated 45S5 BG scaffolds. 

In vitro bioactivity of GCG coated 45S5 BG scaffolds 

As an assessment of bioactivity, HA formation on the surface of scaffolds upon immersion in 

SBF was characterized by FTIR, XRD and SEM. Figure 5-3 shows FTIR spectra of GCG coated 

45S5 BG scaffolds before and after immersion in SBF. The FTIR spectra of GCG coated 

scaffolds after 3, 7, 14 and 28 days of immersion in SBF present dual bands at 564 cm-1 and 

602 cm-1 corresponding to the bending vibration of P–O bond, which is characteristic of a 

crystalline phosphate phase.14, 39-41 Furthermore, the band at 876 cm-1 and the dual broad bands 

at 1423–1455 cm-1 can be assigned to the stretching vibration of C–O bond, suggesting the 

formed HA is carbonated hydroxyapatite (cHA) rather than stoichiometric hydroxyapatite.14, 39, 

40, 42, 43 It should be noted that, for GCG coated 45S5 BG scaffolds, the characteristic bands of 

cHA after 3 days of immersion in SBF were relatively weaker in comparison to that after 7 days. 

As shown in our previous study14, for uncoated 45S5 BG scaffolds, the characteristic bands of 

cHA did not appear after 1 day of immersion in SBF, while these bands occurred after 3 days 

and their relative intensities were quite close to those that appeared after 7 days. This 
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comparison between the FTIR spectra of uncoated and GCG coated 45S5 BG scaffolds after 

immersion in SBF suggests that the bioactivity of 45S5 BG scaffolds was maintained after 

coating with GCG, although the GCG coating may slightly retard the formation rate of cHA at 

the initial stage of immersion in SBF. 

 

Figure 5-3. FTIR spectra of uncoated 45S5 BG scaffolds (labelled as uncoated), and GCG coated 45S5 BG 

scaffolds before (0 d) and after immersion in SBF for 3, 7, 14 and 28 days. 

Figure 5-4 shows the XRD spectra of GCG coated scaffolds before and after immersion in SBF. 

The peaks in scaffolds before immersion in SBF correspond to the Na4Ca4(Si6O18) and 

Na2Ca4(PO4)2SiO4 phases, which have also been found in previous studies.14, 44 Growing HA 

peaks (e.g. at 2 = 25.8 and 31.7) were observed on coated scaffolds after immersion in SBF 

for 7, 14 and 28 days. In addition, the crystallinity of the sintered scaffolds decreased with 

increasing immersion time in SBF as indicated by the gradual disappearance of the sharp peaks 

of the Na4Ca4(Si6O18) phase. 

 

Figure 5-4. XRD spectra of GCG coated 45S5 BG scaffolds before (0 d) and after immersion in SBF for 3, 7, 14 

and 28 days. 
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SEM images of GCG coated scaffolds after immersion in SBF for different times are shown in 

Figure 5-5. After 3 days immersion in SBF, there were some apatite-like precipitates on the 

surface of struts. As the immersion time increased to 7 days, the struts were almost fully covered 

by HA crystals which can be clearly recognized by their well-known globular and cauliflower-

like shape. 

  

  

Figure 5-5. SEM images showing HA formation on the surfaces of GCG coated 45S5 BG scaffolds after 

immersion in SBF for (a)–(b) 3 days and (c)–(d) 7 days. 

Based on the XRD, FTIR and SEM results described above, the bioactivity of the 45S5 BG 

scaffolds is confirmed to be maintained after coating with GCG. The explanation for HA 

formation on polymer coated bioactive glass/ceramic scaffolds was given in our previous 

studies.14, 17 Briefly, some areas of the struts are not fully covered by the polymer as a result of 

the surface roughness of the original struts. Thus, uncoated areas of the struts provide paths for 

SBF to penetrate the area underneath the coating. Besides, in the present study, GCG will 

gradually dissolve/degrade in the SBF which enables coated areas of the struts to be 

increasingly exposed to SBF. Thus, the established direct contact between SBF and the surface 

of bioactive glass/ceramic struts is essential to retain the intrinsic bioactivity of the scaffolds. 
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Mechanical properties 

The mechanical properties of uncoated and GCG coated 45S5 BG scaffolds were investigated 

by the uniaxial compressive strength test. As indicated by the typical compressive stress-strain 

curves of these scaffolds (Figure 5-6), the compressive strength of GCG coated scaffolds (1.04 

± 0.11 MPa) was significantly higher than that of uncoated scaffolds (0.04 ± 0.01 MPa). The 

area under the load-displacement curve (related to work of fracture) of GCG coated scaffolds 

was calculated to be 285.6 ± 23.3 N·mm, whereas it was only 5.0 ± 1.1 N·mm for the uncoated 

scaffolds. It is worth pointing out that the uncoated scaffolds were completely broken into little 

pieces during compressive strength test, while the GCG coated scaffolds were able to partly 

maintain their cuboid shape despite being compressed (Figure 5-7). Taking into consideration 

the high porosity (93%) of the fabricated GCG coated scaffolds, the achieved compressive 

strength (1.04 MPa) is obviously higher than the lower bound of the values for human 

cancellous bone (>0.15 MPa, porosity ~90%).16 

It is well-known that polymer coatings can not only fill microcracks on the strut surfaces but 

also fill the void of hollow struts.14, 18, 45 In other words, the polymer coatings turn the original 

weak and brittle struts into strong and tough composite struts, thus significantly improving the 

mechanical stability of the flaw sensitive glass/ceramic struts. As a consequence, the 

compressive strength and toughness of the uncoated scaffolds in the present study are 

considerably improved after coating with GCG. The strengthening and toughening effects in 

the present study are in broad agreement with other studies about polymer coated scaffolds,14, 

17, 45, 46 and they can be explained by the micron-scale crack-bridging mechanism.46-48 

 

Figure 5-6. Typical compressive stress-strain curves of uncoated and GCG coated 45S5 BG scaffolds, showing 

remarkable improvement of mechanical properties by the presence of the GCG coating. 
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Figure 5-7. Digital photographs of (a)–(b) uncoated and (c)–(d) GCG coated 45S5 BG scaffolds before ((a), (c)) 

and after ((b), (d)) compressive strength test. 

It is worth mentioning that the GCG coating provides much more significant strengthening and 

toughening effects than PHBV or PCL/chitosan coating on 45S5 BG scaffolds.14, 49 Similarly, 

significant strengthening and toughening effects were also observed on non-cross-linked gelatin 

coated Biosilicate® scaffolds.17 The different degrees of strengthening and toughening effects 

obtained from different polymer coatings are likely to be determined by the of polymer solution 

on the scaffold struts and the adhesion ability of the obtained polymer coating on the scaffold 

struts. Obviously, low viscosity gelatin aqueous solution is much easier to spread on and also 

infiltrate into the hydrophilic glass/ceramic struts than other polymer solutions in which 

synthetic polymers (e.g. PHBV or PCL) are dissolved in organic solvent (e.g. dichloromethane 

or chloroform). Also, the interface between the hydrophilic polymer (i.e. gelatin) and 

hydrophilic glass/ceramic strut is likely to be stronger than that between the hydrophobic 

polymer (e.g. PHBV or PCL) and hydrophilic struts, given the evidence that GCG adheres well 

to the surface of scaffold strut (Figure 5-1(d)). 

  



 Publications  

121 

 

Antibacterial properties 

PPXG exhibited high antibacterial activity as determined by MIC and MBC values. It showed 

MIC values of 7.81 μg/mL and 32.25 μg/mL, and MBC values of 31.25 μg/mL and 62.50 μg/mL 

for B. subtilis and E. coli, respectively (Figures 5-S6 and 5-S7). PPXG was used for providing 

antibacterial property to GCG coated 45S5 BG scaffolds. The antibacterial property was tested 

using the Kirby-Bauer test and the samples were qualitatively checked for the zone of inhibition 

after incubation (Figure 5-8(a)(b)). Both the uncoated and GCG coated 45S5 BG scaffolds 

(labelled 1 and 2) without PPXG did not show any zone of inhibition to the B. subtilis and E. 

coli (Figure 5-8(c)(d)). GCG coated scaffolds loaded with PPXG showed an increasing zone 

of inhibition to the B. subtilis as the PPXG concentration, which is based on the used bacteria 

suspension in Time-dependent test, increased (Figure 5-8(c)). GCG coated scaffold loaded with 

10 μg/mL PPXG did not clearly exhibit a zone of inhibition to E. coli (Figure 5-8(d)). However, 

the zone of inhibition occurred and was further increased as the PPXG concentration increased. 

After checking the zone of inhibition, a swab from the area under the samples (Figure 5-8(c)(d)) 

was further transferred to a new agar plate by sterile inoculation loop. After incubation, the 

colony formation was visually inspected. As shown in Figure 5-8(e)(f), for the PPXG loaded 

samples, the only bacteria which obviously existed under the scaffolds were E. coli at the PPXG 

concentration of 10 μg/mL. In order to quantify the antibacterial properties, Time-dependent 

shaking flask test was further performed for up to 6 hours. A 6 hours post-implantation period 

has been identified during which prevention of bacterial adhesion is critical to the long-term 

success of an implant.23 Since both of the uncoated and GCG coated scaffolds without PPXG 

did not clearly show antibacterial properties to both of the B. subtilis and E. coli, they were not 

further included in Time-dependent test. As shown in Figure 5-9, more than 95% of B. subtilis 

and E. coli were killed until 2 hours in the presence of GCG coated scaffolds loaded with 1050 

μg/mL PPXG, and these antibacterial effects were kept until 6 hours with the only exception 

that the E. coli began to grow after 2 hours in the presence of GCG coated scaffolds only 

incorporated with 10 μg/mL PPXG. In other words, the difference of sensitiveness of and E. 

coli to PPXG becomes evident at 10 μg/mL after 2 hours. This would be explained by the 

different feature of the bacterial cell wall. Although all bacteria have an inner membrane in 

their walls, Gram-negative bacteria have a unique outer membrane which envelops a barrier 

function, i.e., prevents drugs from penetrating the cell wall. Therefore, E. coli, as one species 

of Gram-negative bacteria, is likely to be more resistant to PPXG than B. subtilis which belongs 

to Gram-positive bacteria. 
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Figure 5-8. Kirby-Bauer test using B. subtilis and E. coli for samples 1: uncoated scaffold without PPXG, 2: 

GCG coated scaffold without PPXG, 3: GCG coated scaffold loaded with 10 µg/mL PPXG, 4: GCG coated 

scaffold loaded with 30 µg/mL PPXG, and 5: GCG coated scaffold loaded with 50 µg/mL PPXG. (a) and (b): 

after incubation for 24 h, (c) and (d): area under the incubated samples, (e) and (f): smears on agar plate 

(bacterial growth after transferring swab from area under the samples to a new agar plate). 

 

Figure 5-9. Time-dependent shaking flask test results of samples 3: GCG coated scaffold loaded with 10 µg/mL 

PPXG, 4: GCG coated scaffold loaded with 30 µg/mL PPXG, and 5: GCG coated scaffold loaded with 50 

µg/mL PPXG. 

Incorporating antibacterial agent in scaffolds can allow the scaffolds themselves to fight 

bacterial infection. GCG coated 45S5 BG scaffolds incorporated with PPXG show effective 

antibacterial effects on both Gram-positive and Gram-negative bacteria, and the antibacterial 

effects increase with PPXG concentration, suggesting that PPXG and also other biocidal 
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cationic polymers belonging to polyguanidines are promising for the antibacterial purpose in 

bone tissue engineering scaffolds. 

Biocompatibility of PPXG, genipin and GCG 

The in vitro biocompatibility of PPXG, genipin and GCG was characterized by evaluating the 

cell proliferation and cell morphology. Cell proliferation was measured in terms of 

mitochondrial activity, and the cell morphology was observed using calcein AM that stains the 

cytoplasm of living cells. Apart from the calcein staining, cells were also stained with DAPI 

which gives information about the integrity of the nucleus. The concentration of the materials 

was calculated based on the volume of the used cell culture medium. The cell culture plate 

without any addition of material was used as a control. As shown in Figure 5-10, the 

mitochondrial activity of MG-63 cells grown in the presence of 10 µg/mL PPXG is 79%, while 

it significantly decreases when PPXG concentration increases. This result is in accordance with 

the fluorescence staining results of MG-63 cells as presented in Figure 5-11(a)–(d), which also 

indicates a reduction in viable cell numbers as PPXG concentration increases. As shown in 

Figure 5-11(a)–(b), the cell shape, cell membrane integrity and nucleus integrity of MG-63 cells 

cultured in 10 µg/mL PPXG solution are quite similar to that of the control group. Taking into 

consideration antibacterial test results in section 3.5, PPXG concentration between 10–30 

µg/mL would be a balanced concentration for both antibacterial properties and biocompatibility. 

As a natural crosslinking reagent, 50 µg/mL genipin enabled MG-63 cells to show 51% 

mitochondrial activity (Figure 5-10), and the viable cells possessed intact nuclei and cell 

membrane (Figure 5-11(e)). In addition, compared to the control group, the cell shape was not 

obviously affected by the genipin. MG-63 cells exhibited 59% mitochondrial activity at a GCG 

amount of 1 mg/mL, and the mitochondrial activity decreased when the GCG amount increased 

to 5 mg/mL. The relatively low mitochondrial activity of MG-63 cells in the present study on 

one hand may be due to the existence of genipin, while on the other hand may mainly be due 

to the inhibition of MG-63 cell growth under overdose of gelatin.50, 51 As shown in Figure 5-

11(f)–(g), compared to the control group, although an obvious reduction in viable cell numbers 

is observed, the cell shape is still similar to that of the control group. Interestingly, many of 

MG-63 cells formed clusters on the 1 mg/mL GCG films (Figure 5-11(f)) and were found to be 

considerably agglomerated on the 5 mg/mL GCG films as indicated by the large blue dot in 

Figure 5-11(g). This result indicates that on such concentration of GCG, cell-material 

interactions are weaker than cell-cell interactions, which becomes even more obvious when the 

GCG concentration increases. 
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Figure 5-10. Mitochondrial activity measurement of MG-63 cells in the presence of PPXG, genipin and GCG at 

different concentrations after 2 days of cultivation. The values are mean ± standard deviation. The asterisks 

indicate significant difference. *** P<0.001. 
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Figure 5-11. Fluorescence images of MG-63 cells after 2 days of cultivation in the presence of PPXG, genipin 

and GCG at different concentrations. (a) Control group (cell culture plate), (b) PPXG 10 µg/mL, (c) PPXG 30 

µg/mL, (d) PPXG 50 µg/mL, (e) Genipin 50 µg/mL, (f) GCG 1 mg/mL and (g) GCG 5 mg/mL. Calcein/DAPI 

staining: living cells (green)/nuclei (blue). 
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Biocompatibility of scaffolds 

Figure 12 shows that the mitochondrial activity of MG-63 cells on GCG coated 45S5 BG 

scaffolds is slightly higher than on uncoated 45S5 BG scaffolds after 2 weeks of cultivation. 

However, the difference between the mitochondrial activity of these two groups does not reach 

statistical significance (P>0.05). 

 

Figure 5-12. Mitochondrial activity measurement of MG-63 cells on GCG coated 45S5 BG scaffolds after 2 

weeks of incubation, using uncoated 45S5 BG scaffolds as a control. The values are mean ± standard deviation. 

To visualize cell adhesion and cell distribution on the scaffolds, MG-63 cells were labelled with 

Vybrant™ cell-labelling solution. CLSM-images of uncoated and GCG coated scaffolds after 

2 weeks of cell cultivation are shown in Figure 5-13. MG-63 cells were seen to have grown on 

the strut surfaces of both uncoated and GCG coated scaffolds. As judged by visual inspection 

of the images, the amount of cells on GCG coated scaffolds seems to be higher than on uncoated 

scaffolds, which is in agreement with the results of the cell proliferation assay (Figure 5-12). 

After cell cultivation for 2 weeks, the pores of uncoated scaffolds as well as GCG coated 

scaffolds were still open. This can be attributed to the highly porous and interconnected large 

pore structure of the scaffolds which facilitate oxygen and nutrient supply for the cells. 
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Figure 5-13. CLSM images of MG-63 osteoblast-like cells on the surfaces of (a) uncoated and (b) GCG coated 

45S5 BG scaffolds after 2 weeks of cultivation. The cells were stained red and the 45S5 BG surface can be seen 

in green. 

Furthermore, in order to reveal the cell-cell and cell-material interactions, the cell morphology, 

especially considering how cells attach and spread on both uncoated and GCG coated scaffolds, 

were observed by SEM. Representative images are presented in Figure 5-14. Figure 5-14 (a) 

and (d) show that the strut surfaces of both uncoated and GCG coated scaffolds are well covered 

by cells, and the well flattened cells covering the scaffold struts tend to form a monolayer in 

both scaffold types. A closer observation of the gap among the cells showed that the strut 

surface of GCG coated scaffold was smooth (Figure 5-14 (e)), while that of uncoated scaffold 

was rougher (Figure 5-14 (b)). The smooth strut surface of GCG coated scaffold is likely due 

to the remaining GCG coating on GCG coated scaffolds after 2 weeks of cell cultivation. Indeed, 

as shown in the FTIR results (Figure 5-3), GCG does exist on GCG coated scaffolds after 

immersion in SBF for 14 days. At higher magnifications (Figure 5-14 (c) and (f)), the cells on 

both scaffold types displayed a typical osteoblastic phenotype with mainly elongated polygonal 

and flat structures as well as expressed filopodias in contact with the scaffold surface.32, 52 

Moreover, well developed microvilli were observed on the spread cells on both scaffold types, 

which indicates that the cells are highly active. 
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Figure 5-14. SEM images of MG-63 cells on the strut surfaces of (a)–(c) uncoated and (d)–(f) GCG coated 45S5 

BG scaffolds after 2 weeks of cultivation. The inset in (f) indicates the typical morphology of the microvilli. 

The quantitative result of WST assay indicates that GCG coating may have a slightly positive 

effect on the cell proliferation of MG-63 cells on 45S5 BG scaffolds. Indeed, GCG coating has 

been shown to be able to significantly increase the mitochondrial activity of human 

mesenchymal stem cells on porous PCL scaffolds, however, the realization of this significant 

improvement of cell response is due to the fact that pure PCL scaffolds were less satisfactory 

in supporting cell adhesion and growth because of their hydrophobic nature.53 In contrast, 

uncoated 45S5 BG scaffolds (with their hydrophilic nature14) in the present study already could 

support suitable cell attachment and growth, as described  above. The qualitative studies, i.e., 

CLSM and SEM images, confirmed that MG-63 cells could attach well and spread on uncoated 
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45S5 BG scaffolds, and the cell attachment, cell spreading and cell morphology were not 

significantly changed in the presence of GCG coating. All these results indicate that the GCG 

coating on the scaffolds seems to have no negative effects on the cell activity, which is different 

from the biocompatibility results of GCG films, as shown in section 3.6. The better 

biocompatibility of the GCG coating on scaffolds is due to the fact that part of the GCG is lost 

during the pH regulation of GCG coated scaffolds (pretreatment in DMEM) before staring the 

cell cultivation. The remained GCG on the scaffolds is in a reduced amount. As discussed in 

section 3.6, relatively lower concentration of gelatin is able to favor the growth of MG-63 

cells.50, 51 Therefore, GCG coated 45S5 BG scaffolds, as well as GCG coating itself at a 

relatively low concentration, is biocompatible to MG-63 cells. The biocompatibility of GCG 

was also demonstrated in other studies.37, 54-56 Especially, MG-63 cells were shown to attach on 

genipin cross-linked gelatin porous scaffolds, and the cells exhibited a fibroblastic and a 

polygonal like morphology after 2 weeks of cell culture.54 

Conclusions 

Significantly improved mechanical properties were provided to 45S5 BG scaffolds using GCG 

coating. The GCG coating slightly retarded but did not inhibit the cHA formation on 45S5 BG 

scaffolds upon immersion in SBF, confirming the bioactive character of the coated scaffolds. 

Additionally, the GCG coated 45S5 BG scaffolds were antibacterial against both Gram-positive 

and Gram-negative bacteria after the incorporation of polyguanidine, i.e. PPXG. In vitro 

biocompatible test indicated that PPXG was biocompatible to MG-63 cells at a low 

concentration, and the MG-63 cells could attach, spread and proliferate on the GCG coated 

scaffolds as on the uncoated scaffolds. The obtained bioactive, antibacterial and biocompatible 

composite scaffolds with improved mechanical properties represent promising candidates for 

bone tissue engineering applications. They belong to a growing family of functionalized, 

polymer coated BG-based scaffolds with expected superior in-vivo performance which, 

however, remains to be investigated in further studies. 
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Poly(p-xylyleneguanidine) hydrochloride (PPXG) synthesis and structural 

characterization 

Synthesis and NMR characterization 

Poly(p-xylyleneguanidine) hydrochloride (PPXG) was made by condensation polymerization 

according to the Scheme 5-S1. 

 

guanidine hydrochloride [95.54] 0.050 mol 6.18 g 1 eq 

p-xylylenediamine [136.19] 0.050 mol 4.78 g 1 eq 

Scheme 5-S1. Synthetic scheme for the formation of PPXG. 
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The polymer was structurally characterized using NMR. 1H- (300 MHz) and 13C- (75 MHz) 

NMR spectra were recorded on a Bruker Ultrashied-300 spectrometer in MeOD. The peaks 

were assigned as follows: 

1H-NMR: 300 MHz, MeOD; δ (ppm) = 3.81(s, 2H, (CH2)NH2) 4.45 (m, 2H, NHCH2C6H5); 

7.02 (m, Ar-H); 7.35 (m, Ar-H). 

13C-NMR: 75 MHz, MeOD; δ (ppm) = 45.56 (s, NHCH2C6H5); 46.13 (s, (CH2)NH2); 128.81, 

137.55 (m, Ar-C); 157.64, 158.64 (s, C=NH). 

1H-13C correlation experiments were conducted on a Bruker Avance 600 spectrometer with a 5 

mm multinuclear gradient probe at 25  ℃  using MeOD as solvent. 2D NMR spectrum 

heteronuclear single quantum coherence (HSQC) was used to assign peak positions in 13C-

NMR as shown in Figure 5-S1. 

 

 

Figure 5-S1. 2D 1H-13C HSQC NMR spectrum of PPXG in MeOD. 
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APCI analysis 

APCI-mass spectrum was recorded on a Thermo Fisher Scientific Finnigan LTQ-FT 

spectrometer. The sample was dissolved in methanol. APCI-mass spectra were used to confirm 

the chain ends of PPXG (Figure 5-S2). Four different types of chain structures were found i.e. 

PPXG chains with one guanidine and one amino group (structure A),  guanidine and amino 

groups at both chain-ends (structures B and C) and ring structure without any chain-ends 

(structure D). No attempts were made to separate different structures and the sample was used 

as such for antibacterial tests and coating of scaffolds. 

 

Figure 5-S2. APCI-Spectrum of PPXG. 

 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

ToF-MS) analysis 

MALDI-TOF MS was used for determination of molecular weight of PPXG. Bruker Reflex III 

apparatus equipped with a N2 laser (λ = 337 nm) in linear mode at an acceleration voltage of 20 

kV was used. Indole-3-acetic acid (IAA, Fluka, 99.0%) was used as a matrix material. Samples 

were prepared with the dried droplet method from Methanol solution by mixing matrix und 

polymer in a ratio of 20: 5 (v/v) and applying approximately 1 μL to the target spot. 

The molecular weight of the PPXG determined by MALDI-TOF MS was Mn: 2200, Mw: 2500 

and PDI: 1.12. 
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Figure 5-S3. MALDI-ToF-MS-Spectrum of PPXG. 

 

Thermal characterization 

Thermal Analysis was performed on Mettler Toledo thermal analyzers comprising 821 DSC 

and 851 TG modules. By recording thermogravimetric (TG) traces in nitrogen atmosphere with 

a flow rate of 60 mL · min-1, the thermal stability was determined; a sample size of 12 ± 2 mg 

and a heating rate of 10 K · min-1 was used for each measurement. The temperature of thermal 

decay (Td) was taken as the inflection point of the TG curve. Differential scanning calorimetry 

(DSC) was performed in nitrogen atmosphere (flow rate 80 mL · min-1) with a heating rate of 

20 K · min-1; the inflection point of the baseline in the second heating cycle was taken as glass 

transition temperature (Tg). 

PPXG showed high glass transition temperature (Tg =150 oC; Figure 5-S4) .Thermogravimetric 

analysis (Figure 5-S5) showed, that the significant mass loss (85%) took only after 350oC 

thereby showing high thermal stability.  
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Figure 5-S4. Differential scanning calorimetric analysis of PPXG showing glass transition temperature at 150oC. 
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Figure 5-S5. Weight loss vs. temperature curve for PPXG. 

Antibacterial Test (MIC and MBC Test) 

E.coli (Gram-negative) 

 

Figure 5-S6. Photographs of MIC and MBC test with E.coli as test organism. 
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B.subtilis (Gram-positive) 

 

Figure 5-S7. Photographs of MIC and MBC test with B.subtilis as test organism. 
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