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February 18, 2016

Abstract In this survey, receding horizon control is presented as a method for
obtaining approximately optimal solutions to infinite horizon optimal control
problems by iteratively solving a sequence of finite horizon optimal control
problems. We investigate conditions under which we can obtain mathemati-
cally rigorous approximation results for this approach. A key ingredient of our
analysis is the so-called turnpike property of optimal control problems.
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1 Introduction

Receding horizon control (RHC) is a method for constructing a control func-
tion on an arbitrary long time horizon from the iterative solution of finite
horizon optimal control problems. Although particularly popular in control
engineering — where it usually comes under the name Model Predictive Con-
trol (MPC), see, e.g., [21,28,38,46] — conceptually similar ideas have been
used also in mathematical economy under the name sliding plan [34] or in
operations research under the name rolling horizon [10].

In the context of this paper, RHC is seen as a method for the approximate
solution of optimal control problems on an infinite time horizon. Of course,
in real life applications infinite time horizons do not exist, as everything will
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eventually come to an end. Nevertheless, optimal control problems on infinite
time horizons are practically relevant as they are always the method of choice
when systems need to be run in an efficient way for indefinitely long time
spans. This includes optimal stabilisation and tracking problems (e.g., keep-
ing the temperature of a building within a given range with minimal energy
consumption), optimal process control (e.g., running a continuous chemical
reactor at an optimal operating point) but also economic problems like max-
imising utility in a macroeconomical model [12].

The key idea of RHC, first presented in the 1960s [44], lies in synthesising
a control strategy on an arbitrary long time horizon by glueing together pieces
of finite horizon optimal control problems. Since the finite horizon optimal
control problems are solved iteratively based on the most recent information,
the receding horizon control method provides the optimal control in the form
of a feedback law, which provides a certain robustness against perturbation
and model uncertainty. This aspect is often seen as the main feature of RHC. In
this paper, however, we want to highlight another essential property of RHC,
namely the fact that finite horizon optimal control problems are often much
easier to solve than infinite horizon problems, which implies that RHC provides
a way to make optimal control problems computationally tractable which could
not be solved otherwise. From this point of view, RHC may be seen as a model
reduction technique in time, in which the solution of a difficult problem (the
infinite horizon optimal control problem) is replaced by a sequence of solutions
of easier problems (the finite horizon problems). Like other model reduction
techniques, it relies on the fact that the full problem contains a sufficient
amount of redundancy, which can be exploited for simplifying the problem.
This survey article presents a number of recent results from this area, in which
the redundancy stems from the fact that the optimal trajectories “most of
the time” stay close to an optimal equilibrium. This property, known in the
optimal control literature as the turnpike property, will play a key role in our
analysis. Interestingly, the turnpike property, which is a classical property in
optimal control [52,18,39,14] has recently attracted renewed attention, not
least because of its importance for Receding Horizon Control [16,19,20,50,
42].

Receding Horizon or Model Predictive Control has been a topic of inten-
sive research in control engineering for more than four decades. However, the
point of view on the method we take in this survey has a different focus. While
control engineers primarily see MPC as an online control algorithm, in which
optimality may well be compromised by other important objectives like real-
time capability, efficient handling of constraints or robustness against certain
classes of perturbations, optimality is the focus of this paper. More precisely,
we ask the question: under which conditions is it possible, if at all, to ap-
proximate the optimal solution of an infinite horizon problem by solving a
sequence of finite horizon problems? This is also why in this context we prefer
the name “receding horizon control”, because although in the literature the
names “receding horizon control” and “model predictive control” are largely
used synonymously, the latter is often regarded as an online control scheme
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while the former rather denotes a particular way of approaching optimal con-
trol problems, which is more in line with the focus of this survey paper. In
this context it should be noted that the majority of results in this paper apply
to what in the MPC community is called Economic MPC [5,6,17,25,32]. The
“classical” MPC setting in which the cost function is supposed to be positive
definite is addressed in Section 7 of this paper.

Regarding its contribution, this paper is in fact somewhat more than a
survey, because while the results presented here have already appeared in the
literature, the way the basic conditions in Sections 4 and 5 are written and
the way that the proofs are organised is new and has not been presented
before elsewhere. The paper is organised as follows. After defining the setting
and the problem formulation in Section 2, we demonstrate the performance
of RHC with three examples in Section 3. These examples will also be used
in order to illustrate the methods and results introduced later in the paper.
Section 4 defines the turnpike properties used in this paper and states and
proves the first approximation result. Section 5 shows how the assumptions
from Section 4 can be guaranteed by means of dissipativity and controllability
notions, which are easier to check for concrete examples. Section 6 explains
how terminal conditions can be used in order to improve the performance of
the method and Section 7 addresses problems with positive definite stage cost,
which are related to stabilisation and tracking problems.

2 Setting and preliminaries

We consider nonlinear discrete time control systems

x(k + 1) = f(x(k), u(k)) (2.1)

for f : X×U → X, with normed spacesX and U denoting the state and control
space, respectively. The solution of system (2.1) for a control sequence u =
(u(0), u(1), . . . , u(K − 1)) ∈ UK emanating from the initial value x is denoted
by xu(k, x), k = 0, . . . ,K − 1. The set Y ⊂ X × U denotes the admissible
state-control pairs, i.e., the combined state/control constraints and X := {x ∈
X | there exists u ∈ U with (x, u) ∈ Y} and U(x) := {u ∈ U | (x, u) ∈ Y}
denote the induced sets of admissible states and controls. For a given initial
value x ∈ X, a control sequence u ∈ UK is called admissible if (xu(k, x), u(k)) ∈
Y holds for all time instants k = 0, . . . ,K − 1 and xu(K,x) ∈ X. The set of all
admissible control sequences is denoted by UK(x). For the infinite horizon case
with u = (u(0), u(1), . . . ) ∈ U∞ we define the set U∞(x) analogously. As the
focus in this paper is on optimality properties rather than on constraints, in
order to keep the presentation technically simple we assume that U∞(x) 6= ∅
for all x ∈ X.

In practice, control systems are often defined in continuous time with dy-
namics governed by ordinary or partial differential equations rather than by
discrete time dynamics of the type (2.1). However, choosing f in (2.1) as the
solution operator of a controlled ordinary or partial differential equation over
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a sampling interval [0, Ts] for sampling time Ts > 0, we can always convert
continuous time models into discrete time models of the type (2.1), see also
Example 3.3, below. Alternatively, one can formulate receding horizon con-
trol schemes directly in continuous time and we will provide corresponding
references to the literature at the end of each section. Since the discrete time
formulation avoids a number of technical difficulties, we decided to adopt this
variant in this paper.

Receding horizon control in the sense of this paper is an approximate so-
lution approach for infinite horizon optimal control problems by solving a se-
quence of finite horizon optimal control problems. These problems are defined
as follows.

For a given stage cost ` : Y→ R, we define the finite horizon functional

JN (x, u) :=

N−1∑
k=0

`(xu(k, x), u(k)) (2.2)

and the corresponding infinite horizon functional

J∞(x, u) := lim sup
N→∞

JN (x, u). (2.3)

The optimal control problems under consideration now consist in minimising
the objective with respect to the control sequence u, i.e., to solve the problems

minimise
u∈UN (x)

JN (x, u) (2.4)

or, respectively,

minimise
u∈U∞(x)

J∞(x, u) (2.5)

for given initial condition x ∈ X. More precisely, we are going to focus on the
solution of the infinite horizon problem (2.5) and will investigate how this can
approximately be achieved by iteratively solving finite horizon problems of the
type (2.4).

Associated to the optimal control problems (2.4), (2.5) we define the opti-
mal value functions

VN (x) := inf
u∈UN (x)

JN (u, x) and V∞(x) := inf
u∈U∞(x)

J∞(u, x).

The indexing of the sum in the finite horizon functional (2.2) from 0 to N − 1
is a convention frequently found in RHC, since it permits the incorporation of
additional terminal costs as the term with index N , see Section 6. Note that
this numbering implies that, without terminal costs, N = 2 is the shortest
meaningful horizon, because for N = 1 the objective JN (x, u) is independent
of the control u.

In the sequel we assume that for all N ∈ N ∪ {∞} and x ∈ X there is
an optimal control sequence u∗N,x ∈ UN (x), i.e., a control sequence for which
the equality VN (x) = JN (x, u∗N,x) holds. This assumption is mainly made
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for simplifying the presentation, as most statements could be rewritten us-
ing approximately optimal control sequences. We remark that optimal control
sequences need not be unique; in this case u∗N,x denotes one of the possible
optimal control sequences. We drop the index x of u∗N,x whenever the initial
condition is clear from the context.

We note that for the infinite horizon optimal (or approximately optimal)
trajectory, for initial value x to be well defined we need to ensure that the
optimal value V∞(x) is finite (i.e., neither +∞ nor −∞), which can be ensured,
e.g., by establishing upper and lower bounds on J∞(x, u). In the sequel, we
will assume finiteness of V∞(x) for all x ∈ X whenever we consider the infinite
horizon problem.

Using the optimal control problem (2.2), (2.4), we now define the receding
horizon control (RHC) scheme we analyse in this paper.

Algorithm 2.1 Given an initial condition x(0) ∈ X and an optimisation hori-
zon N ∈ N, for n = 0, 1, 2, . . . we perform the following steps:

1. Let x = x(n) denote the current state of the system.
2. Solve the finite horizon optimal control problem (2.4) in order to obtain the

optimal control sequence u∗N,x.
3. Apply the first element of the optimal control sequence u∗N,x as a feed-

back control value until the next time instant, i.e., define the feedback law
µN (x) := u∗N,x(0) and set x(n+ 1) := f(x(n), µN (x(n))).

4. Set n := n+ 1 and go to Step 1.

The system x(n+1) = f(x(n), µN (x(n))) is referred to as the RHC closed loop
system. Trajectories of this system with initial value x ∈ X will be denoted by
xµN (n, x) and referred to as RHC solutions or RHC trajectories.

As already explained in the Introduction, the focus of this paper will be
on analysing the optimality properties of the RHC solutions. To this end, we
define the closed loop performance criterion

JclM (x, µN ) :=

M−1∑
n=0

`(xµN (n, x), µN (xµN (n, x)))

for arbitrary M ∈ N. If the performance value is bounded as a function in M ,
we also consider the infinite horizon performance measure

Jcl∞(x, µN ) := lim sup
M→∞

JclM (x, µN ).

We emphasise that these performance criteria yield tighter notions of optimal-
ity than the averaged value lim supM→∞

1
M JclM (x, µN ) which is often studied

in the RHC/MPC literature, e.g., in [5,6], because in the averaged functional
the behaviour of xµN on any finite time interval effectively plays no role.
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Throughout the paper we will make use of the following classes of compar-
ison functions

L :=

{
δ : R+

0 → R+
0

∣∣∣∣ δ continuous and decreasing
with limk→∞ δ(k) = 0

}
,

K :=

{
α : R+

0 → R+
0

∣∣∣∣α continuous and strictly
increasing with α(0) = 0

}
,

K∞ := {α ∈ K |α unbounded}.

Moreover, we will use the dynamic programming principles for VN and V∞
which for all K = 1, . . . , N − 1 or all K ∈ N, respectively, read

V∞(x) = inf
u∈UK(x)

{JK(x, u) + V∞(xu(K,x))}

= JK(x, u∗∞,x) + V∞(xu∗∞,x(K,x))

VN (x) = inf
u∈UK(x)

{JK(x, u) + VN−K(xu(K,x))}

= JK(x, u∗N,x) + VN−K(xu∗N,x(K,x))

(2.6)

cf. [28, Theorem 3.15 and Theorem 4.4]. We remark that this principle implies
that tails of optimal trajectories are again optimal trajectories, i.e., that the
identity

JN−K(xu∗N,x(k, x), u∗N,x(·+K)) = VN−K(x) (2.7)

holds, see [28, Corollary 3.16]

3 Examples

Before presenting the theoretical analysis of the RHC method, in this section
we present three examples which will later be used in order to illustrate the
methods and results we present in this paper. Two of the examples are one
dimensional discrete time systems which were selected because, due their sim-
plicity, we can provide all computations needed in our analysis in detail. The
third example is an optimal control problem for a parabolic PDE, presented
in order to demonstrate that both the RHC method and our analysis are also
applicable to more complex examples.

Example 3.1 Consider the control system

x(k + 1) = 2x(k) + u(k)

with X = U = R and Y = X × U = [−0.5, 0.5] × [−2, 2]. The stage cost ` is
chosen such that the control effort is penalised quadratically, i.e.,

`(x, u) = u2.

Hence, the optimal control problem tries to keep the system inside X with
minimal control effort. It is easily seen that a good way of doing this is to steer
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the system to the equilibrium xe = 0, because at xe = 0 the cost for keeping
the system inside X is `(0, 0) = 0.

Figure 3.1 shows the RHC trajectories x(k) = xµN (k, x0) for x0 = 0.5
(solid) and the corresponding finite horizon optimal trajectories xuN,x(k)(·, x(k))
for each step k (dashed) for N = 5 on the left and for N = 10 on the right.
One sees that while the finite horizon trajectories eventually move to the up-
per boundary of the admissible set X = [−0.5, 0.5], the RHC trajectory tends
towards a neighbourhood of xe = 0.
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Fig. 3.1 RHC trajectory x(k) = xµN (k, x0) (solid) and finite horizon optimal trajectories
xu∗
N,x(k)

(·, x(k)) (dashed) along x(k) for Example 3.1 with x0 = 0.5 and X = [−0.5, 0.5]

and optimisation horizon N = 5 (left) and N = 10 (right)

When increasing N , the RHC solution ends up in a smaller neighbourhood
of xe. This suggests that the cost of the RHC solutions should decrease with
increasing N , which is what actually happens, as illustrated in Figure 3.2 for
Jcl30(x, µN ).
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Fig. 3.2 Jcl30(x, µN ) for Example 3.1 with N = 2, . . . , 10, x = 0.5 and X = [−0.5, 0.5]
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Example 3.2 Our second example is a basic economic growth model which
goes back to [12]. It is given by the dynamics and stage cost

x(k + 1) = u(k) and `(x, u) = − ln(Axα − u),

where x denotes the capital stock, Axα is a production function with constants
A > 0, 0 < α < 1, and the control variable u determines the amount of capital
to be kept in the next time step. The difference Axα − u thus denotes the
consumption whose logarithmic utility ln(Axα−u) is maximised. In order to be
consistent with the general setting this has been reformulated as a minimisation
problem for the negative logarithm.

Using the parameters A = 5 and α = 0.34 and the constraints Y = X× U
with X = U = [0.1, 10] we have performed the same numerical simulations as
in the previous example, see Figure 3.3.
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Fig. 3.3 RHC trajectory x(k) = xµN (k, x0) (solid) and finite horizon optimal trajectories
xu∗
N,x(k)

(·, x(k)) (dashed) along x(k) for Example 3.2 with x = 5 and optimisation horizon

N = 5 (left) and N = 10 (right)

Except for the fact that now the finite horizon optimal trajectories end up
at the lower boundary of X, the graphs are qualitatively similar to those from
Figure 3.1: while the finite horizon trajectories move to the boundary of the
admissible X, the RHC solutions converge to neighbourhoods of an equilibrium
xe in its interior, whose sizes shrink with increasing N . A closer inspection
reveals that this equilibrium is given by xe = 1

α−1√
αA
≈ 2.234421144, which

happens to be the optimal equilibrium of the problem, i.e., the minimiser of
− ln(Axα − u) under the constraints x ∈ X and f(x, u) = u (which in this
example is equivalent to x = u).

The fact that the solutions end up closer to xe when N increases suggests
that the performance of the RHC trajectory should also improve with increasing
N . Figure 3.4 shows that this is exactly what is happening here — just as for
Example 3.1.

Example 3.3 Our third example is an application of RHC to the Fokker-
Planck equation, first considered in [7,8]. The example differs from the first
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Fig. 3.4 Jcl20(x, µN ) for Example 3.2 with N = 2, . . . , 8 and x = 5

two examples in two points: first, we are now considering a controlled PDE
and second, we focus on the qualitative behaviour of the solutions.

In order to motivate the control of the Fokker-Planck equation, we consider
the control of a large ensemble of identical stochastic systems, with the dynam-
ics of each element in the ensemble governed by the controlled Itô stochastic
differential equation (SDE)

dXt = b(Xt, t, u)dt+ σ(Xt, t)dWt (3.1)

with drift b : Rd×R×Rm → Rd, diffusion σ : Rd×R→ Rd×p, p-dimensional
Wiener process Wt and initial condition X0 ∈ Rd. The distribution of a large
ensemble is statistically determined by its time dependent probability density
function (PDF) y : R × Rd → R+

0 . The control task we are considering thus
consists of controlling the PDF of the ensemble towards a desired reference
density function yref : Rd → R+

0 . Under suitable regularity conditions, the
evolution of the PDF is determined by the Fokker-Planck partial differential
equation

∂ty(t, x) =

d∑
i,j=1

∂2ij (aij(t, x)y(t, x)) +

d∑
i=1

∂i (bi(t, x, u)y(t, x)) (3.2)

y(0, x) = y0(x)

for (t, x) ∈ R>0×Rd and with aij =
∑
k σikσjk/2, for details see, e.g., [43, p.

227], [45, p. 297] or [48]. In (3.2), u can in principle be a function of time t
and/or state x. As in [7,8], here we focus on the case of u being independent of
x. This means that when applying the control to (3.1) we do not need to know
the current state Xt. In other words, each element of the ensemble receives
the same control input, which makes the implementation of such a control
particularly easy.

In order to apply the discrete time RHC framework described in the last
section to this problem, we need to rewrite the sampled-data version of the
Fokker-Planck equation as a discrete time system. To this end we fix a sampling



10 Lars Grüne

time Ts > 0, sampling instants tn := nTs for n ∈ N0 and the discrete time
state

z(n) := y(tn, ·),
which is now an element of an appropriate function space X, for details see
[22]. Denoting the piece of the control function u acting from tn to tn+1 shifted
to [0, Ts] by u(n) (i.e., u(n)(t) = u(t + tn)) and denoting by f the solution
operator of the Fokker-Planck equation on the interval [0, Ts], we can then
write the discrete time dynamics as

z(n+ 1) = f(z(n), u(n)), z(0) = z0 = y0 (3.3)

(we use z instead of x now because x already denotes the independent state
variable in (3.2)). Note that u(n) can be either time varying or constant in time
on [0, Ts]; the latter setting was used in the numerical simulation presented
below. We denote the space of admissible control inputs for f by U . In order
to make the optimal trajectories approach the desired reference PDF yref , we
use the stage cost

`(z, u) =
1

2
‖z − yref‖2L2(Rd) +

ν

2
‖u− uref‖22, (3.4)

where uref ∈ Rd is a control value for which yref becomes an equilibrium of
(3.2) and ν > 0 is a weighting parameter.

In order to show the performance of RHC for this problem, as an example
for (3.1) we consider a two-dimensional system consisting of two Ornstein-
Uhlenbeck processes. This amounts to choosing the diffusion as

aij := δijσ
2
i /2, i, j = 1, 2 (3.5)

where σi > 0, and δij is the Kronecker delta. The drift is defined by

bi(t, x, u) := −µixi + ui, i = 1, 2 (3.6)

for µi > 0 and ui ∈ R. The parameters for the simulation are set to σi = 0.25
and µi = 1 for i = 1 and 2. The sampling time is chosen as Ts = 0.1 and the
desired reference PDF is a 2d Gaussian distribution with mean µ = (3.5, 3.5)T

and covariance matrix Σ = diag (
√

2/8,
√

2/8), which is an equilibrium of (3.2)
for uref = (3.5, 3.5)T . No state or control constraints were imposed.

We compute the RHC solution for the shortest meaningful optimisation
horizon N = 2. The initial PDF z0 = y0 is again a 2d Gaussian with mean
µ0 = (−3.5,−3.5)T and covariance matrix Σ = diag (0.5, 0.5). The weighting
parameter is set to ν = 0.25. Figure 3.5 shows the reference PDF yref at
the right, the initial PDF y0 on the left and the RHC solution at time t =
1 and t = 2 in between. For the numerical discretisation the Chang-Cooper
scheme in space and the BDF2 scheme in time was used [40] and the numerical
optimisation was carried out using the necessary optimality conditions from [8]
on the domain Ω = (−7, 5)2.

The remarkable fact, which is consistent with the observations [7,8], is that
even for the shortest meaningful optimisation horizon N = 2 the trajectory
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Fig. 3.5 RHC trajectory zµN (n) = y(tn, y0) forN = 2 at the three time instants tn = 0, 1, 2
(left to right) and reference PDF yref (at the very right)

indeed converges to the desired reference PDF. We will see later in Example
7.5 that this is not a coincidence, but rather that this behaviour can actually
be proved rigorously.

4 Results for general stage cost

As mentioned in the introduction, a reduction technique like RHC can only
work if the optimal control problem has a suitable amount of redundancy.
The kind of redundancy that we are assuming here is the so called turnpike
property, which asserts that the optimal trajectories “most of the time” stay
near an equilibrium (xe, ue), cf. Part (i) and (ii) of the subsequent assump-
tion. Here, the sets Q(x, P,∞) and Q(x, P,N), respectively, describe the time
indices of those points of the trajectory which are not contained in a ρ(P )-
or σ(P )-neighbourhood of xe, respectively, as illustrated in Figure 4.1. The
turnpike property then demands that the number of elements contained in
these sets, denoted by #Q(x, P,∞) and #Q(x, P,N), respectively, is bounded
by P while ρ(P )→ 0 and σ(P )→ 0 as P →∞.

Moreover, for our approach to work we need a regularity condition on the
optimal value functions, in the sense that these functions are (approximately)
continuous at the equilibrium (xe, ue) uniformly in N . This is Part (iii) of the
following assumption.

Assumption 4.1 There is an equilibrium (xe, ue) ∈ Y, i.e., a state-control
pair with f(xe, ue) = xe, satisfying the following properties.

(i) The infinite horizon optimal control problem for stage cost `(x, u)−`(xe, ue)
has the turnpike property at xe in the following sense: there exists ρ ∈ L
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Elements of Q(x, P,N)

Nk

σ(P )

σ(P )

xu∗
N
(k, x)

xe

Fig. 4.1 Illustration of the definition of Q(x, P,N)

such that for each optimal trajectory xu∗∞(k, x), x ∈ X and all P ∈ N there
is a set Q(x, P,∞) ⊆ N0 with #Q(x, P,∞) ≤ P and

‖xu∗∞(k, x)− xe‖ ≤ ρ(P ) for all k ∈ N0 with k 6∈ Q(x, P,∞).

(ii) The finite horizon optimal control problems have the turnpike property at
xe in the following sense: there exists σ ∈ L such that for each optimal
trajectory xu∗N (k, x), x ∈ X and all N,P ∈ N there is a set Q(x, P,N) ⊆
{0, . . . , N} with #Q(x, P,N) ≤ P and

‖xu∗N (k, x)− xe‖ ≤ σ(P ) for all k ∈ {0, . . . , N} with k 6∈ Q(x, P,N).

(iii) The optimal value functions VN and V∞ are (approximately) continuous
at xe in the following uniform way: there is an open ball Bε(xe), ε > 0,
around xe and η ∈ K∞, ω ∈ L such that for all x ∈ Bε(xe) ∩ X and all
N ∈ N ∪ {∞} the inequality

|VN (x)− VN (xe)| ≤ η(‖x− xe‖) + ω(N)

holds, where we use the convention ω(∞) = 0.

The motivation for considering the shifted stage cost `(x, u) − `(xe, ue)
in Part (i) of this assumption is as follows: Since the turnpike property de-
mands that the optimal trajectory stays most of the time near xe, under
standard continuity assumptions we can expect that JK(x, u∗∞) takes values
near K`(xe, ue). Thus, for V∞(x) to be finite (which we assumed in Section 2),
`(xe, ue) = 0 is a reasonable assumption which is clearly satisfied for the stage
cost `(x, u) − `(xe, ue). In contrast to this, for the finite horizon problem the
optimal trajectories for stage cost `(x, u) and `(x, u) − `(xe, ue) coincide be-
cause the addition of a constant to ` only adds a term to the optimisation
criterion which is independent of u. Hence, in Part (ii) there is no need to
consider a shifted stage cost.
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We note that the fact that the bounds in (i) and (ii) are assumed to be
independent of x may be restrictive if X is unbounded. However, since the
interesting dynamics usually occur in a bounded set X, we decided to make
this assumption which considerably simplifies the subsequent arguments.

The intuition behind (i) and (ii) is that the solution on infinite or long finite
time intervals, respectively, spends most of the time near the equilibrium point
xe. Figure 4.2 shows numerically computed finite horizon optimal trajectories
for varying N for Examples (3.1) and (3.2) which indicate that the systems
indeed exhibit the turnpike property, since the number of time instants at
which the solutions are outside a neighbourhood of the respective equilibria
xe = 0 and xe ≈ 2.234421144 is clearly independent of N .
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Fig. 4.2 Finite horizon optimal trajectories xu∗
N

(·, x) (dashed) for different optimisation

horizons N = 2, 4, . . . , 30 for Example 3.1 (left) and N = 2, 4, . . . , 20 for Example 3.2 (right)

Of course, these numerical simulations only provide evidence but not a
rigorous proof that the systems indeed have the turnpike property. We will see
in the next section how this property can be checked rigorously.

The condition from Assumption 4.1 (iii) is a (rather weak) way of formal-
ising that the optimal solution starting at some point in the neighbourhood
of xe is similar to the optimal solution starting at xe itself. Together with
Assumption 4.1 (i) and (ii) it implies that for determining the value of an ap-
proximately optimal trajectory on a long horizon it suffices to know the value
JK(x, u∗N ) of an initial piece of the optimal trajectory which ends up near xe

and the optimal value in the equlibrium xe. This is formalised by the following
lemma.

Lemma 4.2 (i) If Assumption 4.1 (i) and (iii) hold, then the equation

V∞(x) = JK(x, u∗∞) + V∞(xe) +R1(x,K) (4.1)

holds with |R1(x,K)| ≤ η(ρ(P )) for all x ∈ X, all sufficiently large P ∈ N and
all K 6∈ Q(x, P,∞).
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(ii) If Assumption 4.1 (ii) and (iii) hold, then the equation

VN (x) = JK(x, u∗N ) + VN−K(xe) +R2(x,K,N) (4.2)

holds with |R2(x,K,N)| ≤ η(σ(P )) + ω(N −K) for all x ∈ X, all N ∈ N, all
sufficiently large P ∈ N and all K 6∈ Q(x, P,N).

Proof (i) The dynamic programming principle yields

V∞(x) = JK(x, u∗∞) + V∞(xu∗∞(K,x)).

Hence, (4.1) holds with R1(x,K) = V∞(xu∗∞(K,x)) − V∞(xe). Now choose
P ∈ N sufficiently large that ρ(P ) < ε holds for ρ from Assumption 4.1
(i) and ε from Assumption 4.1 (iii). Then for K ∈ Q(x, P,∞) we obtain
|R1(x,K)| ≤ η(‖xu∗∞(K,x)− xe‖) ≤ η(ρ(K)) and thus the assertion.

(ii) In the finite horizon case, the dynamic programming principle yields

VN (x) = JK(x, u∗N ) + VN−K(xu∗N (K,x)).

Hence, (4.2) holds with R2(x,K,N) = VN−K(xu∗N (K,x)) − VN−K(xe). Now
choose P ∈ N sufficiently large that σ(P ) < ε holds for σ from Assumption
4.1 (ii) and ε from Assumption 4.1 (iii). For any K ∈ Q(x, P,N) this implies
|R2(x,K,N)| ≤ η(‖xu∗N (K,x)− xe‖) +ω(N −K) ≤ η(σ(P )) +ω(N −K) and

thus the assertion.
A consequence of this lemma — and thus of Assumption 4.1 (i)–(iii) — is

that the values of the initial pieces of finite and infinite trajectories, respec-
tively, approximately coincide, as the next lemma shows.

Lemma 4.3 If Assumption 4.1 (i)–(iii) holds, then the equation

JK(x, u∗∞) = JK(x, u∗N ) +R3(x,K,N) (4.3)

holds with |R3(x,K,N)| ≤ η(ρ(P )) + η(σ(P )) + 2ω(N −K) for all sufficiently
large P ∈ N, all x ∈ X and all K ∈ {0, . . . , N} \ (Q(x, P,N) ∪Q(x, P,∞)).

Proof The finite horizon dynamic programming principle implies that u =
u∗N minimises the expression JK(x, u) + VN−K(xu(K,x)). Together with the

error term R2 defined in the proof of Lemma 4.2 (ii) and R̃1(x,K,N) =
VN−K(xu∗∞(K,x))− VN−K(xe) this yields

JK(x, u∗N ) + VN−K(xe) = JK(x, u∗N ) + VN−K(xu∗N (K,x))−R2(x,K,N)

≥ JK(x, u∗∞) + VN−K(xu∗∞(K,x))−R2(x,K,N)

= JK(x, u∗∞) + VN−K(xe)−R2(x,K,N) + R̃1(x,K,N).

Similar to the proof of Lemma 4.2 (ii) one sees that |R̃1(x,K,N)| ≤ η(ρ(P ))+
ω(N −K) for all K ∈ Q(x, P,∞).

Conversely, the infinite horizon dynamic programming principle implies
that u∗∞ minimises the expression JK(x, u∗∞)+V∞(xu∗∞(K,x)). Using the error
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terms R1 from the proof of Lemma 4.2 (i) and R̃2(x,K,N) = V∞(xu∗N (K,x))−
V∞(xe) we obtain

JK(x, u∗∞) + V∞(xe) = JK(x, u∗∞) + V∞(xu∗∞(K,x))−R1(x,K)

≥ JK(x, u∗N ) + V∞(xu∗N (K,x))−R1(x,K)

= JK(x, u∗N ) + V∞(xe)−R1(x,K) + R̃2(x,K,N).

As in the proof of Lemma 4.2 (i) one obtains |R̃2(x,K,N)| ≤ η(σ(P )) for all
K ∈ Q(x, P,N). Together with the estimates for R1 and R2 from Lemma 4.2
this yields

|R3(x,K,N)| = |JK(x, u∗∞)− JK(x, u∗N )|
≤ max{|R1(x,K)|+ |R̃2(x,K,N)|, |R̃1(x,K,N)|+ |R2(x,K,N)|}
≤ η(ρ(P )) + η(σ(P )) + 2ω(N −K).

The properties derived in the preceding two lemmas are the key for the first
receding horizon approximation result, formulated in the next theorem. For
interpreting this result we recall that by the dynamic programming principle
(2.6) for each control u and each M ∈ N the inequality

JM (x, u) ≥ V∞(x)− V∞(xu(M))

holds. Consequently, a finite horizon control sequence u is part of an infinite
horizon optimal control sequence if and only if the inequality

JM (x, u) ≤ V∞(x)− V∞(xu(M)) (4.4)

holds. The following theorem now shows that the RHC closed loop solution
satisfies (4.4) up to an error term vanishing as N → ∞. We remark that for
V∞ to be bounded, in the theorem the shifted stage cost `(x, u) − `(xe, ue)
must be used for the infinite horizon functional, and in order to be consistent
it must be used for JclM (x, µN ), too. However, there is no need to use the shifted
stage cost in Algorithm 2.1, because the finite horizon optimal trajectories and
controls do not change when a constant is added to `. Hence, the shifting of
` is only necessary for the analysis of the optimality properties of the RHC
solution but not for its computation.

Theorem 4.4 If Assumption 4.1 (i)–(iii) holds and V∞ is bounded on X, then
the inequality

JclM (x, µN ) ≤ V∞(x)− V∞(xµN (M)) +Mδ(N) (4.5)

holds for all M ∈ N and all sufficiently large N ∈ N with

δ(N) := 2η(ρ(b(N − 1)/8c)) + 2η(σ(b(N − 1)/8c)) + 4ω(bN/2c),

where byc denotes the largest integer less or equal y for y ∈ R.
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Proof Picking x ∈ X and abbreviating x+ := f(x, µN (x)), the dynamic pro-
gramming principle and the definition of µN yield

`(x, µN (x)) = VN (x)− VN−1(x+) = JK(x, u∗N,x)− JK−1(x+, u∗N−1,x+),

where the last equality follows from the fact that, by (2.7), the optimal control
u∗N−1,x+ for x+ coincides with u∗N (·+ 1). Using (4.1) for N , x and K and with

N − 1, x+ and K − 1, respectively, yields

V∞(x)− V∞(x+)

= JK(x, u∗∞) + V∞(xe) +R1(x,K)

− JK−1(x+, u∗∞)− V∞(xe)−R1(x+,K − 1)

= JK(x, u∗∞)− JK−1(x+, u∗∞) +R1(x,K)−R1(x+,K − 1).

Putting the two equations together and using Lemma 4.3 yields

`(x, µN (x)) = V∞(x)− V∞(x+) +R4(x,K,N). (4.6)

with

R4(x,K,N) = −R3(x,K,N)+R3(x+,K−1, N−1)−R1(x,K)+R1(x+,K−1).

From Lemma 4.2(i) and 4.3 we obtain the bound

|R4(x,K,N)| ≤ 2η(ρ(P )) + 2η(σ(P )) + 4ω(N −K)

provided P ∈ N is sufficiently large and we choose K ∈ {1, . . . , N} with
K 6∈ Q(x, P,N)∪Q(x, P,∞) and K−1 6∈ Q(x+, P,N−1)∪Q(x+, P,∞). Since
each of the four Q sets contains at most P elements, their union contains at
most 4P elements and hence if N > 8P then there is at least one such K with
K ≤ N/2.

Thus, choosing P = b(N−1)/8c yields the existence of K ≤ N/2 such that

|R4(x,K,N)| ≤ 2η(ρ(b(N−1)/8c))+2η(σ(b(N−1)/8c))+4ω(bN/2c) = δ(N).
(4.7)

Applying (4.6), (4.7) for x = xµN (k, x), k = 0, . . . ,M − 1, we can conclude

JclM (x, µN ) =

M−1∑
k=0

`(xµN (k, x), µN (xµN (k, x)))

≤
M−1∑
k=0

(
V∞(xµN (k, x))− V∞(xµN (k + 1, x)) + δ(N)

)
≤ V∞(x)− V∞(xµN (M)) +Mδ(N).

This proves the claim.
The following remark collects a couple of comments and extensions related

to Theorem 4.4.
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Remark 4.5 (i) Rewriting (4.5) as

JclM (x, µN ) + V∞(xµN (M)) ≤ V∞(x) +Mδ(N),

we can interpret this inequality as follows: if we control using the RHC feedback
law µN until time M and then continue controlling using the infinite horizon
optimal control, then the resulting overall trajectory will be infinite horizon
optimal except for the error term Mδ(N). This means that the RHC trajectory
is the initial piece of an approximately optimal infinite horizon trajectory.

(ii) In general, we cannot avoid the multiplicative factor M in the error es-
timate, see Example 6.7. This also means that in general the limit superior of
the performance measure lim supM→∞ JclM (x, µN ) may not be finite. However,
this does not mean that the performance on arbitrary large horizons deterio-
rates completely. Assuming that V∞ is bounded along xµN (M) (which is true,
e.g., if xµN (k) ends up in a neighbourhood of xe, cf. the subsequent item (iii))
we still obtain the estimate

lim sup
M→∞

1

M
JclM (x, µN ) ≤ δ(N)

on the long time average performance.
(iii) Under additional conditions (for details see Remark 5.8) one can show

that ‖xµN (k)−xe‖ ≤ γ(N) for a function γ ∈ L and all sufficiently large k ∈ N,
i.e., that the RHC trajectory converges to a ball with radius γ(N) around xe.
Assuming this inequality is true for some k = M ∈ N, one can conclude that

JclM (x, µN ) ≤ JM (x, u) +Mδ(N) + 2η(γ(M)) (4.8)

holds for all control sequences u satisfying ‖xu(K) − xe‖ ≤ γ(N) and η
from Assumption (4.1) (iii). This means that up to the error term Mδ(N) +
2η(γ(M)), RHC generates an optimal trajectory from the initial condition x
to the ball with radius γ(N) around xe. In order to show (4.8), assume this
inequality does not hold. This means that we can find a control ũ with

JclM (x, µN ) > JM (x, ũ) +Kδ(N) + 2η(γ(M))

and ‖xũ(M)−xe‖ ≤ γ(N). Using that Assumption 4.1 (iii) implies |V∞(xũ(M))−
V∞(xe)| ≤ η(γ(N)) and |V∞(xµN (M))− V∞(xe)| ≤ η(γ(N)), we obtain

JM (x, ũ) + V∞(xũ(M)) < JclM (x, µN ) + V∞(xũ(M))−Mδ(N)− 2η(γ(M))

≤ JclM (x, µN ) + V∞(xµN (M))−Mδ(N)

≤ V∞(x),

contradicting the dynamic programming principle (2.6).
(iv) In the setting of (iii), the explicit use of V∞ and u∗∞ can be avoided in

the analysis, at the expense of a more technical proof requiring more involved
bookkeeping, see [32], particularly Theorem 4.1 in this reference. This avoids
the slightly awkward consideration of `(x, u)−`(xe, ue), cf. the discussion before
Theorem 4.4.
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(v) Analogous results can be obtained for discounted optimal control prob-
lems [31]. Parts of the results were also carried over to optimal control problems
which exhibit an optimal periodic orbit instead of an optimal equilibrium [41].

5 Alternative sufficient conditions

The conditions formulated in Assumption 4.1 are difficult to check directly, as
they involve the knowledge of optimal trajectories or optimal value functions,
respectively. For Assumption 4.1 (i), moreover the correct equilibrium value
`(xe, ue) which should be subtracted from ` needs to be known.

For developing an alternative checkable sufficient condition, the following
structural property plays a pivotal role.

Definition 5.1 The optimal control problem is called strictly dissipative at
an equilibrium (xe, ue), if there exists a storage function λ : X → R, bounded
from below, and a function α ∈ K∞ such that the inequality

λ(f(x, u)) ≤ λ(x) + `(x, u)− `(xe, ue)− α(‖x− xe‖)

holds for all (x, u) ∈ Y with f(x, u) ∈ X.

The concept of strict dissipativity was introduced in mathematical systems
theory in [53,54], for its extension to discrete time see [13]. Its importance for
receding horizon control was first observed in [5,6]. One easily sees that under
this condition (xe, ue) is a global minimum of the optimisation problem

mimimise `(x, u) s.t. (x, u) ∈ Y, f(x, u) = x,

i.e., (xe, ue) is a globally optimal equilibrium.
As we will see in the proof of Proposition 5.3, strict dissipativity more-

over implies that staying away from the optimal equilibrium for a long time
becomes expensive, hence optimal trajectories are forced to move to xe, pro-
vided moving to xe is not more expensive than staying away. The following
definition prevents this situation.

Definition 5.2 An equilibrium (xe, ue) is called cheaply reachable if there
exists E ∈ R such that for all x ∈ X and N ∈ N the inequality

VN (x) ≤ N`(xe, ue) + E

holds. If ` is replaced by `(x, u) − `(xe, ue), the definition can be extended to
N =∞ by requiring

V∞(x) ≤ E

for all x ∈ X.
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The name “cheaply reachable” is motivated by the fact that Definition 5.2
is satisfied if there are constants P and Ẽ such that for each initial condition
x0 there is a trajectory from x0 to xe in less than P steps and whose cost is
bounded by Ẽ, i.e., xe can be reached without paying a too high cost. However,
the inequality in this definition may also be true in other situations, e.g., when
xe is only asymptotically reachable.

Proposition 5.3 If the optimal control problem is strictly dissipative with
bounded storage function λ at an equilibrium (xe, ue) and (xe, ue) is cheaply
reachable then the finite horizon turnpike property from Assumption 4.1(ii)
holds and if `(x, u) is replaced by `(x, u) − `(xe, ue) then the infinite horizon
turnpike property from Assumption 4.1(i) holds.

Proof First observe that strict dissipativity implies the identity

JN (x, u) ≥ λ(x(N))− λ(x0) +N`(xe, ue) +

N−1∑
k=0

α(‖xu(k)− xe‖). (5.1)

This inequality shows that staying away from xe for a long time indeed becomes
expensive, because the sum over α grows unboundedly if the solution stays
outside a neighbourhood of xe, while all other terms on the right hand side of
(5.1) are either bounded or independent of u.

We first prove that Assumption 4.1(ii) holds. We prove by contradiction
that the assertion holds for

σ(P ) := α−1
(

2Mλ + E

P

)
where Mλ > 0 denotes a bound on |λ|. To this end, assume that the property
from Assumption 4.1(ii) does not hold, i.e., that there are N ∈ N, x ∈ X and
P ∈ N such that the number of elements k ∈ Q(x,N, P ), i.e., the number of
those k ∈ {0, . . . .N} which satisfy ‖xu∗N (k, x) − xe‖ > σ(P ), is larger than
P . Using (5.1) with u = u∗N and taking only those elements in the sum into
account for which ‖xu∗N (k, x)− xe‖ > σ(P ) holds, this implies

JN (x, u∗N ) > −2Mλ +N`(xe, ue) + Pα(σ(P ))

= −2Mλ +N`(xe, ue) + 2Mλ + E = N`(xe, ue) + E.

This inequality, however, contradicts the assumed cheap reachability since
JN (x, u∗N ) = VN (x) ≤ N`(xe, ue) + E.

The validity of Assumption 4.1(i) is proved similarly, using the same σ as
above and replacing `(x, u) by `(x, u) − `(xe, ue), after which `(xe, ue) = 0
holds. Cheap reachability then implies J(x, u∗∞) = V∞(x) ≤ E. In order to
obtain a contradiction, assume that the number of elements k ∈ Q(x,N, P ) is
larger than P . Let M be larger than the (P + 1)st time index in Q(x,N, P ).
Then we obtain

JM (x, u∗∞) ≥ −2Mλ + (P + 1)α(σ(P ))

= −2Mλ + 2Mλ + E + α(σ(P )) = E + α(σ(P ))
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implying

J∞(x, u∗∞) = lim
M→∞

JM (x, u∗∞) ≥ E + α(σ(P )) > E

again contradicting the assumed cheap reachability.
We note that the assumptions of Proposition 5.3 imply that V∞(x) is finite

for all x ∈ X and the shifted stage cost `(x, u) − `(xe, ue), because strict
dissipativity with bounded storage function implies V∞(x) ≥ −2Mλ while
cheap reachability implies V∞(x) ≤ E.

As a result of Proposition 5.3, dissipativity can be used as a checkable con-
dition for the turnpike property. In this context it should be noted that using
a generalisation of the turnpike property from Assumption 4.1(ii), a converse
to Proposition 5.3 can be proved under suitable structural conditions on the
system. This means that using strict dissipativity as a checkable condition for
the turnpike property is often not overly conservative. For details we refer to
[26].

Example 5.4 The optimal control problems in Examples 3.1–3.3 are all strict-
ly dissipative. Indeed, for the first two examples the sufficient conditions from
[16, Proposition 4.5] and [16, Proposition 4.3], respectively, are satisfied. This
yields strict dissipativity with storage function λ(x) = −x2/2 for Example 3.1

and with storage function λ(x) = pe(x−xe) for pe =
α−1√

αA
1
α−1

and xe = 1
α−1√

αA

for Example 3.2. In Example 3.3, strict dissipativity of (xe, ue) = (yref , uref )
immediately follows for λ ≡ 0.

Moreover, all examples satisfy the cheap control property. For the first two
examples this is easily verified, because for each x ∈ X the system can be
controlled to the respective xe in one step with uniformly bounded cost. For the
Fokker-Planck equation from Example 3.3 the verification is somewhat more
involved; we will come back to this in Example 7.5.

In summary, Proposition 5.3 implies that all examples from Section 3 have
the turnpike property.

Likewise — but with a somewhat more technically involved proof — one
can show that strict dissipativity and cheap reachability together with local
controllability in a neighborhood of xe implies the uniform continuity condition
from Assumption 4.1(iii). Here, local controllability is defined in the following
way.

Definition 5.5 We say that the system is locally controllable at xe, if there
exists a neighbourhood N of xe, a time d ∈ N and γx, γu, γc ∈ K∞ such that
for any two points x0, x1 ∈ N there exists u ∈ Ud(x0) satisfying xu(d, x0) =
x1 and the estimates ‖xu(k, x0) − xe‖ ≤ γx(δ), ‖u(k) − ue‖ ≤ γu(δ) and
|`(xu(k, x0), u(k)) − `(xe, ue)| ≤ γc(δ) for all k = 0, . . . , d − 1, where δ :=
max{‖x0 − xe‖, ‖x1 − xe‖}.
Proposition 5.6 If the optimal control problem is strictly dissipative with
bounded storage function λ at an equilibrium (xe, ue) and the system is locally
controllable at xe, then Assumption 4.1(iii) holds.
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Idea of Proof The first step of the proof consists in observing that optimal so-
lutions which start close to xe stay in a ball with radius η̃(‖x0− xe‖) + ω̃(N),
η̃ ∈ K, ω̃ ∈ L, around xe for a certain number of steps. This is because strict
dissipativity implies that moving away from xe and then returning is more
expensive than staying near xe, which is feasible due to the controllability
assumption. Using the controllability property once more, this allows the ex-
change of the initial pieces of two optimal trajectories starting in x0 ∈ N and
xe, respectively, without changing their value by more than an amount which
is proportional to η(‖x0 − xe‖) + ω̃(N). This implies the desired continuity
property.

A detailed proof (even for the more general case where xe is replaced by a
periodic orbit) can be found in [41]. This more detailed proof was derived from
a similar proof in [25, Section 6], which uses a slightly stronger controllability
assumption in order to avoid the ω(N −K)-term in Assumption 4.1(iii).

Example 5.7 It is easy to check directly that the systems in the Examples 3.1
and 3.2 are locally controllable, hence Proposition 5.6 applies.

The Fokker-Planck control system from Example 3.3, however, is not lo-
cally controllable, since the space of control functions we are considering (i.e.,
those which are constant in x) is simply too small in order to control the sys-
tem from any state to any other in a neighbourhood N of yref . However, the
continuity property from Assumption 4.1(iii) nevertheless holds, as we will see
in Example 7.5.

Remark 5.8 Strict dissipativity, cheap reachability and local controllability
also allow to prove that xe is a practically globally asymptotically stable equi-
librium for the RHC solutions, cf. [32]. This in particular means that the
RHC solutions converge to a neighbourhood of xe which shrinks down to xe as
N →∞, cf. also Remark 4.5(ii)–(iv).

We end this section by remarking that under additional conditions expo-
nential decrease of the error terms depending on N can be established. The
respective results can be found in [32] and rely on an exponential turnpike
property established in [16]. Moreover, parts of the results in this section have
also been established for continuous time receding horizon formulations, see
[20,19].

6 Terminal conditions

A classical approach in receding horizon control is to compensate for the trun-
cation of the optimisation horizon by adding a terminal cost and/or a terminal
constraint. For the problem considered in the previous sections, this approach
was developed in [5,6], extending earlier work for positive definite stage cost,
see, e.g., [15,38].

For this approach, we specify a terminal cost V0 : X0 → R. Since V0 is
typically defined only on a subset X0 of X, the so-called terminal constrained
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set, we need to make sure that we optimise only over trajectories which end
up in X0. To this end, for each N ∈ N and x ∈ X we define the set of controls

UNX0
(x) := {u ∈ UN (x) |xu(N, x) ∈ X0}

which steer the initial condition into X0 after N steps.
The terminal conditioned finite horizon cost functional is then defined as

J tcN (x, u) :=

N−1∑
k=0

`(xu(k, x), u(k)) + V0(xu(N, x)), (6.1)

the corresponding optimal control problem reads

minimise
u∈UNX0 (x)

J tcN (x, u) (6.2)

and the optimal value function is

V tcN (x) := inf
u∈UNX0 (x)

JN (x, u). (6.3)

Terminal conditioned receding horizon control now refers to the case where the
optimal control problem (6.2) instead of (2.4) is used in Step 2 of the receding
horizon Algorithm 2.1. We denote the resulting RHC feedback law by µtcN and
remark that µtcN is defined only on the feasible set XN := {x ∈ X |UNX0

(x) 6= ∅},
which may constitute a serious practical limitation for this approach.

The crucial assumption on X0 and V0 introduced in [5,6] is the following.

Assumption 6.1 There exists an equilibrium (xe, ue) with xe ∈ X0 with the
following property: for each x ∈ X0 there exists ux ∈ U(x) such that f(x, u) ∈
X0 and the inequality

V0(f(x, ux)) ≤ V0(x)− `(x, ux) + `(xe, ue) (6.4)

holds.

A standard argument (see, e.g., [38]) shows that under Assumption 6.1
x ∈ XN implies f(x, µN (x)) ∈ XN . This property is called recursive feasibility
of XN and guarantees that xµN (k, x) ∈ XN holds for all k ∈ N if (and only if)
x ∈ XN . The simplest choice of X0 and V0 satisfying Assumption 6.1 is X0 =
{xe} and V0 ≡ 0. However, the resulting “endpoint constraint” xN (N, x) = xe

may lead to problems in the numerical optimisation routine when computing
u∗N , which is why this simple choice is often not preferred from a numerical
point of view.

The key advantage of incorporating X0 and V0 satisfying Assumption 6.1
into the optimisation lies in the following lemma.

Lemma 6.2 The terminal conditioned optimal value function satisfies the in-
equality

V tcN (f(x, µtcN (x))) ≤ V tcN (x)− `(x, µtcN (x))− `(xe, ue)
for all N ∈ N and x ∈ XN .
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Proof Consider the optimal control u∗,tcN for initial value x and abbreviate

x∗(k) = xu∗,tcN
(k, x). Note that µtcN (x) = u∗,tcN (0) and f(x, µtcN (x)) = x∗(1).

Define the control u+(k) := u∗,tcN (k + 1) for k = 0, . . . , N − 2 and u+(N −
1) := ux with ux from Assumption 6.1 for x = x∗(N). Abbreviate x+(k) =
xu+(k, x∗(1)). These definitions yield

V tcN (f(x, µtcN (x))) ≤ J tcN (x+(0), u+)

≤ V tcN (x)− `(x, µtcN (x))

+ `(x+(N − 1), u+(N − 1))− V0(x∗(N)) + V0(x+(N))

= V tcN (x)− `(x, µtcN (x))

+ `(x∗(N), ux)− V0(x∗(N)) + V0(f(x∗(N), ux))︸ ︷︷ ︸
≤`(xe,ue) by (6.4)

≤ V tcN (x)− `(x, µtcN (x)) + `(xe, ue),

which shows the claim.
When `(x, u) is replaced by `(x, u) − `(xe, ue), this lemma yields the in-

equality
`(x, µtcN (x)) ≤ V tcN (x)− V tcN (f(x, µtcN (x))).

Summing this along the receding horizon trajectory yields

JclM (x, µtcN ) ≤ V tcN (x)− V tcN (xµtcN (M,x)). (6.5)

As we will see below, under suitable conditions the terms V tcN in the difference
on the right hand side of (6.5) can be replaced by V∞ without changing the
value of the difference too much. Thus, compared to (4.6), we directly obtain
an estimate for JclM (x, µtcN ) instead of an estimate for the single `. This will
allow us to avoid summing up the error term as in the final sum in the proof of
Theorem 4.4 and thus enable us to obtain an error term which is independent
of M in Theorem 6.6, below.

The following results are analogous to those developed in [27], however,
while in this reference as well as in [5,6] the resulting RHC scheme is inves-
tigated under the strict dissipativity assumption from Definition 5.1, here we
show that we can also obtain an approximation result under an appropriately
extended Assumption 4.1. The extension consists of assuming the properties
from Assumption 4.1 also for the finite horizon problem with terminal condi-
tions, as formalised in the following assumption.

Assumption 6.3 For the equilibrium (xe, ue) ∈ Y from Assumption 4.1 the
following additional conditions hold.

(i) The finite horizon problems with terminal condition have the turnpike prop-
erty at xe in the following sense: there exists σtc ∈ L such that for each
optimal trajectory xu∗,tcN

(k, x), x ∈ X and all N,P ∈ N there is a set

Qtc(x, P,N) ⊆ {0, . . . , N} with #Qtc(x, P,N) ≤ P and

‖xu∗,tcN
(k, x)−xe‖ ≤ σtc(P ) for all k ∈ {0, . . . , N} with k 6∈ Qtc(x, P,N).
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(ii) The optimal value functions V tcN are continuous at xe in the following uni-
form way: there is an open ball Bε(xe), ε > 0, around xe and ηtc ∈ K∞,
ωtc ∈ L such that for all x ∈ Bε(xe) and all N ∈ N ∪ {∞} the inequality

|V tcN (x)− V tcN (xe)| ≤ ηtc(‖x− xe‖) + ωtc(N)

holds.

Remark 6.4 By a straightforward adaptation of the arguments from Sec-
tion 5, one sees that Assumption 6.3 holds if the problem is strictly dissipative
and satisfies the reachability and controllability properties from Definitions 5.2
and 5.5.

The following lemma adapts the technical results from Section 4 to the
terminal conditioned case.

Lemma 6.5 (i) If Assumption 6.3 (i), (ii) hold, then the equation

V tcN (x) = JK(x, u∗,tcN ) + V tcN−K(xe) +Rtc2 (x,K,N) (6.6)

holds with |Rtc2 (x,K,N)| ≤ ηtc(σtc(P ))+ωtc(N−K) for all x ∈ X, all N ∈ N,
all sufficiently large P ∈ N and all K ∈ Qtc(x, P,N).

(ii) If Assumption 4.1 (i), (iii) and Assumption 6.3 (i), (ii) hold, then the
equation

JK(x, u∗∞) = JK(x, u∗,tcN ) +Rtc3 (x,K,N) (6.7)

holds with |Rtc3 (x,K,N)| ≤ ηtc(ρ(P )) + η(σtc(P )) + 2ωtc(N −K) for all suf-
ficiently large P ∈ N, all x ∈ X and all K ∈ {0, . . . , N} \ (Qtc(x, P,N) ∪
Q(x, P,∞)).

Proof The proofs are identical to Lemma 4.2(ii) and Lemma 4.3.
Now we can state the terminal conditioned counterpart to Theorem 4.4.

Theorem 6.6 If Assumption 4.1 (i), (iii) and Assumption 6.3 (i), (ii) hold
and V∞ is bounded on X, then the inequality

JclM (x, µtcN ) ≤ V∞(x)− V∞(xµtcN (M)) + δtc(N) (6.8)

holds for all M ∈ N and all sufficiently large N ∈ N with

δ(N) ≤ 2η(ρ(b(N − 1)/8c)) + 2ηtc(σtc(b(N − 1)/8c))
+ 2ηtc(ρ(b(N − 1)/8c)) + 2η(σtc(b(N − 1)/8c)) + 6ωtc(N/2).

Proof We derive the estimate from inequality (6.5). We abbreviate xM =
xµtcN (M,x), consider the optimal control u∗,tc

N,xM
for the terminal conditioned

problem with initial value xM and apply Lemma 6.5(i). Thus we obtain

JclM (x, µtcN ) ≤ V tcN (x)− V tcN (xµtcN (M,x))

= JK(x, u∗,tcN )− JK(xM , u∗,tc
N,xM

) +Rtc2 (x,K,N)−Rtc2 (xM ,K,N)
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for all K ∈ {0, . . . , N} \ (Qtc(x, P,N) ∪ Qtc(xM , P,N)). Using Lemma 6.5(ii)
we can further derive

JK(x, u∗,tcN )− JK(xM , u∗,tc
N,xM

) = JK(x, u∗∞)− JK(xM , u∗∞,xM )

+ Rtc3 (x,K,N)−Rtc3 (xM ,K,N)

for all times K ∈ {0, . . . , N} \ (Qtc(x, P,N) ∪ Q(x, P,∞) ∪ Qtc(xM , P,N)∪
Q(xM , P,∞)). Finally, using Lemma 4.2(i) we obtain

JK(x, u∗∞)− JK(xM , u∗∞,xM ) = V∞(x)− V∞(xM )

+ R1(x, P,∞)−R1(xM , P,∞)

for all K ∈ {0, . . . , N} \ (Q(x, P,∞) ∪ Q(xM , P,∞)). Since the union of the
four Q-sets involved in these estimates contains at most 4P values, for N > 8P
there is at least one K ≤ N/2 contained in none of these sets. Thus, setting
P = b(N − 1)/8c yields the existence of a common K ≤ N/2 satisfying all the
above equations and the respective inequalities from Lemma 4.2 and 6.5. This
yields

JclM (x, µtcN ) ≤ V∞(x)− V∞(xµtcN (M,x))

+ |R1(x, P,∞)|+ |R1(xM , P,∞)|
+ |Rtc2 (x,K,N)|+ |Rtc2 (xM ,K,N)|
+ |Rtc3 (x,K,N)| − |Rtc3 (xM ,K,N)|

≤ V∞(x)− V∞(xµtcN (M,x))

+ 2η(ρ(b(N − 1)/8c)) + 2ηtc(σtc(b(N − 1)/8c)) + 2ωtc(N/2)

+ 2ηtc(ρ(b(N − 1)/8c)) + 2η(σtc(b(N − 1)/8c))
+ 2ωtc(N/2) + 2ωtc(N/2)

which shows the claim.
In contrast to the corresponding result without terminal conditions from

Theorem 4.4, here the error term is independent of M .

Example 6.7 We illustrate this fact by means of Example 3.1, here with
Y = [−2, 2] × [−3, 3]. For initial condition x = 2, we compare the values
JclM (x, µtcN ) for the MPC scheme with terminal constraint set X0 = {0} and
terminal cost V0(xe) = 0 with the values JclM (x, µN ) for the scheme with-
out any terminal constraints and costs. Figure 6.1 shows the respective values
JclM (x, µtcN ) and JclM (x, µN ) for fixed N = 5 and M = 1, . . . , 25. One sees that
for small M the RHC trajectories obtained without terminal conditions have
advantages, but since one of the error terms without terminal constraints grows
linearly in M , cf. Remark 4.5(ii), for growing M the performance value of the
solutions computed with terminal conditions is better and, in fact, converges
to Jcl∞(x, µtcN ) as M →∞, which here is a finite value.

Figure 6.2 shows the respective values JclM (x, µtcN ) and JclM (x, µN ) for fixed
M = 20 and N = 1, . . . , 10. Here one sees that in this example the terminal
conditions yield significant improvement for small N , while for larger N the
difference in performance is negligible.
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Fig. 6.2 Performance of RHC solutions computed with and without terminal constraints
for fixed M = 20 and varying optimization horizon N = 1, . . . , 10

As seen in the example, due to the missing M -term in the error estimate,
here it does actually make sense to consider the case where M →∞. Assuming
that xµN (k, x) → xe as k → ∞ and V∞(xe) = 0 (both properties follow
from strict dissipativity and cheap reachability provided `(xe, ue) = 0, see
[27]), under the continuity assumption Assumption 4.1(iii) we obtain that
V∞(xµtcN (M,x))→ 0 as M →∞, implying

Jcl∞(x, µtcN ) ≤ V∞(x) + δtc(N).

That is, by incorporating terminal conditions we can even make a statement
about the infinite horizon near optimality of the RHC solution.

However, one should take into account that incorporating terminal con-
ditions poses various challenges, from the numerical difficulties of finding a
feasible solution under the additional terminal constraints via the fact that
the set of feasible initial conditions XN may be too small, up to the problem
of designing V0 satisfying (6.4). There are certainly various arguments both for
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and against the use of terminal conditions (see also [37]). These induce a trade-
off between better performance and potential numerical difficulties which each
user will need to assess for herself.

7 Results for tracking problems

The results from the previous sections can be both simplified and extended if
we assume that the stage cost ` is positive definite w.r.t. x at the equilibrium
(xe, ue), i.e., if there exists α` ∈ K∞ such that the (in)equalities

`(xe, ue) = 0 and `(x, u) ≥ α`(‖x− xe‖) for all (x, u) ∈ Y

hold. We note that the cost function (3.4) for the Fokker-Planck equation is
of this type.

In fact, results for this particular setting are much older and widespread in
the Receding Horizon/Model Predictive Control literature than for the more
general setting discussed before, with the first rigorous performance results
in the nonlinear setting dating back at least as far as 1988 [35], see also the
historical remarks in the survey paper [38] and the monographs [46,28]. Here
we restrict ourselves to the case of RHC without terminal conditions and refer
to the references just cited for variants involving terminal constraints and/or
costs.

Optimal control problems with positive definite stage cost usually serve
the purpose of asymptotically stabilising the control system at (xe, ue), in the
sense that solutions xµN (k, x) stay close to xe if the initial value x is close to xe

and that xµN (k, x) converges to xe as k →∞. In optimal control, stage costs of
this type are often referred to as “tracking problems”. In control engineering,
the term tracking typically refers to the case where xe is time varying, which
we will not consider here for simplicity of exposition; we refer to [28] for an
extensive treatment of the time varying case.

Besides analysing the performance of the RHC control, in the positive defi-
nite case it is therefore necessary to also analyse the asymptotic stability of the
controlled system. What at a first glance appears to be an additional compli-
cation does not actually pose significant problems, because the two properties,
stability and performance, can be addressed at the same time using the fol-
lowing proposition.

Proposition 7.1 Assume there exists α ∈ (0, 1] such that the relaxed dy-
namic programming inequality

VN (f(x, µN (x))) ≤ V (x)− α`(x, µN (x)) (7.1)

holds for all x ∈ X. Then the performance estimate

Jcl∞(x, µN ) ≤ V∞(x)/α

holds. If in addition there are α1, α2 ∈ K∞ such that

α1(‖x− xe‖) ≤ VN (x) ≤ α2(‖x− xe‖)
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holds for all x ∈ X, then xe is an asymptotically stable equilibrium for the
RHC solutions.

Proof For the first assertion, observe that positive definiteness of ` implies
VN (x) ≥ 0 and V∞(x) ≥ VN (x) for all x ∈ X. This implies for each K ∈ N

αJclK(x, µN ) =

K−1∑
k=0

α`(xµN (k, x), µN (xµN (k, x))

≤
K−1∑
k=0

VN (xµN (k, x)− VN (xµN (k + 1, x)

= VN (x)− VN (xµN (K,x)) ≤ VN (x) ≤ V∞(x)

which shows the claim.

The second assertion follows because under the stated conditions VN is
a Lyapunov function for the system, for details we refer to [28, Theorem
4.11].

The performance estimate of Proposition 7.1 was first formulated in this
way in [30], motivated by ideas from [36]. However, similar lines of reasoning
can be found in earlier literature. It is apparent that it is considerably simpler
than the estimates we obtained in the previous sections. Moreover, if we find
a way to compute (or at least to estimate) α depending on N , then we will be
able to give concrete error estimates for fixed N instead of merely asymptotic
ones for N →∞ as in the previous sections.

Hence, the question now is how to compute α in Proposition 7.1. The
assumption we are going to use for this purpose is a bound on the optimal
value function of the form

VN (x) ≤ γN`∗(x) (7.2)

where `∗(x) := infu∈U(x) `(x, u) and γN ∈ R with γN ≥ 1 and supN∈N γN <∞.
This condition was independently developed in [51] and [30], however, neither
reference presented an optimal estimate of α. This was only achieved a little
later in [23,29].

We remark that under inequality (7.2) we can apply the theory from Sec-
tions 4 and 5, provided `∗(x) satisfies the inequality `∗(x) ≤ α`(‖x− xe‖) for
some α` ∈ K and is bounded on X: the positive definiteness of ` immediately
implies that the problem is strictly dissipative (with λ ≡ 0). Boundedness of `∗

together with (7.2) implies the cheap reachability from Definition 5.2. Hence,
Proposition 5.3 implies that Assumption 4.1 (i) and (ii) hold. Moreover, the
α`-bound on ` together with (7.2) and the inequality VN (x) ≥ 0 implies the
continuity condition from Assumption 4.1 (iii), even with ω ≡ 0.

However, using (7.1) we can exploit the positive definite structure of the
stage cost much more efficiently and obtain the following better estimate.
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Theorem 7.2 Assume (7.2) holds for all x ∈ X. Then (7.1) holds for all
x ∈ X and N ∈ N with

α = αN = 1− (γN − 1)
∏N
k=2(γk − 1)∏N

k=2 γk −
∏N
k=2(γk − 1)

implying the performance estimate

Jcl∞(x, µN ) ≤ V∞(x)/αN .

If, moreover, supN∈N γN <∞ holds, then αN → 1 as N →∞.

The proof of this theorem involves the explicit solution of an optimisation
problem which computes the worst (i.e., smallest) possible α which is compat-
ible with the bounds (7.2). Unfortunately, the proof is too long to be included
in this paper and we refer to [29, Theorem 5.4] or [28, Proposition 6.17]. The
same applies to the proof which demonstrates that Theorem 7.2 indeed yields
the best possible bound for α (see [23, Theorem 5.3] or [28, Theorem 6.23]).

However, in order to give at least some insight into the mathematical rea-
soning behind estimating α, we present a theorem and proof from [51], which
yields a more conservative expression for α, but is based on relatively simple
arguments which are easy to explain. In order to simplify the presentation, we
consider the case where γN = γ for all N , i.e., where γN does not depend on
N . We remark that under this assumption αN from Theorem 7.2 simplifies to

αN = 1− (γ − 1)N

γN−1 − (γ − 1)N−1
.

Theorem 7.3 Assume (7.2) holds for all x ∈ X with γN = γ independent on
N . Then (7.1) holds for all x ∈ X and N ∈ N with

α = α̃N = 1− (γ − 1)N

γN−2

implying the performance estimate

Jcl∞(x, µN ) ≤ V∞(x)/α̃N .

Moreover, α̃N converges to 1 as N →∞.

Proof Consider the optimal trajectory xu∗N (k, x) starting at x and abbreviate
`k = `(xu∗N (k, x), u∗N (k)). Since by the dynamic programming principle tails
of optimal trajectories are again optimal trajectories, see (2.7), for each p =
0, . . . , N − 2 from (7.2) applied to x = xu∗N (p, x) we obtain

N−1∑
k=p

`k = VN−p(xu∗N (p, x)) ≤ γ`∗(xu∗N (p, x)) ≤ γ`p
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implying

N−1∑
k=p+1

`k ≤ (γ − 1)`p for all p = 0, . . . , N − 2 (7.3)

which yields

`p +

N−1∑
k=p+1

`k ≥
∑N−1
k=p+1 `k

γ − 1
+

N−1∑
k=p+1

`k =
γ

γ − 1

N−1∑
k=p+1

`k.

Using this inequality inductively for p = 1, . . . , N − 2 yields

N−1∑
k=1

`k ≥
(

γ

γ − 1

)N−2
`N−1.

Applying (7.3) for p = 0 we then obtain

(γ − 1)`0 ≥
N−1∑
k=1

`k ≥
(

γ

γ − 1

)N−2
`N−1

which finally leads to

`N−1 ≤ (γ − 1)

(
γ − 1

γ

)N−2
`0 = γ

(
γ − 1

γ

)N−1
`0. (7.4)

Moreover, using (7.2) for x = xu∗N (N − 1, x) and N = 2 yields

V2(xu∗N (N − 1, x)) ≤ γ`N−1. (7.5)

We denote the optimal control sequence of length 2 corresponding to V2(xu∗N (N−
1, x)) by ũ∗2. Now, if we use the control sequence ũ consisting of the control
values (u∗N (1), . . . , u∗N (N − 2), ũ∗2(0), ũ∗2(1)) we obtain

VN (xu∗N (1, x)) ≤ JN (xu∗N (1, x), ũ) =

N−2∑
k=1

`k + V2(xu∗N (N − 1, x))

=

N−1∑
k=1

`k − `N−1 + V2(xu∗N (N − 1, x)) ≤
N−1∑
k=1

`k + (γ − 1)`N−1

≤
N−1∑
k=1

`k + (γ − 1)γ

(
γ − 1

γ

)N−1
`0.

=

N−1∑
k=0

`k −
(

1− (γ − 1)γ

(
γ − 1

γ

)N−1)
`0.
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Using that by definition of µN we have f(x, µN (x)) = xu∗N (1, x) and by defi-

nition of the `k we have VN (x) =
∑N−1
k=0 `k, we thus end up with

VN (f(x, µN (x)))

≤ VN (x)−
(

1− γ(γ − 1)

(
γ − 1

γ

)N−1)
`0

= VN (x)−
(

1− (γ − 1)N

γN−2

)
`0

which proves (7.1) with α = α̃N = 1− (γ − 1)N/γN−2.
The convergence α̃N → 1 as N →∞ follows because γ ≥ 1 yields

(γ − 1)N

γN−2
= γ2

(
γ − 1

γ

)N
→ 0

as N →∞.
The difference between the two estimates αN and α̃N is best seen when

we fix γ and compute the smallest N for which αN or α̃N becomes positive,
which is the smallest horizon length for which Proposition 7.1 can be applied.
Since this is also the smallest horizon length for which the RHC solution is
guaranteed to be asymptotically stable, it is called the minimal stabilising
horizon. For γ = 5, this number evaluates to N = 9 for αN and to N =
15 for α̃N . Asymptotically, i.e., for large γ, one can show that Theorem 7.3
overestimates the minimal stabilising horizon by a factor of ≈ 2 compared to
Theorem 7.2, see [24]. While this clearly shows the conservatism of Theorem
7.3, the relative simplicity of its proof makes it more suitable for inclusion in
this survey paper.

It remains to answer the question of how the γN in (7.2) can be estimated.
This question must be dealt with on a case-by-case basis depending on the
system under consideration. For instance, in [56] for a model of a differential
drive robot the condition (7.2) — in a continuous time version, see below — has
been checked by estimating VN (x) via JN (x, u) for suitably constructed control
functions u. Another approach which has proven successful in several examples
is to derive γN from the following exponential controllability assumption w.r.t.
`.

Assumption 7.4 There are C > 0 and σ ∈ (0, 1) with the following property:
For each x ∈ X there is ux ∈ U∞(x) such that the inequality

`(xux(k, x), ux(k)) ≤ Cσk`∗(x).

One easily checks that this assumption implies (7.2) with

γN = C
(1− σ)N

1− σ .
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While it is known that this approach is more conservative than checking (7.2)
directly, see [55], for many systems there exist known techniques for checking
exponential controllability. In particular, there are quite a number of infinite
dimensional control systems governed by PDEs for which this approach is
feasible, see, e.g., [1–4,9]

Another advantage of working with Assumption 7.4 lies in the fact that
the two involved parameters C and σ have a rather clear interpretation in the
context of computing α in (7.1). In particular, it can be shown that for any
fixed value of σ ∈ (0, 1) there exists C0 > 1 such that for all C < C0 the value
αN from Theorem 7.2 is positive for all N ≥ 2, hence asymptotic stability
of the RHC solution follows for all N ≥ 2, including the shortest meaningful
horizon N = 2, see, e.g., [28, Section 6.6]. We will use this fact in the stability
analysis of our Fokker-Planck example.

Example 7.5 For the Fokker-Planck equation corresponding to the Ornstein-
Uhlenbeck process of Example 3.3, it is shown in [22] that the exponential con-
trollability property from Assumption 7.4 holds for u independent of x when-
ever yref is a Gaussian distribution whose covariance is compatible with the
σij from the Ornstein-Uhlenbeck process and the initial condition is also Gaus-
sian. Moreover, one can show that the constant C in Assumption 7.4 can be
chosen arbitrarily close to 1, such that Theorem 7.2 and Proposition 7.1 yield
asymptotic stability of the RHC solution for N = 2, explaining the behaviour
observed in the simulation in Example 3.3. As pointed out in the discussion
after equation (7.2), this moreover shows that the continuity property from
Assumption 4.1(iii) holds (which, however, is not needed when using Theorem
7.2).

The proof relies on an explicit representation of the solution of the Fokker-
Planck equation for constant (in t and x) control and requires a nontrivial
trick: when directly analysing the decay of `(x, u) from (3.4), for certain initial
conditions one obtains a constant C ≈ 2 in Assumption 7.4. The trick to
arrive at a smaller constant C lies in the observation that one can define
an alternative stage cost which produces identical optimal trajectories but for
which C is arbitrarily close to 1. For details we refer to [22].

We end this section by discussing a few extensions and modifications of the
central results. Obviously, it may not always be realistic to expect the estimate
(7.2) to hold globally, i.e., for all x ∈ X. This case has been investigated in
[11] and further studied in [49].

The discrete time formulation presented here also has a rather mature con-
tinuous time counterpart. This was developed in [47] and compared with the
discrete time approach in [57]. An infinite dimensional version of the result
with application to the Burgers equation has been developed in [9], where
again (7.2) is not assumed to hold globally. The latter reference also reports
numerical results showing that for the equation under consideration, avoiding
stabilising terminal conditions (which for infinite dimensional systems are dis-
cussed, e.g., in [33]) significantly increases the performance and reduces the
numerical effort.
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8 Conclusions and future research

The results in this paper have shown that receding horizon control can be
used as a mathematically justified approximate solution technique for infinite
horizon optimal control problems. A prerequisite for this is that the optimal
control problem has a suitable structure. In this paper, we have in particular
shown that the turnpike property from optimal control (plus suitable regu-
larity) provides such a structure. A remarkable feature in this context is that
— at least on the case of receding horizon control without terminal condi-
tions — knowledge about the turnpike property is not needed in order to run
the algorithm. If the problem has the turnpike property, the algorithm will
“automatically” yield an approximately optimal solution.

Future work will focus on the extension of the class of problems for which
the method is applicable. On the one hand, this includes extensions of the
general assumptions in Section 4 like, e.g., allowing for dynamics and/or stage
costs depending on time varying data, which is ubiquitous in practical appli-
cations. Here, in particular a suitable time varying extension of the concept
of the optimal equilibrium xe must be found. Another extension of this type
would be the generalisation of the results from Section 5 to discounted optimal
control problems. It is currently still largely open how an appropriate notion
of strict dissipativity would have to look like.

On the other hand, it is desirable to verify the abstract conditions from
Sections 4 and 5 for more classes of systems. This for instance applies to
optimal control problems involving PDEs in which the stage cost is not positive
definite, i.e., to which the methods from Section 7 do not apply.
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