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Summary

Majorite is a high pressure polymorph of enstatite with the garnet structure. The amount of enstatite that can 

be dissolved in garnet as a majorite component increases significantly with pressure, and therefore, majoritic 

garnet is thought to be a major constituent of the Earth's transition zone. The transport properties of majoritic 

garnet are, however, not well constrained at the moment. The magnitude of the diffusivity of the majorite 

component in garnet influences our understanding of the homogenization time scale of Earth's mantle. This is 

important in subduction zone settings, where the subducting oceanic crust will form a majorite inhomogeneity 

in the transition zone because of its higher aluminium content. Reaction kinetics in the dry transition zone are 

diffusion controlled and therefore an improved dataset on the diffusivity of the majorite component in garnet 

will enable us to better understand the of role of disequilibrium in subduction zones. This dissertation therefore 

reports the results of diffusion experiments on garnet. 

Slow diffusion kinetics of the majorite component in garnet will also will hamper the dissolution of pyroxene in 

garnet and pyroxene will therefore be metastably preserved during subduction. Natural pyroxenes always 

contain aluminium, which is expected to cause exsolution of a garnet phase during subduction. Therefore, high 

pressure and temperature experiments have been conducted on aluminous enstatite, to simulate this process, 

of which the results are also presented in this dissertation. 

Diffusion experiments have been conducted with diffusion couples of majoritic garnet – Dora Maira pyrope, 

Dora Maira pyrope and Ötztal almandine and Ötztal almandine and majoritic garnet in a multi-anvil press 

between 1400 – 1900 °C and 12 – 20 GPa. The diffusion experiments with the majoritic garnet – Dora Maira 

pyrope garnet couples show that the diffusion of the majorite component in garnet is very slow, comparable to 

the diffusivity of silicon in wadsleyite and ringwoodite. The activation energy, activation volume and the pre-

exponential for diffusion of the majorite component in garnet were determined to be 241 ± 54 kJ mol-1, 3.3 ± 0.1 

cm3 mol-1 and 2.3 x 10-7 cm2 s-1, respectively. The diffusivity of the majorite component in garnet was 

determined to be 2-3 orders of magnitude slower than the self-diffusivity of Mg, Fe and Ca in garnet at the same 

conditions. Comparison with diffusion data on wadsleyite and ringwoodite shows that the diffusivity of the 

majorite component in garnet is very similar to that of the silicon self-diffusivity in the high-pressure 

polymorphs of olivine. 

Another set of diffusion experiments was conducted with Ötztal almandine – majoritic garnet diffusion couples. 

The diffusion profiles obtained from these experiments are strongly asymmetric, and indicate that there is an 

increased tracer-diffusivity of Mg and Fe by one order of magnitude in majoritic garnet part of the diffusion 

couple. The increased diffusivity of Mg and Fe in majoritic garnet appears to be an intrinsic property of majoritic 

garnet, which can be explained by the fact that the octahedral sites short cut the diffusion path through the 

garnet structure. In almandine the octahedral sites are all occupied by aluminium, whereas in the majoritic 

garnet a proportion of the octahedral sites are also occupied by Mg and Fe.



To determine whether solid state diffusion can homogenize the mantle the diffusion distance  of the majorite 

component in garnet, assuming grain boundary diffusion is the dominant diffusion mechanism, has been 

calculated. The results show that within the range of temperatures prevailing in the transition zone, majorite is 

able to diffuse 5 – 15 m on the time scale of the age of the Earth. Solid state diffusion is thus not able to 

homogenize the mantle. 

Another important question is whether or not diffusion of the majorite component in garnet is fast enough to 

enable pyroxene to dissolve in garnet, thus forming majoritic garnet in the subducting oceanic slab. A finite 

difference code has been developed to assess this question that models diffusion in a spherical grain and 

diffusion controlled growth of a spherical grain. The results show that during the subduction process all 

pyroxene can be dissolved in garnet in the case of the lithospheric mantle part of the slab. The oceanic crust 

shows however a different result, due to its lower temperature, and only a small amount of pyroxene can be 

dissolved into garnet. Metastable phases will thus be preserved in the subducting oceanic crust during the 

subduction process.

Natural pyroxenes contain small amounts of aluminium. During subduction pyroxene is thought to dissolve into 

garnet. However, as the diffusion experiments reported in this thesis show, there is a significant delay in the 

dissolution of pyroxene in garnet as result of the limited diffusivity of the majorite component in garnet. 

Therefore, garnet will exsolve from pyroxene before pyroxene is dissolved into garnet, because the aluminium 

solubility in pyroxene decreases with increasing pressure. Experiments with Dora Maira pyrope – Tanzania 

enstatite couples have been conducted at 1700 °C and 15 GPa to simulate the process of subduction into the 

transition zone. The recovered samples reveal in low clinoenstatite extensive twinning on (100) and a high 

density of stacking faults on (100) with displacement vector R = [½ ½ w]. From crystal structure considerations 

one finds that w is most likely ½. The stacking fault plane in combination with the displacement vector can be 

explained by the phase transformation of HP high clinoenstatite to low clinoenstatite. 

The topotactic relationship between the majoritic garnet precipitates and the low clinoenstatite host was also 

determined. Though there is not a unique topotactic relationship, most of the garnet precipitates have their 

<111> direction parallel to the [001] direction in low clinoenstatite. The lack of a unique topotactic relation is 

probably due to a lack of an oxygen close packing direction in garnet. The observed dominant topotactic 

relationship is therefore interpreted as the result of the low diffusivity of silicon and is thus a topotactic relation 

controlled by kinetics. 

From the aluminium diffusion profiles measured in low clinoenstatite, the diffusivity of Al in high clinoenstatite 

was determined to be at least 6 x 10-11 cm2 s-1 at 1700 °C and 15 GPa. Comparison with data in diopside shows 

there is a discrepancy between diffusion data at high pressure and at low pressure, which might indicate a 

strong dependence of Al diffusivity in clinopyroxene on Ca contents or a change in diffusion mechanism.

The results of the experiments conducted in this PhD study show that the low diffusivity of components in the 

Earth may severely hamper reaction kinetics in the Earth in the case where mass transport is required. To better 



understand dynamics of the Earth it would therefore be useful study the role of diffusion in other phase 

transitions in the Earth where mass transport is required.  

Zusammenfassung

Majorit ist eine Hochdruck-Modifikation von Enstatit mit Granatstruktur. Mit steigendem Druck nimmt der 

Enstatit-Gehalt, der als Majorit-Komponente in Granat gelöst sein kann, deutlich zu, weswegen vermutet wird, 

dass majoritischer Granat eine Hauptkomponente in der Übergangszone der Erde ist. Dennoch sind die 

Transporteigenschaften von majoritischem Granat noch nicht genau bekannt. Vom Ausmaß des 

Diffusionsvermögens des majoritischen Anteils in Granat hängt unser Verständnis vom zeitlichen Ablauf der 

Homogenisation des Erdmantels ab. Dieses spielt in Subduktionszonen eine wichtige Rolle, wo die subduzierte 

ozeanische Kruste aufgrund ihres höheren Aluminium-Gehalts eine Majorit-Inhomogenität in der 

Übergangszone bildet. Da Reaktionsabläufe in einer trockenen Übergangszone diffusionskontrolliert sind, 

werden verbesserte Daten über das Diffusionsverhalten der majoritischen Komponente in Granat dazu 

beitragen, Ungleichgewichte in Subduktionszonen besser zu verstehen. Die Ergebnisse solcher Diffusions-

Experimente werden in dieser Dissertation vorgestellt.

Eine langsame Diffusion der Majorit-Komponente in Granat behindert die Auflösung von Pyroxen in Granat, 

wodurch Pyroxen während des Subduktionsprozesses metastabil erhalten bleibt. Natürlicher Pyroxen enthält 

immer Aluminium, das sich während der Subduktion als Granat-Phase entmischt. Um diesen Prozess zu 

simulieren, wurden Hochdruck- und Hochtemperatur-Experimente an Aluminium-reichem Enstatit 

durchgeführt. Die Ergebnisse werden ebenfalls in dieser Dissertation präsentiert. 

Diffusionsexperimente wurden an den folgenden Diffusions-Paaren durchgeführt: (1) majoritischer Granat – 

Dora Maira-Pyrop, (2) Dora Maira-Pyrop und Ötztal-Almandin und (3) Ötztal-Almandin und majoritischer 

Granat in einer Multi-Anvil-Presse bei Temperaturen von 1400 – 1900 °C und Drücken von 12 – 20 GPa 

durchgeführt. Jene Experimente mit Paaren von majoritischem Granat – Dora Maira-Pyrop zeigen, dass die 

Diffusion der majoritischen Komponente in Granat sehr langsam vonstatten geht, vergleichbar mit dem 

Diffusionsvermögen von Silizium in Wadsleyit und Ringwoodit. Die Aktivitätsenergie, das Aktivitätsvolumen 

und der präexponentielle Faktor der Diffusion der majoritischen Komponente in Granat betragen 241 ± 54 kJ 

mol-1, beziehungsweise 3.3 ± 0.1 cm3 mol-1 und 2.3 x 10-7 cm2 s-1. Das Diffusionsvermögen der majoritischen 

Komponente in Granat ist 2 bis 3 Größenordnungen langsamer als die Selbstdiffusion von Mg, Fe und Ca in 

Granat unter denselben Bedingungen. Vergleiche mit den Diffusionsdaten von Wadsleyit und Ringwoodit 

zeigen, dass das Diffusionsvermögen der Majorit-Komponente in Granat der Selbstdiffusion von Silizium in den 

Hochdruck-Polymorphen von Olivin sehr ähnlich ist. 

Eine weitere Reihe von Diffusionsexperimenten wurde an Diffusionspaaren von Ötztal-Almandin und 

majoritischem Granat durchgeführt. Die aus diesen Experimenten hervorgegangenen Diffusionsprofile sind 

stark asymmetrisch und belegen ein um eine Größenordnung erhöhtes Diffusionsvermögen von Spuren von Mg 



und Fe im majoritischem Granat-Teil des Diffusionspaares. 

Das erhöhte Diffusionsvermögen von Mg und Fe scheint eine spezifische Eigenschaft von majoritischem Granat 

zu sein, die dadurch erklärt werden kann, dass die oktaedrischen Plätze den Diffusionspfad durch den Granat 

vereinfachen. In Almandin sind alle Oktaeder-Plätze mit Aluminium besetzt, während in majoritischem Granat 

ein Teil dieser Plätze auch mit Mg und Fe belegt sind. 

Um herauszufinden, ob der Erdmantel durch Volumendiffusion homogenisiert werden könnte, wurde, unter der 

Annahme, dass Diffusion an Korngrenzen der Haupt-Diffusionsmechanismus ist, die Diffusions-Strecke der 

Majorit-Komponente in Granat berechnet. Die Ergebnisse zeigen, dass innerhalb der in der Übergangszone 

vorherrschenden Temperaturen, in der Zeitspanne seit der Entstehung der Erde, die Majorit-Komponente 5 – 15 

m weit diffundieren kann. Daraus folgt, dass Volumendiffusion nicht jener Prozess ist, der den Mantel 

homogenisiert. 

Eine weitere offene Frage ist, ob die Diffusion der majoritischen Komponente in Granat schnell genug abläuft, 

damit Pyroxen zu Granat zerfällt und sich majoritischer Granat in der subduzierten ozeanischen Platte bildet. 

Um diese zu beantworten, wurde ein finiter Differential-Code entwickelt, der die Diffusion in einem runden 

Korn und das diffusions-kontrollierte Wachsen eines solchen Kornes modelliert. Die Ergebnisse zeigen, dass 

während der Subduktion des lithospärischen Mantels der ganze Pyroxen zu Granat zerfallen kann. Die 

ozeanische Kruste verhält sich allerdings aufgrund ihrer geringeren Temperatur anders und nur ein geringer Teil 

des Pyroxens kann zu Granat zerfallen. Deshalb bleiben metastabile Phasen während der Subduktion in 

subduzierter ozeanischer Kruste erhalten. 

Natürlicher Pyroxen enthält geringe Mengen an Aluminium. Es wird angenommen, dass Pyroxen während der 

Subduktion zu Granat zerfällt. Allerdings zeigen die Diffusionsexperimente in dieser Dissertation, dass der 

Zerfall von Pyroxen zu Granat wegen des begrenzten Diffusionsvermögens der Majorit-Komponente in Granat 

signifikant verzögert wird. 

Demnach entmischt Granat aus Pyroxen bevor Pyroxen zu Granat zerfällt, weil die Löslichkeit von Aluminium in 

Pyroxen mit zunehmendem Druck abnimmt. Experimente mit Dora Maira-Pyrop- und Tansania Enstatit – 

Paaren wurden bei 1700 °C und 15 GPa durchgeführt, um den Prozess der Subduktion bis in die Übergangszone 

zu simulieren. Die untersuchten Proben zeigen in Klinoenstatit erhebliche Verzwilligungen und eine große 

Dichte von Stapelfehlern auf (100) mit einem Verschiebungsvektor R = [½ ½ w]. Überlegungen zur 

Kristallstruktur ergeben, dass w höchstwahrscheinlich ½ ist. Die Stapelfehler-Ebene zusammen mit dem 

Versatz-Vektor ergibt sich durch die Phasentransformation von HP Hoch-Clinoenstatit zu Tief-Clinoenstatit. 

Die topotaktische Beziehung zwischen den majoritischen Granat-Entmischungen und dem Tief-Clinoenstatit-

Wirt wurde ebenfalls ermittelt. Obwohl keine einzelne topotaktische Beziehung besteht, ist die <111> Richtung 

des Großteils der Granat-Entmischungen parallel zur [001] Richtung im Tief-Clinoenstatit. Das Fehlen einer 

einzelnen topotaktischen Beziehung kann vermutlich auf das Fehlen einer dichtesten Sauerstoff-Packung in 



Granat zurückgeführt werden. Die beobachtete vorherrschende topotaktische Beziehung wird somit als 

Ergebnis des geringen Diffusionsvermögens von Silizium interpretiert und ist daher kinetisch kontrolliert.

Das Diffusionsvermögen von Aluminium in Hoch-Clinoenstatit wurde aus den in Tief-Clinoenstatit gemessenen 

Aluminium – Diffusionsprofilen ermittelt. Es beträgt zumindest 6 x 10-11 cm2 s-1 bei 1700 °C und 15 GPa. Der 

Vergleich mit Daten von Diopsid zeigt, dass ein Unterschied zwischen den Diffusions-Daten bei hohem und 

niedrigerem Druck besteht, was auf eine starke Abhängigkeit des Al-Diffusionsvermögens in Clinopyroxen von 

dem Ca-Gehalt oder auf eine Änderung der Diffusionsmechanismen hinweist.

Die Ergebnisse der Experimente, die im Zuge dieser Dissertation durchgeführt wurden, zeigen, dass das geringe 

Diffusionsvermögen einiger Komponenten die Reaktionskinetik im Inneren der Erde, vor allem dort, wo 

Massentransport eine bedeutende Rolle spielt, deutlich beeinträchtigen kann. Um die Bewegungsabläufe der 

Erde noch besser zu verstehen, wäre es sinnvoll, weitere Studien zur Diffusion in den anderen Übergangszonen, 

wo Massentransport vorausgesetzt wird, durchzuführen.

Samenvatting

Majoriet is een hoge druk polymorf van enstatiet met de granaat structuur. Met toenemende druk neemt de 

oplosbaarheid van enstatiet in granaat als majorietcomponent sterk toe. Als gevolg hiervan wordt verwacht dat 

majoritische granaat een van hoofdbestanddelen van de overgangszone van de Aarde is. De 

transporteigenschappen van majoritische granaat zijn op het moment echter niet goed vastgesteld. De grootte 

van de diffusiviteit van de majorietcomponent in granaat beïnvloed ons begrip van de tijdschaal waarop de 

Aardmantel gehomogeniseerd kan worden. Dit speelt in subductiezones een grote rol, waar vanwege zijn 

hogere aluminium concentratie, de gesubduceerde oceanische korst in de overgangszone een majoriet-

inhomogeniteit zal vormen. De reactiekinetiek in de droge overgangszone van de Aarde is bovendien door 

diffusie gecontroleerd en daarom zal een verbeterde dataset met the diffusiviteit van de majorietcomponent in 

granaat ons een beter begrip verschaffen over de rol van chemisch non-evenwicht in subductiezones. Deze 

dissertatie rapporteert daarom over de resultaten van diffusie experimenten met granaat.

Indien de diffusiekinetiek van de majorietcomponent in granaat traag is, zal dit ook de snelheid waarmee 

pyroxeen in granaat oplost negatief beïnvloeden. Pyroxeen kan daardoor gedurende subductie metastabiel 

bewaard blijven. Natuurlijke pyroxenen bevatten altijd een kleine hoeveelheid aluminium, waarvan verwacht 

wordt dat het ontmengt uit pyroxeen als een granaat fase gedurende subductie. Derhalve zijn er ook hoge druk 

en temperatuur experimenten uitgevoerd op aluminium bevattende enstatiet om dit proces te simuleren, 

waarvan de resultaten ook gepresenteerd worden in deze dissertatie. 

Diffusie-experiment zijn gedaan met diffusiekoppels van (1) majoritische granaat – Dora Maira pyroop, (2) Dora 

Maira pyroop – Ötztal almandien en (3) Ötztal almandien – majoritische granaat in een multi-anvil-pers tussen 

1400 – 1900 °C en 12 – 20 Gpa. De diffusie-experimenten met de majoritische granaat – Dora Maira pyroop 

koppels laten zien dat de diffusie van de majorietcomponent in granaat zeer traag is, vergelijkbaar met de 



diffusiviteit van silicium in wadsleyiet en ringwoodiet. De activatie-energie, het activatievolume en de pre-

exponent voor diffusie van de majorietcomponent in granaat zijn respectievelijk vastgesteld op 

241 ± 54 kJ mol-1, 3.3 ± 0.1 cm3 mol-1 en 2.3 x 10-7 cm2 s-1. De diffusiviteit van de majorietcomponent in granaat 

blijkt 2 – 3 orden van grootte kleiner te zijn als de interdiffusie van Mg, Fe en Ca in granaat onder de zelfde 

omstandigheden. 

Een andere serie diffusie-experimenten is uitgevoerd op Ötztal almandien – majoritische granaat 

diffusiekoppels. De verkregen diffusieprofielen van deze experimenten zijn sterk asymmetrisch en duiden op 

een met één orde van grote toegenomen zelfdiffusiviteit van Mg and Fe in het majoritische granaat gedeelte 

van het diffusiekoppel. De toegenomen diffusiveit van Mg en Fe in majoritische granaat blijkt een intrinsieke 

eigenschap van majoritische granaat zelf te zijn, welke verklaard kan worden door het feit dat de octaëdrische 

rooster posities het diffusiepad door de granaat structuur afsnijden. In almandien zijn deze posities bezet door 

aluminium, in tegenstelling tot in majoritische granaat waar deze posities ook bezet worden door Mg en Fe.

Om te bepalen of volumediffusie de mantel kan homogeniseren is de diffusie-afstand van de 

majorietcomponent in granaat berekend, ervan uitgaande dat het massatransport overwegend plaats vindt 

door middel van diffusie door de korrelgrenzen. De resultaten laten zien dat, binnen het temperatuurbereik van 

de overgangszone, de majoriet component 5 – 15 m kan diffunderen over een tijdbestek gelijk aan de 

ouderdom van de Aarde. Volumediffusie is dus niet in staat de Aardmantel te homogeniseren.

Een andere belangrijke vraag is die of de diffusie van de majorietcomponent in granaat snel genoeg is zodat 

pyroxeen volledig in granaat kan oplossen gedurende de subductie van de oceanische plaat in de 

overgangszone, alwaar het majoritische granaat zal vormen. Hiertoe is een eindige-differentiemethode code 

ontwikkeld die de diffusie in een bolvormige korrel en de door diffusie gecontroleerde groei van een bolvormige 

korrel simuleert. De resultaten wijzen uit dat gedurende het subductieproces alle pyroxeen in granaat opgelost 

kan worden in het lithosferische mantelgedeelte van de subducerende plaat. De oceanische korst laat echter 

een ander resultaat zien, vanwege zijn lagere temperatuur. Enkel een klein gedeelte van de pyroxeen kan 

opgelost worden in granaat, metastabiele fasen zullen dus achterblijven in de gesubduceerde oceanische korst 

gedurende het subductieproces.

Tijdens de subductie wordt verwacht dat pyroxeen oplost in granaat. De resultaten van de diffusie-

experimenten in deze dissertatie laten echter zien dat er een aanzienlijke vertraging is in het oplossen van 

pyroxeen in granaat als gevolg van de lage diffusiviteit van de majorietcomponent in granaat. Aangezien 

natuurlijke pyroxenen een kleine hoeveelheid aluminium bevatten, wordt verwacht dat granaat zich ontmengt 

uit pyroxeen voordat pyroxeen volledig in granaat oplost als gevolg van de afnemende oplosbaarheid van 

aluminium in pyroxeen met toenemende druk. Experimenten met Dora Maira pyroop – Tanzania enstatiet 

koppels zijn uitgevoerd bij 1700 °C en 15 GPa, om het subductieproces van pyroxenen te simuleren in 

overgangszone. In het pyroxeengedeelte van de monsters worden na het experiment door het gehele monster 

kristallografische tweelingen op (100) en stapelfouten op (100) met een verplaatsingsvector R = [½ ½ w] 



waargenomen. Gebaseerd op de kristalstructuur kan worden uitgegaan van dat w hoogstwaarschijnlijk ook 

gelijk is aan ½. De combinatie van de stapelfoutvlakken en verplaatsingsvector kan worden verklaard door de 

faseovergang van de hoge druk vorm van hoog-clinoenstatiet naar de laag-clinoenstatiet.

De topotactische relatie tussen de ontmengde majoritische granaat en de laag-clinoenstatiet gastheer is ook 

bepaald. Alhoewel er geen unieke topotactische relatie is gevonden, hebben de meeste ontmengde 

granaatkristallen hun <111> richting parallel aan de [001] richting in de laag-clinoenstatiet gastheer. Het gebrek 

aan een unieke topotactische relatie is waarschijnlijk te wijten aan het afwezig zijn van een zuurstof-dichte- 

stapeling-richting in granaat.  De waargenomen overwegende topotactische relatie is daarom geïnterpreteerd 

als het resultaat van de lage diffusiveit van silicium en is daarom gecontroleerd door kinetiek.

Door middel van het meten van diffusieprofielen van aluminium in laag-clinoenstatiet is een Al-diffusiviteit in 

hoge druk hoog-clinoenstatiet vastgesteld van tenminste 6 x 10-11 cm2 s-1 bij 1700 °C en 15 GPa. Een vergelijk 

met aluminium diffusiedata in diopsied duidt op een tegenstrijdigheid in de diffusiedata tussen Al diffusie onder 

hoge druk en onder lage druk in clinopyroxeen. Dit kan mogelijk duiden op een sterke Ca afhankelijkheid van de 

Al diffusiveit in clinopyroxeen of een verandering in het diffusiemechanisme.

De resultaten van de experimenten uitgevoerd voor deze dissertatie laten zien dat de trage diffusie van 

(chemische) component in de Aarde de reactiekinetiek, vooral in het geval waar massatransport noodzakelijk is, 

sterk negatief kan beïnvloeden. Een beter begrip van de dynamica van de Aarde kan daarom profiteren van 

verdere studies naar de rol van diffusie in andere faseovergangen in de Aarde waar massatransport noodzakelijk 

is en zulke studies worden daarom aangeraden naar aanleiding van de resultaten in deze dissertatie.



Chapter 1:Introduction
The studies on phase relations in the Earth's mantle during the last six decades have shown that olivine and its 

high pressure polymorphs, pyroxene and garnet are probably the most important phases in the Earth's upper 

mantle (Frost 2008). In the Earth's transition zone, between 410 – 660 km depth, a super-silicic and aluminium-

deficient form of garnet, majoritic garnet, is thought to be the second most abundant phase after the high 

pressure polymorphs of olivine, constituting about 40 vol. % of the transition zone (Frost 2008). Majorite, the 

Mg4Si4O12 end-member of this super-silicic and aluminium-deficient garnet is a high pressure polymorph of 

enstatite. Because the coeanic crust is aluminium enriched and consist mainly of pyroxenes at near surface 

conditions, it may even consist for up to 90 vol. % of garnet in the transition zone (Irifune and Ringwood 1993). 

Clearly majoritic garnet is thus a major phase in the Earth's upper mantle and transition zone. Most major 

element diffusion studies have however concentrated on olivine and its high pressure polymorphs in the upper 

mantle and transition zone. Very few diffusion data is available on diffusion in garnets or pyroxenes at the 

conditions in the deeper upper mantle and the transition zone. This PhD study tries to address this lack of data, 

at least to some extent, and will discuss the implications of diffusion control on phase transitions that occur in 

subduction zones in the deeper upper mantle and transition zone.

Because reaction and diffusion kinetics can strongly influence the phase relations in a dynamic setting, a review 

will be given in this chapter on the different studies that have been performed on phase relations in the earth's 

upper mantle and transition zone, and diffusion and reaction kinetics in Earth's mantle. Finally the goals of the 

PhD are explained in more detail. The next chapter will present some general information about garnet and 

majorite, and the presence of majoritic garnet remnants in UHP terranes.  Chapter three focuses on the 

experimental and analytical methods used in this PhD study. Chapter four will explain the numerical models 

used to simulate the diffusion profiles obtained from the diffusion experiments and to model the dissolution of 

pyroxene into garnet. Chapter five presents the results on the garnet diffusion experiments. Finally, chapter six 

presents the results on the aluminous enstatite experiments.

1.1 Phase relations in the Earth's Transition Zone

Rock suites representative of Earth's mantle that are exposed on Earth's surface are relatively scarce and 

generally are not of primary origin, i.e. they are usually secondary and reworked rock samples (Wilson 2007). 

Xenoliths found in kimberlite pipes sample the Earth's mantle at depths of 150 kilometres and greater, i.e. in the 

diamond stability field. These xenoliths usually consist of peridotites, i.e. an assemblage consisting of olivine + 

orthopyroxene + clinopyroxene + an aluminium bearing phase, which show evidence for varying amounts of 

melt extraction (Gurney and Harte 1980, Nixon et al. 1981). Ringwood (1962) proposed a hypothetical mantle 

composition named pyrolite (table 1.1), which is a mixture of 4 parts dunite, a peridotite consisting of almost 

purely olivine, and 1 part basalt. The addition of basalt accounts for the depletion due to partial melting of the 

primitive mantle. The ratio of dunite to basalt is chosen such that the major element composition of the inferred 
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pyrolitic mantle composition matches that of chondritic meteorites (Wilson 2007). A pyrolite composition has 

often been used in phase equilibrium studies pertaining to Earth's mantle. 

The pyrolite composition is a relative complex composition with many oxides. This complicates the 

determination of phase relations by experimental studies, and the interpretation of the results. Therefore 

experimental studies have usually been performed on simplified systems in the past. Table 1.1 shows that the 

oxides SiO2 and MgO compose about 83% of the pyrolite composition. The system MgO – SiO2 is therefore 

essential in understanding the phase relations in the Earth's transition zone. Forsterite (olivine Mg2SiO4) is the 

most abundant phase in the Earth's upper mantle. Ringwood (1956) proposed that forsterite has an olivine to 

spinel transition around 520 kilometres depth, based upon the solubility of forsterite in Ni2GeO4, which has a 

spinel structure. The pressure of the olivine – spinel transition was subsequently determined experimentally in 

the Mg2SiO4 – Fe2SiO4 system. Early studies generally focussed on the fayalite (Fe2SiO4) rich side of the olivine 

solid solution, where olivine directly transforms to a spinel structured polymorph called ringwoodite (Akimoto 

and Fujisawa 1966, Ringwood and Major 1966, 1970). The forsterite end of the olivine solid solution series 

however first transforms to a different polymorph with a modified spinel structure, called wadsleyite, before 

transforming to ringwoodite (Ringwood and Major 1970, Akaogi et al. 1989, Katsura and Ito 1989). The phase 

diagram at 1600 °C at upper mantle and transition zone pressures of the Mg2SiO4 – Fe2SiO4 join is shown in 

figure 1.1.

Half way the MgO – SiO2 join the mineral enstatite (Mg2Si2O6) is located. At pressures up to ~ 8.5 GPa enstatite 

has the orthopyroxene structure (orthoenstatite, Pbca space group), above which it transforms to a 

clinopyroxene structure (HP high-clinoenstatite, space group C2/c) (Kanzaki 1991, Angel et al. 1992, Angel and 

Hugh-Jones 1994). The substitution of Mg2+ by a crystal field stabilizing cation like Fe2+ or Cr2+ significantly 

lowers the transformation of orthoenstatite to HP high-

clinoenstatite (Arlt et al. 1998). Above ~ 17 GPa and 1600 

°C high-clinoenstatite transforms to an MgSiO3 

polymorph with a garnet structure called majorite (Kato 

and Kumazawa 1985, Gasparik 1989). Majorite garnet 

forms a solid-solution with the other natural 

aluminosilicate garnets found in Earth's mantle. Since 

majorite is a high pressure polymorph of (ortho)pyroxene, 

significant amounts of pyroxene can be dissolved in 

garnet as majorite component at pressures above 10 GPa. 

The solubility of this majorite component in garnet 

increases with increasing pressure (Akaogi and Akimoto 

1977, Gasparik 2003). For a pyrolite composition this 

means that in the transition zone all the pyroxene will be 

dissolved in garnet as majorite component (Irifune 1987, 
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Table 1.1: Pyrolite composition, after Green and Ringwood  
(1970).

Oxide Wt. %

SiO2 45.20

TiO2 0.71

Al2O3 3.54

Cr2O3 0.43

Fe2O3 0.48

FeO 8.04

MnO 0.14

NiO 0.20

MgO 37.48

CaO 3.08

Na2O 0.57

K2O 0.13



Frost 2008), making majoritic garnet the second most abundant phase in the transition zone after the high 

pressure polymorphs of olivine, wadsleyite and ringwoodite (figure 1.2). 

The mineralogy of the bulk part of Earth’s mantle can be described by the system CaO – MgO – Al2O3 – SiO2 

(CMAS-system). Iron mainly exchanges with magnesium and therefore affects the size of the stability fields of 

the phases involved and the depth range over which phase transition occurs (Akaogi et al. 1989, Katsura and Ito 

1989, Frost 2003). The presence of iron generally does not lead to the appearance of new phases. The addition 

of CaO and Al2O3 to the system leads to the stability of clinopyroxene and garnet at lower pressures. High 

pressure experiments in the CMS-system have shown that the HP high-clinoenstatite phase mentioned above, 

however, does not form a solid-solution with the diopside (CaMgSi2O6) rich clinopyroxenes stable at lower 

pressure and are thus two distinct phases (Gasparik 1990). The mutual solubility of HP-clinoenstatite and the 

clinopyroxene jadeite (NaAlSi2O6) is significantly higher, however in the transition zone the solubility of jadeite 

in HP-clinoenstatite is also reduced to virtually zero (Gasparik 1989, 1990). 

The breakdown of diopsidic clinopyroxene above 17 – 18 GPa (figure 1.3) results in the formation of a majorite 

rich garnet (En80Di20 when the composition is expressed as pyroxene end-members) in equilibrium with calcium 

perovskite at temperatures above 1400 °C, and the formation of a calcium perovskite + stishovite + wadsleyite / 

ringwoodite below 1400 °C. The calcium content of the garnet phase is however strongly dependent on 

temperature and pressure and increases with increasing temperature and decreasing pressure (Canil 1994, 

Oguri et al. 1997). Gasparik (1989, 1990) observed the formation of a new non-quenchable phase as breakdown 

product of diopside with a close to diopside stoichiometry at pressures above 14 GPa, which is however not 

confirmed by other studies and no crystal structure determination of this new phase was attempted by the 
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Figure 1.1: Phase diagram of 

the Mg2Si2O4 – Fe2SiO4 join 

at 1600 °C. Modified after 

Katsura and Ito (1989). 



authors. 

Similar breakdown to garnet at high temperatures and pressures is observed for sodium bearing pyroxenes. On 

the jadeite – enstatite joint at 1650 °C, pure jadeite transforms to a garnet structure above 21 GPa (Gasparik 

1990).The sodium atom is incorporated in a dodecahedral site and the additional silicon atom is incorporated in 

an octahedral site (Ringwood and Major 1971). Liu (1978) however, showed that at lower temperatures 

(1000 °C) jadeite disproportionates to stishovite + calcium-ferrite structured NaAlSiO4 above 24 GPa. The 

stability of garnets with a calcic and sodic clinopyroxene stoichiometry at high pressure and temperature 

indicates that, like enstatite, the major rock-forming clinopyroxene end-members diopside and jadeite can be 

dissolved into garnet in the transition zone, also bearing in mind that calcium can be incorporated in garnet as a 

grossular component. Since MORBs have a relative high aluminium, calcium and sodium content, this has 

important consequences for the subducted oceanic crust in the transition zone. Irifune and Ringwood (1986) 

and Irifune et al. (1993) performed high-pressure experiments in a multi-anvil press on materials with a MORB 

composition, of which the oceanic crust is made. These experiments showed that virtually all pyroxene will be 

dissolved into garnet in the transition zone, forming a garnetite assemblage consisting of ~ 90 vol. % of garnet 

between 15 GPa and 20 GPa (figure 1.2). Garnet at these conditions have a strong majorite component (up to ~ 

40%). At pressures above 21 GPa (at 1200 °C) majoritic garnet starts to exsolve its Ca4Si4O12 component as 

calcium perovskite. At pressures above ~25 GPa an Al-rich phase with a calcium-ferrite structure starts to 

exsolve from garnet (Irifune and Ringwood 1993, Hirose et al. 1999). At ~ 27 GPa the remaining majoritic garnet 

transforms to Mg-perovskite (Hirose et al. 1999, Ono et al. 2001). In the subducted oceanic crust, majoritic 

garnet is thus a dominant phase between 15 GPa and 27 GPa.
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Figure 1.2: a) Mineralogy of the mantle assuming a pyrolite composition (Frost 2008) and b) a MORB composition, the subducted 

oceanic crust (Irifune & Ringwood 1993), as function of pressure. 
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1.2 Diffusion kinetics of the major elements in Earth's mantle

The diffusion of atoms in minerals control a number processes in the Earth's interior and properties of the Earth 

in which geologists are interested in. Among these are the reaction kinetics during phase transformations, 

especially when they require long-range transport of the components (Putnis 1992), order – disorder phase 

transitions (Sipling and Yund 1973, Carpenter 1982), re-equilibration of metamorphic assemblages and its 

geothermo-barometric applications (Lasaga 1983, Lasaga and Jiang 1995), geochronology (Dodson 1973) and 

rheology of phases in the Earth's interior (Weertman et al. 1978, Poirier 1985). This section will give a short 

review of diffusion data on minerals relevant to the Earth's mantle. 

1.2.1 Olivine

As already pointed out above, olivine is the most abundant phase in Earth's upper mantle. It has therefore been 

the focus of a great number of studies. Buening and Buseck (1973) and Misener (1974) performed pioneering 

work on the interdiffusion of magnesium and iron in olivine. They showed that diffusion in this system is highly 

asymmetric and diffusion down the c-axis in olivine is up to one order of magnitude faster than down the a- or 

b-axis. The highly asymmetric profiles indicated that the iron content is of great influence on the Mg-Fe 

interdiffusivity in olivine. Buening and Buseck (1973) argued therefore, that the increased interdiffusivity can be 

attributed to a vacancy process where the oxidation of iron in the olivine structure introduces extrinsic 

vacancies and thereby increases the Mg-Fe interdiffusivity in olivine. This was also later confirmed by other 

studies, where vacancy concentrations in olivine as function of oxygen fugacity were determined (Nakamura 

and Schmalzried 1983, Tsai and Dieckmann 2002) and where the Fe-Mg interdiffusivity as function of oxygen 

fugacity was observed to increase in a similar way as the vacancy concentrations (Chakraborty 1997, Dohmen et 

al. 2007). 
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Figure 1.3: Phase diagram of diopside 

showing the breakdown above ~ 18 

GPa. After Oguri et al. (1997).



Buening and Buseck (1973) also found a change in slope in the log10 DFe-Mg vs. reciprocal temperature plot 

around 1125 °C and mentioned that a change in Fe-Mg interdiffusion mechanism in olivine, from an extrinsic 

mechanism at low temperatures to an intrinsic mechanism at high temperatures, might cause such a kink. A 

(tentatively interpreted) similar intrinsic – extrinsic transition has been observed for Co – Mg interdiffusion in 

olivine at 1300 °C by Morioka (1980). The interpretation as intrinsic – extrinsic diffusion regime transition of the 

observed kink transition has been contested by Chakraborty (1997), who claimed that the kink observed by 

Buening and Buseck (1973) was probably due to the setup of their experiments. A more recent study, where the 

oxygen was more carefully controlled, showed that a transition from one extrinsic to a different extrinsic 

mechanism was present at an oxygen fugacity of 10-10 Pa and 900 °C. At lower oxygen fugacities Fe-Mg 

interdiffusion is independent of the oxygen fugacity, whereas at high oxygen fugacities Fe-Mg interdiffusion 

becomes dependent on oxygen fugacity. There is also a slight increase in the activation energy for Fe-Mg 

interdiffusion from ~201 kJ mol-1 in the fO2 dependent regime to ~ 220 kJ mol-1 in the fO2 independent regime 

(Dohmen and Chakraborty 2007, Dohmen et al. 2007).

Diffusion studies have also been of interest because they shed more light upon the rheological properties of the 

materials of Earth's mantle. The two deformation mechanism that are deemed to be the most important in the 

Earth's mantle, i.e. dislocation creep and diffusion creep, are both controlled by the diffusivity of the mineral 

constituents (Ranalli and Fischer 1984, Ranalli 2001). The slowest diffusing species, usually oxygen or silicon in 

silicates, will then control the rheological properties. Therefore, a number of experiments have been performed 

in the past on the oxygen and silicon diffusivity in olivine. 

Jaoul et al. (1980) performed diffusion experiments determining the oxygen self diffusivity in forsterite. They 

determined the oxygen self-diffusivity to be 5 order of magnitude slower than that of Mg-Fe interdiffusion at 

the 1500 K and room pressure. They also showed, that for iron-free forsterite, the oxygen self-diffusivity is 

independent of the oxygen fugacity. Houlier et al. (1988) performed silicon and oxygen tracer-diffusion 

experiments at 1300 °C at a pO2 ranging from 10-4 Pa to 10 Pa in a natural San Carlos olivine crystal. Although 

they were not able to determine whether there was a dependence of silicon and oxygen tracer-diffusivity on the 

oxygen fugacity or not, they showed that silicon is the slowest diffusing cation in natural olivine, about 1 – 2 

orders of magnitude slower than oxygen. A comparison of the different studies that have been performed on 

natural olivines, shows that the activation energy for diffusion of oxygen in olivine, ~300 – 320 kJ mol-1 (Jaoul et 

al. 1980, 1983, Gérard and Jaoul 1989), only Ryerson et al. (1989) produced at lower activation energy of 266 kJ 

mol-1, is higher than that of Fe-Mg interdiffusion which is ~200 – 220 kJ mol-1 (Misener 1974, Chakraborty 1997, 

Dohmen et al. 2007). Houlier et al. (1990) measured an activation energy for silicon self-diffusion of 291 kJ mol-1, 

whereas Dohmen et al. (2002b) determined the activation energy for silicon self-diffusion to be 531 kJ mol-1. 

The latter ascribes the relative low activation energy of Houlier et al. (1990) to the fact that diffusion profiles for 

silicon diffusion in olivine are very short and close to the limits of instrumental precision and analyses, which 

causes an apparent broadening of the diffusion profiles. Dohmen et al. (2002) took this into account in their 

study, which would give a similar activation energy otherwise. The results from Dohmen et al. (2002) 
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correspond better to experimental deformation data on olivine (Mei and Kohlstedt 2000, Karato and Jung 

2003).

Except for Misener (1974), the previously mentioned experiments were all conducted at room pressures. Clearly, 

since diffusivity is generally pressure-dependent, it can not be simply assumed that these diffusion coefficients 

are representative for the Earth's interior, where pressure are in the GPa range. The activation volume for Fe-Mg 

interdiffusion in olivine was determined by several authors to be ~5.0 – 5.5 cm3 mol-1 (Misener 1974, Farber et al. 

2000, Holzapfel et al. 2007). This value corresponds well to the value for Mg tracer diffusion in olivine (~ 5 cm3 

mol-1) calculated using atomistic modeling by Béjina et al (2009). The group around Jaoul (Bertran-Alvarez et al. 

1992, Jaoul et al. 1995) and Chakraborty et al. (1999) determined lower activation volumes for Fe-Mg 

interdifusion, however the interdiffusion data by the Jaoul group is anomalously high (Dohmen et al. 2007) and 

the data by Chakraborty et al (1999) was obtained using misaligned crystals in the diffusion couples, which gave 

an apparent reduction in the Fe-Mg interdiffusivity at high pressures (Holzapfel et al. 2007).

In contrast to Fe-Mg interdiffusion in olivine at high pressure, high pressure data on silicon is rather scarce and 

on oxygen is absent. The effect of pressure on the tracer diffusivity of silicon in olivine was studied by Béjina et 

al (1997, 1999). Their results indicated that the activation volume for silicon tracer-diffusion in olivine is 

negligible. Figure 1.4 displays the magnitude of the different ionic diffusivities in olivine.

1.2.2 High pressure polymorphs of olivine

Because wadsleyite and ringwoodite compose ~60 vol. % of the Earth's transition zone, they have been the 

focus of several studies. Chakraborty et al (1999) conducted Fe-Mg interdiffusion experiments on diffusion 

couples consisting of olivine couples and wadsleyite couples. Their results indicated that Fe-Mg interdiffusion in 

wadsleyite is roughly 2 orders of magnitude faster than in olivine. This observation was confirmed by Farber et 

al (2000) in their experiments, who already observed a similar phenomenon on the Mg2SiO4 – Ni2SiO4 joint 

earlier, where Mg-Ni interdiffusion in the high pressure phases where observed to be three orders of magnitude 

faster than in the olivine phase (Farber et al. 1994). Kubo et al. (2004), however, expressed concerns about the 

effect of water in wadsleyite, since it greatly enhances the Fe-Mg interdiffusivity and wadsleyite is known to 

have a high water solubility (Inoue et al. 1995, Kohlstedt et al. 1996). Holzapfel et al. (2009) performed more 

diffusion experiment on nominally dry wadsleyite and showed that when one takes into account the effect of 

fO2, fH2O and iron contents of olivine and wadsleyite in the two phase region in the transition zone,the Fe-Mg 

interdiffusivity is expected to be 7 orders of magnitude faster in wadsleyite than in olivine. In the same study 

they also combined all data published on Fe-Mg interdiffusion in wadsleyite to calculate an activation 229 kJ 

mol-1, which is similar to that for olivine, and an activation volume of 13.9 kJ mol-1, significantly greater than 

that for olivine. In their diffusion experiments Farber et al. (2000) simultaneously determined the Fe-Mg 

interdiffusivity of olivine, wadsleyite and ringwoodite. They showed that the Fe-Mg interdiffusivity is very 

similar in wadsleyite and ringwoodite. Because of the great similarity between both structures, this is in line 

with expectations.
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The silicon and oxygen self-diffusivity in wadsleyite have been determined by Simojuku et al. (2004, 2009). 

Comparison with Fe-Mg interdiffusion in wadsleyite data (Holzapfel et al. 2009) shows that like in olivine, 

diffusion of silicon and oxygen in the high pressure polymorphs of olivine is 5 – 6 orders of magnitude slower 

than Fe-Mg interdiffusion (figure 1.4). They determined an activation enthalpy for diffusion in olivine of 291 kJ 

mol-1 and 409 kJ mol-1 for oxygen and silicon, respectively. This difference in activation enthalpy for diffusion 

between oxygen and silicon leads to a change of silicon being the slowest diffusing species below 1800 °C to 

oxygen being the slowest diffusing species above 1800 °C at 16 GPa. In their experiments they were also able to 

determine the grain boundary diffusivity of silicon and wadsleyite. Their results show that grain boundary is 4 – 

5 orders of magnitude faster than volume diffusion at the experimental conditions. The activation energies for 

grain boundary diffusion they determined to be for silicon ~ 80 kJ mol-1 lower than that for volume diffusion in 

both wadsleyite and ringwoodite and for oxygen to be 50 kJ mol-1 smaller in wadsleyite and 120 kJ mol-1 smaller 

in ringwoodite than for volume diffusion.

1.2.3 Perovskite (MgSiO3) 

Magnesium-silicate perovskite (hereafter perovskite) is the dominant phase in the lower mantle, where it 

constitute ~ 80 % of the total volume(Fiquet 2001). Therefore it will control to a large extent the rheological 
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Figure 1.4 : a) Iron – magnesium interdiffusivity in wadsleyite and olivine. (1) wadsleyite 13 GPa (Holzapfel et al. 2009) (2) 

wadsleyite15 GPa (Holzapfel et al. 2009) (3) wadsleyite 16 GPa (Holzapfel et al. 2009) (4) wadsleyite 17 GPa (Holzapfel et al. 2009) 

(5) olivine 1 atm (Dohmen et al. 2007) (6) olivine 15 GPa (Holzapfel et al. 2009; Dohmen et al. 2007), open circle: Kubo et al. (2004), 

solid circle:Chakraborty et al. (1999), open square: Farber et al. (2000), solid square: Holzapfel et al. (2009) b) Oxygen and silicon 

diffusion in olivine and its high pressure polymorphs. (1) Si, olivine 1 atm (Dohmen, Chakraborty, et al. 2002) (2) Si, ringwoodite 22 

GPa (Shimojuku et al. 2009) (3) Si, wadsleyite 16 GPa (Shimojuku et al. 2009) (4) O, ringwoodite 22 GPa (Shimojuku et al. 2009) (5) 

O, wadsleyite  16 GPa (Shimojuku et al. 2009) (6) O, olivine 1 atm (Dohmen, Chakraborty, et al. 2002). After Chakraborty (2010).
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properties of the lower mantle. Since perovskite is only stable at high pressures (above ~ 22 GPa), conducting 

diffusion experiments on perovskite is challenging and experimentally reported diffusion coefficients are 

scarce. Yamazaki et al. (2000) were the first to report on silicon self-diffusion in perovskite. They determined 

that the activation enthalpy for silicon self-diffusion in perovskite is ~ 336 kJ mol-1, which for silicon is a rather 

low value considering that the experiments were conducted at 25 GPa. The nature of their experiments also 

made it possible to determine the grain boundary diffusivity of silicon, showing that it was ~4 order of 

magnitude faster than volume diffusion. The activation enthalpy for grain boundary diffusion was determined 

to be very similar to the activation enthalpy for volume diffusion, implying that grain boundary diffusion may 

play an important role independent of temperature.

Holzapfel et al. (2005) measured the Fe-Mg interdiffusivity in perovskite between 22 GPa and 26 GPa between 

1700 °C and 2000 °C. They determined that the Fe-Mg interdiffusion coefficient is three orders of magnitude 

slower than in olivine at 12 GPa and is of the same order magnitude as that of silicon self-diffusion reported by 

Yamazaki et al. (2000). This is a rather surprising result, since in the other dominant phases present in the 

Earth's interior, Fe-Mg interdifussion is several orders of magnitude faster than silicon self-diffusion. In the 

same study they also determined the activation enthalpy for Fe-Mg interdiffusion in perovskite to be ~414 kJ 

mol-1, which is slightly greater beyond experimental error than that for silicon self-diffusion. 

Dobson et al. (2008) performed silicon and oxygen tracer-diffusion experiments similar to the experiments from 

Yamazaki et al. (2000). For silicon, they basically confirmed the tracer-diffusivities measured by Yamazaki et al. 

(2000). The oxygen diffusivity was determined to be about two orders of magnitude faster than silicon diffusion, 

although it has a rather larger activation enthalpy for oxygen diffusion of ~500 kJ mol-1, which is significantly 

greater than the activation enthalpy for Si determined by Yamazaki et al (2000). Due to the relative large errors 

on the diffusion coefficients for both Fe-Mg interdiffusion (Holzapfel et al. 2005) and oxygen diffusion (Dobson 

et al. 2008) it is not possible to determine whether the activation enthalpy of one is greater than the other.

Due to the difficulties in conducting experiments at high pressures it is generally very difficult to measure 

accurate activation volumes for diffusion in perovskite. People have therefore resorted to atomistic methods 

the determine the diffusivity of the major elements in perovskite. Earlier atomistic studies were able to 

calculate migration enthalpies of magnesium and oxygen reasonably well, when diffusion in the extrinsic 

regime was assumed for magnesium diffusion and either the intrinsic and extrinsic regime for oxygen diffusion 

(Wright and Price 1993, Dobson 2003, Karki and Khanduja 2007, Dobson et al. 2008). They failed however in 

reproducing the migration enthalpy for silicon diffusion. Ammann et al. (2009) performed a more thorough 

search for the silicon saddle point, which defines the activation energy for diffusion. They found a more 

reasonable value for the activation enthalpy for silicon diffusion of about 453 kJ mol-1, at 26.2 GPa. Ito and 

Torumi (2010) took a different approach using molecular dynamics simulation that does not make any 

assumptions about the location of the saddle point and obtained an activation enthalpy at 25 GPa for silicon 

diffusion in perovskite of ~ 332 kJ mol-1, though their simulation were performed at temperatures (~ 3900 °C – 
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5600 °C) well above the Earth's geotherm. The activation volumes for silicon diffusion in perovskite determined 

by the above mentioned atomistic studies are usually below 3.5 cm3 mol-1 at lower mantle conditions and 

decreases with increasing pressure. Activation volumes for magnesium diffusion are slightly higher than those 

for silicon diffusion.

It can thus be concluded that Fe-Mg interdiffusion is anomalously sluggish in perovskite, and it might be the 

rate limiting process in deformation during diffusion creep or dislocation creep. In this case there might be a 

strong dependence of the rheological properties of the lower mantle on the oxygen fugacity, since the number 

of iron and magnesium vacancies is usually dependent on the oxidation state of the mantle.

1.2.4 Magnesiowüstite

Magnesiowüstite or ferropericlase (Mg,Fe1-x)O is the second most abundant phase in Earth's lower mantle, 

constituting about 20 vol.% of the lower mantle. Though not the most abundant phase in the lower mantle, as a 

weak phase it may still play a significant role in determining the rheological behaviour of the lower mantle 

(Stretton et al. 2001, Heidelbach et al. 2003). Again the mobility and thus diffusivity of iron, magnesium and 

oxygen in magnesiowüstite will play an important role in determining the rheological properties of this mineral. 

As with the other previously mentioned minerals Mg-Fe interdiffusion profiles in magnesiowüstite are usually 

highly asymmetric (Rigby and Cutler 1965, Blank and Pask 1969, Mackwell et al. 2005). This is no surprise, as 

wüstite is one of the classical examples exhibiting non-stoichiometry due to oxidation of divalent iron. Though 

the earlier study by Rigby and Cutler (1965) showed no dependence of the activation energy for Fe-Mg 

interdiffusion in magnesiowüstite on iron content, Blank and Pask (1969) showed there was a positive 

exponential dependence of the activation enthalpy on the iron concentration in magnesiowüstite. This was 

subsequently also confirmed by other studies, where the effect roughly amounts to a decrease of the activation 

enthalpy of 1.0 – 1.3 kJ mol-1 per molar percent of FeO. (Chen and Peterson 1980, Sata and Goto 1982, Holzapfel 

et al. 2003, Yamazaki and Irifune 2003, Mackwell et al. 2005). The activation energy for Fe-Mg interdiffusion in 

these studies was determined to be ~210 kJ mol-1. Different studies have also shown there is a D = D' fO21/n 

dependence of the Fe-Mg interdiffusivity on the oxygen fugacity, for which n is in the range of 5 -6 for 

geological relevant compositions (Chen and Peterson 1980, Sata and Goto 1982, Mackwell et al. 2005). This 

indicates that oxidation of ferrous iron in magnesiowüstite is balanced by the formation of vacancies on the 

metal sites (see also chapter 2). 

Not many diffusion experiments have been conducted at pressures relevant to the Earth's lower mantle. 

Holzapfel et al. (2003) and Yamazaki and Irifune (2003) performed Fe-Mg interdiffusion experiments at 

conditions relevant to the upper part of the lower mantle. Both studies reported different activation volumes 

for Fe-Mg interdiffusion, 3.3 cm3 mol-1 was reported in the former and 1.8 cm3 mol-1 in the latter study. 

Mackwell et al. (2005) showed that both studies could be reconciled with each other, if the oxygen dependence 

of Fe-Mg interdiffusion was taken into account, since both studies were conducted using a different oxygen 

buffer. Both studies however also reported a different activation energy for diffusion, which would mean that 
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the activation energy for Fe-Mg interdiffusion is also dependent on the oxygen fugacity. Hints to this were 

given by Sata and Goto (1982), who found that the decrease of apparent activation energy for Fe-Mg 

interdiffusion as function of iron content is dependent on the oxygen fugacity. 

Oishi et al. (1983) determined the oxygen self-diffusivity in pure end-member MgO. Their results showed that 

there was a change in activation energy around 1500 °C. The activation energy in the high temperature regime 

appeared to be independent of the impurity concentration. This break has therefore been interpreted as being a 

transition from an extrinsic regime below 1500 °C, characterized by an activation energy of ~ 213 kJ mol-1, to an 

intrinsic regime, characterized by an activation energy of ~ 536 kJ mol-1. Ando et al. (1983) showed that in 

contrast to Fe-Mg interdiffusion, the oxygen diffusivity is independent on the iron concentration. Van Orman et 

al. (2003) confirmed that the oxygen diffusivity in MgO is also independent on trivalent impurity content at high 

pressures. As their study was a tracer diffusion study, they were able to determine the activation volume for 

magnesium tracer diffusion in MgO, and determined it to be ~ 3.0 cm3 mol-1., which is in good agreement with 

the magnesium self-diffusion coefficients obtained from atomistic simulations (Ita and Cohen 1997). The latter 

predict also a decreasing activation volume for magnesium self-diffusion with increasing pressure.

1.2.5 Garnets

Though garnets constitute an important part of Earth's upper mantle and transition zone, in the latter they 

constitute up to ~40 vol.%, only a few experiments have been conducted at conditions prevalent in the 

transition zone. Most of the diffusion studies were conducted at pressure below 4 GPa. 

Though diffusion models in garnet based on zoning in natural garnets have been formulated earlier (Anderson 

and Buckley 1973, Loomis 1978), the first report from diffusion experiments on garnet is by Freer (1979). In this 

study Fe-Mn interdiffusion was observed in almandine garnet – sintered spessartine garnet diffusion couples at 

1 bar and between 822 °C and 1200 °C. A concentration dependent manganese diffusivity was observed, which 

was fitted against an exponential function, similar to as what has been done in the case for magnesiowüstite 

and olivine. The manganese diffusivity increases about half an order of magnitude from a garnet containing 5 

wt.% of Mn to a garnet containing 20 wt.% Mn at a temperature of 1002 °C. From the constant pressure 

experiments also an activation energy for Fe – Mn/Mg interdiffusion of 132 ± 45 kJ mol-1, which as will be 

discussed later, is significantly lower than the other studies on Fe-Mg interdiffusion in garnet.

The early theoretical models (Anderson and Buckley 1973, Loomis 1978, Lasaga 1979) for interdiffusion in 

garnet note that during diffusion the fluxes of cations cannot be considered to be independent, but are 

correlated by cross terms in the matrix of diffusion coefficients. This thus introduces a compositional 

dependence in the diffusivity of the component. This occurs, however, through a different mechanism as Fe-Mg 

interdiffusion mentioned in the above minerals, where the iron concentration modifies the both vacancy 

concentration and the activation enthalphy for diffusion and thereby makes Fe-Mg interdiffusion concentration 

dependent.

In the experiments conducted on Fe-Mg-Mn interdiffusion on spessartine – almandine couples by Elphick et al. 
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(1985) it was noted that their diffusion profiles could not be fitted by a single composition independent diffusion 

coefficient. Subsequently they fitted their profiles by two diffusion coefficients, one for both ends of the 

diffusion couple. Loomis et al. (1985) re-analysed the data of Elphick et al. (1985) and fitted the diffusion models 

of Lasaga (1979) and Manning (1968) to the data. Doing so, he determined that the tracer diffusivity of 

manganese is roughly 3 – 5 times larger than the tracer diffusivity of iron and magnesium. The tracer diffusivity 

of the latter two was determined to be very similar in magnitude in the almandine – spessartine diffusion 

couples. Using their method, Elphick et al. (1985) determined a difference up to a factor two in interdiffusivities 

between both sides. Loomis et al. (1985) also determined that the activation enthalpy for (tracer) diffusion at 40 

kbar of magnesium is (251 ± 33 kJ mol-1) and iron (257 ± 36 kJ mol-1) is significantly greater than that of 

manganese (202 ± 33 kJ mol-1). The activation volume for tracer diffusion in garnet they determined to be ~4.7 

cm3 mol-1 in the two studies.

The dataset of Loomis et al. (1985) has been extended by Chakraborty and Ganguly (1992) to cover a greater 

pressure and temperature range. The determined activation energies for tracer diffusion were slightly higher 

( Fe: 276 ± 36 kJ mol-1, Mg: 285 ± 38 kJ mol-1, Mn: 254 ± 37 kJ mol-1). The activation volumes for diffusion was 

also a bit higher than in the study by Loomis et al. (1985), but within experimental error of the latter (5 – 6 cm3 

mol-1 with a ~ 3 cm3 mol-1 error). Ganguly et al. (1998) extended the dataset further with data from 

interdiffusion experiments conducted at the almandine – pyrope joint and also include calcium and manganese 

diffusion data. These diffusion experiments showed a strong contrast in relative diffusivities of magnesium, iron 

and manganese in almandine – pyrope couples as compared to almandine – spessartine couples by Loomis 

(1985). The relative tracer diffusivities in the Ganguly et al. (1998) study are approximately DMg = 10 DFe = 3 DCa 

and manganese tracer diffusivity is similar to that of iron, whereas at the almandine – spessartine join iron self-

diffusion is similar to magnesium tracer diffusion. The activation energies and volume for diffusion along the C-

O buffer in the spessartine – almandine couples and almandine – pyrope couples are equal within each others 

errors, indicating that the change in relative diffusivities in not very likely caused by a change in diffusion 

mechanism. Ganguly et al. (1998) also showed that the oxygen fugacity has a profound effect on the 

determined apparent activation volume for diffusion.

Schwandt et al. (1996) performed calcium tracer diffusion experiments on garnet between 800 – 1000 °C and at 

1 bar. They obtained extremely short diffusion profiles (~ 20 nm) which indicated that calcium self-diffusion is at 

least one order of magnitude slower than magnesium self-diffusion at the same conditions in their earlier 

experiments (Schwandt et al. 1995). Their activation energy for self-diffusion is significantly lower than that 

determined in other studies (Freer and Edwards 1999, Perchuk et al. 2008), which might be a result of the 

extremely short profiles. The Ca self-diffusion coefficients from Freer and Edwards (1999) are however 3 – 4 

orders of magnitude faster than obtained by other workers (Schwandt et al. 1996, Ganguly et al. 1998, Vielzeuf 

et al. 2007, Perchuk et al. 2008). Although there is some discrepancy in calcium diffusion data from the above 

mentioned workers, they generally agree that calcium is the slowest diffusing divalent cation in garnet.
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Chakraborty and Rubie (1996) performed magnesium tracer diffusion experiments on almandine and pyrope 

rich garnet at room pressure between 750 °C and 850 °C and at 8.5 GPa. The 26Mg tracer diffusivities they 

measured interpolated well to the tracer diffusivities determined in the previous studies by Loomis et al. (1985) 

and Chakraborty and Ganguly (1992). This, together with oxygen fugacity corrected 25Mg tracer diffusion data 

obtained by Cygan and Lasaga (1985), demonstrates that tracer diffusivities obtained from interdiffusion 

experiments provide relatively reliable results. The inclusion of the high pressure data at 8.5 GPa allowed for a 

better determination of the activation volume for diffusion of Mg-tracer diffusion in garnet. The determined 

activation volume with these data was 8 ± 1 cm3 mol-1, which is significantly higher than that of the previous 

studies and shows the importance of doing diffusion experiments over a large enough pressure range. When 

considered on their own, their low pressure diffusion data produced a rather low activation energy for diffusion 

of 226 ± 21 kJ mol-1, however when combined with the high pressure data of Chakraborty and Ganguly (1992) 

they obtained an activation energy for magnesium tracer diffusion of 270 ± 8 kJ mol-1. Their rather low 

activation energy of their own data they tentatively ascribed to the limited temperature range of their own 

experiments. Next to this, they also found no dependence of the magnesium tracer diffusivity on the almandine 

content of garnet. 

Schwandt et al. (1995) performed 25Mg diffusion experiments at more oxidizing conditions near the FMQ buffer 

than the above mentioned experiments, which were conducted mostly near the C-O buffer or at constant 

oxygen fugacity. They observed that there was a correlation between the reciprocal duration of the experiment 

and the measured diffusion coefficient. This is an effect that might be caused by profile broadening related to 

the applied instrumental method or experimental setup (Ganguly et al. 1988, Dohmen et al. 2002a, b, Watson 

and Dohmen 2010). The broadening of the diffusion profiles will result in an increase of measured diffusion 

coefficients and a decrease of apparent activation energy for diffusion when diffusion profiles are short. To 

correct for this effect, Schwandt et al. (1995) extrapolated their data to infinite experiment duration conditions 

13

Figure 1.5: Iron – magnesium 

interdiffusivity in garnet and 

olivine at 50 kbar between 1000 

°C and 1500 °C. Alm – Prp 

denotes the Fe – Mg 

interdiffusivity in almandine – 

pyrope couples (Ganguly et al. 

1998) , Alm – Sps of that in the 

almandine – spessartine diffusion 

couples (Chakraborty & Ganguly 

1992) and olivine of that in olivine 

(Chakraborty 2010). 



and thereby obtained an activation energy for magnesium tracer diffusion of 294 ± 54 kJ mol-1, which is very 

similar to that of Ganguly et al. (1998). The experiments of Chakraborty and Rubie (1996) show a similar 

decrease of diffusivity with increasing annealing duration. This indicates that their data might also be affected 

by profile broadening. Thus the actual magnesium tracer diffusivity could be lower and the activation energy for 

magnesium tracer diffusion might be higher than reported by them. In their study, Schwandt et al. (1995) 

inspected the influence of oxygen fugacity on the magnesium tracer diffusivity in garnet too. They found no 

evidence for any influence, which may question the correction of the data of Cygan and Lasaga (1985) for 

oxygen fugacity using a D ∝ fO21/6 proportionality by Chakraborty and Rubie (1996). The dependence of cation 

diffusivity in garnet on oxygen fugacity thus remains unresolved.

Perchuck et al. (2008) performed interdiffusion experiments on single crystal garnets in a pyrope powder 

matrix. Their data showed good correspondence to the other studies mentioned in this section. They 

sometimes, however, observed plateau like features in their diffusion experiments. To investigate the cause of 

the features they performed numerical 2D modelling to assess the influence of grain boundary diffusion on the 

obtained diffusion profiles. These models showed that when great care is not taken when selecting the location 

of the diffusion profiles, the diffusion profiles may include regions where the effect of grain boundary diffusion 

is significant, resulting in plateau like features in the measured profiles. 

1.2.6 Pyroxenes

Pyroxenes are an important component of the subducting oceanic crust, about 80 vol. % of the oceanic crust 

consists out of clinopyroxene during the initial stages of subduction (Irifune and Ringwood 1993). The diffusivity 

of the different elements in pyroxene form an important factor in equilibrating the subducting oceanic crust 

with its changing environment when it is transported deeper into the mantle.

Major element diffusion data on orthopyroxene are scarce. There is only one report of a magnesium self-

diffusion study (Schwandt et al. 1998). The anisotropy that might be expected from the orthopyroxene 

structure appears to be only small in terms of absolute self-diffusivities. The activation energies for magnesium 

self diffusion, however, show a significant difference between the a-axis (ΔE = 360 ± 52 kJ mol-1) and c-axis ( ΔE 

= 265 ± 66 kJ mol-1). At 900 °C, magnesium self-diffusion is about one order magnitude faster than magnesium 

self-diffusion in garnet, as determined in an earlier study (Schwandt et al. 1995).

More data is available on major element diffusion in diopside. Brady and McCallister (1983) performed 

homogenization experiments on a diopside host with pigeonite exsolution lamellae from which they 

determined average Ca-Mg interdiffusivities in diopside between 1150 °C and 1250 °C at 25 kbar near the 

graphite – oxygen buffer. These experiments indicated that the activation energy for Ca-Mg interdiffusion in 

diopside along either the a- or b-axis (not clearly defined in the paper) is relatively high as compared other 

minerals (~ 360 kJ mol-1). At 25 kbar and 1200 °C they estimate Ca-Mg interdiffusion to be 1.5 – 2 orders of 

magnitude slower than magnesium self-diffusion at the same conditions in garnet, and thus slower than Ca self-

diffusion in garnet at the same conditions (Chakraborty and Ganguly 1992, Ganguly et al. 1998). 
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Calcium self-diffusion experiments have been conducted by Dimanov and Ingrin (1995), Dimanov et al. (1996) 

and Dimanov and Jaoul (1998). These experiments indicated that there is a switch in diffusion mechanism from 

an extrinsic regime, characterized by oxygen fugacity dependent calcium self-diffusivity with an activation 

energy for calcium self-diffusion of ~280 kJ mol-1, to an intrinsic regime above 1230 °C with an activation energy 

of roughly 1000 kJ mol-1. The oxygen fugacity dependence vanishes in this intrinsic regime, as expected. The 

high temperature regime is explained by Dimanov and Jaoul (1998) as a change to a diffusion mechanism 

controlled by the Ca-Frenkel defect concentrations, which appear to dominate in the so-called premelting 

regime of diopside. The actual Ca self diffusivity appeared to be about one order of magnitude slower than 

determined by Brady and McCallister (1983). The experiments of the Dimanov – Jaoul – Ingrin group did not 

show any significant anisotropy for calcium self-diffusion in diopside. Zhang et al. (2009) however, determined 

that there was significant anisotropy in the a-c and b-c planes, with the c-direction being the fastest. This is also 

manifested by anisotropy in activation energies for calcium self-diffusion in diopside, with a difference of ~ 80 ± 

34 kJ mol-1 between the fastest (c) and slowest direction (b).

Béjina and Jaoul (1996) measured the silicon self-diffusivity in diopside at 1 bar between 1040 °C – 1250 °C. 

These experiments showed that silicon is the slowest diffusion species in diopside, roughly one order of 

magnitude slower than the calcium self-diffusivity in diopside (Dimanov and Ingrin 1995). They determined an 

activation energy of 211 ± 110 kJ mol-1, which might be higher (280 kJ mol-1) if oxygen fugacity has an effect on 

the silicon self-diffusivity. Sautter et al. (1988) measured the aluminium self-diffusivity in diopside at 118o °c 

which turned out to be as fast as calcium self-diffusion in diopside.

1.3 Reaction kinetics in Earth’s mantle

As explained above, the down going slab will undergo a series of phase transitions when it is transported into 

the transition zone and lower mantle. Most of these phase transitions result in a volume reduction. It has been 

proposed by several authors that the change in volume or release of heat may induce earthquakes in Earth's 

deep interior (Bridgman 1945, Evison 1967, Liu 1983). Though being an attractive model for the explanation of 

deep-focused earthquakes, the focal mechanism observed from deep-focus earthquakes do not correspond to 

those expected from an implosion through volume reduction (Frohlich 1989). It seems that volume reduction 

associated with phase transitions can be ruled out as direct cause for deep-focus earthquakes, more 

complicated models still propose that delayed phase transitions ultimately lead to conditions where 

catastrophic failure can occur, which is required for the presence of deep-focus earthquake (Sung and Burns 

1976, Green II and Burnley 1989, Kirby et al. 1991, Wiens et al. 1993). The most prominent model is the 

transformational faulting model, which depends on initially sluggish reaction kinetics, release of a large amount 

of latent heat during transformation and polymorphism to produce a localized runaway process resulting in 

catastrophic failure at depth (Burnley et al. 1991, Kirby et al. 1996). Though two major deep earthquakes 

associated with subduction zones near Bolivia and Tonga that occurred in 1994 seem to contradict the 

transformational faulting model, since the rapture zones extend well beyond the expected width of the 
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metastable wedge (Wiens et al. 1994, Silver et al. 1995, Wiens and Snider 2001). Next to this, metastable 

preservation of olivine into the transitions zone as results of sluggish transformation kinetics have been 

proposed as a factor that may have a significant influence on the dynamics of subduction zones (Sung and 

Burns 1976, Kirby et al. 1996, Schmeling et al. 1999). Also, the degree of metastable preservation of olivine has 

a significant effect on the strength of the subduction slab as it influences the microstructure of the 

transformation products (Vaughan and Coe 1981, Rubie 1984, Ito and Sato 1991, Rubie and Ross 1994). The 

reaction kinetics of phase transformation in Earth's mantle thus is clearly an important topic in Earth sciences.

Most kinetic studies have focused on the olivine to wadsleyite or ringwoodite transformation that occurs in the 

Earth. Sung and Burns (1976) fitted a collection of experimental data on the olivine to wadsleyite and 

ringwoodite transformation to a kinetic model. They concluded that there is a lower limit on temperature, 

below which nucleation and growth of the new phase is virtually zero. For the olivine to spinel transition they 

found that this temperature must be around 700 °C. When the downgoing assemblage has reached this 

temperature, olivine is expected to transform to the spinel phase very rapidly due to a large overstepping of the 

phase boundary. The rapid transformation is also expected to lead to a temporary local pressure drop in the 

order of a few GPa in a cold slab. 

Poirier (1981) argued that the transformation mechanism for the olivine to spinel transformation is controlled 

by the motion of stacking faults resulting in shearing of the oxygen sublattice, which leads to the formation of a 

local spinel-type oxygen sublattice. The cations then only need to diffuse one atomic distance to form the spinel 

phase (a process called synchroshear). Burnley and Green (1989) concluded that Poiriers mechanism only plays 

a significant role at very high shears stresses. Only a limited amount of transformation by synchoshear is 

observed in experiments, therefore it was concluded that the shearing mechanism does not play an important 

role in the Earth (Rubie and Ross 1994). However, more recent studies have shown that nucleation of 

ringwoodite platelets on (100) stacking faults in olivine may also occur at low to moderate degrees of 

differential stress when the phase boundary is overstepped by a few GPa and the grain size is large (Kerschhofer 

et al. 1996, 1998, 2000). The latter authors investigated in more detail the nucleation kinetics of wadsleyite and 

ringwoodite in olivine. They find that at 18 – 20 GPa an intracrystalline nucleation mechanism is present where 

the transformation of olivine to ringwoodite and / or wadsleyite occurs via a sequence of steps: (1) formation of 

(100) stacking faults in olivine, (2) coherent nucleation of ringwoodite lammelae on those stacking faults and (3) 

nucleation of wadsleyite on ringwoodite. Furthermore they observed that growth of wadsleyite or ringwoodite 

grains on olivine grain boundaries, the nucleation mechanism preferred when grainsize is small, slows down and 

eventually halts as the wadsleyite/ringwoodite grains grow bigger. They interpret this as a result of elastic strain 

that accumulates due to a difference in density between olivine and the product phases. At geological time 

scales reaction kinetics may then be controlled by the rate of viscoelastic relaxation of the product phases.

Rubie and Ross (1994) fitted experimental data on the progress the olivine to spinel transformation of Burnley 

(1990) and Rubie (1990) to transformation rate equations and constructed several models for the olivine to 
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spinel transformation in a subduction zone. They concluded that the preservation of metastable olivine in 

subduction zones is strongly temperature dependent. In the cold inner part of the subducting slab, 

transformation is delayed by ~ 120 km beyond the equilibrium boundary and takes place over a depth interval of 

~ 150 km. The transformation rate in the cold inner part of the slab is expected to be controlled by the grain 

growth of the ringwoodite, resulting in a very fine grained spinel that produces conditions suitable for 

superplasticity. In the hotter external parts grain growth is faster and the transformation will take part over a 

limited depth interval. As result of the higher growth rates the spinel is coarse grained, but still stiff due to the 

relative low temperatures. The upper and lower bounds are expected to be in a thermodynamic equilibrium and 

are weak owing to the high temperatures. Latent heat production however, may significantly affect the width 

of the depth range over which the transition occurs. Däßler et al. (1996) included the release of latent heat in 

their thermal and kinetic model. Their calculations showed that for warm slow slabs, the inclusion of latent heat 

release increases the depth at which the olivine to ringwoodite or wadsleyite occurs because it slows down 

kinetics by pushing the assemblages towards the equilibrium boundary in PT-space. They however expect the 

effect to be small for the olivine to wadsleyite boundary. For a fast cold slab it reduces the depth to which the 

metastable wedge persists. Mosenfelder et al. (2001) updated the model of Rubie and Ross (1994) with the 

additional experimental data that has become available by that time and also incorporated the release of latent 

heat in their model. Their results are consistent with that of Däßler et al. (1996) in that latent heat significantly 

reduces the depth to which a metastable wedge can persist. Also the new data lead to growth rates that are 5 

times as high as the old ones (Rubie and Ross 1994). The overall result is that it is highly like that metastable 

wedges are present in old and cold slabs, but their sizes are significantly smaller then previously predicted and 

are unlikely to extend to depths greater than 600 km. For the Tonga trench they predict that the metastable 

wedge may persist up to ~ 550 km depth (figure 1.6). The 1994 Tonga earthquake, for which the focus is 

determined at 563 km depth (Wiens et al. 1994), would thus have occurred at the very tip of the metastable 

wedge in their model and the Bolivian earthquake (metastable wedge predicted up to 450 km) should have 

occurred well beyond the penetration depth of the metastable wedge. Mosenfelder et al. (2001) add that real 

slabs may have a more complicated thermal structure that would alter they model.

The above mentioned models used data that was obtained from experiments that had solely olivine or its β- 

and / or γ-modifications present. Sharp and Rubie (1995) performed experiments with additionally high pressure 

clinoenstatite present. These experiments indicated that ringwoodite was ubiquitously associated with 

clinoenstatite and that the latter catalysed the nucleation of the former phase. As already mentioned however, 

the slow transformation kinetics of olivine to its high pressure polymorphs is probably not controlled by the 

nucleation kinetics, but by the growth kinetics of the high pressure polymorphs (Rubie and Ross 1994). The 

catalyses of nucleation may, however, lead to smaller grains in the product phase. In general, it shows that it is 

necessary to study geologically realistic bulk composition too, when performing studies on reaction kinetics.

Hogrefe et al.(1994) performed experiments on the breakdown of enstatite at transition zone pressures. The 

results these experiments show that the breakdown of enstatite to wadsleyite plus stishovite is extremely 
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sluggish and require much higher temperatures than the transformation of olivine to wadsleyite at the same 

timescales. They conclude it is therefore more likely that enstatite is preserved as metastable phase in the 

wadsleyite + stishovite field and transforms to akimotoite directly when it enters the akimotoite field. Though 

volumetrically of less importance, because of the large volumetric difference between clinoenstatite and 

akimotoite, enstatite might therefore still influence dynamics of subduction and the stress field in the 

subducting slab.

The above mentioned investigations show that reaction kinetics play an important role in phase transitions that 

occur in the Earth. It is therefore in most cases a too big simplification to assume that the mineralogical 

composition of subducting slabs in a dynamic setting, like a subduction zone, are in thermodynamic 

equilibrium.

1.4 Goals of this PhD study

Because of the stability of a pyroxene polymorph with a garnet structure (majorite) at high pressure, pyroxene 

is expected to dissolve progressively with increasing pressure in garnet during subduction. The dissolution of 

pyroxene into garnet is controlled by long range mass transport, therefore the rate of dissolution will be 

controlled by the diffusivity of the relevant cations in garnet. Since diffusion rates in silicates are generally low, 
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Figure 1.6: The extent of the metastable 

wedge in a subducted zone as function of 

lithosphere age at the start of subduction and 

subduction rate. a) For a hot and young slab 

the reaction kinetics are expected to be fast 

enough such that subducting slab in near 

equilibrium. b – f) For progressively older slab 

and high subducting rates the extent of 

metastable wedge increases, up to a 

maximum of ~ 600 km. Colours indicate the 

phase field (α = olivine, β = wadsleyite, γ = 

ringwoodite, pv + mw = perovskite + 

magnesiowüstite). Figure d correspond to the 

Tonga-slab. After Mosenfelder et al. (2001)



it may be expected that the dissolution of pyroxene is hindered and thus pyroxene may be present to depths 

greater than expected for an equilibrium assemblage. As there is a significant density contrast between garnet 

and pyroxenes, this may have important implications for the dynamics of subduction zones.

The results of Sharp and Rubie (1995) have shown that HP high clinoenstatite catalyses the nucleation of 

ringwoodite during the transformation of olivine to wadsleyite and/or ringwoodite. Though reaction kinetics of 

the olivine to wadsleyite and ringwoodite transformation are controlled by the growth kinetics, and therefore 

the metastable preservation of HP clinoenstatite is unlikely to influence the transformation kinetics, it may 

result in a reduced grain size of wadsleyite and ringwoodite after transformation. This in turn may enhance 

superplasticity, which is thought to cause deep-focus earthquakes in subduction zones, as explained.

Furthermore, pyroxene exsolution needles have been found in several UHP provinces (Song et al. 2004, van 

Roermund 2009, Pandey et al. 2010). The rate of dissolution of pyroxene into garnet and the rate exsolution of 

pyroxene from garnet in these cases will also be controlled by the diffusivity of the majorite component. The 

lack of exsolution needles in pre-Scandian garnets from Norway in combination with diffusion data on the 

majorite component in garnet may be used to constrain the duration of UHP metamorphism in these provinces. 

It is thus clear our understanding of important geological process occurring in the interior of the Earth will 

benefit from constraints on the major element diffusivity in garnet at depth. 

At present unfortunately, there is neither data on major element diffusion in garnet available at the conditions 

prevalent in the Earth's transition zone, nor data on the majorite diffusivity in garnet. During this PhD 

experiments it has been attempted to, at least partially, fill this gap in garnet diffusion data. Additionally, there 

is no data available on the aluminium diffusivity in HP high clinoenstatite. As reviewed in the reaction kinetics 

chapter the microstructure of phases in the transition zone controls among others the strength of the 

subducting slab. It is expected that the aluminium component will be exsolved as majoritic garnet. This requires 

long-range transport of aluminium in enstatite and the exsolution of garnet from HP high clinoenstatite will 

therefore be controlled by the aluminium diffusivity in HP high clinoenstatite. In this PhD study it has been 

attempted to study the microstructure of the majoritic garnet exsolution products from high clinoenstatite and 

to determine the diffusivity of aluminium in HP high clinoenstatite to gain a better understanding of the 

properties of metastable HP high clinoenstatite at transition zone conditions. 

This dissertation therefore reports on two different studies perfomed during this PhD. The first part reports 

(chapter 5) on the results of an experimental study on the major element diffusivity in garnet at transition zone 

conditions. The second study (chapter 6) was an experimental high pressure study performed on aluminous 

enstatite to get more insight into the evolution of HP clinoenstatite as it is preserved as a metastable phase 

during subduction and to determine the aluminium diffusivity in HP clinoenstatite at high pressure and 

temperature.
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Chapter 2: Garnets and diffusion kinetics

2.1 Garnets and majorite, a high pressure polymorph of enstatite

2.1.1 Garnet

Garnet minerals form an important group of rock forming minerals. Since natural garnets are metastable at 

ambient conditions, they are only found at the Earth's surface in metamorphic terranes of amphibolite facies 

and higher grade. This paragraph summarizes the most important properties of natural garnets, for a more 

comprehensive discussion the reader is referred to Geller (1967), Rickwood (1968) and Novak and Gibbs (1971). 

Most of the information in this paragraph can be found in 

these references, unless stated otherwise.

Natural garnets are often described in terms of end-member 

components, which are listed in table 2.1 .

The space group of natural garnet is Ia3d, which is one of the 

cubic Bravais lattices, and the unit cell contains 8 formula units 

(160 atoms). Its lattice parameters depend on composition 

(and physical conditions), but range at ambient conditions 

between a = 11.4 Å for pyrope to a = 12.7 Å for the 

(hypothetical) end-member hydrogrossular. 

The 96 oxygen atoms in garnet occupy the h-position in this 

unit cell, and the metal cations either occupy the 16 a-

positions (octahedral sites), 24 c-positions (dodecahedral sites) or 24 d-positions (tetrahedral sites). Though 

natural garnets have 96 oxygen atoms and 64 metal cations in its unit cell, it can conveniently be described by 

the general chemical formula X3Y2Z3O12. The X metal cations (Mg, Fe2+, Ca and Mn) occupy the distorted cubic 

c sites of garnets, the Y  metallic cations (Al3+, Fe3+, Cr3+) occupy the octahedral sites, and the Z metallic cations 

(mostly Si4+) occupy the tetrahedral sites. The tetrahedra share two edges with the neighbouring dodecahedra, 

the octahedra share six edges with neighbouring dodecahedra and the dodecahedra share two edges with 

neighbouring tetrahedra, four with neighbouring and four with other neighbouring dodecahedra (figure 2.1). 

Since garnet is a common mineral in high pressure metamorphic terranes and its end-members form a 

complete solid-solution with each other, they are often used when in equilibrium with other phases as 

geothermometers. O'Neill and Wood (1979) calibrated a thermometer for the Mg-Fe exchange between garnet 

and olivine, and geothermometer were developed for Fe-Mg exchange between garnet and biotite (Holdaway 

2000), between clinopyroxene and garnet (Ellis and Green 1979, Powell 1985)., and between orthopyroxene and 

garnet (Harley 1984). Next to its use as a geothermometer, garnet is also often used as a geochronometer 

dating metamorphic event, using the Lu-Hf, Sm-Nd and U-Pb systems. Therefore, garnet constitute an 
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Table 2.1: Chemical composition of the most  
important garnet end-members.

End-member name Chemical formula

Pyrope Mg3Al2Si3O12

Almandine Fe2+3Al2Si3O12

Grossular Ca3Al2Si3O12

Spessartine Mn3Al2Si3O12

Andradite Ca3Fe3+2Si3O12

Uvarovite Ca3Cr2Si3O12

Skiagite Fe2+3Fe3+2Si3O12

Hydrogrossular Ca3Al2H12O12

Hydroandradite Ca3Fe3+2H12O12



important mineral group elucidating the history of the Earth.

2.1.2 Majorite

Majorite (Mg4Si4O12) is a high pressure polymorph of enstatite (MgSiO3) with the garnet structure and hints to 

its existence were first reported by Ringwood and Major (1966), when they synthesized a high pressure garnet 

phase with an alumina deficient pyrope composition. The first natural occurrence of majorite was reported by 

Mason et al. (1968) in the Coorare meteorite, though they misinterpreted it as having an olivine composition 

and thus identified it as a being a high pressure polymorph of olivine. Smith and Mason (1970) later identified it 

correctly as being a high  pressure polymorph of enstatite and assigned the name Majorite to it, in honour of 

Alan Major. The first successful synthesis of end-member majorite was done by Kato and Kumazawa (1985) 

during melting experiments on MgSiO3, though the recovered garnet phase was not cubic (like pyrope) but 

tetragonal. Angel et al. (1989) investigated twinning observed in quenched high temperature majorite, and 

showed that it has tetragonal symmetry with space group I41/a at ambient conditions. They concluded that 

ordering of Mg and Si on the octahedral sites reduces the symmetry of the structure from Ia3d to I41/a. 

Heinemann (1996) and Heinemann et al. (1997) performed a more detailed study to the twinning observed in 

majorite and to the phase change of cubic majorite to tetragonal majorite. Both Heinemann et al. (1997) and 

Angel et al. (1989) describe two morphologically distinct sets of twins, i.e. one set of twins with irregularly 

curved domain boundaries corresponding to perfect merohedral twins with {110} as reflection planes and a set 

of pseudomerohedral twins with a lamellar  geometry related to each other by a twin law involving a three fold 
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Figure 2.1: Structural model of the garnet unit cell looking down one of the a axes, dark gray cubic sites are 

occupied by divalent cation, middle gray octahedral sites by trivalent cations and light gray tetrahedral 

sites by Si4+ for natural garnets.



rotation axis about [111]. Heinemann et al. (1997) showed that the pseudomerohedral twins were the result of 

transformational twinning during quenching of the sample, during which a cubic majorite phase having space 

group Ia3d transformed to tetragonal I41/a majorite, and thus proving the stability of a cubic majorite phase at 

higher temperatures. 

They also showed that the transition from I41/a to Ia3d was dependent on the alumina content of the majoritic 

garnet and determined the critical transformation concentration to be at 20 mol% pyrope in majoritic garnet at 

19 GPa and ± 1200 °C, as well as that the phase transformation was of second order, i.e. gradual both in terms 

of composition and temperature.  Figure 2.2 shows the position of the phase transition from Ia3d to I41/a as 

function of composition and temperature.

Because majorite has the same structure and very similar lattice parameters, a = 11.52 Å and c = 11.42 Å for the 

tetragonal end-member (Heinemann et al. 1997), as the other natural garnets, it forms a solid-solution with 

them. Though end-member majorite (Mg4Si4O12) is only stable at conditions above 17 GPa and 1600 °C 

(Gasparik 2003), alumina or equivalently, the addition of a pyrope component stabilizes the garnet structured 

high-pressure polymorph of enstatite to lower pressures and temperatures (Ringwood and Major 1966, Akaogi 

and Akimoto 1977, Gasparik 2003). The majorite component in garnet that is in equilibrium with enstatite 

increases therefore with increasing pressure (figure 2.3). As a result, more enstatite can be incorporated into 

garnet as a majorite component with increasing pressure. In Earth's upper mantle, a majoritic garnet phase is 

therefore thought to be the second most abundant phase after the high pressure polymorphs of olivine 

(wadsleyite and ringwoodite) in the Transition Zone (Irifune 1987, Frost 2008).

2.1.3 Majoritic garnet and UHP rocks

In the last one and a half decades majoritic garnet has become in the focus of metamorphic petrologists, since 
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Figure 2.2: The stability domains of tetragonal (I41/a) and 

cubic (Ia3d)  majoritic garnet in composition – 

temperature space at 19 GPa. 

After Heinemann et al. (1997)



needles and lamellae of pyroxene in garnet with a topotactic relation to the garnet have been found in ulta-high 

pressure (UHP) metamorphic terranes. Van Roermund and Drury (1998) found that garnets in peridotite bodies 

in the northern-most UHP domain of the Western Gneiss Region (WGR) of the Scandinavian Caledonides in 

Norway contain pyroxene lamellae with a topotaxial relation to their host garnet and which are interpreted as 

being exsolution products during exhumation of garnets with a majorite component. Later, intercrystalline 

pyroxene with an extremely depleted LREE signature indicating that the intercrystalline pyroxene also exsolved 

from the garnet host and cannot be attributed to melt addition. This indicated that the minimal depth of origin 

of these garnet peridotite should be in the order of 350 km (Van Roermund et al. 2000, Spengler 2006, Spengler 

et al. 2006). Spengler (2006) also demonstrated on the basis of LREE partitioning between garnet and its 

exsolution products that exsolution took place at temperatures above 1300 °C. They fitted this in a model of a 

rising diapir or convection cell originating from the mantle transition zone. Dating of the exsolution assemblage 

by Spengler (2006) (referred as the M2 assemblage by him) indicated that this happened during mid-
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Figure 2.3: The composition of garnet in equilibrium with ortho / clino-enstatite as function of pressure and temperature 

in the MAS system on the pyrope – enstatite join. Majorite – (ortho/clino)-enstatite equilibrium thermodynamic data from 

Gasparik (2003), composition of ortho-enstatite calculated using the geothermobarometer of Brey et al. (2008), above 10 

GPa pyroxene composition is assumed to be pure end-member (clino/ortho)-enstatite. The concentration of the contours 

shows the pyrope content of the garnet phase, a concentration of zero means pure end-member majorite (Mg4Si4O12) is 

stable. The gray shaded area indicates the region where clino-enstatite and/or majoritic garnet is not stable.



Proterozoic times; 1405 ± 13 Ma. More recently, Scambelluri et al. (2008) also identified a younger generation of 

pyroxene exsolutions from garnet (referred to by them as M3 garnets), which can be demonstrated to be 

Scandian in age since they are filling cracks that cross cut earlier Scandian structures. The amount of pyroxene 

that is present in the M3 pyroxene exsolution needles in garnet indicates peak metamorphic conditions during 

the Scandian event of 5.5 – 6.5 GPa and 900 – 1000 °C. Similar conditions for Scandian metamorphism have 

recently also been found by other geothermobarometric methods (Vrijmoed et al. 2006, Spengler et al. 2009). 

Up to present, pyroxene exsolutions from garnet indicating a majoritic parent garnet have only been confirmed 

in the northern-most UHP domain (Nordøyane) and only in one case could the formation of majoritic garnet be 

dated to Scandian UHP metamorphism (van Roermund 2009). The juxtapositioning of (U)HP rocks next to low 

pressure upper crustal rocks with only a couple of kilometers stratigraphical thickness in between them in the 

WGR (e.g. in the Nordfjord area) requires that during the late stages of Scandian tectonism exhumational 

displacement along the Nordfjord-Sogn Detachment Zone (NSDZ), the principal extensional structure in the 

WGR, must have amounted to at least 100 – 150 km of displacement in order to bring UHP rocks to their current 

stratigraphical position (Hacker et al. 2003, 2010, Andersen 2010). 

The Scandinavian Caledonides is not the only orogen where UHP metamorphic conditions in the majoritic 

garnet stability field have been deduced. Song et al. (2003, 2004) have reported UHP conditions for the North 

Qaidam orogenic belt in Tibet, including the observation of pyroxene exsolution lamellae from garnet, again 

indicating the stability of a majorite component in garnet. The presence of pyroxene exsolutions after majoritic 

garnet has also been reported for the Sulu UHP belt in China (Ye et al. 2000). Rather recently, clinopyroxene 

exsolution needles in garnet have also been described for the Himalaya's (Pandey et al. 2010).

2.2 Diffusion in minerals

At elevated temperatures during a metamorphic event and in the deep Earth, significant solid state diffusion 

occurs in minerals present in the Earth over geological time scales. The rate at which mineral assemblages 

equilibrate under changed conditions during metamorphic events is usually limited, and therefore controlled, 

by the diffusivity of the components in the respective minerals. Chemical zoning observed in many minerals 

from metamorphic terranes is usually interpreted as a result of non-complete equilibration under metamorphic 

conditions and may give more detailed information of the (thermal) geological history of a geological terrane 

(Lasaga 1983, Sautter and Harte 1990, Lasaga and Jiang 1995). In this section a more detailed overview is given 

about diffusion in geological materials.

2.2.1 The different diffusion coefficients

In the literature one often finds different diffusion coefficients due to differences in experimental setup , 

measurement methods and simply convention of usage. These can unfortunately not all be directly related to 

each other. The self diffusion coefficient is defined as the coefficient describing the diffusivity of an element as 

response to its own concentration gradients sensu stricto. It is a kind of theoretical quantity, which cannot be 

32



determined experimentally. The tracer diffusion coefficient is determined tracer diffusion experiment, where 

one measures the diffusivity of elements using different isotopes of the same atom in a chemically 

homogeneous media. Diffusion in these kind of experiments is solely due to differences in concentration of the 

isotopes of interest, and usually assumed to be equal to the self diffusion coefficient, however, for light 

elements a significant isotopic effect may exist (Richter et al. 2003, Teng et al. 2006). The chemical diffusion 

coefficient is determined in experiment where there is a gradient in the chemical potential of the element of 

interest. In these kind of experiments the gradient in chemical potential serves as an additional driving force for 

diffusion, next to the concentration gradient. Finally, sometimes interdiffusion coefficients are reported, these 

are diffusion coefficients when more then one element or component are diffusing at the same time. 

Considering mass conservation as well as the Gibbs – Duhem equation one can see that the fluxes in an 

interdiffusion experiment have to be coupled and so the relevant diffusion coefficients have to be coupled. 

Because of the nature of interdiffusion experiments, interdiffusion coefficients are also chemical diffusion 

coefficients.

2.2.2 Fick's laws

The most basic phenomenological description of diffusion is given by Fick's laws. The first law describes flux of 

material J in response to a concentration gradient: 

J=D∇ C (2.1)

The coefficient D is called the diffusion coefficient. Fick's second law can be obtained by considering 

conservation of mass in an arbitrary volume V which is bound by a surface S.

The concentration change per unit time in V is equal to the flux in or out of the volume 

∫
V

∂C
∂ t

dV =∫
S

J⋅n dS

Applying Gauss' theorem and by considering that this equation should hold for any arbitrary volume one 

obtains: 

∂C
∂ t

=∇⋅D ∇ C =∇ D ∇ CD ∇2C (2.2)

When gradients in D can be neglected this reduces to:

∂C
∂ t

=D∇ 2C (2.3)

Which is known as Fick's second law. 

2.2.3 Pressure and temperature dependence

The diffusivity of a species usually increases with increasing temperature and decreases with increasing 

pressure. The temperature dependence of the diffusion coefficient is usually described by an Arrhenian type 

relation: 
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D T =D0exp− H
RT  (2.4)

where ΔH is the activation enthalpy of diffusion, R the gas constant and T temperature. D0 is a pre-exponential 

factor that among others can be related to the entropy increase due to diffusion, geometric factors and jump 

frequency of the atom (Mehrer 2005). The pressure dependence can be obtained from 2.4 and the following 

equation relating thermodynamic potentials:

Δ H=Δ E−p ΔV

leading to:

D T , p=D0exp− E− pV
RT  (2.5)

where ΔE is the activation energy, p pressure and ΔV the activation volume. Since the activation volume is 

generally small, pressure effects only become significant when considering diffusion phenomena over a range 

of several GPa. 

2.2.4 Vacancies and oxygen fugacity

Minerals that contain elements that can have multiple oxidations states, most importantly iron, the oxygen 

fugacity can have also a significant on the diffusivity of elements. The diffusivity of ions in a crystal lattice is 

controlled by the concentration of vacancies, since an ion can only hop to an adjacent site if there is a vacancy 

on this site. Therefore the diffusion coefficient can also be described in terms of the number of vacancies and 

the diffusivity of vacancies (Schmalzried 1981) 

Di=D v N v (2.6)

Where Dv is the diffusion coefficient for the vacancy and Nv is the mole fraction of vacant sites. Vacancies can 

either be intrinsic or extrinsic. Intrinsic vacancies exist because a small amount of vacancies will increase the 

disorder in the structure and thus increase the total entropy of the system, which outweighs the energy that is 

needed to create a vacancy. The mole fraction of intrinsic  vacancies can be described by the following equation 

(Kittel 2005):

Nv=e− EV /RT (2.7)

where ∆EV is the energy required to make a vacancy and to put the displaced atom on the surface, R is the gas 

constant and T is temperature. Extrinsic vacancies are due to impurities in the crystal with a valence state 

different than the ion that would normally occupy the site, for example Al3+ on a Si4+ site. The incorporation of 

such an impurity requires either a second impurity to be incorporated or the creation of a vacancy to charge 

balance the structure. A second kind of extrinsic vacancies are produced by elements that have multiple valence 

states, iron being the (geologically) most important. In an oxidizing environment Fe2+ will be oxidized to Fe3+ 

creating a vacancy on the iron site for charge balance. Using Kröger-Vink notation, it can be written (Morioka 

and Nagasawa 1991):
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3FeFe+½ O2(gas)⇋ 2FeFe
 +V Fe

' ' +FeO (2.8)

for which the equilibrium constant can be written as:

K=
[Fe Fe

 ]2[V Fe
' ' ]aFeO

fO2
½

(2.9)

Where [ ] denotes the concentrations of the reactants. Subscripts in the two above equations denote the site 

that is occupied by the ion (V for vacancy) and the superscript denotes the electrical charge of the site. A solid 

circle denotes that the site is positively charged (every solid circle corresponds to an electron hole), a prime 

denotes a negatively charged site (every prime corresponds to a surplus electron).  

From equation 2.8 it can be seen that [Fe•
Fe] = 2  [V''

Fe] and assuming that activity of FeO does not change 

significantly with oxygen fugacity fO2 they write the concentration of iron or metal vacancies as function of 

oxygen fugacity as:

[V Fe
' ' ]∝ fO2

1/6 (2.10)

This mechanism requires that Fe3+ can be accommodated on an Fe2+ site, which might be questionable for 

normal garnets, since as of yet, there is no convincing evidence that Fe3+ can occupy the dodecahedral site in 

garnet (C. McCammon, pers. comm.). However, for majoritic garnet it has been found that there is charge 

transfer between adjacent docecahedrally coordinated Fe2+ and octahedral coordinated Fe3+ (Keppler and 

McCammon 1996), so the dodecahedrally coordinated Fe3+ ion (directly after oxidation) might receive an 

electron from its neighbouring octahedrally coordinated Fe2+ ion, effectively exchanging its 3+ charge with the 

2+ charge of its octahedral neighbour. However the strong partitioning between Mg and Fe on the octahedral 

site in majorite, with Mg  preferentially on the octahedral site (O’Neill et al. 1993), might inhibit this mechanism. 

Also the presence of octahedrally coordinated ferrous iron in majorite might enable the above mentioned 

mechanism at higher pressure. Mackwell et al. (2005) developed the following general expression based upon 

point defect chemistry:

D=DV
0 e−Qm / RT  k 1

0k 2
0 fO 2

m x p e−Q f  x / RT (2.11)

where k0
1 and k0

2 are equilibrium constants for the intrinsic and extrinsic vacancy mechanisms respectively, m 

and p are constants depending on the vacancy mechanism (1/6 for equation 2.8), Qm is the migration enthalpy 

for a metal vacancy, Qf the formation enthalpy for metal vacancies at low iron concentrations, x is the iron 

concentration and the term -α·x in the exponential corrects for change in formation enthalpy at higher iron and 

vacancy levels.

2.2.5 Multi-component models

When more than one component or element is diffusing at the same time, as a result of mass conservation and 

from the Gibbs-Duhem equation, their fluxes have to be coupled. Irreversible thermodynamics shows that 

fluxes can often be linearly related to their driving forces (Groot and Mazur 1984). In the absence of 

temperature gradients and external forces the driving force for diffusion in an n-component system becomes 
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the gradient in chemical potential μi of the components (Groot and Mazur 1984, Ganguly 2002):

J i=−∑
k

n−1

Lik ∇ k−n
T  (2.12)

Where L is a matrix of phenomenological coefficients. The last flux is calculated considering conservation of 

mass. In the case that the off diagonal elements in L can be neglected the equation leads to the following 

expression for the diffusion coefficient Di:

Di=Di
+ 1∂ ln i

∂ lnC i
 (2.13a)

where γi is the activity coefficient and 

Di
+=

RL i

C i
(2.13b)

where R is the gas constant. Equation (2.13a) splits the chemical diffusion coefficient in two parts, an ideal part 

and a thermodynamic part, the part within brackets is usually referred to the thermodynamic factor. Note that 

although off diagonal terms in L are negligible, the diffusion coefficients and fluxes still coupled through the 

activity coefficients.

In the case that the off diagonal terms in L are not negligible one needs to rewrite (2.1) as:

J i=−∑
j

Dij ∇C j (2.14)

Loomis (1978) derived an expression for the diffusion coefficient matrix D from irreversible thermodynamics: 

Dij=ij Di
0Di

0 X i[ ∂ ln i

∂ X j
−

∂ ln  i

∂ X n
]−X i∑

k=1

n−1

X k  Dk
0−D n

0 [  jk

X k


∂ ln k

∂ X j
−

∂ln  k

∂ X n
] (2.15a)

δij is kronecker's delta (δij = 0 for i ≠ j, δij = 1 for i = j) and Di
0 denotes the tracer diffusion coefficient for 

component i. In the case of ideal solutions this reduces to:

Dij=ij Di
0 X i  Dn

0−D j
0 (2.15b)

Lasaga (1979) derived, also from irreversible thermodynamics, a different expression for the D matrix in the 

case of ionic diffusion, which is more appropriate to minerals: 

Dij=Di
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z i

zn]}
(2.16a)

which reduces for (near) ideal solutions or negligible activity coefficient gradients to a more comprehensible 

form: 
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Dij=Di
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0

(2.16b)

In the equations zi is the charge of ion i and the size of the diffusion matrix D is (n – 1)x(n – 1), the last profile is 

calculated by charge balance. In the case that there are only two ions diffusing, both with an equal charge, 

equation 2.10b becomes the well known expression for binary interdiffusion of charged species (Manning 1968):

D11=Dbinary
ionic =

D1
0D 2

0

X 1D1
0X 2D2

0 (2.17)

where Xi is the cation mole fraction of cation i, i.e. X1 = c1 / (c1 + c2). Chakraborty and Ganguly (1992) used the 

ideal Lasaga model successfully to model Fe – Mg – Mn  diffusion profiles in garnet and to obtain tracer 

diffusion coefficients for Fe, Mg and Mn. The validity of the model  for garnets was confirmed by a Mg tracer 

diffusion study on garnet by Chakraborty and Rubie (1996).
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Chapter 3: Experimental and analytical techniques

3.1 High pressure – high temperature experiments

To simulate actual geological processes that are occurring in the Earth's upper mantle and transition zone one 

needs to reproduce the conditions prevalent there. It is usually assumed that heat transport due to thermal 

conduction is negligible in the Earth's mantle (Fowler 2005). The temperature profile in the mantle can thus be 

well approximated by an adiabatic temperature profile for which the temperature gradient as a function of 

depth r is given by (Fowler 2005):

 ∂T
∂r  S

=
−T  g

C p
(3.1)

where T is temperature, α is the coefficient of thermal expansion for the bulk mantle, g acceleration due to 

gravity and Cp the heat capacity at constant pressure. The figure below shows three different mantle adiabats 

for different potential temperatures, i.e. the temperature of the adiabat extrapolated to the surface, thought to 

be representative for the Earth's present mantle (McKenzie and Bickle 1988, Anderson 2000, Fowler 2005, 

Katsura et al. 2010).

To simulate the conditions prevalent in the mantle transition zone one thus needs a device to generate 

pressures in the range of 15 – 24 GPa (ca. 410 – 670 km) and temperatures in the range of 1450 – 1800 °C. Two 

different devices are generally used to reach these conditions, i.e. the diamond anvil cell and the multi-anvil 

apparatus. The last device has been used for this dissertation and is therefore explained in more detail below.
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Figure 3.1:The mantle adiabat 

calculated for three different potential 

temperatures (temperatures 

extrapolated to the Earth's surface). 

The thermal expansion coefficient is 

taken from Katsura et al. (2010) and 

approximated by an exponentially 

decaying function as function of 

depth.



3.1.1 The Multi-anvil apparatus

High pressure devices can generate high pressures following two different approaches which can be understood 

from the general equation for pressure:

p= F
A (3.2)

where p is pressure, F is force and A is the surface area over which the force is applied. The first approach would 

be to apply a reasonable force over a very small surface area, an example of such a device is the diamond anvil 

cell (DAC). The down side of this type of devices is that the sample volume is also very small, which might pose a 

problem with analytical techniques, and large pressure and temperature gradients exist in a DAC. The second 

approach is to generate a large force and apply this on a (reasonable) small surface area. Such a device is the 

multi – anvil press, which was used in this diffusion study. The sample volume that can be used in the multi-anvil 

apparatus is considerably larger than that of the DAC, and in addition it generates more hydrostatic conditions 

and temperature gradients within the assembly are smaller (Ito 2007).The down side of the multi-anvil 

apparatus is that in-situ measurements are more complicated than in the DAC, and generally require a high 

brilliance x-ray source like a synchrotron in the case of a study requiring x-rays (Keppler and Frost 2005). 

The first modern multi-anvil device used in most laboratories now, was designed by Kawai and Endo (1970). It 

consisted of a 6 / 8 type split-sphere multi-anvil device. This means that a set of six hardened steel outer anvils 

that form a sphere when assembled were used as first stage anvils. The six outer anvils are truncated in such a 

way, that in the centre of the sphere they create a cubic cavity. In this cubic cavity a set of eight second stage 

tungsten carbide anvils are put. Each of the eight WC cubes has (at least) one of its corners truncated. 

Assembled, these WC cubes form an octahedral cavity in its centre in which the pressure medium with the 
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Figure 3.2: sketch of the 6 / 8 split-sphere design incorporated 

in a metal guide block. The top and lower part of the first 

stage anvils are truncated to inhibit rotation of the anvils. The 

MgO pressure cell has been put in the centre of the 8 WC cube 

second stage anvils, with truncated corners.



experimental load is placed. In the original design of Kawai and Endo the spherical assembly was contained in a 

rubber shell and then submerged in an oil reservoir. This oil reservoir was pressurized and the pressure exerted 

by the oil reservoir is then transmitted and concentrated by the anvils on the octahedral pressure medium 

contained within the octahedral cavity created by the WC anvils. In later designs the oil reservoir was replaced 

by guide blocks in which the lower and upper half of the spherical anvil assembly was placed, greatly reducing 

the cumbersome preparation of the experiments (Kawai et al. 1973). The upper and lower guide blocks are 

driven together by a uni-axial hydraulic press. The hydrostatic conditions in this case must be provided by using 

appropriate pressure media. In later designs the top and lower parts of the first stage anvils were truncated in 

order to inhibit the rotation of the anvils (Keppler and Frost 2005). Using traditional WC anvils the maximum 

attainable pressures are around 28 – 30 GPa, which is sufficient for the upper mantle, transition zone and top 

part of the lower mantle. Higher pressures however, can be obtained by using sintered diamond anvils, which 

are also more costly. Recently, pressures up to 90 GPa have been reached using a multi-anvil apparatus 

equipped with sintered diamond second stage anvils (Ito et al. 2010).

The cavity in the second stage anvils is filled with a (usually) MgO pressure cell, which needs to be longer than 

the truncation lengths of the WC anvils to generate the high pressure conditions. The maximum attainable 

pressure is dependent on the ratio of octahedral edge length to truncation edge length and their absolute sizes, 

the compressibility of the pressure medium, the resistance to plastic deformation of the anvils, the sealing 

action of the gasket material, and the maximum load of the press. As the pressure medium will get compressed 

during loading, the pressure medium will be extruded out of the octahedral cavity, forming a gasket. Usually an 

additional set of pyrophyllite gasket strips are placed around the octahedral cavity, to give better lateral support 

to the second stage anvil assembly and to prevent blow-outs (Ito 2007). At high loads most of the applied force 

by the press will be put in extruding the gasket material, and thus reducing the pressure generating efficiency of 

the press and the deformation properties of the gasket is thus an important factor in determining the maximum 

attainable pressure (Ito 2007). 

In the early designs of Kawai and Endo (1970) and Kawai et al.(1973) the used pressure medium was pyrophyllite 

(Al2Si4O10(OH)2), which is a phyllosilicate mineral. However, pyrophyllite breaks down above 600 °C and 10 GPa 

successively into stishovite + an unknown hydrous aluminosilicate and stishovite + Al5Si5O17(OH) and above 20 

GPa into stishovite + corundum, which resulted in a reduction of pressure during high pressure runs (Ito 2007). 

Nowadays, semi-sintered MgO (with a porosity of ~ 35%) is being used as pressure media. Under high 

temperatures MgO has a very low shear strength and thus generates a good hydrostatic pressure regime 

(Keppler and Frost 2005). Through the centre of one of the faces of the octahedron a cylindrical hole is drilled in 

which a hollow cylinder of ZrO2 is put surrounding the heater. The role of the ZrO2 cylinder is to thermally 

isolate the resistance heater, since the thermal conductivity of MgO is high, making it very difficult to heat the 

experiment above 1000 °C without the thermal insulator. Different materials can function as heater, the most 

common being a metal foil (e.g. platinum or rhenium), LaCrO3, TiC3 / diamond mixture or graphite heater. At the 

Bayerisches Geoinstitut usually LaCrO3 heaters were used. LaCrO3 also reduces temperature gradients within 
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the furnace because of its negative resistance dependence on temperature, especially for smaller pressure cells 

(Kawashima and Yagi 1988). Further reduction of temperature gradients inside the furnace can be achieved by 

using a stepped heater, where the heater consists of three cylinders of which the thickness of the wall of the 

middle one is greater than the outer ones (Kawashima et al. 1990). 

The temperature is measured by thermocouples in the multi-anvil apparatus. Thermocouples work because 

thermal gradients in (semi-)conductors induce an electrostatic potential difference between the hot and cold 

end, also known as the Seebeck effect. If two conductors (or metal) with different Seebeck coefficients are used 

to create a circuit, an electrical current will start to flow, of which the magnitude is dependent on the actual 

temperature gradient along the thermocouple wire. Thermocouples used in the multi-anvil usually consist of 

W3%Re – W25%Re thermocouple wires or W5%Re – W26%Re thermocouple wires because of their high melting 

points and the small pressure effect of thermocouple voltage on pressure, which is unknown quantitatively 

(Keppler and Frost 2005). The thermocouple can be incorporated in two ways in the octahedral pressure cell. 

The first way, and as used in the diffusion study in this dissertation, the thermocouple is put close to the capsule 
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Figure 3.3: Two sketches of the MgO pressure cell used in the multi-anvil apparatus. a) Pressure cell with where the thermocouple 

is brought in radially. b) Pressure cell where the thermocouple is brought in axially. The former one is used at the Bayerisches 

Geoinstitut for smaller assemblies. 

a

b



in an axial direction, i.e. where the wire comes into the furnace from the top (figure 3.3a). To prevent the 

thermocouple from short circuiting on the molybdenum ring (which creates a good electrically conducting 

contact between the WC anvils and the heater), isolating ceramic tubes are put around the thermocouple wires, 

where the wires cross the ring. The thermocouple wires are then guided to the middle of one of the octahedron 

edges through a groove cut into the octahedron. In the second method, the thermocouple is put in the central 

portion of the pressure cell by drilling a hole through the heater and positioning the junction of the 

thermocouple through this hole next to the capsule. The hole in the heater however makes the heater more 

susceptible to breaking and it is impossible to do high temperature experiments, like melting experiments, with 

it (Ito 2007). With both methods a coil is put around the thermocouple wires where they exit the octahedron, to 

prevent the wires from breaking when the octahedron is (partially) extruded out from the octahedrally shaped 

cavity during the experiment. In the axial configuration, the thermocouple wires are led through a MgO or 

corundum tube from the top, where the thermocouple junction is made just above the capsule. If the capsule is 

made of a soft material, a disc-shaped rhenium foil can be put between the thermocouple junction and the 

capsule in order to prevent the thermocouple from penetrating the capsule. 

The capsule material itself is also an important factor in the experiment. First of all, different materials have 

different melting temperatures, when doing high temperature experiments this has to be taken into account. 

When using sample material with elements that have different oxidation states, like iron or chromium, one 

usually makes capsules with a material that can buffer the oxygen fugacity, like iron, nickel, rhenium or 

graphite. Additionally, one can disperse oxygen fugacity buffering materials in the sample material to improve 

the buffering capability during the experiment (Frost et al. 2001). Multiple sample chamber assemblies have 

also been used, where the sample chambers were spark-eroded from a rhenium wire (Keppler and Frost 2005). 

Since the sample chambers in such a capsule are small, the absolute temperature gradients over these sample 

chambers are smaller, too. Moreover, one can do multiple experiments in one run using such a capsule. In the 

case that the capsule should not touch the heater, since it can short circuit it or react with the heater, isolating 

material like MgO is put between the heater and capsule. The same holds for the tube through which the 

thermocouple wires are guided from the top. Any remaining space within the furnace is usually filled up with 

(densified) MgO. 

Since the heaters used in the pressure cell are resistance heaters, the individual WC cubes need to be isolated 

from each other, as not to short circuit the resistant heater. This is done by placing cardboard and / or Teflon 

tape on each of the three faces of the WC anvils facing each other. Using cardboard also prevents the gaskets 

from flowing easily, when placed behind the gaskets on the WC anvils. After assembling the eight WC cubes, 

sheets of mica or fibreglass epoxy sheets are put on the faces of the cubic assembly that are facing the first 

stage anvils to make it possible for the WC anvils to move and automatically centre themselves. A contact 

between the first stage anvils and the WC anvils, that are touching the molybdenum disc in the pressure cell, is 

made with the use of a piece of copper foil through the sheets. 
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Since pressure generation in a multi-anvil apparatus is not 100% efficiently, the apparatus have to be calibrated 

for the assemblies used in it. In order to do so, known phase transitions are used to see which mechanical load 

corresponds to which sample pressure. This can be done in an in-situ way, where usually a phase transition 

alters the electrical conductivity of the sample material. Examples include the bismuth III – IV transition, and the 

semiconductor to metal phase change in the GaAs system (Ito 2007). When a multi-anvil apparatus is placed in a 

synchrotron beam line, one can also make use of x-ray diffraction to detect phase changes, enlarging the 

number of phase changes that can be used for pressure calibration. X-ray diffraction can also be used to 

calibrate pressure on the basis of unit cell volume of a phase, when the equation of state of the used phase is 

well known. When phase transitions are quenchable, they can also be used for calibration. The olivine to 

wadsleyite and clino-enstatite to majorite phase transitions are examples of phase transitions used for pressure 

calibration (Ito 2007).

Additional complications arise because there is no absolute pressure scale at high temperatures, which have 

lead to different labs placing different HPHT phase transitions at different pressures. Especially above 20 GPa 

the fact that an absolute pressure scale is not known results in a deviation in pressure calibrations between 

different labs (Keppler and Frost 2005). Calibration curves used at the Bayerisches Geoinstitut are shown in 

figure 3.4. Thought different presses are available, the variations in the applied load – pressure calibrations 

between the different presses are smaller than the errors of the calibration itself, and thus a single calibration 

curve can be used for each apparatus (Keppler and Frost 2005). As is apparent from figure 3.4, the calibration 
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Figure 3.4: Pressure calibration curve for the 1000, 

1200 and 5000 ton presses available at the 

Bayerisches Geoinstitut. Open and closed symbols 

denote the stability of high pressure side and low 

pressure sides of the phase transformation. The 

right light gray area denotes the pressure range only 

attainable in the 5000 ton press.



curves flatten off towards higher applied load, since at higher load more force is put in deforming the gaskets 

because more material is extruded from the octahedral pressure chamber, and pressure generation is thus less 

efficient (Keppler and Frost 2005).

3.2 Transmission electron microscopy

The main analytical device used for obtaining the results presented in this dissertation was the Philips CM20 

FEG transmission electron microscope (TEM). The TEM can both be used as an imaging device, which can image 

the microstructure of the specimen down to the nanometer scale, as well as an analytical device with a 

nanometer scale spatial resolution. This combination of techniques makes it a very powerful and versatile 

instrument. In this part I will go into more detail on the functioning of the TEM.

3.2.1 Sample preparation

To be able to observe the sample under the TEM one needs to thin it to a thickness where it becomes 

transparent to electrons, which means it needs to be thinned from ~ 30 µm, the typical thickness of a thin 

section, down to a thickness of ~ 100 nm. The step of sample preparation is one of most important steps in 

obtaining good data for a TEM study, especially when studying interfaces within materials, since these get 

amorphized preferentially (Malherbe 1994, Barna et al. 1999). Several techniques are available for reducing the 

thickness of a sample, however, all of them use in one way or another a beam of ionized atoms that are 

accelerated to an energy of several keV to tens of keV, after which they strike the sample and ablate material 

from the surface of the sample. In the studies presented in this thesis two methods have been used, using Ar 

ion-milling to thin a prepared thin section to electron transparency and cutting foils with the help of a dual 

beam Focussed Ion Beam / Scanning Electron Microscope (FIB/SEM) device.
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 Figure 3.5: A schematic section through 

the Ar-ion milling vacuum chamber where 

the TEM specimen is thinned to electron 

transparency.



In an Ar ion-milling device the sample is loaded on a stage and lowered into a vacuum chamber. In this vacuum 

there are two Ar ion guns, on opposing sides of the sample. Each gun consists of an anode inside of a cathode 

tube with a small hole in it (figure 3.5). The anode is connected to an Ar supply, and since there is a several kV 

difference between the anode and cathode, Ar is ionized and accelerated through a hole in the cathode tube 

and directed at the specimen. As the accelerated Ar ions hit the surface of the specimen, they sputter the top 

surface layer of atoms away, by which the specimen is thinned. Ion milling usually results in two kinds of 

damage to the specimen, creation of topography on an initially flat surface and secondly the creation of an 

amorphous layer of material on the surface (Barna et al. 1999, Williams and Carter 2009). The first kind of 

damage can be reduced by rotating the sample while thinning and using a low incidence angle of the ion beam 

on the specimen, however due to the geometry of the holder, the lowest incidence angle that can be used for 

thinning in the ion milling device is 12 degrees. Rotation of the specimen reduces the creation of topography 

since the sputtering rate is dependent on the orientation of the incident ion beam relative to the crystal lattice 

of the crystallites in an aggregate (Barna and Menyhard 1994). Rotation of the specimen thus averages out (or 

at least reduces) the orientation dependent sputtering rate. Creation of a damaged or amorphous layer is 

harder to reduce. Typical operating conditions of ion miller are 2 – 5 kV, in this range ionization of the target can 

happen by electron exchange between the incident electron and specimen, and thus modifying the direct 

surface layer of the specimen (Malherbe 1994). As the incident ions impinge on the surface, the ion will lose its 

energy in two different way, either through electron interactions with atoms of the specimen, or by nuclear 

interaction (momentum transfer) with specimen atoms before it finally becomes trapped (implanted) within the 

specimen. Electronic interaction results in the ionization of specimen atoms. Nuclear interaction, or collision, 

between the incident ion and atoms of the specimen result in a momentum or energy transfer from the 

impinging ion to a specimen atom. Momentum transfer sets the atoms of the specimen in motion and leads to 

sputtering of the specimen atoms if the atoms is freed from the surface, or otherwise may lead to a cascade of 

collisions inside the specimen. If the impinging ion transfers enough energy, not a single cascade of collision will 

occur, but a group of atoms will be set simultaneously in motion, a so-called 'spike', which may completely 

amorphize a portion of the lattice (Malherbe 1994). The above mentioned processes are dependent on the 

incident angle, charge, mass and energy of the incident ion, and the properties of the target (Barna and 

Menyhard 1994, Barna et al. 1999, Williams and Carter 2009). The thickness of the damaged or amorphized 

layer thus will also vary with these variables. A higher energy of the incident ion increases penetration depth 

and thus the thickness of the damaged layer, whereas as higher mass of the incident ion decreases it 

penetration depth. A lower incident angle will decrease the thickness, though below an incident angle of 10° the 

dependence on the incidence angle becomes very weak (Barna et al. 1999). A multiply ionized incident ion will 

have a higher energy and thus create a thicker damage layer. Next to this, energy transfer of the incident ion to 

the specimen, may also result in heating of the specimen, which may also damage or modify the specimen, 

cooling therefore is required for some specimens (Williams and Carter 2009).

The dual beam FIB/SEM is a device that has both an electron optical system, serving as scanning electron 
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microprobe, and an ion optical system, serving as focused ion beam, that can be operated simultaneously. Its 

main advantage over conventional Ar ion-milling, is that it can cut thin foils at very precise locations, i.e. 

submicron-level precision. Besides this, the combination of a well focused ion beam and small milling angles 

make it possible to produce thin foils that have nearly flat parallel faces. Preferential thinning of one phase is 

not a major issue in the FIB/SEM as can be the case for Ar ion-milling. In contrast to the ion-milling system 

which usually uses a beam of Ar ions, this kind of system uses a focused beam of Ga ions. The FIB system usually 

has two modes of operation, those being milling with the Ga beam and etch / deposition mode, where the 

interaction of a gas with the Ga ion beam results in the deposition of material, e.g. platinum or gold, or the 

injected gas etches the specimen. The ion beam and electron beam columns are usually at some angle to each 

other, in the FEI Quanta3D FEG system available at the Bayerisches Geoinstitut this is an angle of 52°, which 

simplifies the process of creating thin films for the TEM. During the first step of this process the feature of 

interest is searched for and then a platinum protection cap is deposited upon this feature. After this two wedge 

shaped trenches are cut on either side of the protective cap. Subsequently, the faces of the section that has 

been cut are cleaned from any contamination, and undercuts are made. A needle is then inserted and a physical 

connection is made with platinum between the needle and section. After this the section is cut loose from the 

bulk specimen and transferred to a grid where it is further cleaned and thinned to the desired thickness. Since 

the FIB/SEM also operates with an ion beam, it has the same disadvantage as the Ar ion milling device, in the 

sense that it also creates an amorphous layer on the surface of the section. However, since the operating 
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Figure 3.6 : A schematic overview of the sample 

chamber of the dual beam FIB/SEM.



voltage of the FIB/SEM is 20 – 30 kV, penetration of the Ga ions is much deeper than for Ar ion milling. Different 

studies have shown that the thickness of the amorphous layer in nanometer on either side of the thin film is 

roughly equal to the operating voltage of the ion beam (Mayer et al. 2007). A 30 keV beam, would thus result in 

an amorphous layer 60 nm thick, which would make HRTEM on these specimens impossible. To remove this 

layer, the operating voltage of the ion beam can be lowered towards the final steps of preparation (Mayer et al. 

2007). Another method that has been proposed is to perform the final step of creating a thin film in an Ar ion-

milling device, where it is easier to produce very thin foils then in an FIB/SEM (Miyajima et al. 2010). 

3.2.2 Basic principles of the TEM

The limit of detail that is visible in an optical microscope, also called the resolving power, was first studied by 

Ernst Abbe (1873), the founder together with Carl Zeiss of the Carl Zeiss company, probably most well known for 

its optical systems. The resolving power of a microscope can be approximated by (Hawkes 1972): 

d =k


n0sin0
(3.3)

where k is a geometric factor somewhere between 0.6 – 0.8, λ is the wavelength of the light employed and n0 is 

the refractive index of the medium between the specimen and objective lense and θ0 the maximum angle of the 

rays leaving the specimen that pass through the objective lens to contribute to the image, the product in the 

denominator is also called the numerical aperture. This means that the smallest detail we can see using a 

normal optical microscope is in the order of 200 nm, for a numerical aperature of 1.4. To obtain a higher 

resolving power, one thus need to either increase the numerical aperture or use a particle which has a smaller 

wavelength. Increasing the numerical aperture further is difficult, since the most non-corrosive immersion 

liquids have a refraction index smaller than 1.8, current day research grade microscopes have a numerical 

aperture of 1.4 – 1.5. 

The problems in increasing the resolving power using electromagnetic radiation prompted Knoll and Ruska 

(1932) to develop a microscope not based upon electromagnetic radiation, but upon accelerated electrons. 

Louis de Broglie introduced in his 1925 doctoral thesis the concept of wave-particle duality, i.e. that with every 

moving particle a wave can be associated of which the phase moves through space faster than the speed of 

light, where he relates the wavelength λ of a particle to its momentum p, λ = h / p, where h is Planck's constant. 

The wavelength of accelerated electrons can thus described by:

= h
2m0e V r

1/2 (3.4a)

Where m0 is the rest mass of an electron, e the charge of an electron and Vr is the 'relativistic accelerating 

voltage', i.e. the energy of the electron corrected for relativistic effect, which are significant in a TEM:

V r=V 0 e
2m0c

2 V 0
2

(3.4b)

Where V0 is the acceleration voltage and c the speed of light. Typical operating conditions for TEM are 80 kV to 
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200 kV (though high voltage TEMs go up to 3 MeV), which would thus correspond to a wavelength of 4.2 pm 

and 2.5 pm respectively. To compare, the radius of a silicon atom is 111 pm (1.1 Å). 

Since high energy electrons cannot be focused by glass lenses (they would be absorbed and backscattered like 

in the case of bulk samples), magnetic lenses are used in a TEM. Those lenses consist of a hollow cylindrically 

symmetric soft magnetic core, i.e. the core is easily magnetized and demagnetized, surrounded by a copper coil 

which generates a radially symmetric magnetic field when a current flows through it. The objective lens is the 

most important and complicated lens in the TEM since it produces the image and diffraction pattern, which the 

other image forming lenses merely magnify (Williams and Carter 2009). 

3.2.3 Elastic scattering within the specimen

As the electrons enter the specimen they will interact with the electrostatic potential of the specimen lattice, 

resulting in elastic scattering of the incident electrons. This kind of scattering is associated with only a negligible 

loss of energy of the incident electron beam. The other kind of scattering, inelastic scattering, where there is a 

significant transfer of energy between the involved particles is giving another kind of information, and is treated 

later. The TEM has four different modes of imaging:

• Diffraction mode

• Amplitude contrast imaging (BD/DF mode)

• High resolution mode (HRTEM)

• STEM mode

In diffraction mode an image of the back-focal plane of the objective lens is produced on the imaging plane. In 

the case that the incident electron beam is illuminating the specimen parallel, the image produced will consist 

of a pattern of spots. Each such a spot corresponds to a beam that is refracted from a plane that (nearly) 

satisfies the Bragg condition:

n=2 d sinB (3.5)

where n is an integer, d is the spacing of the refracting lattice planes and θB is the refraction angle (know as 

Bragg's angle). The diffraction pattern is defined by the intersection of the reciprocal lattice and the Ewald 

sphere, which can be shown to be a geometrical reconstruction of the Bragg conditions.

Amplitude contrast imaging can be done by either selecting the direct beam or one of the diffracted beams by 

the use of an objective aperture. In the former case it is called bright field (BF) imaging, in the latter case dark 

field (DF) imaging. The names originate from the fact that in DF imaging, holes in the foil appear black and the 

picture is generally darker than for BF imaging. These two imaging techniques can be used to image strain fields 

within crystals. Strain is defined by the displacement of an atom from its position that would be expected from 

the ordinary periodicity of the crystal. Causes of such a strain field can be dislocations, planar defects or other 

imperfections in the crystal lattice. 
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The distortion of the lattice around a dislocation core may alter the lattice in such a way that diffracted beams 

that are in the undistorted lattice not excited, become exited in the distorted lattice. The displacement field 

around a dislocation core for an isotropic solid is given by (Williams and Carter 2009):

R= 1
2 b 1

4 1−
{beb×u 2 1−2 ln rcos2} (3.6)

where be is the edge component of the burgers vector, ν Poisson's ratio and r and φ are the spherical 

coordinates along the dislocation line. The Howie-Whelan (HW) equations, the equations that describe the 

intensity of the direct and diffracted beam and thus the contrast in amplitude contrast images, can be modified 

to include a lattice distortion (Williams and Carter 2009):

d  g

dz
=

 i
0

 g
 i
g

exp[ −2 i sz g⋅R] (3.7)

where g is the diffracted beam used to image. The only difference to the HW-equations for an undistorted 

lattice is the additional g∙R term, and thus only a change in contrast will be observed when the scalar product of 

the diffraction vector and displacement field will be non-zero. If the displacement field is the one corresponding 

to a pure screw dislocation R reduces to R = bφ / 2π. The dislocation for a screw dislocation will thus not be 

visible is the Burgers vector is perpendicular to the diffracted beam. In the case of a pure edge dislocation we 

need the complete form of 3.6, so the invisibility criteria become g∙b = 0 and g∙(b x u) = 0. The last term can be 

ascribed to the buckling of lattice planes perpendicular to both the Burgers vector and dislocation line (Williams 

and Carter 2009). Using dark field imaging, one can thus determine the Burgers vector and slip system of the 

studied phase. 

Another type of defects are planar defects. Examples are stacking faults, anti-phase domain boundaries and 

grain boundaries. Again one can use a displacement vector R to describe the translation of the lattice over the 

planar defect, a point rn corresponds on the other side of the planar fault to the point rn' = rn + R. Since R on 

either side of the planar defect is independent of z, equation 3.7 comes down to adding a phase term to Howie-

Whelan equations for the diffracted beam, which can be written as eiα; where α = 2πg∙R. Again, no change will 

be visible when α = 0. When α ≠ 0, there will be a change in contrast depending on the depth of the planar 

defect. In the case of an inclined planar defect, light and dark fringes will be visible, since one needs to integrate 

3.7 over the amount of foil under the planar defect. Similarly to dislocations, one can determine the 

displacement vector by a more detailed investigation of the fringes with different g∙R conditions.

Bright field, dark field and weak beam dark field imaging are all amplitude contrast imaging techniques, which 

is one of the two main imaging modes of the TEM, as already explained. The other imaging mode is phase 

contrast imaging, where the contrast in the image is caused by interference of multiple beams. To do so, one 

uses an aperture if the back focal plane of the objective lens to let some of the diffracted beams pass through 

and block the others. When one selects a 2D array of diffracted beams in the objective aperture, a phase 

contrast image will be formed with a two dimensional structure. The image formed in HRTEM images can be 
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expressed as the product of several contributions. The first one being the specimen function describing how the 

specimen interacts with the incident electron beam and what wave function of the electron beam is after they 

emerge from the specimen. The other contributions arise because of the electron optical system and its main 

components are those from the apertures, attenuation of the wave in the lens and aberration of the lens from a 

perfect lens (Williams and Carter 2009). The image one observes in the end can be written as a convolution of 

these contributions:

gr=∫ f r ' h r−r ' d r '= f r∗h r (3.8)

where f is the specimen function and h is the function describing the electron optical system, the * denotes the 

convolution f with h. The convolution can be written as the product of the Fourier transform of the functions 

that are convolved together. If we break down h into the contributions mentioned above one can write:

G u= A u EuB u F u (3.9)

where A is the Fourier transform of the aperture function, E the Fourier transform of the envelope (attenuation) 

function, B the fourier transform of the aberration function, F the Fourier transform of the specimen function an 

u a reciprocal lattice vector. Equation 3.9 decribes how the detail on a certain scale (u) is affected by the 

electron optical system. The specimen function can be written in the phase object approximation (POA), which 

holds for thin specimens and when absorption can be neglected (Spence 2009, Williams and Carter 2009):

f r=exp −i V pr  (3.10)

where Vp is the projected electrostatic potential of the lattice parallel to the x-y plane (perpendicular to the 

incident electron beam) and σ = π/λE the interaction constant. The specimen function is thus directly related to 

the (projected) electrostatic potential inside the specimen itself. 
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Figure 3.7 :Lattice fringes in enstatite. 

The dominant structure visible are 

lattice fringes related to the 18.2 Å 

lattice repeat ((1 0 0) plane spacings). 

Stacking faults run from the top left to 

the bottom right.



The final mode is the scanning transmission electron microscope (STEM) mode. In this mode the electron 

optical system creates a condensed probe which scans the specimen, similar to in an SEM. For every pixel the 

intensity of either the direct beam (bright field STEM) or diffracted beams (dark field STEM) are measured using 

an angular detector. In this way the image is build by scanning over the specimen with the condensed beam. 

This mode has been used to measure the diffusion profiles presented in chapter 4. 

3.2.4 Inelastic scattering – Energy dispersive spectroscopy

Al already stated, the other type of interaction between high energy incident electrons and the atoms of the 

specimen is inelastic scattering. The main difference between elastic scattering and inelastic scattering is that 

the latter one involves a significant amount of energy transfer from the incident electron to the particle with 

which it interacts. 

To get an impression of the importance of the different types of scattering, one can have a look at the 

probability that a particular process will occur and scatters an incident high energy electron, which is given by 

the scattering cross section. An overview of the importance of the different scattering processes is given in 

figure 3.8. 

Inelastic scattering can occur due to energy transfer during electron – atom interactions, electron – electron 

interactions, and interactions with multiple atoms or electrons simultaneously. The first kind of interaction is 

also the cause for elastic scattering, and in a crystal lattice it will result in a sharply peaked distribution of 

scattering directions, called diffraction as described in the previous section. During high angle scattering, 

enough energy can be transferred to the atoms such that the atom is knocked out of its position in the 

specimen lattice, resulting in knock-on or displacement damage within the specimen. (Egerton 1996), a process 

that can lead to complications during the chemical analyses of specimens. In appendix 5.1 a method is described 

to correct for this kind and other kinds of radiation damage. The second kind of interactions, electron – electron 

interactions, results in the transfer of energy from the incident electron to electrons of the scattering atom in 
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Figure 3.8: Scattering cross sections in Al in the case of forward scattering 

(θ = 0°) for different types of electron - specimen interactions. P = 

plasmon scattering, E = elastic scattering, K and L are K and L shell 

ionization and SE is secondary electron generation. Plasmon generation 

and elastic scattering are the dominant scattering processes in the TEM. 

Reproduced from Williams and Carter (2009).



the specimen. The energy transferred in this process can be the result of two kinds of interactions with the 

electrons of an atom:

• If the energy transfer is small, it can be used for intra- and interband electronic transitions in the atom 

being excited, or in the ejection of an outer (valance) electron from the atom (secondary electron). It 

can also lead to the collective oscillation of outer shell electrons of many atoms, a process which is 

called plasmon resonance.

• At higher amounts of transferred energies, i.e. few hundred eV to tens of kEv, inner shell electrons (K, L 

or M) can be excited to a higher unoccupied bound state or to the continuum level, the latter one 

resulting in ionization of the atom. 

The last type of interaction form the basis of two widely used spectroscopic techniques in the TEM, i.e. Electron 

Energy Loss Spectroscopy (EELS) and Energy Dispersive Spectroscopy (EDS), whereby the name of the latter 

refers to the device used to measure the spectra and will be handled in more detail in this section. 

Figure 3.9 shows the physical process which forms the basis for EDS. A high energy electron in the incident 

electron beam passes through the electron cloud of an atom. Due to Coulombic interaction with other electrons 

in the electron cloud, the incident electron gets deflected and transfers a part of its energy to an electron in the 

electron cloud. The latter electron then can get ejected from the atom if the transferred energy is greater than 

the ionization energy of the particular shell. The creation of a hole in the shell represents an excited state of an 

atom, i.e. it is in an energy state higher than its ground state. The atom can get back to its ground state by 
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Figure 3.9: Generation of x-rays by inner shell ionization of a specimen atom. a) A high energy incident electron penetrates the 

electron clouds and passes close to the inner shell electron. b) Coulombic interaction with inner shell electrons causes a change of 

incident electron direction and transfer of energy from the incident electron to the inner shell electron, ejecting the latter one 

from the specimen. c) An electron from a higher shell falls back to fill the electron hole in the inner shell and thereby releasing the 

potential energy as an x-ray.

a cb



moving an electron from one of its higher shells to fill the electron hole, which was created by the interaction 

with the incident high energy electron. Moving an electron from a higher shell to a lower shell results in the 

lowering of the potential energy of the atom. This energy can be released from the atom by either the emission 

of a photon of a characteristic energy or another electron from a higher shell, the released electron is called an 

Auger electron and the transition is called a non-radiative transition. The probability of a radiative (one during 

which a photon is emitted) vs. non-radiative transition is given by the fluorescence yield ω, and for the following 

approximation can be used (Williams and Carter 2009):

=
Z 4

aZ 4 (3.11)

where a is a constant dependent on the shell and Z is the atomic number. The fluorescence yield is thus a strong 

function of atomic number and the intensity of the CKα line is therefore much less intense than that of the 

FeKα. The low probability of a radiative transition for light elements in combination with strong absorption in 

the specimen and detector window of x-rays with low energies makes EDS not the ideal technique to measure 

light elements. In such case, the complimentary technique to analyse light elements is EELS.

Next to characteristic x-ray lines through which elements in the specimen can be uniquely determined, another 

kind of radiation is emitted by the incident high energy electron when it interacts with the specimen, called 

Bremsstrahlung (German for breaking-radiation). Interaction of the incident electron with the electric field of 

the nucleus results in a change of propagation direction of the incident electron. The centripetal acceleration 

that is associated with this change in direction or momentum results in the loss of energy of the incident 

electron, which is emitted as electromagnetic radiation (Egerton 1996). The generated intensity I as function of 

photon energy is given by Kramers (Williams and Carter 2009):
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Figure 3.10: Top-hat filter applied to a 

measured EDS spectrum of 

almandine, applying the top-hat filter 

removes the background but changes 

the shape of the x-ray peaks. 

Quantification of the x-ray peak 

intensity is then done by comparing 

the filtered spectrum to other filtered 

(elemental) reference spectra.



I E =KZ
E0−E

E
(3.12)

where E0 is the energy of the incident electron, E the energy of the emitted Bremsstrahlung, Z the average 

atomic number and K is Kramers' constant, which may itself also be a function of the average atomic number 

(Small et al. 1987). The total spectrum is a sum of the characteristic x-ray lines and the Bremsstrahlung or 

background radiation. 

The bremsstrahlung can be removed from the spectrum by either fitting an equation related to 3.12 or to 

remove the background from the spectrum by a digital filter method. The latter one uses a top-hat filter which 

removes any linear component from the spectrum including the Bremsstrahlung component since the latter 

one is nearly a linear function of energy with minor deviations only at low energies (Reed 1993). If the 

Bremssstrahlung background was stripped using a modified form of 3.12, Gaussian peaks are fitted to the 

characteristic x-ray lines and the area under the peaks gives the intensity of each line. If the filter-fit method is 

used, top-hat filtered reference spectra are used to fit the filtered measured spectra and from this the intensity 

of each characteristic x-ray is determined. For the results presented in this dissertation the background 

modelling in combination with fitting of Gaussian peaks have been used, since the filter-fit methods requires 

good elemental reference spectra that were not available. 

Unless the specimen is very thin, absorption of x-rays in the specimen must be considered, which can be 

expressed by following the equation:

I=
I0

Acosec 
[ 1−e− A t cosec] (3.13)

where I0 is the generated x-ray intensity, μA the mass absorption coefficient for element A in the specimen, ρ 

the mass density, t the thickness of the thin foil and α the take-off angle of the x-rays from the foil to the x-ray 

detector (see figure 3.11). Since foils in the TEM are generally thin and therefore energy loss of the electron 

beam within the foil can be neglected one can write for the concentration of an element:

C A

C R
=k AR⋅f AR⋅

I A

I R

with

(3.14)
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Figure 3.11: Sketch of the sample – detector 

geometry during an EDS measurements. The 

incident electron beam ionizes and excites a 

volume in the TEM foil (dark gray area), which 

emits x-rays when atoms again return to their 

lowest energy state. The angle between the x-

rays reaching the detector and the sample 

surface is called the take-off angle (TOA). Note 

that ion-milled foils don´t have parallel surface 

but are wedge shaped.



f AR=
 A

spec

 R
spec[ 1−exp R

spec t cosec

1−exp A
spec t cosec]

kAR is the Cliff-Lorimer factor for element A using R as ratio element, fAR represents an absorption correction 

factor, IA and IR are the net counts of element A and element R and μspeci is the mass absorption coefficient for 

element i in the specimen, which can be calculated from the mass absorption coefficients in a pure standard j 

(μij):

 i
spec=∑

j
C j i

j
(3.15)

Using as additional constraint that the total concentration should add up to 100%, one can calculate the 

composition for an unknown specimen, if the thickness is known. Though it is possible to determine the 

thickness by EELS, thickness fringes or convergent beam electron diffraction (Williams and Carter 2009), these 

methods are often cumbersome and impractical when it comes down to measuring many points. Van Cappellen 

and Doukhan (1994) proposed to use the net charge of all elements as an alternative constraint to determine 

the thickness of the specimen, or x-ray absorption thickness of the specimen. Using an approximation to 3.14 

they expressed the total charge as function of specimen thickness as a second order polynomial and from this 

they determined the thickness and composition of the specimen at the place of analyses. A program was 

developed during the work on the diffusion study that employs a modified version of their method (see 

appendix 5.2)

A major issue with high pressure phases is their instability under the intense electron beam, which can lead to 

preferential loss of some elements. In this dissertation a method is developed to correct for a change in 

composition due to radiation damage during EDS analyses, and which is described in more detail in appendix 

5.1.

3.2.5 Electron energy loss spectroscopy

A complementary analytical technique to EDS is EELS, where not the produced x-ray intensity is measured, but 

the energy loss of the transmitted electrons. The physical process underlying EELS is the same as the one 

underlying EDS, i.e. inelastic scattering of the incident beam. Since EELS is independent of the fluorescence 

yield of a certain electronic transition, EELS can also be used for light elements, which have a low fluorescence 

yield and where absorption by the specimen and the window in front of the EDS detector may cause problems. 

The fact that low energy losses of the high energy incident beam are more likely than high energy losses, also 

makes EELS a favourable method to determine the concentration of light elements.

The EELS spectrum is usually divided in two parts, a low loss part below ± 50 eV and a core loss spectrum, the 

measured energy loss region above ± 50 eV. The low loss spectrum contains the zero-loss peak, which represent 

the transmitted electrons that did not loose any energy, and is by far the most intense peak in the spectrum. 

The width of the ZLP gives the ultimate resolution of the analyses. The peak after the ZLP and usually located 

somewhere between 5 and 35 eV energy loss is the plasmon peak. High energy electrons penetrating the 
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specimen induce collective oscillations of the outer shell electrons of the specimen, so called plasmons, which 

give rise to the plasmon peak. The shape of the plasmon peak is controlled among others by the type of 

bonding and can be used for phase identification (Egerton 2009, Williams and Carter 2009). 

Figure 3.12 shows the features of a typical core-loss spectrum. The shape of an edge when without any 

contributions of bonding, unfilled higher states and background of previous edges would look like (A), a sharp 

increase at the ionization edge energy followed by a long tail which can be approximated by a power-law decay 

in intensity after the ionization edge. In (B) the background is added to this ionization edge, which is the sum of 

the tails of previous edges and the plasmon peak, and can thus also be approximated by a power-law function 

(Egerton 1996). If the core-level electron is ejected from its shell, but did not gain enough energy to get into the 

vacuum level, it will end up in some unfilled state above the Fermi level, but still bound to the nucleus by 

Coulomb forces. The probability that an electron will go to a certain state within an associated energy range is 

dependent on the number of states in this energy range, and is thus given by the Density Of States (DOS) of the 

system. This will give rise to additional spectral structure upon the background and ionization edge (C), the 

Energy-Loss Near-Edge Structure (ELNES) up to 30-50 eV after the onset of the ionization edge and Extended 

Energy-Loss Fine structure (EXELFS) beyond there (D). In the case that these empty states are well defined 

empty states (in the sense of their energy), they will give rise to peaks, or white lines, on top of the ionization 
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Figure 3.12:The structure of core loss spectra. a) The shape of hydrogenetic absorption edge. b) The hydrogenetic is superimposed 

on the tail of other absorption edges and the plasmon peak, due to plural-scattering. c) When electrons can be exited to bound 

unoccupied states, this leads to the superposition of white lines on top of the absorption edge, the ELNES structure. d) Beyond 

the ELNES structure is the EXELFS structure. Modified after Williams and Carter (2009).
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edge, which can give valuable information on for example the bond type or oxidation state (Egerton 1996, 

Williams and Carter 2009).

In this dissertation EELS has been used to determine the oxidation state of iron in garnet. Van Aken et al. (1998) 

and Van Aken and Liebscher (2002) used the shape of the FeL2,3 edge to determine the ferric / ferrous in 

different minerals of known ferric/ferrous iron ratio, and produced a universal curve to determine the 

ferric/ferrous iron ratio in unknown minerals. The FeL3 edge at 707.8 eV consists of several white lines, of which 

the most prominent are one at 707.8 eV and one at 709.5 eV. The latter one becomes more intense with 

increasing Fe3+ content. A similar behaviour is seen for the FeL2 edge, which also consist of multiple peaks, of 

which the ones at 720 eV and 721.5 eV react most strongly to the Fe3+ content, the latter one becoming more 

intense with increasing Fe3+ content. Van Aken et al. (1998) used the integrated intensity ratio in two energy 

windows at 708.5 – 710.5 eV and 719.7 – 721.7 eV to produce a universal curve from which one can determine the 

Fe3+ / Fe2+ ratio using the same method. To correct for transitions to the continuum state, they fit a double 

arctan function to the regions outside of the edge after the power-law background has been removed:

f  E =
h1


⋅[ arctan 
w1

 E−E1

2 ] h2


⋅[ arctan 

w2
 E−E2 


2 ] (3.16)

where h1 and h2 are the heights of the peaks, w1 and w2 the widths of the continuum transition, ΔE the energy 

lost and E1 = 708.65 eV and E2 = 721.65 eV the positions of the continuum transitions.

In specimens that are not very thin, multiple scattering plays an important role, and therefore the measured 

core-loss spectra are a convolution of the single scattering core-loss spectra, i.e. the detected electron only lost 

energy by a single inner shell scattering event, and the low-loss spectra since the low energy loss scattering 

events are most likely to occur. For good quantification of the Fe3+/Fe2+ ratio in the specimen the multiple 

scattering effect needs to be removed, or deconvolved. This can be achieved by using the Fourier-ratio 

technique (Egerton 1996): 

k 1=I0 jk  / jl   (3.17)

where k1(ν) is the Fourier transform of the single-scattering core-loss spectrum, I0 the intensity of the zero-loss 

peak, jk(ν) the Fourier transform of the measured core-loss spectrum and jl(ν) the Fourier transform of the low-

loss spectrum. Doing this, however, is not straight forward and requires additional treatment of the spectra 

which is beyond the scope of this dissertation but can be found in more detail in Egerton (1996).

3.3 The electron microprobe

Chemical characterization on the sample scale of the recovered samples was done by electron microprobe 

analysis (EMPA) using wavelength dispersive spectroscopy (WDS). The electron microprobe is an electron 

microscope like the TEM. The main differences are that it works on bulk samples, i.e. the sample is not 

transparent to electrons, and the electron optical system therefore consists only of a set of condenser and 

objective lenses that focus the electron beam on the sample. The operating voltage of an electron microprobe is 
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usually in the range of 10 – 30 kV, as compared to > 80 kV for TEMs.

Chemical analyses by the electron microprobe are based upon the same principle as chemical analyses using 

EDS on the TEM, i.e. inner shell ionization of the specimen atoms by the incoming high energy electrons and 

de-excitation of the excited atom by the emission of a photon. The Jeol JXA-8200 electron microprobe at the 

Bayerisches Geoinstut is equipped with 5 wavelength dispersive spectrometers. In the WDS spectrometer 

(figure 3.13), x-rays of a desired energy are reflected by a crystal towards the proportional gas counter, which 

converts the incoming x-rays to voltage pulses which in turn are converted by the single channel analyzer to 

voltage pulses that can be counted by a computer system. The crystal ensures that the only x-ray with a 

predefined energy / wavelength are reflected, those for which Bragg's law is fulfilled. The main difference with 

the EDS system to the user is that, for the user, the EDS system obtains the complete spectrum in parallel, 

whereas the WDS system only collects the x-ray intensity at specified energies and it is a serial way of 

measuring x-ray intensity (one position at a time). 

Since with EMPA bulk samples are measured, matrix effects play a more important role than for EDS 

measurements on the TEM. Matrix corrections for EMPA are usually done by the ZAF method, where the weight 

fraction of element i relative to a standard is expressed as:

C i
u

Ci
s=[ZAF ]i

I i
u

I i
s (3.18)

where the superscript u designates the unknown, the superscript s the standard, I the measured x-ray intensity 

of elements i using a characteristic peak and ZAF the matrix correction factor, where Z is the atomic number 

effect, A the absorption correction and F fluorescence correction.
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Figure 3.13: A schematic overview of the basic parts of the electron 

microprobe. The cross over directly below the electron gun acts a source 

image for the two condenser lenses and objective lens that produce a 

demagnified image/spot of it at the specimen. Interaction of the electron 

beam with the specimen then results in the production of x-rays (gray 

beam emerging from the specimen) that are detected by the WDS 

detector consisting of a detector crystal and a proportional gas counter. 



Whereas in a TEM foil the energy loss of the incident electron is insignificant, in a bulk foil this plays an 

important role and is dependent on the average atomic number. Moreover, a significant portion of the incident 

are backscattered out of the sample before they loose all their energy. These two corrections are contained in 

the atomic number correction. The atomic number correction can be calculated from the individual correction 

for stopping power and backscattering (Goldstein et al. 2003), or as a φ(ρz)-curve that expresses the generation 

of x-rays (φ) as function depth (z) x density (Pouchou and Pichoir 1984, Bastin et al. 1998). Absorption of x-rays 

traversing a distance t in the specimen can be calculated by: 

I
I0

=exp [− / t ] (3.19)

where μ is the mass attenuation coefficient and ρ the density. This expression can be integrated in a simplified 

analytical expression or in the φ(ρz)-curve method (Duncumb 1994, Goldstein et al. 2003). For most samples the 

fluorescence correction is only minor (Duncumb 1994). 

The spot size and the interaction volume are the two most important factors controlling the spatial resolution 
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Figure 3.14: Combined effect of the beam 

diameter and interaction volume on the 

spatial resolution of EMPA on pyrope using 

an acceleration voltage of 15 kV, determined 

using Monte Carlo modelling. a) The radial 

distribution of x-rays produced in the 

interaction volume that are detected by the 

detector for a beam diameter of 10 nm (FEG 

electron source) and 500 nm (thermionic 

electron source).b) The spreading of a step 

change in concentration over a range due to 

the above mentioned effect. It shows that at 

15 kV, the resolution of EMPA is about 1 - 2 

µm with only a small dependence on spot 

size.

a

b



of the EMPA. The intensity distribution of the probe is usually assumed to be Gaussian in nature (Goldstein et al. 

2003) and the spot size is then defined as the FWHM of the intensity distribution. The spot size is controlled by 

the electron source (thermionic, LaB6 or FEG in order of decreasing spot size) and the lens aberrations of the 

electron optical system. In bulk specimens the incident electrons are scattered until they are backscattered 

from the surface or until they have deposited all their energy in the bulk specimen. The scattering in the bulk 

specimen causes spreading of the electron beam into a pear shaped volume in which it interacts with the 

specimen, the interaction volume. Because of this, the spatial resolution of EMPA is limited to about 1 μm more 

or less independent of the spot width, which is illustrated in figure 3.14. Therefore the very short diffusion 

profiles in the diffusion experiments presented in this dissertation cannot be measured by EMPA. Profiles in the 

micrometer range measured by EMPA should be corrected for this by deconvolution of the measured profiles or 

convolving the modelled profile with a function that simulates the effect of the finite interaction volume and 

beam size (Ganguly et al. 1988).
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Chapter 4: Numerical modeling of diffusion phenomena
In order to model and fit diffusion profiles in several geometries (planar, cylindrical and spherical) programs 

have been developed which solve the required partial differential equations, using an implicit finite difference 

scheme. Discretization of the partial differential equations using a finite difference scheme is done by a Taylor 

series expansion on a grid with a distance of Δx between each node:

f in= f i∑
j=1

∞ n x  j

j !
∂ j f
∂ x j

(4.1)

where fi denotes the value of function f at node i. Using combinations of (truncated) Taylor series expansion one 

can replace partial differential equations by their finite difference approximations, leading to a set of linear 

equations that can be solved with the use of linear algebra codes. The exact codes are described in more detail 

below.

4.1 Planar 1-D multi-component diffusion

A computer program (mcdiff) was developed to fit the diffusion profiles measured. The program employs an 

implicit finite difference scheme to solve the general 1-D multi-component diffusion equation:

∂C i
∂ t

=∑
j=1

n−1 ∂C j

∂ x
⋅
∂Dij
∂ x

Dij
∂2C j

∂ x2
(4.2)

The last profile is calculated from charge balance. This equation is discretized in the following way:
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where 
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= t
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Dij
kn = Dij

k1n − Dij
k−1n

In these equations k is the node (spatial discretization), n is the time step (temporal discretization) and i and j 

are indices for the diffusing components. Equation 4.3 forms a set of linear equations that can be solved using 

standard methods, for example available in the LAPACK package (Anderson et al. 1999). The matrix of diffusion 

coefficients is calculated by iterating every time step till it converges to a stable value, before going to the next 

time step. The code has been tested against an analytical solution for the standard diffusion equation with a 

constant diffusion coefficient.
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The numerical scheme has been tested against an analytical solution for a semi-infinite half space problem with 

a constant boundary concentration C0 and an initial concentration profile of C(t=0) = 0 (Crank 1980): 

C=C0erfc x
2Dt  (4.4)

where x is the spatial coordinate, D is the diffusion coefficient, t time and erfc is the complementary error 

function erfc x = 1 – erf x. As figure 4.1 shows, the error is smaller than 0.0015 on a total range of 1.0, which 

corresponds to an error of less than 0.15%. The error can be further reduced by taking a finer grid or take 

smaller time steps.

The program allows for different diffusion models to be used, by calculating the matrix of diffusion coefficients 

using the relations corresponding to each diffusion model. Currently four models are supported:(1) the most 

simple diffusion model with constant diffusion coefficients independent of composition and all off-diagonal 

elements of D equal to zero, (2) the  diffusion model of Lasaga (1979) for ideal solutions, (3) the diffusion model 

of Lasaga (1979) using a symmetric non-ideal solution described by Margules parameters and (4) the diffusion 

model by Loomis (1978) for an ideal solution. The program also has options to modify the tracer diffusion 

coefficients used in the different diffusion models to model the diffusivity dependence of elements on other 

elements that can have multiple valence states, for example iron. Following Mackwell et al. (2005) the following 

equation is used to model this:

Di
0=Di

0k1Cmv
k 2 e−k3Cmv (4.5)

where k1, k2 and k3 are adjustable parameters for the model and Cmv is the concentration of the multi-valent ion. 

Next to this a different kind of compositional dependence can also be modelled, according to the following 

equation:
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Figure 4.1: The results of the numerical 

vs. analytical solution for the multi-

component diffusion program mcdiff. 

The analytical solution is not visible 

since it overlaps with the numerical 

solution at the scale of the figure. The 

difference between the two is plotted 

on the right y-axis.  The difference 

between the analytical and numerical 

solution is less than 0.15%. Simulation 

conditions: grid spacing dx = 0.005, 

time step 0.01, time interval 0 – 1, 

diffusion coefficient 0.01.



Di
0=Di

01∑
j=1

n

k ijC j (4.6)

where kij are adjustable parameters.

A second program (mcfitter) was developed to fit the measured diffusion profiles to calculated profiles. The 

program uses the routines in the mcdiff program to calculate a profile and then to fit this profile to measured 

profiles. It allows for fitting the tracer diffusivities used in the diffusion models, initial compositions and the 

adjustable parameters in equation 4.5. A gap in the diffusion profile can also be fitted, as well as a shift in the 

profile to fit the initial interface. The profiles are simultaneously fitted by minimizing the χ2 value defined by:

2=∑
i=1

k

∑
i=1

l  Oij−M ij
e ij 

2 (4.7)

where k is the number of components, l the number of measurements, Oij is the measured concentration of 

component i in measurement j, Mij is the modelled concentration of component i in measurement j and eij is the 

error in the measurement of component i in measurement j.  The minimization is done using the Levenberg – 

Marquardt method contained in the MINPACK fortran software routine package1.

The errors on the fitted parameters are calculated using the bootstrap method (Efron and Tibshirani 1994) 

which is a resampling method to calculate errors on fitted parameters. After the profiles have been fitted, the 

residuals are calculated and scaled to their measurement error. New 'pseudo-profiles' are then calculated using 

the fitted profile and the residuals by random sampling the scaled residuals and adding this to fitted values of 

the measured profiles. The 'pseudo-profiles' are then again fitted to obtain the 'pseudo-parameters'. This was 

repeated for 5000 'pseudo-profiles' and the errors in the fitted parameters are then determined by finding the 

symmetric interval around the originally fitted parameters that encompasses 90% (for the 90% confidence 

interval) of the fitted 'pseudo-parameters'.  

1 http://www.netlib.org/minpack/
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Figure 4.2: The results of the numerical 

vs. analytical solution for the 3D 

spherical radially symmetric diffusion 

program raddiff. The analytical 

solution is not visible since it overlaps 

with the numerical solution at the 

scale of the figure. The difference 

between the two is plotted on the 

right y-axis.  The absolute error 

(difference between numerical and 

analytical solution) is less than 

0.0002% for the steady state solution. 

Simulation conditions: grid spacing dr 

= 0.005, time step 0.01, time interval 0 

– 100, diffusion coefficient 0.01.



4.2 Diffusion in a spherical or cylindrical geometry

To model diffusion in a grain and diffusion controlled growth of a grain or needle a finite difference model was 

used. The basic equation that governs diffusion in a spherical and cylindrical geometry assuming a constant 

diffusion coefficient D is given by (Crank 1980):

∂C
∂ t =Dnr ∂C

∂ r ∂2C
∂r2  (4.8)

where C is the concentration, r the radius from the centre, t time, D the diffusion coefficient, and n = 1 for a 

cylindrical geometry and n = 2 for a spherical geometry. Equation 4.8 has been discretized using a fully implicit 

scheme:

C i
k=− 1 r n

2r i C i1k11− 2 r C ik1− 1 r− n
2 r iC i−1k1

With = D t
 r

(4.9)

where k is the time index, i the spatial index, Δr the distance between two nodes, and Δt the time step for 

temporal discretization. Equation 4.9 describes a tridiagonal linear system and can be solved using standard 

methods included in the LAPACK software library for example. 

The code has been tested against a steady state analytical solution for a hollow sphere and hollow cylinder, 

which are respectively given by (Crank 1980):

C=
aC1 b−rbC2 r−a

r b−a 
(4.10)

and 

C=
C1 ln b /rC2 ln r /a

ln b/a
(4.11)

where r is the radial distance from the centre of the sphere/cylinder, C1 is the concentration on the inside 

surface, C2 the concentration on the outside surface, a the radial distance from the centre of the sphere or 

cylinder to the inside surface and b the radial distance from the centre of the sphere/cylinder to the outer 

surface. Figure 4.2 shows the result for the spherical geometry, the error is less than 0.0002% for the steady 

state solution. For the cylindrical solution the error is less than 0.002% in the case of the steady state solution 

(see figure 4.3).

Grain growth (or shrinkage) was modelled by dividing the domain into three parts; the internal part, the 

boundary and the external part (figure 4.4). The internal part corresponds to the grain and for this part equation 

4.9 is solved for every time step. The boundary has a constant concentration, corresponding to the composition 

of the internal phase when in equilibrium with the external phase, and its position determines the size of the 

external and internal parts. The external part corresponds to the external phase and also has a constant 

concentration, not necessarily equal to the boundary concentration. Since the boundary concentration is 
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different from the concentration of the internal part, material will flow in or out of the grain. The total flux of 

material that has flown in/out off the grain is determined after every time step by integration of the 

concentration profile over the complete grain, taking into account the proper geometry. The boundary position 

is then updated for the next time step based on the total flux of material that has flown in/out of the grain (Mint) 

and the concentration or density of material in the external part (ρext): 

 V grain=
M int−M 0

ext
(4.12)

M0 is the starting concentration of material in the grain. In the case of grain growth, the composition of the new 

nodal points in the internal part is set to the boundary composition. 

The growth of the grain can be stopped after a certain amount of material has flown into the grain. The 

boundary position is kept constant after this point has reached. To stop material from flowing in or out of the 
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Figure 4.3 : The results of the 

numerical vs. analytical solution for 

the 3D cylindirical radially symmetric 

diffusion program raddiff. The 

analytical solution is not visible since it 

overlaps with the numerical solution 

at the scale of the figure. The 

difference between the two is plotted 

on the right y-axis. The absolute error 

is less than 0.002% for the steady 

state solution. Simulation conditions: 

grid spacing dr = 0.005, time step 0.01, 

time interval 0 – 100, diffusion 

coefficient 0.01.

Figure 4.4 : Sketch of the setup of the 

domain. Solid black circles denote nodal 

points at which the solution is 

calculated. In the internal part the 

relevant descretized differential 

equation is solved, whereas the external 

part functions as a kind of reservoir to 

accommodate grain growth or 

shrinkage. The position of the boundary 

is calculated by determining the amount 

of material at flowed into the internal 

part.



grain, the boundary flux is forced to be zero using a Neumann boundary condition:

Cb
k1−Cb−1

k1=0 (4.13)

where b is the boundary node.  In the case that the internal part contains the first node, also a Neumann type 

boundary condition was used for the first node.
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Chapter 5: Diffusion of the majorite component in garnet

5.1 Introduction

Majorite is a high pressure polymorph of enstatite (Mg2Si2O6) and forms a solid solution with the other garnets 

in Earth's mantle. Garnet with a large majorite component, so called majoritic garnet, is thought to constitute 

up to 40 - 60 volume % of the Earth's transition zone (Bass and Parise 2008, Frost 2008), whereas subducted 

oceanic crust might contain up to 80 volume % majoritic garnet in the transition zone (Irifune and Ringwood 

1993). Also, the recognition of pyroxene lamellae and needles within garnet with a clear topotaxial relationship 

as being the products of exsolution from majoritic garnets (Song et al. 2004, Scambelluri et al. 2008, van 

Roermund 2009), refocused the interest of the scientific community to the solubility of the majorite component 

in garnet. Different studies have shown that the solubility of the majorite component in garnet   increases with 

increasing pressure (Akaogi and Akimoto 1977, Gasparik 2003), which is the reason why majoritic garnet is an 

important phase in Earth's transition zone. A subducting (oceanic) slab should thus dissolve its (clino)pyroxene 

into garnet, by a mechanism which under dry conditions is probably diffusion controlled. The preservation of 

exsolved pyroxene lamellae from earlier events as well as lack of new precipitates after a UHP metamorphic 

event, as in the case of the Western Gneiss Region (Scambelluri et al. 2008, van Roermund 2009), might thus 

give important information on the duration of this UHP metamorphic event, provided that the diffusivity and 

solubility of the majorite component in garnet at the relevant conditions is known. As the subducting slab 

descends deeper into the mantle, diffusion of the majorite component into garnet will also be an important 

factor in the thermodynamic equilibration of the slab. However, the mass transport properties of majoritic 

garnet and especially diffusion properties of the majorite component in garnet at high pressure are not well 

constrained. Therefore diffusion experiments have been conducted at transition zone conditions to determine 

the diffusivity of the majorite component in garnet as function of temperature, pressure and also composition.

5.1.1 Diffusion in minerals

In the absence of a fluid phase, volume diffusion is the main mechanism to reduce concentration gradients and 

to equilibrate mineral assemblages in the solid earth. The diffusivity of components in minerals is thus an 

important factor controlling the rate at which mineral assemblages equilibrate and diffusion profiles have 

therefore been used to place constraints on the rate at which geological processes occur in the Earth (Lasaga 

and Jiang 1995, Chakraborty 2008). Garnets, as one of the important minerals found on the surface of the Earth, 

has been in the focus of several diffusion studies (Elphick et al. 1985, Loomis et al. 1985, Chakraborty and 

Ganguly 1992, Chakraborty and Rubie 1996). However, the application of these data was directed towards the 

interpretation of diffusion profiles that developed in garnet during a metamorphic event, and therefore the 

pressure range at which these studies were done was limited to below 4 GPa, with one point at 8.5 GPa by 

Chakraborty and Rubie (1996). For the same reason, the above mentioned studies only focused on the 

diffusivity of divalent cations, that occupy the dodecahedral site in garnet. The study presented here 
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investigates the diffusion at higher pressure conditions, as well as the diffusivity of the majorite component, 

which involves diffusion of divalent, trivalent and tetravalent ions occupying both the dodecahedral and 

octahedral sites.  

Since the experiments presented here involve diffusion of more than one component, the profiles are treated as 

multi-component diffusion profiles. The general one dimensional form for a n-component system is:

∂C i

∂ t
=∑

i

n−1 ∂
∂ x Dij

∂C j

∂ x  (5.1)

where Ci is the concentration of component i, t time, x the spatial coordinate and D is a (n – 1) x (n – 1) matrix of 

diffusion coefficients, which makes it a system of coupled partial differential equations. The off-diagonal 

elements in D represent the influence of one diffusing component on the other. The last component (Cn) is 

calculated from charge balance. The matrix D is calculated using either the ideal multi-component model of 

Lasaga (1979) or, if from visual inspection there was no reason to think that there is a compositional 

dependence of the diffusion coefficient, constant diffusion coefficients were used, where the off-diagonal 

elements of D were set to zero, effectively reducing 5.1 to:

∂C i

∂t
= ∂

∂ x Di
∂C i

∂ x  (5.2)

In the case that the diffusion model with constant parameters did not give a satisfactory fit, the model of 

Lasaga (1979) for ideal ionic (solid) solutions was used:

Dij=Di
0ij−

Di
0 zi z j

∑
k=1

n

z k
2c k D k

0
⋅D j

0−Dn
0

(5.3)

where D0
i is the tracer diffusivity of component i, i.e. when component i would diffuse independently from all 

other components, δij is Kronecker's delta (  δij = 1 if i = j, otherwise zero) and zi the charge of component i. In the 

case of a binary system, equation 5.1 reduces to 5.2 with D1 given by:

D1=
D0
0D1

0

X 0D0
0X 1D1

0 (5.4)

where X0 and X1 are the cationic mole fractions (X0 = C0 / (C0 + C1)). This model was already successfully used by 

Chakraborty and Ganguly (1992) to model multi-component diffusion profiles in garnets. The modelling and 

fitting of the diffusion profiles was done by two programs that were developed, mcdiff and mcfitter, that solve 

equation 4.1 and allows for different models for the calculations of the D matrix. A more detailed explanation of 

the programs was given in chapter 4.

One of the objectives of this study is, next to determining  the actual diffusion coefficients themselves, to 

determine the activation enthalpy of diffusion ΔH, which is a measure of the temperature dependence of the 

diffusivity of the components. The temperature dependence can be expressed by an Arrhenius style relation:
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ln Di
0 T = lnD ' i

0−
 H
RT

(5.5)

The activation enthalpy for diffusion is determined from the slope in a log D – 1/T plot, which gives a straight 

line.  The pressure dependence, expressed through the activation volume ΔV, can be obtained through the 

standard relation of thermodynamic potentials and leads to: 

lnD i
0= lnD ' i

0−
Δ E+(P−1)ΔV

RT
(5.6)

where ΔE is the activation energy and P pressure in bars, and which also defines a straight line in a log D – (P - 1) 

plot at constant temperature.

5.2 Experimental methods

5.2.1 Starting materials

Three different sets of experiments were conducted with various starting materials, all experiments were 

conducted using the diffusion couple method, i.e. two cylinders of garnet were placed together with their 

polished faces facing each other in a capsule and then annealed at transition zone conditions. The first set of 

experiments was conducted with polished cylinders of synthetic majoritic garnet (composition Py55Mj45) and 

natural pyrope garnet (Py93Alm5Gr2) from the Dora Maira Massif in Italy (Schertl et al. 1991) to determine the 

pyrope – majorite interdiffusivity. Natural almandine garnet (Alm70Py15Gr15) from the Ötztal in Austria together 

with the same majoritic garnet were used in the second set of experiments to determine almandine – majorite 

interdiffusivity. The last set of experiments was a single experiment to determine the pyrope – majorite 

interdiffusivity, the starting materials for this experiment were Dora Maira pyrope garnet and Ötztal almandine 

garnet also used in the other sets of experiments.

The cylinders were mirror-polished on the sides where they contact each other. Before the experiment the ferric 

iron contents have been determined by Mössbauer spectroscopy. The Dora Maira garnet contains no detectable 
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Table 5.1: Composition determined by electron microprobe of the starting materials used in the diffusion experiments

Element Dora Maira garnet Ötztal almandine Majoritic garnet

Wt. % per 12 O Wt. % per 12 O Wt. % per 12 O

MgO 27.88 2.83 3.32 0.39 35.43 3.52

FeO 1.93 0.11 43.37 2.14 0.01 0.00

CaO 0.62 0.05 5.20 0.44 0.00 0.00

MnO 0.04 0.00 0.21 0.01 0.00 0.00

Al2O3 25.04 2.01 21.56 2.01 12.61 0.99

TiO2 0.02 0.00 0.08 0.00 0.04 0.00

SiO2 44.05 3.00 37.83 2.99 52.54 3.50

Total 99.58 8.00 100.57 8.00 100.63 8.01



amount of ferric iron (detection limit 0.5 %) whereas the almandine garnet from Ötztal contains 2 ± 1 % of ferric 

iron. The water contents of Dora Maira pyrope was determined by Lu & Keppler (1997) to be 58 ppm, which 

corresponds to a protonation of 0.02% of the tetrahedral sites assuming that the hydrogarnet substitution is 

the dominant substitution mechanism.

Since majoritic garnet is not commonly found in nature, it was necessary to synthesize it using the multi-anvil 

apparatus. First reagent grade MgO, Al2O3 and SiO2 oxide powders were mixed in a mortar together with 

ethanol to create a suspension. Subsequently the ethanol was evaporated using an infra-red lamp and after this 

the mixed powders were fused in a furnace at 1650 °C. The glass obtained was then crushed and grounded to a 

fine powder under ethanol, after which the ethanol was again evaporated. The powder was then again fused in 

a 1650°C furnace, after which it was crushed again and ground to a fine powder. This powder was then loaded 

into a Pt capsule (inner diameter 0.8 mm, outer diameter 1.2 mm, length 2.2 mm) for synthesizing majoritic 

garnet. Just before the synthesis experiments, the tube with powder was put for 5 minutes in a 1000 °C furnace 

to dry the powder, afterwards it was sealed by putting the Pt tube in a capsule die and pressing it in a bench 

vice. Majoritic garnet was then synthesized in a multi-anvil apparatus using a 10/5 assembly (numbers denote 

octahedron edge length and WC cube truncation edge length, respectively) at 1800 °C and 16 GPa for 8 hours. 

After recovery of the platinum capsule, it was cut into discs of 0.5 mm thickness and a single side was polished.

The grain size of the synthetic majoritic garnet was 5 – 10 μm and the grains were, as far as could be determined 

by TEM, randomly orientated. The cylinders of natural garnet were single crystal, though some of the crystals 

were cracked. The crystal size of the natural garnets was generally bigger than 200 μm. The Dora Maira pyrope 

garnet contained a minor amount of hydrous minerals, which were destroyed before the experiments by 
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Table 5.2: Run conditions of the diffusion experiments. 1Type of diffusion couple: Py – Mj = Dora Maira pyrope – majoritic garnet  
diffusion couple, Py – Alm = Dora Maira pyrope – Ötztal almandine diffusion couple, Alm – Mj = Ötztal almandine – majoritic  
garnet diffusion couple. 2Octahedron edge size / inner anvil truncation size notation

Run number Diffusion 
couple1

Pressure cell2 Pressure Temperature Run duration

H2986 Py - Mj 14/8 15 GPa 1600 °C 4 h

H3050 Py - Mj 14/8 15 GPa 1800 °C 2 h

H3076 Py - Mj 14/8 15 GPa 1500 °C 24 h

H3084 Py - Mj 10/5 20 GPa 1800 °C 20 h

H3086 Py – Alm 14/8 15 GPa 1500 °C 12 h

H3088 Alm - Mj 14/8 15 GPa 1600 °C 7 h

H3106 Py – Mj 14/8 15 GPa 1900 °C 2 h

H3119  Alm - Mj 14/8 15 GPa 1600 °C 4 h

H3201 Py - Mj 14/8 12 GPa 1800 °C 4 h

H3244 Alm - Mj 10/5 15 GPa 1400 °C 24 h

H3257 Py - Mj 10/5 15 GPa 1400 °C 24 h



putting the cylinders in a furnace at 1000 °C for 5 minutes.  After this treatment no peaks of hydrous minerals 

could be found by x-ray diffraction and also inspection by SEM could not identify any hydrous minerals.

5.2.2 Apparatus and pressure cell

The diffusion experiments were carried out in a 1000 ton multi-anvil apparatus at the Bayerisches Geoinstitut in 

Bayreuth. The multi-anvil apparatus used was of the 6/8 split-sphere type (Kawai et al. 1973, Keppler and Frost 

2005), referring to the number of outer and inner anvils and guidie block geometry. The inner anvils consisted of 

8 tungsten carbide cubes with their corners truncated, to form an octahedral shaped pressure chamber in which 

the pressure cell resided. The length of the thermocouple was increased such that the thermocouple junction 

was inside the central heater, the capsule was therefore made smaller than in the standard assembly. The 

diffusion couple was contained within a platinum capsule in the case of the pyrope – majoritic garnet diffusion 

couples and within an iron capsule in case of the almandine – majoritic garnet diffusion couples, the length of 

the capsules was 1.7 mm, the diameter 1.6 mm, and the wall thickness was 0.2 mm. The iron capsule in the 

experiments with almandine should have buffered the oxygen fugacity near the iron-wüstite (IW) buffer. A 

tungsten 3% rhenium  - tungsten 25% rhenium thermocouple was used to measure the temperature, the 

pressure effect on the EMF is unknown and has therefore not been corrected for. To prevent the platinum 

capsule from entering into the thermocouple tube or from reacting with the iron capsule the thermocouple has 

been separated from the capsule with a 25 μm thick rhenium disc in the former case and a 200 μm thick 

densified Al2O3 disc in the latter case.

Before the experiments, the samples were dried in a vacuum oven at 175 °C for 24 hours, after which the 

capsules were pressure sealed as fast as possible in a bench vice. Since the iron capsules oxidized even in a 

vacuum oven, they were not dried but stored in a desiccator with silica gel. After the pressure cell was loaded in 

the multi-anvil apparatus and was pressurized to the desired pressure, increasing the temperature was done at 

a rate of 100 °C / minute, with the last 200 °C in one minute. Quenching was done by cutting of the power, the 

sample was quenched in this way to ~ 100 °C in roughly 10 seconds. Temperature was controlled automatically 

with a Eurotherm controller. For a more detailed account of the calibration of the multi-anvil apparatus the 

reader is referred to chapter 3  or Keppler & Frost (2005). 

5.3 Analytical methods

After recovery of the sample the capsule was cut perpendicular to the contact interface between the two halves 

of the diffusion couple (hereafter referred to as the diffusion interface) and prepared as a 30 µm thick thin 

section. These thin sections were subsequently analysed by a JEOL JXA-8200 electron microprobe to gain 

insight into the length of the diffusion profiles. Since in all cases the diffusion profiles were too short to be 

measured by electron microprobe, the samples were further prepared for TEM. Molybdenum meshes with a 

mesh size of 135 µm were glued with epoxy glue on the thin section after which the sample with mesh was 

separated from the slide by dissolving the crystalbond glue in acetone. The sample was then further milled 

down in an Ar ion-miller at 4.5 keV and 1.0 mA to electron transparency. From experiments H3201 about 250-
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300 nm thick TEM foils were produced with a FEI Quanta 3D FEG dual beam device (FIB/SEM). Diffusion profiles 

were then measured by using a Philips CM20 FEG TEM operating at 200 kV and equipped with an EDS system 

and Noran System Six software. To ensure that the beam direction, and thus excitation volume for EDS analysis, 

was perpendicular to the diffusion gradient, the TEM foil was orientated in such a way that the y-rotation axis of 

the specimen holder was parallel to the orientation of the diffusion interface and the x-axis was perpendicular 

to it. The foil was then rotated around the x-axis by 15°, such that it faces towards the EDS detector. Diffusion 

profiles were measured in STEM mode with a theoretical spot size of 2.2 nm. Since diffusion profiles were 

generally shorter than 400 nm, a circular scanning pattern of 40 nm in diameter was used and the beam was 

underfocused by ± 3.5 µm to reduce beam damage. However, a scanning pattern of 40 nm still resulted in a 

significant amount of beam damage when analysing majoritic garnet,resulting in a low magnesium content and 

relatively high silicon content. Therefore a method was developed to correct for beam damage, which is 

described in more detail in appendix 5.1. Quantification is done by using a modified version of the method 

proposed by Van Cappelen and Doukhan (1994) which is described in more detail in appendix 5.2. 

The garnet component mole fractions are calculated from the elemental compositions using a least squares 

technique. Since Fe has a strong prevalence for the dodecahedral site (O’Neill et al. 1993), it is assumed that the 

Fe-majorite component (FeSiO3) is negligible for the majoritic garnet phase. For the pyrope – majoritic garnet 

analyses, the grossular and almandine components have been taken together as one virtual component 

(Ca+Fe)3Al2SiO3, leading to the following components to be calculated from the elemental compositions:

Mgw(Ca+Fe)xAlySizO12 = a Mg3Al2Si3O12 + b (Ca+Fe)3Al2Si3 + c Mg4Si4O12 

for which the following matrix equation can be written and solved:

 3 0 4
0 3 0
2 2 0
3 3 4

⋅ a
b
c= wxy

z


Accomp=celement

(5.7)

In the case of almandine – majoritic garnet diffusion experiments, a similar expression can be derived.

The errors on the component compositions are calculated using the following formula, which can be obtained 

from the propagation of errors:

M comp=A+⋅M element⋅A+T (5.8)

where Melement is the covariance matrix of the elemental concentrations, where the diagonal elements 

(variances) are the squared errors of the elemental concentrations, which was estimated from the relative error 

of the counting statistics, and the off-diagonal elements were set to zero (zero covariance between elements). 

A+ denotes the Moore – Penrose pseudoinverse of A, and the superscript T denotes the transpose.
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5.4 Results

5.4.1 Characterization of the samples after the experiments

After the samples were recovered, cut perpendicular to the interface and polished, they were characterized by 

SEM / electron microprobe and TEM. The observations showed a microtextural evolution of most of the samples 

during the experiments. In most of the samples recrystallization was observed near the edges of the majoritic 

garnet half. This might have been caused by the shape of the majoritic garnet half of the diffusion couple, which 

is smaller than the almandine or pyrope half and may act as a kind of indenter to the other half during the initial 

stage of cold compression, where the conditions are less hydrostatic. 

Figure 5.1 shows a STEM DF images of one of the recrystallized zones near the edge of the majoritic garnet – 

almandine interface. There is a big difference in the density of dislocations and the average grain size between 

the recrystallized part and the more pristine part. Also a high amount of dislocation arrays forming sub-grain 

boundaries can be seen. During the measurement of diffusion profiles, the regions with a high density of 

dislocations and recrystallization have been avoided. The experiments with iron capsules show a greater 

amount of these zones, which might be related to the higher strength of the iron capsules.

Ion addition to the above mentioned 'deformation zones', another phenomenon can also be observed. Most of 

the diffusion gradients lie within grains after the diffusion experiment. This has been interpreted as being the 

result of topotactic growth of the majoritic garnet grain on the pyrope or the almandine part of the diffusion 

couple (figure 5.2). The driving force for this is possibly the reduction of (surface) energy by reducing the total 

area of grain boundaries. Sometimes growth of the grain towards the almandine or pyrope side is also 

observed, but this might be related to the volume of dislocations in both sides of the diffusion couple, since the 

polycrystalline majoritic side can also accommodate deformation by grain boundary sliding, which is not 

possible in the single crystal pyrope or almandine. The amount of topotactic growth usually increases with 

temperature and the Dora Maira pyrope – majoritic garnet experiments usually show a higher amount of 

topotactic growth than the almandine – majoritic garnet experiment. This might be caused by the greater 

mismatch in lattice parameters between the calcium bearing almandine garnet (a ≈ 11.53  Å) and majoritic 
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Figure 5.1: Microtextural evolution of the majoritic 

garnet – almandine diffusion couple near the edge of 

the majoritic garnet - almandine interface. See text for 

discussion.



garnet (a ≈ 11.47 Å), than between pyrope (a ≈11.46 Å ) and majoritic garnet (Novak and Gibbs 1971, Heinemann 

et al. 1997). However, considering the relatively small width of dry grain boundaries (few nm) compared to the 

length of the diffusion profiles (300 – 500 nm), it is not expected that the motion of the grain boundaries has an 

influence on the determined diffusion coefficients. Moreover, in most samples the motion of the grain 

boundaries was much faster than the diffusion rate, which can be deduced from the length of the diffusion 

profiles and the position of the grain boundary after the diffusion anneal. Therefore, the grain boundary would 

have only been for a short amount of time at the position where actual diffusion between both parts of the 

diffusion couple occur, which makes it even more unlikely that the motion of the grain boundary significantly 
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Figure 5.2: a) Dark-field STEM image of diffusion couple H3257 showing the topotaxic growth of majorite on pyrope. The original 

interface is marked by the dashed black line. Its position could be determined by the location of the diffusion profile and the 

presence of nm-sized inclusion on a linear array at the location of the former boundary. (b) Sketch of the topotaxic growth of 

majoritic garnet on pyrope, the grain boundary on the original interface between both couples migrates into the majoritic garnet 

side.

b

a majoritic 
garnet

pyrope



influences diffusion during the experiments. 

The Fe3+ / (Fe2+ + Fe3+) ratio was determined using EELS for the sample H3088 after the experiment and the 

EELS spectrum is shown in figure 5.3. The relative intensities of the white lines present at the FeL2,3 edges was 

used to determine the Fe3+ / (Fe2+ + Fe3+) ratio in this sample using the universal curve determined by Van Aken 

et al. (2002). The obtained ratio for almandine was 6 ± 4 %, which is within error similar to that determined by 

Mößbauer spectroscopy (2 ± 1 %) for the almandine starting material. So clearly, the iron capsule buffered the 

oxygen fugacity well and no significant change in ferric iron content occurred during the experiment.
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Figure 5.4: FTIR spectrum of the central 

pyrope and majoritic garnet parts of the 

sample H3106 after the diffusion anneal. 

The most dominant peak is that of the 

hydrogarnet band system in the spectrum 

of the pyrope part. Around 3500 cm-1 is a 

broad band system which might be 

related to water in the grain boundaries  in 

the FTIR spectrum of the central majorite 

part of sample H3106.

Figure 5.3: EELS spectrum of the region 

around the FeL2,3 edge in the almandine 

side of experiment H3088, profile is 

deconvolved and corrected for multiple 

scattering using the fourier-ratio 

described in Egerton (1996). The Fe2+/

(Fe2+ + Fe3+) ratio was determine from the 

relative intensity of the white lines 

centered around 707.8 eV / 709.5 eV (white 

lines on L3 edge) and 720.5 eV / 723eV 

(white lines on L2 edge) described by van 

Aken and Liebscher (2002). Zero-loss 

FWHM peak width was 0.8 eV. 



The water content after the experiment was determined for sample H3106 using FTIR by measuring the 

integrated area under the OH band system between frequencies 3558 cm-1 and 3685 cm-1 and using the 

calibration of Bell et al. (1995). The obtained FTIR spectra indicate for the pyrope side a water content of 58 ± 6 

ppm wt. in the centre and 47 ± 5 ppm wt. more towards the interface between the majorite and the pyrope part. 

The majorite part has a lower water content, about 37 ± 4 ppmw in the middle and 24 ± 3 ppmw near the 

interface. However, as is apparent from the spectra (figure 5.4) the quality of the majorite spectra is lower with 

a broad band centered around 3500 cm-1 , possibly related to water in the grain boundaries, partly overlapping 

the position of the band related to hydrogarnet substitution, so the exact amount of water that is present in the 

majoritic garnet half is less well constrained. The Dora Maira pyrope spectrum shows one dominant peak at 

3651 cm-1 and one less dominant at 3602 cm-1, which can be related to the hydrogarnet subsitution and is also 

observed for other Dora Maira pyrope garnets (Lu and Keppler 1997). However, the bands here are much 

broader than reported by Lu and Keppler (1997), their high frequency system is not much more intense as is the 

case in the run products of the diffusion anneal, and the individual bands in the high frequency system (at 

36450.5, 3650.8 and 3660.6 cm-1) are not discernible in the run product here.
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Figure 5.5: a) The measured diffusion profile 

for sample H3050, run at 1800 °C and 15 GPa. 

The solid lines are the fits to the measured 

profiles using constant diffusion coefficients. 

The best fit value are for pyrope 

DPy = 6 (2) x 10-15 cm2 s-1, and for majorite 

DMj = 7 (1) x 10-15 cm2 s-1. b) The location of the 

diffusion profile (black line). White to dark gray 

spots are contamination marks of other 

analyses.

a

b



5.4.2 Temperature dependence

The temperature dependence of the diffusivity of the majorite component in garnet was determined at 15 GPa 

by performing several experiments between 1400 °C and 1900 °C. All the profiles in these runs were fitted using 

the method described above with a constant diffusion coefficient for each component. Using compositionally 

dependent diffusion coefficients did not give significantly better fits. 

The measured diffusion profile, expressed in terms of garnet components (pyrope, majorite and grossular + 

almandine), is shown in figure 5.5 for experiment H3050, which was run at 1800 °C  for 2 hours. Due to the 

topotactic growth of the majoritic garnet part onto the pyrope part, the original interface was not longer visible 

as a grain boundary. For this sample, and for the other samples where this was the case, the orientation of the 

interface was determined by measuring two more diffusion profile on either side of the first one and from the 

position of the compositional gradients the orientation and the approximate position of the original interface 

were determined. The exact position of the interface was then taken as a free variable in the fitting process. 

From the profiles the diffusion coefficient in run H3050 for the pyrope component was determined to be DPy = 

6(2) x 10-15 cm2 s-1 and for the majorite component it was determined to be DMj = 7(1) x 10-15 cm2 s-1. The 

diffusion coefficients for pyrope and majorite are equal within their respective errors, however this is most likely 

because the grossular + almandine component is very small in all these experiments, such that the experiment 

is basically a binary diffusion experiment, which can be characterized by a single diffusion coefficient. 
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Figure 5.6: Diffusivity of the majorite component in 

garnet as function of temperature. From this plot an 

activation enthalpy at 15 GPa of 291 ± 51 kJ mol-1 was 

determined.

Table 5.3: Fitted diffusion coefficients for the experiments run at 15 GPa

Run number Pressure Temperature DPy [cm2 s-1] DMj [cm2 s-1] 

H3257 15 GPa 1400 °C 2.5 (8) x 10-16 3.4 (8) x 10-16

H3076 15 GPa 1500 °C 4 (2) x 10-16 3 (1) x 10-16

H2986 15 GPa 1600 °C 1.4 (2) x 10-15 1.4 (2) x 10-15

H3050 15 GPa 1800 °C 6 (2) x 10-15 7 (1) x 10-15

H3106 15 GPa 1900 °C 3.7 (7) x 10-14 4 (1) x 10-14



The results for the other pyrope – majoritic garnet experiments at 15 GPa are given in table 5.3. As expected, 

there is clearly a temperature dependence of the diffusion coefficient for both majorite and pyrope in garnet. 

The activation enthalpy obtained by fitting the measured 'binary' diffusion coefficient to equation  (4.5) was 

291± 51 kJ mol-1 with the pre-expontial being 2.3 x 10-7 cm2 s-1 when using the diffusion coefficients for the 

majorite component. For the pyrope component the values are 302 ± 61 kJ mol-1 for the activation enthalpy and 

4.3 x 10-7 cm2 s-1 for the pre-exponential.

5.4.3 Pressure dependence

In order to determine the effect of pressure on the diffusivity of the majorite and pyrope components diffusion 

experiments were conducted at 12 and 20 GPa, both at 1800 °C using the same pyrope – majoritic garnet 

diffusion couples as in the experiments described above. The measured profiles for experiment H3201 are 

shown in figure 5.7, run at 12 GPa and 1800 °C for 4 hours, and can be compared to the profile shown in figure 

5.5 for run H3050, which was an experiment at 15 GPa and 1800 °C for 2 hours. The diffusion profiles for 

experiment H3050, run at 15 GPa, are about half the length of the diffusion profiles obtained from experiment 
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Figure 5.7: Diffusion profiles for run 

H3201, ran at 12 GPa and 1800 °C. a) 

Shows the measured diffusion profile 

expressed as garnet end-member 

fraction. b) The location (black line) of the 

measured diffusion profile. The white 

spots are contamination marks of other 

analyses.

b

a

Pyrope

Majorite



H3201, which was run at 12 GPa. Since the diffusion distance is proportional to √(Dt), where D is the diffusion 

coefficient and t the run length of the experiment, one can estimate that a 3 GPa increase in pressure leads to a 

factor ~1.4 decrease in diffusivity. 

Figure 5.8 shows the fitted diffusion coefficients for the majorite component in garnet in a Log10 D – P plot for 

the experiments conducted at 1800 °C between 12 – 20 GPa. From this plot, using equation 5.6, the activation 

volume for diffusion of the majorite component in garnet was determined to be 3.3 (1) cm3 mol-1. Combining 

this with the already previously determined activation enthalpy at 15 GPa, one can deduce an activation energy 

for diffusion of the majorite component in garnet of 241 ± 54 kJ mol-1 and a pre-exponential factor of 1.4 x 10-7 

cm2 s-1.

5.4.4 Magnesium – iron interdiffusion

To determine the magnitude of the diffusivity of the majorite component relative to that of magnesium – iron 

interdiffusion in garnet, an experiment (H3086) on a pyrope – almandine diffusion couple was conducted at 15 

GPa and 1500 °C. Since the diffusion profiles obtained from the recovered sample of this experiment were much 

longer than those obtained from the Dora Maira pyrope – majoritic garnet runs, it was possible to measure 

profiles with a larger scanning pattern and radiation damage correction was not necessary.  

Since both halves of the diffusion couple separated during decompression there was a gap in the diffusion 

profile of unknown width. The position of the gap is denoted in figure 5.9 by the dashed vertical line. The 

mcfitter program was modified for this, to fit the width of the gap along with the other variables. For this 

sample the ideal model of Lasaga (1979) was used, since it gave a significantly better result than the simple 

constant diffusion coefficient model (a decrease of 49% in the χ2 value). The  tracer diffusion coefficient 

obtained by fitting the profiles are DMg = 2.1 x 10-13 cm2 s-1, DFe = 4.8 x 10-13 cm2 s-1 and DCa = 3.6 x 10-14 cm2 s-1, 

i.e. the diffusivity of dodecahedrally coordinated Mg and Fe in garnet is 2 – 3 orders of magnitude faster than 

the diffusivity of the majorite component at the same conditions (run H3076) and the diffusivity of Ca is 1 – 2 

orders of magnitude faster than that of the majorite component.
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Figure 5.8: Pressure dependence of the diffusivity of 

the majorite component in garnet. The obtained 

activation volume for diffusion is 3.3(1) cm2 mol-1.



5.4.5 Almandine – (Mg) majorite diffusion

Experiments H3088 (15 GPa, 1600 °C), H3119 (15 GPa, 1600 °C) and H3244 (15 GPa, 1400 °C) were conducted 

with almandine – majorite diffusion couples, to investigate the effect of iron on diffusion. The diffusion profile 

for experiment H3244 is shown in figure 5.10, and is distinctly different from the diffusion profiles with the 

pyrope – majorite couples and the almandine – pyrope couples. The asymmetry in the profiles is clear, with the 

gradients in Fe and Mg (and to al lesser extent Ca too) extending much farther into the majoritic garnet half 

than into the almandine part.  Due to the complexity of the diffusion profile the fitting was adjusted manually 

done, since the mcfitter program did not produce realistic fits near the diffusion interface and on the almandine 

side of the diffusion couple. The values for the diffusion coefficients for Mg, Fe and Ca were chosen by keeping 

in mind the relative magnitudes of the diffusion coefficients of Mg, Fe and Ca obtained from the pyrope – 

almandine diffusion experiment (H3086). The asymmetry of the diffusion profile could only be modelled when a 

strong dependence of the diffusion coefficient of the divalent cations on majorite composition was assumed. 

The concentration dependence of the diffusion coefficient was expressed in the following form:

D=D 0 1∑
i=1

N

iC i (5.9)

where N is the number of components in the system, αi is a coefficient determined by fitting and Ci is the 

concentration of component i. Though the fit is not perfect, the main characteristics are well reproduced and it 

is still possible to make some qualitative inferences. The fitted tracer diffusivities for Mg, Fe and Ca are 3.5 x 10-

14 cm2 s-1, 9.3 x10 -14 cm2 s-1 and 9.3 x 10-15 cm2 s-1 respectively. For Al and Si these are 2.3 x 10-15 cm2 s-1 and

4.6 x 10 -15 cm2 s-1, respectively. The absolute magnitude of the diffusion coefficients may however not be 
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Figure 5.9 : a) the measured diffusion profiles of the divalent cations in experiment H3086 at 15 GPa and 1500 °C. The cation 

fractions are calculated as XMg = XMg / (XMg + XFe + XCa). The fitted tracer diffusion coefficients are  DMg = 2.1 x 10-13 cm2 s-1, DFe = 

4.8 x 10-13 cm2 s-1 and DCa = 3.6 x 10-14 cm2 s-1. The vertical dashed line indicates the position of the gap in the profile. b) A dark-

field STEM image of the location of the diffusion profile (black line) in experiment H3086. The horizontal lines are due to the 

picture being a mosaic of several pictures.
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representative of the bulk diffusion coefficient, since both sides contain a relatively high density of dislocations. 

The ' shoulder' in Fe and Mg extending into the majoritic garnet side could only be modelled if the diffusivity in 

majoritic garnet for Mg was at least a factor 15 faster than in the almandine side (αMg = 30 -50) and the 

diffusivity for Fe a factor 5 higher. (αFe = 10-15).

The compositions were also expressed in terms of pyrope, almandine, grossular and Mg-majorite components 

(fugure 5.11). The addition of an andradite component did not change the profiles (the andradite component 

was nearly equal to zero), which is also supported by the EELS measurements in the other almandine – pyrope 

and almandine – majoritic garnet diffusion couples that were run in Fe capsules which showed a Fe3+ / (Fe2+ + 

Fe3+) ratio of nearly zero. The addition of an Fe-majorite component produced a large negative Mg-majorite 

component at the almandine side of the diffusion profile, and was thus considered unrealistic. Expressing the 
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Figure 5.10:The measured diffusion profile (a) 

and location (black line) (b) for experiment 

H3244, run at 1400 °C and 15 GPa for 24 

hours. Note the shoulder of Fe in the 

diffusion profile extending into the majoritic 

garnet part of the diffusion couple. 
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composition in terms of garnet components resulted in a pyrope peak near the point where the Mg-majorite 

component drops to zero. In principle this could be the result of presence of a miscibility gap between 

almandine rich garnet and Mg-majorite rich garnet. However, there is no evidence for a miscibility gap between 

majorite rich garnet and almandine rich garnet, Ringwood and Major (1971) synthesized majoritic garnets near 

the almandine – majorite join at 1000 °C. Because miscibility gaps tend to close at higher temperatures it is thus 

unlikely that one exists at the conditions of the diffusion anneals. Moreover, the existence of a miscibility gap 

would also require next to the precipitation of a pyrope rich phase, the precipitation of a Fe-majorite rich phase 

which is not observed and is not very likely considering that end-member Fe-majorite is not stable (Ohtani et al. 

1991). Diffusion in the almandine – majoritic garnet experiments has therefore not been interpreted in terms of 

diffusion of garnet components, as in the experiments described above, but in terms of the diffusion of cations. 

The fitting has been done without regard to end-member components, i.e. magnesium in the Mg-majorite and 

pyrope component has been treated as a single diffusing component.

Experiment H3119 (see figure 5.12) shows a similarly shaped profile, with again a shoulder for Mg, Fe and Ca 
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Figure 5.12: Diffusion profile obtained from 

experiment H3119, ran at 1600 °C and 15 GPa for 

4 hours. The shape of the diffusion profiles show 

great similarity with those from experiment 

H3244. Again, the diffusion profiles could only be 

modelled by assuming a strong dependency of 

the diffusivity of Mg, Fe and Ca on the majorite 

content. 

Figure 5.11: Profile H3244 expressed in terms of 

pyrope, almandine, grossular and Mg-majorite 

components. Note the spike in the pyrope 

component at the location where the Mg-

majorite component decreases to zero.

Majorite Almandine



penetrating deeper into the majoritic garnet side than into the almandine side. The diffusion profile has again 

been fitted by hand using the above mentioned method. The obtained tracer diffusion coefficients are for Mg, 

Fe and Ca 2.1 x 10-13 cm2 s-1, 5.6 x 10-13 cm2 s-1 and 3.1 x 10-14 cm2 s-1, respectively. For Al and Si 2.8 x 10-14 cm2 s-1 

and 2.4 x 10-14 cm2 s-1, respectively. The values for Mg, Fe and Ca are very similar to those obtained in the 

almandine – pyrope diffusion experiment, however this run was performed at a temperature 100 °C higher. 

However it must again be stressed that the fit of the model to the measured diffusion profiles for this run is not 

optimal which might be caused by the used minimization routine or negligence of the effect of iron on the 

diffusivity of the elements. The other almandine – majoritic garnet run shows a similar diffusion profile.

5.5 Discussion

Although the diffusion experiments were conducted at relatively high temperatures, the diffusion profiles were 

still too short to be measured by electron microprobe, indicating that diffusion of the majorite component is 

much slower than the interdiffusion of the divalent cations in garnet (Mg, Ca, Fe and Mn, which diffuse fast 

enough such that they can be measured after experiments on a microprobe at these conditions). This is also 

confirmed by the pyrope – almandine diffusion couple (H3086), which produced profiles that are considerably 

longer and of which the fitted diffusion coefficients for the dodecahedrally coordinated cations are 2 – 3 orders 

of magnitude faster for Mg and Fe, and 1 – 2 orders of magnitude faster for Ca, as compared to the diffusivity of 

the majorite component in garnet. The actual values at 1600 °C and 15 GPa, DMj = 1.4 x 10-15 cm2 s-1, are 
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Figure 5.13: The diffusion distance of the majorite component as function temperature and time. The numbers on the lines are in 

meters. See text for more explanation.



comparable to the (tracer) diffusivity of Si in wadsleyite at 1600 °C and 16 GPa, which was also determined to be 

1.4 x 10-15 cm2 s-1 (Shimojuku et al. 2009). This again stresses that diffusion of the majorite component in garnet 

is slow.

5.5.1 Homogenization of the upper mantle

Because of its higher alumina content, the oceanic crust will consist of 80 – 90 vol. % garnet in the transition 

zone (Irifune et al. 1986). Therefore, when the oceanic crust is subducted, it will form a majorite inhomogeneity 

in the Earth's mantle. For the understanding of the differentiation of the mantle, it is important to know 

whether the oceanic crust will persist as an inhomogeneity in the mantle or not over geological time scales. The 

diffusion distance of the majorite component has been calculated as function of temperature and time at 18 

GPa using the diffusion data presented in this chapter. When diffusion occurs over a length scale that is 

significantly longer then the grain size, grain boundary diffusion is the dominant diffusion mechanism at 

conditions where grain boundary diffusion is significantly faster (Harrison 1961). The grain boundary coefficient 

has been taken as 104 x the bulk diffusion coefficient, based on grain boundary diffusion experiments on YAG-

garnet crystals at 1500 °C (Marquardt (née Hartmann) et al. 2011). The diffusion distance was calculated as:

x=D gbt (5.10)

where Dgb is the grain boundary coefficient and t diffusion time. The results are plotted in figure 5.13. Estimates 

for the temperature on the mantle adiabat at 18 GPa range from 1500 °C to 1800 °C (chapter 3). The figure 

shows that at these conditions, the majorite component will only be able to diffuse over a distance of 5 – 15 

meters on the time scale of the age of the Earth. It is clearly not possible to homogenize the mantle by solid 

state diffusion and the oceanic crust will persist as a majorite homogeneity in the Earth's mantle.

5.5.2 Rheology of garnet in the transition zone

In deformation processes controlled by dislocation creep (through dislocation climb) and diffusion creep 

mechanisms, the volume diffusivity of the slowest diffusing ion is an important rate controlling factor 

(Weertman 1957, Poirier 1985). As will be explained below, there are arguments to assume that octahedral and 

tetrahedral Si do not diffuse as independent components, but diffuse as one component, which might be even 

faster than the diffusion of Al in garnet. It can thus be assumed that the diffusivity of the majorite component is 

representative of the diffusivity of the slowest component. The creep rates for dislocation creep (by the 

Weertman model) and diffusion creep are given by respectively: 

̇=disl
Dsd

b3.5M 0.5 
 

4.5

kT

and

̇=diff
Dsd  

d 2 k T

(5.11)

where α is a geometric factor, Dsd the self-diffusivity of the rate controlling ion, b the burgers vector of the 

dislocation, M the density of dislocation sources, σ the applied stress, μ the shear modulus, k Boltzmann's 

89



constant, T temperature, d grain size, Ω volume of the vacancy. Using a shear modulus at 16 GPa and 1600 °C of 

85 GPa for majoritic garnet and 104 GPa for wadsleyite (Nishihara et al. 2008, Hunt et al. 2010), and the <1 1 1> 

or <1 0 0> Burgers vectors for the activated slip systems in (majoritic) garnet (Cordier et al. 1996) and <1 1 1> or 

[1 0 0] for wadsleyite (Demouchy et al. no date), and assuming similar dislocation source densities, grain size 

and volume of vacancies for garnet and wadsleyite one finds that if the diffusivity of tetrahedrally coordinated 

Si in garnet is less than in wadsleyite, majoritic garnet will be more resistant to flow than wadsleyite (i.e. 

'stronger'). The relative deformation rates are then given by the following equation: 

ϵ̇gt
˙ϵwads

≈0.2
Dsd
gt

Dsd
wads

(5.12)
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Figure 5.14: Composition of a growing garnet 

grain as function of the radial distance and for 

several times. a) Graphical representation of the 

model. The spherical garnet grain (light red) is 

surrounded by pyroxene (green). Dissolution of 

pyroxene into garnet (heavy arrows) leads to 

the growth of the garnet grain (dark red circle 

and light arrows). The graph in the right side of 

the grain shows how to interpret the 

concentration profiles in b) and c). b) A 1 cm 

grain representative for the lower part of the 

subducting lithospheric mantle, conditions are 

18 GPa and 1400 °C, and c) is representative for the subducted oceanic crust, conditions are 18 GPa and 1000 °C.  Grain growth is 

stopped after an amount of majorite component corresponding to a homegonous composition of Py60Mj40  has fluxed into the 

grain. After this the grain is let to homogenize. The grain size can be determined by finding the position where the profiles cut the 

upper 70% majorite line (b) or the 55% majorite (c) line.
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for dislocation creep, and
ϵ̇gt
˙ϵwads

≈
Dsd
gt

Dsd
wads

for diffusion creep.

If the diffusivity of the majorite component in garnet is of the same order as that of the diffusivity of Si in 

wadsleyite, there will be no great contrast between majoritic garnet and wadsleyite. However, if due to the low 

diffusivity of the majorite component the garnet phase did not equilibrate, one might expect a lower diffusivity 

for Si, since it will be confined to the tetrahedral site. The strength of garnet in subduction zones, the location 

where most likely there will be lack of equilibration due to lower temperatures and its dynamic character, in this 

case will be controlled by the degree of equilibration and thus the diffusivity and grain size of garnet. To model 

this, a program has been developed that simultaneously models diffusion in a (spherical) grain, and diffusion 

controlled growth of the same grain. A more detailed explanation of the code is given in chapter 4.2.

Figure 5.14 shows how long it will take for enstatite to dissolve into a garnet grain and then homogenize the 

grain for two different scenarios. Scenario A (figure 5.14b) correspond to a grain in the middle to lower part of 

the subducting lithospheric mantle. Conditions here are assumed to be 1400 °C and 18 GPa, which correspond 

to conditions on an average subduction geotherm (Emmerson and McKenzie 2007). The composition of the 

newly grown majoritic garnet (Py30Mj70) was inferred from phase diagrams by Gasparik (2003) and Akaogi and 

Akimoto (1977). The maximum influx of majorite component was chosen such that the final composition after 

homogenization was Py60Mj40, corresponding to high-pressure experiments on pyrolitic compositions (Irifune 

1987). The initial grain size is 1 cm. The results of the modelling show that it takes about 4 Myr for the grain to 

grow to its final size. However, after this it still has a large core of almost pure pyrope composition. It takes 

about 20 Myr before the grain is homogenized. Assuming an average rate of burial due to subduction of 20 mm 

y-1, it would take 12.5 Myr to pass the transition zone. For the subducted lithospheric mantle homogenization is 

thus roughly at the same timescale as the subduction process. 

Things, however, are different for the subducted oceanic crust (scenario B, figure 5.14c ). Conditions in this case 

are 1000 °C and 18 GPa, again from the computed subduction geotherm of Emmerson and McKenzie (2007). 

The composition of the newly grown majoritic garnet was Py45Mj55, from Akaogi and Akimoto (1977) and the 

maximum influx was again chosen such that the final composition would be Py60Mj40, corresponding to 

experiments conducted on refractory MORB material after partial melting and transformation to an eclogite 

assemblage, representative of the subducted oceanic crust (Irifune et al. 1986). The initial grain size was taken 

as 1 mm, which is also a typical grain size for eclogites. The plot in figure  5.14b shows that it takes over 300 

Myrs for complete equilibration.  After 12.5 Myr only about 38% of the pyroxene would have dissolved into 

garnet. It might thus be more likely that the basaltic crust will preserve a metastable assemblage of garnet + 

clinopyroxene + orthopyroxene during its subduction instead of the garnetite assemblage or, since enstatite 

breaks down to stishovite + wadsleyite or ringwoodite above 17 GPa at these conditions (Akaogi and Akimoto 

1977), garnet + clinopyroxene + wadsleyite/ringwoodite + stishovite. The sluggish reaction kinetics of enstatite 
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breakdown may then also result in the formation akimotoite at greater depths (Hogrefe et al. 1994). 

The middle to lower part of the subducting slab is thus expected to be able to dissolve all its enstatite into 

garnet during the time that, though with a significant delay. This would mean that there would be no significant 

contrast in strength between garnet and wadsleyite in the transition zone, except perhaps for the upper ~80 km 

of the transition zone. Diffusion of the majorite component in garnet is too slow to dissolve al the pyroxene into 

garnet in the oceanic crust during subduction. It might therefore be expected that a significant amount of 

pyroxene we be preserved as metastable phase. This would make garnet relatively strong, however since 

pyroxenes are relatively weak (Ohuchi et al. 2010), the preservation of pyroxene may make the oceanic crust 

weaker than expected in the transition zone.

Extrapolation of the diffusion data in this study to the higher pressures prevailing in the ringwoodite stability 

field shows that the diffusivity of the majorite component at these conditions is again similar to the diffusivity 

of silicon self-diffusion in ringwoodite, i.e. 3.5 x 10-17 cm2 s-1 for majoritic garnet vs. 8.5 x 10-17 cm2 s-1 at 22 GPa 

and 1500 °C (Shimojuku et al. 2009). The conclusions in the previous paragraph thus also hold for ringwoodite 

stability field.

5.5.3 Comparison with previous experimental data

Chakraborty and Ganguly (1992) determined the value of the activation volume for diffusion of Mg in garnet to 

be 5.3 ± 3.0 cm3 mol-1. Chakraborty and Rubie (1996) extended their data with their own to include Mg tracer 

diffusivity data done over a broader range of pressures to reduce the error in activation volume determined by 

Chakraborty and Ganguly (1992). They determined from the combined data set an activation volume for Mg 

tracer diffusion in garnet of 8 ± 1 cm3 mol-1. The pressure dependence of the majorite component, 3.3 ± 0.1 cm3 

mol-1, determined in this study is thus significantly lower. Chakraborty and Ganguly  (1992) also determined the 

activation enthalpy of Mg diffusion in garnet to be 285 ± 38 kJ mol-1 from a multi-component diffusion study, 

Chakraborty and Rubie (1996), in their tracer diffusion study, determined a lower value of the activation 

enthalpy for Mg diffusion of  226 ± 21 kJ mol-1. Comparing these to the values determined in this study show 

that they are very similar, i.e. 241 ± 54 kJ mol for the diffusion of the majorite component in garnet. The fact 

that diffusion of the majorite component involves diffusion of both dodecahedrally and octahedrally 

coordinated cations does not seem to influence the activation energy profoundly. The difference in activation 

volumes between diffusion of the majorite component and diffusion of the eight-fold coordinated Mg, as 

determined by Chakraborty and Rubie (1996), suggest a different diffusion mechanism involving a less 

compressible site. Hazen and Finger (1978) indeed report that the octahedral site of garnet is less compressible 

than the dodecahedral site, which might explain the difference in activation volumes.

5.5.4 Effect of majorite content on diffusivity of the elements

Though the diffusion profiles obtained from the almandine – majoritic garnet diffusion couples were too 

complex to model well enough to determine absolute diffusion coefficients from, it is still possible to reach 

some qualitative conclusions. One of the prominent features of all diffusion profiles in the almandine – majoritic 

92



garnet series is the shoulders of Mg, Fe and Ca profiles that extend into the majoritic garnet part of the diffusion 

couples.  These kind of shoulders can only be modelled if it is assumed that the tracer diffusivity of Mg, Fe and 

Ca was a strong increasing function of majorite content, resulting in the diffusivity of Mg, Fe and Ca being at 

least one order faster in the majoritic garnet than in almandine. Since the majoritic garnet part of the couple is 

not a single crystal, but an aggregate of majoritic garnet grain, it might be expected that grain boundary 

diffusion may also play an important role in the apparently enhanced diffusivity of Mg, Fe and Ca in the 

majoritic garnet part. Hart (1957) showed that in the case that the length scale over which diffusion occurred is 

significantly longer than the grain size diffusion can be described by using an effective diffusion coefficient: 

Deff= fDgb1− f Dl (5.13)

where f is the volume fraction of grain boundaries or dislocations, Dgb the diffusion coefficient for the grain 

boundary and Dl the diffusion coefficient for lattice diffusion. Harrison (1961) classified diffusion in aggregates 

in three different types, type A where diffusion can be described by Hart effective diffusivity and where the 

diffusion length scale is thus significantly longer than the grain size, type C where the diffusion length scale is 

significantly shorter than the grain size and diffusion can thus be well described by the lattice diffusion 

coefficient (the pyrope – majoritic garnet and pyrope  - almandine experiments fall in this category) inside of 

the grains and the grain boundary diffusion coefficient outside of the grains. Lastly he described an 

intermediate type B where the diffusion length scale is of the order of the grain size. This last type of diffusion 

cannot be described by a simple diffusion equation and has to be treated specially, see for example the 

treatment of Fisher (1951). That the diffusion experiments were conducted in a type A regime seems to be 

unlikely, considering the length of the diffusion profile in experiment H3119 (about 5 - 6 µm) as compared to the 

distance from the interface to the first long dislocation (ca. 3 µm). The same can be concluded from experiment 

H3244, where the size of the majoritic garnet grain directly after the diffusion interface is 4.5 µm and the length 

of the shoulder extending into the majoritic garnet size is 7 – 8 µm. The high dislocation density region directly 

adjacent to the interface also does not seem to affect the diffusivity of Mg and Fe significantly, otherwise one 

would expect a break in the slope of the Mg and Fe shoulder extending into the majoritic garnet directly beyond 

the high dislocation density region. If one would be in the type B diffusion regime, one would expect increased 

Fe and decreased Mg contents near the grain boundaries in the majoritic garnet side of the diffusion couple. 

This is not observed either, and therefore it is concluded that the increased diffusivity of Fe, Mg and Ca in 

majoritic garnet is an intrinsic property of majoritic garnet itself.

Also the fact that casting the composition of the garnet analyses in terms of end-member compositions 

produces diffusion profiles with a spike in pyrope component near the point where the majorite component 

goes to zero may be important. If it would be due to presence of a miscibility gap one would expect the 

precipitation of a second garnet phase enriched in Fe-majorite component, which is not observed in the 

diffusion couples. This is also very unlikely considering that the Fe-majorite end-member is not stable and it 

thus is improbable that a phase with a lower Fe-majorite component would exsolve into a phase with a strong 

pyrope component and a second phase with a strong Fe-majorite component. Moreover, there is also no 
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experimental evidence for such a miscibility gap. Considering all the cations as single components independent 

of the garnet end-member component produces reasonable fits to the experimental data however. It may thus 

be simply inappropriate to look at the diffusion in the almandine – majoritic garnet system as the diffusion of 

garnet end-members, but it should be interpreted as the diffusion of cations in the garnet lattice independent 

of their actual coordination. This might also shed some light on the actual diffusion mechanism, since if Mg of 

both the majorite component and the pyrope component diffuse equally fast it is unlikely that they are 

restricted to a single coordination and thus more likely hop from a dodecahedral site to an octahedral site 

during the diffusion through the garnet lattice, which would also make Mg of the Mg-majorite component and 

pyrope component indistinguishable from each other. The garnet structure can be viewed as tubular columns of 

interlayered rings of silica tetrahedra with dodecahedral sites (figure 6.9). The octahedral sites form direct 

connections through the silica rings between the layers of dodecahedral sites in this structure, and therefore 

create short cuts through the garnet structure. If (part of) the octahedral sites can be occupied by Mg and Fe, 

like in the majoritic garnet, Mg and Fe can diffuse through garnet by using these short cuts and an increased 

diffusivity of those elements is expected. One might expect that a similar increase in diffusivity of Si will be 

observed in majoritic garnet, i.e. because Si can cross the silica rings through the octahedral sites instead of 

diffusing along the rings, however this is not observed in the pyrope – majoritic garnet profiles. However, 

diffusion might be limited here by the diffusivity of Al and an increase in majorite component may still lead to 

the increase in silicon diffusivity. If this would be the case, one would expect a weakening of the garnet 

(equations 5.12) phase as more pyroxene gets dissolved in it during subduction. Hunt et al. (2010) indeed 

observed that majoritic garnet weakens with increasing majorite content and this may thus be explained by the 

increased diffusivity of Si in majoritic garnet where the diffusion paths can involve both the octahedral sites and 

the tetrahedral sites.

5.6 Conclusions

The experiments with pyrope – majoritic garnet, pyrope – almandine and almandine – majoritic garnet couples 

conducted in this study showed that:

1. Diffusion of the majorite component is a slow process, comparable with the rate silicon diffusion in 

wadsleyite and ringwoodite at similar pressure and temperature conditions.

2. Although majorite diffusivity in garnet is low, the determined activation energy has only a value of 241 

± 54 Kj mol-1, which is similar to the Mg tracer diffusion activation energy determined in previous 

studies (Chakraborty and Ganguly 1992, Chakraborty and Rubie 1996). The determined activation 

volume of diffusion of 3.3 ± 0.1 cm3 mol-1 however, is significantly lower than that determined for Mg 

tracer diffusivity (8 ± 1 cm3 mol-1) in garnet determined in those studies, indicating that less 

compressible sites are involved in the diffusion mechanism of majorite diffusion in garnet.

3. The diffusivity of the majorite component is 2 – 3 orders of magnitude slower than the tracer diffusivity 
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of Mg and Fe at the same conditions, and 1 – 2 orders of magnitude slower than Ca tracer diffusion in 

garnet at the same conditions.

4. Solid state diffusion cannot homogenize the mantle, and subducted oceanic crust will persist to exist as 

(at least) a majorite homogeneity in the Earth's mantle.

5. Due to the slow diffusivity of the majorite component in garnet, it is unlikely that subducted oceanic 

crust will be equilibrated during subduction in the mantle transition zone, and is more likely to happen 

only after the slab has become stagnant at the bottom of the transition zone. Diffusion in the (lower) 

lithospheric part of the subducted slab is probably fast enough such it can be equilibrated on a time 

scale of a couple of million years.

6. The diffusivity of Mg and Fe is significantly faster in majoritic garnet (Py55Mj45) than in pyrope at the 

same conditions in our experiments, which is an intrinsic property of majoritic garnet. From the shape 

of the almandine – majoritic garnet diffusion profiles in combination with the increased diffusivity of 

Mg and Fe in majoritic garnet it is most likely that the diffusion pathway in Mg and Fe involve both the 

dodecahedral and the octahedral sites in garnet. It is possible that a similar change in diffusion 

mechanism would also occur for silicon in majoritic garnet, which could explain the observed 

weakening of majorite with Al content.

7. Judging from the relative diffusivity of silicon diffusivity in wadsleyite and ringwoodite and the 

diffusivity of the majorite component in garnet, it is not expected that there will be a major contrast in 

strength between wadsleyite and garnet or ringwoodite and garnet in the mantle transition zone.
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Appendix 5.1: Radiation damage correction

The transmission electron microscope exposes a high dose of high energy electron to the specimen, which 

increases as one increases the magnification. This high dose of high energy electrons can exert a damage to the 

specimen called beam or radiation damage. The physical causes of beam damage include heating of the 

specimen, electrolyses of bonds and knocking atoms out of their sites, knock-on damage, due to momentum 

transfer during electron – atom collision (Egerton et al. 2004, Williams and Carter 2009). Radiation damage 

affects EDS analyses because some elements are preferentially lost, for example magnesium in silicates, which 

occur often in significant in high pressure phases. Even though cooling of the sample in a liquid N2 holder was 

done, and using a lower electron dose was used to measure the chemical composition does decrease radiation 

damage, it was not possible to perform damage free EDS analyses on majoritic garnet with a small scanning 

pattern (40 nm) in STEM mode. Therefore, a correction procedure was developed to correct for preferential 

element loss from majoritic garnet, though it should work as well for other minerals, which is explained below. 

Majoritic garnet can contain Mg in two different coordinations, six fold coordination and eight fold 

coordination. Normal garnet only contains Mg in eight fold coordination, and Mg loss during EDS analyses is 

very minor when compared to majoritic garnet. Therefore it is assumed that Mg is stable in eight fold 

coordination, i.e. count rates for eight fold coordinated Mg remain constant with time, whereas count rates of 6 

fold coordinated Mg decreases with time. If the fraction of atoms lost with time is constant, one can describe 

this with the following differential equation: 

dI u

dt
=−kI u (5.14)

where Iu is the count rate of the element in the unstable site, t is time and k is a constant. This leads to the 

following expression for the evolution of count rate of the element with time:

I u=I 0
u e−kt (5.15)

and the total count rate of the element with time then becomes:

I= I s I 0
ue−kt (5.16)

where Is is the count rate of the elements in the stable site. To obtain the number of counts in the measurement 

interval between t = t1 
and t = t1 + Δt one integrates 5.16 between those limits:

I= ∫
t 1

t 1 t

I sI 0
u e−ktdt= I s t1

I0
u

k e−kt1 1−e−k  t  (5.17)

When dead time is sufficiently low such that it can be neglected, equation 5.17, can be fitted to measurements 

when several short measurements with counting time Δt are done at the same place. Usually at least 8 

measurements per spot are required to obtain a satisfactory fit (figure 5.15). If no radiation damage would 

occur, the count rate of the unstable site would be constant with time, so the corrected total count rate is given 

98



by: 

I cor=I sI 0
u (5.18)

Fitting of 5.17 to the data has been done by minimizing the  χ2 – value, which is defined as: 

2=∑
i

n Oi−E i
2

Oi
(5.19)

Where Oi is the observed intensity of the characteristic x-ray line and Ei is the expected or fitted intensity of the 

characteristic x-ray line. The minimization is done by using the non-linear Levenberg – Marquandt minimization 

algorithm available in the Matlab software package.

There are now two scenarios. In the first scenario, the standard case, beam damage is not significant and we 

can use the standard method, i.e. using the simple arithmetic mean of all measurement, to calculate the 

intensity of the measured x-ray peak. In the second one, where radiation damage is significant, equation 5.17 

should be used to determine the radiation corrected intensity for the measured x-ray peak. To do this, we can 

use the ratio of the χ2 – value for both models corrected for the degrees of freedom in both models in an F-test 

with the following F statistic: 

F=
n
2

 c
2⋅
n−3
n−1 (5.20)

Where χn
2 is the χ2 value for the normal case and χc

2 is the χ2 value for the radiation damage corrected case. The 

expected value for F when using 8 measurements per spot is 1 2/3 when there is no difference between the 
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Figure 5.15 :The intensity of the MgKα 

peak in majoritic garnet as function of the 

time elapsed since the start of the 

measurement. Solid dots correspond to 

the actual measurements, each dot 

correspond to the cumulative counts over 

a 15 second interval. The solid line is the 

fitted intensity using the model proposed 

here.



models. The radiation damage corrected model is used when the F value exceeds a certain minimum value, 

which can be obtained from standard tables for the F-distribution (in this thesis 4.88, which corresponds to a 

95% confidence level when using 8 measurements per spot).

Appendix 5.2: Quantification of the EDS analyses

The actual elemental concentration can be calculated from the intensities of the characteristic x-ray peaks using 

Cliff-Lorimer k-factors when absorption can be neglected:

C A

C R
=kAR

I A

I R
(5.21)

where A and R denotes element A and the ratio-element R respectively, C are the concentrations, I the 

characteristic x-ray intensities and kAR is the Cliff-Lorimer k-factor for element A using R as ratio-element. The 

Cliff-Lorimer k-factors are  determined by measuring specimens with a known composition. As additional 

constraint to calculate the actual concentrations can be used that the concentrations of all elements should add 

up to 100%. Usually absorption can not be completely neglected and one should correct the k-factors for 

absorption:

k AR
* =kAR

 A
spec

 R
spec

1−exp −R
spec t cosec 

1−exp −A
spec t cosec 

(5.22)

where k*AR is the corrected k-factor, μspec
i is the mass absorption coefficient (MAC) for characteristic line i in the 

specimen, ρt the mass thickness of the foil and α the take-off angle of the x-rays that hit the detector. The MAC 

is calculated as follows:

 i
spec=∑

j
C j i

j (5.23)

where Cj is the concentration of element j and μi
j is the MAC for the characteristic line of element I by pure 

element j.

As can be seen in these equations, one needs to know the thickness of the specimen. Because measuring the 

exact thickness of the foil is often difficult, Van Cappellen and Doukhan (1994) used net neutral charge as an 

additional criterion to determine the thickness. For easier calculation, they approximated equation 5.22 with a 

first order Taylor expansion, which makes the net charge as function of thickness quadratic in nature and easily 

solvable. In this thesis the Brent root finding algorithm (Press et al. 1992) in combination with the full 

expression of 5.22 is used to quantify the elemental concentrations. The source code of the program 

(TemQuant) is available upon request.

Appendix 5.3:Precision of TEM EDS measurements

The diffusion profiles for the majoritic garnet – pyrope diffusion experiments were modelled with a constant 

composition independent diffusion coefficient. Though binary diffusion profiles can be modelled by a single 

diffusion coefficient, it should still be composition dependent through equation 5.0, unless the diffusion 
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coefficients for the majorite component and pyrope component are equal. Chakraborty and Ganguly (1992), for 

example, modelled their diffusion profiles for diffusion in the almandine – spessartine diffusion couples with 

two different diffusion coefficient for each side of the couple, pointing out the compositional dependence of the 

diffusion coefficients. However, the precision of the analyses on the TEM may let it appear as if the binary 

diffusion coefficient is composition independent, since only slightly asymmetric profiles are not distinguishable 

from perfectly symmetric profiles. 

To determine what the sensitivity is of the profiles measured by the TEM to the composition dependence of the 

binary diffusion coefficient, several profiles have been modelled with a different composition dependence with 

the use of the Lasaga model. From the calculated profile a set of 25 points has been taken as 'measurement 

data' and this data has been fitted by the composition 

independent diffusion model. The fit or misfit is plotted in 

figure 5.16. The gray area line gives the typical error for the 

analytical TEM using EDS, which is 1.5 % under optimal 

conditions. 

The best element to check for this would be Al, since for every 

1 % of majorite component incorporated, the Al fraction will 

be reduced by 0.02 per formula unit. Figure 5.16 shows that 

the ratio r of DPy to DMj should be below 10, otherwise 

asymmetry of the diffusion profiles would be too strong to 

remain undetected by the TEM. However the error in the 

determined diffusion coefficient would  be smaller, as is 

pointed out in table 4.4, since the determined diffusion 

coefficient using the composition independent diffusion 
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Figure 5.16: A plot of the misfit by fitting a 

composition independent diffusion model 

to data generated from  a composition 

dependent model. The r value is the ratio 

of DPy to DMj and the gray area denotes 

the precision of the TEM for Al in majoritic 

garnet. 

Table 5.4 : The obtained values when using the  
constant diffusion coefficient model when fitting data  
to the Lasaga multi-component model. On the left side  
the DMj – DPy ratio used to model the 'measured' data  
with the use of the ideal multi-component model by  
Lasaga, on the right side the diffusion coefficient  
obtained by fitting the measured data to a constant  
composition independent diffusion coefficient relative  
to the DPy value used as input for the Lasaga model.

DMj – DPy ratio Fitted coefficient

0.01 0.013

0.1 0.13

0.5 0.56

1 1.0

2 1.63

5 2.67

10 3.32



coefficient model would lie  between the actual values of DPy and Dmj.

Appendix 5.4: Majoritic garnet – Dora Maira pyrope diffusion couple profiles

H2986
P = 15 GPa
T = 1600 °C
t = 4h
DPy = 1.4(2) x 10-15 cm2 s-1

DMj = 1.4(2) x 10-15 cm2 s-1

H3076
P = 15 GPa
T = 1500 °C
t = 24 h
DPy = 4(2) x 10-16 cm2 s-1

DMj = 3(1) x 10-16 cm2 s-1

H3106
P = 15 GPa
T = 1900 °C
t = 2h
DPy = 3.7(7) x 10-14 cm2 s-1

DMj = 4(1) x 10-14 cm2 s-1
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H3257
P = 15 GPa
T = 1400 °C
t = 24 h
DPy = 2.5(8) x 10-16 cm2 s-1

DMj = 3.4(8) x 10-16 cm2 s-1

H3084
P = 20 GPa
T = 1800 °C
t = 20 h
DPy = 2.2(7) x 10-15 cm2 s-1

DMj = 2(1) x 10-15 cm2 s-1
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Chapter 6: Exsolution of garnet from orthopyroxene

6.1 Introduction

Orthopyroxene, with spacegroup Pbca and composition ranging from end-members enstatite Mg2Si2O6 to 

ferrosilite Fe2Si2O6 can incorporate aluminium by two different substitution mechanisms. The first mechanism 

is the calcium or magnesium Tschermak substitution mechanism (end-members CaAl2SiO6 and MgAl2SiO6). 

Both Ca/Mg and Si atoms are substituted for two Al atoms in the pyroxene structure. The Al incorporated in the 

tetrahedral chains strongly prefers the Si(B) site, in accordance with the Al-avoidance principle (Okamura et al. 

1974). The aluminium in the octahedral layers has a preference for the M1 site, however the M2 sites 

accommodate Al too (Okamura et al. 1974, Ganguly and Ghose 1979). In the presence of excess silica, aluminium 

can also be incorporated (by the second mechanism) by a calcium Eskola component (Ca0.5AlSi2O6), where 

discrepancy in charge on the M sites between Al3+ and Ca2+ is balanced by a vacancy on the M2 site (Gasparik 

and Lindsley 1980). 

The enstatite end-member of the pyroxene series has different polymorphs depending on the pressure and 

temperature conditions. Figure 6.1 shows the phase diagram of MgSiO3 at upper-mantle pressure. Up to ± 15 

GPa the different pyroxene polymorphs are stable, after which it breaks down to either majorite or 

wadsleyite/ringwoodite + stishovite. The different polymorphs that are stable are orthoenstatite (space group 

Pbca), protoenstatite (space group Pbcn), low clinoenstatite (space group P21/c), high temperature high 

clinoenstatite (space group C2/c) and high pressure high clinoenstatite (space group C2/c). Though the last two 

polymorphs have the same space group, their oxygen packing sequence is different, i.e. the high pressure 

polymorph has a cubic close packing sequence and the high temperature form has a hexagonal close packing 

sequence (Thompson and Downs 2003).  Though the pure end-member HT clinoenstatite MgSiO3 has only a 
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Figure 6.1: The phase diagram of 

MgSiO3 at the condition of Earth's 

upper mantle showing the stability of 

the different enstatite polymorphs, 

after Gasparik 2003. 



very limited stability field, the substitution of Mg by Fe expands 

the stability field of HT high clinoenstatite significantly (Arlt et al. 

1998). Previous studies have shown that both high clinoenstatite 

polymorphs are not quenchable and transform back to the P21/c 

low enstatite polymorph upon return to room conditions (Kanzaki 

1991, Arlt et al. 1998). For the sake of simplicity in the rest of this 

chapter, when high clinoenstatite is mentioned, the high pressure 

form of high clinoenstatite is meant.

As argued in chapter 5, slow diffusion kinetics of the majorite 

component in garnet hampers the dissolution of pyroxene in 

garnet in the cold subducted slab. Therefore the pyroxene 

component in the subducted slab can be viewed as a 

(semi-)isolated system. Experimental studies (Irifune et al. 1986; Irifune 1987) have shown that the amount of 

aluminium that can be dissolved in pyroxene decreases with increasing pressure. As a result of this, garnet will 

be exsolved from pyroxene while the slab is subducted into the mantle. The rate at which this will occur in 

pyroxene will be controlled by the diffusivity of aluminium in high clinoenstatite at enhanced pressures, for 

which there are currently no data available. For pyroxene exsolutions in garnet it has been shown that there is a 

topotactic relationship between the garnet host and the pyroxene exsolutions (Spengler 2006). However, the 

topotactic relation between pyroxene and exsolved garnet at high pressure, i.e. in the Earth's transition zone, 

where pyroxene has a monoclinic structure (high clinoenstatite C2/c) is unknown at present. Therefore, 

experiments on natural aluminous enstatite have been conducted to investigate what happens to 

orthopyroxene that is present in the subducted slab when it is transported into the mantle. Experiments were 

conducted in the presence of garnet, to closer simulate what occurs in the Earth during subduction.

6.2 Experimental setup

Experiments have been conducted in a 1000-ton multi-anvil device at the Bayerisches Geoinstitut, using a 14 / 8 

pressure cell, indicating the octahedron edge length and the truncation edge length of the tungsten-carbide 

anvils in millimetres, respectively.  The pressure cells were MgO octahedra  with a central hole into which 

sample and a LaCrO3 stepped furnace was placed, for a more detailed description see chapter 3 on experimental 

methods. The length of the platinum capsules was 2.4 mm, the diameter 1.6 mm and the wall thickness 0.2 

mm. Temperature was measured by W3%Re – W25%Re thermocouples with a junction just on top of the 

capsule. The thermocouple wires were isolated from the capsules by a 25 μm rhenium disc to prevent platinum 

from intruding into the thermocouple tubes. The starting materials were couples of single crystal mirror 

polished Dora Maira pyrope and Tanzania enstatite cylinders. The Dora Maira pyrope crystals were the same as 

used in the diffusion experiments described in chapter 5. The chemical composition (see table 6.1) of the 

Tanzania enstatite crystals were determined by electron microprobe and correspond to those determined by 
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Table 6.1 : Chemical composition of the 
Tanzania enstatite, after Rauch (2000)

Oxide Wt. %

SiO2 58.10

FeO 2.00

MgO 38.50

Al2O3 1.50

MnO 0.10

CaO 0.15

Na2O 0.01

Total 100.35

Fe3+/Fetot 23%



Rauch (2000).

The experiments were conducted at 1700 °C and 15 GPa, with run durations between 1 hour and 19 hours, the 

conditions are listed in table 6.2. After the end of the run the sample was quenched by cutting of the power, 

resulting in a temperature drop in 10 seconds to roughly 100 °C. 

6.3 Analytical setup

After recovery of the samples the capsule were cut by a diamond wire saw along the length of the capsule and 

mounted in an epoxy block, polished and further prepared for analyses by electron microprobe and SEM. The 

chemical compositions of the samples were measured by means of an electron microprobe, using 20 s counting 

time for the peak position and 10 s counting time for the background position, 15 kV acceleration voltage and 15 

nA beam current. The standards and characteristic x-ray peaks used to determine the chemical composition are 

listed in table 6.3.

Two experiments, H2975 and S4378, were also prepared for further examination by TEM. The TEM samples were 

first polished down to a thickness of 30 μm, after which a molybdenum mesh with a square size of 135 μm was 

glued upon them using Araldite epoxy glue. The crystalbond glue between the sample and the glass slide which 

was used for polishing down the sample to 30 μm was then dissolved by acetone. The sample was then Ar-ion 

milled to electron transparency in a Gatan Duomill 600, under an angle of 14 ° at 4.5 kV and 1.0 A. 

Microstructural characterization and determination of topotactic relations between the (clino-)enstatite host 

and the garnet exsolutions were performed using a Philips CM20 FEG TEM operating at an acceleration voltage 

of 200 kV.
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Table 6.2: Run conditions of the experiments

Run number Pressure Temperature Duration

H2975 15 GPa 1700 °C 19 h

S4378 15 GPa 1700 °C 19 h

S4391 15 GPa 1700 °C 1h

Table 6.3 : Electron microprobe standards & peaks

Element Standard Characteristic peak

Mg Forsterite MgKα

Fe Metallic iron FeKα

Ca Diopside CaKα

Al Pyrope AlKα

Mn MnTiO3 MnKα

Si Forsterite SiKα

Ti Rutile TiKα



6.4 Results

6.4.1 Determination of the enstatite polymorph

As explained, enstatite has several polymorphs and therefore is important to determine for which polymorph 

the topotactic relationship between the enstatite host and majoritic garnet was determined. The polymorphs 

that were considered are orthoenstatite (Pbca), protoenstatite (Pbcn), low clinoenstatite  (P21/c), and high 

clinoenstatite (C2/c). The systematic presence (fig. 6.2a) of 100 reflections in the [001] zone axis pattern indicate 

that it cannot be either the protoenstatite or high clinoenstatite polymorph. From the geometry of the zone 

axis pattern it can also be excluded that the h00 reflections are caused by double diffraction. Figure 6.2b shows 

the diffraction pattern taken down the <013> zone axis. The spacing of the h31 reflections indicates that the d-

spacing of the 100 planes is ± 9.2 Å. This d-spacing excludes the possibility that the investigated enstatite crystal 

is the orthoenstatite polymorph (where the d-spacing is 18.2 Å) and thus needs to be the low clinoenstatite 

polymorph. 

6.4.2 Microstructure

Figure 6.3 shows a backscattered electron (BSE) image of the enstatite part of the sample of experiment H2975. 

The enstatite part contains a high density of garnet precipates with a The exsolved grains of majoritic garnet 

show a clear arrangement relative to the host pyroxene, the long axis of the precipitates are parallel to the (100) 

planes of the pyroxene host. The left side of the picture shows recrystallized grains of clinoenstatite that 
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Figure 6.2: Diffraction patterns of the 

recovered low clinoenstatite sample that 

show it is the low clinoenstatite polymorph 

(see text). a) Diffraction pattern down the 

[001] direction in low clinoenstatite and b) 

down the <013> direction.

a b

Figure 6.3: BSE image of the low 

clinoenstatite part of experiment 

H2975. The shape preferred 

orientation of the garnet precipitates 

in the undeformed single crystal part 

(center) is clearly visible. On the left 

the deformed part is visible. The 

middle gray phase is low 

clinoenstatite, the light gray phase 

majoritic garnet and the dark gray 

phase is stishovite.



probably formed due to the indentation of the thermocouple. The 

composition of the majoritic garnet precipitates are listed in table 6.4. 

The component fractions are calculated using the method explained 

in chapter 5. The precipitates have a high majorite component (± 61 

%), which is slightly higher than the equilibrium composition in the 

Mg3Al2Si3O12 – Mg4Si4O12 system at the experimental conditions 

(chapter 2), based on data from Gasparik (2003). The thickness of the 

majoritic garnet layer that formed at the garnet – enstatite interface 

was generally thin (< 3 µm for the 19 hour experiments and absent 

within the resolution of the microprobe for the 1 hour experiment). 

This agrees well with the low majorite diffusivity in garnet that was 

determined from majoritic garnet – pyrope diffusion couples and of 

which the results are presented in chapter 5.

The recovered sample of run H2975 has been investigated in detail by 

TEM. Figure 6.4 shows a dark field (DF) image obtained using g = 6 13 

as diffraction vector. Twinning on the (100) mirror planes is pervasive in the sample, and is indicated by the short 

white arrows. Next to twinning, one can also observe stacking faults parallel to the twin plane throughout the 

sample (figure 6.4 and 6.5). 

Figure 6.5a shows a DF image using g = 021 as diffraction vector, demonstrating again the pervasive nature of 

the stacking faults in this sample. The corresponding HRTEM image in an a*-b projection (* denoting the 

reciprocal direction) of clinoenstatite shows  a single stacking fault (fig. 6.5b). From this HRTEM image one can 

deduce that the displacement vector across the stacking fault is R = <½ ½ w>, the exact components can be 
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Figure 6.4: DF TEM image of twins (and stacking 

faults) parallel to (100) in clinoenstatite in 

experiment H2975. Two twin planes are 

indicated by the white arrows. The diffraction 

vector (g = 6 1 3) is indicated by the light gray 

arrow. The garnet precipitates are indicated by 

Gt. As can be seen, the large precipitate on the 

right has its long axis (semi-)parallel to the twin 

planes and stacking faults in low clinoenstatite.

Table 6.4:Composition of the exsolved  
majoritic garnet precipitates.

Oxide Wt%

MgO 34.80

CaO 0.24

FeO 1.65

Al2O3 9.83

SiO2 53.66

Total 100.18

Component Fraction

Majorite 0.610

Pyrope 0.352

Almandine 0.032

Grossular 0.007



determined from the fact that there is no offset of the spots across the stacking fault when looking in the 

<1*10> directions. The c-component was not determined in this study, but is required to be greater than zero. 

This is because if the c-component would be zero, the stacking fault would be out of contrast when using g = 

021 as diffraction condition. 

6.4.3 Majoritic garnet precipitates

As figure 6.3 shows, most of the majoritic garnet precipitates grew at high pressure during the experiments 

along predefined planes in the high clino-enstatite host. Further scrutinization by TEM showed that the 

precipitates grew with their long axes, in the case that there is a clear long axis visible, parallel to the (100) 

planes of the clino-enstatite host (figure 6.7).  The typical spacing between the garnet precipitates is 5 – 20 µm 

for experiment H2975, though it varies with position. Experiment S4391 (figure 6.6) was run at the same 

conditions as H2975, but only for one hour. As expected the garnet precipitates are much smaller than in H2975, 
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Figure 6.5: A more detailed view of the stacking faults in low clinoenstatite. a) A DF TEM image of the stacking faults, using g = 021 

as diffraction vector. b) A HRTEM image of a single stacking fault, showing that the displacement vector is R = < ½ ½ w>.

*

Figure 6.6: BSE image of garnet precipitates in 

experiment S4391, run for 1 hour. This image 

shows that the garnet precipitates start to 

nucleate within the first hour of the experiment. 

The size of the garnet precipitates is also 

significantly smaller than those from the longer 

experiments.



however it shows that the first garnet precipitates start to form within the first hour of the experiment. There 

are however regions where there is a lack of garnet precipitates, mainly towards the end of the capsule. This 

might be caused by temperature gradients within the capsule. In this particular sample the spacing between the 

garnet precipitates was between 5 – 10 µm in the regions where garnet precipitates are present.

Diffraction patterns of the clinoenstatite host and garnet precipitates have been collected to determine the 

orientation relationship between the two phases. Figure 6.7 shows BF images of garnet precipitates in 

clinoenstatite with insets of the diffraction patterns. As can be seen from the diffraction patterns in figure 6.7a, 

the [001] zone axis of enstatite is parallel to the [111] zone axis of the garnet precipitate and the 110 reflection (d 

= 8.1 Å) of garnet nearly coincides with the 010 (d = 8.6 Å) reflection of clinoenstatite. Figure 6.7b shows the 

topotactic relation of another garnet precipitate to the clinoenstatite host. Again the <111> zone axis of garnet 

is parallel to the [001] zone axis of clinoenstatite, however the garnet grain is rotated around the <111> zone 

axis by 10° clock wise relative to figure 6.7a and the clinoenstatite host, which has the same orientation in both 
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Figure 6.7: BF TEM images showing the orientation 

relationship between low clinoenstatite and the majoritic 

garnet precipitates. The insets of the diffraction patterns 

show the orientation of the reciprocal lattice with respect 

of the picture for the particular phase, the superimposed 

diffraction patterns show the relation between both 

phases on their interface.  Diffraction patterns are taken 

on the approximate position of the insets. Zone axes of 

the diffraction patterns are: a) low clinoenstatite down 

[001] axis, garnet down the <111> zone axis. Garnet 110 

reflection is coincident with low clinoestatite 010 

reflection. b) Low clinoenstatite down the [001] zone axis, 

garnet down the <111> zone axis. Rotation of garnet grain with respect to figure a is ± 10°. c) Low clinoenstatite down the [001] 

zone axis, garnet down the <121> zone axis. Garnet 110 reflection nearly coincides with 110 of clinoenstatite.



figures. Although the dominant topotactic relationship between the clinoenstatite host and the majoritic garnet 

is the one depicted in figures 6.7a-b, i.e. <111> of garnet parallel to [001] of clinoenstatite, also some garnet 

precipitates were observed which had a different relation to the clinoenstatite host. Figure 6.7c shows such a 

garnet precipitate, where the <121> zone axis of garnet is parallel to the [001] zone axis of clinoenstatite. In this 

case the 110 reflection of garnet nearly coincides with the 110 (d = 6.3 Å) reflection of enstatite. However, the 

topotactic relation determined in figure 6.7a-b is the most dominant found in the samples that have been 

examined by TEM.  Experiment S4391 

6.4.4 Diffusion of Al in high clinoenstatite

In the recovered sample from experiment S4378 several diffusion profiles were measured around the garnet 

precipitates. Figure 6.8 shows the location and the longest diffusion profile that has been measured with the 

electron microprobe. The measured diffusion profile has been fitted using a numerical finite difference model, 

to determine the diffusivity of Al in high clinoenstatite at the experimental conditions (15 GPa and 1700 °C). The 

numerical model assumed cylindrical symmetrical diffusion of Al in the high clinoenstatite host and growth of 

the garnet precipitate, which is controlled by the diffusion of Al across the precipitate – host interface. A more 

detailed description of the program is given in section 4.2. The calculated diffusion profiles have been 

convoluted with a Gaussian function with a FWHM of 1.0 µm to account for the finite size of the activation 

volume for electron microprobe analyses. The crystallographic direction of the diffusion profile was determined 

by TEM by orienting diffraction patterns relative to known features in the BSE image of figure 6.8. Fitting of the 

measured profile gives a diffusivity for Al in high clinoenstatite along the [101]* (i.e., [101] direction in reciprocal 

space) direction of 6 x 10-11 cm2 s-1. This value is 3-4 orders of magnitude faster than the diffusivity of the 

majorite component in garnet at the same conditions.
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Figure 6.8: Location of the diffusion profile (black arrow) and the measured aluminium concentration profile expressed in mol cm -3 

(b).  The solid line in b is the fitted profile, the vertical line around 7 μm corresponds to the boundary between the garnet 

precipitate and the low clinoenstatite host.



6.5 Discussion

6.5.1 Pyroxene microstructure

In the recovered sample studied by TEM (H2975) twinning and stacking faults parallel to (100) in low 

clinoenstatite were pervasive. The twinning may have been caused by the transition from the low pressure 

orthorhombic phase (Pbca space group) to the high pressure monoclinic phase (C2/C space group), which is the 

stable enstatite polymorph at pressures above ± 10 GPa at the 1700 °C (Kanzaki 1991, Angel et al. 1992). 

Furthermore, it is also possible that the stacking faults were the result of the C2/C to P21/c phase transition in 

clinoenstatite during decompression, since the C2/c phase of clinoenstatite is non quenchable and transforms 

back to P21/c during decompression (Angel et al. 1992). Thomson and Downs (2003) showed that the C2/c and 

P21/c phases of clinoenstatite have a different oxygen stacking sequence, which can be the cause of the 

appearance of stacking faults during the transformation between both phases. 

The displacement vector across the stacking faults was determined to be R = <½ ½ w>.Though it was not 

possible to determine the exact value of w from the electron photographs directly, one can make an educated 

guess based on geometrical considerations. The distance between two silicon tetrahedra in along the silica 

chains is c/2. If the stacking fault plane would run through the silica tetrahedra parallel to (100) any c-

component other than ½ would cause a severe distortion of the silica tetrahedra. A zero c-component would in 

addition not cause a stacking fault. A similar argument can be held in the case the fault alone would run in 

between the tetrahedral and octahedral layers as well as when it would run through the octahedral layers. The 

displacement vector should thus be R = ½ <111>. A closer look at the rotations of the individual silica tetrahedra 

in the silica chains shows how such displacement vector can be produced when going from high clinoenstatite 

to low clinoenstatite (figure 6.9). In the low clinoenstatite form the silica tetrahedra related to each other by the 

½ <111> lattice vector have an opposite rotation, i.e. the triangular base of the tetrahedron point in opposite 

directions. For the high clinoenstatite form the silica tetrahedra related by the same vector have the same 
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Figure 6.9: The crystal structure of a) 

low clinoenstatite and b) high 

clinoenstatite viewed down the 

[100] direction. Blue tetrahedra are 

silica tetrahedra, large spheres in 

between the tetrahedra are Mg 

cations and small spheres are 

oxygen. Note the difference in 

rotation of tetrahedra related by the 

vector ½ <111> between both 

structures.

b



rotation. Introducing a stacking fault on (100) with displacement vector ½ <111> in the low clinoenstatite 

structure will thus result in the tetrahedra being related by the ½ <111> vector across the stacking having the 

same rotation, i.e. adding a high clinoenstatite layer in between the low clinoenstatite layers.  

Several studies have addressed planar defects in pyroxenes, mostly related to deformation studies of pyroxene 

at relatively low pressures. Coe and Kirby (1975) determined a displacement vector of R =0.83[001] for stacking 

faults on (100) in experimentally deformed orthopyroxenes. Steuten and Van Roermund (1989) determined a 

displacement vector of R = ¼ [001] for stacking faults on (100) in a naturally deformed orthopyroxene. Both 

stacking faults in these studies are produced by the dissociation of b = [001] Burgers vectors. Van Duysen et al. 

(1985) conducted an indentation experiment on orthopyroxene at ambient conditions and found that 

dislocations with b = [001] Burgers vector dissociate into 4 partial dislocations, producing stacking faults on 

(100) with displacement vectors R1 = [0, β, γ], R2 = [0, ν, ½] and R3 = [0, -β-ν, ½-γ] with β = 0, ν = 1/6 and ¼ < γ < 

1/3 based upon a FCC structural model for the sublattices. Skrotzki (1994) found in naturally deformed 

orthoenstatite stacking faults on (100) with displacement vectors R = 0.83 [001], R = ½ <101> and R = ¼ <121>, 

producing clinoenstatite and (partial) protoenstatite lamellae in orthoenstatite. In clinopyroxenes he describes 

stacking faults on (010), forming amphibole type chain multiplicity faults by the dissociation of [001] perfect 

dislocations into ½ <01w> (w ≠ 1), and stacking faults on {11o} by the dissociation of <111> dislocations into 

½ <111> partials. Clearly, none of these studies find a combination of stacking fault plane and displacement 

vector as in this study. Iijima and Buseck (1975) did a study on low clinoenstatite obtained by direct quenching 
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Figure 6.10: Projections of the garnet (pyrope) model down the <111> direction (a) and <110> direction (b).Small dark gray spheres 

are oxygen atoms, big dark gray spheres magnesium atoms, light gray atoms spheres aluminium atoms and the tetrahedra are 

silica tetrahedra. Figure b is a projection of a single row of silica tetrahedra tubular columns between two parallel {110} planes,  

indicated in figure a by the dashed lines. Every tubular column in b has an offset of 1/3 of a tetrahedral plus octahedral layer (i.e.  

1/12 <111>) from its neighbouring column. 



after bringing orthoenstatite either into the high temperature clinoenstatite or protoenstatite fields. They 

observe similar stacking faults and twins as observed in this study, and from HRTEM images they determined 

the b-component of the stacking fault vector to be ½ b, and interpreted this as the b-glide component of 

twinning in low clinoenstatite and across the twin plane there is an additional 4.5 Å layer, which is equal to an 

a/2 offset across the twin plane. The displacement over the composition plane can thus also be described by a < 

½ ½ w> displacement vector. They however did not attempt to determine whether there was a c-component 

too in the displacement across the stacking fault. Having a look at the high temperature high clinoenstatite 

structure however shows that it cannot be precluded that the same line of arguments as with the high pressure 

high clinoenstatite structure can be used and that the displacement vector across the composition plane of the 

'clinoenstatite twins' is ½ <111>. Comparing the high clinoenstatite structure to the orthoenstatite structure 

shows that the tetrahedra related to each other by the ½ <111> vector have the same rotation in both 

structures. Therefore it is considered more probable that the stacking faults formed during the high 

clinoenstatite to low clinoenstatite phase transformation than from the orthoenstatite to high clinoenstatite 

transformation in our experiments.

Though most of the stacking faults are not overgrown by garnet precipitates, some of them are. So at least 

some of the stacking faults must have grown before garnet started to precipitate. Many of the garnet 

precipitates have overgrown twin boundaries, indicating that the twins, like some of the stacking faults, also 

formed during compression or the initial stages of heating. The twin boundaries, and stacking faults to a lesser 

extent, thus appear to have played a significant role in the exsolution of garnet from enstatite. This can also be 

concluded from the fact that most garnet precipitates have their long axis parallel to the (100) plane of 

clinoenstatite, i.e. the twinning and stacking fault plane. Previous studies have shown that nucleation of new 

phases often occur heterogeneously on pre-existing defects in grains, which lowers the activation energy for 

nucleation (Putnis 1992, Kerschhofer et al. 2000), which can explain the preference of garnet nucleating on twin 

boundaries or stacking faults.

6.5.2 Garnet precipitates

A unique topotactic relationship between the garnet precipitate and the clinoenstatite host is not observed. The 

lack of an oxygen close packing direction in garnet may be the reason that there is no such topotactic 

relationship between garnet and the low clinoenstatite host. It was however observed that the dominant 

topotactic feature was that the <111> direction in garnet is parallel to the [001] direction in clinoenstatite. 

Comparing the length of the clino-enstatite c lattice parameter (c = 4.9 Å) to that of the unit cell body diagonal 

length of garnet (19.8 Å) shows that the latter one is almost exactly four times as long. Figure 6.10a shows a 

structural model of garnet down its <111> zone axis. The silicon tetrahedra form tubular columns down the 

<111> direction with octahedral sites in the centre of them. The columns of silica tetrahedra are interconnected 

by octahedra. The silica tabular columns themselves are made up of layers of silica tetrahedra with their apices 

pointing inward toward the central octahedral site and layers of dodecahedral site (see figure 6.10b) between 

the tetrahedral layers. The layering in a single tubular column is parallel to {111}, however the layering in a 
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complete crystal is parallel to {211} since every tubular column is shifted relative to a neighbouring tubular 

column by 1/3 of the tetrahedra plus octahedra layer thickness. In the view down the <111> direction the space 

between the tubular columns forms channels parallel to {110}. Though the structures of pyroxene and garnet are 

vastly different, silica tetrahedra also form a linear structure in garnet structure down the <111> direction. For 

the transformation from pyroxene to garnet, the chains of silica tetrahedra down the c-axis in pyroxene need to 

be broken into isolated silica tetrahedra. The distance over which the silica tetrahedra need to be diffused (or 

translated and rotated) may thus be minimal when the new garnet crystal forms with its <111> direction down 

the original c-axis of high clinoenstatite. The topotactic relationship would in this case thus not be controlled by 

minimization of the strain energy on the interface between both phases, but by the diffusion kinetics of silicon, 

because silicon is usually the slowest diffusing species. 

6.5.3 Aluminium diffusivity in clinoenstatite

The diffusion in high clinoenstatite down the [101]*direction was determined to be 6 x 10-11 cm2 s-1 at 15 GPa 

and 1700 °C, which is 3 – 4 orders of magnitude faster than the diffusion of the majorite component in garnet. 

The reported diffusivity is a lower limit, since the exact time required before a majoritic nucleus formed is 

unknown. However, the measured profile used in the fit model was the longest that was found in the sample 

and thus probably also corresponds to one of the nucleus that formed first during the experiment. The region 

around the measured precipitate is relatively devoid of other precipitates, which also indicates that the 

precipitate from which the profile was measured nucleated during an early stage of the experiment. Experiment 

S4391 (figure 6.6) was run at the same conditions, but only for 1 hour. The presence of garnet precipitates in this 

experiment indicate the first precipitates nucleate within the first hour. Since the run duration of experiment 

S4378 was 19 hours, it is thought that the error due to the uncertainty about the exact time of nucleation of the 

precipitates is not significant. 

To project the diffusion coefficients to subduction zone conditions one needs the activation energy for diffusion 

of aluminium in pyroxene (or ideally high clinoenstatite). There is, however, a general lack of diffusion data on 

aluminium in minerals in the literature, the only data on aluminium diffusion in diopside is by Sautter et al. 

(1988) and Jaoul et al. (1991) over a limited temperature range between 1000 – 1180 °C at 1 bar. They obtain an 

activation energy of 273 kJ mol-1. The activation enthalpy, describing the temperature dependence, for diffusion 

of aluminium in high clinoenstatite will probably be higher, since the experiments in this study were conducted 

at a pressure of 15 GPa. Therefore a typical range of activation enthalpies have been assumed, i.e. between 275 

kJ mol-1 and 350 kJ mol-1, corresponding to an activation volume for the diffusion of aluminium in clinoenstatite 

between 0 – 5 cm3 mol-1. For the upper part of the subducting slab at a temperature of 1000 °C (Emmerson and 

McKenzie 2007), corresponding to the subducted oceanic crust, it gives an aluminium diffusion coefficient in the 

range of 5 x 10-16 cm2 s-1 to 6 x 10-15 cm2 s-1. For the middle to lower part of the subducting slab at 1400 °C 

(Emmerson and McKenzie 2007), corresponding to the subducted mantle lithosphere, the range is smaller due 

to a smaller temperature difference between the extrapolated temperature and the experimental condition, 

and is in the range between 3 x 10-12 cm2 s-1 and 4 x 10-12 cm2 s-1. Again this shows that diffusion of aluminium in 
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high clinoenstatite (in the [101]* direction) is significantly faster than the diffusion of the majorite component in 

garnet, i.e. 3 – 4 orders of magnitude slower. Since the distance over which a component can diffuse can be 

approximated by x = √(Dt), with t the time for which the component is allowed to diffuse, one can calculate the 

distance over which aluminium can diffuse in pyroxene. At 1000 °C and 10 Myr, which is a typical time scale for 

subduction (see chapter 5), this is between 0.5 – 1.5 cm and at 1400 °C between 20 – 30 cm. If grain boundary 

diffusion plays a significant role, the values will be a factor 100 larger, i.e. at the meter scale at 1000 °C and at 

the decameter scale at 1400 °C.

Comparing the absolute values of the diffusion study by Jaoul et al. (1991) to the data presented in this study 

shows that our data is significantly faster, Jaoul et al. obtained a diffusivity of 3.7 x 10-17 cm2 s-1 at 1180 °C at 1 

bar and our study 6 x 10-11 cm2 s-1 at 1700 °C.  This would correspond to an activation energy for diffusion of 

aluminium in clinopyroxene of 655 kJ mol-1 (when the effect of pressure is neglected), which is anomalously 

high, or when using their activation energy for Al diffusion this corresponds to an activation volume for diffusion 

of aluminium in clinopyroxene of -25 cm3 mol-1, which would mean that with increasing pressure diffusion 

would become faster. From this it can be concluded that there is a large difference in diffusivity between that of 

aluminium in HP clinoenstatite at high pressure and that of aluminium diffusion in diopside at low pressure, 

which possibly can be attributed to different diffusion mechanism in both clinopyroxene phases at the different 

conditions or a strong dependence of the diffusivity of aluminium in clinopyroxene on the calcium content.

6.6 Conclusions

• Twins and stacking faults on (100) are pervasive throughout the enstatite sample after quenching and 

decompression from 15 GPa and 1700 °C. The displacement vector across the stacking fault boundary 

was determined to be <½  ½ w>, most likely being ½ <111>. This displacement vector can be explained 

be the transformation of high clinoenstatite to low clinoenstatite.

• The twin boundaries and stacking faults that formed in high clinoenstatite parallel to the (100) planes 

during the transition from Pbca orthorombic to the C2/c high pressure phase seem to have acted as 

nucleation sites for majoritic garnet precipitates.

• In the case that there was a well defined long axis of the garnet precipitate in the observed TEM 

section, this long axis was predominantly oriented parallel to (100) and the twin planes / stacking faults 

in low clinoenstatite.

• There is no unique topotactic relationship between the low clinoenstatite host and the majoritic garnet 

precipitates. However, a dominant linear relationship was found with the <111> direction in garnet 

being parallel to the [001] direction in low clinoenstatite. This direction is probably controlled by the 

diffusivity of silicon in pyroxene and not by minimization of strain energy at the interface between the 

clinoenstatite host and majoritic garnet precipitates. The latter is probably due to the absence of a well 

defined oxygen close packing direction in garnet.
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• The diffusivity of aluminium in C2/c HP-clinoenstatite in the [101]* direction at 15 GPa and 1700 °C was 

determined to be at least 6 x 10-11 cm2 s-1, which is 3 – 4 orders of magnitude faster than the diffusivity 

of the majorite component in garnet at the same conditions.

• There is a large difference in the diffusivity of aluminium in clinopyroxene at high pressure and the 

diffusivity of aluminium in clinopyroxene at room pressure, which eventually indicates a change in 

diffusion mechanism with pressure or a strong dependence of the diffusivity of aluminium on calcium 

content in clinopyroxene.
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