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“The planet has a fever. If your baby has a fever, you go to the doctor. 

If the doctor says you need to intervene here, you don’t say, ‘Well, I 

read a science-fiction novel that told me it’s not a problem.’ If the 

crib’s on fire, you don’t speculate that the baby is flame-retardant.” 

 

Albert Arnold “Al” Gore 
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Glossary 

Glossary of used abbreviations 

Arboviruses “Arthropod-borne viruses” 

AUC ”Area under the receiver operator characteristic curve” (Model quality criteria; e.g. article 4) 

CCLM Regional climate model “COSMO-CLM” that is hosted by the CLM community 

COSMO = Consortium for Small-scale Modelling  

CLM = Climate Limited-area Model 

CDC “Centers for Disease Control and Prevention” 

CIA “Central Intelligence Agency” (see article 7) 

DKRZ German Climate Computing Centre (“Deutsches Klimarechenzentrum”) 

DWD Germean Weather Service (“Deutscher Wetterdienst”) 

ECDC “European Centre for Diseae Control and Prevention” 

ECHAM Global climate model, developed by the the Max Planck Institute for Meteorology 

EIP “Extrinsic Incubation Period” (Interval between the acquisition of an infectious agent by a vector 
and the vector's ability to transmit the agent to other susceptible vertebrate hosts; see article 2). 

EKBM “Expert knowledge based model” (model that is derived by selection of variables using already 
understood species´climatic constraints; see article 4) 

GARP “Genetic Algorithm for Rule Set Production” (Software to model species distribution) 

GCM “Global climate model” (syn. General circulation model) 

IPCC “Intergovernmental Panel on Climate Change” 

Maxent Software to model species distribution based on maximum entropy approach (see articles 4-6) 

MESS “Multivariate Environmental Similarity Surface” (see articles 4 to 7) 

MRPP “Multiresponse Permutation Procedure” (see article 4) 

Phleboviruses Viruses belonging to the Bunyaviridae. Vectors are either phlebotomine sandflies (Phlebotomus 
fever viruses) or ticks (Uukuniemie group) 

RCM “Regional climate model” 

REMO “Regional Model” (Regional climate model, developed by the Max Planck Institute for Meteoro-
logy) 

RKI “Robert-Koch Institut” (see article 7) 

SBM “Statistic based model” (model that is derived by selection of variables using statistical test of 
variable´s importance; see article 4) 

STAR “Statistisches Regionalisierungsmodell” developed by the Potsdam Institut for Climate Impact 
Research 

VBD “Vector-borne disease” (used in article 7) 

WETTREG “Wetterlagen-basierte Regionalisierungsmethode“, developed on advise of the German Federal 
Ministry ofor the Environment, Nature Conservation and Nuclear Security 

WHO “Word Health Organization” 
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Compendium 

1. Compendium 

1.1 Summary 

This thesis addresses the topic of climate change effects on vector-borne diseases. 

Disease vectors gather the pathogen from an infected host (usually mammals), become 

infected but usually do not fall sick. They are capable to transmit the pathogens between 

hosts. Most of the vector-borne diseases are considered to be climate-sensitive. This has 

several reasons: First of all, the majority of the vectors belong to ecto-thermic arthropods 

which cannot regulate their body temperature. In addition, pathogen development within the 

vector is dependent on temperature constraints. 

Data concerning expected climate change during the 21st century are provided by 

climate models in different spatial and temporal resolutions. Projections of future climate 

include emission scenarios of greenhouse gases. In this thesis the use of regional climate 

projections with special respect to their capacity for being implemented in spatio-temporal 

risk analyses of vector-borne diseases is presented. Regional climate models are recom-

mended for risk analyses of vector-borne disease on smaller spatial scales, due to their 

remarkably better performance in comparison to global climate models. Possible applications 

and opportunities of regional climate projections are introduced (article 1). Within this thesis, 

data obtained by the regional climate models REMO and COSMO-CLM are used for risk 

analyses. Both models were derived by a dynamical downscaling procedure. They are nested 

within the well-established global model ECHAM5, in the latest versions. 

In the first methodological part (articles 2 and 3) the transfer of already understood 

vector and/or pathogen temperature constraints to expected future conditions is addressed. By 

using this approach, the required temperatures for dengue virus amplification within the 

primary vector Aedes aegypti are compared with expected future European conditions. 

Results indicate a growing threat for Europe in a twofold manner. First of all, a spatial range 

expansion of regions, which offer the window of opportunity for dengue-virus amplification, 

is projected. Starting from southern parts of Europe in the upcoming years, also Central 

Europe will provide suitable temperature conditions from mid-century onwards. Furthermore, 

the inter-annual season of possible virus amplification in Europe will increase remarkable 

(article 2). On a further example, the threat of autochthonous transmission of visceral leish-

maniasis, the most severe sandfly-borne disease is determined. Therefore the temperature 

constraints of vector (genus: Phlebotomus) and pathogen (Leishmania infantum complex) are 

projected to future conditions on the regional example of Germany.  The results for projected 
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vector and pathogen requirements are finally overlaid with the aim to generate risk classes of 

potential establishment of visceral leishmaniasis. Western and southern German regions will 

be at risk, expectedly from mid-century onwards. At the end of the 21st century, the 

establishment of this disease can no longer be excluded for large parts of Germany (article 3). 

In the second part (articles 4 to 6), regional climate change projections are 

implemented within species distribution models for vector species. For this approach, 

statistical analyses are applied in order to determine species´ preferred bioclimatic niches. 

Once the specific climatic niches of species are identified, these can be transferred to future 

climatic conditions. Based on this approach it is indicated that the climatic suitability will in-

crease for the invasive mosquito Aedes albopictus (vector of several human-pathogenic 

viruses) in most European regions. Especially in Western Europe (e.g. in France) suitability 

will increase. With temporal delay also central and eastern parts of Europe will provide 

favourable conditions, while the suitability will decrease in some Mediterranean areas (article 

4). On the example of sandfly species (vectors of the Leishmania complex), the results of the 

species specific niche modelling show that climatic suitability can be expected to increase in 

Central Europe within this century and especially for Germany. Potential future dispersal 

pathways for the species in a rapidly changing environment are identified via least-cost 

analysis. This indicates that the studied sandfly species will hardly be able to occupy all of 

their potentially suitable future areas due to their limited dispersal ability (articles 5 and 6). 

 In different case studies it is already shown that European climate change within the 

21st century will probably support a spread or at least range expansions of the mentioned 

disease vectors and vector-borne diseases. As a general tendency for Central Europe it can be 

expected that the risk will increase especially for the outgoing 21st century. This may be due 

to the fact that the applied regional climate models indicate a more rapid warming in the 

second half of the 21st century, regardless the chosen scenario. 

To conclude, it is worth mentioning that further factors beyond climate change addit-

ionally facilitate the potential spread and new-establishment of vector-borne diseases. The 

influence of these factor (“drivers”) on vector-borne diseases, however, depends on the con-

sidered spatial and temporal scale. Therefore, a scale-dependent risk assessment for vector-

borne diseases is proposed. Starting at broader scales, climatic risk assessments can be ini-

tiated to identify risk areas. Then, the relevant factors must be identified on smaller scales for 

the detected risk areas and integrated in follow-up studies (article 7). The results can then 

support more efficiently the development and implementation of surveillance strategies for 
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vector-borne diseases. This enables to initiate counteractions against spreading vector-borne 

diseases - or supports societal adaptations to this novel threat. 

 

1.2 Zusammenfassung 

 Bei vorliegender Dissertation handelt es sich um eine Abhandlung zu vektor-

assoziierten Krankheiten in Zeiten des Klimawandels. Bei vektor-assoziierten Krankheiten 

wird ein Pathogen durch einen Vektor (Überträger), auf ein Wirtstier übertragen. Als Vektor 

agieren meist Arthropoden die sich mit dem Pathogen infizieren können, jedoch meist nicht 

selbst erkranken. Aus verschiedenen Gründen gelten diese übertragbaren Infektions-

krankheiten als besonders sensibel hinsichtlich klimatischer Veränderungen. Entscheidend ist, 

dass Arthropoden ihre Körpertemperatur nicht selbst regeln können und zudem bestimmte 

Temperaturansprüche zur Pathogenentwicklung im Vektor erfüllt sein müssen. 

Das Klimaänderungssignal des 21. Jahrhunderts wird von Klimamodellen in verschie-

denen räumlichen und zeitlichen Auflösungen wiedergegeben. Die Projektionen beruhen auf 

Emissionsszenarien klimawirksamer Treibhausgase. In der Arbeit werden die Einsatzmöglich-

keiten von regionalen Klimamodellen zur Gefährdungsabschätzung anhand verschiedener 

Fallbeispiele aufgezeigt. Die deutlich bessere Performance regionaler Klimamodelle im 

Vergleich mit globalen Modellen, empfiehlt diese für genauere Gefährdungsanalysen von 

vektor-assoziierten Krankheiten auf kleineren räumlichen Skalen. Der Nutzen und die 

Einsatzmöglichkeiten regionaler Klimamodelle werden einführend aufgeführt (Artikel 1). Für 

die Risikoanalysen werden in dieser Arbeit die regionalen Klimamodelle REMO und 

COSMO-CLM angewandt, die durch dynamisches „Downscaling“ globaler Modelle generiert 

wurden. Beide sind in ihrem neuesten Prozesslauf in das globale Modell ECHAM5 

eingebettet. 

Der direkte Übertrag bekannter Temperaturansprüche von Vektor und/oder Pathogen 

auf künftig zu erwartende Bedingungen stellt den ersten methodologischen Schwerpunkt  

dieser Arbeit dar. Eine Amplifikation des Dengue-Virus im Überträger der Stechmücke Aedes 

aegypti könnte demnach zunächst in Südeuropa, im weiteren Verlauf des 21. Jhd. aber auch in 

weiteren europäischen Regionen möglich sein und damit eine zunehmende Gefährdung 

darstellen. Ab der Jahrhunderthälfte kann das Risiko beispielsweise auch für Mitteleuropa 

nicht mehr länger ausgeschlossen werden. Weiterhin verdeutlichen die Ergebnisse, dass sich 

auch das Zeitfenster einer potentiellen Übertragung des Dengue-Virus verlängern kann 

(Artikel 2). Durch das Überlagern der bekannten Temperaturansprüchen von Sandmücken 
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(Gattung Phlebotomus) und der von ihnen übertragbaren Erreger - Leishmania infantum 

Komplex - können potentielle Regionen Deutschlands identifiziert werden, in denen einer 

autochthone Übertragung der Leishmaniose möglich ist. Es ist zu erwarten, dass ab Mitte des 

Jahrhunderts ein solches Risiko in südwestlichen und westlichen Regionen Deutschlands 

bestehen wird. Für das ausgehende 21. Jhd ist anzunehmen, dass sich auch für eher nördlich 

und östlich gelegene Regionen das Risiko erhöhen wird (Artikel 3). 

Der zweite innerhalb dieser Arbeit gewählte methodologische Ansatz (Artikel 4 bis 6) 

zeigt die Einsatzmöglichkeiten regionaler Klimaprojektion für die bioklimatische Nischen-

modellierung von Krankheitsüberträgern auf. Die anhand statistischer Verfahren ermittelte 

bioklimatische Nische der jeweiligen Art wird hierbei auf zukünftig zu erwartende klima-

tische Bedingungen übertragen. Anhand dieser Analyse kann aufgezeigt werden, dass sich die 

klimatische Eignung für die invasive Stechmücke Aedes albopictus (Überträger mehrere 

humanpathogener Viren) zunächst in westlichen Regionen Europas (insbesondere Frankreich) 

verbessern wird und ab Mitte des Jahrhunderts auch größere Bereiche Mitteleuropas 

klimatisch gesehen für eine Etablierung der Art geeignet erscheinen. Ende des Jahrhunderts 

werden sich osteuropäische Regionen geeignete Bedingungen bieten, während das Klima in 

Teilen der Mittelmeerregion eher ungeeigneter wird (Artikel 4). Der Transfer der ermittelten 

spezifischen klimatischen Nische ausgewählter Sandmücken-Arten (u.a. Überträger der zum 

Leishmania-Komplex zählenenden Pathogenen) auf künftige Bedingungen lässt vermuten, 

dass deren klimatische Eignung in Mitteleuropa - abgesehen von alpinen Regionen - zuneh-

men wird. In Deutschland werden die günstigsten klimatischen Bedingungen voraussichtlich 

Ende des 21. Jhd. gegeben sein. Künftige potenzielle Ausbreitungswege der Sandmücken in 

einer sich verändernden Umwelt, werden via “least-cost analysis“ ermittelt. Die Ergebnisse 

deuten darauf hin, dass aufgrund der eingeschränkten natürlichen Ausbreitungsfähigkeit, 

einige der künftig potenziell geeigneten Lebensräume nicht erreicht werden (Artikel 5 und 6). 

In den verschiedenen Fallstudien kann gezeigt werden, dass die zu erwartenden klima-

tischen Veränderungen im 21. Jhd. eine mögliche Ausbreitung der in dieser Arbeit adressier-

ten Vektoren und vektor-assoziierter Krankheiten in Europa begünstigen werden. Als 

einheitliche Tendenz kann speziell für Mitteleuropa festgehalten werden, dass sich die Ge-

fährdung, Ende des 21.Jhd. erhöhen wird. Dies begründet sich höchstwahrscheinlich durch die 

projizierte raschere Erwärmung in der zweiten Jahrhunderthälfte. 

Abschließend bleibt jedoch festzuhalten, dass es neben klimatischen Veränderungen 

weitere Faktoren für die Ausbreitung bzw. Neuetablierung von Vektoren und den damit ver-
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bundenen übertragbaren Infektionskrankheiten ausschlaggebend sind. Der Einfluss einzelner 

Faktoren auf die Etablierung bzw. Ausbreitung vektor-assoziierte Krankheiten variiert auf 

raum-zeitlichen Skalen. Insofern wird eine skalen-abhängige Risikoabschätzung vorge-

schlagen, an deren Beginn klimatische Risikoanalysen gestellt werden sollten. Für die 

ermittelten klimatisch-abgeleiteten Risikogebiete müssen in Folgestudien auf kleineren 

Skalen wirksam werdenden Faktoren integriert werden (Artikel 7). Diese Ergebnisse können 

wiederum die Entwicklung von Surveillance- und Monitoringprogramme unterstützen, um 

somit Maßnahmen gegen die Ausbreitung von vektor-assoziierten Krankheiten initiieren zu 

können bzw. falls nötig, dabei helfen sich rechtzeitig an diese Gefährdung zu adaptieren. 

 



Introduction 

2. Introduction 

2.1. Climate models and projections of climate change 

 Due to anthropogenic impacts, the world’s climate appears to change at an unprece-

dented rate (IPCC 2007). The economical behaviour and development of human societies is 

the main driving force for the emission of greenhouse gases into the planetary atmosphere. 

Since the installation of the first general circulation model (GCM) - by Phillips et al. 1956 - a 

multitude of such models were developed and used in order to forecast weather, predict the 

current climate or project climate change. A general circulation model (global climate model) 

is based on a three-dimensional rotating atmosphere in which fluid motion as well as physical 

and chemical processes are included accounting especially for the ocean-athmospere 

interaction (e.g. Stute et al. 2001). The model projections of future climate change are 

dependent on emission scenarios of greenhouse gases prepared by the Intergovernmental 

Panel on Climate Change (IPCC 2000) and used in the latest Assessment Report (IPCC 

2007). These scenarios, which represent different storylines of expected emission of 

greenhouse gases with the respective consequences for climate change, were designed to 

substitute the previous scenarios of the second assessment report (see IPCC 1995). 

One of the main limitations of the global climate models is the coarse horizontal reso-

lution which ranges usually between 100 and 200 km. These models are then insufficient to 

address the spatial structure of temperature and precipitation in areas of complex topography 

and land use distribution (e.g. the Alps, the Mediterranean, Scandinavia) and the depiction of 

regional atmospheric circulations adequately (Christensen et al. 2008). In order to account for 

this limitation of the global climate models, procedures have been developed in order to cope 

with the required higher spatial resolution of climate projections. The first regional climate 

models were successfully developed for the western parts of the United States by Dickinson et 

al. (1989) and by Giorgi and Bates (1989). Since then, much effort has been devoted to the 

development and application of regional climate models. In the following the two main proce-

dures for the development are highlighted. 

 

2.1.1 Regional climate models based on statistical downscaling 

Statistical downscaling methods are used to determine the relationship between large 

scale climate variables and the actual conditions measured at one particular place (e.g. Wilby 

et al. 1998). If the relationship is known for the current climate, the projections derived from 
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the global climate model for the future climate can be used to project how climate will change 

at this specific place (Wilby and Wigley 1997). For European regions, two principles have 

successfully been used: 

a) The first one can be considered as statistical downscaling based on linear regressions of 

observations for a respective time-period (Orlowsky and Fraedrich 2009). This method 

offers the opportunity that future projections are constrained only by the parameters of 

a linear regression line for a characteristic climatic variable and not from various 

further features given from complex global climate models as driver (Werner and 

Gerstengarbe 1997). This guarantees physically consistency respecting both, the 

combinations of different climatic variables and their spatial distribution in time 

(Orlowsky et al. 2008). Using this approach, STAR (STAtisitical Regional model) 

was developed (Werner and Gerstengarbe 1997). This principle is, however, limited 

by its own empiricism and by the availability of data sets of adequate quality (Giorgi 

and Mearns 1991). 

b)Another method uses weather-pattern dependent downscaling principles, in which sig-

nificant circulation patterns are identified using cluster analysis from the upper air 

fields of the troposphere from a driving global model (Enke and Spekat 1997). The 

respective episodes from the current climate were then recombined, based on surface 

data from weather stations, in order to synthesize time series under the conditions of 

an altered climate. This is conditioned by the requirement to reproduce the changing 

frequency distribution of the various global models` circulation patterns from the pre-

vious stage (Enke et al. 2005a). Then, a conditional (weather pattern-dependent) step-

wise screening regression analysis is performed for each weather element and climate 

regions. In comparison to the previously described method, this offers the opportunity 

to leave the envelope of the current climate (Enke et al. 2005b). By using this principle 

WETTREG (WETTerlagen-basiertes REGionalisierungsverfahren) has been de-

veloped (Enke et al. 2005a).  

 

2.1.2 Regional climate models based on dynamical downscaling 

In this thesis, however, projections are based on data provided by dynamically down-

scaled regional climate models. The main advantage of these models is a more physical con-

sistent way of development than those with statistical procedures (Giorgi and Mearns 1991). 

Hence, they can display feedback processes that are not anticipated with statistical methods. 
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Atmospheric processes at the boundary given by the global model are used as input driver for 

the regional climate model. By nesting a smaller model into a global driving model, the 

spatial extent of the regional climate model is decreased into a smaller, limited region of 

interest with a higher spatial resolution (e.g. Wang et al. 2004). On the regional scale of 

Europe, two established and well-documented models are addressed here in more detail. 

These are the ones that are used for climatic projections in this thesis. 

 

a) COSMO-CLM (COSMO Climate Local Model): 

COSMO-CLM is a non-hydrostatic regional climate model developed from the Local 

Model (LM) of the German Weather Service (DWD) (Rockel et al. 2008). Non-

hydrostatical component offers the opportunity to include convective (vertical) move-

ments. Previously, the LM has been developed for operational weather forecast. 

Meanwhile it is used and further developed by several other weather services orga-

nized in the COnsortium for Small-scale MOdelling (COSMO). It has been demon-

strated that the impact of the driving data has a larger impact on simulation results 

than further factors such as changing resolution or physical parameterizations 

(Meissner et al. 2009). The errors given by the global model at the boundaries biases 

the regional climate projections. Consequently, COSMO-CLM is driven by the well-

established global model ECHAM5 (Rockel et al. 2008). COSMO-CLM covers whole 

Europe and the African regions bordering the Mediterranean Sea. It provides data not 

only for the land surface but also for water bodies (Mediterranean Sea, parts of the 

Atlantic - especially the North and the Baltic Sea). The spatial resolution is about 

18 km² (Smiatek et al. 2009). Data of this model are used for the analyses of the 

articles 2, 4, 5 and 6, where data are required for the complete European continent or 

at least bigger parts of it. Projected climatic changes are based on the two emission 

scenarios A1B and B1 (see articles 2 and 4 for details). 

 

b) REMO (Regional Model):  

REMO is based on the “Europa-Model” which was the main weather forecast model 

of the German Weather Service (Deutscher Wetter Dienst “DWD”). In advance to this 

primary model, REMO offers the opportunity of using the same physics as the global 

climate model (ECHAM3) into which it is nested to assess the scale dependence of 

physical parameterizations within the same dynamical framework (Jacobs and Podzun 
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1997). The newest version of REMO is driven by ECHAM5. The spatial resolution of 

the model is about 12 km2. REMO has performed quiet well in comparison to further 

regional climate models and simulated current climatic conditions in mountainous 

regions better than for instance COSMO-CLM due to the higher spatial resolution 

(Smiatek et al. 2009). However, data given by REMO are just available for Central 

European regions (completely for Germany, Switzerland and Austria including 

Liechtenstein, as well as parts of Belgium, Luxembourg, the Netherlands, Poland and 

the Czech Republic). Therefore data of temperature change projected by REMO are 

used in article 2, where the spatial focus is directed to Germany. Applied are the two 

scenarios A1B and A2 (see article 3 for details). 

 

2.2 Climate change effects on vector-borne diseases 

Anthropogenic climate changes do significantly impact not only physical but also bio-

logical systems, ranging from local to global scale (Rosenzweig et al. 2008). The velocity of 

expected climate change in the 21st century will be extraordinary fast with severe conse-

quences for species and ecosystems (Loarie et al. 2009). If species are not capable to adapt, 

the ranges of organisms, their spatial distribution areas, need to move in order to keep up with 

recent climate change (Walther et al. 2002, Parmesan and Yohe 2003). In general, climate 

change is assumed to enable those potentially “invasive” species to expand spatially to 

regions where they previously could not survive or establish (Walther et al. 2009). 

Of special interests are moving species that constitute serious consequences for human 

or animal health. The caterpillars of the oak processionary (Thaumetopoea processionea) for 

instance are meanwhile found in several European countries causing lepidoptermis in humans 

by contacting the hairs of the caterpillars (Gottschling and Meyer 2006). This health problem 

is expected to increase in temperate European regions such as the Netherlands in the face of 

climate change (van Oudenhoven et al. 2008). 

Starting in the 90ies of the last century it has been realized that climate change affects 

occurrences and transmission cycles of vector-borne diseases (e.g. Rogers and Packer 1993, 

Martens et al. 1995, Binder et al. 1999, Gratz 1999). The disease vectors, which are mainly 

arthropods, but sometimes also rodents, are capable to transmit the pathogens (micro-

organisms or viruses) to a host, which are in most cases mammals. Vector-borne diseases are 

sensitive to climate change due to several reasons: Temperature directly influences pathogen 

evolution and hence efficiency of pathogen transmission (Gould and Higgs 2009). Further-
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more, changing spatial patterns of temperature and precipitation can affect the characteristics 

of vector arthropod life cycles, alter vector habitats and hence cause geographic and temporal 

variations in their occurrences due to their dispersal (Githeko et al. 2000, Gould and Higgs 

2009). 

 Since these relationships were noticed, scientific and consequently also public and 

political awareness on this topic grows rapidly. Assumedly, emerging and resurging vector-

borne diseases that are supported by climate change will cause significant morbidity and 

mortality in humans and animals (McMichael et al. 2006, Eisen and Eisen 2011). Conse-

quently, this group of emerging infectious diseases must be considered as one of the world´s 

most devastating maladies of the future. It can be expected that it will become one of the main 

societal issues during the 21st century (LaBeaud and Aksoy 2010). 

Leishmaniasis is a striking example of a recently spreading vector-borne disease that is 

already threatening the European population (Ready 2008, Ready 2010). Detailed information 

concerning vector and disease are provided in chapter 2.3 of this thesis. In the Old World, 

sandflies of the genus Phlebotomus serve as vectors. Their European distribution has been 

thought to be limited to the Mediterranean. In Italy, a northward directed spread of leish-

maniasis has been realized which was very likely related to warming (Maroli et al. 2008). 

Moreover, Phlebotomus mascittii was recorded for the first time in the Upper Rhine Valley 

(Southwest Germany on the frontier to France) (Naucke and Pesson 2000) and in southern 

parts of Austria (Naucke et al. 2011). P. perniciosus seems to have established permanent 

populations in the German state of Rhineland-Palatinate (Naucke and Schmitt 2004). This 

corresponds to cases of assumed autochthonous origin in Germany that are reported from 

humans and horses (Bogdan et al. 2001, Koehler 2002, Mueller 2009). 

The Asian tiger mosquito (Aedes albopictus), native to Southeast Asia, is a very suc-

cessful global invader due to the global shipping of goods (Reiter 1987, Benedict et al. 2007, 

Enserink 2008). Ae. albopictus is competent to transmit several viruses; most severe for 

human health are the dengue and Chikungunya virus (Gratz 2004; see chapter 2.3 of this 

thesis for more details). In Europe, the mosquito is meanwhile established in almost all coun-

tries bordering the Mediterranean Sea. In a recent study, potential range expansions of the 

species due to climate change effects has been pointed out for Northern Italy (see Roiz et al. 

2011). 

A further wake-up call for Europe was the surprising outbreak of the bluetongue virus 

transmitted by midges and affecting ruminants in the Netherlands and surrounding regions. 
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The outbreak took place in summer of 2006 when the July was the hottest month on record in 

the Netherlands (Enserink 2006). Generally, in the case of animal health, it can be expected 

that climate change will raise the risk of incursion for several vector-borne diseases, listed by 

the World Organization for Animal Health, for European regions: Most strongly the effects 

will very likely benefit the tick-borne disease Crimean-Congo haemorrhagic fever as well as 

the mosquito-borne diseases African horse sickness, and the West Nile fever (Gale et al. 

2010). 

The health concern of the emerging West Nile virus is not exclusively focused to ani-

mals (horses) but also to humans. The virus was firstly isolated in 1937 from humans in the 

West Nile district of Uganda (Smithburn et al. 1940). Culex spp. (e.g. Culex modestus and 

C. pipiens) are generally considered as principal vectors (Reiter 2010). The tremendous speed 

and related health care problems has been demonstrated after initial establishment of the virus 

in the northwest of the United States in 1999 (Lanciotti et al. 1999) and the rapid spread 

across the North-American continent (Murray et al. 2010). Europe is aware: In Northern Italy, 

the West Nile virus re-emerged in humans after ten years in 2008 (Calistri et al. 2010). In 

2010, West Nile virus outbreaks in human populations are documented from the south-eastern 

European countries of Greece (Papa et al. 2010) and Romania, where weather conditions fa-

voured the establishment and increase of mosquito populations (Sirbu et al. 2011). The 

European human population will probably be threatened more intensively by the virus in the 

upcoming decades (Reiter 2010). 

 

2.3 Short medical entomology of the addressed disease vectors 

In this thesis, organisms that serve as disease vectors are studied. The phylum 

“Arthropoda” is characterised by a three-segmented body (Head-Thorax-Abdomen) with 

exoskeleton. They are ecto-thermic and hence depend in the maintenance of body functions 

on the thermic conditions of their environment. The estimates of the real number of species of 

Arthropoda are manifold (e.g. the initial estimation of 30 million arthropod species by Erwin 

1982 and the reduction to 4-6 million by Novotny et al. 2002, due to the detected low host 

specifity of tropical herbivores). “Insecta” is the most diverse class belonging to the 

arthropods (e.g. reviewed by Dettner and Peters 2003). About one million insect species are 

described, which represent taxonomically more than half of all known living organisms. As 

many of them build up large populations, partly with social interaction, their abundance is 

even more pronounced. 
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The studied species within this thesis belong to the order “Diptera”. This order 

contains about 85000 described species which typically exhibit one pair of wings that is used 

for the flight (two-winged) and a second pair as reduced knobs for the flight balance 

(Crosskey 1993, Dettner and Peters 2003). Due to their medical importance the focus of this 

study is directed to aedine mosquito species and phlebotomine sandflies. 

 

2.3.1 Mosquito species 

Mosquitoes (“Culicidae”) have perhaps attained greater public notoriety than any other 

arthropod, which may be due to the fact that they are almost unrivalled as irritating biting 

pests and moreover capable to transmit several human pathogenic parasites (Service 1993). 

The females require proteins obtained by blood sucking to mature their eggs. Of special 

interest are the transmittalbe arboviruses (arthropod-borne viruses) are sucked up by the 

females from an infected host. They multiply in the stomach of the host and are passed within 

a few days across the stomach wall into the haemocoel (Service 1993). Development of a 

sufficient virus dose helps to overcome internal “barriers” and leads to a mitigation to the 

salivary glands (DeFoliart et al. 1987). The virus then can be inoculated into a host by a new 

blood meal. The period between pathogen acquisition by a vector to the time when the vector 

is infective (capable to transmit the pathogen) to a host is called “extrinsic incubation period” 

and is generally temperature-dependent (see e.g. Watts et al. 1987 for the example of dengue 

virus amplification).  

Within the Aedini, the largest tribe of Culicidae, more than 1000 species are described. 

The ranking of taxa as genera and/or subgenera is subjective and differs remarkable between 

traditional phenetic classification (mainly based on the work of Edwards 1932) and classi-

fications based on phylogenetic relationships (e.g. Reinert et al. 2004). The two species with 

the most severe consequences for human health are addressed within this thesis. 

 

a) Aedes albopictus (Skuse, 1894): 

The Asian tiger mosquito, Aedes albopictus (syn. Stegomyia albopicta), was first de-

scribed by Frederick Askew Skuse in 1984 as Culex albopictus but was later assigned to the 

genus Aedes (Edwards 1920). The subgenus Stegomyia was recently compiled to genus by 

Reinert et al. (2004). However, especially medical entomologists recommend using the 

previous classification of the Aedini (see e.g. Savage 2005), due to concerns regarding the 
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cladistic analysis of Reinert et al. (2004), in order to keep a stable nomenclature and to 

facilitate communication and information exchange among professionals. 

The global invader Ae. albopictus is an epidemiologically important vector for the 

transmission of many viral pathogens (at least 22 human-pathogenic viruses), most 

importantly for the Chikungunya and dengue but also for e.g. the St. Louis encephalitis, West 

Nile and Yellow fever virus (Gratz 2004). 

Picture 1:  

Female Aedes albopictus mosquito on 
human skin starting with the blood-
meal. 

Source: James Gathany/CDC           
on 

http://phil.cdc.gov/phil/home.asp 

 

(Pic number: 1866) 

 

The tiger mosquito is characterized by its black and white striped legs and the white 

stripe at his back side (see Picture 1). Interestingly, the female lays her eggs near water or on 

the water surface but not directly into it (Hawley 1988). Any open container that is temporally 

flooded with water may therefore be sufficed for larvae development (Estrada-Franco and 

Craig 1995). Native to Southeast Asia, this ability supported the mosquito in his very success-

ful invasion process. 

In Europe, Ae. albopictus caused the unexpected local Chikungunya epidemic in the 

region of Ravenna, Northern Italy (Rezza et al. 2007, Boniluari et al. 2008). Furthermore the 

tiger mosquito acted as vector of the recent cases of dengue infections in Europe. In Nice, 

France, two men became infected with the virus (La Ruche et al. 2010). Due to the case report 

of a German traveller infected with dengue after returning from Croatia (Schmidt-Chanasit et 

al. 2010), the health professionals in Croatia initiated a screening programme. 15 persons with 

evidence of recent dengue infections of autochthonous origin were identified (Gjenero-

Margan et al. 2011). Up to now there is no vaccination available against dengue virus. 

Ae. albopictus species is addressed in detail within this work in article 4. 
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b) Aedes aegypti (Linnaeus, 1762) 

The Yellow fever mosquito, Aedes aegypti (syn. Stegomyia aegypti, proposed by 

Reinert et al. 2004 and critisized by e.g. Savage 2005) is native to Africa (Mousson et al. 

2005) but is now found in several (sub-) tropical regions around the globe. In Europe the mos-

quito was present until Second World War but disappeared thereafter probably due to the use 

of DDT (Holstein 1967). Recently the mosquito was found in the continental of Europe 

(Scholte et al. 2010). However, permanent populations are just observed for Madeira, 

Portugal (Almeida 2007). This species is also a container-breeding mosquito and can be rec-

ognized by white markings on legs (see Picture 2) and - in contrast to Ae. albopictus - a mar-

king in the form of a lyre on the thorax (Phillips 2008). The mosquito is active throughout the 

day, but the females usually prefer to bite at dusk and dawn. With the spread of Ae. aegypti, 

several health concerns are related, such as yellow and dengue fever but also Chikungunya 

epidemics that could arise. 

Picture 2:  

Female Aedes aegypti mosquito 
aquiring blood-meal from a 
human host. 

Source: Paul I. Howell/Frank 
Hadley Collins/CDC on 
http://phil.cdc.gov/phil/home.asp 

 

(Pic number: 9533) 

 

Although, further mosquitoes such as Ae. albopictus are competent vectors, yellow-

fever transmission in Africa and South-America is most closely related to Ae. aegypti 

occurrences, wherefrom the common (non-scientific) name yellow-fever mosquito is derived. 

Moreover, Ae. aegypti is considered as primary vector of the dengue virus due to higher 

vector competence in comparison to Ae. albopictus (Lambrechts et al. 2010). Globally, this 

mosquito is hence the main vector responsible vector for dengue transmission (Phillips 2008). 

However, a spread of Ae. albopictus may lead to a decline of Ae. aegypti populations 

(O´Meara et al. 1995) which may be a result of competitive displacement (Lounibos 2007). 

The mosquito is addressed in article 2 (extrinsic incubation period for dengue virus 

amplification within Ae. aegypti). 
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2.3.2 Phlebotomine sandflies 

Sandflies (family: “Psychodidae”) are delicate, hairy flies (see Picture 3) with long 

slender legs (Lane 1993). Adults obtain a body size of not more than 3 mm. Sandflies do not 

require aquatic habitats as breeding sides such as mosquitoes (Culicidae). Instead, oviposition 

happens in moist soils (Feliciangeli 2004). From the five genera, only Phlebotomus (Old 

World) and Lutzomyia (New World) are anthropophagous and hence of medical importance 

(Lane 1993). Of the 700 species only about ten percent are thought to be involved in pathogen 

transmission to humans. Within this thesis Phlebotomus species, occurring in Europe were 

considered for risk analyses (article 3, 5 and 6). Especially, the following species are studied 

in more detail (compare article 6): 

 Phlebotomus ariasi (Tonnoir, 1921) 

 Phlebotomus mascittii (Grassi, 1908) 

 Phlebotomus neglectus (Tonnoir, 1921), syn. Phlebotomus major s.l. 

 Phlebotomus perfiliewi (Parrot, 1930) 

 Phlebotomus perniciosus (Newstead, 1911) 

Picture 3: 

Female phlebotomine sandfly aquiring 
blood-meal from a human host. 

Source: Frank Hadley Collins/CDC 
on 

http://phil.cdc.gov/phil/home.asp  

 

(Pic number: 10277) 

 

Sandflies are crepuscular and nocturnal. When seeking for food, sandflies usually have 

a characteristic short hopping flight near the ground (Killick-Kendrick 1999). Only females 

suck blood, which very likely accelerates the maturation of their eggs. However, this blood 

meal may be facultative, as autogeny has been observed (Johnson 1961). Due to the fact that 

the blood sucking can last up to five minutes, sandflies are constrained by sleeping blood 

victims. The preferred hosts of Phlebotomus and Lutzomyia species are humans and dogs and 
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in less extent also rodents (Lindgren and Naucke 2008). Sandflies are capable to transmit 

several kinds of Phleboviruses, the bacteria Bartonella baciliformis and most importantly 

Leishmania (Protozoa). Vertical transmission of the different Leishmania complexes from an 

infected female sandfly to the offspring is possible. 

Leishmaniasis is found in all continents, excepting Oceania, with spatial hotspots of 

occurrences in Southern America, the Middle East as well as European and African regions 

bordering the Mediterranean Sea. It needs to be mentioned that Phlebotomus mascittii which 

has recently been found in Germany and Austria has not yet been confirmed as a vector of 

Leishmania infantum, but its competence is strongly suspected (Naucke et al. 2008). The life-

cycle of Leishmania protozoa comprises two developmental stages. In a first stage the female 

sandflies ingests the Leishmania as amastigote during feeding from vertebrate reservoir hosts, 

mainly dogs and rodents. Over a period of up to 25 days the amastogotes undergo a trans-

formation into flagellated promastigotes within the sandflies (Neuber 2008). When the now 

infected sandfly feeds on fresh source of blood, it passes the promastigotes into the new host 

and complete the life cycle (Cunningham 2002). Generally, L. infantum and L. donovani (Old 

World) and L. chagasi (New World) cause the visceral form of leishmaniasis which affect the 

internal organs and, if left untreated, can end with the death (WHO 2010). L. major and 

L. tropica (Old World) as well as L. braziliensis (New World) cause mainly the cutaneous 

leishmaniasis, which is in most cases self-limiting with scarring (WHO 2010). L. braziliensis, 

however, can also cause a more severe mucocutaneous form, which needs to be treated 

(Neuber 2008). To date, there exists no vaccine against leishmaniasis despite the substantial 

efforts of laboratories (Kedzierski 2010). 

 

 



Synopsis of the thesis 

3. Synopsis of the thesis 

3.1 General objectives and outline 

The overall motivation of this thesis can be divided into three main issues: 

(1) Identifying the main climatic factors affecting occurrences of disease vectors and 

vector-borne diseases. 

(2) Investigating the risk of emerging/resurging disease vectors or vector-borne diseases 

for European regions under current climatic conditions. 

(3) Evaluating the temporally changing spatial patterns of risk exposure for European 

regions during the 21st century. 

In order to cope with these challenges, regional climate change projections are used 

for exploration. The topic on the relevance of climate change effects on vector-borne diseases 

is introduced and the possible application of data provided by regional climate models is 

given (article 1). 

Firstly, the research focus is directed to disease vectors that were recently (re-) intro-

duced to Europe. Here, the invasive mosquito species Ae. albopictus and Ae. aegypti and the 

dengue virus as their probable most severe transmittable pathogen is of special interest. 

Secondly, phlebotomine sandflies as group of disease vectors which can be considered as 

native to the European continent and their most severe transmittable pathogens belonging to 

the Leishmania infantum complex are addressed. Europe or specific Central European regions 

are defined as spatial target to apply the spatio-temporal risk analyses. Research work is 

divided into two approaches in which the opportunities of regional climate change projection 

for spatio-temporal risk analyses of vector-borne diseases are presented.  

In a first approach, the main known temperature constraints of pathogens or vectors, 

derived by experiments and observations, are used to transfer to future conditions. Climatic 

constraints for dengue virus amplification within the primary vector Ae. aegypti were taken 

from two laboratory experiments. Using projected temperature data in a daily resolution, 

European risk zones are identified that fulfil the requirements. Furthermore, the longest poten-

tial duration of dengue transmission is determined (article 2). Analyses for vector and patho-

gen requirements in combination are carried out exemplary for sandflies and Leishmania 

infantum. The projections for the main known temperature constrains of vector and pathogen 

are overlaid to detect potential temperature-derived future risk areas in Germany (article 3). 
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These two studies illustrate the opportunity of regional climate models for direct climate im-

pacts studies of vector-borne diseases. 

In a second - rather statistical - approach it is demonstrated how regional climate 

change projections can be integrated in species distribution models. Vector-borne pathogens 

do just occur within the vector or hosts, respectively. Due to this reason, relating environmen-

tal variables to spatial occurrences of pathogens would probably fail. Therefore, the purpose 

of species distribution models was solely practiced for the disease vectors. 

The bioclimatic niche for the invader Ae. albopictus is determined by relating geog-

raphically explicit vector species presences with current bioclimatic conditions. Here, the 

effects of different selections of variables and training regions are evaluated. Then, the deter-

mined niches - representing best the current occurrence - are transferred to the expected future 

conditions by using data of the regional climate model COMO-CLM. This enables identifying 

future climatic suitability for the mosquito in Europe (article 4).  

In general, projected climatic suitability does not necessarily imply vector occurrences 

in the respective region. For this reason, it is shown how conventional niche modelling can be 

improved by integrating species natural dispersal ability. Due to the fact that the dispersal of 

Ae. albopictus to climatically suitable habitats is mainly supported by human activities and 

hence happens by chance, this approach was practiced on disease vectors with mainly natural 

dispersal. Therefore, firstly, future climatically suitable habitats are projected for phleboto-

mine sandflies. Then artificial landscapes are generated in which the movement of the species 

will take place. The landscapes are characterised by both, stable environmental conditions but 

also changing landscape elements due to climatic changes. This methodological task enables 

to project species future occurrences (articles 5 and 6). 

Finally, the use of regional climate projections for risk assessments of vector-borne 

diseases is brought into a bigger scientific context (article 7). Therefore, a framework is pro-

posed that attempts to include geographical expertise in risk analyses. The main knowledge 

and surveillance gaps concerning vector-borne diseases are identified. New approaches are 

presented with the ability to close these gaps and the aim to support epidemiological studies 

of vector-borne diseases. 
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3.2 Articles´ purposes, histories and authors´ contribution 

 

Article 1: 

Fischer D., Thomas S., Beierkuhnlein C. (2010): Climate change effects on vector-borne 

diseases in Europe. Nova Acta Leopoldina 112(384), 99-107. 

 

Article´s purpose and history: 

In article 1 the main facets of climate change effects on several vector-borne diseases 

are given. This article provides an overview about recent trends and emergence of vector-

borne diseases with a spatial focus on Europe. A methodological task to determine future 

vector occurrences by using regional climate change projections with bioclimatic envelope 

modelling is introduced. The article is published in a special issue of the “Nova Acta 

Leopoldina”. This issue is based on lectures given at the international congress “Continents 

under climate change” as event of the Humboldt-Universität zu Berlin on its 200th anniver-

sary, held in April 2010. 

 

Authors´ contribution: 

Dominik Fischer and Carl Beierkuhnlein developed the idea of the manuscript. 

Dominik Fischer wrote the manuscript and prepared the figures. Stephanie Thomas evaluated 

the findings of a literature search in the ISI Web of Knowledge and summarized the results in 

the table. She gave valuable comments on the manuscript. Carl Beierkuhnlein edited the 

paper. 
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Article 2: 

Thomas S.M., Fischer D., Fleischmann S., Bittner T., Beierkuhnlein C. (2011): Risk 

assessment of dengue virus amplification in Europe based on spatio-temporal high 

resolution climate change projections. Erdkunde 65, 137-150. 

 

Article´s purpose and history: 

The extrinsic incubation period indicates the time in which an infected vector becomes 

infectious (capable to transmit the pathogen). This is one of the main factors regulating 

transmission of a vector-borne disease, assuming a competent vector is present. In this study, 

two laboratory findings concerning temperature thresholds for dengue virus amplification 

within the vector Ae. aegypti are used. The risk analyses are based on projected temperature 

data in daily resolution obtained from the regional climate model COSMO-CLM. European 

regions, where dengue virus amplification can be expected and the longest potential season 

for virus amplification are identified. 

 

Authors´ contribution: 

 Stephanie Thomas and Dominik Fischer contributed equally to this work. Stephanie 

Thomas had the idea of the paper and searched for profound studies concerning the extrinsic 

incubation period of the dengue virus. She wrote mainly the introduction with biological-

ecological background of the study and the discussion. Dominik Fischer developed the code 

for the analysis in GIS and arranged the figures 1-4. He mainly wrote the methods, results and 

the conclusion. He pre-processed the climatic data with Stefanie Fleischmann. Stefanie 

Fleischmann practiced the final analysis in GIS based on the developed code and wrote a first 

draft (in German) as her Bachelor-thesis. Torsten Bittner prepared scripts written in Python 

and R in order to standardize the procedure in GIS. He additionally arranged figure 5. Carl 

Beierkuhnlein was the supervisor of Bachelor-thesis of Stefanie Fleischmann, gave critical 

comments and edited the manuscript. 

 

20 



Synopsis of the thesis 

Article 3: 

Fischer D., Thomas S.M., Beierkuhnlein C. (2010): Temperature-derived potential for 

the establishment of phlebotomine sandflies and visceral leishmaniasis in Germany. 

Geospatial Health 5, 59-69. 

 

Article´s purpose and history: 

The aim of this paper is to determine risk classes for the potential establishment of 

visceral leishmaniasis in Germany in the face of climate change. For this purpose, the main 

known temperature constraints for the establishment of the disease vectors (phlebotomine 

sandflies) and the pathogen (Leishmania infantum) within the vector were are identified and 

projected to future conditions. A final overlay of the suitability maps for vector and pathogen 

leads to the temperature-derived risk classes for potential establishment of visceral leish-

maniasis in Germany. Projections for the 21st century are based on temperature data of 

REMO. 

 

Authors´ contribution: 

Dominik Fischer had the idea for this study, did the analysis and wrote the manuscript. 

He prepared figures and tables. Stephanie Thomas commented the paper critically. Carl 

Beierkuhnlein helped in searching the target journal and edited different versions of the paper 

(from submission stadium to the final draft). 
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Article 4 

Fischer D, Thomas S.M., Niemitz F., Reineking B., Beierkuhnlein C. (2011): Projection 

of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate 

change conditions. Global and Planetary Change 78, 54-64. 

 

Article´s purpose and history: 

Within this paper the current bioclimatic niche of Ae. albopictus is modelled for the 

native range and the entire (invaded) global range using maximum entropy approach. The 

effects of different selections of bioclimatic variables (expert knowledge vs. statistic based) 

are evaluated. Niche similarity between the native and the global range is analysed. The glo-

bal models (regardless the chosen bioclimatic variables) fitted best with the recent regions of 

occurrence of the mosquito and were hence used to project species future climatic suitability 

in Europe. Projections are based on data provided by the regional climate model COSMO-

CLM. Potential failure of projections due to non-analogue climate is excluded via Multi-

variate Environmental Similarity Surface analysis. 

 

Authors´ contribution: 

Stephanie Thomas, Franziska Niemitz and Carl Beierkuhnlein had the initial idea of 

climate change projections for Ae. albopictus with the regional focus of Bavaria. Franziska 

Niemitz practiced these previous analyses and wrote a first draft (in English) as Master thesis. 

She organized an initial data set of species presence records. Stephanie Thomas completed 

this data set with a search for additional infestations of the species from the year 2003 on-

wards and provided these references in the Supplemental Material. She wrote main parts of 

the introduction, especially the parts concerning species ecology. Dominik Fischer practiced 

the species distribution models and future projections for whole Europe and tested of non-

analogue climatic conditions by Multivariate Environmental Surface analysis. He wrote the 

main parts of the results, discussion and conclusion and prepared the figures. Dominik Fischer 

and Björn Reineking wrote the methodology chapter and generated the tables. Additionally, 

Björn Reineking tested the different data sets for niche similarity and provided expertise for 

further issues concerning the modelling procedure. Björn Reineking and Carl Beierkuhnlein 

(both supervisors of the Master thesis from Franziska Niemitz) gave both critical comments 

on the manuscript and were responsible for the final editing. 
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Article 5:  

Fischer D., Thomas S.M., Beierkuhnlein C. (2011): Modelling climatic suitability and 

dispersal for disease vectors: the example of a phlebotomine sandfly in Europe. Procedia 

Environmental Sciences, in press. 

 

Article´s purpose and history: 

The paper provides a methodological background on enhancing conventional bio-

climate envelope modelling of species distribution with species specific dispersal ability. The 

calculations of the different compartments to generate the least-cost path (cost surface, dis-

tance and backlink) as most likely way of species dispersal are presented on the example of 

the sandfly species Phlebotomus perniciosus. This description provides the supporting meth-

odological information for article 6. The special issue of Procedia Environmental Sciences is 

based on contributions of participants of the “1st conference on Spatial Statistics: Mapping 

Global Change” held in March 2011 in Enschede, the Netherlands. 

 

Authors´ contribution: 

 Dominik Fischer had the idea of the manuscript and wrote it. He practiced the analysis 

and prepared the figures. Stephanie Thomas commented the paper critically. Carl 

Beierkuhnlein finally edited the paper. 

 

Remark: Published in Procedia Environmental Sciences (Volume 7, 164-169). 
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Article 6: 

Fischer D., Moeller P., Thomas S.M., Naucke T.J., Beierkuhnlein C.  (2011): Combining 

climatic projections and dispersal ability of phlebotomine sandflies: A methodological 

task to estimate vector responses to climate change. PLoS Neglected Tropical Diseases, 

under review (submitted 18th of July, 2001). 

 

Article´s purpose and history: 

This article is based on the previous paper (article 5) and supports the proposed 

methodological task with concrete results. Within this paper, firstly, bioclimatic niches of five 

Phlebotomus species are modelled and projected to future conditions of Central Europe 

(Austria, Germany and Switzerland). Projections of climatic suitability are enhanced by 

analysis concerning potential natural dispersal pathways. Therefore, species potential move-

ment through artificial (future) landscapes is analysed. Those landscapes are attributed by 

different cost factors representing the different landscape features. The least-cost paths, which 

correspond to the least effort for species movement, are calculated throughout the 21st cen-

tury. Combining the two approaches - niche modelling and dispersal analysis - allows distin-

guishing between climatically suitable regions which can be occupied by the species from 

those that are unreachable by natural dispersal. The editorial board invited the authors to 

submit the paper for full consideration (review process) after initial pre-submission inquiry. 

 

Authors´ contribution: 

 Dominik Fischer had the idea and wrote the paper. He practiced the analysis and pre-

pared figures and tables. Philipp Moeller processed the data and practiced previous species 

distribution models with the data for his Bachelor thesis. Stephanie Thomas commented the 

paper critically. She had the idea for figure 1. Torsten Naucke provided the sandfly occur-

rence data from his literature database and own field collections. He gave valuable hints how 

to integrate expert knowledge on sandfly ecology for the least-cost analysis. Carl 

Beierkuhnlein (supervisor of the Bacherlor thesis of Philipp Moeller) edited the final version. 

 

Remark: Published in PLoS Neglected Tropical Diseases (Volume 5, e1407) after minor 

revisons and changed title: “Combining climatic projections and dispersal ability: a method 

for estimating the responses of sandfly vector species to climate change”. 
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Article 7: 

Fischer D., Thomas S.M., Beierkuhnlein C. (2011): Vector-borne diseases in a rapidly 

changing world - Geography needs to become infected! The Geographical Journal, 

submitted (3rd of August, 2011). 

 

Article´s purpose and history: 

Within this paper a framework to include geographical expertise in research and sur-

veillance of vector-borne diseases is provided. In the previous case studies applications of 

regional climate projections for spatio-temporal risk analysis are demonstrated. Here, the 

focus is a more conceptual one by offering a scale-dependent proposal for risk analysis of 

vector-borne diseases under global change conditions. It is shown how regional climate 

change projections can be integrated in this framework as a first step in risk assessment. This 

consequently demands for follow-up studies for the detected climatic risk zones. The linkage 

between research and surveillance of vector-borne diseases is given. 

 

Authors´ contribution: 

 Dominik Fischer had the idea of the manuscript and prepared the figures. Stephanie 

Thomas commented the paper. Dominik Fischer and Carl Beierkuhnlein wrote the manu-

script. Carl Beierkuhnlein finally edited the manuscript. 

 

Remark: Editor of “The Geographical Journal” instructed for major revisions after receiving 

reviewers’ comments. 
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4. Critical reflection and outlook 

4.1 Concerns about the use of climate projections for risk analyses 

Vector-borne diseases are ranked as one of the most severe emerging infectious dis-

eases (Morens et al. 2004). In a global perspective, however, there is no evidence that solely 

climate change in the 20th century has supported vector-borne diseases (Kovats et al. 2001). 

Although, in particular Reiter (2008) stated that climate change alone has not affected the 

spread of vector-borne diseases alone, there is no doubt concerning climate change effects on 

vector-borne diseases. However, large-scale orientated human activities may superpose cli-

mate change effects. Especially in the case of Malaria, probably one of the most severe human 

pests in the modern age, a global recession during the 20th century has been identified 

(Gething et al. 2010). In that case, for instance, the generous use of DDT has probably caused 

the recession. 

The effects of climate change do not act everywhere in the same manner neither at the 

same time, the same intensity nor on the same spatial scale. Especially on the example of 

mosquito disease vectors it has been demonstrated that the suitability of environmental habitat 

conditions would increase under climate change conditions for some regions, while also de-

crease for others (Peterson 2009). Within this thesis, the spatial focus is directed to Europe. 

The addressed European regions can be as the potential northernmost limit of distribution, 

where, consequently, mainly climatic conditions regulate the maximal extension of suitability 

for the addressed vector-borne diseases. The aim of this thesis is not to determine the intensity 

but rather the potential occurrences of specific diseases vectors or vector-borne diseases, 

respectively. Therefore, the previously mentioned concerns about climate change effects are 

legitimate but cannot be seen as counter-argument to the topic of this thesis. 

The presented risk analyses are related to climatic projections. Those projections are 

based on assumptions, for instance concerning the choice of emission scenario which is used. 

Hence, there necessarily exists a chance that the future developments will not exactly take 

place as assumed. Due to this reason, the developed risk maps should not be interpreted as 

factual forecasts of emergency of a disease vector or of the transmittable disease. Instead, the 

results indicate possible future developments, assuming the chosen assumptions will come 

true. Generally, the intrinsic problem with projections about the future is that they are not test-

able. In order to cope with the critic of some scientists that future projections are hence non-

scientific (see Randolph 2009), it is advisable to take evidence from the past or test the 

analysis on the current situation. Then projections are expedient and more reliable. Therefore, 
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expert knowledge from observations or experiments was taken in the first part of this thesis 

and species distribution models were tested on the current condition, in the second part. 

 

4.2 Development of novel climate models and a new generation of scenarios 

Although regional climate models can be seen as powerful tool for climate impact 

studies, the models still fail to capture temporarily and spatially small-scale local specifics 

(Harte 2008). The quality of projections concerning climatic extreme events is biased by the 

spatial resolution the climate models. While spatial resolutions of 10-20 km (used in these 

studies) are proper for projections for climatic long-term trends, they failed for projections of 

short-term events. Due to this spatial limitation of occurring weather extremes, reliable pro-

jections requires a further downscaling from the regional level to the local one. Here, general-

izations across scales are inappropriate as the effects on vector-borne diseases are often 

dependent on the specific of the event itself (Ivers and Ryan 2006). 

Despite of the required embedding of extreme events in climate models, scientists are 

currently working on novel emission scenarios (Moss et al. 2010, Overspeck 2011). Up to 

now, the development of the IPCC scenarios was based on a sequential approach. Only a 

group of specialist determined the respective reaction of developed emission scenarios of 

greenhouse gases in analyses and their reactions of the atmosphere. Various scientific 

disciplines which required future projection for their climate impacts studies were not 

involved in the process of development (Moss et al. 2010). Therefore, concerns and sugges-

tions of the users could not be integrated in the stage of development. 

The novel scenarios which are currently under development can be seen as a parallel 

approach in which various scientific disciplines are involved. In this completely new 

paradigm, traditional climate research is joined with research on climate adaption, services 

and assessment (Overspeck 2011). They will all give input for the calculation of the feedback 

of the climate system. It is aimed to provide analysis and advice that comprehensively 

addresses all or at least many aspects of the climate change issue (Sarofim and Reilly 2011). 

Consequently, these novel scenarios are much more complex in development. Nevertheless 

the new generation of scenarios offers two main advantages: First of all, embedding different 

scientific disciplines that are all working on systems influencing the climate at the early 

progress promises a higher quality (Moss et al. 2010). Secondly, the required data are more 

understandable for a broad interdisciplinary audience and can then be reported more promptly 

(Overspeck 2011). 
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4.3 Proposal for future research activities 

Elucidating expert knowledge e.g. via field observations or laboratory experiments 

supports quantification of climate change impacts on vector-borne diseases (Gale 2010). 

Especially projections, based on previously determined influence of weather extremes for 

instance on vector survival, may provide valuable support for the detection of future tenden-

cies. Here, new experiments with regard to e.g. species frost or heat tolerance have to be 

generated which then could be applied for the novel climate change scenarios on different 

spatial scales. 

Furthermore, while several European regions can expect increasing climatic suitability 

for various vector species (shown in the different case studies) a special focus should be 

directed to biotic interactions such as competitive behaviour and niche similarity between the 

species. In comparison to most mosquitoes, the knowledge concerning sandfly biology and 

ecology is rather scarce. There exist only few fundamental works on this topic (e.g. Killick-

Kendrick 1999, Feliciangeli 2004). Much more is required in order to support and enhance 

model projections by expert knowledge.  

In the case of introduced mosquito-borne diseases, the primary focus should be 

directed to potential introduction pathways due to the globalized travel and trade activities. 

From the introduction harbours the invaders manage to spread via highway traffic. The 

collected eggs of Ae. albopictus at a resting place of the highway A5 near the city of Rastatt in 

the southwest of Germany hints on introduction of the species from southern parts of Switzer-

land or northern parts of Italy across the Alps (Pluskota et al. 2008). The continuous and 

ongoing introduction and establishment of mosquitoes to Europe is not only limited to Ae. 

albopictus. The Yellow fever mosquito (Ae. aegypti) has recently been founded in the in the 

Netherlands (Enserink 2010) where intensified mosquito control activities avoid an infestation 

(Scholte et al. 2010). The Asian bush mosquito (“Aedes japonicus”, syn. Ochlerotatus 

japonicus) is meanwhile established in the Central European regions of northern Switzerland 

(Schaffner et al. 2009) and southern Germany (Becker et al. 2011).  

Pathogen introduction, instead, is mainly related to infected travellers coming from 

endemic regions by air planes. This is how the Chikungunya-virus was introduced to Europe 

(Rezza et al. 2007) and the West-Nile virus to United States (Lanciotti et al. 1999). Conse-

quently, future research should attempt to take such invasion and dispersal pathways into 

account in the face of global exchanges. Here, data concerning the import of container import 

at the main European harbours as well as data from the airline companies regarding travellers 
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from endemic countries can be included in risk analysis. The proposed research activities 

would be a further step towards an accurate risk assessment of climate-sensitive vector-borne 

diseases, which Europeans should not longer consider as “exotic tropical diseases”. 

 

4.4 Concluding remark 

Finally, I would like to give a personal statement by taking up the previously noted 

concern of Al Gore about “the planet [that] has a fever”. Indeed, he is right that rising global 

temperatures cause a fever of our planet. But this is not the only fever on the earth. Increasing 

number of cases of vector-borne diseases, resulting mainly in illness with high temperatures 

in human beings can cause a second fever. This fever is probably closely related to the first 

one and can be expected to increase and get worse in the same manner for European regions 

during the 21st century. 
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6. Articles 

6.1 Article 1:  

Climate change effects on vector-borne diseases in Europe 

 

With 1 Table and 2 Figures. 

 

Abstract 

 The most dangerous infectious diseases occur in tropical or subtropical regions. Climate 

change, however, will be associated with the spread of vector-borne diseases to higher 

latitudes. Here, the resulting bio-risks for Europe are presented in more detail. Knowledge on 

suitable future habitat for disease vectors in Europe is scarce. Here, one approach - the model-

ing of bioclimatic envelopes - is presented. By combining these envelopes with explicit 

regional climate change simulations, maps of future suitable climatic conditions for disease 

vectors can be developed. In addition to climatic drivers, globalization might also contribute 

to the spread of disease vectors in Europe.  

 High invasive capacity combined with travel and trade has turned several disease 

vectors into “global players”. Conceivably, climate change might create the ideal conditions 

at sea- and airports, from which imported vectors could then go on to conquer other areas in 

Europe. Nevertheless, vector establishment does not always equate to disease outbreak. For 

this, additional factors such as the abundance of reservoir hosts and pathogen requirements 

(e.g. thermal constraints) must be fulfilled. 

  As a matter of fact, European health care is challenged by novel threats for which it 

must be prepared. This will require both interdisciplinary research and close links between 

policy and science in order to become proactive and if necessary to adapt monitoring systems 

in time. 

 

Zusammenfassung 

 Die gefährlichsten Infektionskrankheiten treten in tropischen bzw. subtropischen 

Gebieten auf. Der Klimawandel wird jedoch mit sich räumlich ausbreitenden vektor-

übertragenen Krankheiten in höhere Breiten in Verbindung gebracht. Die dadurch auftre-

tenden Biorisiken werden im Folgenden für Europa näher beleuchtet. Bisher ist sehr wenig 
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darüber bekannt, welche europäischen Regionen künftig gefährdet sein werden. Als erster 

Ansatz kann das Modellieren der bioklimatischen Nische, die der Vektor unter aktuellen 

klimatischen Bedingungen bevorzugt, verstanden werden. Die ermittelte Nische kann mithilfe 

regionaler Klimaszenarien auf künftig veränderte Bedingungen übertragen werden.  

 Neben klimatischen Faktoren begünstigten intensivierte Handels- und Reisetätigkeiten 

die weltweite Ausbreitung invasiv auftretender Krankheitsüberträger. Ausgehend von großen 

europäischen See- und Flughäfen, könnten die importierten Vektoren weitere, für sie 

klimatisch geeignete, Gebiete besiedeln. Neuauftretende und sich etablierende Krankheits-

überträger sind jedoch nicht gleichbedeutend mit Krankheitsausbrüchen. Hierzu müssen 

zusätzliche Faktoren wie die thermischen Anforderungen des Erregers erfüllt sein, damit 

dieser zwischen Wirtstieren zirkulieren kann. 

 Das europäische Gesundheitssystem wird unausweichlich mit dieser neu bzw. wieder 

auftretenden Gefährdung konfrontiert werden. Dies erfordert den interdisziplinären Wissen-

schaftsaustausch sowie enge Verknüpfungen zwischen Wissenschaft und Politik. Mithilfe 

frühzeitig angepasster Überwachungsmaßnahmen könnten die Risiken somit minimiert 

werden. 

 

1. Vector-borne diseases: Risk for human health 

 From an ethical point of view, human health should generally be an issue that is given 

priority in science, policy, and in particular in climate change research. According to regional 

climate models, Central Europe will be subjected to above-average warming and its precipita-

tion regimes are expected to change in a patchy and non-uniform way, thus creating irregular 

regional conditions (Kysely and Beranova 2009). In 2003 human mortality rates were found 

to respond to climatic extremes. A more hidden and latent health threat from climate change 

is related to vector-borne diseases, where organisms and pathogens are highly sensitive to the 

climate. Recent occurrence has been strongly controlled by the climatic constraints of the 

biota constituting a chain of infection: pathogen, vector, reservoir and host (Fischer et al. 

2009a). 

 Here, we briefly highlight the potential effects of climate change on vector-borne 

diseases, which could provoke the (re-)emergence of hazardous bio-risks within Europe in the 

21st century. We identify potential risk vectors that are expected to expand their range or 

become invasive in Europe. We present methodological tools for estimating the tendency to 
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spread and finally, we suggest additional drivers that are contributing to the supposed spread 

of vector-borne diseases. 

Tab. 1: Selected major vectors and their transmitted pathogens that may cause zoonotic 
diseases in Europe. Abbreviations behind vector species means: mosquitoes (M), ticks (T) 
and sandflies (S). Assumed but unproven vector competence is marked with A, while proven 
Laboratory competence is marked with L. Pathogens, with few occurrences in Europe are 
marked with *. 

Spread of endemic vectors and their transmitted pathogens 

Ixodes ricinus (T) 

northward trend 

Anaplasmataceae, Babesia divergens, Bartonella, 
Borrelia (afzelii, burgdoreri, garnii, valaisiana), 
Central European and Tick-borne Encephalitis, 
Coxiella burnetii, Francisella tularensis, Rickettsia 
helvetica 

Phlebotomus mascittii (T) 

northward trend (Germany) 

Leishmania infantum A 

Phlebotomus perniciosus (S) 

north-eastward trend         
(France, Germany) 

Leishmania infantum, Arbia and Toscana virus 

Widespread European vectors and their possible transmitted emerging pathogens 

Aedes vexans (M) Eastern Equine Encephalitis, Rift Valley fever 
(subspecies: Ae. vexans arabiensis) and West Nile 
Virus  

Culex pipiens pipiens (M) Rift Valley fever and West-Nile Virus (enlargement) 

Spreading tendencies of endemic vectors and their possible transmitted emerging 
pathogens 

Dermacentor marginatus (T) Crimean-Congo Haemorrhagic Fever Virus* 

Possible emerging vectors and their transmitted pathogens 

Aedes albopictus (M) 

recently introduced (Italy 1990) 

Chikungunya, Dengue and further 20 arthropod-borne 
viruses! 

Aedes japonicus (M) 

recently introduced (Switzerland 
2007) 

Eastern EquineL,- Japan BL and St. Louis 
EncephalitisL, West Nile Virus 

Possible re-emerging vectors and their transmitted pathogens 

Aedes aegypti (M) 

disappeared in the last century 

Dengue and Yellow Fever Virus 

Anopheles maculipennis  
complex (M) 

Plasmodium ssp. * 
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2. Disease vectors in the light of a changing European climate 

 Disease vectors are carriers that transmit pathogens from one host to another. The 

majority of vectors are ectothermal arthropods. They are unable to regulate their body 

temperature and depend directly on their environment. Hence, they react promptly to 

changing thermal conditions as a survival strategy. The competence of vectors has been 

compiled in Table 1 for selected species. 

 In the light of climate change, northward and altitudinal spread has been observed for 

ticks such as Ixodes and Dermacentor species (Lindgren and Gustafson 2001, Gray et al. 

2009) with warming leading to increased winter activity, as has been observed for Ixodes 

ricinus in a Berlin forest (Dautel et al. 2008). 

 Risks from regionally restricted infectious diseases, such as sandfly-borne diseases (e. g. 

Leishmaniasis), are still underrepresented in European science and policy (Dujardin et al. 

2008). Although the basis of knowledge on future trends assumed for native and alien disease 

vectors in Europe is limited there is some cause for alarm: Recently, a northward expansion of 

sandflies has become increasingly more apparent (Aspöck et al. 2008, Naucke et al. 2008). 

 

3. Projecting the future: Bioclimate envelope modeling of disease vectors 

 The establishment of vector-borne diseases directly depends on the presence of disease 

vectors. While several studies and observations provide general information on the preferred 

habitats of vectors, only very little is known about the role of spatio-temporal variation in 

resource availability. Advanced and more sophisticated bioclimatic models may close this gap 

as they aim at defining the bioclimatic envelope (Fig. 1) that best describes the limits of a 

species’ spatial range. Species records are correlated with selected bioclimatic variables 

(Heikkinen et al. 2006) and those variables are selected that best describe the current distri-

bution pattern. 

 Projections of species’ biogeographical ranges for the future are conveyed by simulating 

future distributions for selected climate change scenarios (Hijmans and Graham 2006). Data 

on projected climate change in the 21st century are supplied on global and regional scales by 

climate models (e.g. Jacob 2008). In contrast to their driving global models, regional climate 

models (RCM) are capable of taking topography into account at the meso-scale. They simu-

late climate change at a much higher spatial resolution, which is crucial in very structured 

relief such as European high mountain regions. The fine grain of regional projections 
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improved the quality of impact studies on human health (Giorgi and Diffenbaugh 2008). 

Furthermore, assessments on the dispersal of vector organisms in the face of climate change 

benefit in particular from a high spatial resolution (Jacob 2008, Fischer et al. 2009b). 

Connecting bioclimatic variables with presence records of disease vectors 

Calculating the preferred bioclimatic envelope and mapping 
the potential distribution under current climatic conditions 

 

Fig. 1: Principle of bioclimatic envelope modeling of climate-sensitive disease vectors in 
regional climate change investigations 
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An intrinsic problem that is apparent in climate models is also a problem in regional 

models: climatically extreme and thus extraordinary phases are difficult to distinguish from 

statistical noise and modeling artifacts. In particular, forecasts on precipitation are still rather 

unreliable. Projections vary strongly between scenarios and, more importantly, between 

regions (Beniston et al. 2007).  

We realize that other environmental variables (e.g. land use change) contribute to the 

successful establishment of vectors. Here, uncertainties are striking. Even when limitations 

are taken into account, we are convinced that bioclimatic envelopes remain a powerful tool 

for estimating the potential responses of vector distribution to climate change (Fischer et al. 

2009c). Hence, the investigation of spatio-temporal climatic suitability of disease vectors in 

Europe can be considered to be a first step in detecting potential risk areas. 

 

4. Climatic constraints of pathogens and climatic effects on reservoir hosts 

 The presence of vectors does not necessarily imply disease outbreaks. Moreover, risk 

analysis on vector-borne diseases in a rapidly changing European environment requires pro-

found knowledge on the thermal constraints of pathogens. 

 Several mosquitoes (genus Anopheles) with vector competence for Malaria are now 

even endemic to Europe. These species do not only establish in the Mediterranean but also in 

temperate regions. Serendipitously, neglecting a few individual autochthonous cases (Kampen 

et al. 2003), the pathogen Plasmodium vivax is not established in Europe. Jetten and Takken 

(1994) called this the phenomenon of “Anophelism without malaria in Europe”. These authors 

stated that these mosquitoes require more than 100 days with a mean temperature of at least 

14.5 °C to become infectious. However, rising temperatures may exceed these constraints in 

the future. 

 Common European vectors such as Aedes vexans and Culex pipiens pipiens could 

function as vectors for other emerging pathogens such as Eastern Equine Encephalitis (en-

demic to the USA) and the Rift Valley Fever Virus (currently endangering African 

populations) (Tab. 1). Unfortunately, there is not much knowledge available on pathogen 

constraints in general let alone on sustainable strategies. Microorganisms and viruses usually 

perform with high turn-over rates and undergo mutation to adapt to a changing environment. 

 The Hantavirus (Bunyaviridae) for instance, used to only occur in limited regions of 

South-East Asia but is now present in many areas of the world. The different strains, which 
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are named according to the regions where they first occurred (e.g. Hantaan, Dobrava, 

Puumala, Korea, Sin-Nombre), are closely related to specific interactions with rodent hosts. 

Puumala Virus, the most common Hantavirus in Europe, is carried by the bank vole (Myodes 

glareolus). Humans contract the virus by inhaling aerosols or the dust particles of rodent 

excreta that are contaminated with the virus. 

 The infectious capacity of reservoir hosts is an additional factor contributing to the 

performance of a vector-borne disease. Based on the Hantavirus mode of transmission and 

circulation in nature, it seems reasonable to assume that climate change might influence 

Hantaviruses through impacting their reservoir host populations (Klempa 2009). Drought and 

heat waves, experienced by Europeans in 2003 as a memorable example of climatic extremes, 

are expected to increase both in amplitude and frequency under a changing climate (Jentsch et 

al. 2007, Jentsch and Beierkuhnlein 2008). They may also cause intensified fructifications of 

deciduous trees. Such mast years combined with anthropogenically-created or storm-related 

sparse forests may cause an increase in rodent populations and hence increase the risk of 

human infections with the Hantavirus (Beierkuhnlein and Foken 2008, Clement et al. 2009). 

 Furthermore, the spatial pattern of some infectious diseases (e.g. the West-Nile Virus) is 

related to the routes of migratory birds, which carry the pathogen as reservoirs over short and 

long distances. The West Nile Virus, originally identified in the West Nile district in Uganda, 

was commonly considered as a minor risk, inducing a fundamentally non-symptomatic 

disease or a mild influenza-like illness in humans. However, over the last 15 years, several in-

fections of humans were reported with fatal cases of encephalitis. These cases were mainly 

related to elderly people in Southern Europe i.e. Romania 1996, Italy 1998, and France 2000 

(Zeller and Schuffenecker 2004). 

Empirical evidence suggests that climate change alters the speed, timing and typical 

routes of bird migration (Hedenström 2007). Research on the potential reduction of bird mi-

grations, resulting in less pathogen transport to higher latitudes is valuable for risk analysis. 

 

5. Global change factors contributing to the spread of vectors and diseases 

The Asian tiger mosquito (Aedes albopictus) is native to South-East Asia. Obviously, 

the spread of the species has been assisted by human introductions and has not only responded 

in its global pattern to climatic constraints or favorable conditions (Fischer et al. 2009a). 

Meanwhile the mosquito has been introduced to almost all continents including Europe due to 
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the global shipping of goods (Fig. 2) and its high adaptive capacity (Enserink 2008). 

However, as its introduction to Europe already took place in Albania in 1979 and in Italy in 

1990, climate change is thought to be assisting in its dispersal across the continent (ECDC 

2009). 

Fig. 2 Global shipping net. Frequency is coloured from blue (low) to red (high). Hence Europe 
is closely connected with almost all continents. Endangered are therefore many European 
harbours. Biosecurity controls at European harbours may help to avoid accidental 
introductions of harmful organisms. Adapted from Halpern et al. (2008). 
 

 Long-distance transport and travel enhance the risk of global invasions from vector-

borne diseases and have become important supporting mechanisms for their non-linear 

spread. Infected people from endemic areas may carry “exotic” pathogens to Europe. As a 

consequence of increased international travel, an increasing number of cases of Malaria and 

Dengue Fever have been reported at higher latitudes. Returning travelers become infected in 

endemic areas for instance and transport the pathogen back to Europe. 

Still, most pathogen’s thermal constraints have prevented them from establishing near 

European airports. However, one cannot entirely rely on this theory, as the Chikungunya-virus 

was introduced by an Indian traveler to Northern Italy (near Ravenna) and caused a local 

epidemic. In addition to the introduction of the pathogen and a fulfillment of the thermal 

requirements, a competent vector for Chikungunya (Aedes albopictus) was present. Hence, 

this invasive species was able to transmit the pathogen in the summer between (human!) 
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reservoir hosts. Such an unexpected disease outbreak documents the complex interactions that 

have to be considered. 

Trade and the import of pets (especially dogs) - regardless of whether these are legal 

or illegal - can also become a serious health problem. Many Europeans take pets from their 

preferred holiday destination - the Mediterranean. These pets (in most cases dogs) could be 

infected, in particular with the Leishmania species. The imported dogs then constitute a 

lasting reservoir. Sandflies appear to be undertaking climatically-induced range shifts towards 

the northern and eastern regions in Europe. These insects feed on mammals and can contract 

pathogens and transmit the disease to humans (Tab. 1). In this case, the introduction of the 

pathogen could be controlled efficiently by avoiding the trade and transportation of dogs. 

Sandflies are not very mobile and will perform rather diffusive and slow range shifts. 

 

6. Adaptation strategies - from monitoring to biosecurity 

 It is very likely that new kinds of climate-driven natural hazards will occur. In addition 

to abiotic responses such as avalanches, floods, storms, and drought, the ecological responses 

to changes in temperature and precipitation regimes have to be considered. 

 Taking into account the post-Copenhagen political environment, a great deal of un-

certainty is constituted in deviating international politics. Nevertheless, there are options for a 

variety of latent and previously not experienced responses in ecosystems and organisms. Pest 

outbreaks may damage forests and crops. However, the most serious threat to humans is re-

lated to the probable occurrence and spread of vector-borne diseases. In particular vector-

borne diseases without any options for a vaccination or a cure should be given high priority. 

 In the face of potentially novel climate-driven biorisks, adaptation strategies are 

urgently required. Preventative strategies may contribute to minimizing the consequences of 

climate change on human health. However, coping with uncertainty is difficult when large 

scales and severe consequences are involved. Many climatically-controlled vector-borne 

diseases (e.g. Leishmaniasis) are still not eminent in European countries, even if they consti-

tute serious health hazards. As a result of their expected surge, standardized notification regu-

lations are required to detect any tendency of spread and direction as well as local kernels of 

establishment. Improved knowledge on the biology and ecology of the species is needed. In 

addition to laboratory experiments, geographical analyses, correlations, and models all 

represent promising approaches. In terms of monitoring efforts, an interdisciplinary co-
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operation with traditionally low interaction ranging from entomology, to ecology, micro-

biology, virology, climatology, geography, and medicine must be implemented (Fischer et al. 

2009c). Studies on the economic repercussions of spreading vector-borne diseases will also 

become imperative. Research needs are evident, but incentives from the scientific community 

are lacking. 

 Due to globalization, continental and oceanic barriers are easily overcome. Biosecurity 

is recognized as being essential for islands that host sensitive endemic species with low com-

petitive capacity and not occupying ecological niches. Continents, in contrast, are perceived to 

be more or less ecologically saturated and in equilibrium. If this was an illusion in the past, it 

is ignorance in the future. Climate change is increasingly contributing to the development of 

novel habitats and to potential invasions. 

Implementing efficient biosecurity measures at European airports and harbors may 

reduce the risk of accidental introductions of exotic disease vectors and pathogens. Strict 

import and immigration controls of the oceanic islands (e.g. Hawaii, New Zealand) serve as 

role models. Australia managed to avoid the establishment of Aedes albopictus although cli-

matically suitable habitats occur. This stresses the importance of detecting the preferred bio-

climatic suitable habitats of disease vectors. Specific monitoring systems can then be concen-

trated in the respective regions. 
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6.2 Article 2:  

Risk assessment of dengue virus amplification in Europe based on spatio-

temporal high resolution climate change projections  

 

With 1 Table and 5 Figures. 

 

Summary 

During the last decades dengue incidences are emerging significantly around the 

globe. Currently, about one fifth of the human population lives in dengue risk zones, which 

are mainly located in (sub-) tropical regions of Southeast Asia and the Western Pacific. 

Dengue infections in European population mainly referred to returning travellers from tropical 

endemic regions. Nevertheless, vector establishment in Europe already took place and there-

fore the risk increases. Currently, autochthonous cases of dengue fever have been reported in 

Europe.  

Studies estimating the risk of dengue epidemics regarding changing climatic 

conditions in Europe are missing. Therefore, we close this gap by using the temperature 

constraints for virus amplification within the vector Aedes aegypti from two laboratory 

experiments. We transfer these findings to the changing European climate based on data pro-

vided from a regional climate model (COSMO-CLM; A1B and B1 scenario). Daily mean 

temperature were averaged for the time-steps 2011-2040, 2041-2070 and 2071-2100 in order 

to reduce natural variability but rather point out climatic trends for risk assessments. For both 

scenarios the strongest increase of temperature is projected after mid-century.  

Results indicate a growing threat of virus amplification in Europe especially towards 

the end of this century. Larger parts of the Mediterranean will be at risk. The southwest of the 

Iberian Peninsular appears to be especially threatened. Even in some parts of Central Europe, 

such as Southwest Germany, dengue virus amplification can no longer be excluded at the end 

of the century. However, it is unlikely that Aedes aegypti will serve as an efficient vector in 

Europe. In fact, it is Aedes albopictus that is an invasive species in Europe and potential 

differences in extrinsic incubation period between Ae. aegypti and Ae. albopictus have to be 

identified. Policy and public health authorities have to consider these emerging biorisks in or-

der to establish surveillance systems and develop counteraction strategies. Hence, we strongly 
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emphasize the need for a growing European awareness in the face of biological hazards that 

are responding to climatic changes.  

 

Zusammenfassung 

Dengue-Fieber ist eine durch Stechmücken übertragene Infektionskrankheit, deren 

Gefährdungspotenzial innerhalb der letzten Jahrzehnte dramatisch zunahm. Mittlerweile lebt 

ein Fünftel der Weltbevölkerung in Dengue-Risikogebieten, welche sich insbesondere in den 

(sub-) tropischen Gebieten Südostasiens und dem Westpazifik befinden. Regelmäßig wird das 

Dengue-Virus von infizierten Reisenden aus Endemiegebieten nach Europa importiert. In 

jüngster Vergangenheit treten auch vereinzelte autochthone Fälle in Europa auf. Ein kom-

petenter Überträger hat sich in Südeuropa bereits Ende des letzten Jahrhunderts etabliert 

(Aedes albopictus); ein Weiterer ist sporadisch wieder neu aufgetreten (Aedes aegypti).  

 Zu Risikoabschätzungen möglicher Dengue-Epidemien in Europa fehlen allerdings 

bislang Studien. Für eine thermisch abgeleitete Gefährdungsabschätzung nutzen wir 

Temperaturanforderungen des Virus zur Entwicklung im Vektor (Ae. aegypti) aus zwei ver-

schiedenen Laborexperimenten. Diese Anforderungen der sogenannten extrinsischen 

Inkubationsperiode des Virus werden auf die projizierte Erwärmung Europas im 21. 

Jahrhundert übertragen. Hierzu bereiten wir das projizierte Klimaänderungssignal der 

Szenarien A1B und B1 des Regionalen Klimamodells COSMO-CLM in täglicher Auflösung 

auf. Um signifikante klimatische Trends herauszufiltern und Unsicherheiten in den 

Projektionen der täglichen Durchschnittstemperaturen zu minimieren, werden diese für die 

Zeitabschnitte 2011-2040, 2041-2070 und 2071-2100 gemittelt.  

In beiden Szenarien wird eine stärkere Erwärmung ab Mitte des Jahrhunderts und 

speziell gegen Ende des Jahrhunderts projiziert. Insofern steigt die thermische Eignung im 

Verlaufe des 21. Jahrhunderts abhängig von der verwendeten extrinischen Inkubationsperiode 

an. Ende des Jahrhunderts ist eine Amplifikation des Virus in den wärmsten Regionen 

Mitteleuropas wie dem Oberrheingraben im Südwesten von Deutschland nicht mehr auszu-

schließen. In weiteren Studien bleibt zu klären, ob sich die extrinsische Inkubationsperiode in 

Ae. albopictus im Vergleich zu Ae. aegypti unterscheidet. Frühzeitig erkannte potenzielle 

Gefährdungsgebiete verhelfen politischen Entscheidungsträgern und dem Gesundheitssektor 

dazu, rechtzeitig Adaptions- bzw. Gegenmaßnahmen initiieren zu können. Unsere Ergebnisse 

verdeutlichen, dass Europa gewappnet sein muss, um nicht von Epidemien scheinbar exo-

tischer Tropenkrankheiten überrascht zu werden. 

50 



Article 2: Risk assessment of dengue virus amplification in Europe 

Keywords 

Dengue fever, emerging infectious disease, GIS, global change, global warming, mosquito-

borne disease, surveillance, vector-borne disease 

 

1. Introduction 

Globally, the importance of vector-borne diseases has increased significantly during 

the last decades. Today, this group represents about one third of all outbreaks of emerging 

infectious diseases (Jones et al. 2008). Changing spatial patterns of occurrence are observed. 

The reasons for such changes are manifold, ranging from globalization of travel and trade to 

environmental and climatic changes or modified human behaviour (e.g. Maier 2003; Sutherst 

2004; Fischer et al. 2009; Fischer et al. 2010a; Pfeffer and Dobler 2010; Randolph and Rogers 

2010).  

The dengue virus is mainly transmitted by the mosquitoes Aedes aegypti and Ae. 

albopictus. The latter ranks among the first 100 of the “World’s Worst” invaders (Crans 2008) 

and has been mostly introduced by trade of goods, especially used tires (Mitchell 1995). A 

distinction is drawn between different cycles of dengue: a primitive enzootic transmission 

cycle which involves lower primates, an epidemic transmission cycle in rural villages and the 

urban endemic/epidemic cycle in large urban centres, which is most relevant for public health 

(Gubler 1998). Four closely related serotypes of the arbovirus occur (DENV-1 to DENV-4), 

with specific geographical distribution and pathogenity (Halstead 2008). Furthermore, differ-

ent dengue genotypes (American and Asian DENV-2) show different ability of the virus to 

grow in mosquitoes (Halstead 2007). Dengue fever is characterised either by mild fever or 

high fever combined with severe headache, pain behind the eyes, muscle and joint pains and 

rash. Patients that suffer a secondary infection with another dengue virus serotype have a 

significantly higher risk for developing dengue haemorrhagic fever (DHF). Especially young 

children are concerned (Halstead1988; Guzman et al. 2002). Clinical features of DHF are high 

fever, often with liver enlargement and in severe cases accompanied by circulatory failure. 

The number of countries that experienced DHF epidemics has quadrupled between 1970 and 

1995. Without intensive care, affected human population can exceed mortality rates of 20% 

(WHO 2009; Cummings 2010).  
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Fig. 1: Current annual mean temperature in Europe and projected warming in Kelvin during 
the 21st century based on two IPCC emission scenarios. Projections are based on the regional 
climate model COSMO-CLM. Generally, projected warming is less severe for the B1 
scenario than for A1B. Highest increase in annual mean temperature is projected for Central 
parts of the Iberian Peninsular, the Alps and the northernmost parts of Scandinavia. Instead, 
the British Isles seems to be less affected by the projected increase of annual mean tem-
perature. 
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In Northern America, outbreaks have arisen along the Texas-Mexican border for about 

three decades (Reiter et al. 2003). Recently, locally acquired dengue infections were reported 

for Florida (CDC 2010). Up to now, Europeans tend to consider dengue as a travel-related 

disease only. Southeast Asia, especially Thailand, is the most important region of travel-re-

lated dengue infections, followed by Latin America, the Indian subcontinent, the Caribbean 

and Africa (Heddini et al. 2009; Jelinek 2009). The last dengue epidemic in Europe occurred 

in Greece during the years 1927 and 1928. At that time, Ae. aegypti was transmitting the virus 

(DENV-1) (Rosen 2006). During the following decades, dengue was no longer established in 

Europe. However, exotic arbovirus are thought to become a future public health concern in 

Europe (Pfeffer and Dobler 2009). In September 2010, the French Ministry of Health reported 

the first cases of dengue fever from autochthonous origin in Europe (La Ruche et al. 2010). 

Furthermore, a dengue virus infection was reported for a German traveller returning from 

Croatia (Schmidt-Chanasit et al. 2010) and there upon autochthonous cases were found in 

Croatia too (Gjenero-Margan et al. 2011).  

The potential rate of transmission depends on the daily survival rate and duration of 

the gonotrophic cycle of the mosquito (including searching for a host, blood feeding, blood 

meal digestion, eggs maturation, and oviposition). Virus amplification is determined by the 

extrinsic incubation period (EIP). EIP is defined as the time interval between the acquisition 

of an infectious agent (pathogen) by a vector and the vector’s ability to transmit the agent to a 

susceptible vertebrate host. The EIP includes virus replication, maturation and migration 

within the mosquito body to its salivary glands. Females remain infective during their entire 

life. Temperature is considered to be the main factor regulating the EIP and thus warmer 

temperatures shorten the EIP (Watts et al. 1987; Barbazan et al. 2010). If minimum tem-

perature thresholds for the EIP are not exceeded, the virus can not accomplish its amplify-

cation inside the vector and transmission, for instance to humans, can be excluded (Ooi and 

Gubler 2010).  

It is known that favourable meteorological conditions significantly influence dengue 

incidences in endemic regions such as South America (Luz et al. 2008) and Southeast Asia 

(Shang et al. 2010). Evidence suggests that global warming increases the latitudinal and 

altitudinal range as well as intensity of dengue transmission (Jetten and Focks 1997). At the 

end of the 21st century, about 5-6 billion people can be expected to live in risk areas of poten-

tial dengue transmission including present-day’s temperate regions (Hales et al. 2002).  
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Identifying the climatic constraints of the organisms that are involved in a chain of infection 

on spatio-temporal scales is the first step in determining risk areas (Fischer et al. 2010b). 

Although the WHO (2009) declared dengue as one of the main public health concerns, 

it is surprising that no study exists that geographically analyzes the risk of dengue for Europe. 

Especially the availability of highly resolved regional climate models, both in terms of spatial 

and temporal resolution, gives us the option to detect possible developments in the run-up to 

climatic changes. 

There is no doubt that Europe will be confronted with increasing temperatures in the 

21st century (Fig. 1). The question arises whether climate change will assist a potential re-

establishment of dengue in Europe. Here, we survey the risk of virus amplification by using 

the EIP. Our aim is to explore:  

i.) Which areas will provide suitable temperature conditions? 

ii.) At what time will these regions be at risk? 

iii.) Which longest seasonal duration of risk has to be expected? 

 

2. Material and methods 

First we took documented temperature requirements for EIP from literature. Then, we 

prepared climatic data of a regional climate model in a daily resolution for the 21st century 

and transferred the determined temperature requirements to three time-steps and two 

scenarios. We detect areas at risk in the 21st century and identify the longest temperature-

dependent intra-annual season of potential dengue virus amplification in Europe. 

 

2.1 Temperature constraints 

In this study we applied the temperature relationship for the EIP of the dengue virus. 

Ae. albopictus, a known vector of dengue virus, is already established at the European 

continent (mainly in Italy and the eastern shore of the Adriatic Sea). Studies on the EIP of this 

species are actually missing. Therefore, experiment-derived knowledge of EIP and tempera-

ture relationships was taken for Ae. aegypti (Blanc and Caminopetros 1930; Watts et al. 

1987). This mosquito was already endemic in Europe up to the Second World War and extinct 

thereafter. Currently, Ae. aegypti is established in Madeira (Portugal) (Almeida et al. 2007). 

The species was also introduced into the Netherlands (Scholte et al. 2010). This gives rise to 
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concern regarding a re-establishment of this dengue vector in continental Europe. Knowledge 

on temperature thresholds for virus amplification in Ae. aegypti generates from two experi-

mental studies: 

a) Blanc and Caminopetros (1930) detect an EIP of eight days with temperatures of at 

least 22 °C for dengue virus amplification. They aimed to identify the required EIP 

with special respect for Europe. For this laboratory study Ae. aegypti mosquitoes were 

taken from the Greek outbreak of dengue in 1927/28. 

b) In contrast to this, Watts et al. (1987) found temperature requirements for dengue virus 

amplification in a Bangkok strain of Ae. aegypti of at least 30 °C mean temperature at 

twelve consecutive days for mosquitoes with low virus dose or seven consecutive days 

with daily mean temperature between 32 and 35 °C for those with a high virus dose.  

As these studies yielded remarkably differing results, we compared projections based 

on both studies, respectively. Additionally, we evaluated both temperature requirements found 

by Watts et al. (1987) in order to determine, whether the frequency of highest daily mean 

temperatures over short time-periods (seven consecutive days between 32-35 °C) increases 

more rapidly than those of moderate high temperatures over a longer time-period (twelve con-

secutive days of at least 30 °C) in regional climate model projections. 

 

2.2 Application of regional climate change projections 

2.2.1 The regional climate model COSMO-CLM 

Spatially explicit data on projected climate change are supplied by climate models on 

regional to global spatial scales. In contrast to their driving global models, regional climate 

models are capable to consider topography and further landscape features. They offer a much 

higher spatial resolution which enhances especially the quality of climate impacts studies 

(Rummukainen 2010). Consequently, such regional projections can be applied to impact 

studies on human health (Giorgi and Diffenbaugh 2008) and to assessments of climate-

sensitive vector-borne diseases (Jacob 2008). 

Our projections refer to the regional climate model COSMO-CLM (CCLM), which is 

driven by ECHAM5 and dynamically downscaled for Europe (Rockel et al. 2008). The 

quality of the driving data has a larger impact on simulation results than spatial resolution or 

physical parameterization (Meissner et al. 2009). CCLM addresses the scenarios A1B and B1, 
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which both expect continuous human population growth until mid-century in a global oriented 

homogeneous world. 

The A1B scenario is characterized by an equal use of fossil and non-fossil energy 

resources and the introduction of efficient technologies. The moderate and hence rather 

optimistic B1 scenario supposes a development towards service orientated societies with re-

gional focus on ecological changes by introduction of renewable energies. Hence, projected 

temperature increase is less severe in B1 than in A1B (Fig. 1). Both were considered as 

marker scenarios that best illustrate the respective storyline (IPCC 2007). The B1 scenario 

matches well with the European Union target of keeping global anthropogenic warming 

below two Kelvin above industrial level (Jacob and Podzun 2010). 

 

2.2.2 Pre-processing of the data 

In our calculations, the original model output for projected daily mean temperature 

data was applied for both scenarios and for the complete 21st century in the binary net.cdf 

format (network common data form). We used the data stream D3 (run 2), which is the only 

one that organises on a regular grid and does not require conversion from the usually used ro-

tated grid. This data stream was previously also used for model evaluation (Smiatek et al. 

2009). The spatial resolution is 0.2°, which is about 18 km. 

In order to reduce statistical noise and natural variability and to detect significant 

climatic trends in both scenarios we averaged the daily values separately for the time-steps 

2011-2040, 2041-2070 and 2071-2100. By calculating the averages over the time-intervals we 

receive more robust and veritable hints for the expected temperature increase of every day in 

the year. Averaging of daily temperature data as well as interpolation of the available binary 

format net.cdf to a horizontal grid as text files was done via Climate Data Operators code 

(Schulzweida et al. 2009). This resulted in text files incorporating temperature data for each 

julian day for the respective time-step and scenario. Each text file was then attributed with an 

identical header indicating the spatial resolution and geographical extent. Hence, the text files 

could be imported by conversion to raster files for further processes in ArcGIS 9.3.1. In a sec-

ond step the raster of the first of January for each scenario and time-step and scenario was 

converted to a point shapefile, locating points at the centre of each raster cell. These point 

shapefiles were used to extract the raster files representing other days of the year (January 2 - 

December 31) for the respective time-step and scenario. 

56 



Article 2: Risk assessment of dengue virus amplification in Europe 

The conversions of the text files to raster grids and the extraction of the raster values 

for each day via the point shapefiles were standardized and carried out with scripts written in 

Python 2.5.5 and R 2.11.0 (R Development Core Team 2010). 

 

2.3 Modelling the spatio-temporal risk of dengue virus amplification  

We received point shapefiles for each time-step and scenario including the daily tempera-

tures of the whole year for Europe. This allowed a selection via attributes. We generated three 

selection codes to determine at which locations temperature requirements are fulfilled for: 

- eight consecutive days with temperatures of at least 22 °C (Blanc and Caminopetros 

1930) 

- twelve days of at least 30° C (Watts et al. 1987) 

- seven days with temperatures between 32-35 °C (Watts et al. 1987) 

for the respective time-step and scenario. 

The selection principles was a moving temporal window beginning on the first of 

January (and consecutive days), while the second selection then started on the second of 

January and the last ended on the 31st of December. Those points were selected where the 

mentioned temperature requirements are at least fulfilled one time. In a second step, the lon-

gest potential intra-annual period, where the temperature requirements for virus amplification 

are fulfilled, was identified for the three time-steps and two scenarios separately. The be-

ginning and the end was recorded for those points with the longest temporal fulfilment of 

temperature requirements without interruptions. Resulting selections were exported and con-

verted to raster grids with the usual raster grid size of 0.2° (10 arcminutes) for cartographical 

visualization. We quantified areas at risk for three countries that represent a climatic gradient 

in Europe (Spain, France and Germany). Risk areas were calculated in comparison to the total 

country area. 

Selection codes to model the spatial risk of virus amplification and to determine the 

longest intra-annual period as well as calculating percentages of areas at risk, for specific 

countries were performed in ArcGIS 9.3.1.  
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Tab. 1: Area (in per cent) at risk of dengue virus amplification for a climatic 
gradient across Spain, France and Germany. Novel threats are projected to be 
most important for Spain and France. Germany will be at risk only if the 
extrinsic incubation period that was determined by Blanc and Caminopetros 
(1930) (eight consecutive days with minimum temperatures of 22 °C) is 
relevant, but not if applying the findings of Watts et al. (1987) (twelve 
consecutive days of at least 30 °C or seven consecutive days between 32–35 °C. 

Area at risk per country in per cent 
Spain France Germany 

 Time-step 

B1 A1B B1 A1B B1 A1B 
2011-2040 74 76 22 23 - - 
2041-2070 83 85 46 54 < 1 < 1 

8 days ≥ 22 °C 
 
 2071-2100 86 94 70 83 1 12 

2011-2040 5 5 - - - - 
2041-2070 18 16 - - - - 

12 days ≥ 30 °C 

2071-2100 21 35 - < 1 - - 
2011-2040 1 1 - - - - 
2041-2070 5 4 - - - - 

7 days ≙ 32-35 °C 

2071-2100 8 21 - - - -  
 

3. Results  

3.1 Areas at risk according to dengue virus amplification 

Apparently, the risk of virus amplification is likely to generally increase in the course 

of the 21st century, regardless of the chosen EIP and climate change scenarios. The highest 

percentage of areas located in risk zones is identified for the end of the century due to the pro-

jected increase in daily mean temperature from mid-century onwards in both scenarios 

(Tab. 1). For the A1B scenario the total areas at risk does exceed the risk areas for the B1 

scenario. Remarkable differences in the results for virus amplification are conspicuous 

between EIP determined by Blanc and Caminopetros (1930) and Watts et al. (1987). 

Following the constraint of Blanc and Caminopetros (1930) with temperature requirements of 

eight consecutive days with at least 22 °C for virus amplification, big parts of Europe would 

provide suitable temperature conditions during the 21st century (Fig. 2). This is true for both 

scenarios, even if the A1B scenario entails larger areas. The spatial hotspots are the same for 

both scenarios. For the period 2011-2040, almost the whole Mediterranean region and 

countries in the Southeast bordering the Black Sea seem to meet the temperature 

requirements. 
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In addition, the Rhone valley in France will already be suitable. During the mid of the 

century there is a considerable increase of risk areas in Western Europe, especially in France. 

There, the area at risk is nearly doubled in the period 2041-2070 in comparison to the time-

step 2011-2040 (Tab. 1). Temperature requirements will be met during this period also in 

parts of Central Europe, for instance in the Southwest of Germany. At the end of the century, 

larger parts of Belgium and the North of France will provide suitable temperature conditions 

for the A1B but not for the B1 scenario as well. 

Fig. 2: Projection of the extrinsic incubation period for dengue virus amplification within the 
vector Aedes aegypti, determined by Blanc and Caminopetros (1930) with eight consecutive 
days of at least 22 °C. 

 

When assuming an EIP of 12 days above 30 °C (Watts et al. 1987), the Southwest of 

the Iberian Peninsular (Valleys of Tajo, Guadalquivir and Guadiana) and Sicily are exposed to 

high risks during the time-step 2011-2040 (Fig. 3). During the following decades, the risk 

areas increase further in the Southwest of Europe and additionally spatially limited areas will 

be threatened in Greece (region of Thessaly) and coastal zones of Turkey. Furthermore, con-

fined areas in Southeast Europe are expected to exceed thresholds. Between 2071 and 2100 

considerable parts of Italy will also be appropriate. 
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Fig. 3: Projection of the extrinsic incubation period for dengue virus amplification within the 
vector Aedes aegypti, determined by Watts et al. (1987) with twelve consecutive days of at 
least 30 °C. 

 

The temperature constraints with daily mean temperatures between 32-35 °C (Watts et 

al. 1987) are rather extreme and only few regions will achieve daily mean temperatures 

between 32-35 °C over seven consecutive in the 21st century (Fig. 4). Following these 

assumptions, for Seville and regions along the Tajo River in the Southwest of Spain, dengue 

virus amplification can be assumed already during the first half of the 21st century. The risk 

area would extend slightly within the time-step 2041-2070 and reach up to 20% (A1B) of the 

total area of Spain. At the end of the century spatially limited risk is projected for the Italian 

regions (Apulia, Lombardy, Piedmont and Venetia). In south-eastern Europe, the valley of the 

Danube in Romania and the Aliakmon in Greece as well as the coastal region of Turkey will 

provide suitable temperatures. 
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Fig.4: Projection of the extrinsic incubation period for dengue virus amplification within the 
vector Aedes aegypti, determined by Watts et al. (1987) with seven consecutive days between 
32-35 °C. 
 

3.2 Longest potential period of dengue virus amplification 

The longest suitable period is detected in the southwest of the Iberian Peninsula - the 

region around Seville. We expect the annual duration of periods that are providing suitable 

temperatures for virus amplification to increase during the 21st century in general and espe-

cially towards the end of the century (Fig. 5). 

This is true for all temperature requirements, time-steps and scenarios. As expected, 

the duration of the longest period mainly depends on the chosen EIP. Moreover, the longest 

intra-annual period of virus amplification varies more between time-steps than between 

scenarios. On the regional example of southwest Europe, the longest duration with suitable 

temperature conditions are noted: 

Virus amplification based on the findings of Blanc and Caminopetros (1930) can last 

146 days (A1B) or 136 (B1) during the coming decades (2011-2040). The increase of the 

length of suitable intra-annual periods from the early 21st century to mid-century is surprising-

ly higher for the B1 scenario. As consequence, at mid-century, the maximum temporal range 

for virus amplification will last up to 160 days in both scenarios. However, differences in the 

projections of the two scenarios are again from mid-century onwards to the end of the 

century, when a further increase of up to 179 days is projected in the A1B scenario, while the 

B1 scenario is characterised by a slight decrease to 157 days. 
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Concerning the EIP found by Watts et al. (1987) of at least 30 °C mean temperature 

over twelve consecutive days, the longest potential period is limited to 70 days (A1B) or 58 

days (B1) within the years 2011 to 2040. The period for dengue virus amplification is longer 

in B1 scenario (88 days in comparison to 80 days in A1B scenario) for the years 2041 to 

2070. A temporal extension can be expected (A1B: 93 days, B1: 90 days) for the last time-

step. 

When applying the finding of Watts et al. (1987) with daily mean temperatures of 32 

to 35 °C over seven consecutive days, we identify the shortest window for virus amplification. 

Regarding the A1B scenario, the period will last longer in all time-steps than in B1 scenario. 

Starting at 2011-2040 the maximum period will last 41 (A1B) or 34 (B1) days respectively. 

At mid-century a period of 59 (A1B) or 48 days (B1) can be expected, while the virus ampli-

fication will be extended up to 85 days in A1B and 72 days in B1 scenario. 

 

Fig. 5: Longest possible intra-annual period of dengue virus amplification in Europe.
 
 

4. Discussion 

4.1 General tendencies in projected temperature thresholds 

In this study, we used temporally high resolved data (daily resolution) from a regional 

climate model. We detect where and when dengue virus amplification can be expected to take 

place with respect to climate change in Europe. We indicate increasing areas at risk for all 
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temperature requirements of dengue virus in both scenarios. Especially towards the end of the 

century the negative trend that we find is expected to speed up.  

The results are based on experimentally identified temperature constraints. Differences 

between these laboratory studies are considerable. First of all, the temperature ranges for 

dengue virus transmission via Ae. aegypti is influenced by the titer of the mosquito-infecting 

virus dose. In the classic study, Blanc and Caminopetros (1930) experimentally infected 

mosquitoes by feeding them on infected humans at subsequent days of illness with low virus 

dose. Using low virus dose in monkey blood, Watts et al. (1987) determined extended EIP in 

comparison to high virus dose. Applying the comparatively low temperature threshold deter-

mined by Blanc and Caminopetros (1930) resulted consequently in an earlier threat and more 

European areas at risk, than in the projections based on the much higher temperature 

requirements that were detected by Watts et al. (1987). Comparing the results for the two 

alternative temperature regimes of Watts et al. (1987), most European regions would not 

achieve these extremely high daily mean temperatures (corresponds to EIP found for high 

virus dose) over short periods. More regions will experience lower but nevertheless rather 

high temperatures over longer periods (corresponds to EIP found for low virus dose). 

 

4.2 Other factors for dengue transmission and comparison of aedine dengue vectors 

Various factors and processes are contributing to the performance of mosquito-borne 

diseases besides climatic constraints. Thus, our results should not be misinterpreted as factual 

risk maps but rather as temperature-derived risk maps for dengue virus amplification, assu-

ming the presence of a competent vector. 

For the potential introduction of dengue virus in Europe, increasing risks are related to 

increasing intercontinental travel and trade (Kuno 1995; Reiter 2008). The number of virus-

carrying human hosts in Europe increases due to close connections with endemic (sub-) 

tropical regions (Randolph and Rogers 2010; Reiter 2010). Socioeconomic factors play an 

important role in dengue transmission, as shown in Texas, where human behaviour (use of 

air-conditioning, evaporative coolers) lowers dengue prevalence (Reiter et al. 2003). 

Regarding the risk of transmission, the mean age and the life expectancy of the mosquito 

population have to be taken into account, as older females show higher probability to transmit 

the virus (Holmes and Birley 1987; Carbajo et al. 2001). 
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Ae.aegypti, which is one main vector of the dengue virus, was recently introduced and 

established in Madeira (Almeida et al. 2007). Mosquito control actions inhibited an establish-

ment in the Netherlands (Scholte et al. 2010), whereas Ae. albopictus, also a potential vector, 

is already established in Southern Europe. This invasive species is observed to rapidly spread 

into warm regions of the continent (Knudsen et al. 1996; Benedict et al. 2007). Survival 

during wintertime will be crucial regarding the further expansion of Ae. albopictus in Europe. 

Depending on the origin of the species, cold tolerance and the production of diapausing eggs 

differ (Hawley 1988). Moreover, diapause apparently evolved from nondiapause or non-

photoperiodic ancestors (in Brazil), whereby a diapause reduction could be observed pre-

sumably due to rapid local selection (in USA) (Lounibo set al. 2003). Furthermore, a distinct 

competitive advantage is found for Ae. albopictus compared with Ae. aegypti especially in the 

larval stadium (Brakset al. 2004). 

Unfortunately, studies on temperature thresholds for the EIP of the dengue virus in Ae. 

albopictus are missing. As a consequence, our study is based on the temperature constraints 

for the EIP in Ae. aegypti only. These two mosquito species differ in habitat preference, 

desiccation resistance of eggs (Sota et al. 1992) and, most notably, in feeding patterns. Female 

Ae. aegypti take more than one blood meal during each gonotrophic cycle and prefer feeding 

on humans. Feeding rates of Ae. aegypti vary geographically depending on climatic con-

ditions (Scott et al. 2000). Also the oral receptivity of Ae. aegypti to dengue is significantly 

higher than that of Ae. albopictus. Generally, colonisation of these vectors in laboratory 

increases their susceptibility for dengue virus (Vazeille et al. 2003). Moreover, differences in 

feeding patterns and susceptibility of both aedine mosquitoes could lead to different dengue 

incubation times. 

Both vectors are capable of transmitting the dengue virus transovarial (vertical) to the 

offspring, which determines the starting point for further infections (Rosen et al. 1983; Rosen 

1987; Shroyer 1990). Ae. albopictus and Ae. aegypti are also capable of transmitting various 

other virus such as chikungunya, Rift-Valley, Ross-River, West Nile and yellow fever (Gratz 

et al. 2004). Recently, invasive populations of Ae. albopictus were involved in a chikungunya 

outbreak in the region of Ravenna, Northern Italy (Rezza et al. 2007). After more than six 

decades autochthonous dengue cases have been reported in Europe again (Southern France La 

Ruche et al. 2010, Croatia Gjenero-Margan et al. 2011). 
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4.3 Previous models regarding the role of changing temperature in dengue transmission 

Focks et al. (1995) provided a dengue simulation model with EIP as the most in-

fluencing parameter in the transmission dynamics in areas with suitable vector habitat con-

ditions. Even slight fluctuations in temperature significantly affect the EIP and hence seasonal 

risk of dengue transmission. In contrast, further parameters such as the length of gonotrophic 

cycle or the probability of multiple feeding stay more or less unchanged (Patz et al. 1998).  

Based on this previous study, Patz et al. (1998) applied global climate change effects 

to project the basic reproduction rate (RO) originally representing the vectorial capacity 

multiplied by the length of time that a person remains pathogenic. Hence, R0 is interpreted as 

the average number of secondary human infections produced from one infected person among 

a susceptible human population. In their study Patz et al. (1998) excluded the multiplication 

by duration of a pathogenic person assuming this factor as relatively constant in the case of 

dengue. They indicate an increasing risk of potential seasonal dengue transmission for tem-

perate regions at mid 21st-century. This is in accordance with the projections based on global 

climate change of Haleset al. (2002) who additionally integrated further climatic factors and 

projections of human population. 

As temperature effects on EIP have previously been pointed out as crucial factor, our 

approach to project EIP via spatio-temporal highly resolved climate change projections allows 

a more detailed characterization of potential areas at risk for Europe, which is currently 

missing. In addition, our methodological proposal offers the opportunity to calibrate recently 

proposed dengue models (e.g. Barbazan et al. 2010; Degallier et al. 2010; Erickson et al. 

2010) to the expected regional climate change in Europe. Those regional climate change 

projections are also applied in order to project the risk of malaria transmission in Germany 

using a R0-model, although not in a daily resolution (Holy et al. 2011). 

 

4.4 Data quality of the regional climate model 

In order to cope with uncertainties regarding future climate change (IPCC 2007), we 

focused on two scenarios (A1B and B1) integrated into the regional climate model CCLM. 

This is driven by the global model ECHAM5 (Rockel et al. 2008). An accurate downscaling 

of the spatial resolution of ECHAM5 improves model performance (Roeckner et al. 2006). 

Hence, the uncertainty that is related to the boundary conditions of a regional climate model is 

reduced (Déqué et al. 2007; Meissner et al. 2009). 
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Comparing the observed present-day climate with the current conditions simulated by 

CCLM, a cold summer bias becomes obvious for Western and Central Europe (Brockhaus et 

al. 2008; Jaeger et al. 2008). This leads to an underestimation in the longest continuous period 

of summer days with maximum temperatures above 25 °C (Roesch et al. 2008). A potential 

underestimation in the projected longest period of dengue virus amplification for Europe may 

occur in our study, although we used daily mean instead of maximum temperatures. Never-

theless, these biases are documented - and even more pronounced - for other state-of-the-art 

models of European regions (Christensen et al. 2007; Jacob et al. 2007; Jaeger et al. 2008). 

The earlier version (CLM) was nominated as a community model for the German 

climate research by the steering committee for the German Climate Computing Centre 

(DKRZ) in 2005 (Rockel et al. 2008). Additionally, CCLM offers the advantage of including 

the entire area of Europe. Therefore, in this study CCLM is used.  

 

4.5 Impact of weather extremes 

As it has been stressed for ecological impact studies in the face of climate change 

(Jentsch et al. 2007; Jentsch and Beierkuhnlein 2008), also for the evaluation of risks related 

to mosquito-borne diseases in Europe, studies are needed on the relevance of short-term 

weather extremes and increasing climatic variability. During the 21st century, the continental 

interior of Europe is very likely to experience a rapid increase in the intensity of extreme 

temperatures (Beniston et al. 2007). However, projections for temperature and precipitation 

extremes differ significantly between models (Kjellströmet al. 2007). Only if this uncertainty 

is reduced in the climate models, both climatic trends and weather extremes can be con-

sidered. This would improve the risk assessments for mosquito-borne diseases. 

 

5. Conclusions 

Here, we identified potential future risk areas for dengue virus amplification. Climate 

change can be connected with spatial as well as temporal extension (longer potential intra-

annual period for dengue transmission) of this novel threat for European regions. Our 

proposed methodological task to integrate climate change data in daily resolution seems 

promising to benefit impact studies on mosquito-borne diseases. Such projections necessarily 

require profound knowledge on climatic constraints of vectors or/and pathogens. Therefore 
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experimental studies should take this issue into account in future research in order to reduce 

uncertainties in projections. 

Climate change is expected to cause repercussions in the distribution of pathogens and 

vectors resulting in novel threats for human societies and challenges for healthcare. The re-

cent example of an outbreak of chikungunya virus in Italy was a first wake-up call in Europe. 

Obviously, infectious diseases that were thought to be restricted to tropical regions can 

expand northwards.  

Introduction of virus and vector already took place at certain European gateways, such 

as harbours and airports. Obviously, the expected spread of mosquito-borne diseases refers 

not solely to climatic changes. Other aspects of globalization have to be taken into account as 

well and strict biocontrol may help to delay or even avoid further accidental carry-overs. 

Policy and public health authorities urgently require profound knowledge on the potential 

responses of mosquito-borne diseases to climatic changes for decision making. The design of 

specific monitoring and surveillance systems can only be efficient if it can be concentrated to 

risk areas. 
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6.3 Article 3: 

Temperature-derived potential for the establishment of phlebotomine sand-

flies and visceral leishmaniasis in Germany 

 

With 2 Tables and 4 Figures. 

 

Abstract 

 Climate change is expected to manifest in the shift of organisms to regions where they 

were not present in the past, potentially entailing previously unseen biological risks. However, 

studies evaluating these future trends are scarce. Here, an important group of vectors (sand-

flies) and the pathogen transmitted (Leishmania infantum complex) causing the infectious 

disease visceral leishmaniasis is investigated, focussing on potential establishment in 

Germany during the 21st century.  

 As the most important habitat factor, temperature requirements of pathogen and vector 

were derived from the literature and compared with recent climate records provided by 

worldclim and climate change scenarios. Climate data from the Regional Climate Model 

REMO were obtained and averaged over the time periods 20112040, 2041-2070 and 2071-

2100. Projected temperature changes (based on the A1B and A2 scenarios) were correlated 

with the constraints of vector and pathogen. Simulated potentially suitable habitat areas for 

vector and pathogen were merged to generate a temperature-derived risk map of visceral 

leishmaniasis. Temperature conditions seem to become suitable for the vector across large 

swaths of Germany.  

 Nevertheless, temperature constraints for the pathogen may defer the establishment of 

the parasitic disease, particularly during the first half of the 21st century. Long-lasting 

epidemics of visceral leishmaniasis are therefore not expected in Germany during the next 

few decades, although during extremely warm years an increase in autochthonous cases of 

leishmaniasis may occur. The southwest (Upper Rhine Valley) and west (Cologne Bight) of 

Germany are identified as risk areas. The time of potential establishment and corresponding 

rise in biological risk varies between scenarios, due to differences in the predicted rate of 

temperature increase. 
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disease. 

 

1. Introduction 

 Regional climate change has been linked with potential impacts on human health in 

various ways (Patz et al., 2005), such as those health-related problems and hazards (e.g. water 

shortages or floods) associated with an expected increase in extreme climatic conditions 

including heat waves, drought and heavy rainfall (Jentsch and Beierkuhnlein, 2008). Besides 

these meteorological stress situations with direct impacts on human and animal health, 

organism and ecosystem responses to climate change are also expected to entail indirect im-

pacts on public health (Fischer et al., 2010). 

 As a prominent example, vector-borne infectious diseases may spread from subtropical 

or tropical regions to higher latitudes and altitudes (e.g. Shope, 1991; Fischer et al., 2009). 

Infectious diseases such as malaria or dengue occur on several continents. Increasing human 

population density, global trade and climatic changes are all likely connected to the increased 

numbers of reported cases (Sutherst, 2004). 

 However, as people are unfamiliar with diseases that were previously confined to 

specific regions, their potential expansion has been widely neglected or even ignored. The 

documented spread of leishmaniasis (Shaw, 2007; Maroli et al., 2008) is one such problem 

demanding more attention in terms of both science and policy (Dujardin et al., 2008). For-

merly restricted to South America, India, the Middle East and the Mediterranean, the annual 

incidence of leishmaniasis is approximately 2 million cases, while about 350 million people 

reside temporarily or permanently in leishmaniasis risk areas (Reithinger and Dujardin, 2007). 

Pathogens belonging to the Leishmania infantum complex (L. infantum complex; endemic in 

Europe) or Leishmania donovani complex (endemic in Asia) both cause visceral leishmaniasis 

in humans and animals (Gramiccia and Gradoni, 2005).  

 In Europe, sandflies of the genus Phlebotomus serve as vectors, transmitting these 

obligate intracellular parasites to new hosts where they infect internal organs such as the liver 

and spleen (Neuber, 2008). Phlebotomus spp. are located in rural as well as urban environ-

ments in close proximity to humans and their domestic animals, largely dogs which are the 

main reservoir of the L. infantum complex (Camargo and Langoni, 2006). These small insects 
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(length = 2-3 mm) are strongly dependent on specific environmental conditions (e.g. Cross 

and Hyams, 1996; Aspoeck et al., 2008). The first documented sandfly catches (Phlebotomus 

mascittii and P. perniciosus) in Germany came from the south-west on the border with France 

(Naucke and Pesson, 2000; Naucke et al., 2008). Conceivably, the species had already 

reached central Europe from Mediterranean refugial areas during the Holocene optimum 

(approximately 6,500 years ago), survived in very small areas and due to global warming is 

now spreading (Aspoeck, 2008; Aspoeck et al., 2008). 

 Until now, most cases of infection reported from Germany have been allochthonous, 

associated with imported pets (i.e. dogs), especially from the Mediterranean region, and tra-

velling humans (Harms et al., 2003; Weitzel et al., 2005). However, Bogdan et al. (2001) 

reported the first case of autochthonous visceral leishmaniasis in a German child, while the 

number of autochthonous cases of canine leishmaniasis has also increased. In total, 11 cases 

with assumed autochthonous origins have been diagnosed in humans and animals in Germany 

(Naucke et al., 2008). This is the ominous “smoking gun” suggesting that infected sandflies 

must be present at least periodically in Germany. 

 Spatio-temporal models may become crucial components of leishmaniasis risk analyses 

(Ready, 2008). Compared with other diseases and their vectors, only a few studies have 

investigated leishmaniasis and sandflies with an environmental-climatic focus via species 

distribution models (e.g. Peterson and Shaw, 2003; Nieto et al., 2006; Chamaille et al., 2010), 

geographical information system (GIS) and remote sensing techniques (Rossi et al., 2007). 

Aspoeck et al. (2007) estimated the risk of autochthonous leishmaniasis in Austria, identi-

fying temperature as the most important variable. 

 The northern limit of sandflies in Europe is closely related to the 10 °C annual mean 

temperature isotherm (Naucke, 2007; Lozán et al., 2008). Sandflies require an average 

monthly temperature of at least 20 °C during the warmest month, which corresponds with 

their activity phase (WHO, 1984). Winter temperatures may not be as crucial to their 

occurrence, since diapause enables overwintering in tunnels and holes (Killick-Kendrick and 

KillickKendrick, 1987). 

 Evidence suggests that the L. infantum complex is prevalent only in areas with average 

temperatures ranging between 5-10 °C during the coldest month and 20-30 °C during the 

warmest month (Kuhn, 1999). Based on the detected constraints imposed on vectors and 

pathogens by temperature, potential future risk zones can be identified. Until now, no study 

has investigated the future risk of visceral leishmaniasis for regions north of the Alps. Re-
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garding these known temperature requirements for vector and pathogen suitability in the light 

of projected climate change for Germany during the 21st century, the following questions 

arise: 

 (i) When will climatic vector requirements be fulfilled? 

 (ii) When will climatic pathogen requirements be fulfilled? 

 (iii) Which specific regions will be exposed to this novel threat? 

 

2. Materials and methods 

2.1 Climatic data 

 Present-day vector and pathogen temperature constraints (annual mean temperature and 

temperature of the warmest and coldest months) were established at 5 arc-minutes resolution 

from data published in Hijmans et al. (2005) for recent climatic conditions in Germany. 

Projected temperature change during the 21st century was derived from the regional climate 

model REMO (UBA project, datastream 3), which is driven by the global climate model 

ECHAM5 (Jacob, 2008). REMO also integrates regional details through the use of highly 

resolved dynamic downscaling and as a result is able to project climatic change at the regional 

scale of Central Europe more precisely (Déqué et al., 2007). Regional climate change simu-

lations are therefore more powerful tools for the detection of future risks of climate-sensitive 

vector-borne diseases (Jacob, 2008; Fischer et al., 2010). 

 The climate change simulations used in this study were based on theoretical IPCC 

(2007) emission scenarios for greenhouse gases. The A1B scenario is characterised by rapid 

economic growth and technological change towards the balanced use of all energy resources, 

while the A2 scenario projects regionally-oriented economic development and diversification 

of energy use. Both of these selected scenarios are accepted to represent realistic potential 

developments. 

 Following typical climatological procedure, projected monthly and annual mean 

temperatures from REMO were averaged over 30-year intervals to reduce uncertainty in 

deriving climatic trends. Periods considered in the analysis of projected trends were: 2011-

2040, 2041-2070 and 20712100. Analysis of each scenario was carried out separately. Pro-

jected values of annual mean temperature, selected warmest and coldest month were taken for 

further analysis. Current and projected temperature data were incorporated at a spatial reso-

lution of 6 km, in order to overlay and accurately compare results for recent and projected 
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conditions. The area of Germany was then extracted for analysis. The climatic data provided 

by Hijmans et al. (2005) were already available as raster data, but projected climatic data 

derived from REMO had to be prepared using climate data operators (CDO) codes, before 

finally being transformed to raster format for further analysis in ArcGIS (version 9.1). 

 

2.2 Temperature suitability for organisms and risk classes of visceral leishmaniasis 

 First, four temperature-derived suitability classes for vector and pathogen were esta-

blished separately, taking into account the overlay of their temperature constraints (Table 1). 

Classes were generated from the comparison of current and projected temperature conditions 

with vector and pathogen constraints. The results produced represent temperature-derived 

areas in Germany suitable for Phlebotomus spp. (Fig. 1) and the L. infantum complex (Fig. 2). 

 Classified habitat suitability data for vector and pathogen were then combined to 

generate temperature-related risk classes for the establishment of visceral leishmaniasis. By 

analysing the fulfilment of vector and pathogen requirements under current conditions and 

throughout the time periods of both scenarios, risk was classified on a range from excludable 

to likely (Table 1). 

By overlaying the classified raster cells of each single map, calculated risk classes of 

visceral leishmaniasis for each individual time period and scenario were then compared with 

each other. This was done in order to identify significant temporal trends and differences 

between scenarios. The specific area of every leishmaniasis risk class was also calculated for 

each individual time period and scenario. These analyses were carried out in ArcGIS. 
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Tab. 1: Classification of current and projected temperature conditions with regard to vector 
and pathogen requirements. Annual mean temperature of at least 10 °C (Naucke, 2007; 
Lozán et al., 2008) and average monthly temperature of more than 20 °C during the warmest 
month (WHO, 1984) are considered to be suitable for the vector. Pathogen suitability class- 
es are based on the fulfillment of temperature requirements during the coldest month (5-
10 °C) and warmest month (20-30 °C) (Kuhn, 1999). More than one combination of vector 
and pathogen suitability classes resulting in one risk class for the disease establishment are 
possible. Dotted lines separate the possible combination of one pathogen suitability class 
with two vector suitability classes. 

Pathogen requirements Vector requirements Establishment  

of visceral 

leishmaniasis 

Coldest 

month 

Warmest 

month 

Annual mean 

temperature 

Warmest 

month 

< 4° C < 19 ° C < 9° C < 19° C 

not fulfilled not fulfilled 

< 9° C ≥ 20° C 

1 excludable 

 

partially fulfilled 

< 4° C < 19 ° C 9° C ≥20° C 

not fulfilled almost fulfilled 

4° C 19° C < 9° C ≥ 20° C 

partly fulfilled partly fulfilled 

9° C ≥20° C 

2 unlikely 

 

almost fulfilled 

< 4° C ≥ 20° C ≥10° C ≥ 20° C 

partly fulfilled fulfilled 

4° C ≥20° C 9° C ≥20° C 

3 

 

rather 

unlikely 

 

almost fulfilled almost fulfilled 

4° C ≥ 20° C 9° C ≥20° C 4 possible 

almost fulfilled fulfilled 
 
 

3. Results 

3.1 Temperature-derived suitability for Phlebotomus species 

 Currently, the climate of south-west Germany almost satisfied the temperature demands 

of Phlebotomus spp. (Fig. 1). This spatial pattern corresponds with documented sandfly 

presence in the region (Naucke et al., 2008). In this area of Germany, it is extremely likely 
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that vector temperature constraint will be exceeded at some stage between 2011 and 2040. 

During this time period, vector requirements will also be fulfilled in some western (Cologne 

Bight) and eastern areas, depending on the prediction model. 

During the mid-21st century, most parts of Germany can be expected to experience 

annual mean temperatures exceeding the lower threshold for sandfly establishment which is 

10 °C. However, maximum summer temperatures of above 20 °C will remain restricted to 

southern and eastern (continental) regions, and thus large areas of Germany may not be fully 

suitable for these insects until the end of the century. By the end of the 21st century, many 

regions of Germany will have become suitable for phlebotomine sandflies, with only the Alps, 

low mountain ranges and northern areas not satisfying their thermal requirements. 

Fig. 1. Temperature-derived suitability for Phlebotomus spp. in Germany under current and 
projected temperature conditions represented by two IPCC climate change scenarios (A1B 
and A2). Calculations were based on 30-year average values. 
 

3.2 Temperature-derived suitability for L. infantum complex 

 Temperature requirements of the pathogen will very likely not be achieved in Germany 

until the mid-21st century (Fig. 2). By then, it can be expected that the south-west will (nearly) 

experience suitable temperature conditions for pathogen prevalence, with some western 

regions also characterised by near-fulfilment of thermal suitability during this period. Eastern 

and south-eastern areas will achieve required summer but not winter temperatures, due to the 

projected gradient of decline in winter warming towards the east (Déqué et al., 2007; Jacob, 
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2008). Permanent establishment of the pathogen in eastern parts of Germany can be virtually 

excluded. 

 Surprisingly, by the end of 21st the century some northern regions will provide higher 

suitability than the south-east. Large parts of the west of Germany and the Upper Rhine 

Valley in the south-west are projected to be warm enough for pathogen activity. According to 

these trends, western Germany seems to fulfil the climatic needs of the L. infantum complex 

earlier. 

Fig. 2. Temperature-derived suitability for L. infantum complex in Germany under current 
and projected temperature conditions represented by two IPCC climate change scenarios 
(A1B and A2). Calculations were based on 30-year average values. 
 

3.3 Temperature-derived establishment of visceral leishmaniasis 

 Due to the combined temperature constraints facing both, vector and pathogen (Fig. 3), 

visceral leishmaniasis has been prevented from becoming endemic in Germany. As this is 

unlikely to change during the early 21st century, the permanent occurrence of this infectious 

disease can be almost completely excluded during the next few years. However by the mid-

21st century, model projections detect small areas in the south and south-west as potential risk 

areas. These regions, offering suit able thermal conditions for vector as well as for pathogen, 

may increase in extent by the end of the 21st century. Regions where potential establishment 

seems to be completely implausible by the end of the 21st century are the northernmost parts 

of Germany and the Alps in the south. 
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Fig. 3. Temperature-derived risk classes of visceral leishmaniasis in Germany under current 
and projected temperature conditions represented by two IPCC climate change scenarios 
(A1B and A2). Calculations were based on 30-year average values. 
 

3.4 Time-steps and scenarios 

 Climatic simulations based on the A1B scenario yield higher temperatures for the first 

time period (2011-2040) than simulations of the A2 scenario. Consequently, some eastern 

areas will almost satisfy vector habitat requirements in the A1B projection but not in the A2 

scenario. However in both scenarios, pathogen, and hence disease establishment, can be 

excluded during this period. 

Tab. 2: Classified risk areas for potential autochthonous occurrence of visceral 
leishmaniasis. Risk areas are denoted as percentages of the total area of 
Germany separately for each time period and scenario. Regions at risk increase 
during the 21st century in both scenarios. 

2011-2040 2041-2070 2071-2100 Establishment of 

visceral leishmaniasis 

Current 

A1B A2 A1B A2 A1B A2 

1 Excludable 98.5 72.0 94.7 67.9 37.1 3.6 4.7 

2 Unlikely  1.5 24.6 4.6 28.6 39.8 23.0 26.6 

3 Rather unlikely - 3.4 0.7 2.2 17.7 30.0 42.0 

4 Possible - - - 1.3 4.9 31.9 19.1 

5 Likely - - - - 0.5 11.5 7.6 
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 Remarkable differences in classification are projected for the second time period (2041-

2070). Midcentury temperature conditions will permit disease establishment in western and 

south-western Germany in the A2 scenario, while this will be rather unlikely under A1B 

conditions. The risk of establishment also differs for eastern Germany. At the end of the cen-

tury, both scenarios resemble each other more strongly with respect to vector, pathogen and 

consequently, disease requirements, than in the earlier periods. However some differences are 

still conspicuous. Areas providing climatic suitability will be fewer and more isolated 

especially in the east according to the A2 projection compared to the A1B scenario. Spatio-

temporal variation in classification results for each scenario concerning the risk of tem-

perature-derived establishment of visceral leishmaniasis are summarised in Table 2.  

 Increases in the risk of visceral leishmaniasis establishment vary significantly over time 

(Fig. 4). During the next few decades the potential threat increases faster in the A1B scenario 

than in A2, but by mid-21st century increases in risk become more apparent in the A2 pro-

jection. Generally, warming will be more rapid from the middle to the end of the 21st century. 

Accordingly, transitions in risk class are highest within this period for both scenarios. 

 

Fig. 4. Temporal variation in classification results for visceral 
leishmaniasis. Classified results for each time period (30-year averages) 
were subtracted from the following one for each scenario separately, in 
order to detect temporal trends in risk class variation. 
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4. Discussion 

 In this study, potential effects of the expected change in European climate on phleboto-

mine sandflies and visceral leishmaniasis are elucidated. During the 21st century, temperature 

conditions will favour the occurrence of sandflies in Germany. Temperature requirements of 

the L. infantum complex will also be fulfiled, albeit with some delay, with thresholds for 

pathogen survival not expected to be surpassed before mid-century. Establishment of visceral 

leishmaniasis is therefore not predicted during the first half of the 21st century. Afterwards, an 

increasing risk of infections is detected for Germany, where leishmaniasis does not presently 

occur. However, zones of elevated risk will be limited to certain regions. 

 The Upper Rhine Valley and Cologne Bight regions will be the first and most strongly 

exposed to this emerging biological risk according to two IPCC scenarios under consideration 

(A1B and A2). Nevertheless, the temporal dynamics of risk exposure vary between scenarios. 

Climate change projections are therefore associated with uncertainties. Even though two plau-

sible scenarios (IPCC, 2007) were chosen, it is not certain that either will occur, as they are 

still theoretical and based on a number of assumptions. This consequently leads to uncertainty 

when attempting to predict the establishment of vector-borne diseases. 

 We identified areas in the north-west of Germany which seem to become suitable for 

the pathogen earlier than those in the south-east (Bavaria). The former are characterised by 

maritime climatic conditions with mild winters due to the influence of the Gulf Stream, while 

the south-east is associated with a more continental climate typified by colder winters and 

strong seasonality. Additionally, mountains in the south (e.g. Black Forest, Swabian 

Mountains) may restrict the eastward spread of vector and disease. Northern parts of Germany 

do not contain such barriers. In the east, risk of infections would rise during the projected in-

creasingly hot summers. The important role of climate variability in the establishment of 

leishmaniasis has previously been pointed out by Cardenas et al. (2006) as well as Chaves and 

Pascual (2006). 

 Our analyses are based on the concordant tem perature requirements of vector and 

pathogen. However, studies are currently limited to general constraints of the genus 

Phlebotomus and cannot, as yet, consider requirements at the species level. Knowledge 

regarding the specific temperature and moisture constraints regulating the presence of single 

Phlebotomus spp. is scarce. The species may differ subtly in their ecological requirements, 

particularly with regard to moisture and humidity (Lindgren and Naucke, 2008). Further 

studies are required in order to clarify the effects of climatic change on individual 
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Phlebotomus spp. Attention must also be concentrated on the variant transmission capacities 

of the species, with proof of the vector competence of Phlebotomus mascittii especially 

required (Naucke and Pesson, 2000). 

 The capacity of reservoir hosts is an additional factor affecting the permanent 

occurrence of a vector-borne disease. Approximations of the total number of leishmaniasis-

infected dogs in Germany, which are mostly imported from the Mediterranean Region, range 

from 20,000 (Lozán et al., 2008) up to 150,000 (Harms-Zwingenberger and Bienzle, 2007). 

This constitutes an appreciable reservoir from which phlebotomine sandflies can gather patho-

gens in the detected risk zones. 

 There is currently no vaccine available against visceral leishmaniasis. The most efficient 

method of protection for humans and animals is to avoid sandfly bites for instance via the use 

of insecticides (Maroli and Khoury, 2006). Surveillance and control of vectors and disease has 

proven difficult (Killick-Kendrick, 1999; Gramiccia and Gradoni, 2005). The introduction of 

potentially infected dogs must therefore be tightly monitored and restricted. 

 

5. Conclusion 

 Leishmaniasis is not currently eminent in Germany, even if it does constitute a serious 

health hazard of increasing importance. We demonstrate here that the spread of a (sub-) tro-

pical disease (i.e. visceral leishmaniasis) to previously non-endemic regions constitutes a risk 

in the 21st century. We project differentiated spatial and temporal patterns for the probability 

of occurrence and local establishment of visceral leishmaniasis in Germany.  

 Favourable regions for both vector and pathogen are situated close to unsuitable areas, 

with human mobility and transport links bridging these barriers between isolated habitats. 

However, vector dispersal ability, density of reservoir hosts and further environmental and 

anthropogenic factors must be better understood and included in future risk analyses. Feasible 

proactive adaptation strategies can then be implemented in order to delay or even avoid 

regional establishment of vector-borne diseases. 
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6.4 Article 4: 

Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in 

Europe under climate change conditions 

 

With 3 Tables and 5 Figures in the main text as well as one Reference list and 7 Figures 

in the Supplemental Material. 

 

Abstract 

 During the last decades the disease vector Aedes albopictus (Ae. albopictus) has rapidly 

spread around the globe. The spread of this species raises serious public health concerns. 

Here, we model the present distribution and the future climatic suitability of Europe for this 

vector in the face of climate change. In order to achieve the most realistic current prediction 

and future projection, we compare the performance of four different modelling approaches, 

differentiated by the selection of climate variables (based on expert knowledge vs. statistical 

criteria) and by the geographical range of presence records (native range vs. global range). 

 First, models of the native and global range were built with MaxEnt and were either 

based on (1) statistically selected climatic input variables or (2) input variables selected with 

expert knowledge from the literature. Native models show high model performance (AUC: 

0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-

0.72). Models based on the global distribution of the species, however, were able to identify 

all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). 

 In a second step, the modelled bioclimatic envelope of the global range was projected to 

future climatic conditions in Europe using two emission scenarios implemented in the 

regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 

2071-2100. For both global-driven models, the results indicate that climatically suitable areas 

for the establishment of Ae. albopictus will increase in Western and Central Europe already in 

2011-2040 and with a temporal delay in Eastern Europe. On the other hand, a decline in 

climatically suitable areas in Southern Europe is pronounced in the Expert knowledge based 

model. 

 Our projections appear unaffected by non-analogue climate, as this is not detected by 

Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in 
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identifying suitable habitats for Ae. albopictus and hence support monitoring and control 

activities to avoid disease vector establishment. 

 

Keywords 

Asian tiger mosquito, dengue, global change, global warming, species distribution model, 

invasion, vector-borne disease 

 

Research highlights 

- We model the current climatic suitability for the disease vector Aedes albopictus.  

- We assess the potential of the mosquito to establish in Europe under climate change. 

- Increasing areas for the establishment are pointed out for Western and Central Europe.  

- Risk maps may support monitoring activities to avoid disease vector establishment 

 

1. Introduction 

 The invasive disease vector Aedes albopictus (Ae. albopictus) has recently received 

much attention (e.g. Benedict et al., 2007; Enserink, 2008; Medley, 2010). The mosquito has 

been ranked among the first 100 of the Worlds ́ worst invaders (Crans, 2008). It has spread 

from its original distribution area in South-east Asia (Hawley, 1988) to at least 38 countries in 

North and South America, Africa, Oceania and even Europe (Benedict et al., 2007), likely by 

global transport of goods (e.g. Lounibos, 2002; Tatem et al., 2006; Fischer et al., 2010a). The 

first European invasion of Ae. albopictus was reported in 1979 from Albania (Adhami and 

Reiter, 1998). Upon its second arrival in Europe in 1990 the mosquito managed to establish 

permanent populations in Italy (Sabatini et al., 1990) and is now found across the Medi-

terranean area (Spain, France, Slovenia, Croatia and Greece; see Suppl. Reference list).  

 The spread of Ae. albopictus raises serious public health concerns. Under experimental 

conditions Ae. albopictus is able to transmit 22 viruses (Gratz, 2004). In nature it is mainly 

known to be an important vector of dengue, chikungunya and West Nile. Also Yellow fever 

virus and eastern equine encephalitis virus (North America), Ross River virus (Australia), 

Usutu virus (Italy) and the heartworms Diofilaria immitis and D. repens (Italy) were isolated 

from specimens collected in the field (Mitchell et al., 1987; Cancrini et al., 2003a,b; Calzolari 

89 



Article 4: Projection of climatic suitability for Aedes albopictus in Europe 

et al., 2010). Due to its rapid spread (Lounibos, 2002), broad ecological plasticity (Delatte et 

al., 2008b) and high population density, this species has the potential to serve as an epidemic 

vector. Furthermore, its capacity to vertically transmit dengue and La Crosse (Tesh and 

Gubler, 1975; Rosen et al., 1983) enhances the possibility of establishing diseases in new 

areas (Delatte et al., 2008a). In Europe, the medical relevance of Ae. albopictus was 

highlighted in 2007 when the occurrence of the species was related to a chikungunya-epi-

demic in Northern Italy in the region of Ravenna (Rezza et al., 2007). Recently, autoch-

thonous cases of dengue fever were diagnosed in Southern France for the first time (La Ruche 

et al., 2010) where Ae. albopictus serves as vector. Furthermore, autochthonous dengue virus 

infections were reported from Croatia (Schmidt-Chanasit et al., 2010; Gjenero-Margan et al., 

2011). 

 Even under conservative and optimistic scenarios, future climate change is likely to 

increase air temperatures. At the end of this century the number of hot days in Central Europe 

is projected to reach conditions that are currently experienced in Southern Europe. While 

heavy summer precipitation is expected to increase in north-eastern parts of Europe, it is 

likely to decrease in the south (Beniston et al., 2007). In addition, changes in annual cold 

extremes are projected, whereby the largest relative warming is expected for North-eastern 

Europe (Goubanova and Li, 2007). These climatic changes may support a range shift and 

further regional establishment of Ae. albopictus. 

 As an ectothermal arthropod, Ae. albopictus is unable to regulate its body temperature. 

Hence the species directly depends on the thermal conditions of its environment. Under la-

boratory conditions, changes in temperature and precipitation affect the population dynamics 

of Ae. albopictus, which suggests that climate change is likely to extend the limits of its 

northern distribution (Alto and Juliano, 2001). Regarding a northward shift, especially 

temperature constraints in the cold period and decreasing photoperiod are of outmost interest, 

because these factors determine diapause of eggs and thus the survival of the species. The 

10 °C coldest-month isotherm coincides with the separation between continuously breeding 

populations and those that must undergo a period of dormancy to survive cold periods in 

winter (Mitchell, 1988). Larval surveillance in Northern Japan shows that the mean tem-

perature of the coldest month below -2 °C is potentially lethal there (Kobayashi et al., 2002). 

Nawrocki and Hawley (1987) state that the -5 °C coldest-month isotherm describes the 

maximum northward expansion of Ae. albopictus in continental Asia and, presumably, also in 

North America. A risk of establishment in Europe is considered for areas with 0 °C or higher 

as cold-month isotherm (Mitchell, 1995; Knudsen, 1995).  
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 But, it is not only the limitation by low temperatures that has to be considered; warm 

temperatures, too, play an important role for Ae. albopictus. Pumpuni et al. (1992) pointed out 

that higher temperatures greatly reduce or prevent diapause incidences in Ae. albopictus 

specimen that were exposed to critical photoperiods. Results from natural foci in Southern 

Brazil demonstrate that diapause apparently evolved from nondiapause or non-photoperiodic 

ancestors, whereby in southern parts of USA a diapause reduction was observed presumably 

due to rapid local adaptation (Lounibos et al., 2003). Sufficient precipitation or perhaps more 

generally a suitable local moisture regime is an additional prerequisite for the occurrence of 

the species. Moisture directly controls the availability of breeding sites and the relative hu-

midity is an important factor for egg survival (Juliano et al., 2002). Annual precipitation is 

reported to be higher than 500 mm in the species' habitats in the Mediterranean area (Mitchell, 

1995). 

 Previous approaches to map suitable climatic conditions for the establishment of Ae. 

albopictus in Europe mostly focused on the risk of invasion under current climatic conditions. 

Considering rainfall beside other factors (photoperiod, temperature and humidity), Mitchell 

(1995) developed a risk map for the Mediterranean Basin by comparing the climatic con-

ditions of the region with the estimated climatic envelope of Ae. albopictus. Knudsen et al. 

(1996) investigated the distribution of Ae. albopictus in Italy and projected the risk for a 

broader distribution throughout Europe. This projection is based on climatic criteria identified 

by Nawrocki and Hawley (1987) including winter mean temperature, mean annual rainfall, 

and mean summer temperature. Eritja et al. (2005) used the same climatic limits as Mitchell 

(1995) and generated a detailed risk map for Spain, which considered regional climatic con-

ditions. For the United Kingdom, Medlock et al. (2006) developed a GIS based model using 

mean monthly temperature, annual rainfall and photoperiod to assess the overwintering sur-

vival, spring hatching and production of overwintering eggs in autumn.  

 The European Centre for Disease Prevention and Control (ECDC) produced risk maps 

that are aiming to predict climatic suitability of Ae. albopictus for the years 2010 and 2030 

(ECDC, 2009). On a global scale, Benedict et al. (2007) investigated the regional risk of in-

vasion by Ae. albopictus. Their analysis was carried out using eleven environmental data 

layers of the present climate. Recently, Medley (2010) investigated environmental (including 

climatic) niche shifts during the global invasion of the species, by modelling niches separately 

for each continent. Notably, most of the relevant literature is concerned with the present 

distribution and risk of invasion by Ae. albopictus under current climatic conditions. How-

ever, the predicted increase in temperature that is based on climate change scenarios will 
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probably extend the spatial availability of breeding sites and also enhance mosquito survival 

(Woodward et al., 2001). 

 Our analysis starts from the assumption that Ae. albopictus will colonise climatically 

suitable niches around the world. We want to identify areas that could serve as potential 

habitat for the species today and in the future. Here, we assess the potential of Ae. albopictus 

to establish in Europe under projected climatic trends in the 21st century. In order to account 

for uncertainty in the selection of presence records and environmental variables, we (1) com-

pare projections based on the species' former native range to those based on its recent entire 

global range, and (2) apply variable selection by expert knowledge as well as variable se-

lection by an automated statistical procedure. 

 

2. Material and methods 

 We created distribution models with MaxEnt, using species occurrences of the native 

range and of the entire range across the globe. For both training areas (global and native) two 

sets of bioclimatic data were prepared as input variables. One set was selected using expert 

knowledge on species climatic constraints. The second set was selected using solely statistical 

criteria. The future climatic suitability of Ae. albopictus in Europe was projected for two 

climate change scenarios. In addition, niche similarity between global and native regions and 

climatic similarity between projections was analysed. 

 

2.1. Spatial distribution and presence records of Aedes albopictus 

 Presence records of Ae. albopictus at the global scale were taken from Benedict et al. 

(2007). Additionally, a literature search of scientific articles and reports of mosquito sur-

veillance was conducted for the years 2003 onwards to consider additional infestations (see 

Supplemental Reference list). Reported occurrences of Ae. albopictus without evident estab-

lishment were excluded from the dataset.  

 This resulted in a global dataset that consists of 6347 occurrence points with 4683 

occurrence points just for Brazil, due to a detailed monitoring system in South America. 

Presence records for the United States are available on county level but not as precise geog-

raphical coordinates. Therefore the 1033 counties with documented presence records were 

converted to points by digitising the centroids for each of the counties. Considering that 

worldwide, apart from the USA and Brazil, less than 1000 coordinate pairs were available, a 
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random set of ten percent of the data were extracted for Brazil and the USA. Hence, the 

density of presence records for Brazil and the USA was reduced to levels that correspond to 

the density of documented presence points in other regions with maybe less intensified 

mosquito monitoring systems. Without this stratified sub-sampling, the results would have 

been biased towards the climatic conditions of South and North America (Medley, 2010). 

Additionally, duplicate species records within one raster cell of the training area (described in 

Section 2.2) were removed. The total global number of presence records used for modelling 

was 1199 (including 241 records in the native range). 

 

2.2. Selection and pre-processing of climatic data 

 Current bioclimatic data (19 bioclimatic variables) were taken at a spatial resolution of 5 

arcmin (http://www.worldclim.com). These bioclimatic variables are derived from monthly 

temperature and rainfall values in order to generate more biologically meaningful variables, 

which are recommended to use in ecological niche modelling (Hijmans et al., 2005). Higher 

spatial resolution would not correspond to the spatial accuracy of occurrence data for 

Ae. albopictus. Two climatic datasets with different spatial extent were generated. The global 

climatic conditions of the land surfaces were used to model the global distribution. For the 

definition of the “native range” models, each native presence record was buffered with a 

circle of 1000 km radius. The native range then included all areas which were located in at 

least one of the circles. Hence, this range included a climatic gradient within Asia, in order to 

yield a clear delineation of the species' climate niche, but excluded areas that may be too far 

from the realised distribution, such that geographical factors rather than climate are dominant 

in limiting the species' distribution. 

 We used two sets of variables as input for global and native models. The first set is 

based on expert knowledge on the climatic requirements of the target species (e.g. Mitchell, 

1995). Those variables are the same for the native and for the global range. Most variables re-

present thermal constraints (Table 1). In this model, some variables show substantial 

collinearity: Annual mean temperature (Bio1) is correlated with mean temperature of the 

warmest and coldest quarter (Bio10 and Bio11) in the native and the global range higher than 

r = 0.7 (Pearson correlation coefficient). Nevertheless, as a pre-selection of variables based on 

expertise is often useful (Elith and Leathwick, 2009), we kept these variables in our analyses, 

and chose a modelling approach that is known to be robust against collinearity (see Section 

2.3). Hereafter, we will refer to this set as the expert knowledge based model (EKBM). 
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Tab. 1: Selected bioclimatic variables of native and global models, referring either to expert 
knowledge based or statistic based model. Listed are the training gains for the selected bio-
climatic variables measured by Jackknife test. Variables without mentioned training gain were 
not part of the selected data set. Training gains were calculated for a single variable if used 
solely for the modelling procedure and additionally for the remaining dataset if this variable 
has been dropped from the set. Both aspects must be considered for a statistical selection of 
variables. For instance, altitude as variable achieved comparatively low values for the training 
gain is used as the single variable for modelling procedure, but training gain of the dataset 
decreases remarkable, if altitude is removed. Therefore it is advisable to keep this variable 
within the set. After selection of the variables, training gain was calculated for modelling with 
all selected variables. Training gain for the complete selected dataset is highest for the native 
datasets (expert knowledge based: 1.67, statistic based: 1.69). Training gain of the global 
dataset is 1.42 for the expert knowledge based selection and 1.34 for the statistic based 
selection. 

Expert knowledge based Statistic based 

global Native global native 
Training gain of selected 

bioclimatic variables and 

altitude without  

variable 

with only  

variable 

without 

variable 

with only 

variable 

without 

variable 

with only 

variable 

without 

variable 

with only 

variable 

BIO1 
Annual mean 

temperature 
1.35 0.67 1.42 0.80 0.99 0.66 - - 

BIO4 
Temperature  

seasonality 
- - - - - - 1.43 0.84 

BIO10 
Mean temp. 

(warmest quarter) 
1.27 0.70 1.42 0.72 - - - - 

BIO11 
Mean temp. 

(coldest quarter) 
1.33 0.64 1.42 0.90 - - 

1.50 

 

0.91 

 

BIO12 
Annual 

precipitation 
1.20 0.71 1.35 1.00 1.17 0.72 

1.51 

 

1.00 

 

BIO17 
Precipitation 

(driest quarter) 
- - - - - - 1.42 0.66 

BIO18 
Precipitation 

(warmest quarter) 
- - - - 1.23 0.31 - - 

BIO19 
Precipitation 

(coldest quarter 
- - - - 1.21 0.48 - - 

ALT Altitude 1.157 0.16 1.24 0.74 1.18 0.16 1.36 0.75  
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The second set of variables was selected by using a statistical procedure for native and 

global range separately. First, the importance of each variable was quantified with a Jackknife 

test implemented in MaxEnt (Elith et al., 2011). Variable importance is calculated in a two-

fold manner based on the training gain for all variables in isolation and for the remaining set 

of variables when the isolated variable is dropped from the set (Yost et al., 2008). To reduce 

collinearity in the set of statistically selected variables (Dormann et al., 2008) variables were 

removed that had a Pearson correlation coefficient r ≥ 0.7 with any other higher-rank-

ing variable in the results of the Jackknife test. We applied the variable selection procedure 

separately for the native and global range. The statistically derived sets of variables consist 

mainly of variables that represent the precipitation regime for the global range and identical 

number of temperature and precipitation variables for native range (Table 1). Models based 

on this set of variables are henceforth called statistic based model (SBM). 

 We projected the best models (determined by AUC-value, Section 2.3) to the future 

European climate. Projections of climate change in the 21st century refer to the scenarios for 

greenhouse gas emissions implemented within global or regional climate models. A1B and B1 

scenario, which were considered as marker scenarios that best illustrate the respective story-

line (IPCC, 2007), were applied for our projections of the future climate suitability for Ae. 

albopictus in Europe. In short, the A1B scenario is characterised by rapid global oriented 

economic growth and technological change towards the balanced use of fossil and non-fossil 

energy resources. The B1 scenario projects a more rapid change towards a service information 

economy with the introduction of resource efficient technologies while assuming a similar 

economic growth. It matches well with the European Union target of keeping global 

anthropogenic warming below two Kelvin above the pre-industrial level (Jacob and Podzun, 

2010). Hence warming tendencies are projected to be stronger in the A1B scenario. 

On http://www.worldclim.com data of the projected climate change are provided for 

the global climate models CCCMA and HADCM, which originally have very coarse spatial 

resolution (about 250km). Climatic changes were interpolated to the high grid resolution of 

the current climatic conditions. As a consequence, this simple downscaling procedure does 

not account for climatic changes at small scales. In order to achieve more realistic projections 

of future climatic suitability for Ae. albopictus in Europe, we instead used data of climate 

change provided from the regional climate model COSMO-CLM (CCLM). Near-scale phys-

ical processes integrated in CCLM (spatial resolution about 18 km) are fitted at the boun-

daries with large-scale conditions given by the global model ECHAM5 (Rockel et al., 2008). 

Such a dynamical downscaling procedure enhances the quality of climate impact studies on 
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vector-borne diseases due to integrated small-scale specifics such as topography or further 

landscape features (Jacob, 2008). 

 Climatic data were separately averaged over time periods 2011- 2040, 2041-2070 and 

2071-2100 for each scenario. Bioclimatic variables for modelling future climate projections 

were calculated in the same way as the original variables for current conditions. The spatial 

resolution of CCLM was resampled to the 5 arcminutes used for the current conditions. The 

pre-processing of the CCLM data was done via climate data operator codes (Schulzweida et 

al., 2009). The spatial extension of Europe for the current and future projections is adjusted to 

the defined space of the CCLM data. 

 

2.3. Species distribution models 

 Species distribution models were built with MaxEnt. MaxEnt is a machine-learning 

technique combining species occurrence data with detailed climatic and environmental 

datasets in order to predict species distribution (Phillips et al., 2006; Phillips and Dudik, 

2008). MaxEnt is favoured among other (pseudo) presence-only species distribution models 

due to high predictive power across all sample sizes (Elith et al., 2006; Wisz et al., 2008). In 

addition, variable selection in MaxEnt is less affected by correlated variables than e.g. step-

wise regression, so there is less need to remove such correlated variables or, for instance, pre-

process covariates by calculating principal components (Elith et al., 2011). Model residuals 

were tested for spatial autocorrelation using Morans I (Dormann et al., 2007). 

 Several parameter settings affect MaxEnt performance: Regularisation modifiers, which 

reduce the likelihood of overfitting and thus increase the predictive ability of modes beyond 

the training region (Phillips and Dudik, 2008), were set to 1. Increasing the number of model 

training iterations beyond the default value of 500 enhanced model performances, and the 

maximum number of iterations was therefore set on 2000 for all models. Furthermore, models 

were run with following settings: feature types were automatically selected depending on the 

training sample size (auto feature), convergence thresholds were 0.00001, maximum number 

of background points were 10000 as more background points do generally not enhance model 

quality criteria, but extend running time (Phillips and Dudik, 2008). 

 The model performance was quantified using the area under the receiver operator 

characteristic curve (AUC), a threshold-independent quality criterion (e.g. Elith et al., 2006). 

AUC-values can be interpreted as the probability that the model assigns a higher occurrence 

probability to a randomly selected presence location than to a randomly selected absence loc-
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ation. In order to yield unbiased estimates of model performance, we employed a standard 

split-sample strategy. Models were trained using a random subset (70%) of occurrence data 

and then tested on the remaining 30% (see also Araujo et al., 2005). This procedure was 

replicated 100 times and finally averaged. Both native models were additionally projected 

onto current climatic conditions of Europe. 

 Those models were further analysed that yielded high model quality criteria when tested 

with European presence records (Table 2). Additionally, prediction quality was visualised 

with maps of current climatic suitability for the entire range, for the native range, and for 

Europe (Figs. 2-3). Climate change projections were made for three time periods at high 

spatial resolution for Europe in order to identify regions with future climatic suitability for the 

mosquito. 

 

2.4. Niche similarity and climatic similarity 

 We tested for differences in environmental conditions at the occurrence points using 

Multiresponse Permutation Procedure (MRPP) with 999 replicates. Occurrence points were 

assigned to one of three groups: the native range, the invasive non-European range, or the 

invasive European range. The MRPP was repeated for all three sets of environmental vari-

ables that were used in the modelling, i.e. those of the EKBM, the native SBM, and the global 

SBM. Additionally, we tested for niche differences between models trained on the native or 

on the global range, using a randomization test based on a method by Warren et al. (2008). 

Niche overlap between two model predictions is quantified with the I statistic (Table 3). 

 Since our main regional interest is Europe, we evaluated niche similarity for Europe 

only. The test compares the niche overlap of the original data with the niche overlap of 

randomised data, where we randomised the assignments to the regions (native and global), for 

both occurrence and background points. In order to keep the number of presence records con-

stant in both regions, we separately randomised the region assignments for occurrence points 

and for background points. We used a one-sided test, with the null hypothesis that niche 

similarity is smaller or equal in the randomised data than in the original data; 199 ran-

domisations were performed. 

 Furthermore, potential non-analogue climatic conditions between all projections in 

space and time were calculated. If non-analogue climate is detected, this requires caution in 

the interpretation of the results (Fitzpatrick and Hargrove, 2009). We determined potential 

non-analogue climate by using Multivariate Environmental Similarity Surface (MESS) 
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analysis (Elith et al., 2010) for all of our projections in space and time. The MESS analysis 

measures the similarity between those environments used to train the model and the new 

projected environments for any grid cell (Elith et al., 2011). Regions with dissimilar values of 

the used variables, representing values that are outside the range of environmental training 

area, can be detected (Elith et al., 2010). 

 Preparation of presence records, current and projected climatic data was executed in 

ArcGIS 9.3.1 and R 2.11.0 (R Development Core Team, 2010). Correlation analysis of bio-

climatic variables and Moran's I test were done in R. This software was also used to perform 

MRPP using the package “vegan” (Oksanen et al., 2011), while the package “phyloclim” 

(Heibl, 2011) was used for calculating I statistics (Warren et al., 2008). Species distribution 

models and MESS as well as calculation of variables contribution and Jackknife tests were 

carried out in MaxEnt 3.3.3e. 

 

3. Results 

3.1. Bioclimatic envelope and current distribution 

 Regarding the bioclimatic envelope, the occurrence of the mosquito mainly refers to 

regions that exhibit more than 500 mm of average annual precipitation and annual mean 

temperatures above 10 °C (Fig. 1). This is found to be true for both, the native and the 

invasive range. Within its invasive distribution the mosquito established in areas with annual 

mean temperatures between 10 and 25 °C and annual precipitation that ranges from 500 mm 

up to 2000 mm. The native range of Ae. albopictus is characterised by slightly higher tem-

peratures and rainfall compared to the invasive range. Notably, the invaded range in Europe 

achieved the lowest values of annual mean temperature and annual precipitation. 
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Fig. 1: Bioclimatic envelope for Aedes albopictus (native and invasive range), derived by 
geographically explicit overlay of presence records with annual bioclimatic variables. Annual 
mean temperature is highest in the native range (South-east Asia) with an average value of 
23.7 °C (± 5.1 standard deviation) and the invasive range excluding Europe with 21.7 °C 
(±3.7), but lowest in Europe with 13.8 °C (± 2.2). High values of annual precipitation are 
characteristic for the native range (2028 mm ± 691) and for the invasive range without 
Europe (1392 mm ± 496). Invaded European regions obtain an average of 831 mm (± 218) of 
annual precipitation. Globally, the averaged annual mean temperature for regions with 
occurrence of the species is 20.3 °C (± 5.2) and averaged annual precipitation is 1392 mm 
(±632). The climatic conditions at the occurrence points differ significantly between the na-
tive range, the invaded European range, and the invaded non-European range (significance 
level of 0.001, Multiresponse Permutation Procedure with 999 replicates; the result holds for 
all three sets of environmental variables used in this study). 
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The EKBMs were mainly built on temperature variables. Results of the Jackknife test 

for the selection of meaningful variables for the SBM differ for the global and the native 

range: While the global-driven SBM mainly includes hydrological variables, the native-driven 

SBM reflects equally thermal and hydrological constraints. Altitude and annual precipitation 

were the only variables used in both EKBMs and SBMs, regardless of the chosen training 

region (Table 1).  

Tab. 2: Evaluation of model performance based on the area under the curve for the receiver-
operator characteristic (AUC). AUC-values range from 0 to 1 (perfect discrimination); useful 
models have AUC-values above 0.7, excellent models achieve AUC-scores above 0.9. AUC 
values were calculated on randomly selected test and training data; the split into training and 
test data was replicated 100 times, reported are mean and, in brackets, standard deviation. 
Both global models performed best and were used for further analysis. 

Native model (trained and 

tested in native range) 

Native model (trained in native 

range, tested in European range 

Global model (trained and 

testedin global range) 

Evaluation of 

model quality 

via AUC-

scores 

Expert 
knowledge 

based 

Statistic 
based 

Expert 
knowledge 

based 

Statistic 
based 

Expert 
knowledge 

based 

Statistic 
based 

Training data 0.93 (+/- 0.01) 0.94 (+/- 0.01) 0.94 (+/- 0.01) 0.94 (+/- 0.01) 0.91 (+/- 0.01) 0.90 (+/- 0.01) 

Test data 0.91 (+/- 0.01) 0.91 (+/- 0.01) 0.72 (+/- 0.02) 0.70 (+/- 0.02) 0.90 (+/- 0.02) 0.89 (+/- 0.01)  
 

 Both native and both global models showed high model performance for their respective 

training region (Table 2). The global EKBM and SBM delivered a realistic representation of 

the global range (Fig. 2). Interestingly, large parts of the continental west coasts of South 

America (Chile), Mexico and the United States (California, Oregon and Washington) as well 

as Europe (France, Portugal) are determined as climatically suitable, although there are cur-

rently no presence records. Furthermore the eastern side of Australia has been predicted as 

climatically suitable in both global models where the species is not established. The SBM 

made better predictions of the distribution of the mosquito in India. European areas with cur-

rent distributions are successfully predicted with both global models (Figs. 2,4,5). 
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3.2. Projected climatic suitability for Aedes albopictus in Europe 

 The modelled niches for Europe differed significantly between models based on native 

and global occurrence records (Table 3). 

Table 3: Niche similarity based on I statistic (Warren et al., 2008) for the different models, 
evaluated for the regional example of Europe. In all comparisons, a randomisation test 
indicates significant differences in the pairs of modelled niches (p < 0.05). 

Model comparison Niche similarity   

Global expert knowledge based vs. global statistic based model 0.91 

Native expert knowledge based vs. native statistic based model 0.85 

Global expert knowledge based vs. native expert knowledge based  0.72 

Global expert knowledge based vs. native statistic based 0.65 

Global statistic based vs. native expert knowledge based 0.74 

Global statistic based vs. native statistic based 0.66 
 
 

 Both native models that are based on records of South-east Asia do not predict the 

recent distribution of Ae. albopictus in Europe well (Table 2, Fig. 3). While the native-driven 

EKBM projected the north-western part of Europe (British Isles and north-west of France) as 

a preferable region for mosquito establishment, the SBM additionally detected Denmark and 

the northern part of Germany as climatically suitable.  
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Fig. 3: Current climatic suitability modelled based on the species' occurrences in the 
native range and projected to the European continent. Results are mapped for the 
global-driven a) expert knowledge based model and b) statistic based model. Both 
native models failed to predict the current distribution of Aedes albopictus in Europe. 

 

 Only the north-east of Italy and some eastern coastal Mediterranean regions are 

correctly predicted as climatically suitable in both native-driven models. As a consequence, 

European climatic suitability of Ae. albopictus in the 21st century was projected using the 

current global range of distribution as training region. 
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 Italy provides highest climatic suitability under current climatic conditions in both 

global models. The western Atlantic coast of Portugal, Spain and France are pointed out as 

climatically suitable as well, though records from these regions are still missing. Both models 

already project a slight decrease of climatic suitable areas in Southern Europe for 2011-2040 

(Figs. 4-5). The decrease is more pronounced in south-western parts of Europe. However, 

Italy and south-eastern parts of Europe will still provide suitable climatic conditions for the 

mosquito. Passing the mid-century the Mediterranean coast of Spain seems to become un-

favourable for Ae. albopictus. 

 On the other hand, climatic suitability in Western Europe is projected to increase 

considerably. France can be expected to become the country with the best climatic suitability, 

regardless of the applied model or scenario. At the end of the century, our results suggest that 

especially some western parts of the Mediterranean such as Spain seem to develop towards a 

climatically unsuitable direction for the species. Today's temperate regions of Europe will be 

characterised by a continental gradient of climatic suitability, with Central Europe becoming a 

more and more suitable habitat. The United Kingdom will be exposed to the establishment 

and spread of Ae. albopictus as well. Scandinavia is projected to remain outside of the bio-

climatic niche, with the exception of Denmark, where a limited suitability is indicated at the 

end of the century. 
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3.3. Comparison of model results 

 Even though the decreasing climatic suitability in the south and the increasing suitabi-

lity in Central Europe are highlighted by both scenarios and models, this tendency is more 

pronounced in the EKBM. Notably, this model tends to attribute Central and Eastern Europe 

with substantially higher values of suitability throughout the 21st century than the SBM 

(Suppl. Fig. 1). The SBM, however, pointed out better habitat conditions for the south-west, 

south and south-east of Europe and additionally for the United Kingdom than the EKBM. 

This is true for both scenarios. 

 Differences between climate change scenarios are worth mentioning (see also Suppl. 

Fig. 2). Generally, higher values of climatic suitability for Ae. albopictus in both models refer 

to the A1B scenario. This becomes especially apparent in the SBM for Central Europe, 

Eastern Europe, and for the British Isles (time periods 2011-2040 and 2041-2070) and in the 

EKBM in the later period (2071-2100). Regionally limited areas of the Iberian Peninsula and 

France are detected to be more suited following the B1 scenario. 

 Regarding the changing climatic suitability we compare trends across different time 

periods. Clear temporal trends of the changing climatic suitability in projections of the EKBM 

exist, with a stronger emphasis in the A1B scenario (Suppl. Fig. 3). Western, Central and 

Eastern Europe are characterised by an increase in climatic suitability throughout the 21st 

century, while climatic suitability decreases in the south from one period to the following. 

Nevertheless, projections of the SBM do not show such a clear tendency (Suppl. Fig. 4). 

Although suitability also decreases generally in Southern Europe, some spatially limited re-

gions in Central Spain and Northern Italy show increasing climatic suitability, when the time 

period 2011-40 is compared with current conditions. For the southern parts of Europe 

generally only small changes in climatic suitability are projected from the time period 2011-

40 to 2041-70 in both scenarios. Instead, increasing suitability at higher latitudes is projected 

for the end of the century. 

 

3.4. Climatic similarity and non-analogue climate 

 Climatic similarity between regions was determined by MESS analysis (Elith et al., 

2010) ranging theoretically from 100 (maximum similarity) to zero (minimal similarity). 

Negative values represent non-analogue climatic conditions. Non-analogy may be caused 

either by e.g. completely divergent relationships between the chosen climatic variables in 

training and projected area or by completely novel relationships of the variables in the pro-
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jections across space and/or time (Fitzpatrick and Hargrove, 2009). Projections of a species' 

climatic suitability must then be expected to be biassed. In none of our projections non-

analogue climate can be identified (Suppl. Figs. 5-7). For projections of the native models to 

current European climate (Suppl. Fig. 5), the climatic variables selected of the EKBM show 

higher similarity. Regions with lowest similarity in both projections are the north-east of Italy, 

the coastal areas of Belgium, the Netherlands, the north-west of Germany and parts of Scan-

dinavia as well as mountainous regions in general. 

 Non-analogue climate must not only be a phenomenon occurring between regions but 

also between time periods. But again, no European region was found to exhibit non-analogue 

climatic conditions in temporal projections of the two global models. The lowest values of 

similarity are detected in the highest mountainous regions (Alps and Pyrenees), the north-

eastern parts of Italy, the coastal areas of the North Sea and the coast of Norway. Projections 

of the EKBM (Suppl. Fig. 6) generally result in higher values of similarity. However, these 

projections tend to perform dispersed spatial patterns of similarity. Using the SBM projection 

(Suppl. Fig. 7) France, the Iberian Peninsula and Turkey reach considerably lower values of 

similarity compared to the EKBM projection. Only slight deviations between scenarios and 

time periods were found in the results for both global climatic datasets that were used for 

projection. 

 

4. Discussion 

4.1. Reflection of the results and comparison to previous studies 

 Our aim was to identify areas that can serve as a potential habitat for Ae. albopictus, 

today and under future climate change. Two sets of bioclimatic variables were used to detect 

the influence of variable selections on spatio-temporal patterns of model output. In addition, 

we tested if records of occurrence of the former native or of the recent global range are more 

appropriate for predicting the current distribution in Europe. 

 Particularly in early stages of the invasion process, niche models are usually trained 

with data from the native range and applied to areas that are novel for the potentially invasive 

species (Mau-Crimmins et al., 2006). As invasive species are known to be adaptive (Eritja et 

al., 2005; Juliano and Lounibos, 2005), the habitat preferences of the species may change 

during the invasion process (e.g. Pearman et al., 2008; Medley, 2010). In that case, the ecol-

ogy of the species in its native range cannot be directly transferred to the invaded area. On the 
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other hand, the native range may not necessarily cover a species' entire fundamental niche 

(Broennimann et al., 2007). 

 Modelling potential spread and range dynamics based on the native habitats of a species 

alone has limits that can be overcome when additional data from recently occupied locations 

are integrated into the analyses (Broennimann and Guisan, 2008). Hence, we built native and 

global models in order to assess the influence on the estimated environmental niches of the 

invasive species. Since the global models use presence records of Europe, it was expected that 

they showed good results concerning the current European distribution. Ae. albopictus has the 

potential to adapt to local conditions during or after the invasion process (Medley, 2010). 

Hence, even using all existing species occurrence data does not guarantee per se accurate 

predictions of species current distribution. 

 We applied the regional climate model CCLM for climate projections of Europe. CCLM 

projects Europe to experience only a moderate warming during the first half of the century 

(annual mean temperature and mean winter temperatures). As mean temperature is projected 

to increase significantly from the midcentury onwards, certain regions reach the temperature 

threshold found by the global climatic envelope of the species. Precipitation, however, may be 

overestimated during all seasons and therefore the largest number of consecutive dry days 

may be higher than projected (Roesch et al., 2008), resulting in reduced habitat availability 

and survival rates. 

  An expansion of climatically suitable habitats over time could be observed in both 

model projections. The results raise concerns of a serious risk for the establishment of 

Ae. albopictus in Western and Central Europe. Once the species arrives there, it will be able to 

survive and establish permanent populations (Takumi et al., 2009). Annual mean temperature 

and annual precipitation are the only climatic variables that are applied in both global-driven 

models. Nevertheless, annual mean values should be considered as proxy-values, because the 

species is not active throughout the whole year in all established regions. 

 The risk of invasion of Ae. albopictus under current climatic conditions was examined 

in previous approaches for European countries (Knudsen et al., 1996), the Mediterranean 

Basin (Mitchell, 1995), and Spain (Eritja et al., 2005). In comparison to the previously hypo-

thesised suitable areas for establishment of Ae. albopictus in Spain (Eritja et al., 2005), we 

found a greater extent of suitable climatic conditions in the north-west (Galicia) and south-

west of Spain (Western Andalucía). The European risk map of Knudsen et al. (1996) is ca-

tegorised in three classes at country level: high, moderate and low risk. This does not enable 
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for a detailed detection of suitable areas. Benedict et al. (2007) present a global risk map for 

the establishment of Ae. albopictus under current climatic conditions. When focusing on the 

European part of this global map it is noticeable, that the south-western areas of the United 

Kingdom and Ireland show a higher climatic suitability than we found in our investigation. 

 We observe a “coast phenomenon” beyond the one described in Benedict et al. (2007): 

The coastal areas of invaded continents seem to be climatically suitable for Ae. albopictus. 

This is especially true for the Americas (Pacific coastline of Washington, Oregon, California, 

Mexico and Chile), Europe (Atlantic coastline of Portugal, Spain and France), Africa 

(Atlantic coastline of Ghana, Cote d'Ivoire and for the Indian Ocean coastline of Mozam-

bique), and for Australia (southern and western coastline). But no occurrences have yet been 

documented in these areas. Certainly, some of these regions have implemented pronounced 

mosquito monitoring and control programmes. On the one hand, these findings may indicate 

that introduction of the species has not yet occurred or has been avoided. On the other hand, 

further climate factors could play a role under oceanic climatic conditions, which contribute 

to suppress the mosquito populations, such as wind, sea salt aerosols, or humidity. 

  ECDC (2009) practised ensemble forecasting for specific years (2010 and 2030) 

by embedding different scenarios to detect future possible risk areas for the establishment of 

Ae. albopictus in Europe. In contrast, we used climatic averages over longer time periods, 

which handicap the direct comparability of the results. Nevertheless, under current conditions 

our global-driven models seem to project higher climatic suitability for the south-west of 

France and Portugal and lower suitability for Spain compared to the ECDC statistical model. 

Even the minimal impact scenario of the ECDC-projections (2030) determines more Eur-

opean regions to be climatically suitable, especially France, Belgium, Luxembourg, the 

Netherlands, Germany and Greece. The tendencies of the projected eastward expansion in cli-

matic suitability in this study are in agreement with our findings. 

 

4.2. Limitations 

 As with all climate impact studies, uncertainties connected to future climate projections 

must be taken into account (Beaumont et al., 2008). To minimise this limitation we applied 

two scenarios that document the respective storyline best: A1B and B1 (IPCC, 2007). Apart 

from overall climatic conditions, microclimate and habitat availability will strongly influence 

the success of Ae. albopictus (Romi et al., 2006; Lounibos et al., 2010). Regions that display 

unsuitable annual rainfall in general might nevertheless supply the mosquito with hydroponic 
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facilities when ambient conditions are dry (Romi et al., 2006). In the same way indoor 

hibernation could protect the mosquito from cold extremes. Such aspects are difficult to 

account for on the regional scale (Kysely and Beranova, 2009). The short-term availability of 

suitable conditions at small scales can be responsible for local establishment events under 

very special conditions. In the Netherlands, Ae. albopictus was monitored in greenhouses of 

companies that imported “Lucky Bamboo” (Dracaena sanderiana) (Scholte et al., 2007). 

However, such anthropogenic factors cannot be covered with our analysis. Nevertheless, the 

number of records used in this study as well as the large geographical extent of data provides 

a sound basis for the detection of robust large scale patterns. 

 In addition to spatial aspects of uncertainty, temporal variability is relevant. Besides 

changes in climatic trends, extreme weather events are also expected to increase in magnitude 

and frequency (Semmler and Jacob, 2004; Jentsch and Beierkuhnlein, 2008), so that a tem-

poral window of opportunity for an invasive vector could arise. Up to now, both aspects can 

hardly be reflected and projected accurately in climate models (Beniston et al., 2007).  

 Using only climatic variables as explanatory variables for scenarios may be problematic 

(Dormann, 2007; Wiens et al., 2009): Land use and land cover can modify the realised 

ecological niche in a certain region, but become more important for modelling species distri-

bution on smaller spatial scales (Pearson and Dawson, 2003). Knowledge on interspecific 

competition, predation as well as quantitative life history traits may improve the under-

standing of the invasion processes (Juliano et al., 2004; Juliano and Lounibos, 2005; 

Armbruster and Conn, 2006; Armistead et al., 2008; Juliano, 2009) and could provide input 

data for process-based models of invader spread. As the mosquito adapts rapidly to its 

environment the ecological niche models will have to be updated iteratively. Mutations and 

even epigenetic responses have to be considered. However, this kind of knowledge is not 

available yet. 

 On a more technical level, a further source of uncertainty stems from spatial auto-

correlation, which MaxEnt - at least currently - cannot take into account. Spatial auto-

correlation in the residuals may for example bias parameter estimates, and lead to optimistic 

estimates of model performance. Based on Moran's I, we detected statistically significant 

spatial autocorrelation in the residuals for all models. However, estimates of AUC using 32-

fold spatially structured cross-validation (e.g. Reineking et al., 2010), which is expected to be 

less affected by spatial autocorrelation, were only slightly lower than those by the 70/30 split-

ting approach. This indicates limited bias in our estimates of model performance. 
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4.3. Relevance 

 Even when considering the limits of extrapolative niche modelling, environmental 

envelope models remain a powerful tool to envisage potential responses in species distri-

bution to climate change (Wiens et al., 2009). 

 Our projections refer to the regional model CCLM, which is integrated into the well 

established global simulations of ECHAM5 (Rockel et al., 2008). In comparison to their 

driving models, regional models project patterns of climate change at a higher spatial 

resolution. This is especially relevant in climate impact studies on human health, where pre-

cise geographical information is needed (Giorgi and Diffenbaugh, 2008). In particular, small-

scale heterogeneity has to be considered in studies on vector-borne diseases (Jacob, 2008; 

Fischer et al., 2010b). We detected those regions of Europe that are especially endangered 

regarding a potential establishment of Ae. albopictus under current conditions. Subsequently, 

we projected for the first time geographic patterns of climatic suitability for the mosquito that 

can be expected to develop during the entire 21st century. These risk maps of potentially 

suitable areas for the establishment may serve as a valuable support for the design of moni-

toring and control activities. These can contribute to avoid the further spread of the disease 

vector and prevent the human population from unexpected disease outbreaks. Knowledge of 

potential future occurrences of the vector Ae. albopictus becomes especially relevant regar-

ding the increasing European areas that are expected to provide suitable temperatures for 

dengue-virus amplification in the 21st century (Thomas et al., 2011).  

 Projections of species distribution in regions of non-analogue climate are a common, but 

still a rarely addressed problem in species distribution modelling. The consequences can be 

ecologically and statistically invalid studies (Fitzpatrick and Hargrove, 2009). To assess the 

problem of non-analogue climate, we re-analysed our dataset using the MESS analysis (Elith 

et al., 2010). No regions with nonanalogue climate were detected. 

 

5. Conclusions 

 Our findings indicate an increasing risk of establishment by Ae. albopictus especially 

for the Atlantic Coast of the Iberian Peninsula and for the south-west of France. In addition to 

the detection of already potentially appropriate areas, we find additional areas of potential 

future establishment of Ae. albopictus. It is possible that the mosquito has already colonised 

larger areas than noticed. Large areas of Western and Central Europe that are inappropriate 
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for the species today are projected to change during the 21st century towards a climate that can 

support the survival of the species. Once the species is established, it is very difficult to 

control. 

 However, unintended anthropogenic introduction (e.g. by shipping goods) can be 

expected as a constant source of insecurity and will very likely contribute consistently to the 

introduction of mosquito populations especially close to the hubs of infrastructure (harbours 

and large railroad terminals). Therefore, we believe in efficiency of monitoring schemes for 

Europe, in order to be able to limit the spread of Ae. albopictus and the diseases that can be 

transmitted by this vector. 
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J., Vilibić-Čavlek, T., Babić-Erceg, A., Turković, B., Avsić-Županc, T., Radić, I., Ljubić, 
M., Sarac, K., Benić, N., Mlinarić-Galinović, G., 2010. Autochthonous dengue fever in 
Croatia, August-September 2011. Eurosurveillance 16, 19805. 

Goubanova, K., Li, L., 2007. Extremes in temperature and precipitation around the 
Mediterreanean basin in an ensemble of future climate scenario simulations. Glob. Planet. 
Change 57, 27-42. 

Gratz, N.G., 2004. Critical review of the vector status of Aedes albopictus. Med. Vet. 
Entomol. 18, 215-227. 

Hawley, W.A., 1988. The biology of Aedes albopictus. J. Am. Mosq. Control. Assoc. 1, 1-40. 
Heibl, C., 2011. Phyloclim: integrating phylogenetics and climatic niche modelling. R 
package2011accessed: January-19-2011.  

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution 
interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965-1978  

http://www.worldclim.com accessed: January-10-2010. Intergovernmental Panel on Climate 
Change (IPCC), 2007. Contribution of Working Group I to the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change. Cambridge University Press 
Cambridge, United Kingdom and New York, NY, USA. 

Jacob, D., 2008. Short communication on regional climate change scenarios and their possible 

115 



Article 4: Projection of climatic suitability for Aedes albopictus in Europe 

use for impact studies on vector-borne diseases. Parasitol. Res. 103(Suppl. 1), 3-6. 

Jacob, D., Podzun, R., 2010. Global warming below 2 °C relative to pre-industrial level: how 
might climate look like in Europe. Nova Acta Leopoldina 384, 71-76. 

Jentsch, A., Beierkuhnlein, C., 2008. Research frontiers in climate change: effects of extreme 
meteorological events on ecosystems. C. R. Geosci. 340, 621-662. 

Juliano, S.A., 2009. Species interactions among larval mosquitoes: context dependence across 
habitat gradients. Annu. Rev. Entomol. 54, 37-56. 

Juliano, S.A., Lounibos, L.P., 2005. Ecology of invasive mosquitoes: effects on resident 
species and on human health. Ecol. Lett. 8, 558-574. 

Juliano, S.A., O'Meara, G.F., Morrill, J.R., Cutwa, M.M., 2002. Desiccation and thermal 
tolerance of eggs and the coexistence of competing mosquitoes. Oecologia 130, 458-469. 

Juliano, S.A., Lounibos, P.L., O'Meara, G.F., 2004. A field test for competitive effects of 
Aedes albopictus and A. aegypti in South Florida: differences between sites of coexistence 
and exclusion. Oecologia 139, 583-593. 

Knudsen, A., 1995. Geographic spread of Aedes albopictus in Europe and the concern among 
public health authorities. Eur. J. Epidemiol. 11, 345-348. 

Knudsen, A., Romi, R., Majori, G., 1996. Occurrence and spread in Italy of Aedes albopictus, 
with implications for its introduction to other parts of Europe. J. Am. Mosq. Control. 
Assoc. 12, 177-183. 

Kobayashi, M., Nihei, N., Kurihara, T., 2002. Analysis of northern distribution of Aedes 
albopictus (Diptera: Culicidae) in Japan by geographical information system. J. Med. 
Entomol. 39, 4-11. 

Kysely, J., Beranova, R., 2009. Climate-change effects on extreme precipitation in central 
Europe: uncertainties of scenarios based on regional climate models. Theor. Appl. 
Climatol. 95, 361-374. 

La Ruche, G., Souarès, Y., Armengaud, A., Peloux-Petiot, F., Delaunay, P., Desprès, P., 
Lenglet, A., Jourdain, F., Leparc-Goffart, I., Charlet, F., Ollier, L., Mantey, K., Mollet, T., 
Fournier, J.P., Torrents, R., Leitmeyer, K., Hilairet, P., Zeller, H., Van Bortel, W., Dejour-
Salamanca, D., Grandadam, M., Gastellu-Etchegorry, M., 2010. First two autochthonous 
dengue virus infections in metropolitan France, September 2010. Euro Surveill. 15, 19676. 

Lounibos, L.P., 2002. Invasions by insect vectors of human diseases. Annu. Rev. Entomol. 
47, 233-266. 

Lounibos, L.P., Escher, R.L., Lourenco de Oliveiro, R., 2003. Asymmetric evolution of 
photoperiodic diapause in temperate and tropical invasive populations of Aedes albopictus 
(Diptera: Culicidae). Ann. Entomol. Soc. Am. 96, 512-518. 

Lounibos, L.P., O'Meara, G.F., Juliano, S.A., Nishimura, N., Escher, R.L., Reiskind, M.H., 
Cutwa, M., Greene, K., 2010. Differential survivorship of invasive mosquito species in 
South Florida Cemeteries: do site-specific microclimates explain patterns of coexistence 
and exclusion? Ann. Entomol. Soc. Am. 103, 757-770. 

Mau-Crimmins, T.M., Schussman, H.R., Geiger, E.L., 2006. Can the invaded range of a 
species be predicted sufficiently using only native-range data? Lehmann lovegrass 
(Eragrostis lehmanniana) in the southwestern United States. Ecol. Model. 193, 736-746. 

Medley, K.A., 2010. Niche shifts during the global invasion of the Asian tiger mosquito, 
Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. 

116 



Article 4: Projection of climatic suitability for Aedes albopictus in Europe 

Ecol. Biogeogr. 19, 122-133. 

Medlock, J.M., Avenell, D., Barrass, I., Leach, S., 2006. Analysis of the potential for survival 
and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. J. 
Vector Ecol. 31, 292-304. 

Mitchell, C.J., 1988. Occurrence, biology, and physiology of diapause in overwintering 
mosquitoes. In: Monath, T.P. (Ed.), The Arboviruses: Epidemiology and Ecology. CRC 
Press, Florida, USA, pp. 191-217. 

Mitchell, C.J., 1995. Geographic spread of Aedes albopictus and potential for involvement in 
arbovirus cycles in the Mediterranean Basin. J. Vector Ecol. 20, 44-58. 

Mitchell, C.J., Miller, B.R., Gubler, D.J., 1987. Vector competence of Aedes albopictus from 
Houston, Texas, for dengue serotypes 1 to 4, yellow fever and Ross River viruses. J. Am. 
Mosq. Control. Assoc. 3, 460-465. 

Nawrocki, S.J., Hawley, W.A., 1987. Estimation of the northern limits of distribution of 
Aedes albopictus in North America. J. Am. Mosq. Control. Assoc. 3, 314-317. 

Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., O'Hara, R.B., Simpson, G.L., 
Solymos, P., Stevens, M.H., Wagner, H., 2011. Vegan: Community Ecology Package. R 
package. http://cran.r-project.org/web/packages/vegan/index.html, accessed: January-17-
2011. 

Pearman, P.B., Guisan, A., Broennimann, O., Randin, C.F., 2008. Niche dynamics in space 
and time. Trends Ecol. Evol. 23, 149-158. 

Pearson, D., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution 
of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361-371. 

Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent: new 
extensions and a comprehensive evaluation. Ecography 31, 161-175. 

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species 
geographic distributions. Ecol. Model. 190, 231-259. 

Pumpuni, C.B., Knepler, J., Craig, G.B., 1992. Influence of temperature and larval nutrition 
on the diapause inducing photoperiod of Aedes albopictus. J. Am. Mosq. Control. Assoc. 8, 
223-227. 

R Development Core Team, 2010. R: A language and environment for statistical computing. 
Vienna. http://R-project.org accessed: April-11-2010. 

Reineking, B., Weibel, P., Conedera, M., Bugmann, H., 2010. Environmental determinants of 
lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of 
Switzerland. Int. J. Wildland Fire 19, 541-557. 

Rezza, G., Nicoletti, L., Angelini, R., Rom, A.C., Finarelli, M., Panning, P., Cordiol, C., 
Fortuna, S., Boros, F., Magurano, G., Silvi, P., Angelini, M., Dottori, M.G., Ciufolini, 
G.C., Majori, A., Cassone, R., 2007. Infection with chikungunya virus in Italy: an outbreak 
in a temperate region. Lancet 370, 1840-1846. 

Rockel, B., Will, A., Hense, A., 2008. The regional climate model COSMO-CLM (CCLM). 
Meteorol. Z. 17, 347-348. 

Roesch, A., Jaeger, E.B., Luethi, D., Seneviratne, S.I., 2008. Analysis of CCLM model biases 
in relation to intra-ensemble model variability. Meteorol. Z. 17, 369-382. 

Romi, R., Severini, F., Toma, L., 2006. Cold acclimation and overwintering of female Aedes 
albopictus in Roma. J. Am. Mosq. Control. Assoc. 22, 149-151. 

117 



Article 4: Projection of climatic suitability for Aedes albopictus in Europe 

Rosen, L., Shroyer, D.A., Tesh, R.B., Freier, J.E., Lien, J.C., 1983. Trans-ovarial transmission 
of dengue virus by mosquitos - Aedes albopictus and Aedes aegypti. Am. J. Trop. Med. 
Hyg. 32, 1108-1119. 

Sabatini, A., Raineri, V., Trovato, G., Coluzzi, M., 1990. Aedes-albopictus in Italy and 
possible spread of the species in the Mediterranean Area. Parassitologia (Rome) 32, 301-
304.  

Schmidt-Chanasit, J., Haditsch, M., Günter, S., Stark, K., Frank, C., 2010. Dengue virus 
infection in a traveller returning from Croatia to Germany. Eurosurveillance, 15, 19667.  

Scholte, E.J., Jacobs, F., Linton, Y.M., Dijkstra, E., Fransen, J., Takken, W., 2007. First 
record of Aedes (Stegomyia) albopictus in the Netherlands. Euro. Mosq. Bull. 22, 5-9.  

Schulzweida, U., Kornblueh, L., Quast, R., 2009. CDO User's Guide: Climate Data Operators 
Version 1.4.1. http://www.mpimet.mpg.de/fileadmin/software/cdo/cdo.pdf. accessed: 
January-10-2010. 

Semmler, T., Jacob, D., 2004. Modeling extreme precipitation events - a climate change 
simulation for Europe. Glob. Planet. Change 44, 119-127. 

Takumi, K., Scholte, E.J., Braks, M., Reusken, C., Avenell, D., Medlock, J.M., 2009. 
Introduction, scenarios for establishment and seasonal activity of Aedes albopictus in the 
Netherlands. Vector-Borne Zoonotic Dis. 9, 191-196. 

Tatem, A.J., Hay, S.I., Rogers, D.J., 2006. Global traffic and disease vector dispersal. Proc. 
Natl. Acad. Sci. U.S.A. 18, 6242-6247. 

Tesh, R.B., Gubler, D.J., 1975. Laboratory studies of transovarial transmission of la crosse 
and other arborviurses by Aedes albopictus and Culex fatigans. Am. J. Trop. Med. Hyg. 
24, 876-880. 

Thomas, S.M., Fischer, D., Fleischmann, S., Bittner, T., Beierkuhnlein, C., 2011. Risk 
assessment of dengue virus amplification in Europe based on spatio-temporal high 
resolution climate change projections. Erdkunde 65, 137-150. 

Warren, D.L., Glor, R.E., Turelli, M., 2008. Environmental niche equivalency versus 
conservatism: quantitative approaches to niche evolution. Evolution 62, 2868-2883. 

Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., Snyder, M.A., 2009. Niches, 
models, and climate change: assessing the assumptions and uncertainties. Proc. Natl. Acad. 
Sci. U.S.A. 106, 19729-19736. 

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A., 2008. Effects of 
sample size on the performance of species distribution models. Divers. Distrib. 14, 763-
773. 

Woodward, A., Hales, S., de Wet, N., 2001. Climate Change: Potential Effects on Human- 
Health in New Zealand, Technical Report, Ministry for the Environment, Wellington, New 
Zealand. A report prepared for the Ministry for the Environment as part of the New 
Zealand Climate Change Programmehttp://www.mfe.govt.nz/publications/ climate/effect-
health-sep01/effect-health-sep01.pdf. accessed: January-10-2009. 

Yost, A.C., Petersen, S.L., Gregg, M., Miller, R., 2008. Predictive modeling and mapping 
sage grouse (Centrocercus urophasianus) nesting habitat using Maximum Entropy and a 
long-term dataset from Southern Oregon. Ecol. Inform. 3, 375-386. 

118 



Article 4: Projection of climatic suitability for Aedes albopictus in Europe 

Supplemental - Reference list 

Collected dataset of Aedes albopictus with worldwide occurrence points from the year 

2003 onwards. Benedict et al. (2007) conducted a database with occurrences of Ae. albopictus 

up to the year 2003. This consists of 206 occurrence points located in the native Asian range 

and additionally 181 records on the worldwide arrivals or establishments of the species. For 
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Supplemental Material Figures 

Suppl. Fig. 1: Differences in results between global-driven models. The computed values of 
climatic suitability from the statistic based model were subtracted from the results of the 
expert knowledge based model for each scenario and time period separately.  
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Suppl. Fig. 2: Differences in results between scenarios of global-driven 
models. The computed values of the climatic suitability for the B1 scenario 
were subtracted from the results of the A1B scenario for each model and 
time period separately. Differences are mapped for the a) expert 
knowledge based model and b) statistic based model. 

 

 

Suppl. Fig. 3: Changing climatic suitability in Europe, comparing the 
different time periods, calculated for the global-driven expert knowledge 
based model. The computed values for each time period were subtracted 
from the following one for each scenario separately. 
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Suppl. Fig. 4: Changing climatic suitability in Europe, comparing the 
different time periods, calculated for the global-driven statistic based model. 
The computed values for each time period were subtracted from the 
following one for each scenario separately. 

 
 

 

Suppl. Fig. 5: Climatic similarity detected via Multivariate Environmental 
Similarity Surface analysis by projecting the a) expert knowledge based and 
the b) statistic based native models to the current European conditions. High 
values represent high climatic similarity. Non-analogue climate was not 
detected. 
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Suppl. Fig. 6: Climatic similarity detected via Multivariate Environmental 
Similarity Surface analysis by projecting the global expert knowledge based 
models to future European climatic conditions. High values represent high 
climatic similarity. Non-analogue climate was not detected. 
 

 

Suppl. Fig. 7: Climatic similarity detected via Multivariate Environmental 
Similarity Surface analysis by projecting the global statistic based models to 
future European climatic conditions. High values represent high climatic 
similarity. Non-analogue climate was not detected. 
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6.5 Article 5:  

Modelling climatic suitability and dispersal for disease vectors: the example 

of a phlebotomine sandfly in Europe 

 

With 1 Table and 2 Figures. 

 

Abstract 

Climate change is thought to assist spreading vector-borne diseases. During the last 

years, ecological niche modelling has been increasingly applied to predict the current distri-

bution of disease vectors and their potential responses to climate change. However, sandflies 

and their transmitted diseases are only scarcely investigated via niche modelling. 

Here, we propose a methodological approach to combine specific dispersal pathways 

for a sandfly species (Phlebotomus perniciosus) with the shifting climatic niche in the face of 

climate change. Current climatic suitability for the species was determined. Future projection 

is based on data of a regional climate change model. We defined a cost-surface assigned by 

the changing climatic suitability and expert knowledge on species dispersal ability. The de-

rived travel costs correspond to the effort for the species to move across the landscape to 

climatically suitable habitats.  

In future steps, least-cost paths will be calculated for this and further sandfly species 

with assumed spreading tendencies to Central Europe in the 21st century. Challenges are the 

integration of wind speed and biotic interactions. 

 

1. Background: Sandflies as disease vectors in the light of climate change 

Globally, vector-borne diseases pose a serious and increasing problem to public 

health. Today, almost one third of the emerging cases of infectious diseases are vector-borne 

[1]. Most of the disease vectors are ectothermal arthropods which cannot regulate their body 

temperature themselves. Therefore, climate change may be associated with spatio-temporal 

variations in occurrences of vector-borne diseases [2].  

While mosquito-borne diseases such as Malaria and Dengue-fever attract much 

attention in science and policy, sandfly-borne diseases are often neglected. Nevertheless, 
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especially leishmaniasis constitutes a serious human and animal health concern [3]. In 

Europe, phlebotomine sandflies have been thought to be restricted to the Mediterranean. 

However, in recent years a northward spread of the disease vector is documented in Italy [4]. 

Sandflies have recently even been caught north of the Alps in Central Europe [5], where they 

have not been recorded before. This may either indicate spreading tendencies from the 

Mediterranean or range expansions from potential small Central European refugial areas. It is 

noticed that even moderately increasing temperatures in the 21st century would provide fur-

ther suitable areas for the infestations of sandflies in Germany [6]. Based on these findings the 

question arises which regions exlicitedly could provide suitable climatic habitats in the near 

future and whether sandflies are capable to disperse to these potential climatically suitable 

areas. 

 

2. Ecological niche modelling of sandflies and sandfly-borne diseases 

Correlative ecological niche models refer to the algorithms relating observed 

presences (and absences) of a species to values of ecological variables at those sites. The aim 

is to determine a species’ known and inferred distribution in the environmental space. They 

have become increasingly important due to advanced modelling techniques for determining 

spatial distribution patterns of species and their potential responses to environmental changes 

[7]. The organisms (pathogen, vector and reservoir/host) involved in a chain of infection of a 

vector-borne disease are dependent on a specific environment. Therefore, niche modelling can 

be expected to be a useful tool for projecting occurrences of vector-borne diseases. 

We conducted a literature survey (January 2011) in the ISI Web of Knowledge 

(literature databases: Web of Science, BIOSIS Previews and Medline) to search for peer-

reviewed articles dealing with ecological niche models and their application to sandflies and 

sandfly-borne diseases. We found ten articles addressing explicitly this topic (Table 1). 

Possible application of niche modelling for leishmaniasis or sandflies without concrete 

research was found in four articles [8]-[11]. In those reviews or reports, climate change is 

noticed to affect vector and disease occurrences, but without mentioning whether it will bene-

fit spreading tendencies or not. Concrete modelling approaches are used in six original 

research papers [12]-[17]. America is addressed in the majority of the research articles as 

study area. Those authors who integrate climate change scenarios point out a potential spread 

of sandflies [12][17]. Nevertheless, for some Lutzomyia species (L. intermedia and 

L. migonei) endemic in South America only subtle improvements in climatic conditions are 
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projected [16]. Europe is solely addressed in the work of Chamaille et al. (2010) [15]. There, 

ecological variables refer to the occurrence of canine leishmaniasis. Until today, explicit 

modelling of the current distribution of Phlebotomus species and of their potential shifts in 

spatial patterns of occurrence in the face of European climate change is missing. 

Tab. 1: Peer-reviewed articles dealing with the topic of sandflies or/and sandfly-borne diseases 
and ecological niche modelling. 

Reviews or reports Vector/reservoir/disease Climate change 

Peterson (2006) [8] Sandflies/further vectors Effect  

De la Roque et al. (2008) [9] Leishmaniasis/further 
diseases 

Effect 

Ready (2008) [10] Sandflies/Leishmaniasis Effect 

Colacicco-Mayhugh et al. (2009) [11] Sandflies/further vectors Effect 

Research Vector/reservoir/disease Climate change Region Software 

Peterson and Shaw (2003) [12] Sandflies Positive effect Brazil GARP 

Peterson et al. (2004) [13] Sandflies Not addressed Brazil GARP 

Nieto et al. (2006) [14] Leishmaniasis Not addressed Brazil  GARP 

Chamaille et al. (2010) [15] Leishmaniasis Not addressed France MaxEnt 

Colacicco-Mayhugh et al. (2010) [16] Sandflies Not addressed Middle East MaxEnt 

Gonzales et al. (2010) [17] Sandflies and reservoir Positive effect North America MaxEnt  
 

3. Case study: Combining climatic suitability and dispersal ability of 

Phlebotomus perniciosus 

3.1. Current and projected climatic suitability for Phlebotomus perniciosus 

Maximum entropy algorithm implemented in MaxEnt software [18] was used for 

modelling the current and projected distribution of Phlebotomus perniciosus (P. perniciosus) 

in this case study. MaxEnt is found to be superior in performance in comparison to other 

algorithms that are capable to handle presence-only data [7]. Recently, MaxEnt has success-

fully been applied to model the ecological niche of leishmaniasis as well as sandflies and 

substituted GARP as preferred modelling software (Table 1). 

Bioclimatic variables [19] were used to predict the current distribution of 

P. pernicosus. The climatic niche was then transferred to the expected climatic conditions for 

the upcoming time-period (2011-2040; IPCC A1B scenario). The climatic projection is based 

on data of the regional climate model COSMO-CLM that covers entire Europe and is nested 

into the global model ECHAM5 [20]. Regional climate models integrate regional structures of 

land cover and topographical specifis in the dynamically downscaling procedure of their dri-

ving model [21]. Hence, studies concerning vector-borne diseases in climate change investi-
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gations benefit in particular from applied spatio-temporal highly resolved climate change 

projections [2][21]. Results are shown using the example of Bavaria (Southeast Germany). 

Currently, no part of Bavaria provides suitable climatic conditions for P. perniciosus 

(fig. 1). Only in a small region in the outermost Northwest, climatic requirements of the 

species are almost fulfilled. Applying the A1B scenario for the next time-period (2011-2040), 

the river valley of the Main in the Northwest of Bavaria offers climatically suitable conditons. 

Then, also further parts in western Bavaria and central parts along the the river valleys 

Danube and Isar will almost fulfill climatic requirements. Mountaineous regions such as the 

Alps in the South and the Bavarian Forest in the East will persist to be completely climatically 

unfavourable for vector establishment. 

 

Fig. 1: Current and projected (2011-2040; A1B scenario) climatic suitability for Phlebotomus 
perniciosus in Bavaria (Southeast Germany). Values for climatic suitability range theoreti-
cally from zero to one. Establishment generally seems unlikely in regions with unfavourable 
conditions (values < 0.3). Climatically suitable regions are labelled by values > 0.5. Climatic 
suitability was modelled with MaxEnt based on a statistical selection of significant bio-
climatic variables. 70% of the 271 spatially explicit species presence records were used to 
train the model. The remaining occurrence points were used to test model quality. The model 
was run 100 times and the results were averaged. The AUC value for the test data was 0.92 
(+/- 0.01) and indicated high model quality. An AUC value of 1 would represent a perfect fit. 
 

3.2. Cost analysis and dispersal ability for Phlebotomus perniciosus 

Least-cost analysis helps to identify the potential dispersal pathway, which is directed 

to climatically suitable habitats. The path function is based on graph theory and determines 

the shortest cost distance in a landscape between a specified origin and a target area. In 

ecology, least costs correspond to the least effort for a species that is moving through a land-

scape, assuming the species is capable to take the optimal dispersal pathway [22]. We defined 

a cost surface (fig. 2, a) that must be crossed by P. perniciosus. The cost surface includes, 
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firstly, changing climatic suitability between the current conditions and the subsequent time-

period (2011-2040; A1B) and, secondly, further expert knowledge on sandfly ecology and 

ability to disperse, such as flight range, topography and their depency on landcover [23]. 

River valleys for instance are attributed as prefered dispersal pathways (no costs), lower 

mountaineous regions exhibit a reduced ability to be crossed (mid to high costs; depending on 

altitude) and the highest regions above 2000 m above sea level are efficient barriers that 

exclude dipersal. 

 

Fig. 2: Cost analysis for Phlebotomus perniciosus, aiming to estimate the species’ dispersal 
probability in Germany. Least-cost path requires the following input. Initially, a cost surface 
is generated (a), where travel costs are indicated. Then, a specific cost distance (b) that is 
based on defined occurrence points and the cost surface to be crossed is determined. The cost 
backlink (c) is a qualitative expression and indicates for each raster cell, to which of the 
neighboring raster grids the costs are lowest. Based on the occurrence points as start, a 
defined target area and the calculated cost distance and backlink, the final path of least-cost 
can be defined. 

 

Based on the cost surface, we calculated the cost distance (CD) (fig. 2, b) as 

accumulated shortest weighted distance (“travel costs”) for movement between raster cells 

with CS1 as first cost value of the starting grid cell defined by the cost surface and CSn as end 

point. For vertical and horizontal movement CD was calculated by: 

CDorth = (CS1+CS2)/2 + (CS2+CS3)/2 + ... + (CSn-1+CSn)/2 

and for diagonal movement in the same manner (but with length correction) by:  

CDdiag = ((CS1+CS2)/2 + (CS2+CS3)/2 + ... + (CSn-1+CSn)/2)) 1.414214. 

Cost distance and spatial distance are not necessarily similar (fig. 2, b). The cost 

distance is for instance relatively far to southeastern Bavaria, although P. perniciosus is 

present in northern Italy. Here, the Alps cause high costs to cross. The species is furthermore 
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located in western and southwerstern parts of Europe. As a consequence, the cost distance is 

nearest to western Germany as there are only little cost barriers for species movement. Values 

of cost distance increases to northeastern Germany. The cost backlink (fig. 2, c) of each raster 

cell is determined by the neighbouring raster cell to which costs are cheapest and marked in 

direction to this cell. Central, northern and northeastern Germany mainly show backlinks to 

western, southwestern and southern directions. Only few southern and norhtern Bavarian 

areas indicate a backlink to southern direction, although many records are documented in 

northern Italy (not presented here). Most parts of Bavaria, especially the central parts, show 

backlinks to western and northwestern regions. Hence, it is likely that P. perniciosus may 

disperse from western Europe towards Bavaria. A direct northward spread from Italy may be 

blocked by the Alps. 

 

4. Discussion and outlook 

Here, we propose a method to improve conventional niche modelling with integrated 

species-specific dispersal ability. Based on this, the least-cost path as most likely spatial tra-

jectory of the species dispersing to Bavaria can be calculated on basis of the cost distance and 

cost backlink for P. perniciosus. Climate change alters dispersal and movement patterns of 

insects. It has to be acknowledged that the direction of movement may not be optimal in all 

cases. Especially, dispersal behaviour of individuals between populations may differ from the 

general tendency of the metapopulation level [22].  

Nevertheless, ecological niche modelling in combination with least-cost path analysis 

offers the opportunity to detect whether sandflies are able to occupy their potential suitable 

habitats by natural dispersal. It is uncertain, if humans assist the migration of sandflies 

directly. Hence, such potential accidental carry-overs are not considered in this study. 

Spreading tendencies for other Phlebotomus species can be assumed as well. Probably, these 

species may also disperse to Central Europe. Knowledge concerning biotic interactions and 

the competitive ability of the species in particular is missing. Therefore, experiments and field 

observations must be intensified in order to reduce uncertainty. Integrating biotic interactions 

into environmental niche modelling under climate change conditions would yield more 

realistic projections [24]. 

Comparing climate change scenarios and model algorithms will reduce the 

uncertainties of species range shifts [25]. Moreover, wind speed as well as differences in 

potential flight ranges have to be considered. Wind is not a mere vector but affects the be-
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haviour of the species. Sandflies reduce their flight acitivity with increasing wind speed [26]. 

Generally, future research and in particular modelling approaches will require more 

knowledge on sandfly ecology and biology. Our approach represents a powerful tool for de-

tecting regions with potential infestations and establishment of disease vectors. Already early 

stages of risk exposure can be identified. Hence, efficient monitoring and surveillance activi-

ties can be specifically directed to these target areas. 
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6.6 Article 6:  

Combining climatic projections and dispersal ability of phlebotomine 

sandflies: A methodological task to estimate vector responses to climate 

change 

 

With 3 Tables and 3 Figures in the main text as well as 1 Table 2 Figures in the Supple-

mental Material. 

 

Abstract 

Background 

In the Old World, sandflies of the genus Phlebotomus are known vectors of 

Leishmania, Bartonella and several viruses. Recent sandfly catches and autochthonous cases 

of leishmaniasis hint on spreading tendencies of the vectors towards Central Europe. How-

ever, studies addressing potential future distribution of sandflies in the light of a changing 

European climate are missing. 

Methodology 

Here, we modelled bioclimatic envelopes using MaxEnt for five species with proven 

or assumed vector competence for Leishmania infantum, which are either predominantly 

located in south-western (Phlebotomus ariasi, P. mascittii and P. perniciosus) or south-

eastern Europe (P. neglectus and P. perfiliewi). The determined bioclimatic envelopes were 

transferred to two climate change scenarios (A1B and B1) for Central Europe (Austria, 

Germany and Switzerland) using data of the regional climate model COSMO-CLM. We 

detected the most likely way of natural dispersal (“least-cost path”) for each species and 

hence determined the accessibility of potential future climatically suitable habitats by inte-

grating landscape features, projected changes in climatic suitability and wind speed. 

Results and relevance 

Results indicate that Central European climate will become increasingly suitable 

especially for those vector species with a current south-western focus of distribution. In 

general, highest suitability of Central Europe is projected for all species in the second half of 

the 21st century, except P. perfiliewi. Nevertheless, we show that sandflies will hardly be able 
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to occupy their whole provided climatic niche due to limited dispersal ability. A northward 

spread of species with south-eastern focus of distribution may be constrained but not 

completely avoided by the Alps. Our results can be used to install specific monitoring systems 

to the projected risk zones of potential sandfly establishment. This is urgently needed for 

adaptation and coping strategies against the emerging spread of sandfly-borne diseases. 

 

Authors’ summary 

Growing evidence exist on the emergence of sandfly-borne diseases in the light of 

climate change. Determining the principle responses of phlebotomine sandflies to climatic 

changes supports our understanding of future regions that will be threatened by new-establish-

ments of this important group of disease vectors. 

The aim of this paper is to combine projected climatic suitability for five Phlebotomus 

species in Central Europe (Austria, Germany and Switzerland) for different time-periods 

during the 21st century with their potential spreading capacity to disperse to climatically 

suitable areas. We indicate that Central European climate will develop towards the preferred 

bioclimatic niche of the species, especially from mid-century onwards. Nevertheless, we also 

elucidate within this study, that sandflies will hardly be able to occupy the whole areas which 

will provide suitable climatic conditions due to their limited natural dispersal ability. 

Our approach provides a framework to combine statistical modelling techniques with 

expert knowledge on species ecology. Indications of future occurrences of disease vectors 

may help to initiate surveillance systems in specific regions at an early stage of risk exposure. 

Hence, the threat of the climate-driven spatial extension of disease vectors and consequently 

of potentially emerging vector-borne diseases can be counteracted. 

 

Keywords 

global change, global warming, leishmaniasis, species distribution model, vector-borne 

disease 
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1. Introduction 

Globally, the number of vector-borne infections in humans and animals increases 

rapidly, meanwhile causing almost one third of all cases of emerging infectious diseases [1]. 

In the Old World, sandflies of the genus Phlebotomus (Phlebotomus spp.) serve as vectors for 

sandfly-borne pathogens such as Leishmania, Bartonella and several viruses (e.g. 

Phlebovirus, Vesiculovirus and Orbivirus) [2, 3, 4]. Sandfly-borne diseases and in particular 

visceral leishmaniasis are a main public health concern [5], which demands more attention in 

science and policy [6]. While the spatial distribution of leishmaniasis seems to expand in 

southern parts of Europe [7, 8], first cases of autochthonous origin are recently reported from 

Central Europe [9, 10, 11], where this disease was not endemic in the past. 

The presence of sandflies as vectors is mainly regulated by the species’ climatic re-

quirements on temperature and humidity or soil moisture, respectively [3, 12, 13, 14, 15]. 

Temperature and humidity are also the main factors regulating the altitudinal structure of 

sandfly occurrences [16]. It is known that sandflies react very sensitive to wind speed and 

prefer breeding sites sheltered from wind [17, 18, 19, 20]. Beyond that, high wind speed 

decreases or even excludes flight activity [17, 21].  

As climate is expected to change rapidly in the 21st century, sandflies are forced to 

react promptly. For this purpose, the advantages of ecological niche modelling to infer geog-

raphic distribution for sandflies have been demonstrated on the example of Lutzomyia species 

(Lutzomyia spp.) in the New World [22]. For the first time, Peterson and Shaw [23] integrated 

climate change scenarios in order to project future distribution of Lutzomyia spp. in Brazil. 

Recently, range expansions for sandflies of the genus Lutzomyia have also been projected for 

North America in the face of climate change [24]. 

For Europe, surprisingly, only few studies estimated the risk of potential range 

expansions of sandflies in the face of climate change [e.g. 25, 26]. The need for such studies 

is supported by the first sandflies catches in Central Europe. P. mascittii has been caught in 

Austria on the frontier to Slovenia [26]. Furthermore, P. mascittii is reported from the Upper 

Rhine Valley in the outermost southwest of Germany near the French border [28].  

P. perniciosus seems to be established in the German state of Rhineland Palatinate [29]. 

These findings may either indicate spreading tendencies from the Mediterranean or range 

expansion from small Central European refugial areas, which may have already been 

occupied by the species during the Holocene climate optimum about 6 500 years ago [30]. 

Possibly sandflies has occupied more areas in the past than it was noticed. 

136 



Article 6: Combining climatic projections and dispersal ability of sandflies 

For Austria, establishment of sandflies in formerly non-endemic areas can be expected 

already by moderately increasing temperatures in the 21st century [25]. Recently, Fischer et al. 

[26] estimated potential temperature-derived establishment of sandflies in Germany by trans-

ferring the required temperature during their activity phase and annual mean temperature for 

persistence to the expected future climate conditions in Germany using data of a spatio-

temporal highly resolved regional climate model. But up to now, projections of the current 

and climate-driven potential future distribution of Phlebotomus spp. which additionally 

consider species-specific dispersal ability are missing. Here, we close this gap and 

hypothesize: 

1) Climatic suitability for Phlebotomus spp. will generally increase within the 21st 

century. The climatic requirements for sandflies with current (south-) western 

European regions of distribution are supposed to be fulfilled in the south-westernmost 

parts of Central Europe in the 21st century. Otherwise, species with a south-eastern 

focus of distribution are thought to find favourable conditions in the south-easternmost 

Central European regions. 

2) Species with current (south-) western focus of distribution may spread north-eastwards 

as they are not hampered by natural dispersal barriers. Instead, the Alps will restrict a 

direct range expansion for species that are currently distributed in the (south-) east of 

Europe. 

 

2. Methods and material 

2.1 Bioclimatic envelope modelling of species distributions 

2.1.1 Species presence records and climatic variables 

Documented presence records of Phlebotomus species were taken from literature. 

Most of the occurrence data were provided by Artemiev and Neronov [31]. This was done by 

digitizing their analogue maps of presence records. Additional presence records were taken 

from peer-reviewed articles by searching within the literature databases ISI Web of Science, 

Medline and Biosis Previews from 1984 onwards. Number of presence record are listed in 

Table 1. 

Current bioclimatic data were taken from http://www.worldclim.org [32] in 5 Arcmin 

resolution. The 19 bioclimatic variables are derived from monthly temperature and rainfall 

values. Higher spatial resolution would not correspond to the spatial accuracy of occurrence 
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data for sandfly species. We extracted the area of Europe, the Middle East and northern Africa 

(regions that contain our presence records) from all bioclimatic variables. 

Selection of the most important bioclimatic variables was done via Jackknife test. We 

considered results of the Jackknife tests for the model training gain for all variables in 

isolation and for the remaining set of variables when the isolated variable is dropped from the 

set [33]. To reduce collinearity in the data set [34] those variables that had a Pearson 

correlation coefficient r > 0.7 with any other higher-ranking variable in the results of the Jack-

knife test variables were removed. We applied the variable selection procedure separately for 

each species. 

The high-resolution regional climate model COSMO-CLM (CCLM) was applied for 

future projections in Europe. This dynamically downscaled model is nested into the global 

model ECHAM5 [35]. In contrast to their driving global models, regional climate models 

integrate topography and can project climate change at a much higher spatial resolution. This 

enhances the quality of studies on climate change impacts on disease vectors and vector-borne 

diseases in general and disease vectors in particular [36]. Our future projections refer to the 

IPCC A1B and B1 emission scenarios for greenhouse gases [37]. In short, the A1B scenario is 

characterized by a rapid economic growth in an integrated world with a balanced technol-

ogical emphasis on fossil and non-fossil energy sources. The B1 scenario is based on the same 

economic growth as in A1B but with a more rapid change towards a service and information 

economy. Consequently, warming tendencies are projected to be stronger in the A1B 

scenario. Climatic data were averaged over time periods 2011-2040, 2041-2070 and 2071-

2100 for each scenario separately. Bioclimatic variables for modelling future climate pro-

jections were calculated in the same way as they are provided by http://www.worldclim.org 

[32] for current conditions.  

Non-analogue climatic conditions are a problematic issue in projections [38]. We used 

a Multivariate Environmental Similarity Surface (MESS) analysis introduced by Elith et al. 

[39] to detect regions where projections are inappropriate due to dissimilarity in values of the 

used variables for training and projecting the model [40]. The MESS analysis measures the 

similarity between those environments used to train the model and the new projected 

environments for any grid cell [39, 40]. 

Occurrence records and climatic data were prepared in ArcGIS 10.0, correlation 

analysis was performed in PASW Statistics 18, Jackknife test to measure the variable’s im-

portance is implemented in MaxEnt 3.3.3e. 
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Tab. 1: Number of species presence records, AUC-values, and training gain determined by 
Jackknife test for the selected bioclimatic variables. AUC-values are a threshold-independent 
model quality criterion and range from 0 to 1 (perfect fit). Useful models yielded in AUC-
values above 0.7, where excellent models achieve at least AUC-scores above 0.9. Training 
gains for the selected variables by using only this variable for the model (upper value) and if 
the specific variable is removed for the rest of the variable set (lower value). For the species 
with current (south-) western focus of distribution (P. ariasi, P. mascittii and P. perniciosus) 
BIO 11 (Mean temperature of the coldest quarter) represents the most important variable. This 
is indicated by the highest training gain of the model by using only this variable and the 
lowest training when this variable is removed from the set of variables. The drop of BIO 10 
(Mean temperature of the warmest quarter) from the set of variables instead seems to lower 
training gain most for the species with (south-) eastern focus of distribution. BIO 13 
(Precipitation of the wettest month) is identified as most important variable when used in 
isolation for P. neglectus, while BIO 11 seems to be most influencing factor in isolation 
regarding the occurrences of P. perfiliewi. 

 P. ariasi P. mascittii P. perniciosus P. neglectus P. perfiliewi 

Presence records 79 66 273 90 124 

AUC (Training data) 0.94 0.97 0.92 0.92 0.96 

AUC (Test data) 0.93 0.93 0.90 0.89 0.95 

Model training gain for variables used in isolation (upper value), and for the remaining  

data set if the specific variables is dropped from the set (lower value) 

1.50 1.91 1.18 0.98 0.81 BIO 

10 

Mean temperature of 

the warmest quarter 0.51 0.57 0.65 0.16 0.10 

1.35 1.74 1.30 0.70 0.87 BIO 

11 

Mean temperature of 

the coldest quarter 1.15 1.24 0.67 0.67 0.49 

- 1.94 - - 0.88 BIO 

12 

Annual precipitation 

- 0.95 - - 0.24 

- - 1.35 - - BIO 

13 

Precipitation of the 

wettest month - - 0.73 - - 

- - 1.36 - - BIO 

16 

Precipitation of the 

wettest quarter - - 0.70 - - 

1.43 1.88 - 0.97 - BIO 

17 

Precipitation of the 

driest quarter 0.61 0.78 - 0.29 - 

1.45 - - 0.98 0.86 BIO 

18 

Precipitation of the 

warmest quarter 0.73 - - 0.32 0.32 

1.38 1.85 1.29 0.94 0.93 BIO 

19 

Precipitation of the 

coldest quarter 0.73 0.78 1.00 0.43 0.33 
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2.1.2 Model runs 

All models were generated using the maximum entropy algorithm. Maximum entropy 

basically is a machine-learning technique combining species occurrence data with detailed 

climatic and environmental datasets [41, 42]. This algorithm implemented in MaxEnt 

software computes a probability distribution covering the study area that satisfies a set of con-

straints which are derived from environmental conditions at species presence records. The 

algorithm then chooses a distribution with maximum entropy within all possible distributions 

[41]. MaxEnt generally performs better than other presence-only or pseudo-presence-only 

models [41, 43, 44], which becomes especially apparent by using small numbers of species 

occurrence records [45, 46, 47]. Furthermore, the influence on spatial errors in species occur-

rences on model performance of MaxEnt due to e.g. inaccurate georeferences is less severe in 

comparison to other algorithms [48]. 

We used the following settings for model runs: Regularisation modifiers were set to 1. 

Maximum number of iterations was set on 15500. A higher number did not enhance mode 

quality criteria. Feature types were automatically selected depending on the training sample 

size (auto feature) and the convergence thresholds were 0.00001. The maximum number of 

background points was set to 10 000 as more background points do generally not enhance 

model quality criteria [42]. For each species, models were replicated 100 times for each 

species and the results were finally averaged. To evaluate model accuracy we randomly selec-

ted 70 % of the occurrence data to train each model and used the remainder to test each model 

as suggested by Araujo et al. [49]. Most of the settings have been adapted from a previous 

study concerning projections of climatic suitability for Aedes albopictus in Europe [50]. 

We used both, threshold-dependent as well as threshold-independent quality criteria. 

Eleven binary omission rates were calculated as the proportion of test respective training 

points that were not predicted at a threshold probability that equalled the minimum probability 

on any pixel containing an occurrence point [42]. Those were tested using one-sided p-values 

for the null hypothesis that test points are predicted no better than by a random prediction 

with the same fractional predicted area. This was practiced previously for the evaluation of 

model results for Lutzomyia spp. [24]. Furthermore, model performance was evaluated using 

area under the receiver operator curve (AUC) statistics, which compares how likely a random 

presence site will have a higher predicted value in the model than a random absence [43]. The 

receiver operator curves appeals to be independent on a user-defined threshold for deter-

mining presence versus absence. We limited the study area to the geographic extent of the 
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sampling distribution (see Section 2.1.1) in order to avoid inflated AUC scores that are 

associated with geographical extents that go beyond the presence environmental domain [51, 

52]. All models were built in the latest available version (MaxEnt 3.3.3e). 

 

2.2 “Least-cost path” for species dispersal 

Species´ dispersal ability varies strongly with landscape structure [53]. We used a 

least-cost path analysis based on graph theory [54, 55, 56] to determine the most likely way 

for Phlebotomus spp. to move across a spatio-temporal changing landscape. The path function 

indicates the least efforts (“costs”) for a species in moving through any particular cell in the 

respective landscape [57, 58, 59]. Least-cost path analyses are frequently used to determine 

potential dispersal pathways for mammals [60, 61, 62, 63] but has also been practiced for 

insects [58].  

 

2.2.1 Definition of cost surfaces and calculation of distances and backlinks 

Our aim was to identify the species-specific least-cost pathway for potential 

movement of the five Phlebotomus spp. to each of the modelled climatically suitable habitats 

in the 21st century for the time-periods and for each scenario, respectively. Therefore we 

created three different species-specific cost surfaces. The first cost-surface was generated for 

costs arising for the species movement to climatically suitable habitats of the upcoming time-

period (2011-2040). The second one was built for the movement up to mid-century (2041-

2070) and finally to the end of the century (2071-2100). The respective cost factors are listed 

in Table 2. Each cost surface includes temporarily stable and varying environmental land-

scape features. 
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Tab. 2: Cost factors within the defined cost surfaces for Phlebotomus species. Factors 
are surfaces were generated by considering both, spatio-temporal stable and variable 
environmental conditions within the 21st century. Two cost factors are stable within 
the 21st century: River valleys are considered as the preferred breeding sides for 
sandflies [2]. Hence, regions which include river valleys are attributed with costs. Sea 
as absolute barrier cannot be crossed. Beyond, an altitudinal cost structure was 
developed in accordance to the preferred elevation of sandflies [2]. Two factors vary 
in the 21st century: MaxEnt-values of climatic suitability range theoretically from 0 
(unfavourable conditions) to 1 (perfect conditions). These values are classified and 
attributed with costs in accordance to the suitability; the lower the suitability the 
higher the costs. This factor is species-specific. Cost factors for wind speeds are 
related to the observations concerning wind-speed dependent flight activity. They are 
taken from findings of Lane [94] concerning the highest flight activity up to 1.5 m/s; 
from Quate [95] who observed a reduced flight activity between 1.5 - 2.5 m/s and 
Roberts [96] who noticed no flight activity above wind speeds of 3.5 m/s. Climatic 
suitability and wind speed were averaged over two subsequent time-periods. 

Landscape feature Value or area Cost factor 

0 - 800 0 

801 - 1200 1 

Altitude [m.a.s.] 

above 1201 2 

River valleys 0 

Non-valleys 4 

Further landscape features 

Sea - 

0.81 - 1.0 0 

0.61 - 0.8 1 

0.41 - 0.6 2 

0.21 - 0.4   3 

Climatic suitability 

(averaged over two  

subsequent time-periods) 

0.01 - 0.2 4 

0.01 - 1.5 0 

0.76 - 2.5 1 

2.51 - 3.5 2 

Wind speed 

(averaged over two 

 subsequent time-periods) 

above 3.5 3 
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a) Environmental landscape features that do not to change in the 21st century were 

consequently considered as constant (stable) cost factors in all created cost surfaces: River 

valleys provide the preferred breeding sites due to high temperatures and moist and humid 

soils [64, 65] and can hence be considered as preferred dispersal corridors. We buffered this 

features with a distance of ten kilometres for consistency with the climatic data and attributed 

it without costs. Only the surrounding landscape was addressed with costs. Additionally, in-

creasing altitude was attributed with rising costs [2]. Sea surfaces and high mountains were 

considered as “absolute barriers” which cannot be crossed. The costs were the same in all cost 

surfaces throughout the 21st century and for all species. 

b) Within the cost surfaces temporally varying environmental landscape features in the 

21st century (due to climatic effects) were integrated: The species-specific changing climatic 

suitability of an area between two subsequent time-steps (current-2011/2040, 2011/2040-

2041/2070, 2041/2070-2071/2100) was integrated as a further cost factor in the respective 

cost surfaces. For this purpose the projected climatic suitability was averaged over two sub-

sequent time-periods. The values of climatic suitability were taken from MaxEnt-models. 

Regions that have to be overcome between two time-periods but would persist to remain 

outside of the preferred bioclimatic niche were attributed with higher costs. We furthermore 

integrated wind speed in the cost surface as sandflies react very sensitive to high wind speed 

by reducing flight activity [17, 21]. Data of current and projected wind speed (for A1B and 

B1 scenario) are taken from CCLM. Data were averaged for the equivalent time-periods, 

which were already used to model climatic suitability for the single sandfly species (2011-

2040, 2041-2070 and 2071-2100). It is realized that sandflies predominantly prefer to be ac-

tive near the soil surface (up to one meter above the ground) and usually do not exceed two 

meters above the ground [64]. The provided data of wind speed, however, are given for a 

height of ten meters above the ground. In consequence, we applied the wind profile power law 

that is derived from the logarithmic wind profile equation for the lower atmosphere in order to 

relate wind speeds given at one height to another [66]. The equation to calculate wind speed 

in one meter was calculated for each time-period by:  

V1m = V10m * (h1m/h10m)RF,  

with V1m  representing wind speed in one meter, V10m  representing the (given) wind speed in 

ten meter above the ground, h1m/h10m = 0.1 (height in meter you want to obtain the velocity, 

divided by the height for which the velocity is given) and RF (roughness factor). Land cover 

decreases the near surface wind speed due to the roughness of the landscape features. The RF 
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should not be considered as constant as it varies for different surface obstacles, which must be 

taken into account [67]. Therefore, we integrated land cover data provided by 

http://earth.esa.int [68] for the calculation of the near-surface wind speed. We reclassified the 

provided map of land cover in Europe into three classes (with different RF) proposed by 

Kleemann and Meliss [69]. In our study, land cover is considered not to change during the 

21st century: 

1. Low RF (=0.16): cropland, grassland vegetation, bare areas 

2. Mid RF (=0.28): different types of forests, vegetation dominated by trees and rural 

communities  

3. High RF (=0.40): urban areas 

Then, the wind speeds were averaged over two subsequent time-periods of species 

movement as it was done for the modelled climatic suitability. For all species, the develop-

ment in wind speed was attributed with equal costs (Table 2). Due to these temporal factors 

(changing climatic suitability and wind speed) different cost surfaces were generated.  

 

2.2.2 Determining the least-cost path based on the generated cost surfaces 

Determining the least-cost path requires cost distance and cost backlink calculations as 

inputs which are both assigned on the basis of the defined cost surfaces. Cost distances were 

calculated in order to account for the minimal accumulated travel costs that accrue by tra-

velling with increasing distance from the source to the target area [63]. The cost backlinks 

indicate the direction for each grid cell to which direction the costs are cheapest. Details on 

calculations of cost distance and assignment of cost backlink can be found elsewhere [see 70]. 

Our initial source grid for species occurrences as starting points included all areas with 

documented current European presence records. As destination area we defined Central 

Europe (Austria, Germany and Switzerland) for all species throughout the 21st century. The 

natural dispersal ability of sandflies is limited. Generally, the flight range around their bree-

ding area is about one kilometre [71]. The flight range for P. ariasi, however, reaches two 

kilometres [17]. In the Mediterranean, sandflies are able to establish up to three generation 

each year [2]. Therefore we limited the maximal range expansion for P. ariasi to six kilo-

metres per year (180 km/30 year time interval) and for the other sandfly species to three kilo-

metres per year (90 km/30 year time interval) for moving through any particular cost surface. 
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Fig. 1: Principle of the least-cost analysis to determine 
the most likely way of natural dispersal for the species. 
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In our study, species are able to establish in climatically suitable habitats indicated by 

values higher than 0.5 of the MaxEnt models. This typically corresponds to values of the cli-

matic suitability on the respective presence records [42]. Therefore those regions were indi-

cated as species occurrences of the subsequent time period (2011-2040) that overtop the thres-

hold of suitability and that are connected via the initial least-cost path. Those areas were 

defined as new starting points for the least-cost path to the expected climatically suitable habi-

tats at mid-century (2041-2070). This procedure was repeated for a third time in order to 

determine reachable location of the sandfly species at the end of the 21st century (2071-2100). 

The principle is illustrated in Figure 1. 

Least-cost analyses were performed using distance functions within the “Spatial 

Analyst Tool” implemented in ArcGIS 10.0 after using the “Raster Calculator” for the de-

finition of the cost surfaces. 

 

3. Results 

3.1 Model results for species´ climatic suitability 

AUC-values yielded in high scores for five species (Table 1). Binominal tests 

indicated that tests points are predicted better by the model than a random prediction with the 

same factional predicted area at the significance level p < 0.01. Our projections seem not to be 

affected by non-analogue climate as this was not detected by MESS analysis. 

In general, climatic suitability can be expected to increase for all species in the 21st 

century (Table 3, Figure 2, Supplemental Material Table 1 and Supplemental Material Figure 

1). This is in accordance with the first part of our first hypothesis assuming increasing 

climatic suitability for the species in Central Europe. Nevertheless, we cannot completely 

verify the second part of our first hypothesis of more favourable conditions in the (south-) 

western parts for species with (south-) western focus of distribution and the opposite for 

species which are currently distributed in (south-) eastern Europe (see Sections 3.2.1 and 

3.2.2). 

Overall, projections based on the A1B scenario represent higher suitability for species 

in comparison to projection of the B1 scenario (Table 3 and Supplemental Table 1). Never-

theless, the spatial patterns of potential climatically suitable habitats remain to be the same for 

both scenarios. The detailed annotation of climatic suitability in the following refers to the 

A1B scenario. 
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Tab. 3: Current and projected mean values of climatic suitability for Central Europe with stand-
ard deviation in brackets. Projections refer to the A1B scenario. 

  P. ariasi P. mascittii P. perniciosus P. neglectus P. perfiliewi 

current 0.14  (+/- 0.10) 0.28  (+/- 0.19) 0.25  (+/- 0.14) 0.23 (+/- 0.10) 0.10 (+/- 0.06) 

2011-2040 0.32 (+/- 0.13) 0.30 (+/- 0.20) 0.35 (+/- 0.19) 0.31 (+/- 0.15) 0.10 (+/- 0.13) 

2041-2070 0.38 (+/- 0.17) 0.40 (+/- 0.23) 0.46 (+/- 0.20) 0.38 (+/- 0.14) 0.19 (+/- 0.17) 

Central 

Europe 

2071-2100 0.54 (+/- 0.17) 0.47 (+/- 0.25) 0.52 (+/- 0.22) 0.49 (+/- 0.16) 0.33 (+/- 0.23) 

current 0.02 (+/- 0.02) 0.26 (+/- 0.17) 0.09 (+/- 0.10) 0.18 (+/- 0.13) 0.04 (+/- 0.03) 

2011-2040 0.17 (+/- 0.22) 0.22 (+/- 0.19) 0.17 (+/- 0.20) 0.23 (+/- 0.20) 0.22 (+/- 0.22) 

2041-2070 0.29 (+/- 0.19) 0.28 (+/- 0.24) 0.26 (+/- 0.23) 0.36 (+/- 0.20) 0.28 (+/- 0.28) 

Austria 

2071-2100 0.39 (+/- 0.21) 0.28 (+/- 0.23) 0.33 (+/- 0.26) 0.46 (+/- 0.20) 0.36 (+/- 0.32) 

current 0.17 (+/- 0.08) 0.32 (+/- 0.18) 0.31 (+/- 0.10) 0.24 (+/- 0.08) 0.12 (+/- 0.05) 

2011-2040 0.36 (+/- 0.11) 0.36 (+/- 0.16) 0.42 (+/- 0.14) 0.34 (+/- 0.11) 0.07 (+/- 0.06) 

2041-2070 0.43 (+/- 0.11) 0.48 (+/- 0.18) 0.53 (+/- 0.12) 0.38 (+/- 0.09) 0.17 (+/- 0.12) 

Germany 

2071-2100 0.60 (+/- 0.10) 0.55 (+/- 0.18) 0.60 (+/- 0.12) 0.49 (+/- 0.12) 0.34 (+/- 0.20) 

current 0.07  (+/- 0.08) 0.21 (+/- 0.18)   0.13 (+/- 0.15) 0.23 (+/- 0.17) 0.05 (+/- 0.04) 

2011-2040 0.18 (+/- 0.24)   0.12 (+/- 0.14) 0.10 (+/- 0.17) 0.30 (+/- 0.30) 0.17 (+/- 0.26) 

2041-2070 0.11 (+/- 0.15)   0.14 (+/- 0.16) 0.15 (+/- 0.23) 0.40 (+/- 0.28) 0.17 (+/- 0.20) 

Switzerland 

2071-2100 0.39 (+/- 0.29) 0.15 (+/- 0.19) 0.19 (+/- 0.26) 0.53 (+/- 0.31) 0.29 (+/- 0.30) 
 
 

3.1.1 Climatic suitability for species with current (south-) western focus of distribution 

Results for species with current (south-) western focus of distribution (P.ariasi, 

P. mascittii and P. perniciosus) show - regardless to the slight differences - a similar tendency 

in spatial patterns of projected climatic suitability for the upcoming  time-period (Figure 2 and 

Supplemental Material Figure 1). Expectedly, these species achieve highest values of current 

and projected climatic suitability in the westernmost parts of Germany and Switzerland. 

Projections for the conditions from mid-century onwards, however, indicate increasing suit-

ability for the eastern parts of the countries. Interestingly, moderate suitability is indicated for 

P. perniciosus on western parts of Germany and the coast of the North Sea for the current cli-

matic conditions. In those regions no presence of the species is documented up to now. 

Favourable conditions for P. mascittii and P. perniciosus can be expected in north-eastern 

Germany at the end of the century and in less extent also for P. ariasi. Instead, P. ariasi will 

achieve highest values of climatic suitability in Switzerland. Nevertheless it is worth men-

tioning that favourable conditions can be expected for all species in certain river valleys in the 

northern and north-eastern parts of Switzerland on the border to France and Germany and 
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along the Danube valley. This becomes especially apparent regarding the projections for the 

end of the 21st century. 

For P. mascittii climatic suitability will persist in eastern (including south-eastern and 

north-eastern parts) of Austria. For P. ariasi and P. perniciosus suitability can be expected to 

increase in those regions. Alpine Austrian regions remain to persist outside the preferred 

niche of the species throughout the 21st century. 

 

3.1.2 Climatic suitability for species with current (south-) eastern focus of distribution 

The results of the current and projected climatic suitability for the two species with 

(south-) eastern focus of distribution (P. neglectus and P. perfiliewi) differ remarkable. For 

P. neglectus, moderate suitable habitats in Upper Austria along the border to Germany and 

Switzerland in the Lake Constance region are pointed out for current conditions. For the 

upcoming time-period, it can be expected that especially the Upper Rhine Valley in the south-

west of Germany will provide suitable climatic conditions. Starting at mid-century, almost all 

regions in Germany will provide favourable conditions for species establishment. At the end 

of the century, additionally, northern and southern parts of Switzerland will achieve excellent 

climatic conditions. Then, only the highest Alpine regions will remain unfavourable for the 

establishment of P. neglectus.  

The modelled climatic suitability for P. perfiliewi differs from the overall tendency. 

Currently, climatic requirements of the species will not be fulfilled in Central Europe. 

Favourable conditions can be expected for the up-coming time period and mid-century higher 

in spatially limited areas for southernmost parts of Switzerland - canton Ticino - and (south-) 

eastern parts of Austria. Germany remains unfavourable for species establishment until the 

end of the century. Then, the river valley of the Rhine and Danube will provide preferable 

climatic conditions for P. perfiliewi. 
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Fig. 2: Current and projected climatic suitability for five Phlebotomus species. Values of cli-
matic suitability range theoretically from 0 (unfavourable conditions) to 1 (perfect condi-
tions). Projections refer to the A1B scenario. 
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3.2 Least-cost path analysis 

In general, projections hint on spreading tendencies for all studied Phlebotomus spp. to 

areas where they have not occurred so far in both scenarios (Figure 3 and Supplemental Ma-

terial Figure 2). Nevertheless, sandfly species will not be able to become established in all 

climatically suitable areas of Central Europe according to the limited natural dispersal ability. 

The detected dispersal pathways show some differences between the two applied scenarios, in 

contrast to the modelled climatic suitability, where just temporal but no spatial variations are 

pointed out. 

We can affirm the first part of our second hypothesis that species with current (south-) 

western focus of distribution will disperse eastwards only for P. perniciosus but not for 

P. ariasi and for P. mascittii see Section 3.3.1). We cannot keep with the part of the second 

hypothesis that the Alps will prohibit completely a northward spread for the species which are 

currently distributed in (south-) eastern European regions. However, the Alps will very likely 

decelerate the range expansion (see Section 3.3.2). 

 

3.2.1 Least-cost path for species with current (south-) western focus of distribution 

 In contrast to the similar tendency in climatically suitable habitats, dispersal pathways 

for these species will differ. P. ariasi is characterized by the highest dispersal ability and 

seems to spread to Switzerland and Germany from recent occurrences in France. Conse-

quently, the western parts of these countries can be expected to be occupied already in the 

upcoming time-period. From then on, the species seems to spread along the border of Ger-

many and Switzerland to Bavaria in the southeast of Germany until the end of the century. 

Additionally, P. ariasi will spread to north-eastern parts of Germany until the end of the cen-

tury in A1B but not in the B1 scenario. A further dispersal pathway is detected starting from 

Croatian and Slovenian occurrences directed to the (south-) eastern parts of Austria. Up to the 

end of the century, P. ariasi will also be able to occupy eastern and north-eastern parts of 

Austria. 

Two pathways are detected for P. mascittii starting from the Upper Rhine Valley in 

the southwest of Germany, which are either directed northwards or southwards (to the 

northeast of Switzerland). Additionally, a direct spread from France to Switzerland is identi-

fied. As two pathways are directed to northern parts of Switzerland, this region seems to be 

especially endangered regarding species establishment, expectedly from mid-century on-

wards. The north-eastern expansion for P. mascittii in Germany is solely indicated in A1B 
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scenario. Additionally two pathways are found from Carinthia in Austria. There a northward 

spread to the river valley of the Danube and a westward spread along the Slovenian and 

Italian boarder can be expected in both scenarios. 

From the recent occurrences of P. perniciosus in the southwest of Germany, potential 

pathways are determined mainly to southern and eastern directions. Across southernmost 

parts of Germany species will disperse to the southeast of Germany (Bavaria) until the end of 

the 21st century. Beyond that, western parts of Germany will be reached from an expected 

species movement from French regions across Belgium. The range expansion is more pro-

nounced in A1B scenario. Switzerland and Austria seem not to be endangered by a direct 

northward spread from the species across the Alps. 

Fig. 3: Least-cost path for Phlebotomus species indicating direction of spread in the 21st 
century. Spatio-temporal varying (climatic) conditions included in the cost surface that must 
be crossed by species in the 21st century refer to the A1B scenario. 
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3.2.2 Least-cost path for species with current (south-) eastern focus of distribution 

The detected least-cost paths for P. neglectus are rather disperse. Several pathways 

indicate a northward spread to different locations in Switzerland (from Italy) and Austria 

(from Slovenia). Expectedly at mid-century, the southern parts of Switzerland and Austria 

will be achieved by the specimen. Only in A1B scenario, P. neglectus will be able to spread to 

eastern regions of Austria and become established there. There is no evidence that species 

may move further northwards to Germany.  

P. perfiliewi is currently established in northern Italy. Species will only spread to 

southern areas of Switzerland and Austria from recent locations within the upcoming time-

period. Up to mid-century and more pronounced to the end of the century, range expansions 

to eastern Austria can be expected. Instead, further dispersal in regions of Switzerland is 

unlikely. Germany seems not be endangered by species movement and establishment within 

this century. 

 

4. Discussion 

4.1 Relevance and generality of the study 

Our aim was to determine future occurrences for five Phlebotomus spp. with assumed 

spreading tendencies in the face of a changing climate. Knowledge concerning the potential 

future presence of disease vectors is a first step towards an accurate risk assessment of vector-

borne diseases [72]. Conventional and rather static bioclimatic niche modelling can be im-

proved by novel avenues for instance regarding species ability to disperse [73]. Therefore, we 

integrated species-specific dispersal pathways to the detected climatically suitable habitats. 

The results suggest that Central European climate will become suitable for phlebomine 

sandflies generally but more pronounced in the second half of the 21st century. We project 

sandfly establishment in formerly non-endemic areas. This will additionally increase the risk 

of emerging sandfly-borne diseases in Central Europe. Nevertheless, sandflies will not be able 

to occupy their provided climatically suitable habitats entirely. 

 

4.2 Limitations 

Assuming climate is suitable, the presence of Phlebotomus spp. is mainly dependent 

on land cover [74, 75]. However, the importance of land cover and land use to model species 

distribution becomes generally more important on smaller spatial scales [76, 77]. Never-
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theless, in this analysis we integrated river valleys and elevation in least-cost path analysis. In 

order to recalculate wind speed we additionally integrated land cover data. Land cover and 

land use changes depend in general on complex interactions of decision makers under 

heterogonous political and economical developments [78] and are hence rather difficult to 

project in a long-term perspective. Therefore those factors were considered as temporarily 

constant. 

In general, biotic interaction under climate change conditions is a crucial factor to 

determine species´ distribution [79]. The modifications of the ecological links or networks of 

an organism can substantially alter the realised niche of species population [80]. In Germany, 

P. perniciosus and P. mascittii do not co-exist at the same locations [29]. This can be a result 

of diverging invasion pathways or of competitive exclusion in the respective regions. Unfortu-

nately, knowledge on biotic interactions of sandflies is scarce. However, such information 

would enhance model projection power remarkably. Furthermore, one has to bear in mind that 

presence of phlebotomine sandflies is dependent on humans and their social factors, for 

instance living conditions [81, 82]. Sandflies are located in rural as well as urban environ-

ments in close connection to humans and their domestic animals such as dogs and horses [5], 

which provide the preferred blood meal for the gravid females [83]. 

Further uncertainties refer to the current occurrences of the species and dispersal 

behaviour of sandfly species. Comparing the reports for cases of autochthonous leishmaniasis 

in regions that were considered as being non-endemic [e.g. 9] with documented presence 

records of sandflies leads to the assumption that sandflies may be wider distributed than 

realized. However, as it is unknown which species acted in such region as vector, only docu-

mented presence records of the Phlebotomus spp. can be integrated.  

Concerning the least-cost analysis for species movement it has to be noted that the 

attributed costs are based on assumptions and/or preliminary observations and hence may not 

include all of the relevant factors [55, 61]. For instance, it is questionable whether humans 

assist in the spread of sandflies. Nevertheless, in comparison to mosquitoes, direct human 

effects on dispersal are of minor importance. Furthermore, the species movement behaviour 

must not necessarily be optimal or well adapted in human-modified landscapes [53]. Espe-

cially dispersal behaviour of individuals between populations may differ from the general 

tendency of the metapopulation level [58].  

Besides the effects of changes in long-term climatic conditions used in this study, 

extreme weather events are expected to increase in Europe [84]. This will influence organisms 
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and ecosystems remarkably [85, 86]. It has been shown that climatic variability in general and 

extreme weather events such as floods particularly affect sandfly occurrences [87, 88]. In 

order to integrate weather extremes in a satisfactory quality within climatic projections, a fur-

ther downscaling of their spatial resolution to the local scale is required [89]. This is the only 

way to integrate the contribution of weather extremes on disease vectors in risk analysis. 

 

4.3 Strengths 

Bioclimatic envelope models are powerful tools to envisage potential responses in 

species distribution to climate change from regional to global scales [76, 90]. They can be 

seen as a useful first filter for approximations of the impact of climate change on the species 

distribution [76, 91]. The necessity of using a well-adapted modelling approach to project 

climate change effects on species is realized [44]. Therefore, we selected MaxEnt as preferred 

algorithm, due to better performances in comparison with further presence-only and (pseudo) 

presence-only algorithms (see Section 2.1.2 for details). Results yielded in high model quality 

criteria, emphasized by threshold-dependent and independent criteria for Phlebotomus spp.  

In order to cope with the general uncertainty in species distribution modelling 

regarding the climatic evolvement [79], we projected the climatic suitability based on two 

IPCC [37] scenarios (A1B and B1) that best illustrate the respective storyline. We choose bio-

climatic variables that are considered to be biologically meaningful variables for model input. 

Our projections of future climatic suitability refer to data of the regional climate model 

CCLM, which is nested into the well-established global climate model ECHAM5 [35]. In 

comparison to their driving global models, regional patterns of climate change are projected 

more precisely, which enhances the quality of climate impact studies [36]. Global climate 

models failed particularly in replication of observed wind speeds. Obviously, projections of 

changes in wind speed require an accurate downscaling to the regional level [92]. 

Evidently, the consideration of the dispersal capacity of insects in a changing climate 

improves the quality of projections of species distribution [93]. Hence, we combined 

projected climatic suitability in the 21st century with dispersal ability for five Phlebotomus 

spp.. We practiced a least-cost analysis for future movement patterns by including temporarily 

stable (elevation, landscape features) and variable factors (wind speed and development of 

climatic suitability). This allows integrating and combining expert knowledge on sandfly 

ecology and biology with statistical methods. In doing so, species-specific dispersal pathways 
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can be pointed out. This offers the opportunity to distinguish between climatically suitable 

habitats that are reachable for invasive species and those that are not. 

 

5. Conclusions 

Here, we provide a powerful methodological approach to improve conventional biocli-

matic envelope modelling of disease vectors by species specific dispersal ability. Our findings 

promise more realistic projections concerning the vector species´ future distributions. We 

identify those Central European regions that are especially exposed to the emerging threat of 

spreading disease vectors in the light climate change. For the modelling of hitherto neglected 

vector-borne- connected risks, expertise from various scientific disciplines has been taken into 

account.  

Proactive monitoring activities and development of feasible adaptation strategies are 

required before the establishment of disease vectors may take place. This enhances first of all 

counteractions directed against the suggested spread of disease vectors and consequently 

reduces the risk of disease transmission in formerly non-endemic areas. Once the disease vec-

tors such as sandflies are established, vector control and disease prevention have proven to be 

difficult. 
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Supplemental Material Table and Figures 

Suppl. Mat. Tab. 1: Current and projected mean values of climatic suitability for Central Eur-
ope with standard deviation in brackets. Projections refer to the B1 scenario. 

  P. ariasi P. mascittii P. perniciosus P. neglectus P. perfiliewi 

current 0.14 (+/- 0.10) 0.28 (+/- 0.19) 0.25 (+/- 0.14) 0.23 (+/- 0.10) 0.10 (+/- 0.06)

2011-2040 0.26 (+/- 0.10) 0.34 (+/- 0.20) 0.30 (+/- 0.16) 0.23 (+/- 0.10) 0.10 (+/- 0.06)

2041-2070 0.32 (+/- 0.15) 0.36 (+/- 0.22) 0.36 (+/- 0.18) 0.36 (+/- 0.15) 0.15 (+/- 0.15)

Central 

Europe 

2071-2100 0.02 (+/- 0.02) 0.26 (+/- 0.17) 0.42 (+/- 0.20)) 0.38 (+/- 0.14) 0.21 (+/- 0.18)

current 0.02 (+/- 0.02) 0.26 (+/- 0.17) 0.09 (+/- 0.10) 0.18 (+/- 0.13) 0.04 (+/- 0.03)

2011-2040 0.19 (+/- 0.18) 0.21 (+/- 0.20) 0.16 (+/- 0.17) 0.25 (+/- 0.17) 0.20 (+/- 0.23)

2041-2070 0.21 (+/- 0.18) 0.21 (+/- 0.19) 0.19 (+/- 0.19) 0.33 (+/- 0.20) 0.22 (+/- 0.25)

Austria 

2071-2100 0.30 (+/- 0.21)   0.30 (+/- 0.21)   0.23 (+/- 0.21) 0.36 (+/- 0.20) 0.27 (+/- 0.28)

current 0.17 (+/- 0.08) 0.32 (+/- 0.18) 0.31 (+/- 0.10) 0.24 (+/- 0.08) 0.12 (+/- 0.05)

2011-2040 0.28 (+/- 0.10) 0.33 (+/- 0.12) 0.36 (+/- 0.12) 0.29 (+/- 0.07) 0.15 (+/- 0.11)

2041-2070 0.36 (+/- 0.11) 0.37 (+/- 0.15) 0.43 (+/- 0.12) 0.37 (+/- 0.11) 0.14 (+/- 0.10)

Germany 

2071-2100 0.48 (+/- 0.09) 0.46 (+/- 0.17) 0.49 (+/- 0.12) 0.38 (+/- 0.10) 0.19 (+/- 0.14)

current 0.07  (+/- 0.08) 0.21 (+/- 0.18)   0.13 (+/- 0.15) 0.23 (+/- 0.17) 0.05 (+/- 0.04)

2011-2040 0.19 (+/- 0.22) 0.10 (+/- 0.10) 0.09 (+/- 0.14) 0.28 (+/- 0.25) 0.13 (+/- 0.21)

2041-2070 0.20 (+/- 0.23) 0.12 (+/- 0.16) 0.11 (+/- 0.17) 0.40 (+/- 0.30) 0.11 (+/- 0.20)

Switzerland 

2071-2100 0.21 (+/- 0.23)  0.13 (+/- 0.17) 0.14 (+/- 0.21) 0.14 (+/- 0.21) 0.14 (+/- 0.21)
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Suppl. Mat. Fig. 1: Current and projected climatic suitability for five Phlebotomus species. 
Values for suitability range theoretically from 0 (unfavourable conditions) to 1 (perfect con-
ditions). Projections refer to the B1 scenario. 
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Suppl. Mat. Fig. 2: Least-cost path for Phlebotomus species indicating direction of spread in 
the 21st century. Spatio-temporal varying (climatic) conditions included in the cost surface 
that must be crossed by species in the 21st century refer to the B1 scenario. 
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6.7 Article 7:  

Vector-borne diseases in a rapidly changing world - Geography needs to 

become infected! 

 

With 3 Figures. 

 

Abstract 

Vector-borne diseases constitute one of the main striking issues regarding human and 

animal health. Disease vectors, which are mainly arthropods, transmit pathogens between 

mammal hosts. In the first part of this paper, we highlight the main effects of natural and/or 

human forced changes on vector-borne diseases. Climate and environmental change as well as 

globalization contribute to modified spatial patterns of occurrences and transmission cycles of 

vector-borne diseases, resulting in a growing threat for humans. In general, the sensitivity of 

vector-borne diseases to the main natural or human-forced changes of their environment is 

manifold.  

In the second part, we point out recent developments in research concerning 

occurrences and spatial patterns of vector-borne diseases. Furthermore uncertainties and 

research challenges are identified. Especially political recommendations demands supporting 

information, which consider the varying risk of potential (re-)emerging vector-borne diseases 

on different spatio-temporal scales. We provide a framework to include geographical exper-

tise in research as well as surveillance systems in order to close this gap. Humans are involved 

in both, cause and effects of this emerging public health hazard. This emphasizes the ne-

cessity to cope with the complexity of this emerging threat by integrating various scientific 

disciplines. 
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global warming - global change - environmental change - emerging diseases - public health 
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1. Introduction 

Global change encompasses a variety of processes, which differ in scale, intensity and 

severity. The contributing processes are driven mainly by the technological and demographic 

development of human societies (e.g. globalisation of trade, emission of greenhouse gases). 

However, also natural mechanisms such as the melting of glaciers or the modification of 

ocean currents can be stimulated and intensified. In all cases, the complexity of the processes 

and interactions that contribute to these large scale changes and their effects is high. A novel 

quality of the contributing processes is attributed to their speed and spatial extension in com-

parison to natural dynamics.  

In the context of a rapidly changing world, human health is a vital attribute that should 

be given priority in science and policy (Fischer et al. 2010a). Several infectious diseases are 

transmitted via specific disease vectors, which are capable to transmit pathogens from one 

host to another. Hence, the geographical distribution of a vector-borne disease (VBD) is 

directly connected to the availability of vectors, which are mainly arthropods (e.g. bugs, flies, 

fleas, mosquitoes and ticks) but also rodents. In general, the fulfilment of suitable environ-

mental conditions for all species involved in the transmission cycle is the prerequisite for the 

occurrence and spatial distribution of VBD. Pathogens, vectors and reservoir hosts must co-

exist spatially and temporarily, and interact (Peterson 2008). 

Since anthropogenic global and regional changes manifested themselves at the end of 

the 20th century, VBDs have responded significantly and meanwhile constitute an emerging 

biological risk for humans (Sutherst 2004). Globally, the number of VBD related outbreaks 

has increased remarkably within the last decade, being meanwhile responsible for almost 30% 

of all cases of infectious diseases (Jones et al. 2008). Due to the fact that humans are both re-

sponsible and aggrieved, these topics are in equal measure of interest for several scientific 

disciplines. The reasons for changes in organismic and viral distribution patterns resulting in 

emergent or resurgent outbreaks of a VBD are manifold and complex.  

Here, the main driving forces affecting emergencies of VBDs are discussed in the first 

part of this article. In the second part, recent methodological developments for the detection 

of risk areas of VBDs are highlighted. Furthermore, uncertainties and research challenges are 

identified. A scale dependent research agenda to include geographical expertise in research as 

well as surveillance systems is provided. 
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2. The complexity of global change effects on vector-borne diseases 

2.1 Climate change, variability and weather extremes 

Human impacts on climate change are unquestionable. However, magnitude, velocity 

and intensity are still uncertain depending on many factors including political decisions, tech-

nological progress and the economy (IPCC 2007). The expected global warming in the first 

half of the 21st century is mapped in Figure 1. 

Fig. 1: Global warming. Illustrated is the projected increase in annual mean temperature 
from the current situation to the mid-century (2050ies). Projections in temperature are 
obtained from the global climate model ECHAM5 (see Giorgetta et al. 2006) and based on 
the A1B emission scenario. This scenario is characterised by a rapid economic growth in a 
globalized world with a balanced emphasis on all energy sources and a decline in human 
population after an expected peak in 2050 (IPCC 2007). Highest warming is projected for 
boreal and polar regions in the northern hemisphere. Furthermore the Kalahari dessert, 
located in the southern part of Africa, seems to be especially affected by rising tempera-
tures during the next decades. 

 

Changing long-term average conditions can affect the spread of VBDs. Arthropod 

vectors are ecto-thermic and hence depend directly on their surrounding environment. As a 

consequence of warming, the colonisation of new habitats of regionally unknown vectors and 

the extension of diseases into formerly unsuited areas have to be expected. Climate-driven 

spatial expansions of VBDs have been already detected in recent years (Epstein and Mills 

2005). The observed northwards expansion of tick-borne diseases, for instance, may result 

besides other factors also from global warming (Gray et al. 2009). Milder winter temperatures 
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and drier summers may drive tick-borne encephalitis or Lyme borreliosis not only to higher 

latitudes but also to higher altitudes in specific European regions (Lindgren et al. 2000; 

Randolph 2001; Lindgren and Jaenson 2006). Ticks perform extraordinary complex life 

cycles and they combine this with low mobility. Interactions with natural hosts such as 

various species of wild mammals impede observation and monitoring. In addition, ticks can 

host a large variety of pathogens.  

However, most arthropod vectors are less difficult to assess. Regarding the climatic 

projections of the 21st century, a spread of leishmaniasis - the most severe sandfly-borne 

disease - can be expected not only for Central Europe (Fischer et al. 2010b) but also for tem-

perate regions of North America (Gonzáles et al. 2011). Furthermore, re-emerging autoch-

thonous cases of malaria in Germany cannot be excluded. The vectors (Anopheles-species) are 

already present. Assuming pathogen (Plasmodium vivax) introduction will take place, the risk 

of malaria establishment in Germany can be expected to increase under climate change con-

ditions during the 21st century (Holy et al. 2011).  

VBDs may also display year-to-year variations dependent on climatic variability. The 

most dominant feature is probably the El Niño and La Niña phenomenon characterized by 

anomalous weather conditions in the Pacific region (Yeh et al. 2009). For mosquito-borne 

diseases occurring in the southern hemisphere and most importantly for malaria, correlations 

of transmission cycles with the El Niño Southern Oscillation Index have been found (see 

Kovats et al. 2003). It is expected that frequency as well as characteristics of El Niño events 

will change significantly in the 21st century (Yeh et al. 2009). 

Generally, global warming is associated with increased energy turnover in the atmos-

phere facilitating weather extreme events. Weather extremes may either accelerate or attenu-

ate activity phases of diseases vectors and consequently alter the transmission cycles of VBDs 

in endemic areas. Hydrological events such as heavy rainfalls and resulting flooding may 

create windows of opportunity for the invasion and establishment of mosquitoes (Landesman 

et al. 2007; Hubálek 2008). Extraordinary hot summers with heat waves such it was recorded 

for Europe in 2003 caused the largest mast production by deciduous trees in the autumn of 

2004 (a so-called mast year). This caused an extremely high rodent survival rate in the 

European winter 2004/2005. Several of the rodent species are vectors and hosts for the differ-

ent strains of the hanta-virus. In Belgium, the highest incidences of humans with hanta-virus 

infections were therefore recorded in 2005 (Clement et al. 2009), probably due the high abun-

dance of rodents. Especially the closer contact of rodents with humans is considered as main 
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factor for increased human infections with the hanta-virus (Jonsson et al. 2010). However, cli-

mate change alone cannot explain the recent epidemiology of VBDs (e.g. Gething et al. 2010; 

Randolph 2010). 

 

2.2 Trade and travel as dispersal mechanisms and the growing connectivity between 

vulnerable regions and societies 

Beyond climatic change effects on VBDs, the complex interplay of globalisation and 

regional climatic or environmental changes is of special relevance (Sutherst 2001). As long as 

the target area exhibits only unsuitable habitats for disease vectors no outbreak after pathogen 

or vector introduction can occur. However, conceivably, climate and further environmental 

changes may provide suitable habitats for potential vectors in the target area, which then 

might result at least in local epidemics. Human-induced carry-overs (trade and transport) are 

increasingly promoting the dispersal, establishment and epidemics of VBDs (Randolph and 

Rogers 2010). This can either be facilitated by human-forced invasions of vectors or by 

pathogen introduction by mobile hosts (e.g. birds). 

 

2.2.1 Human support of vector invasions 

Trade and transport of goods and materials (mainly by sea) around the world were 

responsible for the long distance dispersal of several disease vectors in the last century (Tatem 

et al. 2006). Especially invasions of mosquitoes that require only small water bodies during 

their larval and pupal stages are responsible for the most notable invasions and range expan-

sions. Such conditions are given even in containers and other devices for the transport of 

goods (Lounibos 2002). The number of container ships per country involved in the global 

shipping of goods is illustrated in Figure 2. 

The most prominent example in recent times is probably the global invasion of the 

Asian tiger mosquito (Aedes albopictus) (Enserink 2008). This species has left its native 

region in Southeast Asia during the last decades causing serious public health concerns in 

various places of the world. The tiger mosquito is capable of transmitting at least 22 viruses to 

humans (Gratz et al. 2004). The most severe consequences accompanied by the spread of this 

insect are surely the establishment of dengue, Chikungunya and West-Nile virus infections in 

regions where these diseases were unknown until then. The yellow fever mosquito (Aedes 

aegypti) that went extinct in continental Europe in the 1950ies, recently reappeared in the 
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Netherlands (Enserink 2010). However, intensified mosquito could very likely avoid an in-

festation of the Yellow fever mosquito (Scholte et al. 2010). 

In general, mosquito introduction is not only a phenomenon of recent years. The 

devastating introduction of Anopheles gambiae, the most efficient vector of Plasmodium 

falciparum malaria, from West Africa to Eastern Brazil by either steamship or aircraft hap-

pened already in the 1930ies (Lounibos 2002). 

Fig. 2: Merchant marine in 2010. Illustrated is the number of ships engaged in the 
carriage of goods for each country based on data of the CIA (2011). Note that many ship 
owners register their ship in a sovereign state different from their own in order to avoid 
taxes and regulations (“flag of convenience”). Therefore, especially Panama, but also 
Liberia contains an unexpected high number of engaged ships. The transport of goods 
from (-sub) tropical regions to temperate regions enables mosquito species to become 
established in new regions and continents. 

 

2.2.2 Human support of pathogen introduction 

Beside the incidental transport of vectors, infected humans act increasingly as mobile 

hosts. Humans can become infected in (sub-) tropical touristic destination regions and carry 

pathogens accidentally to formerly non-endemic areas (Tatem et al. 2006; Cosner et al. 2009). 

The West-Nile virus was very likely introduced to the United States from Israel by airplane 

and transmitted via local Culex mosquitoes in the region of New York (e.g. Lanciotti et al. 

1999). Thereafter it spread rapidly across the North American continent. This spread was 

supported by highly mobile birds that can also act as hosts. This disease became a common 
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problem for instance in the Mid-West and can not be eradicated there any more. Another 

striking example is the introduction of the Chikungunya virus by an Indian traveller to Italy. 

In the region of Rimini introduced the Asian tiger mosquitoes incorporated the Chikungunya 

virus from this person leading to a local epidemic (Rezza et al. 2007). 

In addition, trade and migration of infected domestic animals and pets, which can also 

act as reservoir hosts, may support epidemic outbreaks in formerly non-endemic regions 

(Dantas-Torras 2007; Menn et al. 2010; Pfeffer and Dobler 2010). For many Europeans, the 

Mediterranean Region is the preferred holiday destination. The travel and import of dogs from 

the Mediterranean is connected with the transport of pathogens beyond previously ex-

perienced endemic regions. A pathogen screening of imported dogs to Germany found a high 

proportion of dogs that were infected by tick-borne pathogens but also for by sandfly-borne 

pathogens such as Leishmania infantum (Menn et al. 2010). 

 

2.3 Poverty, demography and resulting human-altered landscapes 

The emergence of VBDs depends furthermore on societal aspects such as demography 

and population pressure or social behaviour and activities (Morens et al. 2004; Vora 2008). 

Population growth is concentrated to certain regions of the world, especially to Africa, Asia 

and South-America. This correlates with the poorest regions of the world (Cohen 2003). 

Amongst VBDs, mosquito-borne diseases are connected with the highest lethality rates in the 

respective regions (WHO 2004). Unfortunately, no vaccine is available against the most 

severe mosquito-borne diseases such as malaria or dengue, although recent developments are 

promising (e.g. Cech et al. 2011). 

Poor countries do often exhibit weak health care systems, insufficient medical 

infrastructure, less developed educational systems, high numbers of malnourished people and 

other societal stressors that can amplify the effects on biological threats. Conceivably, malaria 

recurrence in the East African highlands may be most likely a result of missing effective 

disease treatments as well as decreases in vector control activities (Hay et al. 2002; 2005). 

Two main concerns exist regarding to land use and cover changes that are associated to 

human population pressure: 

1. Not only in recent times, cities and megacities attract rural population by 

allegedly providing better options in education, jobs, food and water supply as 

well as health care. Increasing urbanization tendencies may constitute an 

appreciable (human) reservoir for different kind of VBDs (Gubler 2010). 
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2. High human population growth rates especially of the African continent are 

causing an increased demand for food. This alters vector habitats (Sutherst 

2004). The replacement of forests by croplands may create supportive habitats 

for vectors (Patz et al. 2000). Furthermore, in subtropical and tropical climates, 

irrigation of agricultural fields is common creates increasing breeding sites for 

vector mosquito. Whether an irrigations system also triggers an increase in 

mosquito-borne diseases such as malaria depends on the single project and fur-

ther contextual determinants (Keiser et al. 2005). Nevertheless, in Western 

Australia it has been observed, that endemic Culex mosquitoes do breed year 

round - including the driest season - in irrigation facilities. This is connected 

with a growing risk of Ross-River virus infection (Jardine 2004). 

 

3. Defining the scope: A novel research agenda 

3.1 Advances of improved risk analysis with geographical implications 

Geo-statistics and ecological niche modelling provide new qualities for the detection 

of emerging and resurging VBDs (Aagaard-Hansen 2009). Risk analyses are furthermore 

supported by freely available spatial data e.g. for different types of vectors (flies, mosquitoes 

and ticks) on platforms such as http://www.vectormap.org (initiated by Foley et al. 2010). 

This supports the application of GIS-based monitoring tools. Of course, these databases are 

constantly evolving and to date far from being complete. Nevertheless, novel options can be 

implemented in order to make science more efficient and to support improved results:  

a) Multivariate and geo-statistical approaches allow identifying environmental 

relationships on different scales (e.g. Eisen and Eisen 2008). The different environ-

mental factors account on changing spatial and temporal scales with varying 

intensity on VBDs (Fig. 3). Therefore, we are convinced that addressing the ade-

quate scale is substantial to understand the mechanisms of relevant drivers. 

Beyond simple correlation analyses, especially multiple linear or logistic re-

gression analyses contribute to identify those environmental factors that best pre-

dict species distribution and potential range expansion (e.g. de Souza et al. 2010; 

Roiz et al. 2011). Beginning on larger spatial and temporal scales, especially 

climate is the major factor regulating the establishment of a VBD. Once specific 

risk areas are detected, analyses have to be translated to the local level by account-

ing for further influences. Environmental factors such as changing vegetation and 
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land use, were found to be most relevant on local to regional spatial scales (see the 

example of Schwarz et al. 2009 for environmental factors determining occurrences 

of the tick Ixodes ricinus in a German nature reserve). Smaller scales demand 

necessarily for a higher spatial and temporal resolution in order to account for 

local patterns or variations.  

b) Non-apparent spatial or temporal patterns of vectors and VBDs can be 

characterised and identified (e.g. Peterson 2008; Winters et al. 2010). Once the 

main environmental drivers affecting vectors or VBDs have been identified, 

statistical niche modelling incorporated into GIS frameworks offers the oppor-

tunity to generate predictive or potential risk maps. They are built on known or 

inferred distributions in the environmental space (e.g. Peterson 2007). To detect 

short-term (seasonal) variations, the integration of remotely sensed data has proven 

to qualify for mapping mosquito populations (e.g. Tran et al. 2008). Time-series of 

images can moreover be used to monitor the dynamics of vector breeding sites via 

change detection analyses. However, evidence from previous rather “historical” 

outbreaks can also be derived from reports. In doing so, Endfield et al. (2009) 

could relate past environmental, climatic and social factors to the epidemics of 

sleeping sickness (a disease caused by the tse-tse flies) in East Africa for the years 

1900 to 1920.  

The appraisal of future tendencies of VBDs concerning their climatic suita-

bility would then probably be the next step (Fischer et al. 2010a). The data are 

obtained from climate models ranging from regional to global scales. Regional 

climate models provide a much higher spatial resolution than their driving global 

models. This enhances the quality of climate impact studies for limited areas with 

differentiated landscape features (Jacob 2008). Recently, regional climate change 

projections have been used to assess the future distribution of disease vectors (e.g. 

Fischer et al. 2011), to project the temperature-dependent pathogen development 

(Thomas et al. 2011) or to combine vector and pathogen constraints under climate 

change conditions, respectively (Fischer et al. 2010b; Holy et al. 2011). 
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Fig. 3: Different factors determining introductions, occurrences and establish-
ments of vector-borne diseases on varying spatial and temporal scales. This is due 
to the fact that some of these factors are more restricted in space and time than 
others. On the other side, an “unrestricted” global and long-term phenomenon 
becomes negligible in its effect on a vector-borne disease when regarding the 
smallest scale. 

 

3.2 Research challenges 

3.2.1 Problems in projection approaches 

One of the major problems concerning projections in space and/or time is related to 

potential non-analogue environmental conditions (Fitzpatrick and Hargrove 2009). Non-ana-

logue environments represent either novel conditions or novel environmental interrelations. In 

the case of novel environments, species responses under such conditions have not been 

observed so far and cannot be projected. New statistical approaches such as Multivariate 

Environmental Similarity Surface Analysis enable to detect the similarity between regions and 

to identify regions with upcoming novel and incomparable conditions (Elith et al. 2010). 

Nevertheless, to date, the issue concerning projections to regions with novel environments has 

not been resolved. 

A further challenge arises regarding potential changing environmental requirements 

during species invasion processes. Some vector species such as the Asian tiger mosquito are 
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capable to perform niche shifts during the invasion process (Medley 2010). Hence, it is essen-

tial to detect what kind of spatial data - native, invaded or entire range - is used as a basis for 

the calculation of projections via niche analysis (Fischer et al. 2011). This is not exclusively 

restricted to disease vectors. Also rapid genetic variation in pathogens demands for intensified 

research. Recently, it has been pointed out that the adaptability of pathogens is higher during 

range expansions than during host shifts (Dennehy et al. 2010). Consequently, adaptive emer-

gence may preliminary occur at the edge of a pathogen’s ecological or geographical range. 

Further uncertainties are related to the projections of extreme weather events and their 

effects on VBDs. The ecological consequences of increasing extreme events can be dispropor-

tionate (Jentsch and Beierkuhnlein 2008). Nevertheless, these extremes are - in comparison to 

gradually changing long-term conditions - difficult to tackle (Beniston et al. 2007; Hegerl et 

al. 2011). As the related processes generally take place on comparatively small spatial scales, 

downscaling of regional climate models to the local level is required. 

 

3.2.2 Data availability and quality 

Restrictions in data quality are found to be a major obstacle for modelling efforts 

(Eisen and Eisen 2007). Explicit knowledge is needed that is directly related to the environ-

mental requirements of VBDs. For instance, spatially inclusive and comprehensive screenings 

of vector occurrences are missing. Only few taxonomists are able to identify species and to 

monitor their temporal or seasonal emergence. In temperate regions, disease vectors are not 

active all-the-year. Therefore, non-detection of a vector in a respective region does not imply 

its absence.  

Furthermore, data acquisition is a crucial factor determining quality and accuracy of 

research. In the United States, the majority of data concerning pathogen or vector distribution 

is documented on county level, which obscures the occurrence patterns within each admin-

istrative unit (Eisen and Eisen 2007). In order to model the climatic suitability of the Asian 

tiger mosquito, Fischer et al. (2011) transferred the centroids of each county with reported 

presence of vectors to point data. As the mosquito is mainly distributed in the south-eastern 

regions of the United States, this approach would be problematic for the western parts, where 

counties cover more spacious areas (Eisen and Eisen 2007). 
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3.2.3 New concepts of human vulnerability 

Investigating whether the human vulnerability refers more to the capacity to prevent 

and adapt or to increases in disease transmission is a geographical topic (Sutherst 2004). Up 

to now, concepts of human vulnerability focus on direct exposures. Climatic events such as 

floods, storms and heat waves are part of the public awareness and of decision makers (Patz 

and Kovats 2002). However, the growing threat by VBDs is more diffuse and less obvious.  

The most severe consequence for human societies surely refers to lethal cases caused 

by VBDs. But moreover, VBDs may restrict the ability of societies to pursue and maintain 

regular functioning (Sutherst 2001). Until now, studies on economic effects of VBDs are rare. 

On the example of dengue fever in Taiwan, it becomes apparent that non-productive time of 

the economy increased during dengue outbreaks (e.g. Tseng et al. 2009). Economic damage is 

obvious in the case of animal diseases. This is impressively highlighted by the bluetongue 

disease in ruminants - transmitted by Culicoides mosquitoes. In 2006 and 2007, this animal 

disease occurred initially in the Netherlands and neighbouring regions (e.g. van Wuijckhulse 

et al. 2006). There, the epidemic outbreak caused dramatic financial losses in pasture-based 

livestock farming (Velthuis et al. 2010). 

 

4. Communication and knowledge transfer 

4.1. Strengthening the public awareness 

Limiting VBD burdens is an overall goal (Eisen and Eisen 2011). However, the impact 

of VBDs is still not adequately captured in disease burden assessments (Dujardin et al. 2008). 

These diseases are often excluded from top-level discussions on disease control priorities, 

although they constitute a serious and growing threat (LaBeaud and Aksoy 2010). Also, the 

knowledge that is needed for the efficient design of coping strategies is scarce. There are 

probably two explanations for this deficit: First of all, there is a disconnection between 

research and the practical use of the results for prevention and control purposes. The transfer 

of knowledge from the scientific community into operational vector and diseases control pro-

grams must be emphasised (Eisen and Eisen 2011). Secondly, the public understanding of 

inextricable links between global changes and vector-borne diseases is still rudimental. 

Growing public awareness on this emerging issue would enhance the pressure on politicians 

and stakeholders to make decisions.  
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This in consequence requires the evaluation of spatial information that is needed for 

different stakeholders in order to make practical use of it (Eisen and Eisen 2011). Then, espe-

cially virtual globes - e.g. Google EarthTM and Google MapsTM - may help to share data for 

the management and control of VBD (Steensgard et al. 2009). More advanced are data man-

agement system software packages that support data entry, storage and query, as it was 

recently proposed for dengue and malaria by Eisen et al. (2011). 

 

4.2 Surveillance: Bottom-up approach 

Spreading VBDs are a global problem. Solutions, however, have to be implemented 

locally (Lambrechts et al. 2009). Surveillance must be based on systematic and continuous 

observation with the aim to a timely support of political decisions by detecting spatial 

anomalies in the distribution of VBDs such as emergent cases in formerly non-endemic areas 

(Jansen et al. 2008). 

Germany, for example, may serve as a role model for rapid communication of 

certifiable diseases via bottom-up approach (from the local via regional to the national public 

health authorities). The German Infection Protection Act, enacted in 2001 and modified 2007, 

regulates the prevention and abatement of 47 pathogens and 14 diseases that laboratories and 

clinicians have to notify to local health departments (Jansen et al. 2008). Via SurvNet soft-

ware the case-base datasets of each local health department are directly transmitted to the 

state health department and finally to the federal “Robert Koch Institut” (Krause et al. 2007). 

The database is updated weekly and freely available on http://www3.rki.de/SurvStat.  

In the case of recent EHEC (Escheria coli) infections in Germany with an unusual 

high number of HUS (Haemolytic uraemic syndromes) it was shown that surprising events 

can hardly be counteracted in time. Nevertheless, the rapid exchange of information, strains 

and DNA fingerprints within national and international public health networks has been vital 

in the quick assessment of public health significance (Scheutz et al. 2011). Surprising epi-

demics are not limited to such a food-borne disease but can also occur in the case of a VBD. 

The spread of VBDs is not limited by administrative borders. Recent developments in 

data exchange are promising, but the overall integration into supranational frameworks is still 

missing. This requires a standardisation of certifiable VBDs. Without clear regulation con-

cerning notification, the number of infections would probably be underestimated. Decisions 

which diseases should be certifiable must be built on agreements regarding the risks and 

efforts for management. For certifiable VBDs then a clear task for the health authorities 
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arises: They must distinguish between those cases that are real emergencies and those that 

result from increased reporting. 

 

5. Conclusions 

The influence of global change on the spread of VBDs around the globe is of in-

creasing importance. Still, gaps in knowledge and surveillance are inhibiting efficient detec-

tion of vulnerable regions and populations at an early stage of exposure. Even industrial 

countries in the temperate zones of Europe and Northern America, where VBDs were not a 

big issue during the last decades, have been caught napping. Hence, there is a need for in-

depth research and the design of sophisticated risk assessments. Transdisciplinary cooperation 

is required in epidemiological studies. Neither the humanities, nor social, medical or natural 

sciences are capable to cope with the complexity of these emerging threats alone.  

As different spatial and temporal scales have to be addressed and various qualities of 

drivers have to be considered, it is time especially for geography to become “infected” and 

provide its expertise. In this rapidly changing world, public health authorities and political 

decision support are urgently needing spatio-temporal analyses of risks that are related to 

VBDs. Generalisations across scales are inappropriate. Spatially explicit information is 

required. 
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