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1 Summary / Zusammenfassung 

1.1 Summary 

The primary aim of this thesis was the design of mesoporous polymer derived (PD) silicon 

carbonitride (SiCN) materials. Therefore, a polystyrene (PS) particle based innovative synthesis 

route was developed. Diverse modifications of the obtained SiCN material enabled applications 

in the fields of electrochemistry and heterogeneous catalysis. (Figure 1.1). 

 

Figure 1.1 Modification of the mesoporous SiCN material by iridium nanoparticles as well as by post 

synthetic treatments like chlorination or calcination.  

In general, PD-SiCN ceramics exhibit a low specific surface area (SSA). The here introduced 

simple and novel structuring method based on cross-linked PS particles is an elegant technique 

to approach this problem. PS particles with a diameter of 60 nm and a positive partial charge 

were synthesized by emulsion polymerization. The positive partial charge and the high cross-

linking degree of the PS particles enabled a homogenous and stable suspension with the 

commercial available ceramic precursor HTT-1800 in organic solvents. The cross-linked and 

dried nanocomposite (green body) was converted into a mesoporous SiCN material using a 

tailored pyrolysis program under nitrogen atmosphere. Three SiCN materials were synthesized 

at temperatures between 900 °C and 1100 °C in order to investigate the influence of the 

pyrolysis temperature regarding the SSA and the pore stability. Increasing the pyrolysis 

temperature caused an enhanced collapse of the pores leading to a lower SSA. Decreasing the 

pyrolysis temperature to 900 °C enabled a higher stability of the mesopores and a larger SSA.  
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Furthermore, the mesoporous SiCN material was purposive modified in order to address 

electrochemical applications. Chlorine gas treatment enabled the release of the containing 

silicon as silicon tetrachloride and generated a highly porous N-doped carbon material. This 

compound was used as electrode material in supercapacitors. Two hierarchical porous N-doped 

carbon materials with different pore size distribution and nitrogen amount were obtained. 

Thereby, the N-richer material was more suitable as electrode material due to the higher cell 

capacitance and the twice as long stability over time. A significant increase of the specific 

capacitance was observed for the electrolyte 1-ethyl-3-methylimidazolium tetrafluoroborate 

(EMIM-BF4) compared to standard electrolytes. In-situ resistivity measurements supported this 

result analyzing the electric properties independent of the electrolyte. Only the combination of 

the N-doped carbon electrode with EMIM-BF4 led to a nearly constant normalized resistance. 

This indicated the capacitance enhancement because of the ideal match of electrode material 

and electrolyte.  

The stabilization of iridium nanoparticles using the PS structured SiCN material led to a 

hierarchical porous Ir@PS60SiCN composite. Therefore, an iridium aminopyridinato complex 

was used as metal precursor. This material showed good to excellent yields in the sustainable 

synthesis of N-heterocycles like pyrroles, pyridines, and quinolines using the concept of 

acceptorless dehydrogenative condensation. The innovative heterogeneous catalyst exhibits an 

excellent accessibility of very small, homogeneously distributed iridium nanoparticles. The 

accessibility is caused by the surface structuring resulting in a high SSA and open porosity. The 

activity and reusability of the catalyst was investigated in comparison to other heterogeneous 

Ir-catalyst (Ir/C, Ir/Al2O3, Ir/CaCO3) as well as an unstructured Ir@SiCN catalyst. The 

structured Ir@PS60SiCN system showed a good resusability and a significant higher activity.  

An Ir@SiCN-SiCN core-shell material was generated in order to improve the metal 

accessibility and the metal content. Therefore, the incorporated carbon of the structured SiCN 

material was partial removed as carbon dioxide by calcination. The ideal calcination 

temperature was determined using a fixed-bed reactor with coupled online GC. The obtained 

material exhibits an appreciable enhanced SSA. The calcinated material was coated with a thin 

Ir@SiCN layer using a wetting technique. This way, metal nanoparticles were imbedded onto 

the porous surface of the SiCN support. 
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1.2 Zusammenfassung 

Das primäre Ziel dieser Arbeit war die Entwicklung mesoporöser, polymerbasierter 

Siliziumcarbonitrid-(SiCN)-Materialien. Dafür wurde eine auf Polystyrol-(PS)-Partikeln basierte 

innovative Syntheseroute entwickelt. Diverse Modifizierungen des resultierenden SiCN-

Materials ermöglichten Anwendungen im Bereich der Elektrochemie und der heterogenen 

Katalyse. (Abbildung 1.1).  

 

Abbildung 1.1 Modifizierung des mesoporösen SiCN-Materials durch Iridium-Nanopartikel sowie durch 

nachfolgende Chlorierung oder Calcinierung. 

Polymerbasierte SiCN-Keramiken besitzen im Allgemeinen eine geringe spezifische 

Oberfläche. Die hier vorgestellte, innovative Strukturierungsmethode mit quervernetzten PS-

Partikeln stellt eine elegante Methode dar, um dieses Problem anzugehen. Die PS-Partikel mit 

einem Durchmesser von 60 nm und einer positiven Partialladung wurden mittels 

Emulsionspolymerisation hergestellt. Die positive Partialladung und der hohe Vernetzungsgrad 

der PS-Partikel ermöglichten eine homogene und stabile Suspension mit dem kommerziell 

erhältlichen Keramik-Precursor HTT-1800 in organischen Lösungsmitteln. Das vernetzte und 

getrocknete Material (Grünkörper) wurde mittels eines maßgeschneiderten Pyrolyseprogramms 

unter Stickstoffatmosphäre in ein mesoporöses SiCN-Material umgewandelt. Die Herstellung 

von drei SiCN-Materialien im Temperaturbereich zwischen 900 °C und 1100 °C diente der 

Untersuchung des Einflusses der Pyrolysetemperatur auf die spezifische Oberfläche und die 

Porenstabilität. Mit zunehmender Pyrolysetemperatur kam es vermehrt zum Kollaps der Poren, 

was ein Einbrechen der spezifischen Oberfläche zur Folge hatte. Das Herabsetzen der 



   1 Summary / Zusammenfassung 

14 

Pyrolysetemperatur auf 900 °C bewirke eine Erhöhung der Porenstabilität sowie der 

spezifischen Oberfläche. 

Des Weiteren wurde das mesoporöse SiCN-Material zielgerichtet modifiziert, um 

Anwendungen im Bereich der Elektrochemie zu adressieren. Die Behandlung mit Chlorgas 

bewirkte die Freisetzung des enthaltenen Siliziums als Siliziumtetrachlorid und generierte ein 

hochporöses N-dotiertes Kohlenstoffmaterial. Dieses Material wurde als Elektrode in 

Superkondensatoren eingesetzt. Zu diesem Zweck wurden zwei hierarchisch poröse N-dotierte 

Kohlenstoffmaterialien hergestellt, die sich in ihrer Porenverteilung und ihrem Stickstoffgehalt 

unterschieden. Dabei zeigte sich das N-reichere Material als geeigneter, da es eine höhere 

Kapazität und eine Verdopplung der Langzeitstabilität aufwies. Es kam zu einem signifikanten 

Anstieg der spezifischen Kapazität für den Elektrolyt 1-Ethyl-3-methylimidazolium-

tetrafluoroborat (EMIM-BF4) im Vergleich zu gängigen Standardelektrolyten. In-situ 

Widerstandsmessungen stützten dieses Ergebnis, da auf diese Weise die elektrischen 

Eigenschaften unabhängig vom Elektrolyt betrachtet werden konnten. Ausschließlich die 

Kombination der N-dotierten Kohlenstoffelektrode mit EMIM-BF4 führte zu einem nahezu 

konstanten normierten Widerstand. Dies spricht für die Kapazitätssteigerung durch die ideale 

Kompatibilität des Elektrodenmaterials und des Elektrolyts. 

Die Stabilisierung von Iridium-Nanopartikeln durch die PS-strukturierte SiCN-Matrix führte 

zu einem hierarchisch strukturierten Ir@PS60SiCN Kompositmaterial. Ein Iridium-

Aminopyridinato Komplex diente als Metall-Precusor. Dieses Material zeigte gute bis 

hervorragende Ausbeuten bei der nachhaltigen Synthese von N-Heterocyclen wie Pyrrolen, 

Pyridinen und Quinolinen, wobei das Konzept der akzeptorlosen dehydrierenden Kondensation 

herangezogen wurde. Der innovative heterogene Katalysator zeichnete sich durch eine 

hervorragende Zugänglichkeit der sehr kleinen, homogen verteilten Iridium-Nanopartikeln aus. 

Die Zugänglichkeit ist in der Oberflächenstrukturierung und der daraus resultierenden hohen 

Oberfläche sowie der offenen Porosität begründet. Des Weiteren wurden die Aktivität und die 

Wiederverwendbarkeit des Katalysators im Vergleich zu anderen heterogenen Ir-Katalysatoren 

(Ir/C, Ir/Al2O3, Ir/CaCO3) sowie einem unstrukturierten Ir@SiCN Katalysator untersucht. Es 

zeigte sich eine gute Wiederverwendbarkeit und eine signifikant höhere Aktivität für den 

Ir@PS60SiCN Katalysator.  

Außerdem wurde ein Ir@SiCN-SiCN Kern-Schale-Material hergestellt, um die 

Metallzugänglichkeit und den Metallgehalt zu optimieren. Hierfür wurde der in dem SiCN-

Material enthaltende Kohlenstoff partiell durch einen Calcinierungsprozess als 
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Kohlenstoffdioxid entfernt. Unter Verwendung eines Festbett-Reaktors mit gekoppelter online-

GC-Analyse wurde die ideale Calcinierungstemperatur bestimmt. Das erhaltene Material wies 

eine erhöhte spezifische Oberfläche auf. Eine Benetzungstechnik ermöglichte die dünne 

Beschichtung des calcinierten Materials mit Ir@SiCN. Auf diese Weise konnten Metall-

Nanopartikel auf der porösen Oberfläche des SiCN-Trägermaterials eingebettet werden. 
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2 Introduction 

In the last decades, polymer derived ceramics (PDC) gained a wide interest due to their high 

thermal stability and chemical resistance.1 In contrast to traditional preparation techniques, 

ceramics based on polymer precursors have two main advantages. First, they can be produced at 

significantly lower processing temperatures. Second, their easy shaping character allows the 

fabrication of diverse structures like fibers, coatings and films.1h,m,2 PDCs consisting of 

organosilicon polymers are divided into oxide and non-oxide ceramics. In particular, PD-SiCN 

non-oxide ceramics are of great importance regarding the covalent bonded nitrogen in the ceramic 

network. The nitrogen enables the stabilization of metal nanoparticles by the ceramic support 

leading to robust heterogeneous catalysts.2,3 Our group established a molecular approach 

transferring transition metals from aminopyridinato complexes4 to the commercially available 

polysilazane HTT-1800. The resulting metallo polysilazane is subsequently converted into a 

SiCN-transitionmetal nanocomposite (M@SiCN) after cross-linking and pyrolysis under inert 

atmosphere (Figure 2.1). The nonporous M@SiCN materials exhibit very small metal 

nanoparticles and are versatile used in catalysis.5 

 

Figure 2.1 Synthesis of metal containing PD-SiCN ceramics by a molecular approach (image source of the 

M@preceramic polymer and the M@SiCN ceramic6).  

Beside the excellent results in catalysis so far, such M@SiCN catalysts feature only a small 

specific surface area (SSA) and a low accessibility of the metal nanoparticles. Nanostructuring 

methods were recently developed by several research groups in order to rise the SSA of PD-

SiCN ceramics. However, structuring is sophisticated due to the hydrolysis sensitivity of the 

ceramic polymer precursor. As seen in Figure 2.2, nanostructuring of PD-SiCN ceramics can 

be accomplished by a) block copolymers utilized as structure-directing agent (SDA) or 

exploiting their self-assembly behavior, b) the hard-templating method, and c) the self-

sacrificial template method.7 
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Figure 2.2 Nanostructuring methods leading to porous PD-SiCN ceramics. 

The self-assembly of block copolymers leads to ordered meso structures by microphase 

separation. Block copolymers enable a direct synthesis route for meso structured SiCN 

ceramics.7 There are two pathways known in literature.7 The first method uses an organic block-

copolymer as SDA and an inorganic polymer as ceramic precursor. The compatibility of the 

inorganic polymer with one block of the SDA is necessary for a successful microphase 

separation. The shape of the generated meso structured nanocomposite is conserved by cross-

linking of the inorganic domain. The inorganic network is converted into a SiCN material under 

inert atmosphere. The organic domain is thermally removed by pyrolysis obtaining mesopores.7 

This method was successfully developed by the group of Wiesner.8 They used poly(isoprene-

block-dimethylaminoethylmethacrylate) (PI-b-PDMAEMA) as SDA and polyureamethylvinyl-

silazane (commonly known as Ceraset) as ceramic precursor. A nanocomposite with a PI and a 

PDMAEMA/Ceraset domain was generated due to interaction of hydrogen bonds of the 

PDMAEMA block with Ceraset. Pyrolysis of the hybrid material led to a 2D hexagonal meso 

structured SiCN ceramic with a SSA of 51 m²/g. The group of Wan also used Ceraset as 

preceramic polymer and polybutadiene-block-poly(ethylene oxide) (PB-b-PEO) as SDA.9 They 

observed morphologies ranging from hexagonal to lamellar as well as to cylindrical structures. 

The main problem of this structuring method is a possible macrophase separation. They choose 

PB-b-PEO regarding its good miscibility with the ceramic precursor in order to avoid this 

problem. Moreover, crystallization of the PEO domain was handled using a high molecular 

weight of the SDA.  
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The second block-copolymer based structuring method avoids the matter of macrophase 

separation.7 An inorganic polymer serving as ceramic precursor and an organic polymer 

responsible for later mesopores are connected by covalent bonds. This method is based on the 

self-assembly character of the received block copolymer. Due to microphase separation of the 

two blocks, a meso structured nanocomposite is achieved. This compound is in situ transformed 

into a porous ceramic by pyrolysis.7 The group of Kim generated poly(vinyl)silazane-block-

polystyrene (PVSZ-b-PS), which was subsequently converted into an ordered mesoporous 

SiCN ceramic.10 Our group developed a block-copolymer using the commercially available 

polysilazane HTT-1800 as inorganic block and hydroxyl terminated polyethylene (PEOH) as 

organic block. PEOH was synthesized via coordinative chain transfer polymerization (CCTP).11 

Ultrathin SiCN fibers as well as lamellar morphologies remained by a one pot self-assembly of 

PE-b-HTT-1800.12 The block copolymer based methods have certain limitations. Oxygen is 

introduced using acrylic monomers and sophisticated synthesis routes are required.  

A different pathway is the hard-templating method using mesoporous solids, for instance 

silicates and carbons as templates. A distinction is made between spherical templates, which 

are arranged in a hexagonal closed package bed and mesoporous templates. In both cases, the 

ceramic precursor is infiltrated into the voids of the template material. A nano structured SiCN 

material is received after pyrolysis and removal of the template.7 The groups of Kim and Kenis 

used SiO2 spheres in order to obtain macro structured SiCN ceramics with SSAs up to 

455 m²/g.13 Moreover, the group of Kim used the mesoporous carbon templates CMK-3 and 

CMK-8 generating mesoporous SiCN ceramics as negative replica of the templates.14 The 

group of Zhao fabricated ordered mesoporous SiCN ceramics with open and continuous 

frameworks combining a casting-by-casting method with an atmosphere-assisted in situ 

transformation process.15 This route led to SSAs between 200-400 m²/g. In general, the hard 

templates were removed using strong etching reagents like hydrofluoric acid (HF). This harsh 

procedure is a great disadvantage affecting not only the template but the porous SiCN ceramic 

as well. Thus, a possible stabilization of in situ generated metal particles is impeded. 

The self-sacrificial template method was established by the groups of Kim and Kenis.13b,16 They 

used polyolefin based templates, in particular, spherical PS particles in order to avoid strong 

etching reagents. The thermal removal of the template was enabled during pyrolysis. A packed 

bed of PS spheres inside the microfluidic channels of a polydimethysiloxane (PDMS) mold was 

formed by evaporation-driven self-assembly. Macroporous SiCN monoliths with SSAs up to 

185 m²/g were obtained after infiltrating the template by a polymeric precursor and subsequent 
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pyrolysis. Furthermore, they were able to generate a PS bed by sedimentation of macro 

spherical PS particles. A macroporous SiCN material was achieved.17 Jones and Lodge 

introduced a microphase-separated polymer blend and used it for the generation of a 

mesoporous polyethylene (PE) template.18 They utilized Ceraset as ceramic polymer. The 

synthesis led to a disordered 3D continuous porous SiCN ceramic with macropores. The group 

of Motz used PE as sacrificial filler in a simple mixing and pressing route producing 

macroporous SiCN materials with an open porosity.19 Following this example, the group of 

Konegger also established a simple mixing and pressing route using ultrahigh molecular weight 

polyethylene (UHMW-PE) as template.20 They produced structured SiCN ceramics with pores 

in the macro scale range (> 10 µm). The group of Colombo showed among others a structuring 

method of partially cross-linked HTT-1800 using poly(methylmethacrylate) microbeads as 

sacrificial filler and generated a porous SiCN ceramic.21 The groups of Li and Xu generated an 

opal template using poly(styrene-methylmethacrylate-acrylic acid).22 They infiltrated the 

template with a polysilazane and obtained a crack-free photonic crystal with ordered 

macropores after pyrolysis at 500 °C. The self-sacrificial template approach has been restricted 

to macro structuring so far except the work of Jones and Lodge.18 Moreover, the infiltration of 

the preceramic polymer into the voids of the PS bed is subjected to diffusion control regarding 

the PDMS mold. 

The first approach in the generation of porous M@SiCN catalysts was accomplished by the 

group of Wiesner.23 They introduced a highly porous SiCN catalyst supporting platinum 

nanoparticles. A five component systems was established using PI-b-PDMAEMA as SDA, 

Ceraset as ceramic precursor, PS particles as macropore source, a PDMS mold as micro-channel 

generator, and a platinum-complex as Pt-source. The Pt@SiCN material was tested in the total 

methane oxidation with high activity and thermal inertness up to 600 °C. Furthermore, our 

group developed a microporous Ni@SiCN catalyst, a hierarchically porous Pd@SiCN catalyst 

and a mesoporous Au@SiCN catalyst for several catalytic applications.6,24  

Beside catalytic reactions, high surface area materials find application for electrochemical 

performances. For instance, nanoporous carbon materials are used as electrode materials in 

electrochemical capacitors, also known as supercapacitors. The high specific surface area of 

these materials is necessary with regard to high efficiency. The performed capacitance depends 

on the amount and speed of the electrosorption reaction of the electrolyte ions at the charged 

interface of the electrode material. Thus, a high specific surface area and high pore volumes are 

required.25 The groups of Colombo and Gogotsi demonstrated a chlorination treatment of a 
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SiCN template generating a carbide-dervied carbon material.26 This method seems very 

promissing in order to establish a SiCN-dervied N-doped carbon material. The influence of N-

doped polymer derived carbons on the improved electrical conductivity was first investigated 

by the group of Frackowiak.27 Several carbon materials with N-doping were developed.28 A 

very efficient way of introducing nitrogen into carbon materials is the utilization of  

N-containing precursor materials, for instance, bio-materials and ionic liquids.28b,29 Nitrogen 

amounts up to 21 mass% are possible.30 

The nanostructuring of PD-SiCN ceramics is a challenging research field, which exhibits a great 

potential for catalytic and electrochemical applications. A continuous development of such 

porous materials is a desirable goal.  

This thesis comprises: 

1)  The generation of mesoporous PD-SiCN materials utilizing a novel PS particle based 

one-pot synthesis route.  

2) The transformation of the mesoporous SiCN material into a high porous N-doped carbon 

material for electrochemical performances in supercapacitors.  

3) The stabilization of iridium nanoparticles by the mesoporous SiCN support leading to a 

hierarchical porous Ir@SiCN catalyst with a high metal accessibility for sustainable 

heterogeneous catalysis.  

4)  An Ir@SiCN coating of a micro and mesoporous SiCN material, which SSA was 

increased by a calcination treatment.   
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3 Overview of Thesis Results 

The thesis is composed of four publications, which are presented in the chapters 4 to 7. The theme 

of the publications is summarized in chapter 3.1. In chapter 3.2, the individual contributions to 

joint publications are pointed out. 

3.1 Synopsis 

The primary aim of this thesis was the design of mesoporous polymer derived silicon 

carbonitride (PD-SiCN) materials. Therefore, a novel polystyrene (PS) particle based synthesis 

route was developed. These materials were used for further modifications addressing 

electrochemical and catalytic applications.  

In general, PD-SiCN ceramics only feature low specific surface areas (SSA) and porosity. This 

problem was approached by an innovative synthesis route leading to mesoporous SiCN 

materials. The details are pointed out in the first manuscript mentioned in chapter 4. PS latex 

particles seem to be a suitable structuring template regarding the controlled thermal 

decomposition behavior. Thus, strong etching reagents can be avoided. Only macro spherical 

PS particles were used as templates in the literature so far. The first goal was the preparation of 

small PS latex particles for structuring at meso scale. The synthesis of PS particles with an 

average diameter of 60 nm (PS60) was successfully realized by emulsion polymerization. It was 

important to work highly above the critical micelle concentration (CMC) of the surfactant  

(1-hexadecyl)trimethylammonium bromide (CTAB). The strong cross-linking of the PS latex 

particles with divinylbenzene (DVB) led to a small particle size. Moreover, the use of a small 

amount of the styrene monomer as well as the initiator [2,2'-azobis(2-methyl-

propionamidine)dihydrochloride] was necessary. A positive partial charge of the PS particles 

was caused by the cationic groups of the radical initiator. Shape and size of the PS template were 

determined by scanning electron microscopy (SEM, Figure 3.1A) and photon correlation 

spectroscopy (PCS, Figure 3.1B). 
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Figure 3.1 PS particle size determined by SEM (A) and PCS (B) measurements. 

The decomposition temperature of the PS spheres at 470 °C with only one decomposition step 

was determined by thermal gravimetric analysis (TGA, Figure 3.2).  

 

Figure 3.2 TGA measurement of the PS60 template. 

The PS60 particles were the major key for the new synthesis development for structuring SiCN 

materials. The synthesis route had to be carried out in dry organic solvents because of the 

hydrolysis sensitivity of the ceramic precursor HTT-1800. The stability of the PS particles in 

organic solvents and the homogeneous miscibility with HTT-1800 were achieved by the 

positive partial charge of the PS spheres and the strong cross-linking degree respectively.  

All these facts in mind, a simple one-pot synthesis route was designed (Figure 3.3). Cross-linking 

of the ceramic precursor occurred at 110 °C sealing the ordered PS spheres. The mixing ratio of 

2 : 1 (PS : HTT-1800) was essential providing a comprehensive structuring. A meso structured 

SiCN material was obtained after the removal of the solvent and subsequent pyrolysis under 

nitrogen atmosphere. To guarantee the complete removal of the PS template, it was important to 

use a small heating rate between 400 °C and 500 °C because of the decomposition temperature of 

the PS particles. 
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Figure 3.3 Synthesis route leading to meso structured SiCN materials: 1) Structuring: Dispersion of PS60 in 

silazane-toluene mixture; crosslinking at 110 °C and removal of solvent leading to structured green bodies; 2) 

Pyrolysis with a tailored pyrolysis program at 900, 1000, or 1100 °C obtaining PS60SiCN900, PS60SiCN1000, 

and PS60SiCN1100. 

The influence of the pyrolysis temperature was investigated between 900 °C and 1100 °C 

(PS60SiCN900, PS60SiCN1000, and PS60SiCN1100) regarding the resulting SSA and the pore 

stability. PS60SiCN900 exhibits a honey-combed pore structure with mesopores analyzed by SEM 

(Figure 3.4A). The mesopores were achieved because of the shrinking process of the PS60 spheres 

during the pyrolysis. Increasing the pyrolysis temperature to 1000 °C or 1100 °C caused a 

collapse of the pores determined by SEM (Figure 3.4B and C). 

 

Figure 3.4 SEM images of PS60SiCN900 (A), PS60SiCN1000 (B), and PS60SiCN1100 (C). 

Nitrogen soprtion measurements show isotherms with hysteresis charcteristic for mesoporous 

materials (Figure 3.5A). The highest SSA of 110 m²/g was verified for PS60SiCN900. The increase 

of the SSA as well as the mesopore volume correlates with the reduction of the pyrolysis 

temperature (Figure 3.5B), which is in agreement with the SEM measurements. 
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Figure 3.5 Nitrogen sorption measurements with isotherms (A) and pore size distributions (B) of 

PS60SiCN900, PS60SiCN1000, and PS60SiCN1100. 

In the second manuscript in chapter 5, the well-structured, mesoporous PD-SiCN material was 

further modified in order to obtain a N-doped carbon material for electrochemical applications. 

The PS structured material was treated with chlorine gas removing the silicon as silicon 

tetrachloride, which leads to a high surface N-doped carbon compound. Therefore, the SiCN 

material was structured with PS50 particles in order to maintain smaller mesopores and higher 

SSA of the chlorinated materials. The obtained PS50SiCN900 ceramic was chlorinated at 800 °C 

and 1000 °C investigating the influence of the chlorination temperature. The received N-doped 

carbon materials were characterized with nitrogen sorption analysis regarding the SSA and the 

pore size distribution (Figure 3.6). Both materials exhibited a SSA of about 1800 m²/g, which is 

an enormous increase compared to the untreated SiCN template (106 m²/g). A different 

temperature depending distribution of micro- and mesopores was also determined. The lower 

chlorination temperature of 800 °C led to an increased mesopore amount of 70 %. 

 

Figure 3.6 Nitrogen sorption measurements with isotherms (A) and pore size distributions (B) of 

PS50SiCN900, PS50SiCN900Cl2-800°C, and PS50SiCN900Cl2-1000°C. 

As seen in the SEM images, the honey-combed pore structure of the PS50SiCN900 template was 

preserved after the chlorine treatment independent of the chlorination temperature (Figure 3.7).  
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Figure 3.7 SEM images of PS50SiCN900 (A), PS50SiCN900Cl2-800°C (B), and PS50SiCN900Cl2-1000°C (C). 

TEM measurements of the PS50SiCN900 template show homogeneously distributed pores of the 

material (Figure 3.8A). The pores remained after the chlorination treatment, which is in good 

agreement with the SEM measurements. The obtained N-doped carbon materials exhibited a 

less dense matrix structure caused by the removal of the originally containing silicon 

(Figure 3.8B and C). 

 

Figure 3.8 TEM images of PS50SiCN900 (A), PS50SiCN900Cl2-800°C (B), and PS50SiCN900Cl2-1000°C (C). 

Raman spectroscopy shows the pronounced D- and G-peaks (1350 cm-1 and 1590 cm-1) as result 

of an incomplete graphitized carbon material for both compounds (Figure 3.9A). Elemental 

analysis and X-ray photoelectron emission spectroscopy (XPS) were carried out investigating 

the nitrogen amount of the materials (Figure 3.9B). The decrease of the chlorination 

temperature causes a lower removal of nitrogen. Thus, a higher nitrogen amount remains in the 

material chlorinated at 800 °C (elemental analysis: 5.5 wt% for 800 °C and 1.6 % for 1000 °C).  
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Figure 3.9 Raman spectroscopy (A) and XPS measurements (B) of PS50SiCN900Cl2-800°C and 

PS50SiCN900Cl2-1000°C. 

Recently, the substance class of N-doped carbons gained an increased interest as electrode 

material in supercapacitors due to the beneficial impact on the electrochemical performance. In 

this context, the SiCN derived N-doped carbon compounds were tested as electrode material. 

Two main consequences became evident by the electrochemical characterization.  

First, the higher nitrogen and mesopore amount of the compound chlorinated at 800 °C led to an 

enhancement of the electrochemical capacitance as seen in the cyclic voltammograms in a full 

cell setup (Figure 3.10A). Long term stability measurements were performed analyzing the decay 

in capacitance over time at 3 V cell voltage. PS50SiCN900Cl2-800°C lasted twice as long as 

PS50SiCN900Cl2-1000°C until a drop of 20 % in capacitance was reached (Figure 3.10B).  

 

Figure 3.10 Full cell cyclic voltammogramms at 3 V cell voltage (A) and long term stability tests at 3 V cell 

voltage (B) of PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C with 1-ethyl-3-methylimidazolium 

tetrafluoroborate (EMIM-BF4) as electrolyte. 

Second, an enhanced capacitance was observed using the ionic liquid 1-ethyl-3-

methylimidazolium tetrafluoroborate (EMIM-BF4) as electrolyte determined by galvanostatic 

charge/discharge experiments of PS50SiCN900Cl2-800°C (Figure 3.11A). This is 20 % higher 

than for standard electrolytes like tetraethylammonium tetrafluoroborate (TEA-BF4) in 

acetonitrile (ACN). In situ resistivity measurements were performed analyzing the electronic 

properties independent of the electrolyte. The expected behavior of a bell-shaped curve with a 
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decrease of the normalized resistance at increased potential was observed for the standard 

electrolyte TEA-BF4 in ACN with the N-doped carbon electrode (Figure 3.11B). However, the 

combination of EMIM-BF4 and the SiCN derived N-doped carbon material as electrode showed 

a nearly constant normalized resistance (Figure 3.11B). Thus, the increase of capacitance is a 

result of the suitable match between the SiCN derived N-doped carbon electrode and the 

electrolyte EMIM-BF4. 

 

Figure 3.11 GCPL measurements (A) and in situ resistivity measurements with EMIM-BF4 and TEA-BF4 in 

acetonitrile as electrolytes (B) of PS50SiCN900Cl2-800°C. 

In the third manuscript in chapter 6, the stabilization of iridium nanoparticles using the PS 

structured SiCN material as support led to a hierarchical porous SiCN material. The synthesis 

of the Ir@PS60SiCN material was performed according to chapter 4 using an iridium 

aminopyridinato complex as metal precursor. The iridium complex was added to a suspension 

of PS particles, HTT-1800, and DCP. The metal transfer from the complex to the polysilazane 

HTT-1800 (transmetalation step) started during the short mixing time. The cross-linking of the 

ceramic precursor was enhanced by iridium catalyzed hydrosilylation and dehydro-coupling. 

DCP was additionally used as cross-linker stabilizing the subsequent generated pores. The 

pyrolysis of the structured green body was performed at 1000 °C.  

SEM measurements of Ir@PS60SiCN show the requested honey-combed pore structure with 

homogeneously distributed mesopores in the range of 35 nm (Figure 3.12A). Nitrogen sorption 

analysis determined a large SSA of 450 m²/g and a hierarchically pore size distribution in the 

micro and meso scale range (Figure 3.12B).   
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Figure 3.12 SEM image (A) and nitrogen sorption measurement with pore size distribution (B) of 

Ir@PS60SiCN. 

The presence of iridium in the porous SiCN support was verfied by energy-dispersive  

X-ray spectroscopy (EDX) (Figure 3.13A). Powder X-ray diffractometry (XRD) analysis 

confirms the presence of iridium nanoparticles with a particle size of about 1 nm (Figure 3.13B).  

 

Figure 3.13 EDX measurement (A) and XRD measurement (B) of Ir@PS60SiCN. 

Homogenously distributed iridium nanoparticles with a particle size distribution between 0.6 nm 

and 1.4 nm were verified by TEM measurements. A distance of 221.4 pm between the adjacent 

lattice planes was determined by HR-TEM measurements indicating the precence of cubic 

cristalline irdium nanoparticles (Figure 3.14).  

 

Figure 3.14 TEM measurement with particle size distribution and HR-TEM measurement of Ir@PS60SiCN. 
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The Ir@PS60SiCN material seems to be a very promissing heterogeneous catalyst due to the 

large SSA and the very small iridium nanoparticles. The sustainable synthesis of N-heterocycles 

like pyrroles, pyridines, and quinolines was performed using the concept of acceptorless 

dehydrogenative condensation. The synthesis of 2,5-substituted and 2,3,5-substituted pyrroles 

were addressed with optimized reaction conditions (Scheme 3.1). 

 

Scheme 3.1 Generation of pyrroles starting from secondary alcohols and 1,2-amino alcohols under 

elimination of water and hydrogen. Reaction conditions: 1,2-amino alcohol (1.5 mmol), secondary alcohol 

(6 mmol), KOtBu (3 mmol),  0.58 mol% Ir, 1.5 mL diglyme, 24 h at 125 °C. 

The variation of the amino alcohol and the secondary alcohol as well as the acceptance of several 

functional groups in high yields were investigated (Figure 3.15). 

 

Figure 3.15 Substrate scope of 2,5-substituted and 2,3,5-substituted pyrroles with yields determined by GC. 

Next, the synthesis of 2,6-substituted and bicyclic pyridines was addressed in order to extent the 

substrate scope (Scheme 3.2). 

 

Scheme 3.2 Generation of pyridines starting from secondary alcohols and 1,3-amino alcohols under 

elimination of water and hydrogen. Reaction conditions: 1,3-amino alcohol (1.5 mmol), secondary alcohol 

(6 mmol), KOtBu (3 mmol), 0.89 mol% Ir, 1.5 mL diglyme, 24 h at 90 °C and 24 h at 130 °C. 
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It was possible to synthesize a 2,6-alkyl-substituted pyridine as well as bicyclic pyridines with 

several functional groups in moderate to very good yields starting from cycolhepanol 

(Figure 3.16). 

 

Figure 3.16 Substrate scope of 2,6-substituted and bicyclic pyridines with yields determined by GC. 

Furthermore, 2- and 3-substituted as well as 2,3-substituted quinolines were synthesized with the 

described reaction conditions (Scheme 3.3). 

 

Scheme 3.3 Generation of quinolines starting from alcohols and 2-aminobenzyl alcohol derivates under 

elimination of water and hydrogen. Reaction conditions: 2-aminobenzyl derivate (1.5 mmol), alcohol 

(6 mmol), KOtBu (3 mmol), 0.89 mol% Ir, 1.5 mL diglyme, 24 h at 125 °C. 

The tolerance of aryl-, alkyl-, chloro-groups, and cyclic-groups was demonstrated in moderate to 

very good yields (Figure 3.17). 

 

Figure 3.17. Substrate scope of 2- and 3-substituted as well as 2,3-substituted quinolones with yields 

determined by GC. 
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Finally, the activity and reusability of the Ir@PS60SiCN catalyst was investigated compared to 

commercially available heterogeneous iridium catalysts (Ir/C, Ir/Al2O3, Ir/CaCO3) as well as an 

unstructured Ir@SiCN catalyst. The hierarchical structured Ir@PS60SiCN catalyst showed a good 

reusability in four successional runs and was significantly more active than the commercially 

available Ir catalysts and the unstructured Ir@SiCN catalyst. The synthesis of the Ir@SiCN 

catalyst without a pore building template led to a low SSA. The successful structuring of the 

Ir@PS60SiCN catalyst causes a high SSA and an open prorosity. This leads to a much better 

accessibility of the homogenously distributed iridium nanoparticles and consquently to the higher 

activity in the sustainable synthesis of N-heterocycles (Figure 3.18). 

 

Figure 3.18 Heterogeneous iridium catalyst screening. Reaction conditions: 2-aminobutan-1-ol (1.5 mmol), 

1-phenylethanol (6 mmol), KOtBu (1.5 mmol), 1.32 mol% Ir, 1.5 mL diglyme, 5 h at 120 °C. 

In the last manuscript in chapter 7, the demand of high metal accessibility and low metal content 

was addressed performing an Ir@SiCN coating on a modified polystyrene structured SiCN 

support. Therefore, the incorporated carbon of the hierarchically porous PS60SiCN1000 material 

was partial removed as carbon dioxide by calcination. A fixed bed reactor with coupled online 

GC was used investigating the ideal calcination temperature (Figure 3.19A). The PS60SiCN1000 

material was calcinated at different temperatures observing an enhanced carbon dioxide release 

with increasing calcination temperature. A very good removal of carbon was obtained at 500 °C. 

Finally, the low surface area PS60SiCN1000 material was heated to 500 °C under nitrogen 

atmosphere, treated with air oxygen for 45 minutes, and cooled down under nitrogen 

atmosphere obtaining a highly porous material (Figure 3.19B).   
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Figure 3.19 Online GC studies. Temperature dependent CO2 release up to 700 °C (A). Calcination program 

with heating to 500 °C and cooling down under nitrogen flow obtaining a short calcination window at 500 °C 

(B). 

Nitrogen sorption analysis exhibits an increase of the SSA from 37 m²/g to 220 m²/g for the 

calcinated SiCN material compared to the raw SiCN material. The mesopore amount of the pore 

volume was increased to 89 % (Figure 3.20A). SEM measurements show a honey-combed 

structure with open porosity after the calcination treatment (Figure 3.20B).  

 

Figure 3.20 Calculated pore size distribution from nitrogen sorption measurements of the calcinated SiCN 

material and the SiCN material (A) as well as SEM image of the calcinated SiCN material (B). 

After the enlargement of the SSA, the calcinated material was used as matrix for the coating with 

Ir@SiCN obtaining an Ir@SiCN-SiCN core-shell material. Therefore, the matrix material was 

treated with a mixture of an iridium aminopyridinato complex, HTT-1800, and DCP with a 

wetting technique and pyrolysed at 1000 °C. The successful coating was indicated by the 

reduction of the SSA (110 m²/g) and the pore volume determined by nitrogen sorption 

measurements (Figure 3.21A). Moreover, SEM measurements show an open porosity in the 

macro scale range (Figure 3.21B)  



3 Overview of Thesis Results 

37 

 

Figure 3.21 Calculated pore size distribution from nitrogen sorption measurements of the Ir@SiCN-SiCN 

core-shell material compared to the calcinated SiCN material (A) and the SEM image of the Ir@SiCN-SiCN 

core-shell material (B).  

The presence of iridium in the core-shell material was verfied by EDX measurements 

(Figure 3.22A). TEM images support this result showing homogenously distributed metal 

nanoparticles with a particle size distribution between 0.6 nm and 1.6 nm (Figure 3.22B). Thus, 

the coating technique leads to imbedded iridium nanoparticles in a thin SiCN layer on a SiCN 

support with increased SSA in order to enable a better metal accessibility. 

 

Figure 3.22 EDX measurement (A) and TEM measurement with particle size distribution (B) of the 

Ir@SiCN-SiCN core-shell material. 
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3.2 Individual Contribution to Joint Publications 

Results presented in this thesis were achieved in collaboration with others and are published or to 

be submitted as described below. Contributions of all co-authors to the different publications are 

specified. The corresponding author(s) is (are) denoted by an asterisk note. 

Chapter 4 

This work is published in Nanomaterials 2015, 5, 425-435 with the title 

“Meso-Structuring of SiCN Ceramics by Polystyrene Templates” 

Julia-Katharina Ewert, Christine Denner, Martin Friedrich, Günter Motz,* and Rhett Kempe* 

I synthesized all compounds, carried out the corresponding characterizations except described 

below and performed all data analysis. Christine Denner performed SEM measurements and 

Martin Friedrich TEM measurements. The publication was written by me. Rhett Kempe and 

Günter Motz supervised this work and were involved in scientific discussions, comments and 

corrections of the manuscript.  

Chapter 5 

This work is published in J. Mater. Chem. A 2015, 3, 18906-18912 with the title 

“Enhanced Capacitance of Nitrogen-Doped Hierarchical Porous Carbide-Derived 

Carbon in Matched Ionic Liquids” 

Julia-Katharina Ewert, Daniel Weingarth, Christine Denner, Martin Friedrich, Marco Zeiger, 

Anna Schreiber, Nicolas Jäckel, Volker Presser,* and Rhett Kempe* 

I synthesized the polystyrene template and the SiCN ceramic and carried out the corresponding 

characterizations, except SEM measurements performed by Christine Denner and TEM 

measurements carried out by Martin Friedrich. I performed all data analysis. Furthermore, I 

coordinated the material characterization of the N-doped carbon, was contributed to all 

corresponding data analysis and performed elementar analysis. Daniel Weingarth carried out 
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preparation and cell measurements). Nicolas Jäckel was contributed to electrochemical 

measurements and gas sorption measurements for the N-doped carbon. Moreover, I was 

contributed to the conceptual design of the publication as well as Daniel Weingarth. I wrote the 

manuscript together with Daniel Weingarth. Volker Presser and Rhett Kempe supervised this 

work, were contributed to the conceptual design of the manuscript, and were involved in 

scientific discussions, comments and corrections of the manuscript.  
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the manuscript.  
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Julia-Katharina Ewert, Stefan Schwarz, Christine Denner, Martin Friedrich, and Rhett Kempe* 

I synthesized all compounds, carried out or coordinated the corresponding characterizations 

except described below and performed the data analysis. Christine Denner performed SEM 

measurements and Martin Friedrich measured TEM. The controlled calcination of the ceramics 

was performed in a fixed bed reactor with online GC analysis by Stefan Schwarz. The 

publication was written by me. Rhett Kempe and Günter Motz supervised this work and were 

involved in scientific discussions, comments and corrections of the manuscript.  
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Abstract: A simple one-pot synthesis of well-defined PS-silazane nano-composites (polystyrene, 

PS) is described. In contrast to the, thus far, used two-step procedure ((1) assembly of a PS 

template bed and (2) careful filling of the voids between the PS spheres), which is restricted to 

macro structuring, we are able to simply mix the PS template and a commercially available 

silazane precursor HTT-1800 in toluene. The key is the alteration of the zeta potential of the PS 

template leading to a homogeneous dispersion in the silazane-toluene mixture. Removal of 

solvent gives rise to a highly ordered PS-silazane nano-composites and subsequent pyrolysis leads 

to mesoporous silicon carbonitride (SiCN) materials. The one-pot procedure has two advantages: 

easy upscaling and the use of PS spheres smaller than 100 nm in diameter, here 60 nm. The PS 

template was characterized by photon correlation spectroscopy, zeta potential measurements, 

scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). The resulting 

mesoporous SiCN materials were analyzed by SEM, transmission electron microscopy (TEM), 

nitrogen sorption analysis, and Fourier transform infrared measurements (FT-IR). 

4.1 Introduction 

Polymer-derived (PD) silicon carbonitride (SiCN) ceramics are diversely used materials due to 

their easy processability, chemical resistance, and high thermal stability [1–14]. Among many 

applications, the use of PD-SiCN ceramics as a promising catalyst support material (M@SiCN) 

has been described [15–22]. Especially interesting is the generation of very small late transition 

metal nano particles from metallo-polysilazanes [17–22]. A catalytic reactivity as efficient as 

for homogeneous catalysts has been observed for Ir@SiCN [22]. Unfortunately, the M@SiCN 
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catalysts developed thus far show a low specific surface area, which means most of the metal 

nano particles are not accessible. In this context, the generation of nano-structured high surface 

area PD-SiCN ceramics is a desirable goal. Such structuring is difficult due to the hydrolysis 

sensitivity of the polymeric precursors. Out of the methods described thus far, the use of 

polyolefin templates seems most promising [10]. 

The group of Wiesner [23] used poly(isoprene-block-dimethylaminoethylmethacrylate) (PI-b-

PDMAEMA) as structure-directing agent leading to a meso-structured SiCN ceramics. 

Furthermore, they combined their synthesis route using PI-b-PDMAEMA as structure-directing 

agent with polystyrene (PS) spheres as templates to structure at various lengths scales [17]. The 

group of Kim [24] synthesized poly(vinyl)silazane-block-polystyrene (PVSZ-b-PS) with self-

assembly behavior, which was subsequently converted into an ordered mesoporous SiCN 

ceramic. Moreover, they combined photolithography and advanced nanofabrication processes 

resulting in a mesoporous SiCN patterns [25]. Jones and Lodge [26] introduced a hard template 

inverse replication technique. A microphase-separated polymer blend was used for the 

formation of a PE (polyethylene) template. The subsequent synthesis led to disordered 3D 

continuous porous non-oxide ceramics with pores between 60 and 100 nm. Our group produced 

ultrathin SiCN fibers as well as lamellar morphologies performing a one pot self-assembly and 

organic-inorganic block copolymer synthesis [27]. A commercially available polysilazane 

acted as the inorganic block and hydroxy-terminated polyethylene synthesized via coordinative 

chain transfer polymerization [28] as the organic block component. 

The groups of Kim and Kenis [15] established the self-sacrificial template method using PS 

spheres. A packed bed of PS spheres is assembled in the first step and macroporous SiCN (and 

SiC) monoliths are obtained after infiltrating the template assembly by a preceramic silazane 

polymer and subsequent pyrolysis [29,30]. 

The elegant nano-structuring methods applied thus far have certain limitation. The block 

copolymer based strategies do either introduce oxygen using acrylic monomers or involve 

sophisticated block copolymer synthesis. Furthermore, bulk material structuring is demanding. 

The simple PS template approach has been restricted to macro structuring thus far. Most likely, 

since infiltration into the beds of PS smaller than 100 nm in diameter is challenging. 

Polysilazane diffusion into such small voids is very slow. 

Herein we report on a simple one-pot synthesis of well-defined PS-silazane nano-composites. 

In contrast to the so far used two-step procedure: first, settling of the PS templates and, second, 

careful filling of the voids between the PS spheres, we are able to simply mix the PS templates 
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and a commercially available silazane precursor in common organic solvents. The key is the 

alteration of the zeta potential of the PS template to allow homogeneous dispersion of the PS 

template in the silazane solvent mixture. Removal of the solvent gives rise to the nano-

composites and pyrolysis leads to meso-structured SiCN materials. The one-pot procedure has 

two advantages: easy upscaling and the use of PS spheres smaller than 100 nm in diameter. 

Porous ceramic produced at lower temperatures (900 °C) may be useful for battery applications. 

4.2 Results and Discussion 

4.2.1 Synthesis of the PS60 Template and the PS60SiCN Ceramics 

In the first step, the spherical PS particles were synthesized with a diameter of 60 nm (PS60) via 

emulsion polymerization. 4.50 g purified styrene (43.23 mmol) and 0.40 g divinylbenzene (3.07 

mmol) were dispersed under stirring in degased ultrapure water. Furthermore, 0.25 g of the 

surfactant CTAB (0.69 mmol) and 10 mg of the initiator 2,2'-azobis(2-methylpropion-

amidine)dihydrochloride (0.04 mmol) were each dissolved in 5 mL ultrapure water. CTAB was 

added to the dispersion of styrene and divinylbenzene at 80 °C. After 30 min the polymerization 

was started by adding the initiator and, after 24 h, the polystyrene particles were purified by 

dialysis and isolated by freeze-drying. The template size of 60 nm is located in the macro scale 

range and accommodates the shrinking process of the particles to meso size during the pyrolysis 

[29]. It was essential to generate PS particles with a positive partial charge in order to stabilize a 

homogeneous dispersion of PS60 in toluene during the structuring step. Particles with a negative 

partial charge, using potassium persulfate as an initiator, dispersed significantly less well in 

toluene. The commercial available preceramic polymer HTT-1800 was added obtaining a 

homogeneous suspension of the polymer template and the preceramic polymer by simple mixing. 

Cross-linking of HTT-1800 was achieved using the radical initiator dicumylperoxide (DCP) at 

110 °C. The ordered polystyrene spheres were sealed in the HTT-1800 matrix. Removing the 

solvent under vacuum led to a structured green body. To guarantee a comprehensive structuring, 

the mixing ratio of 2:1 of the PS60 template and the ceramic precursor is essential. We tested a 

few ratios based on dense packing of PS spheres and the complete filling of the voids by HTT-

1800 (2.5:1 ratio). The best structuring was observed at a 2:1 ratio. Larger amounts of HTT-1800 

gave rise to partially non-structured materials. The meso-porous structured ceramics 

PS60SiCN900, PS60SiCN1000, and PS60SiCN1100 were obtained after the pyrolysis of the green body 
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under nitrogen atmosphere at different temperatures (900–1100 °C) with a tailored pyrolysis 

program (Schema 1). 

 

Scheme 1. Synthesis route leading to meso-structured SiCN ceramics: (1) Structuring: PS60 dispersion in 

silazane-toluene mixture; pre-crosslinking at 110 °C; removal of solvent, and crosslinking at 110 °C leading 

to structured green bodies; (2) Pyrolysis with tailored pyrolysis program at 900, 1000, or 1100 °C obtaining 

PS60SiCN900, PS60SiCN1000, and PS60SiCN1100. 

4.2.2 Characterization of the PS60 Template 

The hydrodynamic radius of the PS particles was calculated by contin analysis (Figure 1A). A 

narrow particle distribution in the range from 23.7 to 36 nm was achieved. The peak maxima is 

at 28.6 nm which means an average diameter of 57.2 nm for the PS particles (PS60). 

Furthermore, a monodisperse behavior is verified. 

Particle size and shape of the PS60 template were observed by SEM. The particle size 

distribution was determined based on the scanning electron microscopy (SEM) image (Figure 

1B). An average particle size of 62.8 nm was calculated by Gaussian fit. Moreover, a narrow 

monodisperse distribution of spherical particles was obtained, which is in agreement with the 

results of the PCS measurement. 

By choice of the initiator and the surfactant the PS particles were generated with a positive 

partial charge, which was confirmed by zeta potential measurements. The PS60 template exhibits 

a zeta potential of 47 mV. Compared to PS particles with negative partial charges, the 
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stabilization of a homogeneous dispersion in nonpolar solvents like toluene is possible enabling 

the performed one-pot synthesis. 

The decomposition temperature of the PS60 template was investigated by TGA under nitrogen 

atmosphere. The major mass loss occurs between 380 and 445 °C. The PS60 template is totally 

decomposed at a temperature of 470 °C (Figure 1C). It was important to investigate the 

decomposition behavior of the template in order to adjust the pyrolysis temperature 

(0.5 °C·min−1 between 400 and 500 °C). Thus, the entire elimination of the PS template and the 

generation of maximum pore density was ensured. 

 

Figure 1. Particle size distribution calculated by contin analysis (A); Scanning electron microscopy (SEM) 

image with particle size distribution (nm) (B); and thermal gravimetric analysis (TGA) analysis under 

nitrogen atmosphere (C) of the PS60 template. 

4.2.3 Characterization of the PS60SiCN Ceramics 

The PS60SiCN compounds were pyrolyzed at 900, 1000, and 1100 °C to investigate the 

temperature dependent stability of the pores. Porous ceramic produced at low temperatures (900 

°C) may also be useful for battery applications [31,32]. The SEM-images identify a honeycomb 

surface structure with small mesopores for the ceramics PS60SiCN900 (Figure 2A,B) and 

PS60SiCN1000 (Figure 2C,D). According to Kim and coworkers [29] a shrinking process of the 

PS particles takes place during the pyrolysis of the green body. The total collapse of the surface 

pores is observed at a pyrolysis temperature of 1100 °C (Figure 2E,F). 

TEM-images illustrate the correlation of the pore density and the pyrolysis temperature. 

Increasing temperatures result in the reduction of the pore density (Figure 3A–F), which 

confirms the results of the SEM measurements. 
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Figure 2. SEM-images of PS50SiCN900 (A,B); of PS50SiCN1000 (C,D); and of PS50SiCN1100 (E,F). 

 

Figure 3. TEM-images of (A,B); of PS50SiCN1000 (C,D); and of PS50SiCN1100 (E,F). 

Nitrogen sorption measurements (Figure 4A) of the ceramics show typical Type IV isotherms 

according to Sing et al. [33] The presence of mesopores is indicated by the hysteresis. Large 

specific surface areas (PS50SiCN1100: 35 m2/g, PS50SiCN1000: 50 m2/g and PS50SiCN900: 

110 m2/g) correlate with the reduction of pyrolysis temperature indicating the increased 
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mesopore percentage. The calculated pore size distribution (NLDFT) shows a major pore 

volume between 4 and 10 nm. Furthermore, larger mesopores up to 24 nm can be observed 

(Figure 4B). The larger pores are attributed to the surface-located cavities according to the 

SEM-images. The smaller pores are located inside the material. This trend can also be 

recognized for the ceramics PS50SiCN1000 and PS50SiCN1100. With rising pyrolysis temperature 

the contribution of high range mesopores decreases, which is in agreement with the nitrogen 

sorption isotherms. 

The FT-IR measurements indicate the presence of SiCN ceramics in regard to the characteristic 

signals of the HTT-1800 precursor (Figure 4C) [34,35]. The broad peak at 1250 cm−1 is typical 

for SiCN ceramics and accrues from the overlapping of the Si-C-, the Si-N- and the Si-N-Si-

bands [32,33]. 

 

Figure 4. Nitrogen sorption isotherms (A); calculated pore size distribution (B); and Fourier transform 

infrared measurements (FT-IR) spectra (C) of the ceramics PS60SiCN900, PS60SiCN1000, and PS60SiCN1100. 

4.3 Experimental Section 

4.3.1 Materials and Methods 

All reactions were carried out in a dry argon or nitrogen atmosphere using standard Schlenk or 

glove box techniques. Non-halogenated solvents were dried over sodium benzophenone ketyl 

and distilled. (1-Hexadecyl)trimethylammonium bromide (CTAB) (98% purity, abcr, Karlsruhe, 

Germany), 2,2'-azobis(2-methylpropion-amidine)dihydrochloride (97% purity, Aldrich 

Chemistry, Steinheim, Germany), KiON HTT1800 (Clariant Advanced Materials GmbH, 

Frankfurt, Germany) and dicumylperoxide (97% purity, Aldrich Chemistry, Steinheim, Germany) 

were purchased from commercial sources and used without further purification. Styrene (>99% 

purity, Sigma Aldrich, Steinheim, Germany) and divinylbenzene (technical grade, 55%, 

Aldrich Chemistry, Steinheim, Germany) were destabilized over an alumina B column (ICN 

Biomedicals GmbH, Eschwege, Germany). 
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Photon correlation spectroscopy (PCS) measurements were carried out with an ALV DLS/SLA-

SP 5022F laser goniometer system. A Ne/Ar ion laser (λ = 632.8 nm) with a constant output of 

260 mW was used as power source. The correlation function was generated by an ALV-5000/E 

multiple tau digital correlator. The decalin bath temperature was regulated to 20 °C with a 

computer-operated thermostat. The fixed angle measurements were performed with a 90° angle. 

The data analysis was accomplished by the CONTIN analysis. 

Zeta potential measurements were performed with a Zetasizer Nano ZS (Malvern Instruments 

Limited, Herrenberg, Germany). 

Thermal gravimetric analysis (TGA) were performed under nitrogen atmosphere using a 

Thermowaage L81 (Linseis, Selb, Germany) and a heating rate of 5 K·min−1 up to 900 °C. 

CHN analyses were carried out on a Vario elementar EL III. 

Ceramization was performed in a high temperature furnace (GERO, Berlin, Germany) under 

nitrogen atmosphere. The pyrolyzed ceramics were milled in a ball mill “Pulverisette 0” 

(Fritsch, Idar-Oberstein, Germany) for 20 min. 

SEM measurements were carried out using a Zeiss Field-Emission-Scanning-Electron-

Microscope (FESEM) “LEO 1530 GEMINI”. The acceleration voltage was 1–5 kV. The samples 

were sputter-coated with a 1.3 nm layer of platinum. 

Transmission electron microscopy (TEM) measurements were performed using a Varian LEO 

9220 (Carl Zeiss, 120 kV, Oberkochen, Germany) instrument. The samples were suspended in 

chloroform and sonicated for 5 min. Two microliters of the suspension were placed on a CF200-

Cu-grid (Electron Microscopy Sciences, Hatfield, USA) and allowed to dry. 

FT-IR measurements were performed using a Perkin-Elmer FTIR Spectrum 100 over a range 

from 4400 to 650 cm−1. 

Nitrogen sorption analyses were conducted using a Nova2000e (Quantachrome, Odelzhausen, 

Germany) instrument. The specific surface areas were calculated using p/p0-values from  

0.05–0.31 (BET). The pore width and average pore volume was calculated by DFT calculations 

(N2 at 77 K on carbon (slit pore, NLDFT equilibrium model)). 

4.3.2 Preparation 

Synthesis of the PS60 template: The emulsion polymerization of the cross-linked polystyrene 

latex particles with 60 nm diameter were carried out in a three neck round bottom flask with a 

reflux condenser, a KPG stirrer and a septum. 4.50 g purified styrene (43.23 mmol) and 0.40 g 

divinylbenzene (3.07 mmol) were dispersed under stirring in 90 mL degased ultrapure water. 
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An amount of 0.25 g of the surfactant CTAB (0.69 mmol) and 10 mg of the initiator  

2,2'-azobis(2-methylpropionamidine)dihydrochloride (0.04 mmol) were each solved in 5 mL 

ultrapure water. CTAB was added to the dispersion at 80 °C under stirring with 200 rpm. After 

30 min the polymerization was started by adding the initiator. After 24 h the polystyrene 

particles were purified by dialysis and isolated by freeze drying. 

Synthesis of the PS60SiCN compounds: In a round bottom Schlenk flask 1.0 g PS60 were 

degassed applying a vacuum of 10−3 mbar for several hours to remove residual water. The PS60-

particles were dispersed in 40 mL toluene under stirring. Subsequently, 0.56 g of KiON 

HTT1800 (7.77 mmol) and 0.05 g dicumylperoxide (1.85 mmol) were added. Without stirring, 

the suspension was heated to 110 °C for 20 h. The solvent was removed under vacuum and the 

in situ structured preceramic polymer was annealed for 20 h at 110 °C to complete the 

crosslinking. The PS50SiCN900-1100 green bodies were pyrolyzed under nitrogen flow according 

to the following program: 

𝑹𝑻
𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟑𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟒𝟎𝟎 °𝐂 

𝟎.𝟓𝐊 𝐦𝐢𝐧−𝟏,𝟑𝐡
→         𝟓𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟒 𝐡
→          𝟔𝟎𝟎 °𝐂

𝟎.𝟓 𝐊 𝐦𝐢𝐧−𝟏,𝟎 𝐡
→           𝟕𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟎.𝟓 𝐡
→           𝟗𝟎𝟎 °𝐂 − 𝟏𝟏𝟎𝟎 °𝐂 

4.4 Conclusions 

To the best of our knowledge, meso-porous structured SiCN nano-composites were generated 

by the self-sacrificial template method for the first time. The processability of monoliths was 

shown in a one pot synthesis including PS latex particles with the size of 60 nm as template and 

the commercial inexpensive HTT-1800 as preceramic polymer. The positive partial charge of 

the polymer template facilitates a homogeneous dispersion of PS60 particles in the silazane 

solvent mixture enabling easy upscaling. The influence of different pyrolysis temperatures was 

investigated regarding the stability of the pores. The specific BET surface area and the 

mesopore percentage correlates with the decrease of the pyrolysis temperature. 

For future research, meso-porous SiCN compounds are well-suited materials for the 

stabilization of metal particles, which provides the application as catalyst supports. 
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Abstract: Supercapacitors combine efficient electrical energy storage and performance 

stability based on fast electrosorption of electrolyte ions at charged interfaces. They are a central 

element of existing and emerging energy concepts. A better understanding of capacitance 

enhancement options is essential to exploit the full potential of supercapacitors. Here, we report 

a novel hierarchically structured N-doped carbon material and a significant capacitance 

enhancement for a specific ionic liquid. Our studies indicate that matching of the electrode 

material and the ionic liquid specifically leads to a constant normalized resistance of the 

electrode material (voltage window up to ±1 V vs. carbon) and a significant enhancement of 

the specific capacitance. Such effects are not seen for standard organic electrolytes, non-

matched ionic liquids, or non-N-doped carbons. A higher N-doping of the electrode material 

improves the symmetric full cell capacitance of the match and considerably increases its long-

term stability at +3 V cell voltage. This novel observance of enhanced specific capacitance for 

N-doped carbons with matched ionic liquid may enable a new platform for developing 

supercapacitors with enhanced energy storage capacity. 
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5.1 Introduction 

Electrochemical capacitors, also known as supercapacitors or ultracapacitors, capitalize on the 

high efficiency and performance stability of fast electrosorption of electrolyte ions at the 

charged interface with nanoporous carbon.1,2 While derived from abundantly available biomass, 

commonly used high surface area carbons show only a moderate electrical conductivity, which 

presents a limitation to effective charge screening, leading to limited energy storage capacity.3 

At a device level, this shortcoming is usually compensated by the admixing of conductive 

additives;4 yet, this approach is not an intrinsic solution for the inability to accommodate a high 

amount of electric charge within the carbon nanopores. The beneficial impact of N-doping on 

the electrical conductivity and, more generally, the electrochemical performance of 

supercapacitors has first been investigated by Lota et al. in polymer-derived carbons.5 By now, 

a series of carbon materials with N-doping has been explored, including carbon nanotubes,6,7 

mesoporous carbon spheres,8 biomass-derived porous carbon,9 metal–organic frameworks,10 

and graphenelike carbon.11 Nitrogen can be introduced into carbon, generally, top-down or 

bottom-up. The latter involves the synthesis of a carbon network and subsequent N-doping via 

annealing, for example in ammonia.12 Alternatively, N-doping can be accomplished very 

effectively by using nitrogen-containing precursor materials, including bio-materials like prawn 

shells or yogurt9,13 or ionic liquids.14 Depending on the synthesis procedure and the maximum 

synthesis temperature, the maximum amount of N-doping in carbon may reach around 

21 mass%.15 In general, we find lower nitrogen content when employing higher synthesis 

temperatures15 and a significant improvement of the electrochemical performance has been 

reported already for rather low amounts of nitrogen, such as 1–2 mass%.5 Besides improving 

the electrical conductivity and increasing the charge screening ability of carbon,7 N-sites at the 

carbon surface may facilitate charge transfer across the electrode/electrolyte interface. Such 

redox-sites may contribute significantly to the energy storage mechanism by enabling access to 

reversible faradaic reactions and possibly pseudocapacitance;11,16 yet, this is often 

accomplished at the cost of sacrificing power handling and longevity to some degree.2 

Considering the high ion mobility and the possible benefit of redox-related charge storage, most 

of the investigations of nitrogen-doped carbons have been carried out in aqueous electrolytes, 

foremost H2SO4 (ref. 5, 6 and 17) and KOH.5 In such systems, an enhancement of the 

electrochemical performance is accomplished by the introduction of fast surface redox-

reactions of quaternary nitrogen and other N-groups with the protic electrolyte. Only a small 
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number of studies, so far, have been carried out on organic electrolytes,5 including ionic 

liquids.18 The latter are a highly promising group of electrolytes that are able to push the voltage 

limit of supercapacitors to at least 3.5 V even for long-term operation,19 while benefitting from 

a non-volatile and temperature-stable nature at the cost of low ion mobility.20 Since the stored 

amount of energy scales with the square of the cell voltage, ionic liquids are attractive 

candidates for high-energy supercapacitor devices.21 While the results for many of the N-doped 

carbons are promising, one aspect has somewhat been overlooked: the intricate correlation 

between ions and the carbon surface. Matching the ionic liquid to an optimized voltage window 

has recently been demonstrated for pure carbon materials,22 but it is still unclear what selection 

strategy should be applied for matching an ionic liquid to nitrogen-doped carbon.  

Herein, we report a novel hierarchically porous N-doped carbon material obtained from meso-

structured polymer derived silicon carbonitride and the electrochemical performances in 

different ionic liquids. We observe a significantly improved capacitance for one specific ionic 

liquid and an increased N-doping improves the symmetric full cell capacitance as well as the 

long-time stability of such cells at high voltage. 

5.2 Results and Discussion 

5.2.1 Preparation of the hierarchical porous N-doped carbon material 

Since the template free synthesis of polymer-derived silicon carbon nitride (SiCN) materials leads 

neither to micropores nor to mesopores,23 we decided to synthesize a polystyrene-polysilazane 

nanocomposite regarding meso-structuring.24 Therefore, positively charged polystyrene (PS) 

spheres with a diameter of about 50 nm (PS50) were synthesized as structuring templates via 

emulsion polymerization (Fig. 1; see also ESI, Fig. S1†). The particles were mixed in toluene 

with commercially available polysilazane HTT-1800. Divinylbenzene (DVB) was used as a 

cross-linker stabilizing the particles in toluene. Thus, an enhanced yield of residual carbon can be 

obtained. Evaporation of the solvent gave rise to the nano-composite green body. The green body 

was pyrolyzed at 900 °C in order to remove the PS50 template and led to the thermally stable 

meso-structured SiCN material PS50SiCN900. (Fig. 1; see also ESI, Fig. S2†). Chlorine treatment, 

commonly used for the synthesis of carbide-derived carbons (CDC),25 was employed at 800 °C 

(PS50SiCN900Cl2-800°C) and 1000 °C (PS50SiCN900Cl2-1000°C) to volatize residual silicon and 

partially mobilize silicon nitride.26 



5 Enhanced Capacitance of Nitrogen-Doped Hierarchical Porous Carbide-Derived Carbon in 

Matched Ionic Liquids 

58 

 

Figure 1. Schematic process of the synthesis of the N-doped hierarchically porous carbon materials and 

transmission electron microscopy (TEM) images of PS50SiCN900 (left, top) PS50SiCN900Cl2-800°C (left, 

bottom) following a three step procedure. (1) Mixing 50 nm polystyrene (PS50) particle template, the 

commercially available SiCN precursor HTT-1800, and dicumylperoxide (DCP, cross linker) in toluene as 

well as structuring by removal of the solvent. (2) Pyrolysis at 900 °C obtaining the mesoporous SiCN material 

PS50SiCN900. (3) Chlorination at 800 °C or 1000 °C leading to the hierarchical porous N-doped carbon 

material PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C, respectively. 

5.2.2 Material characterization 

Transmission electron microscopy (TEM) images of PS50SiCN900Cl2-800°C before and after 

chlorine treatment are shown in Fig. 1. For scanning electron microscopy (SEM) and TEM 

images of all materials, see ESI, Fig. S1–S3.† As common for CDC,27 our materials remained 

conformal after chlorine gas treatment, preserving the structure of the mesoporous SiCN material 

and adding additional pores so that a very high pore volume (up to 1.67 cm3g-1) was reached.  
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Figure 2. Characterization of the hierarchically porous nitrogen-doped carbon materials (A) Nitrogen 

sorption isotherms and (B) calculated pore size distribution of the ceramic template and the chlorinated 

materials.(C) Raman spectra of the samples PS50SiCN900-800°C and PS50SiCN900-1000°C, (D) XPS survey 

spectra of the samples PS50SiCN900-800°C and PS50SiCN900-1000°C, (E) N1s high resolution spectrum of 

PS50SiCN900-800°C and PS50SiCN900-1000°C, (F) O1s high resolution spectrum of PS50SiCN900-800°C and 

PS50SiCN900-1000°C. 

The SiCN material PS50SiCN exhibits a characteristic nitrogen sorption isotherm typical for a 

purely mesoporous material (Fig. 2A).28 The nitrogen gas sorption isotherms of the material 

after chlorine gas treatment were a combination of the IUPAC Type I and Type IV isotherm 

with a pronounced Type H2 hysteresis in reflectance of the mixed micro- and mesoporous pore 

structure (Fig. 2B). Compared to the mesoporous SiCN material (107 m2g-1), the BET surface 

area strongly increases as a result of chlorine etching at 800 °C to 1745 m2g-1and at 1000 °C to 

1817 m2g-1 (Table 1). PS50SiCN900Cl2-800°C is dominated by mesopores, 71% of the pore 

volume (Table 1). In contrast, PS50SiCN900Cl2-1000°C shows approximately a one-to-one 

distribution of micro- and mesopores at a lower total pore volume (1.19 cm3g-1 instead of 

1.67 cm3g-1). The smaller pore volume may result from an enhanced carbon sintering and pore 

coalescing at 1000 °C.29 The hierarchical pore size distributions observed for both N-doped 

carbon materials facilitates access of ionic liquid ions to the pores (Table 1). The diameter of 
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the largest mesopores is significantly smaller than 50 nm (diameter of the used PS templates) 

due to incomplete cracking of the PS template during pyrolysis (Fig. 2B). 

The materials after chlorine gas treatment showed Raman spectra with pronounced D- and G-

peaks around 1350 cm-1 and 1590 cm-1, respectively, as typical for incompletely graphited 

carbons (Fig. 2C).30 With increased chlorination temperature, the degree of carbon ordering 

increases indicated by the small decrease of the integral ID/IG signal ratio from 2.3 to 2.1. 

The insertion of nitrogen into the carbon network was confirmed by X-ray photoelectron emission 

spectroscopy (XPS) (Fig. 2D–F and Table 1) and elemental analysis (EA) (Table 1). The 

chlorination temperature had a strong effect on N-doping. The decrease of the temperature during 

the chlorination process caused a lower nitrogen removal and a higher amount of nitrogen in the 

final carbon material (Table 1).15 

Table 1. Pore characteristics derived from nitrogen gas sorption at liquid nitrogen temperature and nitrogen 

content calculated from aelemental analysis (EA) and bX-ray photoelectron spectra (XPS) for the samples 

after chlorine gas treatment. 

 PS50SiCN900 PS50SiCN900Cl2-800°C PS50SiCN900Cl2-1000°C 

BET SSA (m2/g) 106 1745 1817 
DFT SSA (m2/g) 117 1536 1516 
Vtotal (cm3/g) 0.27 1.67 1.19 
Vmicropores (cm3/g) 0 0.47 0.59 
Vmesopores (cm3/g) 0.27 1.19 0.60 
Pore size 
average (nm) 

4.4 3.3 2.0 

N (mass%)a Not measured 5.5 1.6 
N (mass%)b Not measured 4.6 1.1 

5.2.3 Electrochemical measurements 

Next, we investigated the electrochemical behavior of the N-doped carbon materials. As seen 

from the cyclic voltammograms (CV) of PS50SiCN900Cl2-800°C (Fig. 3A) and  

PS50SiCN900Cl2-1000°C (Fig. 3B), stable electrochemical performance is obtained in the studied 

voltage window (up to -1 V vs. carbon, equivalent to 2 V cell voltage).31 As shown for 

galvanostatic charge/discharge data (ESI, Fig. S4A and S4B†), a maximum specific capacitance 

of 151 F g-1 at -1 V vs. carbon is seen for PS50SiCN900Cl2-800°C in combination with 1-ethyl-3-

methylimidazolium tetrafluoroborate (EMIM-BF4), reflecting the behavior of the CV curves. In 

contrast, 1 M tetraethylammonium tetrafluoroborate (TEA-BF4) in acetonitrile (ACN) results in 

121 F g-1 and 122 F g-1 for neat 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide 

(EMIM-TFSI). The same behavior is seen for PS50SiCN900Cl2-1000°C, with a maximum 
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capacitance of 149 F g-1 for EMIM-BF4 and only 126 F g-1 for 1 M TEA-BF4 in either propylene 

carbonate (PC) or ACN. The only difference between the latter two solvents, as seen from the 

CV in Fig. 3B, is the lower ion mobility during charging and discharging for PC. Neat 1-butyl-3-

methylimidazolium tetrafluoroborate (BMIM-BF4) also yields a lower capacitance, namely 

134 F g-1. The capacitance values of different N-doped carbon electrodes with aqueous and 

nonaqueous electrolytes found in the literature are compared in Table 2.  

Table 2. Comparison of the capacitance values of different N-doped carbon supercapacitor electrodes with 

aqueous and non-aqueous electrolytes in literature. 

Publication Electrolyte Capacitance (F/g) 

[5] 1 M H2SO4 95-201 
[5] 1 M TEA-BF4 / ACN 52-114 
[17] 1 M H2SO4 up to 264 
[32] 1 M H2SO4 95-182 
[33] 1 M H2SO4 205 
[34] 1 M LiPF6 in 

EC/DMC 159 
[35] 6 M KOH 202 
[36] 6 M KOH up to 420 

 

To find a possible explanation for the difference in capacitance, the ohmic resistance of the N-

doped carbon materials was measured in the charged state of the electrodes.37,38 This way, it was 

possible to address the change in electronic properties uninfluenced by the electrolyte. As seen in 

Fig. 3C, an expected behavior is recorded for the standard electrolyte based on ACN, namely a 

characteristic bell-shaped curve with a decrease in normalized resistance at increased potential. 

As shown in Fig. 3B and C the PC-based electrolyte shows comparable capacitance values 

compared to the ACN based electrolyte, indicating that the resistance behavior is also very similar 

(cf. ref. 38). For the EMIM-BF4 system, no decrease in normalized resistance is measured 

(Fig. 3C), indicating interactions of the electrolyte with the electrode material, considering that 

only the electrolyte was changed. This is additionally confirmed by measuring the in situ 

resistivity of EMIM-BF4 in a standard activated carbon (YP80F from Kuraray, Fig. S4C†). Here, 

the typical voltage-dependency of the normalizedresistance is seen again for EMIM-BF4. Thus, 

the unique behavior of a virtually constant profile of the electrical conductivity is only achieved 

by a suitable match between the electrode material (i.e., N-doped carbon) and the electrolyte. 

Additionally, the pore hierarchy supports the ion transport. In principle, larger pores (like 

mesopores) facilitate ion mobility in micrometer-sized particles, while, at the same time, a large 

amount of mesopores is essential to enable a high specific capacitance (i.e., high ion storage 
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ability).39 Noticeably, the CV shape does not indicate the occurrence of any further processes, 

such as ion depletion or surface saturation.1b This is further supported when comparing the cyclic 

voltammograms of SiC-CDC-800°C and PS50SiCN900Cl2-800°C (Fig. S4D†). The performance 

of the non N-doped material is clearly inferior to that of PS50SiCN900Cl2-800°C in terms of 

capacitance and rate capability. 

 

Figure 3. Cyclic voltammograms of PS50SiCN900Cl2-800 (A) and PS50SiCN900Cl2-1000°C (B) in the range 

of ±1 V vs. carbon. Scan rate: 10 mV/s (C) In situ resistivity measurements for PS50SiCN900Cl2-800°C and 

PS50SiCN900Cl2-1000°C with 1 M TEA-BF4 and EMIM-BF4 as electrolyte. (D) Full cell cyclic 

voltammograms of PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C with EMIM-BF4 as electrolyte, scan 

rate: 10 mV/s. (E) Rate handling behavior of PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C. (F) Long 

term stability test at 3 V cell voltage of PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C in EMIM-BF4. 

To check whether the performance of a single electrode as presented before can be translated 

to a full cell, symmetric full cells were constructed (Fig. 3D). First, the potential window was 

opened successively up to 3 V cell voltage with a scan rate of 10 mVs-1. The cell capacitance 

of PS50SiCN900Cl2-800°C (ca. 34 Fg-1) is higher than that of PS50SiCN900Cl2-1000°C (ca.  

30 Fg-1). Note that the values for the cell capacitance can be transformed to the specific 
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capacitance (for one electrode) by multiplying by a factor of 4. The data from cyclic 

voltammetry agree well with galvanostatic charge/discharge measurements. At a low current 

density of 0.1 Ag-1, the specific capacitance of PS50SiCN900Cl2-800°C (129 Fg-1) is higher than 

that of PS50SiCN900Cl2-1000°C (118 Fg-1). Up to 2 Ag-1, both materials display a high rate 

capability before the capacitance fades at higher current densities.  

Finally, the long-term stability at 3 V cell voltage was tested by voltage floating.40 Both cells 

are characterized by a decay in capacitance over time (Fig. 3F); however,  

PS50SiCN900Cl2-800°C lasted approximately twice as long as PS50SiCN900Cl2-1000°C at an 

elevated voltage of 3 V. A drop of 20% in capacitance, the common device failure definition in 

industry,4 was not seen within 200 h for PS50SiCN900Cl2-1000°C in EMIM-BF4. The cycling 

stability up to 3 V cell voltage (ESI, Fig. S5†) indicates that after a drop in capacitance at the 

beginning the cell approaches a stable performance after 1000 cycles. 

5.3 Conclusion 

In summary, we synthesized a hierarchically porous N-doped carbon material with different 

distributions of meso- and micropores as well as varied N-doping. Both N-doped materials 

show significant capacitance enhancement for the ionic liquid EMIM-BF4 in comparison to 1 M 

TEA-BF4 in ACN or EMIM-TFSI. In addition, N-doped carbon in combination with EMIM-

BF4 shows a nearly constant normalized resistance from -1 V to +1 V. Distinct differences were 

observed for both electrodematerials in symmetric full cells. The nitrogen-richer carbonmaterial 

shows a higher cell capacitance and twice as high long-term stability at 3 V cell voltage.  

For the moment, the mechanisms causing the enhanced specific capacitance for the matched 

ionic liquid EMIM-BF4 compared to other electrolytes (such as EMIM-TFSI or when using 

organic solvents) remain unclear. Yet, the electrochemical data show that processes like ion 

sieving or ion saturation cannot cause the phenomenon. Instead, electrical conductivity shows 

an anomalous enhancement in electrical conductivity of the N-doped carbon electrode material 

only when using EMIMBF4. Noticeably, this is not seen for conventional porous carbon (i.e., 

without N-doping). The unique solid-state response of N-doped carbon to a specific ionic liquid 

is an intriguing effect to be unraveled in future work. 
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5.4 Experimental Section 

Materials  

Synthesis was performed in a dry argon atmosphere using standard Schlenk techniques. 

Halogenated solvents were dried over P2O5 and non-halogenated solvents over sodium 

benzophenone ketyl. All chemicals were purchased from commercial sources with a purity over 

95% and used without further purification unless described detailed below. 

Synthesis of the PS50 template 

The cross-linked polystyrene particles with an average diameter of 50 nm were synthesized by 

emulsion polymerization. Therefore, a three neck round bottom flask with a KPG stirrer and a 

reflux condenser was used. Divinylbenzene (DVB, technical grade, 55 %, Sigma Aldrich) and 

styrene (> 99 % purity, Sigma Aldrich) were purified by destabilization (alumina B column, ICN 

Biomedicals GmbH). A dispersion of 4.10 g styrene (39.39 mmol) and 0.40 g DVB (3.07 mmol) 

was stirred in 90 mL ultrapure water. The dispersion was degassed for 30 min. After that, a 

solution of 0.25 g (1-hexadecyl)trimethylammonium-bromide (0.69 mmol) (CTAB, 98 % purity, 

abcr GmbH) in 5 mL ultrapure water was added under stirring (200 rpm) at 80 °C. After 0.5 h, 

0.01 g 2,2-azobis(2-methylpropion-amidine)dihydrochloride (0.04 mmol) (97 % purity, Sigma 

Aldrich) was added initiating the polymerization. Polystyrene particles were dialyzed for 

purification and freeze dried. 

Synthesis of PS50SiCN900 material 

For several hours the polystyrene template PS50 was evacuated removing residual water. After 

that, a solution of 0.50 g of KiON HTT1800 (7.77 mmol) (Clariant Advanced Materials GmbH) 

and 0.05 g dicumylperoxide (1.85 mmol) (97 % purity, Sigma Aldrich) in 40 mL toluene was 

added under stirring. The dispersion was heated to 110 °C for 24 h without stirring. After removal 

of the solvent the in situ structured green body was treated at 110 °C for 24 h finalizing the cross-

linking. The PS50SiCN900 green body was pyrolyzed under a nitrogen atmosphere according to 

the following procedure: to 300 °C at 1 °Cmin-1 (held for 3 h), to 400 °C at 1 °Cmin-1 (held for 

3 h), to 500 °C at 0.5 °Cmin-1 (held for 3 h), to 600 °C at 1 °Cmin-1 (held for 4 h), to 700 °C at 

0.5 °Cmin-1 (no holding time), and finally to 900 °C at 1 °Cmin-1 (held for 0.5 h). A Gero furnace 

was used for this task. 
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Synthesis of N-doped carbon 

For the chlorine treatment around 3 g of PS50SiCN900 powder was put into a graphite crucible and 

placed in a quartz tube furnace (Gero F-A 40-200). The tube was flushed with a constant argon 

flow of 20 sccm for at least 8 h. During heating, chlorine and hydrogen treatment, the argon 

background flow was set to 100 sccm. The heating rate was 15 °Cmin-1 and the oven was held for 

6 h at each chlorination temperature (600 °C, 800 °C, and 1000 °C). During the dwell time, the 

chlorine gas flow was set to 10 sccm. After cooling to 600 °C with 15 °Cmin-1, the chlorine gas 

flow was stopped and 10 sccm hydrogen gas was applied for 3 h to remove residual chlorine. At 

the end, the furnace was cooled down to room temperature with a constant argon flow of 20 sccm. 

The same procedure was followed for the synthesis of SiC-CDC-800°C (Precursor: Nano SiC, 

Plasmachem; average particle size ca. 20–30 nm). 

Materials characterization 

Elemental analyses were carried out on a Vario elementar EL III. Thermal gravimetric analysis 

(TGA) was carried out under a nitrogen atmosphere using a Thermowaage L81 (Linseis, 

Germany). With a heating rate of 5 °C min-1 the sample was heated to 900 °C. Photon correlation 

spectroscopy (PCS) was performed using an ALV DLS/SLA-SP 5022F laser goniometer system. 

The power source was a Ne/Ar ion laser (l ¼ 632.8 nm at 260 mW). By using an ALV-5000/E 

multiple tau digital correlator the correlation function was generated. The decalin bath 

temperature was 20 °C, regulated by using a computer-operated thermostat. 90 ° fixed angle 

measurements were carried out. Data were analyzed by the CONTIN analysis. On a Zeiss field 

emission SEM LEO 1530 GEMINI scanning electron microscopy (SEM) was performed. The 

acceleration voltage was up to 5 kV and the materials were sputter-coated with a 1.3 nm platinum 

layer. Fourier transform infrared (FTIR) measurements were carried out using a Perkin-Elmer 

FTIR Spectrum 100 (from 4400 to 650 cm-1). Raman spectra of the raw materials were recorded 

with a Renishaw inVia Raman system using an Nd-YAG laser (532 nm) with 0.2 mW power at 

the sample surface. The peak analysis and peak fitting were performed assuming one Lorentzian 

peak for both the D-mode and G-mode. Nitrogen gas sorption measurements (-196 °C) of the 

electrodes (i.e., carbon + binder) were performed with an Autosorb iQ system (Quantachrome, 

USA). The materials were outgassed at 150 °C for 10 h in a vacuum. The specific surface area 

was calculated using the ASiQwin-software using the Brunauer–Emmett–Teller (BET) equation 

in the linear relative pressure range of 0.01–0.2. The SSA and pore size distribution (PSD) were 

also calculated via quenched-solid density functional theory (QSDFT) with a hybrid model for 



5 Enhanced Capacitance of Nitrogen-Doped Hierarchical Porous Carbide-Derived Carbon in 

Matched Ionic Liquids 

66 

slit and cylindrical pores and pore size between 0.56 and 37.5 nm. Samples for transmission 

electron microscopy (TEM) were dispersed and sonicated in chloroform and placed on a copper 

grid (CF200-Cu-grid, Electron Microscopy Sciences, Hatfield, PA, USA). The TEM images were 

taken with a Varian LEO 9220 (120 kV, Carl Zeiss) and a JEOL 2100F system at 200 kV. X-ray 

photoelectron spectroscopy (XPS) measurements were performed using a VG ESCALAB 

220iXL spectrometer (Thermo Fisher Scientific) equipped with an Al-Ka mono-source (power: 

150 W; spot diameter: 500 mm) and a magnetic lens system. The spectra were recorded in 

constant analyzer energy mode at a pass energy of 20 eV. The XPS was calibrated using the Ag 

3d5/2, the Cu 2p3/2, and the Au 4f7/2 lines as reference signals. The full-width half maximum 

(FWHM) of the Ag 3d5/2 line was measured to be 0.62 eV at a pass energy of 20 eV. The data 

were evaluated using the Avantage software provided by Thermo Fisher Scientific. The 

background subtraction was performed according to Shirley41 and atomic sensitivity factors were 

used according to Scofield.42 

Electrode preparation 

Electrodes were prepared using sample powder dispersed in ethanol. After homogenization in 

a mortar, 5–10 mass% of dissolved polytetrafluoroethylene (PTFE, 60 mass% solution in water 

from Sigma Aldrich) were added as binders. While kneading, the slurry became more viscous 

and the resulting material was rolled with a rolling machine (MTI HR01, MIT Corp.) to a 

200 ± 20 mm thick free standing electrode and dried at 120 °C at 2 kPa for 24 h. We employed 

a custom-built polyether ether ketone (PEEK) cell with spring loaded titanium pistons as a three 

electrode system described elsewhere.40 The cells employed electrodes with 12 mm diameter, 

a glass-fiber separator (GF/A (for full cells) or GF/D (for half cells)) from (Whatman, USA), 

and carbon-coated aluminum foil current collectors (type Zflo 2653, Coveris Advanced 

Coatings). PTFEbound YP-50F was used as the reference electrode.43 The assembled cells 

were dried at 120 °C for 12 h at 2 kPa in an inert gas glovebox (MBraun Labmaster 130, O2 and 

H2O < 1 ppm) and, after cooling to room temperature, vacuum-filled with 1 M tetraethyl-

ammonium tetrafluoroborate (TEA-BF4) of electrochemical grade (i.e., water content 

< 20 ppm), acetonitrile (ACN) or propylene carbonate (PC) purchased from BASF. The used 

ionic liquids 1-ethyl-3-methylimid-azolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI; 

> 99 %, Sigma Aldrich) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4; 

> 99 %, IoLiTec Ionic Liquids Technologies) were degassed using a Schlenk tube in a Si-oil 
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bath heated to 100 °C and a vacuum of 1 Pa was applied for at least 6 h to remove residual gas 

and water. 

Electrochemical testing: the electrochemical measurements were carried out using a 

potentiostat/galvanostat VSP300 from Bio-Logic, with cyclic voltammetry (CV), galvanostatic 

cycling with potential limitation (GCPL), and electrical impedance spectroscopy (EIS). CVs 

were recorded in half cell mode at 1, 10, 100 and 1000 mV s-1 in the potential range of 0 to 1 V 

vs. carbon with activated carbon (YP50, Kuraray chemicals) as the reference electrode.43,44 

GCPL in half cell mode was performed to access the maximum available capacitance values 

from discharge in the range of ± 1 V. The cell was charged for 10 min up to the desired potential 

and then discharged to 0 V. The capacitance was determined in 100 mV steps. Full cells were 

prepared for further testing in CV and GCPL mode. The CVs were recorded up to 3 V with 

10 mV s-1. In GCPL mode, the current density was increased in several steps from 0.1 Ag-1 to 

10Ag-1 with 10 s resting period between charging/discharging to access information on the IR-

drop. The voltage holding experiments were performed at 3 V cell voltage with 10 h holding 

periods followed by 3 galvanostatic charge/discharge cycles to determine the capacitance. This 

was repeated for at least 10 times. The galvanostatic cycling experiments (see ESI, Fig. S5†) 

were performed at 1 Ag-1.40 The in situ resistance measurements were conducted with a system 

described in ref. 37. The working electrode was galvanostatically charged to the favored 

potential and after cell charging, the working electrode cable was removed and a multimeter 

was used for measuring the resistance between the other two gold contacts (accuracy: ± 1.5 %). 

This two-contact-point electrical conductivity probe for in situ measurements at various states 

of electrode charge was shown to yield data consistent with a four-point probe setup by 

Kastening et al. shown in ref. 45. 
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5.7 Supporting Information 

 

Figure S1. (A) Scanning electron micrograph of the polystyrene PS50. (B) Photon correlation spectrum of 

PS50 shows a narrow particle size distribution in the range of 19.7 nm and 31.3 nm with a peak at 24.8 nm. 

(C) Thermogravimetric analysis of PS50 shows a mayor mass loss between 400 and 470 °C (using a heating 

rate of 0.5 °C/min, nitrogen atmosphere). 

 

Figure S2. (A) SEM image and (B) TEM image of PS50SiCN900 verify the pore structure. (C) Pore size 

distribution of PS50SiCN900, measured by nitrogen gas sorption at -196 °C, shows presence of mesopores and 

a BET surface area of 130 m2/g. (D) FT-IR measurement of PS50SiCN900 exhibits the characteristic broad 

SiCN peak between1250 cm-1 and 750 cm-1. (E) TGA measurements of the PS50SiCN900 green body and the 

PS50SiCN900 material. 
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Figure S3. (A) SEM image and (B) TEM image of PS50SiCN900Cl2-800°C. (C) SEM image and (D) TEM 

image of PS50SiCN900Cl2-1000°C. Both materials show the honeycombed pore structure of the ceramic 

template. 
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Figure S4. Comparison of the specific capacitance determined by GCPL for (A) PS50SiCN900Cl2-800°C and 

(B) PS50SiCN900Cl2-1000. (C) In situ resistivity measurement of YP 80F with EMIM-BF4 as electrolyte. (D) 

Cyclic voltammograms of SiC-CDC 800 and PS50SiCN900Cl2-800°C in EMIM-BF4 as electrolyte, scan rate: 

10 mV/s. (E) Calculated pore size distribution of SiC-CDC 800°C and PS50SiCN900Cl2-800°C. 

 

Figure S5. Cycling stability of PS50SiCN900Cl2-800°C and PS50SiCN900Cl2-1000°C in EMIM-BF4 as 

electrolyte at 1 A/g. 
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Abstract: The limitation of fossil fuels requires sustainable synthesis protocols for the 

generation of fine chemicals. In this context, the usage of platform chemicals processed from 

biomass is of great interest. Here, we present the sustainable synthesis of N-heterocycles 

mediated by a silicon carbonitride supported Ir catalyst. The catalyst material was obtained 

using a polystyrene based structuring approach recently developed by our group. We showed a 

broad substrate scope for lot pyrroles, pyridines, and quinolines as well as the tolerance of 

various functional groups. Our catalyst exhibits an excellent activity and good reusability 

compared to commercially available Ir catalysts. 

6.1 Introduction 

Environmental concerns and the limited exploitability of fossil carbon resources like crude oil 

call for the usability of alternative preferentially renewable resources and protocols to 

synthesize chemicals from them. Out of the available biomass, lignocellulose is especially 

attractive since it is abundantly available and indigestible.1 Since lignocellulose can be 

processed to alcohols efficiently,2 the development of alcohol re-functionalization reactions is 

a highly desired goal in modern chemistry or sustainable synthesis.3 Recently, the groups of 

Milstein,4 Seito5 and us3,6 developed a broadly applicable catalytic synthesis in which the 

combination of condensation and dehydrogenation allows the selective linkage of different 

alcohols to important classes of aromatic N-heterocyclic compounds like pyrroles and pyridines 

(Scheme 1). A similar approach was reported by Beller and coworkers.7 
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Scheme 1. Synthesis of pyrroles (1) as well as pyridines (2) starting from alcohols and amino alcohols under 

elimination of water and hydrogen.  

Homogenous iridium and ruthenium catalysts have been mainly used for these reactions. The 

use of reusable easy-to-handle catalysts having similar activities and selectivity profiles as the 

homogenous catalysts that have been used so far seemed attractive to us.8 

Here, we report on the synthesis of a hierarchically structured, silicon carbonitride (SiCN) 

supported iridium catalyst (Ir@PS60SiCN) that mediates the efficient synthesis of pyrroles, 

pyridines, and quinolines from alcohols and amino alcohols (Scheme 1). The catalyst is 

significantly more active than commercially available Ir catalysts and shows a better reusability.  

SiCN-transition-metal nanocomposites (M@SiCN) have emerged as a promising class of 

catalysts recently.8,9 The SiCN matrix allows the stabilization of unusual small metal 

nanoparticles based on the coordinative saturation of the metal ions or clusters by the N atoms 

of the support during the catalyst synthesis.10 The SiCN support itself is highly attractive since 

it is thermally very robust and chemically inert.11 A deficiency of the M@SiCN nanocomposite 

catalysts used so far is the low specific surface area of the SiCN support. Out of the existing 

protocols to mesostructured SiCN by polyolefines,9a,12 we used the polystyrene (PS) method 

recently introduced by our group.12h  

6.2 Results and Discussion 

The hierarchical structured iridium catalyst was synthesized based on our PS synthesis route 

(Ir@PS60SiCN, Figure 1).12h An Ir-aminopyridinlato-complex was used to introduce iridium in 

the porous SiCN support. Cross-linking of the commercial available polysilazane HTT-1800 

takes place by iridium catalyzed hydrosilylation and dehydro-coupling.8 The generated pores 

were additionally stabilized using dicumylperoxide (DCP) as cross-linker.  
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Figure 1. Synthesis route of the Ir@PS60SiCN catalyst: 1) Mixing 60 nm polystyrene (PS60) template, HTT-

1800, and DCP in toluene. Addition of [IrApTMA(cod)] complex leading to transmetalation. 2) Structuring by 

cross-linking at 110 °C and removal of the solvent leading to a metal containing structured green body. 3) 

Pyrolysis with a tailored pyrolysis program at 1000 °C obtaining Ir@PS60SiCN. SEM (see left side) and TEM 

(see right side) analysis verify the highly porous structure as well as the homogenous distribution of iridium 

nanoparticles.  

We verified homogenously distributed pores in the mesopore range (35 nm diameter) for the 

Ir@PS60SiCN material by SEM measurements (Figure 1 and Figure 2A). The iridium catalyst 

exhibits a specific surface area of 450 m²/g according to nitrogen sorption measurements 

(Figure 2B) after activation. Moreover, a pore size distribution in the micro and meso scale 

range was determined (Figure 2C). Characteristic iridium signals were observed by EDX 

measurements (Figure 3A). Powder XRD measurements (Figure 3B) indicate the presence of 

iridium nanoparticles with a particle diameter of about 1 nm. Moreover, the amorphous 

character of the SiCN material obtained from HTT-1800 was verified. Homogenously 

distributed metal particles with a particle size distribution between 0.6 nm and 1.4 nm were 

shown by TEM measurements (Figure 1 and Figure 3C). HR-TEM measurements indicate the 

presence of cubic crystalline iridium nanoparticles based on the characteristic distance of 

221.4 pm between the adjacent lattice planes (Figure 3C). An iridium content of 12.0 wt% was 

determined by ICP-OES measurements. 
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Figure 2. SEM measurement (A), nitrogen sorption measurements with isotherm (B), and the calculated pore 

size distribution (C) of the hierarchical porous Ir@PS60SiCN material. 

 

Figure 3. EDX measurement (A), powder XRD measurement (red: reflexes of cubic crystalline iridium, 

reference card 00-046-1044) (B), and TEM measurement with the particle size distribution of the iridium 

particles and HR-TEM measurement (C) of the hierarchical porous Ir@PS60SiCN material. 

Next, we applied the hierarchical porous Ir@PS60SiCN material in the catalytic synthesis of 

aromatic N-heterocycles, namely pyrroles, pyridines, and quinolines. The reaction of 2-

aminobutan-1-ol and 1-phenylethanol to 1a (Table 1) was used as model reaction to find the 
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best reaction conditions. Optimized reaction conditions led to a conversion of 93 % of 1a using 

0.58 mol% iridium, two equivalents KOtBu as base, and an alcohol/amino alcohol ratio of 2/1 

at 125 °C according to Ref 8. With these suitable conditions in hand, we addressed the issue of 

substrate scope. The reaction of 1-phenylethanol with different 1,2-amino alcohols led to 2,5-

disubstituted pyrroles (Table 1, 1a-c) in excellent yields for two examples. Aliphatic 

substituents, branched alcohols, and aryl groups were introduced. Furthermore, we variated the 

secondary alcohol. 2,5-disubstituted pyrroles with 1-cyclohexyl-1-ethanol (Table 1, 1d) as well 

as olefin functions (Table1, 1e) were applicable. The reaction of cyclic alcohols led to bicyclic 

(2,3,5-substituted) pyrroles (Table 1, 2). 

Table 1. Synthesized 2,5-substituted and 2,3,5-substituted pyrroles a 

 

Entry Product Yield [%]b, c 

1 

 

1a R = Et 93 

2 1b R = i-Bu 94 (90) 

3 1c R = Bn 80 

4d 

 

1d R = cyclohexyl 92 

5e 
1e R =  93 (87) 

6 

 2 R = i-Bu > 99 

a Reaction conditions: 1,2-amino alcohol (1.5 mmol), secondary alcohol 

(6 mmol), KOtBu (3 mmol), 0.58 mol% Ir, 1.5 mL diglyme, 24 h at 125 °C oil 

bath temperature. b Yields determined by GC (n-dodecane as internal standard).  
c Yields of isolated products are given in parentheses. d 130 °C. e 0.89 mol% Ir. 

 

Next, the substance class of pyridines was addressed. We adopted the optimized reaction 

conditions of the pyrrole synthesis.6a The conversion of secondary alcohols with 1,3-amino 

alcohols led to 2,6-substituted pyridines. An alkyl-substituted pyridine (Table 2, 3) was 

synthesized in good yield. Moreover, the formation of bicyclic pyridines starting from 

cycloheptanol was accomplished. Aryl-, methoxy-, and chloro-groups were well tolerated with 

moderate to excellent yields (Table 2, 4a-c).  
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Table 2. Synthesized 2,6-substituted and bicyclic pyridines a 

 

Entry Product Yield [%]b, c 

1 

 3   R = n-hexyl 69 (65) 

3 

 

4a R = p-xylene 79 

4 

4b R =  >99 (97) 

5d 

4c R =  51  

a Reaction conditions: 1,3-amino alcohol (1.5 mmol), secondary alcohol 

(6 mmol), KOtBu (3 mmol), 0.89 mol% Ir, 1.5 mL diglyme, 24 h at 90 °C and 

24 h at 130 °C oil bath temperature. b Yields determined by GC (n-dodecane as 

internal standard). c Yields of isolated products are given in parentheses.  
d 1.48 mol% Ir. 

 

Furthermore, the synthesis of quinolines was performed. Thereby, 2- and 3-substituted 

quinolines were obtained in moderate to good yields (Table 3, 5a-c). Again, aryl- and alkyl-

groups were tolerated. Additionally, 2,3-substituted quinolines were successfully synthesized 

in good to very good yields (Table 3, 6a-c). The tolerance of cycloheptanol (Table 3, 6a) as 

well as the tolerance of chloro-groups (Table 3, 6b) and branched alcohols (Table 3, 6c) was 

demonstrated. 
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Table 3. Synthesized 2-and 3-substituted as well as 2,3-substituted quinolones a 

 

Entry Product Yield [%]b, c 

1 

  

5a R = Ph 74 

2 

 

5b R = Bn 48 

3 5c R = n-Bu 70 (69) 

4 

 

6a n = 2; R = H 98 (94) 

6 6b n = 1; R = i-Bu 62 

7d 

 

6c n = 2; R = H 85 

a Reaction conditions: 2-aminobenzyl derivate (1.5 mmol), alcohol (6 mmol), 

KOtBu (3 mmol), 0.89 mol% Ir, 1.5 mL diglyme, 24 h at 125 °C oil bath 

temperature. b Yields determined by GC (n-dodecane as internal standard).  
c Yields of isolated products are given in parentheses. d 110 °C, KOtBu 

(1.5 mmol), 1.67 mol% Ir. 

 

Finally, we investigated the activity and reusability of the structured SiCN catalyst compared 

to different commercially available heterogeneous iridium catalysts (Ir/C, Ir/Al2O3, Ir/CaCO3) 

as well as an unstructured Ir@SiCN catalyst. The reaction of 2-aminobutan-1-ol and  

1-phenylethanol to 2-ethyl-5-phenyl-1H-pyrrole was chosen as test reaction. After each run, the 

catalysts were washed with water and either methanol or acetone to eliminate residues. As seen 

in Figure 3, all commercially available catalysts were less efficient than the Ir@PS60SiCN 

system using the same amount of iridium. Neither of the additionally tested catalysts obtained 

more than 16 % yield in the first run. A significant activity loss was already observed in the 

second run for Ir/C and Ir/CaCO3. The porous SiCN supported system achieved a good 

reusability in four successional runs. Moreover, the Ir@PS60SiCN catalyst is significant more 

active than the unstructured Ir@SiCN catalyst. The Ir@SiCN catalyst was synthesized without 

a pore building template and exhibits only a low SSA without any porosity. The PS based 

structuring procedure of the Ir@PS60SiCN catalyst results in an open porosity and a high SSA. 

This leads to a much better accessibility of the iridium nanoparticles explaining the higher 

activity in catalytic reactions.  
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Figure 3. Heterogeneous iridium catalyst screening. Reaction conditions: 2-aminobutan-1-ol (1.5 mmol),  

1-phenylethanol (6 mmol), KOtBu (1.5 mmol), 1.32 mol% Ir, 1.5 mL diglyme, 5 h at 120 °C oil bath 

temperature. 

6.3 Conclusion 

We introduced a hierarchical structured SiCN iridium nanocomposite catalyst with high specific 

surface area. The robust Ir@PS60SiCN catalyst exhibited an excellent accessibility of the 

nanometer-sized iridium particles. We accomplished the sustainable synthesis of N-

heterocycles like pyrroles, pyridines, and quinolines starting from alcohols and amino alcohols. 

A broad substrate scope and the tolerance of diverse functional groups was shown. Our Ir 

catalyst exhibited an excellent activity and good reusability compared to commercially 

available heterogeneous iridium catalysts.  

6.4 Experimental Section 

6.4.1 Catalyst synthesis 

A dispersion of 1.00 g degased PS60-particles in 40 mL toluene was stirred with 500 mg of HTT-

1800 (7.77 mmol), 50 mg DCP (1.85 mmol), and 410 mg [IrApTMA(cod)]8 (0.78 mmol). 

Without stirring, the suspension was heated to 110 °C for 24 h. The cross-linking process of the 

in situ structured green body was completed at 110 °C (24 h) after removal of the solvent. The 

Ir@PS60SiCN catalyst was obtained following pyrolysis under nitrogen atmosphere at 1000 °C. 

(Detailed experimental procedure see Supporting Information). 
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6.4.2 General method for synthesis of N-heterocycles 

In a pressure tube, alcohol, amino alcohol, and KOtBu were solved in diglyme and added to the 

catalyst. The catalysis was carried out at the respectively reaction time and temperature under 

stirring. The reaction mixture was cooled to room temperature and quenched with water. For 

GC analysis, n-dodecane was added as internal standard and the product was extracted with 

diethyl ether. Isolated products were purified by column chromatography (see Supporting 

Information). 
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6.7 Supporting Information 

6.7.1 Experimental Section 

Materials 

All reactions were carried out in a dry argon or nitrogen atmosphere using standard Schlenk or 

glove box techniques. Nonhalogenated solvents were dried over sodium benzophenone ketyl. 

Deuterated solvents were ordered from Cambridge Isotope Laboratories, vented, stored over 

molecular sieves and distilled. (1-Hexadecyl)trimethylammonium bromide (CTAB) (98% purity, 

abcr, Karlsruhe, Germany), 2,2'-azobis(2-methylpropion-amidine)dihydrochloride (97% purity, 

Aldrich Chemistry, Steinheim, Germany), KiON HTT1800 (Clariant Advanced Materials GmbH, 

Frankfurt, Germany) and dicumylperoxide (97% purity, Aldrich Chemistry, Steinheim, Germany) 

were purchased from commercial sources and used without further purification. Styrene (>99% 

purity, Sigma Aldrich, Steinheim, Germany) and divinylbenzene (technical grade, 55%, Aldrich 

Chemistry, Steinheim, Germany) were destabilized over an alumina B column (ICN Biomedicals 
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GmbH, Eschwege, Germany). The Ir-catalysts Ir/C (1 mass-% iridium), Ir/CaCO3 (5 mass% 

iridium), and Ir/Al2O3 (1 mass-% iridium) were received from Alfa Aesar. All further chemicals 

were purchased from commercial sources with purity over 95 % and used without further 

purification.  

Methods 

Ceramization was performed in a high temperature furnace (GERO, Berlin, Germany) under 

nitrogen atmosphere. The pyrolysed ceramic were milled in a ball mill “Pulverisette 0” (Fritsch, 

Idar-Oberstein, Germany) for 20 min. SEM and EDX measurements were carried out using a 

Zeiss Field-Emission-Scanning-Electron-Microscope (FESEM) “LEO 1530 GEMINI”. The 

acceleration voltage was 1–5 kV. The samples were sputter-coated with a 1.3 nm layer of 

platinum. TEM measurements were performed using a Varian LEO 9220 (Carl Zeiss, 120 kV, 

Oberkochen, Germany) instrument. The samples were suspended in chloroform and sonicated 

for 5 min. Two microliters of the suspension were placed on a CF200-Cu-grid (Electron 

Microscopy Sciences, Hatfield, USA) and allowed to dry. HR-TEM was performed using a 

Philips CM300 FEG/UT (300 kV) instrument. The sample was suspended in chloroform and 

sonicated for 2 min. A drop of the suspended sample was placed on a grid with lacy carbon film 

and dried. Nitrogen sorption analysis were conducted using a Nova2000e (Quantachrome, 

Odelzhausen, Germany) instrument. The specific surface areas were calculated using p/p0-

values from 0.05–0.31 (BET). The pore width and average pore volume was calculated by DFT 

calculations (N2 at 77 K on carbon (slit/cylindric pore, NLDFT equilibrium model)). Powder 

X-ray diffractograms were recorded using a STOE STADI-P-diffractometer (CuΚα radiation, 

λ = 1,54178 Å) in θ-2θ-geometry and with a position sensitive detector. ICP-OES 

measurements were carried out using a Vista-pro radical model from VARIAN. The sample was 

solved in a mixture of 4.5 mL HCl (32 %, p.a.), 1.5 mL HNO3 (65 %, distilled) and 1 mL HF 

(40 %) and heated in a microwave for 7 min at 170 °C (80 % power), for 7 min at 180 °C (85 % 

power) and for 20 min at 1795 °C (90 % power). NMR spectra were received using an INOVA 

300 MHz spectrometer at 298 K. Chemical shifts are reported in ppm relative to the deuterated 

solvent. Gas chromatography analysis were performed using an Agilent Technologies 6890N 

Network gas chromatograph equipped with a flame ionization detector (FID) and a MN HP-5 

capillary column (30.0 m x 32 μm x 0.25 μm) using n-dodecane as internal standard and diethyl 

ether as solvent. GC-MS analyses were performed using an Agilent Technologies 7890A/MSD 

5975C system equipped with a HP-5MS column (30.0 m x 32 μm x 0.25 m) 
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Synthesis of Ir@PS60SiCN 

In a round bottom Schenk flask 1.00 g degased PS60-particlesS1 were dispersed in 40 mL toluene 

under stirring. Subsequently, 500 mg of HTT1800 (7.77 mmol), 50 mg dicumylperoxide 

(1.85 mmol) and 410 mg [IrApTMA(cod)]S2 (0.78 mmol) were added and stirred for 10 min. 

Without stirring, the suspension was heated to 110 °C for 24 h. After removal of the solvent the 

crosslinking process of the in situ structured green body was completed at 110 °C (24 h). The 

Ir@PS60SiCN green body was pyrolysed under nitrogen atmosphere according to the following 

program: 

𝑹𝑻
𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟑𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟒𝟎𝟎 °𝐂 

𝟎.𝟓𝐊 𝐦𝐢𝐧−𝟏,𝟑𝐡
→         𝟓𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟒 𝐡
→          𝟔𝟎𝟎 °𝐂

𝟎.𝟓 𝐊 𝐦𝐢𝐧−𝟏,𝟎 𝐡
→           𝟕𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟎.𝟓 𝐡
→           𝟏𝟎𝟎𝟎 °𝐂 

The resulting ceramic monoliths were milled for 20 min obtaining a ceramic powder. The iridium 

content of 12.0 wt% of the Ir@PS60SiCN material was determined by ICP-OES measurements.  

Synthesis of Ir@SiCN 

The unstructured Ir@SiCN catalyst used for the comparison of different heterogeneous iridium 

catalyst was synthesized and handled as described in the literature.S2  

Synthesis of N-heterocycles 

The Ir@PS60SiCN catalyst was activated prior to the catalytic reactions (typically 200 mg 

Ir@PS60SiCN, 5 mmol NaOH, 1 mL H2O, 3 mL MeOH, 60 °C, 8 h). In a pressure tube, 6 mmol 

alcohol, 1.5 mmol amino alcohol, and 3 mmol KOtBu were solved in 1.5 mL diglyme and added 

to the appropriate amount of Ir@PS60SiCN catalyst. The synthesis of pyrroles and quinolines 

was carried out at 125 °C for 24 h under stirring. The synthesis of pyridines was performed for 

24 h at 90 °C and subsequently for 24 h at 130 °C. The reaction mixture was cooled to room 

temperature and quenched with water. The product was extracted with diethyl ether and n-

dodecane was added as internal standard for GC analysis. Isolated products were purified by 

column chromatography (see product characterization). 

The Ir@PS60SiCN catalyst was washed with water and methanol for three time between the 

catalytic runs during the reusability studies. All other catalysts were washed with water and 

acetone for three times.  
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6.7.2 Product Characterization 

 

1b: 2-isobutyl-5-phenyl-1H-pyrrole 

1.7 mg iridium, 1-phenylethanol (726 µL, 6.0 mmol), 2-amino-4-methylpentan-1-ol (192 µL, 

1.5 mmol), 1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 120 °C (oil bath temperature). 

Purification by column chromatography 50 : 1 pentane : Et2O; Yield: 269 mg = 1.35 mmol = 90 % 

as colourless solid. M(C14H17N) = 199.2 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 8.10 (s_br, 1H), 7.48-7.45 (m, 2H), 7.39-7.34 (m, 2H), 

7.22-7.17 (m, 1H), 6.47-6.45 (m, 1H), 6.01-5.99 (m, 1H), 2.54 (d, J = 7.0 Hz, 2H), 2.00-1.86 (m, 

1H), 1.00 (d, J = 7.0 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 133.3, 133.0, 130.5, 

128.8, 125.6, 123.3, 108.0, 106.1, 37.4, 29.3, 22.5 ppm. MS (EI, m/z): 199.2 (M+). 

 

1e: 2-ethyl-5-(4-methyl-pent-3-enyl)-1H-pyrrole 

1.7 mg iridium, 6-methyl-5-hepten-2-ol (916 µL, 6.0 mmol), 2-amino-butan-1-ol (141 µL, 

1.5 mmol), 1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 120 °C (oil bath temperature). 

Purification by column chromatography 70 : 1 pentane : Et2O; Yield: 231 mg = 1.30 mmol = 87 % 

as yellow oil. M(C12H19N) = 177.2 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 7.67 (s_br, 1H), 5.81-5.80 (m, 2H), 5.25-5.20 (m, 1H), 

2.63-2.57 (m, 4H), 2.31 (q, J = 7.6 Hz, 2H), 1.73 (s, 3H), 1.62 (s, 3H), 1.25 (t, J = 7.6 Hz, 2H) 

ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 132.8, 132.4, 131.2, 124.1, 104.8, 103.9, 28.4, 28.0, 

25.8, 21.0, 17.8, 13.8 ppm. MS (EI, m/z): 177.2 (M+). 
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3a: 2-hexyl-6-(p-tolyl)pyridine 

2.6 mg iridium, octan-2-ol (952 µL, 6.0 mmol), 3-amino-3-(p-tolyl)propan-1-ol (248 mg, 

1.5 mmol), 1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 90 °C and 24 h at 130 °C (oil 

bath temperature). Purification by column chromatography 40 : 1 pentane : Et2O; Yield:  

247 mg = 0.97 mmol = 65 % as yellow oil. M(C18H23N) = 253.4 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 7.96 (d, J = 8.20 Hz, 2H), 7.66-7.61 (m, 1H), 7.54-7.51 

(m, 1H), 7.32-7.27 (m, 2H), 7.09-7.06 (m, 1H), 2.92-2.87 (m, 2H), 2.44 (s, 3H), 1.90-1.80 (m, 

2H), 1.48-1.32 (m, 6H), 0.97-0.93 (m, 3H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 162.3, 

156.8, 138.5, 136.7, 129.4, 126.9, 120.7, 117.3, 38.6, 31.8, 29.8, 29.2, 22.7, 21.28, 14.2 ppm. MS 

(EI, m/z): 253.4 (M+). 

 

4b: 2-(3,4-dimethoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine 

2.6 mg iridium, cycloheptanol (725 µL, 6.0 mmol), 3-amino-3-(3,4-dimethoxyphenyl)propan-1-

ol (317 mg, 1.5 mmol), 1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 90 °C and 24 h at 

130 °C (oil bath temperature). Purification by column chromatography 40 : 1  20 : 1 

pentane : Et2O; Yield: 412 mg = 1.45 mmol = 97 % as yellow oil. M(C18H21NO2) = 283.4 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 7.53 (d, J = 2.3 Hz, 1H), 7.38-7.35 (m, 1H), 7.27 (s, 2H), 

6.81 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.02-2.99 (m, 2H), 2.69-2.65 (m, 2H), 1.79-

1.74 (m, 2H), 1.66-1.55 (m, 4H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 163.0, 153.7, 

149.4, 149.1, 137.2, 136.0, 132.9, 119.2, 117.3, 111.1, 110.0, 56.0, 55.9, 39.8, 35.0, 32.6, 28.2, 

26.7 ppm. MS (EI, m/z): 283.4 (M+). 
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5c: 3-butylquinoline 

2.6 mg iridium, hexan-1-ol (746 µL, 6.0 mmol), (2-aminophenyl)methanol (185 mg, 1.5 mmol), 

1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 125 °C (oil bath temperature). Purification 

by column chromatography 10 : 1  5 : 1 pentane : Et2O; Yield: 191 mg = 1.03 mmol = 69 % as 

yellow oil. M(C13H15N) = 185.1 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 8.77 (d, J = 1.7 Hz, 1H), 8.07 (d, J = 8.2 Hz, 1H), 7.86 (s, 

1H), 7.74-7.71 (m, 1H), 7.62-7.60 (m, 1H), 7.50-7.45 (m, 1H), 2.78-2.73 (m, 2H), 1.73-1.62 (m, 

2H), 1.45-1.32 (m, 2H), 0.97-0.92 (m, 3H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 152.1, 

146.8, 135.3, 134.0, 129.1, 128.4, 128.2, 127.3, 126.4, 33.2, 32.9, 22.3, 13.9 ppm. MS (EI, m/z): 

185.1 (M+). 

 

6a: 7,8,9,10-tetrahydro-6H-cyclohepta[b]quinoline 

2.6 mg iridium, cycloheptanol (725  µL, 6.0 mmol), (2-aminophenyl)methanol (185 mg, 

1.5 mmol), 1.5 mL diglyme, KOtBu (343 mg, 3.0 mmol), 24 h at 125 °C (oil bath temperature). 

Purification by column chromatography 10 : 1  5 : 1 pentane : Et2O; Yield: 

191 mg = 1.03 mmol = 69 % as yellow oil. M(C14H15N) = 197.3 gmol-1. 

1H NMR (300 MHz, CDCl3, 298 K): δ = 8.01 (d, J = 8.8 Hz, 1H), 7.79 (s, 1H), 7.71-7.69 (m, 

1H), 7.64-7.59 (m, 1H), 7.47-7.42 (m, 1H), 3.23-3.20 (m, 2H), 2.95-2.92 (m, 2H), 1.92-1.71 

(m, 6H) ppm. 13C NMR (75 MHz, CDCl3, 298 K): δ = 163.3, 152.7,  138.2, 137.3, 136.9, 134.3, 

128.8, 128.0, 117.6, 39.7, 35.0, 32.6, 28.1, 26.6 ppm. MS (EI, m/z): 197.3 (M+).
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4b -  2-(3,4-dimethoxyphenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine_proton.esp
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4c -  2-(4-chlorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridine_proton.esp
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Abstract: Polymer derived (PD) silicon carbonitride (SiCN) ceramics are well known supports 

for the stabilization of transition metal nanoparticles. Such SiCN-transition metal 

nanocomposites (M@SiCN) are applicable as chemical inert and air-stable catalysts. The 

preferably entire accessibility of the incorporated metal is of great interest considering a highly 

active and economical catalyst system. The thin metal coating of a highly porous support 

material is a promising way to address this demand. Herein, we present the coating of an 

Ir@SiCN nanocomposite on a micro- and mesoporous SiCN support leading to an Ir@SiCN-

SiCN core-shell system.  

7.1 Introduction 

Polymer derived ceramics (PDC), in particular PD-SiCN ceramics are promissing support 

materials for heterogenous catalyst sytems. They are attractive due to their chemical restistance 

and the high thermal stability.1 Additionally, the covalent bonded nitrogen of the SiCN network 

enables the stabilization of very small metal nanoparticles2  leading to efficent M@SiCN 

catalysts.3 Nevertheless, such M@SiCN catalysts are accompanied by a low metal accessibility. 

An excellent accesibility of the metal particles is important concidering the catalyst activity as 

well as economical aspects. Therefore, a large SSA with a high porosity degree is necessary. 

Several research groups developed synthesis protocols in order to generate mesoporous PD-

SiCN materials with high SSAs by nanostructuring procedures.4 There are three pathways 

known in literature leading to meso structured PD-SiCN ceramics using polyolefin templates. 
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The first method utilizes an organic block-copolymer as structure-directing agent (SDA) and 

an inorganic polymer as ceramic precursor. A microphase separation is accomplished due to 

the compatibility of the ceramic precursor with one block of the SDA. The main problem of 

this method is the oxygen entry caused by acrylic monomers.5 In the second method, a block-

copolymer with an inorganic block as ceramic precursor and an organic block as a porogen 

(responsible for pore formation during pyrolysis) is used. This method is based on the self-

assembly character of the block-copolymer and the resulting microphase separation generating 

a meso structured ceramic.6 The third pathway is the so called self-sacrificial method. Here, 

polyolefin templates like mesoporous polyethylene7 or PS spheres8 are used as template. Strong 

etching reagents can be avoided because of the thermal decomposition of the templates. 

Moreover, oxygen containing monomers are needless. The following research groups 

investigated porous PD-SiCN ceramics as support materials for catalytic reactions. The group 

of Wiesner generated the first Pt@SiCN catalyst with a high degree of porosity for the total 

oxidation of methane using an block-copolymer as SDA.5d Our group introduced micropores in 

a Ni@SiCN catalyst by a thermal treatment at 600 °C under inert atmosphere enabling a SSA 

of 400 m²/g for the selective hydrogenation of alkynes.9 Moreover, our group introduced a 

mesoporous SiCN material using an activated carbon template and observed SSAs between 

200-470 m²/g after the oxidative removal of the template.10 This material was coated with 

palladium using the incipient wetness impregnation technique and obtained an efficient 

Pd@SiCN catalyst for the methane oxidation. 

Herein, we present the coating of an Ir@SiCN nanocomposite on a hierarchically porous SiCN 

support8a leading to an Ir@SiCN-SiCN core-shell system. The introduced Ir@SiCN coating 

procedure was realizable following the easy shaping character of PD-SiCN ceramics.1h,m A 

large SSA was achieved by oxidative reduction of the incoperated carbon of the SiCN material. 

The efficient oxidative removal of a carbon template in a porous SiCN material was recently 

shown by our group.10 A thin layer of Ir@SiCN was deposited on the modified porous SiCN 

support in order to adress a high metal accessibility.  

7.2 Results and Discussion 

We synthesized a structured SiCN material (PS60SiCN1000) following the polystyrene based 

synthesis protocol recently developed by our group.8a A calcination study in a fixed bed reactor 

with coupled online GC was established in order to find suitable conditions for the SSA 
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increase. The temperature depending carbon dioxide release (Figure 1A) verified a very good 

removal of carbon as carbon dioxide at 500 °C. Hence, the structured SiCN material was heated 

to 500 °C under nitrogen atmosphere, calcinated for 45 min (carbon dioxide release reduced to 

50 % conversion), and cooled down under nitrogen atmosphere in order to rise the SSA 

(Figure 1B).  

 

Figure 2. Online GC studies. (A) Temperature dependent CO2 release up to 700 °C. (B) Calcination program 

with heating to 500 °C and cooling down under nitrogen flow obtaining a short calcination window at 500 °C. 

The enhancement of the SSA by the oxidative partial carbon removal was investigated using 

nitrogen sorption measurements. The isotherms (Figure 2A) of PS60SiCN1000 and the calcinated 

material indicate a hierarchical micro- and mesoporous materials.11 We observed an increase of 

the SSA from 37 m²/g to 220 m²/g after the calcination procedure, which is an enhancement of 

595 %. As seen in Figure 2B, the calcinated material exhibits an increased mesopore amount 

of 89 % (untreated material: 78 %). After calcination, homogenously distributed pores in the 

range of 35 nm were observed by SEM measurements (Figure 2C). 
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Figure 2. Nitrogen sorption measurement with isotherms (A) and the calculated pore size distribution (B) of 

the calcinated SiCN material and the SiCN material as well as SEM images (C) of the calcinated SiCN 

material. 

After the enlargement of the SSA, we coated the calcinated SiCN material with Ir@SiCN. 

Therefore, the calcinated SiCN material was suspended in hexane and mixed with the ceramic 

precursor HTT-1800, the cross-linker dicumylperoxide (DCP), and an iridium aminopyridinato 

complex. The Ir@SiCN layer was cross-linked at 110 °C during the continuously vaporization 

of hexane. The Ir@SiCN-SiCN core-shell material was obtained after pyrolysis at 1000 °C. 

The surface structure of the Ir@SiCN coated material was analyzed by SEM measurements 

(Figure 3A). An open porosity in the macro scale range was observed. TEM measurements 

(Figure 3B) show homogenously distributed nanoparticles with a particle size distribution in 

the range of 0.6 nm and 1.6 nm. The presence of iridium in the SiCN support was indicated by 

the characteristic elemental signals by EDX measurements (Figure 3C). The SSA was reduced 

to 110 m²/g, which was determined by nitrogen sorption measurements. This goes along with 

the reduction of the pore amount evidenced by the pore size distribution (Figure 3D). 
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Figure 3. SEM measurement (A), TEM measurement with particle size distribution (B) and EDX 

measurement (C) of the Ir@SiCN-SiCN core-shell material as well as calculated pore size distribution from 

nitrogen sorption measurements (D) of the Ir@SiCN-SiCN core-shell material compared to the calcinated 

SiCN material. 

7.3 Conclusion 

We introduced an Ir@SiCN-SiCN core-shell system mediated by an Ir@SiCN coating. A 

hierarchically micro- and mesoporous SiCN material was utilized as support. We used a 

calcination process to partially remove the incorporated carbon of the SiCN material and 

increased the SSA and the mesopore amount. The modified SiCN support was coated with a 

thin Ir@SiCN layer. Thereby, iridium nanoparticles with an average particle size of 1.2 nm 

were generated on the surface in order to enable a better metal accessibility.  
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7.4 Experimental Section 

Materials 

All reactions were carried out in a dry argon atmosphere using standard Schlenk techniques. 

Nonhalogenated solvents were dried over sodium benzophenone ketyl. (1-Hexadecyl)-

trimethylammonium bromide (CTAB) (98% purity, abcr, Karlsruhe, Germany), 2,2'-azobis(2-

methylpropionamidine)dihydrochloride (97% purity, Aldrich Chemistry, Steinheim, Germany), 

KiON HTT-1800 (Clariant Advanced Materials GmbH, Frankfurt, Germany) and dicumylperoxide 

(97% purity, Aldrich Chemistry, Steinheim, Germany) were purchased from commercial sources 

and used without further purification. Styrene (>99% purity, Sigma Aldrich, Steinheim, 

Germany) and divinylbenzene (technical grade, 55%, Aldrich Chemistry, Steinheim, Germany) 

were destabilized over an alumina B column (ICN Biomedicals GmbH, Eschwege, Germany).  

Methods 

Ceramisation was performed in a high temperature furnace (GERO, Berlin, Germany) under 

nitrogen atmosphere. The pyrolysed ceramic was milled in a ball mill “Pulverisette 0” (Fritsch, 

Idar-Oberstein, Germany) for 20 min. Scanning electron microscopy (SEM) and energy 

dispersive X-ray spectroscopy (EDX) measurements were performed using a Zeiss Field-

Emission-Scanning-Electron-Microscope (FESEM) “LEO 1530 GEMINI”. The acceleration 

voltage was 1-5 kV. The samples were sputter-coated with a 1.3 nm layer of platinum. 

Transmission electron microscopy (TEM) measurements were performed using a Varian LEO 

9220 (Carl Zeiss, 120 kV, Oberkochen, Germany) instrument. The samples were suspended in 

chloroform and sonicated for 5 min. Two microliters of the suspension were placed on a CF200-

Cu-grid (Electron Microscopy Sciences, Hatfield, USA) and allowed to dry. Nitrogen sorption 

analysis were carried out using a Nova2000e (Quantachrome, Odelzhausen, Germany) 

instrument. The specific surface areas were calculated using p/p0-values from 0.05–0.31 (BET). 

The pore width and average pore volume was calculated by DFT calculations (N2 at 77 K on 

carbon (slit/cylindric pore, NLDFT equilibrium model)). 

Preparation of the structured SiCN material 

In a round bottom Schenk flask 1 g degased PS60-particles8a were dispersed in 40 mL toluene 

under stirring. 500 mg of HTT1800 (7.77 mmol) and 50 mg DCP (1.85 mmol) were added. 

Without stirring, the suspension was heated to 110 °C for 24 h. After removal of the solvent the 



7 Coating of an Ir@SiCN Nanocomposite on a Hierarchically Porous (Micro/Meso) SiCN 

Support 

105 

cross-linking process of the in situ structured green body was completed at 110 °C (24 h). The 

green body was pyrolysed under nitrogen atmosphere according to the following program: 

𝑹𝑻
𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟑𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟑 𝐡
→          𝟒𝟎𝟎 °𝐂 

𝟎.𝟓𝐊 𝐦𝐢𝐧−𝟏,𝟑𝐡
→         𝟓𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟒 𝐡
→          𝟔𝟎𝟎 °𝐂

𝟎.𝟓 𝐊 𝐦𝐢𝐧−𝟏,𝟎 𝐡
→           𝟕𝟎𝟎 °𝐂

𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟎.𝟓 𝐡
→           𝟏𝟎𝟎𝟎 °𝐂 

Calcination of the PS60SiCN1000 material 

The calcination of the PS60SiCN1000 material was carried out in a fixed bed reactor under 

controlled conditions. 50 mg of the SiCN material was given into the reactor tube and treated 

with the following program: 

𝑹𝑻
𝟏𝟎 °𝐂 𝐦𝐢𝐧−𝟏   

→         𝟓𝟎𝟎 °𝐂 (𝐍𝟐)
 𝟎,𝟓 𝐡   
→     𝟓𝟎𝟎 °𝐂(𝐚𝐢𝐫)

𝟏𝟎 °𝐂 𝐦𝐢𝐧−𝟏   
→         𝑹𝑻 (𝐍𝟐) 

The reactor feed consisting of air (filtered compressed air) and nitrogen (5.0, Rießner-Gase) 

was mixed by mass flow controllers (SMART6 GSC, Vögtlin). The outgoing flow was analysed 

by online gas chromatography in order to observe the calcination process. 

Ir@SiCN coating 

35 mg of the calcinated material was suspended in 5 mL hexane in a lever lid glass in a Schlenk 

tube. 15µL HTT-1800, 1 mg DCP, and 1 mg iridium[(4-methyl-pyridin-2-yl)-(2,4,6-trimethyl-

phenyl)-amine(cyclooctadiene)]3c were solved in 5 mL hexane and subsequently added under 

stirring. Under evaporation of the solvent the coated Ir@SiCN layer was cross-linked at 110 °C 

on the matrix surface. The coated material was pyrolysed under nitrogen flow according to the 

following program: 

𝑹𝑻
𝟏 𝐊 𝐦𝐢𝐧−𝟏,𝟏 𝐡
→          𝟑𝟎𝟎 °𝐂

𝟓 𝐊 𝐦𝐢𝐧−𝟏,𝟏 𝐡
→          𝟏𝟎𝟎𝟎 °𝐂  
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