
Simulation of Multi-Perspective
Declarative Process Models

Lars Ackermann, Stefan Schönig and Stefan Jablonski

University of Bayreuth, Germany
{firstname.surname}@uni-bayreuth.de

Abstract Flexible business processes can often be modelled more easily
using a declarative process modeling language (DPML) rather than an
imperative language. Process mining aims at automating the discovery
of process models. One way to evaluate process mining techniques is
to synthesize event logs from a source model via simulation techniques
and to compare the discovered model with the source model. Though
there are several declarative process mining techniques, there is a lack of
simulation approaches. Process models also involve multiple aspects, like
the flow of activities and resource assignment constraints. The simulation
approach at hand automatically synthesizes event logs that conform to
a given model specified in the multi-perspective, declarative language
DPIL. Our technique translates DPIL constraints to a logic language
called Alloy. A formula-analysis step comprises the log generation. We
evaluate our technique with a concise example and describe how it can
be configured to alternatively simulate event logs based on an assumed
partial execution as well as on properties that are intended to be checked.
We complement the quality evaluation by a performance analysis.

Keywords: simulation of business processes, predictive analytics, multi-
perspective process mining

1 Introduction

Business process simulation supports those phases of the business process man-
agement lifecycle that aim at the analysis and improvement of processes [1, 2].
New versions of processes are simulated in order to determine an optimal im-
provement. Logs produced by simulating processes are analyzed in order to pre-
dict effectiveness or efficiency of upcoming versions of processes. Besides analysis,
another purpose of process simulation is learning about the meaning of a pro-
cess. By simulating processes, modelers and users can learn to understand their
behavior based on selected log contents [3]. From cognitive science we learn that
studying and observing “good examples” of artifacts, here processes, develop
their comprehension [4]. A third purpose of simulation is its support for testing
process mining techniques [5]. Di Ciccio et al. [6] propose to use simulation in
order to generate process logs that are used to test and improve process mining
algorithms. It becomes obvious that simulation plays an important role in the
lifecycle of business process management.



2 Ackermann et al.

MP

Declarative

Source PM

[DPIL]

Process 

Event Logs

[XES]

Alloy
Predicate, Relational, Navigation Logic 

Solutions/

Counter 

Examples

M2Text

Alloy

Analyzer

[Acceleo]
<<instance of>>

Process Event Chain Meta Model

Process Model

Fig. 1: Concept of Multi-Perspective Declarative Process Model Simulation

Most of the available simulation techniques are tailored towards imperative
languages [6] such as BPMN. Over the last years, declarative process modeling
languages (DPMLs) and declarative process discovery techniques gained more
and more attraction [5, 7–13]. Imperative languages model the underlying pro-
cess explicitly using flow-oriented representations. In contrast, declarative lan-
guages assume process executions which are restricted by constraints. Due to
this semantic gap, simulation techniques for imperative models are not suitable
for declarative models [6]. Consequently, there is a lack of simulation tools for
declarative models. The approach presented in [6] is the only representative that
is able to generate traces based on rules that restrict the temporal ordering and
the existence of activities. The simulator and the underlying modeling language
consider only control-flow constraints but no other process perspectives includ-
ing organizational and data-oriented aspects [12]. To the best of our knowledge
a multi-perspective declarative process simulation technique is not available.

We fill this research gap by an approach visualised in Fig. 1. It is designed
to complement the control-flow-based simulation with a technique that is based
on the multi-perspective Declarative Process Intermediate Language (DPIL) [12]
and is able to simulate multi-perspective process models. We based our simulation
technique on a transformation of DPIL rules to a logic language called Alloy [14]
which was originally used for describing the structure of software systems. Alloy
ships with an analyzer that is able to exhaustively produce unique examples and
counter examples for a given Alloy model. It is possible to configure the simulator
in order to produce logs with desired characteristics like size, maximum trace
length, trace contents or relative to a partial process execution trace.

This paper is structured as follows: Sec. 2 provides a brief introduction into
the declarative modeling paradigm and DPIL. In order to be able to follow the
contribution discussed in Sec. 3 we also provide a brief description of Alloy. The
evaluation is described in Sec. 4 and the paper is concluded in Sec. 5.

2 Background

In this section we introduce the foundations of our approach, i.e., declarative
process modelling and DPIL, process simulation and process mining.

2.1 Multi-Perspective Declarative Process Modeling with DPIL

Research has shown that DPMLs are able to cope with a high degree of flex-
ibility [8]. The basic idea is that, without modeling anything, “everything is



Simulation of Multi-Perspective Declarative Process Models 3

Macro Expanded Pattern Semantic

sequence(a,b)
event(of b at :t) implies
event(of a at < t)

Task b cannot be started before task
a has been completed.

once(a)
event(of a at :p) implies not
event(of a at < p)

The task a only can be started if it
was not previously completed once al-
ready.

consumes(c,i)
event(of c at :t) implies
write(of i at < t)

The task c can not be started before a
value for the data object i is present.

produces(p,o)
event(of p :t) implies
write(of o at < t)

The task p can not be completed be-
fore a value for the data object o is
present.

role(a,id)
event(of a by :id) implies relation(
subject id predicate hasRole
object r)

The task a must be performed by a
process participant having the role id.

binding(a,b)
event(of b by :id) implies
event(of a by id)

The tasks a and b must be processed
by the same identity.

Tab. 1: Basic set of multi-perspective macros of the DPIL language

allowed”. To restrict this maximum flexibility, DPMLs allow for formulating
constraints which form a forbidden region for process execution paths. Inde-
pendent from a specific modelling paradigm different perspectives on a process
exist. The organizational perspective deals with the definition and the allocation
of human and non-human resources to activities. Another perspective is data-
oriented and deals with restrictions regarding the data flow. The Declarative
Process Intermediate Language (DPIL) [12] is a declarative process modelling
language that is, unlike other declarative languages multi-perspective, i.e., it al-
lows for representing several business process perspectives, namely, control flow,
data and especially resources. The expressiveness of DPIL and its suitability for
business process modelling have been evaluated [12] with respect to the well-
known Workflow Patterns and in industry projects, e.g. the Competence Center
for Practical Process Management. DPIL provides a textual notation based on
the use of macros to define reusable rules, shown exemplarily in Tab. 1. Instead
of explaining the macros in isolation, we discuss them using the example process
model of Fig. 2 which shows a simple process for trip management in DPIL.

The process model states, for instance, that it is mandatory for all appli-
cants to produce the application document for a business trip before it can be
approved (produces and consumes). Means of transport and accommodations
can only be booked after the application has been approved (sequence). Every
task except booking accommodations and means of transport can be performed
at most once (once). The latter can be executed multiple times in order to allow,
e.g., for flights with stopover and multiple accommodations per trip. The task
Approve application must be performed by a resource with the role Adminis-
tration. Additionally it is required that the same person – here the applicant –
books the flight and the accommodation (binding). In the described setting there
is no secretary which is why the applicant is also responsible for collecting the
tickets and for archiving the collected documents. A process instance is finished
as soon as the tickets are collected and all documents are archived (milestone).



4 Ackermann et al.

use group Administration

process BusinessTrip {
task Apply for Trip
task Approve application
task Book means of transport
task Book accommodation
task Collect tickets
task Archive documents
document Application
document TicketCollection

ensure produces(Apply for Trip, Application)
ensure produces(Collect tickets, TicketCollection)
ensure consumes(Approve application, Application)
ensure consumes(Archive documents,Application)
ensure consumes(Archive documents,TicketCollection)

ensure sequence(Approve application, Book means of transport)
ensure sequence(Approve application, Book accommodation)
ensure sequence(Book means of transport, Collect tickets)
ensure sequence(Book accommodation, Collect tickets)
ensure once(Apply for Trip)
ensure once(Approve application)
ensure once(Collect tickets)
ensure once(Archive documents)

ensure role(Approve Application, Administration)
ensure binding(Book means of transport, Apply for Trip)
ensure binding(Book accommodation, Apply for Trip)
ensure binding(Collect tickets, Apply for Trip)
ensure binding(Archive documents, Apply for Trip)

milestone "Done": event(of Collect tickets) and event(of Archive documents)
}

Fig. 2: Process for trip management modeled with DPIL

2.2 Alloy in a Nutshell

Alloy is a declarative language for building models that describe structures with
respect to desired restrictions. We first provide a concise and pragmatic descrip-
tion of Alloy’s language features: A signature (sig) is similar to a class in object-
oriented programming languages (OOPLs). It can be abstract and quantified. A
fact is comparable to invariants in the Object Constraint Language (OCL) [15]
and allows for specifying non-structural constraints. A function (fun) is a pa-
rameterizable snippet of re-usable code, that has a return type and performs
computations based on the given parameter values. A predicate (pred) is com-
parable to a function but with the limitation that its return type is always a
boolean expression. An additional major difference is that Alloy is able to run
a predicate, which means that the analyzer tries to find models for which that
predicate holds. An assertions (assert) can be used in combination with check
commands to test model properties. The body of facts and assertion share the
same syntax but in contrast to the former, the analyzer tries to find counter
examples for a particular assertion. For further information about the general
Alloy syntax we would like to refer to the dedicated literature [14].



Simulation of Multi-Perspective Declarative Process Models 5

3 Simulation of DPIL models with Alloy

Due to Alloy’s declarative nature, it can be used to represent a declarative pro-
cess model. The correspondence between DPIL and Alloy as well as a mapping
are described within this section, starting with a concise characterization.

3.1 Requirements and Functional Characteristics

Process simulation is used for the analysis of properties in order to avoid an
expensive observation of process executions [1]. Our approach provides process
analysis support through event log generation. We identified the following re-
quirements based on the introductory simulation purpose:

– Distinctness. Distinctness means to avoid redundant traces. This feature
keeps the set of examples as small as possible. Without this feature a log
can grow enormously without enhancing information content; its growth then
worsen its performance and clarity.

– Exhaustiveness. This feature guarantees that all possible process execution
paths of a defined maximum length are considered.

– Determinism. Determinism says that parts of the log can be replicated ac-
cording to user defined settings. This is needed to specifically weight alter-
native execution paths.

– Multi-perspectivity. Processes are constituted by multiple perspectives [12].
These perspectives must be identifiable in a process log.

– Context-awareness. This property allows to analyze traces taking into ac-
count particular process states. Such a process state might depict a certain
(partial) execution path; the log then should be analyzed whether there are
processes coinciding with that execution path. For instance, if such an exe-
cution path depicts the beginning of a process trace, this analysis ascertains
whether this process will eventually terminate (i.e. a process trace must be
found that shows this prefix and reaches an end state).

– Reversibility. It can be useful to generate traces that explicitly violate pro-
cess specifications (counter examples). From cognitive science we adopt that
counter examples are good for gaining understanding (here: of processes) [16].

By basing the simulation on Alloy [14] the first two properties, distinctness and
exhaustiveness, are guaranteed. As a consequence, determinism is incidentally
achieved, too. The remaining two characteristics are explained further in Sec. 3.4.

3.2 Process Event Chain Meta-Model

Our approach currently focuses on three process perspectives which describes (i)
the temporal and existential relations between tasks (functional and behavioral
perspective), (ii) the involvement of resources (organizational perspective), and
(iii) data dependencies (data perspective). Due to this limited scope we are able
to treat activity executions as atomic and, therefore, do not have to take into



6 Ackermann et al.

module orgmetamodel
2 open processEventChain_commons

4 abstract sig Relation {
subject: one Element,

6 object: one Element,
predicate: one RelationType

8 }
abstract sig Element extends AssociatedElement {}

10 abstract sig Identity extends Element{}
abstract sig Group{} extends Element{}

12 abstract sig RelationType{}

Listing 1.1: Organizational Meta-model

account the usual activity lifecycle. In Alloy we defined our meta model for traces
in form of process event chains (PECs) in three modules. Two of them are shown
in Lst. 1.1 and Lst. 1.2. Both of them are based on another module providing
only one signature, called sig AssociatedElement{}. This signature serves as
an interface for extending the meta-model with additional process elements like
variables or even elements of new perspectives like operations.

Lst. 1.1 is the Alloy implementation of the well known organizational meta-
model introduced in [17]. The first line defines the module name. Afterwards,
we make the mentioned AssociatedElement available by opening the containing
module. Line 4-8 allows for the definition of hierarchically structured relations
where process resources [18] may be involved in based on a subject-predicate-
object-notation. An example would be: John (subject) hasRole (predicate) Admin
(object). In our corresponding Alloy-based process model we need four additional
signatures in order to represent an instance of this relation – one for Relation
itself and one for each of the contained fields.

The structure of PECs was mainly motivated by the log structures discussed
in [19] as well as related literature and is described in Lst. 1.2. After defining
the module name we make the two previously described modules available (line
2 and 3). The lines 5-17 describe the structural and the remaining lines describe
the non-structural properties of a PEC.

From the perspective of object-oriented programming PEvent is an abstract
class for a general discrete event, including a field declaration for the unique
(disj) position. The latter defines the position of the event in the PEC. Alter-
natively, a more intuitive implementation would be a Linked List. However, our
performance tests showed that the proposed variant is much faster. The signa-
tures in line 7 and 8 are unique (keyword one) and denote the beginning and the
completion event of a process execution. Line 9 introduces the more interesting
TaskEvent denoting an activity execution and comprising an integer which is
the inherited position as well as associated information like the executed Task
(cf. line 13) and the assigned organizational resource. The Task signature is ab-
stract and is extended in the actual Alloy process model in order to represent
concrete tasks (cf. 2). In order to distinguish between different activity types
like manual and automated tasks, the TaskEvent signature is abstract, too.



Simulation of Multi-Perspective Declarative Process Models 7

module processEventChain_noLifecycle_multiperspect_IntBased_new
2 open processEventChain_commons

open orgmetamodel
4

// Signatures: Process Chain Element Structure
6 abstract sig PEvent { pos: disj Int }

one sig StartEvent extends PEvent{}{}
8 one sig EndEvent extends PEvent{}{}

abstract sig TaskEvent extends PEvent { assoEl: some AssociatedElement }{
10 #(Task & assoEl) = 1 }

sig HumanTaskEvent extends TaskEvent{}{
12 #(Identity & assoEl) = 1 }

abstract sig Task extends AssociatedElement{}
14 abstract sig DataObject {}

abstract sig DataAccess extends AssociatedElement{ data: one DataObject }
16 abstract sig WriteAccess extends DataAccess{}

18 // Facts: Additonal non-structural constraints
fact { ∀ intVal: Int • intVal ≥ StartEvent.pos }

20 fact { ∀ e: (PEvent - StartEvent - EndEvent) •
e.pos < (StartEvent.pos + #TaskEvent + 1) }

22 fact { EndEvent.pos ≤ (StartEvent.pos + #TaskEvent + 1) }
fact { ∀ assoEls: (AssociatedElement - Group) •

24 assoEls in TaskEvent.assoEl }
fact { ∀ do: DataObject • do in DataAccess.data }

26 fact { ∀ te: TaskEvent • #(te.assoEl & Group) = 0 }

28 // Utility Functions
fun exist(asso: AssociatedElement): set TaskEvent {

30 { te: TaskEvent • asso in te.assoEl } }
fun inBefore(curE: TaskEvent, asso: AssociatedElement): set TaskEvent {

32 { te: TaskEvent • te.pos < curE.pos and asso in te.assoEl } }
fun roleOf(id: Identity) : set Group{

34 { g: Group • some r: Relation • r.subject=id and r.object in Group } }
fun dAccess(d: DataObject, type: DataAccess): one DataAccess {

36 { da: DataAccess • da in type and d in da.data } }

Listing 1.2: Process Event Chain Meta Model

In line 11 HumanTaskEvent is used to represent a manual task and it conse-
quently extends the TaskEvent signature. Both signatures have an appended
fact which also could be formulated using an additional fact statement which
is only a matter of personal preferences [14]. The appended facts ensure that a
TaskEvent encapsulates exactly one task (line 10) and one executing resource
(line 12). The lines 14-16 encode the functionality to specify data objects and
write accesses to these data objects. We decided to extend a more general access
type (DataAccess) in order to allow for extending the meta-model with different
access types like read accesses.

The lines 19-21 ensure that a process event chain starts with a StartEvent
(line 19) and ends with an EndEvent (lines 20-21) and consequently force all
TaskEvents to occur in between. The third fact ensures that the position in-
crement between two consecutive tasks is 1. The remaining three facts ensure
that the solver only generates process elements that are “used” in at least one
event (lines 23-25) and prevents all events from containing information about
organizational structures (line 26).



8 Ackermann et al.

DPIL Alloy

task T sig T extends Task{}

use group G

sig G extends Group{}
one sig HasRole extends RelationType {}
abstract sig IsG extends Relation {} {

object =G
predicate =HasRole }

document d
sig d extends DataObject{}
sig Write_d extends DataAccess{}{ data =d }

sequence(T,U) fact{ ∀e : TaskEvent•U in e.assoEl →#inBefore[e,T]>0 }

produces(T,d)
fact{ ∀e : TaskEvent•T in e.assoEl

→dAccess[d,WriteAccess] in e.*assoEl }

consumes(T,d)
fact{ ∀e : TaskEvent•T in e.assoEl

→#inBefore[e,dAccess[d,WriteAccess]] > 0 }

once(T) fact{ lone e : TaskEvent•T in e.assoEl }

role(T,r) fact{ ∀e : TaskEvent•e.task=A →r in roleOf(e.executor) }

binding(T,U)
fact{ ∀e,f : TaskEvent• T in e.assoEl and U in f.assoEl

→#((e.assoEl & Identity) & f.assoEl) =1 }

milestone event(T)
fact { ∀e : TaskEvent•#exist[T]=1 and #(T&e.assoEl)=0

→not(e.pos>exist[T].pos) }

Tab. 2: Mapping: DPIL - Alloy

The first two utility functions collect all TaskEvents that involve the overall
execution of a given task (lines 29-30) or before (lines 31-32) a given event. The
function roleOf calculates all roles a particular resource has. The last function
identifies the concrete DataAccess signature for the given DataObject and type.

3.3 Transformation of DPIL models to Alloy

After providing a meta-model for process event chains, we now discuss how to
transform a DPIL model into an Alloy model that contains all restrictions for
valid process event chains. This involves two major steps: (i) Creating signatures
for tasks, roles and identities that fulfill these roles, data objects and access
objects and (ii) translating the DPIL rules to Alloy facts (cf. Tab. 2).

Tasks are modeled through the definition of a new signature that extends the
existing Task signature from the meta model. The same is applicable to DPIL’s
usegroup but with the extension of the Group signature instead. Additionally a
new Relation signature is created in order to be able to easily assign a role to the
desired resources (Identity in our meta-model). Using this mapping it is only
possible to represent flat organizational structures like resource-role associations.
However, based on the generic organizational meta-model shown in Lst. 1.1 it
would be possible to model hierarchical structures, too. A DPIL document is
mapped to a new signature extending the existing DataObject signature. In
order to type data accesses, we additionally extend the DataAccess signature.

DPIL rules are modeled as Alloy facts. They are specified in a declarative
style through first selecting atoms that belong to particular signatures. Using the
logical implication (→) operator allows for specifying rule activation conditions
(left part) and validity conditions (right part). In order keep the rules concise, we



Simulation of Multi-Perspective Declarative Process Models 9

make use of the functions contained in the process event chain meta model, e.g.
inBefore and roleOf . The current simplified milestone transformation considers
milestones that can be reached through the execution of particular activities.
Since facts are connected via conjunction we can generate one fact per activity
execution that is observed by a milestone rule.

3.4 Simulation Configuration

There are two simulation parameters that are required in most cases [6]: (i)
The number of simulated traces (N) and (ii) the maximum trace length (L). Re-
stricting the log size in terms of the number of traces is necessary to be able
to provide a reproducible setting for trace generation. The number of events
per trace should be restricted due to the reason that process models might al-
low for executing an activity arbitrarily often. This means that the simulation
would not necessarily terminate in all cases. Furthermore, the aspect of repro-
ducibility is also influenced by the trace length. Beside these essential simulation
boundaries additional parameters may be useful, dependent on the simulation
purpose. Though we are not able to determine the purpose for simulating a DPIL
model, this section describes configurations for three simulation types: (i) Trace
generation, (ii) context-aware simulation and (iii) property testing.

Using Alloy trace generation can be implemented by introducing an empty
predicate (sim) and configuring a run command. This can be done according to
the following template: run sim for [L] TaskEvent, [B] Int. The introduced
length parameter L can be configured directly through a scope restriction for
TaskEvents. Since we identify the position of an event in the process event chain
via an index, we also have to provide the number of integer values to generate.
This is done via the bitwidth parameter B. The Analyzer then generates integer

values in the codomain of
[
−2B
2 + 1, 2B

2

]
. Hence, B can be calculated directly

according to B = dldLe. Via collecting all unique results produced by the Alloy
analyzer the desired amount of traces can be obtained.

Here, a context-aware simulation means that the simulation is not started at
the beginning of a particular process but “somewhere between” the start and the
end of the process. An example application is to check the satisfiability assuming
a particular process state and to generate all traces that remain. This can be
implemented by adding a fact for each assumed event that already happened
and assigning a fixed position as well as AssociatedElements to an event at this
position. The position can be calculated generically based on the position of the
StartEvent. The simulation can be started using a run command, too.

A hypothesis is an assumption regarding structure and contents of a trace.
In order to check hypotheses they have to be transformed into predicates. A
predicate can be checked in an assertion. Instead of using a run command the
check command has to be used but the parameters are the same. Running the
analyzer results either in counter examples proving that a hypotheses are wrong
or does not provide any result and, thus, corroborates a hypotheses. With this
mode selected properties of the source model can be tested.



10 Ackermann et al.

4 Implementation and Evaluation

In order to evaluate the simulation approach efficiently, we implemented a model-
to-text transformation using Acceleo1 in order to automatically translate DPIL
models into Alloy. Acceleo is an implementation of the MOF Model to Text
Transformation Language (MOFM2T)2 defined by the OMG. The transforma-
tion is currently based on the macros discussed in the paper at hand. The gener-
ated Alloy file is then used in our simulator implementation3 to generate traces
of a configurable length and amount. In order to use the logs in applications
that are built upon a particular log standard, the simulator exports the traces
in the eXtensible Event Stream (XES) [20] standard format. In order to evalu-
ate the correctness of the generated traces regarding the source process model
we make use of the same evaluation principle as in [6]. This means that we
use a previously evaluated process mining technology and try to reproduce the
original process model. For the paper at hand we utilized the DPILMiner [5].
As evaluation example we used the DPIL process model shown in Fig. 2. We
configured the DPILMiner with the same set of rule templates like the simula-
tion approach. After applying transitive reduction techniques on the extracted
model, the DPILMiner reproduced exactly the source model. Additionally, we
performed one property test for each Alloy representation of a DPIL rule which
is comparable to unit testing. These property tests have been implemented based
on assertions and the check command. Another aspect of the evaluation is the
performance of the proposed simulation technique. Since the simulation time
increases with higher paramterizations for the number of traces (N) and their
maximum lengths (L), we have performed several simulations of the continuous
process model example with different configurations and results shown in Tab. 3.

The performance analysis shows that the computation is mainly influenced
by the trace length. Furthermore, as a minor detail, we have no increase of com-
putation time between the second and the third configuration (the time mea-
surements in parentheses). The reason was that with a maximum trace length
of 10 there are less then 100 different process event chains. For the performance
analysis, we used a Dell Latitude E6430 (Core i7-3720QM with 8 × 2.6GHz, 16
GB memory, SSD drive and Windows 8 64 Bit). The simulator is implemented
in Java and we used a 64-Bit JVM with a maximum memory allocation pool of
4096M. We decided to present the performance analysis without a comparison
to the technique discussed in [6] because there are large functional differences.
First, the approach presented in the paper at hand considers multiple perspec-
tives, which is not possible with the technique proposed in [6]. Secondly, our
approach guaranties to simulate all unique traces of a defined maximum length.
Additionally our simulation technique can be used in three different modes (cf.
Sec. 3.4). These major functional differences result in an increase of computation
time and in a significant decrease in terms of scalability. Thus, we can say that

1 Download: http://www.eclipse.org/acceleo, last access: June 6, 2016
2 Standard: http://www.omg.org/spec/MOFM2T/1.0/, last access: June 6, 2016
3 Screenshot and Download: http://mps.kppq.de



Simulation of Multi-Perspective Declarative Process Models 11

L N Time in s L N Time in s

10 10 1.9 50 10 364.9

10 100 (2.4) 50 100 389.9

10 1000 (2.4) 50 1000 555.8

20 10 17.4 60 10 627.3

20 100 21.3 60 100 649.5

20 1000 52.8 60 1000 871.5

30 10 65.8 70 10 1167.1

30 100 71.8 70 100 1271.5

30 1000 122.3 70 1000 1697.0

40 10 159.0 80 10 2038.8

40 100 180.0 80 100 2194.3

40 1000 300.0 80 1000 2733.5

Tab. 3: Performance Analysis

the approach presented in [6] should be used if you need event logs with longer
traces that reflect the plain control flow. If the particular application involves
multiple perspectives, and either the trace length is rather low or the computa-
tion time is not a main concern we suggest to use the presented technique.

5 Conclusion and Future Work

In the paper at hand, we discussed a process simulation technique which can
be used to generate exemplary execution traces for a given process model in
order to support business process management. There is only one comparable
approach and this considers only plain control-flow models. Our proposed sim-
ulation approach primarily focuses on models that consider the behavioral, the
organizational, and the data-oriented perspective. Additionally to the genera-
tion of exemplary traces, the simulation can be used in two additional modes, i.e.
(i) context-aware simulation and (ii) property testing. Both modes can be used
for targeted process analysis or gaining a deeper general understanding of the
underlying process. A generic meta-model for process event chains and an inde-
pendent logic framework called Alloy opens the opportunity for extensions. An
open issue is the rather low simulation performance and scalability in the case of
longer process event chains. Similar to general purpose programming languages,
the same functionality can be developed more or less efficiently, dependent on
the programming style. Consequently, there is a huge potential for performance
optimization, e.g. the order of set joins which is a known issue in databases.
Hence, we are currently planning a major evaluation study in order to get a
better idea of the driving factors for scalability. Another limitation is the small
set of supported rule templates (macros). In order to check Alloy’s applicability
we formed the set as heterogeneous as possible. Thus, extending this initial set
of macros should be rather straightforward.



12 Ackermann et al.

Acknowledgments. The authors would like to thank Prof. Westfechtel, Felix
Schwägerl (University of Bayreuth) and Prof. Daniel Jackson (MIT) for provid-
ing tips and literature about modeling and analysis with Alloy.

References

1. W. M. P. van der Aalst, “Business Process Simulation Revisited,” Enterprise and
Organizational Modeling and Simulation, vol. 63, pp. 1–14, 2010.

2. M. Laguna and J. Marklund, Business process modeling, simulation and design.
CRC Press, 2013.

3. U. Frank, “Multi-perspective enterprise modeling (memo) conceptual framework
and modeling languages,” in HICSS, pp. 1258–1267, 2002.

4. A. L. Brown and M. J. Kane, “Preschool children can learn to transfer: Learning
to learn and learning from example,” Cogn. Psychology, vol. 20, pp. 493–523, 1988.

5. S. Schönig, C. Cabanillas, S. Jablonski, and J. Mendling, “Mining the organisa-
tional perspective in agile business processes,” in BPMDS, pp. 37–52, 2015.

6. C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating event
logs through the simulation of declare models,” in EOMAS, pp. 20–36, 2015.

7. M. Pesic, H. Schonenberg, and W. van der Aalst, “DECLARE: Full Support for
Loosely-Structured Processes,” in EDOC, 2007.

8. D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-
gal, “Declarative versus imperative process modeling languages: The issue of un-
derstandability,” in BPMDS, pp. 353–366, 2009.

9. P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. Reijers, “Imper-
ative versus declarative process modeling languages: An empirical investigation,”
BPM Workshops, pp. 383–394, 2012.

10. F. M. Maggi, J. C. Bose, and W. van der Aalst, “A Knowledge-Based Integrated
Approach for Discovering and Repairing Declare Maps,” in Advanced Information
Systems Engineering, pp. 433–448, 2013.

11. C. D. Ciccio and M. Mecella, “On the discovery of declarative control flows for
artful processes,” ACM TMIS, vol. 5, no. 4, p. 24, 2015.

12. M. Zeising, S. Schönig, and S. Jablonski, “Towards a Common Platform for the
Support of Routine and Agile Business Processes,” in CollaborateCom, 2014.

13. S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, and J. Mendling, “Efficient
and Customisable Declarative Process Mining with SQL,” in CAiSE, 2016.

14. D. Jackson, Software Abstractions: logic, language, and analysis. MIT press, 2012.
15. J. B. Warmer and A. G. Kleppe, The Object Constraint Language: Precise Modeling

With Uml (Addison-Wesley OTS). Addison-Wesley Professional, 1998.
16. R. Zazkis and E. J. Chernoff, “What makes a counterexample exemplary?,” Edu-

cational Studies in Mathematics, vol. 68, no. 3, pp. 195–208, 2008.
17. C. Bussler, “Analysis of the organization modeling capability of workflow-

management-systems,” in PRIISM96 Conference Proceedings, pp. 438–455, 1996.
18. O. M. G. (OMG), “Business process model and notation (bpmn) version 2.0,” tech.

rep., jan 2011.
19. W. van der Aalst, Process Mining: Discovery, Conformance and Enhancement of

Business Processes, vol. 2. 2011.
20. E. Verbeek, J. Buijs, B. van Dongen, and W. van der Aalst, “XES, xESame, and

ProM 6,” in Information Systems Evolution, pp. 60–75, 2011.


