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Chapter 1

Introduction

A lot of things in our daily life are made of polymers instead of wood or steal,

as in former times. Just to mention a few reasons, the lower density results

in less weight and reduces energy costs. Common polymers are isolative and

are used to build the housing of electrical appliances. Hydrophobic polymers

are useful to keep water in a bottle or to leave water out of the raincoat.

Amphiphilic polymers can be used as additives to improve the properties, e.

g. for the use of tixotropic agents of dispersion colour for a proper viscosity.

The field of use of polymers is broad, but in most cases the key is the same:

diffusion, meaning the mobility of polymers, in the product as in the colour

or during the production procsess for example the extrution of a bottle. The

first is the diffusion of polymers in solution, the latter is diffusion in melt.

Therefore it is necessary to investigate the physical behavor of the polymers

and hence fundamental research has to be done.

This work is focused on diffusion of polymers in so called ”good” solvents.

The mobility of polymers in solution for all concentration regimes needs to

be understood to explain the rheological and viscoelastic behaviour. The

comprehension is important for fundamental research in the complex system

of block copolymers as well as for processing of polymer solutions in industry,

for example print colours, surface coating by spreading and fibre spinning

from solution.

1



2 CHAPTER 1. INTRODUCTION

1.1 Theory and Status of the Field

Diffusion in polymer solutions is among the oldest subjects of polymer physics.

[1, 2, 3, 4] Polymer solutions can be described by the change of the coil di-

mensions, de Gennes used the root-mean-square end-to-end discance 〈R2〉.
[1] In melt where the polymer is sourounded by itself, the coil dimension is

〈R2
θ〉. Adding a good solvent, the solvent molecules interpenetrate the poly-

mer coils due to the attractive interaction forces between the molecules. The

polymer coils swells and get larger with 〈R2〉 > 〈R2
θ〉. A bad solvent has re-

pulsive interaction forces between the polymer and solvent molecules. Here

the interpenetration is not possible, the polymer coil shrinks to 〈R2〉 < 〈R2
θ〉

and the polymer precipitates. The status of zero interaction forces is the

θ-condition, the so called θ-solution is stable and the polymer coil dimension

is the same as in melt 〈R2〉 = 〈R2
θ〉

Polymer solutions of good solvents are divided in three different concen-

tration regimes, the dilute, semi dilute and concentrated regime, see fig. 1.1.

At infinite dilution the coil size is 〈R2
0〉 ≥ 〈R2

θ〉. In dilute solution the polymer

coils are still separated from each other. With increasing concentration the

distance between the coils decreases until they touch each other comparable

to a dense package of coils. This concentration is called overlap concentra-

tion c∗. Adding more polymer to the solution is just possible with shrinking

of the swollen dimensions of the polymer coils, the solution is called semi

dilute. The shrinkage is limited to the coil size at θ-conditions. Passing

this second cross over concentration c± the solutions enters the concentrated

concentration regime, here the coil size is constant. [1, 3]

Taking the molecular conformations into account, five concentration regimes

are obtained, see fig. 1.2. In the semidilute and concentrated regimes polymer

molecules interpenetrate each other. When the polymer chain molecules are

long enough the chains are entangled. This molecular size is called entangle-

ment molecular weight Me. So the semidilute and the concentrated regime

is split in an entangled and a not entangled region.
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Figure 1.1: Polymer coils in a good solvent solution according to De Gennes:
The coil dimension expressend in the ”root-mean-square-end-to-end-distance”
<R2> shrinks with increasing concentration. In the dilute system the coils
are swollen by the good solvent molecules and the coils are separated. With
increasing concentration the coils come nearer untill the overlap concentration
c∗, here the coils tought each other. Adding more polymer in the so called
semi-dilute solution gives less room for each single coil and <R2> decreases.
The decrease of <R2> is finished in the concentrated regime while reaching
the coil dimension at θ-conditions <R2

θ> [1, 4]
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Figure 1.2: The concentration regimes for polymers in a good solvent de-
pendent on the molecular weight and on the concentration. The lines are
calculated by Graessley for polystyrene on the base of the viscoelastic in-
formation. [4] The blue line is the overlap consentration c∗ and at higher
molecular weights c∗ is smaller because there are less molecules needed to
get a ”dense package of coils”. The green line seperates the semidilute and
the concentrated regime. The red line indicates the border between entangled
and not entangled polymer molecules.
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1.1.1 Theory of Polymer Diffusion in Solution

Polymer particles in dilute solution at temperatur T > 0 K are not static

but they move around. The driving force is the thermal energy for an undis-

turbed solution. The movement is in all directions and so dissordered. When

polymer particles touch each other, both particles change the direction.

The first diffusion equation presents the diffusion coefficient D as con-

stant of proportionality between the flux of the particles ∂N/∂t and the

concentration gradient ∂c/∂x to [5]

∂N

∂t
= −D∂c

∂x
(1.1)

with the concentration of particles c, the time t and the space x. For infinite

dilution of particles, the diffusion coefficient can be expressed by the Stokes-

Einstein diffusion equation

D0 =
kBT

6πηRh

(1.2)

Here the thermal energy kBT is weighted with the friction coefficient f0 =

6πηRh depending on the viscosity of the solvent η and the hydrodynamic

radius Rh of the particle. Equ. 1.2 is modeled for spherical particles in

solution, the infinite dilution is indicated by the index 0. This model is valid

for polymer coils dissolved in a good solvent. For increasing concentration

the inter polymer distances increase and interactions between the molecules

needs to be taken into account.

In general there are two diffusion coefficients due to different views on

the same system. [6] The self diffusion coefficient Ds describes the relative

movement of a single, well defined tracer particle in the environment of other

soluted particles and solvent particles. The collective diffusion coefficient

Dc describes the motion of an ensemble of polymer molecules due to local

concentration fluctuations. The particles moves from highter concentration

to lower concentration regions, as described in equ. 1.1. Fig. 1.3 presents the

characteristic differences in these two diffusion coefficients.
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C
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Figure 1.3: Scheme of collective diffusion (A) and self diffusion (B). The
selfdiffusion followes the movement of a single particle whereas the collective
diffusion describes the ensemble behaviour.

The self diffusion is given by

Ds =
kBT

f
. (1.3)

With increasing concentration c the friction f increases and so Ds decreases.

The concentration dependence of Dc depends additionally on the osmotic

pressure dπ/dc which is a driving force and accelerates the molecules [3, 7]

Dc =
kBT

f
(1− cv̄)2

(
dπ

dc

)
(1.4)

v̄ is the specific volume of the polymer in solution. The equations 1.3 and

1.4 are derived by Vink [6] using friction formalism.

The concentration dependencies of both diffusion coefficients are pre-

sented in fig. 1.4. At infinite dilution both diffusion coefficients starts at

the same value Ds = Dc = D0. With increasing concentration Ds decreases

because of the increasing friction. Dc increases with the concentration due

to the dominance of the osmotic pressure at low concentrations. The more

the concentration increases the more the friction increases and becomes the

dominant part. So Dc reaches a maximum and decreases strongly with higher

concentration.
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With increasing concentration Ds decreases because of the increasing friction.
Dc increases with the concentration due to the dominance of the osmotic
pressure at low concentrations. The more the concentration increases the
more the friction increases and becomes the dominant part. So Dc reaches a
maximum and decreases strongly with higher concentration.
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1.1.2 Measurements of Diffusion in Polymer Solution

There are several possibilities to measure diffusion coefficients. Here are

presented some examples:

The most common method to evaluate collective diffusion is dynamic light

scattering (DLS), also known as photon correlation spectroscopy (PCS) and

quasi-elastic light scattering (QELS). [8, 9, 10] The density fluctuations of the

sample causes a scatter of incident laser light. At a fixed angle the scattered

intensity fluctuations are detected by a fast photon detector. The correlation

of the time dependend signal leads to the collective diffusion. The theory of

DLS is presented in section 1.2.1

The self diffusion is typically obtained by label techniques. Forced Ray-

leigh scattering (FRS) was developed by Hervet and Leger. [11, 12] The

positive interference of two lasers produces a holographic grating in the sam-

ple which causes the selective photobleaching of statistically spread dyes.

The selfdiffusion of the non-bleached dyes can be followed via disappearence

of the grating. The diffusion of free dye molecules in a polymer solution

can be seen as the diffusivity of the solvent in the system. To measure the

diffusion coefficient of the polymer, it is thus necessary to label it. The FRS

is a good technique to follow slower dynamics, e. g. in semidilute and con-

centrated polymer solutions or in polymer melt. For Diffusion measurements

in solutions with lower polymer concentration the polymer molecular weight

needs to be high enough to reach a high enough viscosity.

A further label technique, fluorescence correlation spectroscopy (FCS)

was developed for biological systems in water and recently adapted for mea-

surements in organic solvents. [13, 14, 15, 16] In contrary to FRS, FCS is

a single molecule technique. Single dye molecules diffuse into and out off a

small detection volume. The fluorescence light is detected time resolved by a

fast photon detector. The correlation of the intensity fluctuations gives the

decay time, meaning the average time of the dye in the detection volume.

With the knowledge of the size and the shape of the detection volume, the

self diffusion coefficient is obtained. The theory of FCS is explaind in sec-

tion 1.2.2. The advantage of FCS is the small amount of the sample. FCS
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was developed for dilute concentrations. With increasing the concentration

the solution changes the refractive index. This change needs to be adjusted

optically, e.g. by the corretion ring of the objective. The slower dynamic

at higher concentration or at high molecular weight leads to a longer time

of the dye labeled polymer molecule in the focus. When the maximum ex-

citation cycles until photodestruction is reached during the pass of the dye

through the excitation volume, the result of the measurement is the photo-

stability of the dye and not the diffusivity of the polymersystem. In general

the photophysical propterties of the dye influences the quality of diffusion

measurements using label techniques. [17]

The self diffusion coefficient is also obtained by pulsed field gradient nu-

clear magnetic resonance (PFG NMR). [18, 19] The spin echo in a field gra-

dient gives the information in space of the nucleus, typically protons. Pulsed

signals lead to a better intensity of the echo and a better resolution in time.

As advantage the PFG NMR is a non destructive technique and it is no label

necessary. Whereas diffusion regards molecules or particles, so the informa-

tion of the nuclei or protons have to be recalculated for the molecules. This

leads to a limitation of this technique on small molecular weight polymers.

Measurements of higher molecular weight gives more the information of seg-

mental dynamics than of self diffusion.

The amount of experimental measurements on diffusion coefficients are

rather large. Whereas there are just some comparisons of self- and coopera-

tive diffusion coefficients. These comparisions are presented in the following

and in fig. 1.5:

Kim et al. [7] presents the system polystyrene (M= 900 kg/Mol) in toluene

measured with FRS and DLS in a rather large concentration range, see

fig. 1.5 D. At dilute concentrations the self diffusion coefficient Ds and the

collective diffusion coeffisient Dc come together. The point on the x-axis is a

literature value for the diffusion coefficient at infinite dilution D0. The dif-

ferent concentration dependences are nicely presented. The hight molecular

weight with M= 900 kg/Mol was necessary to measure with FRS in the dilute

system, where the molecules are fast, to be able to follow the destruction of
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the grating. But in the concentration dependence of the collective diffusion

coefficient Dc the maximum was not reached. Probabley because the sample

preparation for the DLS measurements at hight concentrations gets more and

more difficult. Usually the solutions are filtered to get rid of the dust. The

higher the concentration and the higher the molecular weight, the higher gets

the viscosity, until it is nearly impossible to bring the solution throught the

filter.

Branca et al. [18] measured poly(etylene glycol) (M= 8 kg/Mol) in water

at different temperatures with NMR and DLS, see fig. 1.5 C. For first, the

data is not presented in the double logarythmic scale as usual. At infinite

dilution the two diffusion coefficients are interpolated to the same, as ex-

pected. The principle increase of the collective diffusion coefficient and the

maximum is visible. The decrease of the selfdiffusion coefficient is hidden in

the linear scale. As mentioned above, the NMR measurements are limited to

small polymers. The used molecular weight of M= 8 kg/Mol is quite short

and in polymer science this is an oligomere.

Kanematsu et al. [19] evaluated cellulose tris(phenyl carbamate) with

five molecular weights (M from 40, 62, 103, 150 to 232 kg/Mol) in THF

measured with PFG-NMR and DLS. Kanematsu presents a hughe amount

of DLS measurements with a clear dependence of the collective diffusion

coefficient Dc on the molecular weight. The maximum of Dc in the semidilute

concentration regime was not reached, see fig. 1.5 B. The datapoints of DLS

measurements where used for a calculation of the selfdiffusion coefficient,

named D̃ in the paper. Figure 1.5 A presents the selfdiffusion coefficients:

the hughe amount of calculated values D̃ (open symbols) fits quite nicely to

some mesaured values of Ds (closed symbols). Kanematsu presents the self-

and collective diffusion coefficients in two different figures.
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Figure 1.5: Comparison of self and cooperative diffusion coefficients in the
systems: cellulose tris(phenyl carbamate) in THF measured with (B) DLS
(opend and closed symbols) and (A) PFG NMR (just the closed symbols,
opend smbols are calculated of the DLS-measurements), [19] (C) poly(etylene
glycol) (M=8kg/Mol) in water measured at different temperatures with NMR
and DLS [18] and (D) polystyrene (M=900kg/Mol) in toluene measured with
FRS and DLS. [7]
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1.1.3 Block Copolymers

The former sections describe diffusion of homopolymers in solution. This

section gives a small introdution to Block Copolymers in solution. Block

copolymers have a covalent bond between two (A-B) or more homopolymer

blocks (e.g. A-B-A or A-B-C). Linear block copolymers are synthesised by

living polymerisation with a time shift in addition of the monomers for the

next block.

Microphase Seperation

In general, the thermodynamic stability of a mixture is given by the Gibbs

free energy ∆Gmix = ∆Hmix − T∆Smix with the enthalpy ∆Hmix and the

entropy ∆Smix of mixing. A stable mixture has a negative ∆Gmix whereas

the phase separation is indicated by a positive ∆Gmix.

A mixture of two homopolymers A and B is usually very poorly mix-

able with ∆Gmix > 0. The enthalpy of mixing polymers is typically positive.

According to the model of Flory ∆Hmix ∝ χAB with the Flory-Huggins inter-

action parameter χAB between monomer A and monomer B. This interaction

parameter is in most cases 0 < χAB < 1. The entropy is a value of disorder

and decreases with increasing degree of polymerisation N . When the poly-

mer chain is long enough, ∆Hmix > T∆Smix and the polymer blend is phase

separated.

The properties of the microdomaine phases of a A-B block copolymer are

calculated by Matson and Schick using the self-consistent mean field theory

(SCFT). [20] Here, the microdomaine structure is given by three parameters:

the polymer volume fraction fA of the block A and the degree of polymeri-

sation N multiplied with the Flory-Huggins interaction parameter χAB.

The resulting phase diagram is valid for polymer melts at constant tem-

perature. Different points in the phase diagram are just reachable with a

variation in the molecular structure of the polymers. The microphase sepa-

ration occures where χABN is large enough. The repulsive interaction leads

to a loss of translational and configurational entropy and so the polymer coils

are stretched.
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This phase diagram was first verified experimentaly by Khandpur et al. in

the systhem of polystyrene-polyisoprene. [21] The distance in the structures

depends on the degree of polymerisation and is in a lenght scale of 10 nm−
100 nm.

Figure 1.6: Phase diagram of self-assembled structures in AB diblock copoly-
mer melt predicted by self-consistent mean field theory (SCFT) calculations.
[20] With increasing polymer volume fraction fA of the minor component
the corresponding microdomain structures varies from closed packed spheres
(CPS), cubic packed spheres (bcc), hexagonal packed cylinders (Cyl) via a
double gyroid (Gyr) to a lamella structure (Lam) at fA = 0.5.

Diffusion of Block Copolymers

Usually the Flory-Huggins interaction parameter χAB is inverely proportional

to the temperature of the system. In typical systems χAB is positive and

smaller than unity. If the temperature increases and χAB decreases, the

entropic factor dominates and the system becomes disordered. The change is
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called order-disorder transition (ODT ) and the corresponding temperature

is the order-disorder transition temperature (TODT ).

A higher entropy means a higher mobility of the polymer molecules. Al-

ternatively the higher mobility can be reached with the addition of a non

selective solvent. Here the solvent molecules increase the distance between

monomer A and monomer B leading also to a decrease in the interaction

forces. In general the mobility can be quantified by the diffusion of the sys-

tem.

1.1.4 Diffusion in Thin Polymer Films

The diffusion of small molecules into a surface layer was described first by

Crank et al.[22, 23] The system can be described as follows: A dry film with

an initial film thickness is exposed to an atmosphere saturated with good

solvent molecules. The molecules adsorb on top of the surface and an initial

concentration gradient is observed. The diffusion of the small molecules into

the surface layer is a Fickian process, this means the diffusion coefficient D is

constant. During this diffusion process the concentration gradient decreases

until the solvent molecules reach the basis ground of the film. Due to the sol-

vents the film swells and it’s thickness increases until an equilibrium swollen

film thickness is obtained. The time-resolved increase of mass of a film on

an inpermeable substrate can be written as

Mt

M∞
=

2

h0

√
Dt

(
1√
π + 2

∞∑
n=1

(−1)n ierfc
nh0

2
√
Dt

)
(1.5)

with the mass Mt at any time t, in the swollen equilibrium state M∞ and

the initial film thickness h0. ierfc is the inverse complex error function and

n ∈ N. Using the simplified expression for short times

Mt

M∞
= 2

√
D

π
·
√
t

h0

(1.6)

the diffusion coefficient can be determined from the initial slope of the swelling

curves plotted as Mt

M∞
versus

√
t

h0
. The diffusion coefficents increase with in-
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creasing film thickness.

The diffusion of solvent molecules into a swelling polymer film is reported

by Vogt et al.[24, 25] The absorption process of water into ultrathin poly(vinyl

pyrrolidone) films was followed by using X-ray reflectivity and quartz crystal

microbalance measurements.

Figure 1.7: Diffuison coefficients of water into poly(vinyl pyrrolidone) films
increases with increasing polymer film thickness, as reportet by Vogt [25].
The absorption process was followed by using X-ray reflectivity and quartz
crystall microbalance measurements.
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1.2 Experimental Methods

1.2.1 Dynamic Light Scattering (DLS)

The dynamic light scattering (DLS) became important in the 1960ies with

the development of the laser and the photo multiplier. In the setup of a DLS

experiment the linear polarized light passes the sample. Brownian motion in

the sample causes small density fluctuations. The light is scattered on these

fluctuations in all directions with interference of the electric field E(q, t). The

scattering vector q describes the difference beween the incident wave vector

ko and the scattered wave vector k meaning q = ko−k. The interfered light

is detected by a photo multiplier at several fixed angles Θ to the incident

light between 30o and 150o. A typical setup is presented in fig. 1.8 The time

resolved signal is autocorrelated and evaluated.

Laser	
  
Θ 

Sample 
Detector	
  

A 

B k 

q 
Θ 
2 

Figure 1.8: (A) Scheme of a setup for Dynamic Light Scattering: The inci-
dent laser light is scattered at small density fluctuations in the sample. The
interference of the scattered light is detected by time resolved at fixed angles
Θ between 30o and 150o. (B) The scattering vector q is the difference beween
the incident ko and the scattered wave vector k.
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The theory of DLS is presented by Pecora. [8] The normalised field-field

autocorrelation function of the incident and the scattered electromagnetic

wave is defined as

g(1)(q, t) =
〈E(q, t) · E∗(q, t+ τ)〉
〈E(q, t) · E∗(q, t)〉

. (1.7)

The electric field E(q, t) = E0 exp(iq r(t)) at time t is correlated with conju-

gate complex one after a lag time τ . The brackets 〈 〉 symbolise integration

and normalisation 〈E(q, t) · E∗(q, t + τ)〉 = 1/T
∫ T

0
E(q, t) · E∗(q, t + τ) dt.

The absolute value of the scattering vector q is given by

q = |q| =
(

4πn

λ

)
sin

(
θ

2

)
. (1.8)

Here n is the refractive index of the medium, λ is the incident wavelength

and θ is the scattering angle. For mono disperse particles the field-field

autocorrelation function can be calculated [8] to

g(1)(q, t) = exp(−q2Dcτ) (1.9)

with the collective diffusion coefficient Dc.

The experimentally accessible quantity in DLS is the normalised intensity

autocorrelation function

g(2)(q, t) =
〈I(q, t) · I(q, t+ τ)〉

〈I(q,0)〉2
. (1.10)

The scattered intensity can be described as I(q, τ) ∝ E2
0

∑
eiqr. The Siegert

relation

g(2)(q, t) = B + β
∣∣g(1)(q, t)

∣∣2 (1.11)

combines the measured with the calculated autocorrelation function. Eq. 1.11

is necessary for the evaluation of data.
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1.2.2 Fluorescence Correlation Spectroscopy (FCS)

E. Elson, D. Magde and W. W. Webb developed the theoretical background

fluorescence correlation spectroscopy (FCS) in the early 1970ies on the basis

of dynamic light scattering (DLS) [26, 27, 28]. In 1993 R. Rigler et al.

combined this fluorescence technique with a confocal setup [29]. A scheme of

Detector

Laser1

Detector

Collimator

Objective

Emission filter

Dichroic mirror

Pinhole

Cover slide

Figure 1.9: Scheme of a confocal set up for Fluorescence Correlation Spec-
troscopy [30].

the confocal setup is presented in fig. 1.9. The incoming laser light is strongly

focused by a objective with high numerical aperture (ideally NA > 0.9) to a

diffraction limited spot. Usually solutions with a dye concentration of about

1 nM are used, so that just a few molecules are excited in the illuminated

region. The emitted light is collected by the same objective and passes a

dichroic mirror. To limit the detection volume a pinhole is placed in the

image plane, which blocks all light not coming from the focal point.
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Theoretical Basis of FCS

The normalised autocorrelation function is defined as

G(τ) =
〈F (t) · F (t+ τ)〉

〈F 〉2
. (1.12)

The fluctuations in fluorescence intensity F (t) depend on the concentration

fluctuations C(r, t) of dyes in the observation volume.

F (t) = b

∫
W (r)C(r, t) d3r (1.13)

The specific brightness b of the fluorecent molecule is assumed to be indepen-

dent of time and depends on the absorption cross section and the quantum

yield of fluorescence. The molecule detection function W (r) is independent

of time and contains the profile of the laser and the geometry of detection.

Using confocal detection the shape is assumed to be a Gauss’ian ellipsoid

with the radius wxy in the focus plane and the expansion of wz along the

optical axsis.

W (r) = W0 e
−2(x2+y2)

w2
xy e

−2z2

w2
z (1.14)

The prefactor W0 contains the intensity of excitation including the detector

efficiency and the loss of filters.

As the system is stationary the average properties (in angle brackets)

are independent of time. The autocorrelation function depends on the time

interval τ but not on the absolute time t. Using equ. (A.1) leads to

G(τ) =
〈δF (0) · δF (τ)〉

〈F 〉2
+ 1 (1.15)

G(τ) =
b2
∫ ∫

W (r)W (r’)〈δC(r, 0) · δC(r’, τ)〉 d3rd3r’

b2(
∫
W (r)〈C〉d3r)2

+ 1 (1.16)

Assuming ideal diluted solutions the fluorescent molecules moves Brown’ian

like in three dimensions with the (self-)diffusion constant D. The number

density autocorrelation term is calculated on the base of 2. Fick’s law (see
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appendix A.2) to

〈δC(r, 0) · δC(r’, τ)〉 =
〈C〉

(4πDτ)3/2
· e−

(r−r’)2

4Dτ (1.17)

Integration of the molecule detection function
∫
W (r)d3r = π3/2w2

xywz = Veff

results in the effective detection volume Veff . With the average concentration

we obtain the average number of fluorecent molecules in the detection volume

〈N〉 = 〈C〉Veff . Further integration (see appendix A.3) results in

G(τ) =
1

〈N〉
· 1

1 + τ
τd

· 1√
1 +

w2
xy

w2
z

τ
τd

+ 1 (1.18)

This geometrical decay function is the basic equation for fluorescence correla-

tion spectroscopy. It depends on the average diffusion time of the fluorescent

molecule τd through the effective volume.

Include Triplett Dynamic

Photo physic causes also intensity fluctuations. [17] Most important for FCS

is the triplett state dynamic Gtriplett(τ) = 1 − T + T · exp(− τ
τtr

) with the

fraction of dyes T switching to the triplet t state and the triplet lifetime

τtr. Regarding l different kinds of particles the autocorrelation function is

obtained to [31, 32]

G(τ) =
(
1− T + T · e−τ/τtr

)
·

1 +
1

〈N〉

l∑
j=1

Φj

1 + τ
τd,j

1√
1 +

w2
xy

w2
z

τ
τd,j

 (1.19)

with the fraction Φj of particle j.
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1.2.3 FCS in Polymer Science

Fluorescence correlation spectroscopy was developed for the use in biophysics

and medicine science. Recently the FCS was propagated for the use in poly-

mer science. [13, 14, 30] To use this method for the investigation in polymer

science are two points need to be mentioned. The next section describes

the importance of a mono-disperse sample. As second the FCS technique is

commonly used in aqueous systems. The adjustment of an commercial FCS

setup for the use with organic solvents is presented in section 1.2.3

Request on the Samples

For FCS research the material needs to carry fluorescent dyes. In general

there are two possibilities to label chemically via bonds or physically, e.g. via

ionic interaction. This thesis contains results with both label versions. The

ideal material has the same amount of dyes on each investigated molecule.

So the physical labeling is easier because of the very low amount of dyes

(10−8M) in comparison of the investigated material. But for neutral syn-

thetic polymers well defined labeling is not easy. A polymer analog reaction

with reactivity to each repeating unit results in statistically labeled polymers

[33]. Another possibility is living polymerisation with a small block of dye

containing monomers [34]. This way is more defined, because the dyes are

at a definite position of the polymer. But still there are more than one dye

attached to one molecule. The best way to get just one dye to one polymer

molecule was found by Zettl et al. via a polymeranaloge reaction of the end

of the chain with the dye molecules. [13]

A further problem of FCS at polymeric systems is the molecular weight

distribution. This FCS technique detects single molecules and the self simi-

larity of the signal gives the diffusion time τd. This diffusion time is related to

the diffusion coefficient D via the relation τd = w2
xy/(4D). According to the

Stokes-Einstein law (1.2) the diffusion coefficient depends on the hydrody-

namic radius Rh. The polymer coil can be seen as a sphere with the volume

V = 4π
3
R3
h. With the density ρ = m/V the hydrodynamic radius Rh depends

on the mass of the polymer coil m. Finally the diffusion time τd depends on
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the mass of the polymer coil m as

τd =
w2
xy

4
· 6πη

kbT
· 3

√
3

4π
· m
ρ
∝ 3
√
m

So the molecular weight distribution causes a range of diffusion times. The

influence of different polydispersity indicies PDI on FCS measurements was

investigated by Starchev et al. [35]. With PDI<1.06 the autocorrelation

function does not changes and in the range of 1.06<PDI<1.2 the influence is

still small enough.

Request on the Setup

The most important problem to solve is the solvent of synthetic polymer solu-

tions. Commercial fluorescence correlations spectrometers are developed for

water systems. But water is a bad solvent for most synthetic polymers. This

means that the polymers precipitate. To investigate diffusion properties of

synthetic polymers in solution it is necessary to measure in organic solvents.

Most organic solvents have a much higher refractive index in comparison to

water (n = 1.33). With change in the refractive index the corrections of the

spherical and chromatic abberations are not valid any more. Finally using

a water immersion objective for measurements in organic solvents the ex-

citation volume is not congruent with the detection volume any more. The

difference of the detection volumes are shown in fig. 1.10. The misalignement

causes a decrease of the counts per molecule and thus a decrease of the signal

to noise ratio.

This problem was recently solved by using different immersion objectives.

[13, 30, 14] In general the immersion medium should have the same refrac-

tive index as the sample. So an oil immersion objective is ideal for solutions

with a refractive index of n ≈ 1.5. Whereas for samples with intermediate

refractive index a multi immersion objective can be used. This multi immer-

sion objective allows to work with different immersion media because it has

a correction ring to adjust. The detection volume of the multi immersion

objective used with multi immersion oil to measure in toluene is compared
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with a Gaussian intensity distribution in fig. 1.11.

Last but not least the sample chambers needed to be sealed to avoid

evaporation of the organic solvent. The walls of the sample chambers are

made of stainless steel. The cover slides has been fixed on bottom of the

chamber by an epoxid hardener. The top was closed by a screw formed cap

also made of stainless steel and sealed by indium wire. The soft indium wire

was deformed after reopening the chamber and had to be recycled. Using

new Indium wire lead to noise signals in the FCS trace. The geometry of the

sample chamber is described in detail by [30].
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Figure 1.10: Molecule detection function of a water immersion objective with
a numerical aperture of 1.2. The focus was chosen 200 µm above the cover
slide. Figure A and B show the calculation with a refractive index of 1.333
(water) and 1.49 (toluene) respectively. Note the different y-scales for figure
A and B [30].
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Figure 1.11: Figure A shows the calculated intensity distribution for a multi-
immersion objective. This objective has a magnification of 40× and a nu-
merical aperture of 0.9. The dye was dissolved in toluene. The volume has a
size of 1.2 fL. Figure B represents the intensity distribution approximated
by a Gaussian distribution in all directions [30].
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1.2.4 Ellipsometry

The Ellipsometry gives information about the thickness of surface layers and

their refractive index. The theory is presented by Azzam and Bashara and

an introduction is given by Tompkins. [36, 37]

The priniple setup of an Ellipsometer experiment is shown in fig. 1.12.

The incident light passes a polariser (for linear polarisation) and a compen-

sator (for circular polarisation), is reflected on the sample and passes the

analysator to reach the detector. The change of polarisation from the inci-

dent beam to the reflected beam is expressed in the amplitude ratio Ψ and

the phase shift ∆.

P
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C

Figure 1.12: Scheme of a setup for Ellipsometry: The incident light passes
a polariser (for linear polarisation) and a compensator (for circular polar-
isation), is reflected on the sample and passes the analysator to reach the
detector. [38]
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Figure 1.13: System of coordinates in the experiment, the plane of reflection
is light grey. [38]
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The electric field of a linear polarised light is given by E(z, t) = E0 exp(i(ωt−
kz + δ)) with the wave vector |k| = k = 2π/λ, the field amplitude E0 and

the phase δ. The overlay of two linear polarised waves results in a wave

E(z, t) =
(
EEp
EEs

)
=
(

E0 cos(ωt−kz+δp)

E0 cos(ωt−kz+δs)

)
(1.20)

with index p for the electric field in plane of reflection and with index s for

the electric field perpendicular to the plane of reflection, see fig. 1.13.

The changes of polarisation between the incident wave EE and the re-

flected wave ER is indicated by the so called ellipsometric angles Ψ and ∆

tan Ψ =

∣∣ER
0p

∣∣ / ∣∣EE
0p

∣∣
|ER

0s| / |EE
0s|

(1.21)

∆ = (δRp − δRs )− (δEp − δEs ) (1.22)

With the definition of the complex reflection coefficients Rp and Rs for p-

and s-polarised light

Rp =

∣∣ER
0p

∣∣
|EE

0P |
exp i

(
δRp − δEp

)
and Rs =

∣∣ER
0s

∣∣
|EE

0s|
exp i

(
δRs − δEs

)
(1.23)

equ.1.21 becomes the ellipsometric equation:

tan Ψei∆ =
Rp

Rs

(1.24)

The change of the polarisation for each optical component is calculated using

the Jones Matrices T for the polarisator TP , compensator TC , sample TS

and analyser TA. Aditionally the transformation matrix D(α) =
(

cosα sinα
− sinα cosα

)
is nescessary between the components. Now the electric field on the detector

Edet is calculated to

Edet = D(−A)TAD(A)TSD(−C)TCD(C)D(−P )TPD(P )EE (1.25)

Working with zero order reflection the last rotation of the analyser D(−A)

is neglible. The detector measures the intensity which is proportional to the
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energy of the light I ∝ E E∗.

Edet = TA(Ω1 + Ω2)(EE
s cosP + EE

s sinP ) (1.26)

with

Ω1 = Rp cosA(cosC cos(C − P )− i sinC sin(C − P )) (1.27)

Ω2 = Rs sinA(sinC cos(C − P ) + i cosC sin(C − P )) (1.28)

The zero order reflection is reached when the intensity at the detector disap-

pears, with Edet = 0 or (Ω1 + Ω2) = 0. Leading to

Rp

Rs

= − tanA
tanC + i tan (C − P )

1− i tanC tan (C − P )
(1.29)

Now two of the three angles P , C and A are fixed. One can be chosen by

free, this is commonly the compensator to C = ±45o. With equ. 1.21 and

1.29 we obtain

tan Ψei∆ = tanAei(2P+π/2) for C = −45o (1.30)

tan Ψei∆ = − tanAei(π/2−2P ) for C = 45o (1.31)

Finally the ellipsometric angles Ψ and ∆ are obtained to

Ψ = |A| and ∆ = 2P ± 90o for C = −45o (1.32)

Ψ = |A| and ∆ = −2P ± 90o for C = 45o (1.33)

The measurements are done at several different incident angles. The refrac-

tive index and the thickness of the material layer are obtained by fitting a

model, typically the Cauchy model np (λ) = n0 + n1 · 100
(λ/nm)2

is used.
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1.2.5 Atomic Force Microscopy (AFM)

Atomic force microscopy (AFM) is a very good method to investigate the

topography of thin films. There are no special requirements of the sam-

ple like electrical conductivity which is needed for scanning tunneling mi-

croscopy. Like with all other scanning probe microscopies, the sample is

scanned. Therefore a small tip at the end of a cantilever scans the surface

line by line. A setup of an AFM is shown in Fig. 1.14.

Using TappingModeTM the cantilever is forced to a vertical oscillation

towards the surface normal by a piezoelectric element. The excitation fre-

quency is close to the resonance frequency of the AFM cantilever tip, which

is typical about 250-350 kHz. The free amplitude is about 20 nm. If the

tip comes closer to the surface the oscillation of the tip is influenced by the

air layer between sample surface and the tip. Moving the tip further to the

surface leads to an attraction leading to a lower amplitude of the cantilever.

At a distance of about 100 pm the repulsive force between tip and sample

dominates.

This behavior can be described in approximation by the Lennard-Jones

potential U(r) = A
r12
− B

r6
. A and B are material constances of the tip and the

sample and r describes the distance between both. The repulsive forces are

given by A/r12 and is caused by repulsion of the electron clouds. The term

B/r6 describes the attractive forces which are mainly caused by dipol-dipol

interaction between sample and tip.

In the TappingModeTM the average distance between tip and surface

is kept constant. A laser is adjusted to the end of the cantilever to detect

the deviation which gives information about the conditions particular the

topography of the sample. The laser is reflected at the cantilever and is

detected at a segmented photodiode. The information of the adjusted signal

of the amplitude is directly given to a computer which converts the signal to

an image.

In generall there are further modes for AFM measurements. Just to men-

tion one, in the Contact Mode the sample surface is scanned with a constant

distance between surface and tip without oscillation of the cantilever. Here
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Figure 1.14: Scheme of a setup for Atomic Force Microscopy. [39]

the signal can be converted directly to a height image. The disadvantage of

this mode is the force on the sample, so that soft surfaces like proteins or

soft polymers can be damaged by the tip.
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1.3 Overview of the Thesis

1.3.1 Synopsis

This thesis starts with the analysis of the swelling behavoir and the mi-

crophase separation of block copolymers in thin films. The results of these

measurements are diffusion informations of solvent in thin block copolymer

films. For a detailed understanding of the behaviour of blockcopolymers dur-

ing the microphase separation the diffusion behaviour of polymer molecules

has to be investigated. Therefore a model system of homopolymers was used

to study the diffusion of single polymer chains in solution.

Chapter 2 presents the dynamic behavior and the resulting structure

of block copolymers in thin films. The dry block copolymer thin films are

swollen by a definded solvent vapour pressure. The change in the film thick-

ness was followed by in-situ ellipsometry. Evaluation of the initial change of

thickness results in the diffusion coefficient of concentrated solutions.

0 . 3 0 . 4 0 . 5 0 . 6 0 . 7

1 0 - 1 2

1 0 - 1 1

 h d r y = 2 3 1  n m
 h d r y =  8 2  n m
 h d r y =  6 3  n m
 h d r y =  4 3  n m

D [
cm

2 /s]

φP o l  
Figure 1.15: Diffusion coefficients D in thin films as a function of the con-
centration, here the polymer volume fraction φPol, and increasing thickness
of the dry thin film hdry from bottom to top.

Fig. 1.15 shows the diffusion coefficients depending on the film thickness

and minor on the concentration, expressed in the polymer volume fraction

φPol. The diffusion is independent of the concentration in thin films with a

thickness less than three times of characteristic spacings. The diffusion in
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thicker films depends moderately on the concentration.

Chapter 2 presents also the corresponding morphology of the microphase

separated diblock copolymers. Annealing with the same solvent vapor pres-

sure, films with one cylinder layer have a higher uptake of solvent. This

higher uptake can be seen at annealing conditions near the order-disorder

transition. Here the second terrace has a long range order in the aligned

cylinders whereas the cylinders in the first layer have no long range order.

This effect was presented in the same sample with both terraces coexisting

next to each other.

Chapter 3 presents diffusion coefficients of a homopolymer in a good

solvent, polystyrene in toluene. The FCS technique yields the selfdiffusion

coefficient Ds in dilute solutions, as expected. In the semidilute entangled

concentration regime a second decay appears in the FCS measurements. With

increasing concentration, the decay time increases moderately. Typical ex-

planations for the second decay like free dye or the triplett state can clearly

be eliminated. Free dye should be present also in the diluted solutions. More-

over the absence of free dyes in the diluted solution was shown already earlier

by [13]. In the case of the molecular weight near Mw,e the second decay is

between free dye and a triplett state decay. But the triplett state of the dye

can’t either give the explanation, because the change to the triplett state

of the dye molecule needs the interaction with a triplett state molecule like

e.g. physically dissolved oxygene in water. The presence of triplett decay

times in FCS in aqueos solutions can be supressed by bubbling nitrogen gas

through the solution to get rid of the oxygen. But in this case the unpolar

solvent toluene has no disolved oxygen. And the triplett decay time is not a

function of the concentration, as shown here for the higher molecular weight

polymers. Some of the polymer solutions are measured also with a different

setup to get rid of artefacts. However the second decay time in semidiluted

entangled polymer solutions were no artefact.

Comparison with DLS measurements leads to the finding that the collec-

tive diffusion coefficent Dc is overlayed by the corresponding diffusion coeffi-

cient, calculated from this second decay time in FCS. Fig. 1.16 presents the

diffusion coefficients measured with both techniques.
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We were able to show, that the second decay in the FCS measurements is

based on effective long-range interaction of the labeled chains in the transient

entanglement network of the semi diluted solution. Meaning the second decay

in the FCS measurements represents the collective diffusion. The measure-

ments verify the basic scaling and reptation theory for semidilute entangled

polymer solutions. A quantitative basis for the modelling of the cooperative

diffusion coefficient is given by a Langevin and generalized Ornstein-Zernike

equation. The so calculated cooperative diffusion coefficients agree with the

measured results both in the dilute and semidilute regimes. In particular the

features of the crossover region between the dilute and the semidilute regimes

are captured correctly by the underlying integral equation theory.

Chapter 4 presents diffusion coefficients of long tracer molecules in

shorter polymer matrixes. Depending on the concentration and the molecu-

lar weight of the matrix polymer chains two different types of macromolec-

ular tracer diffusion behavior were obtained. Autocorrelation functions of

measurements with the matrix polymer molecular weight Mw shorter than

the Mw,e shows a single self diffusion process for arbitrary concentrations.

Whereas autocorrelation functions of measurements with Mw > Mw,e turns

from a single decay to a two diffusion phenomenon, comparable to chapter 3.

The long time decay gives the self diffusion coefficient and the short time de-

cay correspondes to the collective diffusion coefficient of the matrix polymer

weight measured by DLS, see figure 1.16, in bottom.

We called the minimum concentration at which the cooperative diffusion

appears in the FCS measurements as c+. Having a constant Mw for the

tracer molecules, c+ increases with theMw of the matrix. On the other hand a

variation of Mw of the tracer molecules in the same Mw of the matrix does not

influences c+. Moreover tracer molecules with Mw > Mw,e in a matrix with

Mw < Mw,e shows just the self diffusion behavior, even in the high semidilute

concentration solutions. This means the fast diffusion process in FCS is a

characteristic property of the matrix polymer chains. This concentration

c+ corresponds to the cross over concentration to the entangled regime as

presented by Graessley, see fig. 1.17.



1.3. OVERVIEW OF THE THESIS 33

1 0 - 1 1 0 0 1 0 1

1 0 - 7

1 0 - 5

c  [ w t % ]

D C , D
tr [c

m2 /s]

 

2 6 4  k g / M o l  i n  6 7  k g / M o l

1 0 - 9

1 0 - 7

1 0 - 5

 

 

6 7  k g / M o l

2 6 4  k g / M o lD C , D
S [c

m2 /s] 1 0 - 7

1 0 - 5

 

Figure 1.16: Diffusion coefficients of polystyrene in toluene: closed symbols
present the measurements with fluorescence correlation spectroscopy (FCS)
and opend symbols the dynamic light scattering (DLS) measurements. In the
top and in the middle tracer and matrix polymers have the same molecular
weight (presented in chapter 3). In the bottom the molecular weight of the
tracer is highter, than that of the matrix (presented in chapter 4).
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Figure 1.17: Viscoelastic regimes dependent on molecular weight M and
concentration c of polystyrene in a good solvent, the lines are calculated by
Graessley [4]. The symbols are measured data with fluorescence correlation
sprectroscopy for polystyrene in toluene: • indicates the overlap concentra-
tion measured by Zettl et al [14] and � markes the cross over concentration
c+ to the entangled regime as presented in chapter 4. [16]

In general the fluorescence correlation spectroscopy was used for the in-

vestigation of polymer dynamic in solution in the dilute, semidilute and for

molecular weights near the entanglement molecular weight even in slightly

concentrated solutions.

Fig. 1.17 presents the five viscoelastic regimes of polystyrene in a good

solvent depending on the molecular weight M and concentration c. The

lines are calculated by Graessley [4]. The symbols are measured data for

polystyrene in toluene: • indicates the overlap concentration [14] and �

markes the cross over concentration c+ to the entangled regime. [16]. The

investigated molecular weights Mw range from 11 kg/mol to 1.550 kg/mol.



1.3. OVERVIEW OF THE THESIS 35

1.3.2 Individual Contributions to each Publication

In the following part my own contribution to each publication is listed. The

corresponding author is marked by *.

Chapter 2 is published in Langmuir (2010, 26, 6610) with the title

Effect of Confinement on the Mesoscale and Macroscopic Swelling

of Thin Block Copolymer Films by Ute Zettl, Armin Knoll and Larisa

Tsarkova *

I planned and conducted all experiments, evaluated the data and wrote

the publication. Armin Knoll and Larisa Tsarkova were involved in the sci-

entific discussion.

Chapter 3 is published in Macromolecules (2009, 42, 9537) with the
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2.1 Abstract

We report on the swelling behavior and the corresponding morphological be-

havior of cylinder-forming polystyrene-b-polybutadiene diblock copolymers

which are confined to several layers of structures. The equilibration of thin

films has been done under controlled atmosphere of a non-selective solvent.

In-situ spectroscopic ellipsometry measurements revealed more than 10%

increase of the solvent up-take with decreasing film thickness. With the

scanning force microscopy of the microphase separated patterns in quenched

films the correlation between the degree of the long-range order of cylinder

domains and the degree of the macroscopic swelling has been established.

In the case of spontaniously formed micrometer-sized topographic features

with descrete film thickness (terraces) the increased solvent uptake by thin-

ner films holds true even for isolated terraces on the mesoscale. The ob-

servation of non-homogeneous swelling of the films on the micrometer scale

brings novel insights into the properties of confined soft matter, and suggest

new approaches towards the fabrication of polymer-based nano-structured

responsive materials.

2.2 Introduction

In recent years the focus of research has been shifted towards miniaturiza-

tion of structures and devices. The related topical question concerns the

effect of confinement on the fundamental physical properties and function-

ing of polymer materials.[1] Rapid development of novel sensor and lab-

on-chip technologies,[2] and of polymer-based stimuli-responsive materials,

raises the question of changes in solvent - polymer interactions under con-

finement. Both, organo- and water-soluble polymers have been subjected

to studies of the swelling dynamics and equilibrium swelling behavior us-

ing different experimental techniques including spectroscopic ellipsometry

(SE),[3, 4] optical reflectometry, X-ray or neutron reflectivity,[5, 6, 7] grazing

incidence small angle X-ray scattering (GISAXS),[8] quartz crystal microbal-

ance (QCM),[9] and other complementary techniques. Special technologically
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approved interest triggered the study of moisture sorption by polymeric films,

with materials ranging from commercial linear chain homopolymers such as

polyacrylamide,[10, 6] polyimides,[7] poly(vinyl pyrrolidone),[9] poly(methyl

methacrylate)[11], common polyelectrolytes [12] to photoresists,[5] thermore-

sponsive gelling polymers,[8] and more complex water-soluble chains with

hydrophobic moieties.[3]

Among mentioned above measuring techniques, neutron reflectivity has

an advantage of providing information regarding the distribution of the sol-

vent within swollen films as well as of the distribution of the electron density

along the depth of dried films.[5, 6, 7]. Recent research established a decisive

contribution of the affinity of the solvent molecules towards the substrate

on the swelling behavior of hydrophilic polymers with water vapor. Vogt et

al have demonstrated that the concentration of water near an interface is

influenced by the chemistry of the substrate. [13, 14, 9] A hydrophilic sub-

strate accumulates water at the substrate/polymer interface which leads to a

gradient in water concentration along the depth of the film.[5] The enhanced

absolute swelling with decreasing thickness of photoresist films was attributed

to an interfacial excess of solvent which dominates the swelling.[5] The same

phenomena was also reported for other kinds of hydrophilic polymers.[8, 10]

In contrast, depletion of water from a hydrophobic substrate creates a gradi-

ent in water concentration through the film, and leads to a strong reduction

in the equilibrium uptake with decreasing film thickness.[9]

At the same time, several groups did not confirm the effect of the film

thickness on the equilibrium degree of swelling of thin polymer films with

water vapor [11, 9] and with the vapor of organic solvents.[15, 16] The obvi-

ous discrepancy in the reported results suggests that the thickness dependent

swelling, the distribution of the solvent in the depth of the film and the ac-

cumulation/depletion of a solvent at the polymer/substrate interface should

be considered not only in terms of the solvent-substrate interactions, bur

rather in terms of ”‘surface fields”’, i.e. of the difference between the solvent-

substrate and solvent-polymer interactions, with the latter being quite sen-

sitive to the particular swelling conditions and to the sample preparation.

Another factor affecting the swelling behavior of thin polymer films is
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associated with conformational changes of the polymer chains which are im-

posed by the confined geometry and by the film preparation.[10, 17, 18] The

most significant confinement effects are expected when the film thickness

approaches the radius of gyration (Rg). Several authors noticed, that the

swelling behavior of ultrathin polymer films can be correlated to a similar

behavior of the glass transition temperature, Tg, of the same polymer.[11]

Very recently, as-cast films were reported to have a substantially reduced

effective viscosity compared to annealed films. The reduced viscosity was

explained in terms of nonequilibrium chain conformations giving rise to a re-

duced entanglement density caused by the rapid quenching of the film during

spin coating.[17]

In block copolymer research, swelling of thin films is routinely used to

increase chain flexibility and to promote their self-assembly into regular

patterns. Solvent processing has been proved to be a simple and effective

approach to control the size [19, 20, 21, 22, 23, 24] and the shape of mi-

crodomains [25, 26, 27, 24] as well as their orientation and order in thin

films [28, 29, 30] by choosing selective solvents, [28, 31] by utilizing di-

rectional solidification/quenching [30, 31, 32, 33] or by varying the ambient

conditions. [34] In order to get full understanding of the solvent processing

of block copolymers it is indispensable to have a precise control over the

procedure parameters, such as the temperature of the substrate and of the

solvent vapor, the values of the total and partial vapor pressures, the quality

and the selectivity of the solvent towards the block copolymer components.

Even dynamic characteristics of the annealing procedure such as the total

gas flow through the chamber, the volume and the geometry of the annealing

chamber, the velocity of the final quench, etc, all crucially affect the resulting

microstructure and hence the reproducibility of the results.

Block copolymers offer an additional possibility to study the effect of

confinement on the polymer-solvent interactions due to the well-established

sensitivity of the microphase separated structures towards the film thickness,

the surface interactions, [35] and towards the solvent concentration in the

film. [36, 37] In contrast to swollen homopolymer films, only a limited num-

ber of studies on thin films of block copolymers have been reported where



2.2. INTRODUCTION 43

the degree of film swelling has been directly accessed. In-situ SE has been

used before to evaluate polymer-solvent interaction parameters, [38] to con-

struct phase diagrams of surface structures [36, 37], to explore the mech-

anism of lamella reorientation in thick swollen films, [39, 40] and to study

the microphase separation of donor-acceptor block copolymers for polymer

electronics. [41] Spectroscopic reflectometry combined with real-time grazing

incidence small angle X-ray scattering (GISAXS) allowed to follow struc-

tural instabilities in swollen lamella films.[42] Recently was demonstrated

that swelling of diblock copolymer films in organic selective solvents follows

the same physical principles as that observed for thin films of homopolymers.

In particular, a clear thickness-dependent degree of equilibrium swelling has

been found with in-situ SE.[43]

Here we report on the equilibrium swelling behavior, swelling dynamics

and on the corresponding changes of the morphological behavior of cylinder-

forming polystyrene-b-polybutadiene diblock copolymers (denoted as SB1

and SB2) confined to several layers of structures.In-situ spectroscopic ellip-

sometry measurements revealed more than 10% decrease in the solvent vapor

up-take with increasing film thickness upon long-term equilibration under

controlled atmosphere of chloroform, a non-selective solvent. Moreover, the

microstructure within neighboring terraces, i.e. within the regiones of spon-

taneously quantized film thickness, points to a non-homogenous swelling of

the films on a mesoscale. The cylinder domains within the first layer exhibit

a low degree of a long-range order due to the vicinity to the order-disorder

transition (ODT), in contrast to well-ordered cylinder domains in the neigh-

boring terrace with two layers of structures. These results disclose newly

observed nanoscale confinement effects on the chain conformations and on

the polymer-solvent interactions in thin films.
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2.3 Experimental Section

2.3.1 Polymer

Diblock copolymers polystyrene(PS)-block -polybutadiene(PB) with total molec-

ular weights of Mw = 47.3kg/mol (denoted as SB1), and Mw = 70.0 kg/mol

(SB2) were purchased from (Polymer Source Inc). Important physical pa-

rameters of the polymer samples are listed in Table 2.1 In bulk they form

glassy PS which are embedded in a soft PB matrix. The glass transition

temperature of the PB is Tg,PB = −60◦C, while that of PS depends on the

molecular weight, and is in the range of Tg,PS = 80− 100◦C.[44] The surface

tension of PB γPB = 31 mN/m is considerably smaller than the surface ten-

sion of PS, γPS = 41 mN/m,[44] which drives PB to segregate to the free

surface.

Table 2.1: Diblock copolymers

Label Structurea Mw, kg/mol fPS,wt% a0,nmb χN

SB1 S13B34 47.3 26.1 30 30
SB2 S26B70 96 24.5 70 60

a Subscribed indexes indicate the molecular weight (in kg/mol) of respective
blocks. b a0 is the characteristic cylinder spacing in melts determined by
SAXS measurements. [35]

2.3.2 Sample Preparation

Block copolymer films were spun cast onto silicon substrates from toluene

solution. The initial film thickness was controlled by the concentration of

the spread solution (0.5, 1 and 2 wt%) and by the spinning rate (1000 −
2000 rpm) resulting in films with an initial dry thickness hdry in the range of

40− 200 nm. Silicon substrates were cut from the same silicon wafer (〈100〉
orientation, Wacker Siltronic AG), cleaned in fresh 1:1 H2SO4 (conc.)/H2O2

(30%) solution, thoroughly rinsed in hot and then cold Millipore water and

then dried.
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2.3.3 Swelling Experiments

As-spincoated films were annealed under controlled atmosphere of chloroform

vapor pressure. The swelling behavior in the presence of a given CHCl3 vapor

pressure was followed by in-situ spectroscopic ellipsometry (SENTECH SE

850) as described elsewhere.[39]

All measurements were done at 65◦ incidence angle within a spectral range

from 400 to 800 nm in a home-made thermostated cell which allowed ellip-

sometric measurements under full control over the solvent vapor atmosphere

p/p0 where p0 is the chloroform vapor pressure at saturation and p is the ac-

tual pressure adjusted by a combination of the saturated CHCl3 vapor flow

and by dry nitrogen flow ( 2.1). Before and when possible after swelling in a

solvent vapor, the thickness hdry of the samples was measured. The tempera-

ture of the sample and the temperature of a solvent reservoir were controlled

to within 0.1 K. The block copolymer film is modeled as a homogeneous

material with an effective refractive index n(λ) = n0 + n1
100

(λ/nm)2
where λ is

the wavelength and n0, n1, and n2 are fitting parameters (Cauchy model);

the absorption in the film was assumed to be negligible.

T
1

h
�� T

2

(1)

(3)

(5)

(3)

(2)

(4)

(5)

Figure 2.1: Schematic of the annealing chamber: (1) substrate-supported
polymer film; (2) sealed stainless steel chamber; (3) glass windows which are
perpendicular to the incident light; (4) temperature control of the substrate
(T1); (5) input and output for the temperature and flow controlled solvent
vapor (T2).
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2.3.4 Scanning Force Microscopy (SFM)

The microdomain morphology, the terrace heights, and the absolute film

thickness were measured with a Dimension 3100 SFM (Digital Instruments,

Veeco Metrology Group) operated in a TappingModeTM using silicon tips

with a spring constant ca. 40 N/m, and the resonance frequency ranging

from 200 to 300 kHz. The measurements of the surface morphology (phase

images) were performed at free amplitudes of about 30−50 nm and a relative

setpoint of ≈ 0.95. The phase contrast is well resolved at room temperature

at a scale of 10− 20 degrees due to the different mechanical properties of the

PS (glassy) and PB (soft) components.

For precise determination of the cylinder spacings, of the absolute films

thickness and of relative terrace heights imaging has been done with a Di-

mension 3100 Metrology SFM which is based on a hardware linearized piezo-

scanner. The signal distortions are compensated in the x, y and z-directions;

therefore the measurements of distances and heights are possible with sub-

nanometer resolution.[45]

2.3.5 Optical microscopy

Optical microscopy was used to investigate the characteristic surface topogra-

phy in equilibrated films (Axiotech microscope from Carl Zeiss AG combined

with a digital camera having a resolution of 752×582 pixels).

2.4 Results and Discussion

2.4.1 Swelling Experiments

2.2 presents the time-resolved swelling and deswelling behavior of a SB2

film when the partial vapor pressure p/p0 in the chamber was varied by a

stepwise adjustment of the solvent reservoir temperature while keeping the

temperature of the sample at a constant level of 20±o C. The resulting p/p0
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can be calculated according to Clausius–Clapeyron relation:

p

p0

= exp

(
−∆Hvap

R

(
1

T2

− 1

T1

))
(2.1)

Here R is the ideal gas constant, ∆Hvap is the enthalpy of evaporation for

the solvent, T2 is the temperature of the solvent reservoir and T1 is the

temperature of the polymer film (always higher than that of the vapor) ( 2.1).
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Figure 2.2: Kinetics of the stepwise swelling and deswelling of a 82 nm
(hdry) thick SB2 film. The temperature of the substrate was maintained at
a constant level of 20 ± 0.1oC, and the temperature of the reservoir with
the solvent was varied (from bottom to top): 10, 13, 15, 17, 18 and 19◦C.
The resulting partial vapor pressure of chloroform p/p0 (right hand axis) was
calculated according to equation (2.3).

After an ordinary adjustment of the solvent temperature, the next equi-

librium degree of swelling is achieved in about 10 minutes. The swelling cycle

is free of hysteresis within the resolution of the thickness measurements. A

similar reversible swelling and deswelling behavior has been measured for

SB1 (not shown here).

The data as in 2.2 was used to evaluate the diffusion coefficient of solvent

molecules into the swollen film according to the procedure reported earlier

by Vogt et al.[5, 9] The uptake of small solvent molecules is described as a

Fickian process where the time-resolved increase of the thickness of a film on
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Figure 2.3: Swollen film thickness hsw (left-hand-axis) and refractive index
of SB2 film as a function of the partial vapor pressure of chloroform p/po.

an impermeable substrate can be written as [46]

ht − h0

hsw − h0

=
2

h0

√
Dt

(
π−1/2 + 2

∞∑
n=1

(−1)n ierfc
nh0

2
√
Dt

)
(2.2)

with the film thickness ht at any time t, in the swollen equilibrium state hsw

and the initial film thickness h0. ierfc is the inverse complex error function

and n ∈ N. At short times this expression can be simplified to

ht − h0

hsw − h0

= 2

√
D

π
·
√
t

h0

(2.3)

which results in a simple expression for the diffusion coefficient.

D =
π

4

(
∆ ht−h0

hsw−h0

∆
√
t

h0

)2

. (2.4)

Diffusion coefficients were determined from the initial slopes of the swelling

curves plotted as (ht − h0)/(hsw − h0) versus
√
t/h0 ( 2.4). The curves are

well represented by the Fickian model. Figure 2.5 displays the diffusivity

of the solvent molecules as a function of the partial vapor pressure for a set

of SB1 and SB2 films with varied thicknesses. At a given vapor pressure the

diffusivity increases by an order of magnitude as the thickness of SB2 films
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Figure 2.4: Adsorption kinetic of solvent for different film thickness h0: (a)
57 nm; (b) 82 nm and 231 nm. Same symbols refer to the same partial vapor
pressure p/p0, • 64; N 73; H 80; � 88; J 92 and I 96%.
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Figure 2.5: Effective solvent diffusion coefficients in SB films as a function of
the partial solvent vapor pressure p/p0 and film thicknesses from bottom to
top: 43, 57, 63, 82 and 231 nm.
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increases from 40 to 230 nm (lower and upper set of points in 2.5). Another

important observation concerns the dependence of the solvent diffusivity on

p/p0 for the 230 nm-thick film (hdry ≥ 2.5a0) while thinner films seem not to

show such dependence within the data scatter. In a simple approximation,

the diffusion coefficient should depend primarily on the initial uptake, which

emphasizes transport near the free interface. Therefore, one would expect

the dependence of the diffusivity on the solvent vapor concentration. On

the other hand, at high polymer concentration, the diffusion of solvent in

swollen films can be used as a probe of the segmental polymer dynamics.[9]

This view is supported by the observation of decreased transport rates of

small molecules in ultrathin polyvinylpyridine films even with large amounts

of absorbed water.[9]

The swelling cycles as in 2.2 have been used to evaluate the dependence

of the equilibrium degree of swelling on the partial vapor pressure p/p0 of the

solvent. Assuming that the partial volumes of the polymer and of the solvent

in the film are additive, the polymer fraction in a swollen film is straightfor-

ward to estimate as: φpol = hdr/hsw, where hdr and hsw are the thicknesses

of a dried film and of the respective film in a swollen state, respectively. 2.6

displays φpol (which is reversely proportional to the degree of swelling) versus

p/p0 for SB1 ( 2.6a) and SB2 ( 2.6b) films with different starting dry thickness

hdr. For both polymers the equilibrium polymer volume fraction in a film at

a given vapor pressure becomes smaller as the film thickness hdr decreases.

This effect is summarized in 2.7, where φpol at p/p0 = 50 % is plotted versus

film thicknesses hdr reduced by the characteristic period of the structure in

bulk. The data indicates that solvent uptake by several layers-thick block

copolymer films decreases as the film thickness increases. We note that sim-

ilar effect has been recently reported for the swelling behavior in a selective

solvent of relatively thick films (up to 1 µm thick) of lamella-forming di-

block copolymers;[39, 43] and this work excluded a substantial contribution

of an excess solvent layer at the polymer-substrate interface to an enhanced

swelling of ultrathin films.

The uptake of solvents for a given film thickness is remarkably different for

the two polymers under study, although the chemical structure of the blocks
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is the same. For example an 146 nm thick SB1 film takes up less solvent than

an 170 nm thick film of SB2. Since the chemical nature of the blocks is the

same, this indicates that the amount of segregation plays an important role

and the stronger segregated SB2 polymer takes up more solvent. In strongly

segregated block copolymers the polymer chains are highly stretched, which

favors the incorporation of the solvent molecules both by stretched chains

and by A-B interface. In this case the increased uptake of solvent would be a

specific feature of block copolymers films. On the other side, a similar line of

arguments could be held for the geometric constraints at the hard substrate

boundary.
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SB2 (b) films with the indicated hdry as a function of the partial chloroform
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Figure 2.7: Polymer volume fraction φ = hdry/hsw, in SB1 (squares) and SB2
(circles) films which have been equilibrated at 50% of the partial chloroform
vapor pressure p/p0 versus the number of layers (film thickness normalized
by the respective a0 in bulk).

2.4.2 Comparison of the Ellipsometric and SFM Thick-

ness Measurements

Long-term equilibration of block copolymer films under solvent vapor is

aimed at achieving thermal equilibrium of the microphase separated struc-

tures, and is typically accompanied by the development of the topographic

features at the substrate (terrace formation). The lateral dimensions of the

terraces range from several to tens of µm, both in the swollen [36] and in the

dry state ( 2.8). We note that terrace formation is most pronounced at high

vapor pressure conditions and for low molecular weight sample, i.e. strongly

depend on the chain mobility. For SB1(SB2) films thicker than 200(100)nm

we did not observe surface relief structures even upon long-term equilibration.

The absolute and relative terrace heights are determined with SFM, while

the thickness of the swollen film is typically accessed with large-space aver-

aging techniques, such as ellipsometry. We took special care to evaluate a

possible influence of the terracing-related surface roughness on the height de-

termination with in-situ ellipsometry. The strategy was to quantify the areal

coverage of the terraces in quenched samples with optical microscopy, then
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to measure the relative height difference between the terraces with Metrology

SFM, and finally to compare ellipsometric heights with those evaluated by

the combined SFM-optical microscopy analysis.

2.8 displays an optical micrograph of solvent-annealed SB1 film supported

by reflective substrate. Two distinct colors in the optical image correspond to

the coexistence of terraces with i and (i+1) number of layers and hence with a

well defined local film thickness. [35] In order to determine the fraction of the

higher terrace i+ 1, denoted as βi+1, an optical image was analyzed with the

software KS 100 3.0 which counts the intensity of red, green and blue colors in

gray scale of the optical micrograph (with 0 representing the darkest(highest)

and 255 corresponding to the brightest(lowest) color(thickness)). In the case

of two terraces, two distinct maxima appear on the resulting curve ( 2.8,

bottom). The maximum at lower values corresponds to darker color in optical

micrograph and hence to the higher terrace (i+ 1). The relative area of the

maxima represents the relative terrace distribution. Next, the cumulative

sum βi+1 + βi was normalized to 100% for the hole range of the grayscale.

The value of the cumulative sum at the minimum between the two maxima

gives the βi+1.

Ellipsometric data for swollen thickness of SB films with both macro-

scopically smooth and topographically structured (due to terrace formation)

surfaces can be precisely fitted with the Cauchy model ( 2.9). We recall

that ellipsometry measures the ratio of the p and s components of the zero-

order reflection coefficient ρ = Rp0/Rs0 = Tanψ · ej∆. In so-called scalar

approach, [47] the reflections from adjacent areas of topographically struc-

tured surfaces sum coherently. The total reflection coefficients are given by

Ri0 = fmrim + feriee
−j2γ0

where γ0 = 2π
(
hsw
λ0

)
cosϕ; rim, rie are the reflection coefficients for each

area, ϕ - angle of the incidence. Diffraction effects are completely ignored

since the pattern dimensions are significantly larger that the optical wave-

length. We note that the scalar analysis of ellipsometric data has been suc-

cessfully used to determine in real time the etch depth in patterned semicon-

ductor substrates. [47]

The above assumption that ellipsometric measurements provide a geomet-
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ric average over the topographic features at the film surface, has been sup-

ported by the comparison of the ellipsometry and AFM height measurements.

2.10 displays a diagram of the equilibrium thicknesses (terrace heights) in a

swollen state hswi versus the volume fraction of SB1 in a film. Each set of

data at a particular φpol belongs to different samples and represents direct

ellipsometric data (circles) and the result of the fit of SFM measurements

(dry thickness) with the volume fraction φpol.

The SFM heights of adjacent terraces hswi and hsw(i+1)
, together with the

evaluated terrace (i + 1) fraction β was fitted in the swollen state was de-

termined from the in situ ellipsometry measurements of the average swollen

thickness hsw and from the SFM-measured step height ∆hSFM between ter-

races hi and hi+1 of the same sample in a quenched (dry) state. The following

relation has been utilized: hsw(i+1)
= hsw + ∆hSFM/φpol · β.

2.10 displays a diagram of the equilibrium thicknesses (terraces) in a

swollen state hswi versus the volume fraction of SB1 in a film. Each set

of data at a particular φpol belongs to different samples and represents the

result of the comparison of the ellipsometric and SFM measurements. The

data strongly suggests that ellipsometric measurements provide a geometric

average over the topographic features at the film surface, and hence the for-

mation of terraces does not affect the precision of the macroscopic thickness

measurement by in situ ellipsometry.

2.4.3 Phase Behavior of Solvent-Annealed Films

Along with the topographic features, the morphological behavior in SB1 and

SB2 films upon solvent annealing has been analyzed. A non-selective solvent

acts as a plasticizer and effectively lowers the glass-transition temperature of

the glassy components. As a result, the chain mobility in swollen films is con-

siderably enhanced without a significant increase in the processing tempera-

ture. Additionally, the solvent affects polymer-polymer and polymer-surface

interactions, thereby allowing the strength of the molecular interactions to

be varied in a controlled way. Therefore, variation of the solvent amount in

a film allows to tune the phase behavior of a bock copolymer.
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Figure 2.8: Top: Optical image of 64 nm thick SB1 film presenting terrace
formation during the solvent annealing. Darker areas correspond to a higher
terrace with two layers of cylinders. Bottom: Evaluation of the areal fraction
of terraces using Zeiss-software.
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The morphology of swollen microphase separated structures was imaged

by conventional SFM measurements of fast-quenched films. In our exper-

iments, the quench to the glassy state of the polystyrene block has been

achieved within tens of seconds, and has been shown not to alter the phase

separation in a swollen state.[36]

1 µm

T1 T2 T3

C�C||,1 C||,3C||,2

a

100% p/p0

Figure 2.11: SFM phase images of the SB2 films swollen at p/p0 of 100%.
Surface structures show ordered microdomains with a thickness-dependent
morphological behavior as the film thickness increases: within flat terraces
the cylinders are aligned parallel to the film plane (C‖) with vertical cylinders
at transition regions between the terraces (C⊥). Schematic of the crossection
introduces the mesoscale surface topography at imaged parts of the film.

Shown in 2.11 is a sequence of surface structures in SB2 films as a func-

tion of film thickness upon annealing in an athmosphere of 100% partial

pressure of chloroform vapor p/p0. The sketch above the images illustrates

the profile of the film thickness, increasing from left to right. At an equili-

brated thickness, i.e. within flat terraces, the cylinders (white stripes) are

aligned parallel to the film plane. Starting from the second layer, at tran-

sition thicknesses between the terraces a vertical orientation of cylinders is

stabilized (hexagonally packed white dots). Such thickness-dependent phase

behavior in block copolymer films is well-established experimentally and has

been confirmed by computer simulations [48].

2.12a presents the surface structures in films of SB1 which have been

exposed to a relative vapor pressure p/p0=72%. In this case, vertically ori-

ented cylinders are absent at the free surface. Instead, the border between

neighboring terraces is marked by an increased defect density within the ly-
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Figure 2.12: SFM phase images of the SB1 films swollen (a) at p/p0=72%
showing lying cylinders with a high degree of a long-range order, and (b) at
p/p0=80% presenting a phase-separated pattern with a low long-range order
(a disordered cylinder phase). The insets below the SFM images are FFT of
the respective surface patterns.
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ing cylinders. [49] In comparison to the behavior of SB2 films at p/p0=100%

( 2.11), the amount of long range order is significantly higher, although the

polymer is equilibrated at much lower solvent vapor pressure. Despite the

greater solvent content in SB2 films, the SB2 still has stronger segregation

and lower chain mobility as compared to highly swollen SB1 films in 2.12a

which causes the difference in the phase behavior and the degree of ordering

of cylinder domains.

Shown in 2.12b are the surface structures in SB1 film after exposure

to p/p0=80%. Although the surface topography clearly reveals macroscopic

features (terraces), the in-plane order of the microdomains is dramatically

reduced. The reduced order indicates the vicinity of the system to the ODT,

meaning that the interface between two blocks in the swollen film is sub-

jected to strong composition fluctuations. The intriguing observation is the

development of terraces (i.e. layering of microdmains) in the swollen films

which are very close to (if not above) the ODT. This observation presum-

ably implicate a difference in ODT of the lateral and of the in-plane ordering

of microdmains. We note that possible indications to this result have been

reported on sphere-forming block copolymers [50].

The increase of solvent concentration in SB1 films upon raising the partial

pressure of chloroform vapor and the related loss of the long-range order can

be explained in terms of so called ”dilution approximation” for the bulk block

copolymer phases[51, 52, 53]. In this approximation the phase diagram of a

block copolymer solution is obtained by rescaling χAB to φpol χAB according

to χeff ∼ (φP/T ) N1/2, [54] where φpol is the polymer volume fraction or

polymer concentration. Dilution of the film lowers χeff and shifts the ODT.

Therefore, the microphase separated structures in swollen films can be used as

a qualitative measure of the degree of swelling in block copolymer films. [36,

55]

Along the same line of argument, the difference in the microdomain mor-

phology of SB1 and SB2 in swollen films can be explained by the two times

higher χN parameter of SB2 as compared to that of SB1 ( 2.1). The essen-

tial differences in χN makes it difficult to maintain equal preparation condi-

tions and thermodynamic parameters for comparing molecular architecture
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or molecular weight effects on the phase behavior of block copolymers in

films. Typically, diblock copolymers with a molecular weight of around 100

kg/mol show very limited mobility under elevated temperatures and even in

strongly swollen films, while diblock copolymers of half the length show fast

microdomain dynamics under the same conditions.

2.4.4 Mesoscale Swelling Inhomogeneity in Block Copoly-

mer Films

2.13 shows an example of surface structures in SB1 film which has been

equilibrated at p/p0=78%, i.e. slightly below the transition to the disordered

cylinder pattern ( 2.12b). Depending on the local film thickness, terraces

with one, two or three layers of cylinders are formed within one sample. The

equilibrium heights of the terraces in quenched samples after annealing at

p/p0=78% are shown in 2.14a.

The degree of order of cylinder domains shows clear dependence on the

terrace thickness. In the lowest terrace T1 with a thickness of 10 ± 2 nm,

a disordered microphase separated pattern is formed ( 2.13). This kind of

structure points to the vicinity to the ODT, similar to the result shown in

2.12b. Interestingly, the cylinder pattern within the same sample however at

the region with a larger thickness of 44 ± 1 nm(terrace T3) exhibits a well

equilibrated, cylindrical morphology with a long range order. This kind of

well ordered stripped structure is formed in all thicker films at this anneal-

ing conditions. Accordingly, regions with a thickness of 27± 2 nm (terraces

T2) show a cylinder pattern with a persistence length which is intermediate

between that in terrace T1 and terrace T3. The 2D power spectral den-

sity profiles of the structures in each indicated terrace ( 2.14b) quantify the

amount of segregation in the films and the characteristic dimensions of the

microphase-separated patterns. In terrace T3 the spectrum exhibits a sharp

first order peaks and also higher order peaks, while the spectrum for the first

terrace shows a very broad first order peak, corresponding to a much weaker

segregated system. The above observations suggest that the polymer volume

fraction φpol is not uniform throughout the lateral dimension of the film, and
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that the observed φi increases as the film becomes thicker.

Figure 2.13: SFM phase images of SB1 films annealed at a chloroform partial
vapor pressure of 78%. The scketch above the images illustrate the relative
hight distribution in the sample. The images present differences in the degree
of long range order in the lower terrace (left part of the SFM images) and in
the neighboring higher terraces.

It is important for the present discussion that the confinement effects on

the swelling rates and on the absolute solvent uptake can not be attributed to

the specific block copolymer molecular architecture. Similar results have been

reported before for homopolymer films.[5, 9, 10, 6] Moreover, the diffusivity

of solvent molecules into block copolymer films is described using the same

theoretical approaches as it has been done for homopolymer systems.[5, 9]

However, the analysis of the microphase separated structures in the annealed

films provides new insights into the effect of confinement on the properties

of polymers and other types of soft matter. In particular, the thickness-

dependent swelling of structured block copolymer films can be understood in

terms of the confinement-induced stretching of a cylinder cell perpendicular

to the film plane. [45] In thin SB1 films at moderate concentrations, the

lateral distances between next-nearest cylinders in the first layer have been
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Figure 2.14: (a) Equilibrium thicknesses (terrace heights) in quenched SB1
films after annealing at a chloroform partial vapor pressure of 78%. (b) 2D
power spectral density profiles of the SFM images from 2.13 representing
terraces(from bottom to top) T1 (gray), T2 (blue) and T3 (red). The po-
sition and broadness of the picks, as well as the presence of the secondary
picks quantify the characteristic dimensions and the long-range order of the
microphase-separated patterns.

found to be 6% smaller than those in the bulk. The elastic energy of the

distorted structures likely affects the polymer-solvent interactions and the

resulting swelling behavior.

2.5 Conclusions

The swelling and the corresponding morphological behavior of cylinder-forming

polystyrene-b-polybutadiene diblock copolymers in thin films have been stud-

ied by combined in-situ spectroscopic ellipsometry and SFM measurements.

The confinement of the film and the presence of the interfaces leads to a more

than 10% increase of the solvent up-take with decreasing film thickness. The

sensitivity of the phase separated pattern towards the solvent concentration

in a film has been used to diagnose the non-homogenous swelling of the block

copolymer films on a mesoscopic scale. The cylinder domains within the first

layer exhibit a low degree of a long-range order due to the vicinity to the

order-disorder transition (ODT), in contrast to the cylinder domains in the

neighboring terrace with two or three layers of structures. These results dis-

close newly observed nanoscale effects of the structure confinement on the
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polymer-solvent interactions in thin films.
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68 CHAPTER 3. COLLECTIVE DIFFUSION OBTAINED BY FCS

3.1 Abstract

We present a comprehensive investigation of polymer diffusion in the semidi-

lute regime by fluorescence correlation spectroscopy (FCS) and dynamic light

scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the

selfdiffusion coefficient while DLS gives the cooperative diffusion coefficient

for exactly the same molecular weights and concentrations. Using FCS we

observe a new fast mode in the semidilute entangled concentration regime

beyond the slower mode which is due to selfdiffusion. Comparison of FCS

data with data obtained by DLS on the same polymers shows that the sec-

ond mode observed in FCS is identical to the cooperative diffusion coefficient

measured with DLS. An in-depth analysis and a comparison with current

theoretical models demonstrates that the new cooperative mode observed in

FCS is due to the effective long-range interaction of the chains through the

transient entanglement network.

3.2 Introduction

Diffusion in polymer solutions is among the oldest subjects of polymer physics.

[1, 2] In general, transport by diffusion can be characterized by two diffu-

sion coefficients: the selfdiffusion coefficient Ds and the cooperative diffusion

coefficient Dc. Ds describes the motion of one molecule relative to the sur-

rounding molecules due to thermal motions while Dc describes the motion

of a number of molecules in a density gradient. [3, 4, 5, 6, 7] The obvious

importance of diffusion in polymer physics has led to a rather large number of

studies of Dc by dynamic light scattering (DLS), [3, 4, 8, 6, 7, 8, 5] while Ds

can be obtained by pulsed-field gradient nuclear magnetic resonance [4, 7, 5]

and label techniques like forced Rayleigh scattering [9] or fluorescence corre-

lation spectroscopy (FCS). [10, 11, 12] However, in many cases Ds and Dc

could not be obtained for the same homopolymer using the same technique.

Such measurements would be very interesting since a central problem in the

dynamics of semidilute entangled polymer solutions is the quantitative un-

derstanding of the interplay of selfdiffusion and cooperative diffusion. Very
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recently it has been found theoretically that the coupling of self- and cooper-

ative motion due to topological constraints is also important for rather stiff

macromolecules. [13]

At present, DLS is certainly among the most accurate methods to mea-

sure Dc and there is a number of careful studies conducted on polymer so-

lutions. In principle, FCS is the method of choice for studying diffusion

of single macromolecules in a matrix of same molecular weight giving Ds

or in a solution of polymers of different molecular weight (tracer diffusion

[14, 15, 16]). In opposite to DLS, FCS requires chains labeled by a stable

fluorescing molecule. Moreover, the number of labels per macromolecules

should be constant to arrive at results that can be directly compared to

theory. Given these problems, the use of FCS for measurements of Ds on

synthetic polymers has been scarce so far. [10, 11, 12, 17] Moreover, the

full potential of this method has not yet fully been exploited yet since FCS

should also allow one to obtain Dc. [18, 19]

Recently, a well-defined polymeric model system has been presented and

used for quantitative FCS-measurements in dilute solution [10, 12]: Nearly

monodisperse polystyrene chains have been prepared by anionic polymeriza-

tion and subsequently labeled by single fluorescent dye. Since the molecular

weight of the different samples span a wide range, these polymers provide

a nearly ideal model system for exploring the chain dynamics over a wide

range of molecular weights and concentrations. Using these labeled chains

we recently presented an in-depth study of the experimental FCS set-up [10]

as well as of the dynamics in dilute solution. [12]

Here we pursue these studies further by presenting an investigation of

polymer diffusion in the semi-concentrated regime by FCS. In order to obtain

accurate data of cooperative diffusion, these studies are combine with DLS-

measurements on exactly the same molecular weights and concentrations.

Thus, Dc and Ds can now be obtained from identical systems and directly be

compared. In the course of these studies we found that a second cooperative

mode becomes visible in the FCS-experiments if the concentration exceeds a

given value. This surprising finding prompted us to conduct a full theoretical

analysis of both the FCS- as well of the DLS-data throughout the entire time
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scale and range of concentrations available by these experiments. In doing so

we extend the theoretical modeling beyond the usual scaling laws. The entire

study is devoted to a comprehensive understanding of polymer dynamics in

solution ranging from the dilute state up to the onset of glassy dynamics.

The paper is organized as follows: After the Section Experimental we

first present the FCS-data together with the finding of the new cooperative

diffusion. In the subsequent section a quantitative modeling of the data

in terms of an analytical theory will be given. In the last section special

attention will be paid to possible practical applications of these findings to

the spinning of nanofibers. A Conclusion will wrap up the entire discussion.

3.3 Experimental Section

3.3.1 Dye Labeled Polystyrene

All experiments reported here were carried out with linear polystyrenes hav-

ing a narrow molecular weight distribution. For details of the synthesis see

ref [10]. The molecular weight and polydispersity of the polymers are sum-

marized in Table 3.1. The solutions for the FCS experiments were prepared

in toluene p. a. grade by blending a constant concentration of 10−8 M Rho-

damine B labeled polystyrene with varying amounts of unlabeled polystyrene

from the same synthesis batch. Each labeled polymer carries only one dye

molecule at one of its ends. To verify our results, additional solutions were

prepared with varying labeled polystyrene and a constant amount of unla-

beled polystyrene. We have used preparative gel permeation chromatography

to separate labeled polymer and free dye molecules. [10, 12] Therefore, the

resulting dye-labled polymer does not contain any measurable amount of free

dye molecules.

3.3.2 Methods

For FCS measurements we modified the commercial ConfoCor2 setup (Carl

Zeiss, Jena, Germany) [21] with a 40× Plan Neofluar objective (numerical
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Table 3.1: Molecular weight Mw, polydispersity index PDI=Mw/Mn and hy-
drodynamic radius Rh at infinite dilution of the polystyrenes used in the
present study. The second and the third virial coefficients A2 and A3, re-
spectively, have been calculated using scaling laws taken from the literature
(A2: ref [20] and A3: ref [8]). c+ is the concentration at which the second
diffusion time appears in the FCS measurements.

Mw[ kg
Mol

] PDI Rh[nm] A2[ cm
3Mol
g2

] A3[ cm
6Mol
g3

] c+[wt%]

11.5 1.03 1.(4) 7.4·10−4 2.1·10−3 -
17.3 1.03 1.(6) 6.8·10−4 2.6·10−3 -
67.0 1.05 3.(9) 5.1·10−4 5.8·10−3 20
264 1.02 7.(3) 3.8·10−4 1.3·10−2 6.5
515 1.09 9.(8) 3.3·10−4 1.9·10−2 4.8

aperture NA=0.9). The Rhodamine B labeled PS-chains were excited by a

HeNe-Ion laser at 543 nm. The intensity for all measurements was 4µW in

sample space. As second setup we used a MicroTime200 (PicoQuant, Berlin,

Germany) [22] with a 100× oil immersion objective (NA=1.45). Here the

detection beam path was divided by a 50/50 beam splitter on two detectors

to crosscorrelate the signals. This crosscorrelation is necessary to prevent

distortion of the fluorescence correlation function by detector afterpulsing.

[23] For details of the FCS-measurements see refs [21, 10, 12].

Cooperative diffusion coefficients Dc were measured by DLS using an ALV

4000 light scattering goniometer (Peter, Germany).

3.3.3 Evaluation of Data

In FCS [24, 21] a laser beam is focused by an objective with high numerical

aperture (typically ≥ 0.9) and excites fluorescent molecules entering the il-

luminated observation volume. The emitted fluorescent light is collected by

the same optics and separated from scattered light by a dichroic mirror. The

emitted light is detected by an avalanche photo diode. The time dependent

intensity fluctuations δI(τ) = I(τ)− 〈I(τ)〉 are analyzed by an autocorrela-

tion function, where 〈 〉 denotes an ensemble average. This autocorrelation
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function can be written as [18]

G(τ) =
1

N

∫
dq Ω(q)C(q, τ) (3.1)

where Ω(q) = π−
3
2w2

x,ywz exp(−w2
x,y(q

2
x+q2

y)/4−w2
zq

2
z/4) is a Gaussian filter

function characterizing the observation volume in Fourier space with
∫
dq Ω(q) =

1, N is the average number of fluorescently labeled molecules in the obser-

vation volume, and q = (qx, qy, qz). Here wx,y = 296 nm is the dimension

of the observation volume perpendicular to the optical axis and wz = 8wx,y

is the dimension along the optical axis. [10, 12] For an ideal gas consist-

ing of non-interacting molecules the initial amplitude reduces to the familiar

relationship G(0) = 1/N . [21]

The time-dependent fluorescence density-density autocorrelation function

C(q, τ) is expressed in terms of a coupled-mode model [25, 26] as

C(q, τ) =
Cc(q, 0)e−q

2φc(τ)/6 + Cs(q, 0)e−q
2φs(τ)/6

Cc(q, 0) + Cs(q, 0)
(3.2)

where q = |q|. Here the mean square displacements φc(τ) and φs(τ) are given

by

φc(τ) = 6Dcτ , (3.3)

φs(τ) = 6Dsτ +Bs(τ) . (3.4)

The term Bs(τ) allows one to take into account the contributions from inter-

nal polymer chain motions. [2] If only a few of the molecules are fluorescently

labeled, the selfdiffusion coefficient Ds can be measured in the FCS exper-

iment. [12] If all of the molecules are fluorescently labeled, the cooperative

diffusion coefficient Dc can be obtained. [19] In the case that neither of these

limits applies, both the self mode and the cooperative mode will be present

in the spectrum of the autocorrelation function. The diffusion coefficients
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can be extracted by fitting

G(τ) =∑
i∈{s,c}

Gi(0)

(
1 +

2φi(τ)

3w2
x,y

)−1(
1 +

2φi(τ)

3w2
z

)−1/2

(3.5)

to the experimental data. FCS is not only sensitive to intensity fluctuations

due to the motion of labled molecules but also due to photokinetic processes

of the fluorescent dyes which occur for short times τ . 5 × 10−3 ms. This

additional relaxation has been taken into account as discussed in ref [10, 27,

12].

DLS allows one to measure the time dependent autocorrelation function

of the scattered electric field which can be expressed in terms of the elements

of the fluid polarizability tensor. [8] For an incident light wave traveling in

the x direction with a polarization vector in the z direction the intensity of

the scattered electric field can be written as

IV V (q, τ) ∼
∫
dr dr′ 〈αzz(r + r′, τ)αzz(r

′, 0)〉 eiq·r ,

(3.6)

where the absolute value of the scattering vector q is given by q = |q| =

(4πn/λ) sin(θ/2) in which n is the refractive index of the medium. λ is the

incident wavelength and θ is the scattering angle. The zz element of the

fluid polarizability tensor is denoted as αzz(r, τ). The experimentally acces-

sible quantity is the intensity autocorrelation function g
(2)
V V (q, τ). For photon

counts obeying Gaussian statistics, the intensity autocorrelation function is

related to the electric field autocorrelation function g
(1)
V V (q, τ) according to

g
(2)
V V (q, τ) = 1 + fV V

(
g

(1)
V V (q, τ)

)2

, (3.7)

where fV V is dependent on the scattering geometry. The electric field corre-

lation function can be calculated for various systems. For a solution contain-
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ing purely diffusing particles the electric field correlation function is given by

g
(1)
V V (q, τ) = exp(−q2Dcτ)/

√
fV V .

3.4 Diffusion Coefficients Measured by FCS
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Figure 3.1: Normalized autocorrelation function obtained from FCS for
polystyrene of molecular weight Mw = 67 kg/Mol in toluene for various poly-
mer concentrations: 0.03 wt% (– –), 9.1 wt% (– ·), 20 wt% (– ··) and 28 wt%
(—). A second diffusion time appears at 20 wt% on a shorter timescale com-
pared to selfdiffusion. The thick solid line is the normalized crosscorrelation
curve without detector afterpulsing for the 28 wt% polymer solution. The
dotted vertical line marks the time scale above which this artefact becomes
negligible, i.e., the solid thin and thick lines coincide for τ > 0.01 ms.

Figure 3.1 shows normalized autocorrelation functions measured by FCS.

The average number of labeled polymers in the observation volume was kept

constant to N ≈ 0.8 whereas the number of unlabeled polymers increases

up to Nu = 3 × 106 for the 28 wt % polymer solution. The thin broken

curves are measured at the ConfoCor2 setup and the thick solid curve is

measured at the MicroTime200 setup. The curves obtained at the ConfoCor2

setup have an additional decay on the time scale less than 10 µs. This

additional decay belongs to detector afterpulsing. Hence, the evaluation of

the correlation curves has been done only for τ ≥ 10 µs as indicated by

the dotted line in Figure 3.1. For low polymer concentrations we obtained

correlation curves with a single diffusion time. With increasing polymer

concentration the correlation curves shift to higher diffusion times.
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As an entirely new finding, Figure 3.1 presents a new mode related to a

second diffusion time measured with FCS at higher polymer concentrations.

This second diffusion time appears at shorter time scales than the one related

to selfdiffusion. The concentration c+ at which the second diffusion time is

detected depends on the molecular weight: The higher the molecular weight,

the lower is c+ (see Table 3.1). In general c+ is about 15× the overlap

concentration determined in an earlier study. [12] For the concentration c+

the ratio between these two diffusion times is in the range of 60. From both

diffusion times we calculated the diffusion coefficients from the relations given

above.
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Figure 3.2: Comparison of selfdiffusion coefficients (Ds, •) with cooperative
diffusion coefficients (Dc, ♦) for different molecular weights: Mw = 11 and
17 kg/Mol (top and bottom). Open and solid symbols refer to DLS and
FCS measurements, respectively. The solid lines represent Ds calculated
according to eq 3.8 with Dc as input from DLS measurements. The dashed
lines represent Dc calculated vice versa, i.e., with Ds as input from FCS
experiments. Insets: Measured ratio Dc/Ds (symbols) together with the
corresponding ratio obtained from eqs 3.8 and 3.9 within a third order virial
approximation (see Table 3.1).
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Figure 3.3: Comparison of selfdiffusion coefficients (Ds, •) with cooperative
diffusion coefficients (Dc, �, ♦) for different molecular weights: Mw = 67, 264
and 515 kg/Mol (from top to bottom). Open and solid symbols refer to DLS
and FCS measurements, respectively. The solid lines represent Ds calculated
according to eq 3.8 with Dc as input from DLS measurements. The dashed
lines represent Dc calculated vice versa, i.e., with Ds as input from FCS ex-
periments. For comparison the dotted lines represents the scaling prediction
Ds ∼ M−2

w c−7/4 for long polymer chains in the semidilute entangled regime
(see eq 3.12). Insets: Measured ratio Dc/Ds (symbols) together with the
corresponding ratio obtained from eqs 3.8 and 3.9 within a third order virial
approximation (see Table 3.1).
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In Figures 3.2 and 3.3 all diffusion coefficients measured with FCS and

DLS are compared at identical conditions. At infinite dilution both diffusion

coefficients Ds and Dc have the same value. In dilute solutions Ds and Dc

show a linear dependency on the concentration as expected according to the

Kirkwood-Riseman theory. [28] But Ds decreases whereas Dc increases with

increasing polymer concentration. The decrease of Ds is due to the friction

between the chains and the increase of Dc is due to the increasing osmotic

pressure. [3, 29] At high concentrations Dc exhibits a maximum.

The insets in Figure 3.2 and Figure 3.3 show the ratio Dc/Ds of measured

values. The lines are theoretical values calculated according to [5, 7]

Dc

Ds

= (1− v̄c) dΠ

dc
(3.8)

with the partial specific volume of the polymer v̄ and the polymer concen-

tration c. The dependence of the osmotic pressure on c can approximated by

a virial expansion

dΠ

dc
= 1 + 2A2Mwc+ 3A3Mwc

2 + . . . , (3.9)

where A2 and A3 are the second and third virial coefficients, respectively, and

Mw is the molecular weight. For the calculation of dΠ /dc we used the corre-

sponding values from the literature gathered in Table 3.1 and v̄ = 0.916 cm3/g.

[30] The measured and the calculated ratio are well described as demon-

strated by the inset of Figures 3.2 and 3.3. The selfdiffusion coefficients Ds

can be determined from the cooperative diffusion coefficient Dc obtained by

DLS measurements and vice versa. Ds and Dc can be measured with high

accuracy by FCS and DLS using the same polymers. Their relation is fully

understood in terms of eq 3.8. For comparison we note that both the molecu-

lar dye diffusion coefficient and the macromolecular tracer diffusion coefficient

decrease with increasing concentration of the matrix polymer. [16]

Figure 3.4 displays the amplitudes Gi(0) (see eq 3.5) as a function of N

for polystyrene with Mw = 67 kg/Mol at 20 wt%. The amplitude of the

selfdiffusion mode Gs(0) is proportional to 1/N . In the presence of non-
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Figure 3.4: Amplitudes Gs(0) (•) and Gc(0) (�) extrapolated from the mea-
sured FCS-autocorrelation function G(τ) as a function of labeled molecules
N for polystyrene with Mw = 67 kg/Mol at 20 wt%. For the selfdiffusion
Gs(0) ∝ 1/N (– –), while Gc(0) exhibits a linear dependence on N (—) for
the cooperative diffusion.

correlated background signal (scattering, afterpulsing, electronic noise) this

is modified to 1/N−2b/N2. [21] Here b is proportional to the noise intensity,

which is assumed to be significantly smaller than the fluorescence signal.

For the cooperative mode one finds an amplitude scaling of 1 − 2bN . For

sufficiently small b, this will yield a dependence as shown by Figure 3.4 for

the fast correlation component.

The ratio Gc(0)/G(0) is a non-monotonic function of the concentration

for a fixed number of labeled molecules N . It increases form 0 to a value

below 1 at the concentration c+. Gc(0)/G(0) slightly decreases upon further

increasing the concentration in the semidilute entangled regime. Finally, it

increases upon approaching the glass transition concentration.

3.5 Scaling Theory and Langevin Equation

Approach

In the following, the findings presented in the previous sections will be com-

pared to current models of polymer diffusion.
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3.5.1 Scaling Theory and Reptation Model

The application of scaling theory and the reptation model to polymer solu-

tions has been presented in various treatises (see, e.g., refs [1, 2, 31, 32]).

Hence, we only discuss the equations necessary for this study. Three con-

centration regimes can be distinguished: dilute, semidilute unentangled, and

semidilute entangled solutions. Scaling arguments and the reptation model

lead to following relations for the selfdiffusion coefficient Ds and the cooper-

ative diffusion coefficient Dc:

Ds = Dc ∼M−3/5
w c0 , c� c∗ , (3.10)

Dc ∼ M0
w c

3/4 , c > c∗ , (3.11)

Ds ∼ M−2
w c−7/4 , c > c∗∗ . (3.12)

Here the overlap concentration c∗ is the boundary concentration between

the dilute and semidilute regimes. This concentration depends on molecular

weight as

c∗ ∼M1−3ν
w = M−4/5

w , (3.13)

where the Flory exponent ν = 3/5 for a good solvent has been used. The

crossover concentration from the semidilute unentangled to the semidilute

entangled regime is denoted as c∗∗.

For very low concentrations in the dilute regime, the selfdiffusion co-

efficient is indistinguishable from the cooperative diffusion coefficient as is

apparent from Figures 3.2 and 3.3. In Figure 3.5 the selfdiffusion coefficient

is plotted as a function of the molecular weight Mw for a fixed concentration

c = 9.1 wt %. The experimental data (solid squares) follow the scaling laws

given by eq 3.10 (dashed line) and eq 3.12 (solid line) for Mw ≤ 20 kg/Mol

and Mw ≥ 264 kg/Mol, respectively. Moreover, Ds is rather independent of

concentration for c . 10 wt % in the case of the low molecular weight solu-

tion (see Figure 3.2 and eq 3.10). The concentration dependence of Ds of the

higher molecular weight solutions (Mw ≥ 264 kg/Mol) is in accord with the

scaling prediction for the reptation model (eq 3.12) which is represented in

Figure 3.3 by the dotted lines. Hence the FCS measurements verify the ba-
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sic scaling and reptation theory for semidilute entangled polymer solutions

similar to earlier forced Rayleigh scattering experiments of polystyrene in

benzene. [9, 33]
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Figure 3.5: The selfdiffusion coefficient Ds (•) measured by FCS at the fixed
concentration c = 9.1 wt % as a function of the molecular weight Mw. The
dashed and solid lines of slope M

−3/5
w (see eq 3.10) and M−2

w (see eq 3.12),
respectively, represent two asymptotic scaling regimes.

In the limit c → 0 the experimental data follow the scaling law given

by eq 3.10 irrespective of the molecular weight, [12] i.e., also the higher

molecular weight PS solutions obey the scaling relation Ds ∼M
−3/5
w c0 . This

result is in agreement with earlier quasi-elastic light scattering experiments

for polystyrene in 2-butanone [34] or in benzene. [3]

3.5.2 Internal Motions of Chains

In order to examine the influence of internal chain motions such as bend-

ing and stretching on the dynamics (see refs [35, 36, 37, 38] and references

therein), one may trace out the internal degrees of freedom of a polymer

chain by studying the monomer mean square displacement Bs(τ) in eq 3.4

in detail. Various theoretical predictions on the time dependence of the

monomer mean square displacement of both continuously and single labeled

DNA molecules in aqueous solution have been verified using FCS measure-

ments. [39, 40, 41, 42, 43, 44] In these earlier experimental and theoretical

studies the Θ condition has been considered. However, for PS in toluene so-
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lutions the intramolecular excluded volume interaction has to be taken into

account. In this case scaling arguments [45, 46] lead to the following time

dependence of the monomer mean square displacement:

Bs(τ) = Bsτ
1/(1+1/(2ν)) = Bsτ

6/11 . (3.14)

It proves convenient to consider the function 1/G(τ)− 1, which amplifies the

time dependence of G(τ) for small times, because w2
z = 64w2

x,y in eq 3.5. [43]

If the autocorrelation function G(τ) exhibits a time dependence according to

eqs 3.4, 3.5, and 3.14 with Gc(0) = 0, a double logarithmic plot will directly

yield the exponent 1/(1+1/(2ν)) for small times provided the intramolecular

dynamics dominates, i.e., Bs(τ) >> 6Dsτ .

Figure 3.6 shows such a representation of the autocorrelation function

for the 515 kg/Mol PS chains in dilute solution. The experimental data

(solid squares) follow the scaling law given by eq 3.14 (dotted line) and the

diffusive behavior (lower dashed line) for short and large times, respectively.

Hence for short times the decay of the autocorrelation function is dominated

by intramolecular chain relaxations, while selfdiffusion dominates for large

times. Figure 3.6 demonstrates that the measured autocorrelation function

agrees with the calculated results (solid line) obtained from eqs 3.4, 3.5, and

3.14 with Ds and Bs as input. The mean displacements
√
φs(τ) as calculated

from eq 3.5 with Gs(0) = 1 and Gc(0) = 0 are given by 131 nm and 598 nm

for τ = 0.01 ms and τ = 1 ms, respectively.

It is apparent from Figure 3.6 that the contribution of internal chain mo-

tions cannot be observed in the case of the 17 kg/Mol PS chains in dilute

solution (solid triangles) because of the dominating diffusive motion (up-

per dashed line). The selfdiffusion coefficient Ds increases upon decreasing

molecular weight according to eq 3.10, while Bs is less dependent on molec-

ular weight. Finally, it is worthwhile to mention the contribution of internal

chain motions to the dynamics decreases upon increasing the polymer con-

centration because of the presence of the surrounding polymer chains. [45, 47]
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Figure 3.6: The autocorrelation function 1/G(τ)−1 of a 515 kg/Mol (�) and
a 17 kg/Mol (N) polystyrene solution measured by FCS in the limit c→ 0 as a
function of the time τ . The dotted and dashed lines of slope τ 6/11 (see eq 3.14)
and τ (see eq 3.4), respectively, represent two asymptotic scaling regimes.
The solid line displays the result for the 515 kg/Mol polystyrene solution as
obtained from eq 3.5 with eqs 3.4 and 3.14 as input. The autocorrelation
function of the 17 kg/Mol polystyrene solution (N and upper dashed line) is
shifted up by a factor of 2.

3.5.3 Cooperative Diffusion

We now turn our attention to the scaling law for the cooperative diffusion

coefficient given by eq 3.11. Figure 3.7 displays the cooperative diffusion

coefficient Dc of the 515 kg/Mol PS solution (solid squares) together with

the scaling law (dashed line) as a function of the concentration. Several

experimental measurements have yielded the concentration dependence Dc ∼
c0.65 instead of the scaling prediction Dc ∼ c3/4 = c0.75. [3, 48, 49, 50, 51]

Various possible explanations for these deviations from the scaling law have

been discussed, [52, 53] such as the countermotion of the solvent induced by

the motion of the polymers. On the basis of our results shown in Figure 3.7

we note that the transition between the dilute regime with Dc ∼ c0 (dotted

line and eq 3.10) and the semidilute unentangled regime with Dc ∼ c3/4

(dashed line and eq 3.11) is not so abrupt, as has been assumed by scaling

theories, but is a rather smooth crossover that extends over more than one

order in magnitude of concentration.

It has been emphasized that it would be desirable to model the dynamics
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both in the dilute regime and the semidilute regimes explicitly within one

theoretical approach. [31] Successful models should incorporate the transition

region between the dilute regime and the semidilute regimes. In the next

subsection we provide a quantitative basis for such a modelling of cooperative

dynamical properties of polymer chains in good solution.
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Figure 3.7: The normalized cooperative diffusion coefficient Dc (�; DLS)
of a 515 kg/Mol polystyrene solution as a function of the concentration c.
The dashed and dotted lines of slope c3/4 (see eq 3.11) and c0 (see eq 3.10),
respectively, represent two asymptotic scaling regimes. The solid line displays
the results as obtained from the Langevin and generalized Ornstein-Zernike
equation according to eqs 3.17 - 3.23. The arrow marks the location of
the concentration c+ = 0.044 g/ml at which the cooperative diffusion mode
appears in the FCS measurements (see Figure 3.3).

3.5.4 Analytical Theory: Langevin and Generalized

Ornstein-Zernike Equation

We consider a monodisperse polymer solution consisting of Ntot = N + Nu

polymer chains and the solvent. Each polymer chain carries n scattering

units. The total dynamic scattering function Stot(q, φ, τ) is defined as

Stot(q, φ, τ) =
1

Ntot n2

〈
Ntot∑
α,γ=1

n∑
j,k=1

eiq·(rαj(τ)−rγk(0))

〉
,

(3.15)
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where q = |q| is the magnitude of the scattering vector q and 〈 〉φ denotes

an ensemble average for a given polymer volume fraction φ. Here rαj(τ)

is the position vector of the j-th scattering unit (1 ≤ j ≤ n) of the α-th

particle (1 ≤ α ≤ Ntot) at time τ . The normalized total dynamic scattering

function is related to the electric field autocorrelation function measured by

DLS according to Stot(q, φ, τ)/Stot(q, φ, 0) = g
(1)
V V (q, τ)

√
fV V . (see eq 3.7).

The time evolution of the total dynamic scattering function is assumed to be

governed by the Langevin equation [2]

d

dτ
Stot(q, φ, τ) = −Γ(q, φ)Stot(q, φ, τ) . (3.16)

The validity of this equation is not obvious since entanglements have not

been taken into account in the derivation of this equation. [2] However, the

short time-scale dynamics can be described by eq 3.16 since the topological

constraints are not so important in the short time-scale dynamics as is appar-

ent from the fact that the cooperative diffusion coefficient Dc is considerably

larger than the selfdiffusion coefficient Ds in the semidilute entangled regime

(see Figure 3.3). The decay rate Γ(q, φ) is given by [2]

Γ(q, φ) =

kBT

4π2η

∞∫
0

dq1 q
2
1

Stot(q1, φ, 0)

Stot(q, φ, 0)

(
q2

1 + q2

2q1q
log

∣∣∣∣q1 + q

q1 − q

∣∣∣∣− 1

)
,

(3.17)

where the temperature T and the viscosity η characterize the solvent. The

volume fraction-dependent cooperative diffusion coefficient Dc(φ) can be cal-

culated according to

Dc(φ) = lim
q→0

Γ(q, φ)

q2
. (3.18)

Furthermore, the total static scattering function reads

Stot(q, φ, 0) = 1 + φh(q, φ)/(VpP (q, φ)) , (3.19)
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where Vp is the volume of a dissolved polymer chain and h(q, φ) is a particle-

averaged total correlation function. The particle-averaged intramolecular

correlation function

P (q, φ) =
1

Ntot n2

〈
Ntot∑
α=1

n∑
j,k=1

eiq·(rαj(0)−rαk(0))

〉
,

(3.20)

characterizes the geometric shape of the polymer chains at a given volume

fraction φ. While the particle-averaged intramolecular correlation function

accounts for the interference of radiation scattered from different parts of the

same polymer chain in a scattering experiment, the local order in the fluid

is characterized by h(q, φ). The particle-averaged total correlation function

is related to a particle-averaged direct correlation function c(q, φ) by the

generalized Ornstein-Zernike equation of the Polymer Reference Interaction

Site Model (PRISM), which reads (see refs [54, 55, 56] and references therein)

h(q, φ) = P 2(q, φ)c(q, φ)/(1− φc(q, φ)P (q, φ)/Vp) . (3.21)

This generalized Ornstein-Zernike equation must be supplemented by a clo-

sure relation. If the interaction sites are simply the centers of exclusion

spheres, to account for steric effects, a convenient closure is the Percus-Yevick

approximation. [54] The PRISM integral equation theory has been success-

fully applied to various experimental systems such as polymers, [54, 57]

bottle-brush polymers, [58, 59] rigid dendrimers, [60, 61] and charged col-

loids. [62, 63, 64, 65, 66, 67, 68, 69]

The overall size of the polymer chains is reduced considerably upon in-

creasing the volume fraction implying a concentration dependence of the

particle-averaged intramolecular correlation function P (q, φ). Therefore, we

consider the following particle-averaged intramolecular correlation function

[70]

P (q, φ) =
(
1 + 0.549 q2r2

g(φ)
)−5/6

(3.22)
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with the volume fraction dependent radius of gyration

r2
g(φ) =

 r2
g(0) , c < c∗

r2
g(0)

(
c
c∗
)−1/8

, c > c∗
. (3.23)

Here the relation between the volume fraction φ and the concentration c is

given by φ = v̄c, where v̄ = 0.916 cm3/g is the specific weight of PS. [30] The

scaling law given by eq 3.23 has been confirmed experimentally for PS in a

good solvent using small angle neutron scattering. [71]

Figure 3.7 demonstrates that the measured cooperative diffusion coeffi-

cients (solid squares) agree with the calculated results (solid line) obtained

from eqs 3.17 - 3.23 both in the dilute and semidilute regimes. In particular,

the features of the broad crossover region between the dilute and the semidi-

lute regimes are captured correctly by the integral equation theory. In the

calculations the model parameter c∗ = 0.0032 g/ml [12] and rg(0) = 32.8 nm

for the 515 kg/Mol PS solution has been used. This radius of gyration is

about 6 % larger than corresponding radii of gyration of PS in various good

solvents. [20, 72, 8, 73] The deviation between the radius of gyration used

in the calculations and the radii of gyration reported in the literature might

be due to the fact that the hydrodynamic interaction has been taken into

account in terms of the Oseen tensor in order to derive eq 3.17. Using the

Rotne-Prager tensor [74, 75] as a first correction to the Oseen tensor will

improve the results. Moreover, the size polydispersity Mw/Mn = 1.09 of the

515 kg/Mol PS solution leads to a diffusion coefficient which is characteristic

for monodisperse polymers of larger radius of gyration. [76]

Finally, we note that the maximum of Dc in the semidilute entangled

regime marks the onset of glassy dynamics which is discussed in ref [51]. The

friction-controlled dynamics in this concentration regime is not captured by

eqs 3.16 and 3.17 and will be discussed in subsection 3.5.6.
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3.5.5 Coupling of Cooperative Fluctuations with Sin-

gle Polymer Chain Motion

In the following we shall discuss the equation of motion which determines

the dynamics an individual polymer chain. The PS chains are linear chain

molecules which are described by a chain model for macromolecules. [35,

75, 36] We consider a continuous, differentiable space curve r(s, τ), where

s ∈ [−L/2, L/2] is a coordinate along the macromolecule and r(L/2, τ) is

the position vector of the labeled end monomer. The Langevin equation of

motion including hydrodynamic interaction is given by [75]

3πη
∂

∂τ
r(s, τ) =

L/2∫
−L/2

ds′ (3πηH(s− s′) + δ(s− s′))

× (O(s′)r(s′, τ) + f(s′, τ)) + F(s, τ), (3.24)

with

O(s) = 3kBTp
∂2

∂s2
− 3kBT

4p

∂4

∂s4
. (3.25)

Here 1/(2p) is the persistence length, H(s − s′) is the hydrodynamic inter-

action tensor, and f(s, τ) is the stochastic force. The force F(s, τ) describes

the influence of intermolecular forces and is discussed below. The numerical

solution of eq 3.24 allows one to calculate the mean square displacement (see

eq 3.4) according to

φs(τ) =
〈
(r(L/2, τ)− r(L/2, 0))2〉 . (3.26)

This chain model has been used in the limit F(s, τ) = 0 in order to describe

FCS measurements of DNA molecules in dilute solution. [41, 42, 43] In par-

ticular, the model predicts the observed crossover from subdiffusive motion

(Bs(τ) in eq 3.4) to diffusive motion (6Dsτ in eq 3.4) upon increasing the

time τ . Moreover, it has been shown that the chain ends are more

mobile than the central part of the polymer chain for short times.
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[43] For comparison we note that the quantity φs(τ) contributes to the so

called incoherent dynamic structure factor which is accessible by quasielastic

neutron scattering (see ref [77] and references therein).

The key physics determining the dynamics of chain molecules in semidi-

lute entangled solution arises from the intermolecular interaction which are

taken into account in terms of the force F(s, τ) in eq 3.24. Various expressions

for the force F(s, τ) have been proposed (see, e.g., refs [78, 79, 80, 81, 82,

83, 84, 85, 86]). These earlier theoretical considerations have demonstrated

the coupling of cooperative fluctuations with single polymer chain motion in

the semidilute entangled regime. This coupling allows one to measure Dc

from the dynamics of individual labeled polymer chains with FCS. Hence, it

provides the explanation for the finding of a cooperative mode in the FCS-

experiment. The topological interaction in semidilute entangled polymer

solutions seriously affects dynamical properties since it imposes constraints

on the motion of the polymers. When the motion of a single polymer chain

is partly hindered by the presence of other chains the cooperative diffusion

becomes highly correlated and can be studied using only a small fraction of

labeled molecules. Moreover, the number of molecules statistically involved

in the correlated dynamics increases considerably upon approaching the glass

transition concentration.

Figures 3.8 (a) and (b) display the function 1/G(τ)−1 for the 17 kg/Mol

PS chains and the 515 kg/Mol PS chains in dilute solution (solid squares,

c→ 0) and in semidilute solution (solid triangles, c = 13 wt %). For the 17

kg/Mol PS chains only selfdiffusion can be measured using FCS irrespective

of the concentration (see Figure 3.8 (a)) because of insufficient chain overlap.

In the case of the 515 kg/Mol PS chains selfdiffusion dominates for large

times as is indicated by the dashed lines in Figure 3.8 (b). The cooperative

diffusion observed in the semidilute entangled solution (solid triangles in

Figure 3.8 (b)) dominates the autocorrelation function on the same time

scale as intramolecular chain relaxations in the case of a dilute solution (solid

squares in Figure 3.8 (b)). Hence one may conclude that upon increasing

the polymer concentration the contribution of internal chain motions to the

single chain dynamics decreases while the contribution of the cooperative
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motions increases because of the fluctuations of the surrounding polymer

chains. Both types of dynamics are observable on the same time scale but

in different concentration regimes for high molecular weight PS chains. In

the case of internal chain motions the dynamics is driven by fluctuations of

the solvent while fluctuations of the surrounding polymer network induce the

cooperative dynamics. The fact that cooperative diffusion and internal chain

motions occur on similar time and length scales has already been discussed

earlier (see ref [87] and references therein).

10
-2

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

(b)

selfdiffusion

collective diffusion

~ �

1
/G

( �
)-

1

� [ms]

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

(a)

selfdiffusion

~ �

1
/G

( �
)-

1

Figure 3.8: The FCS autocorrelation function 1/G(τ) − 1 of 17 kg/Mol
polystyrene chains (a) and 515 kg/Mol polystyrene chains (b) in dilute so-
lution (�, c→ 0) and in semidilute solution (N, c = 13 wt %). The dashed
lines of slope τ characterize selfdiffusion. Intramolecular motions and cooper-
ative diffusion dominate in dilute and semidilute entangled solution, respec-
tively, for short times in the case of the high molecular weight polystyrene
chains in (b).

Without entanglements the local concentration fluctuations at low scat-

tering vectors q are suppressed by the osmotic pressure of the solution, and

the total dynamic scattering function Stot(q, φ, τ) measured by DLS decays

via cooperative diffusion according to eqs 3.16 - 3.18. However, in the pres-

ence of entanglements, there is an additional suppression of concentration
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fluctuations. Some concentration fluctuations may be frozen in by the entan-

glements. [88, 89, 90] This fraction of light scattering signal may only decay

with the spectrum of relaxation times of the entanglements themselves, lead-

ing to a slow relaxation of the total dynamic scattering function as is shown

in Figures 3.9 (a) and (b) for the 67 kg/Mol and 515 kg/Mol PS chains

in semidilute entangled solution at c=13 % wt (solid triangles). The corre-

sponding upper solid lines in Figures 3.9 (a) and (b) have been calculated

according to

Stot(q, φ, τ) = Sc(q, φ) exp(−q2Dcτ)

+ Ssl(q, φ) exp(−τ/τsl) , (3.27)

where τsl is a decay time. For arbitrary values of the magnitude of the scat-

tering vector q and the volume fraction φ, the shape of the total dynamic

scattering function Stot(q, φ, τ) is more complex than the expression given in

eq 3.27. For large values of q intramolecular motions lead to a stretched expo-

nential decay of Stot(q, φ, τ) for short times (see e.g., refs [75, 76]). Moreover,

the contribution of the slow relaxation to Stot(q, φ, τ) is in general given by a

linear combination of exponentially decaying functions, i.e.,
∑

i exp(−τ/τi,d).
[91, 92]

Experiments on PS in various solvents have confirmed that the slow re-

laxation can be measured using DLS. [93, 94, 95, 96, 97, 98, 99, 100, 101]

However, the microscopic understanding of the slow relaxation needs to be

improved. [102] On the basis of our FCS and DLS measurements shown in

Figures 3.8 and 3.9 we note that selfdiffusion (Ds) occurs on an intermediate

time scale, i.e., 1/(q2Dc) = 0.05 ms, 1/(q2Ds) = 16 ms, and τsl = 1087 ms

for q = 157.6µm−1 for the 515 kg/Mol PS chains. For comparison Figures

3.9 (a) and (b) also display the measured total dynamic scattering function

of the PS chains in semidilute unentangled solution (solid squares). In this

case there is no slow relaxation due to insufficient chain overlap. The cor-

responding lower solid lines in Figures 3.9 (a) and (b) have been calculated

according to eq 3.27 with Ssl(q, φ) = 0.
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Figure 3.9: The total dynamic scattering function Stot(q, φ, τ) of 67 kg/Mol
polystyrene chains (a) and 515 kg/Mol polystyrene chains (b) measured by
DLS in semidilute unentangled solution (�, c = 1 wt %) and in semidilute
entangled solution (N, c = 13 wt %). The solid lines follow from eq 3.27.
For short times cooperative diffusion dominates, while the slow relaxation
dominates for very large times in semidilute entangled solution. There is no
slow relaxation in semidilute unentangled solution, i.e., Ssl(q, φ) = 0 in eq
3.27. The absolute value of the scattering vector is given by q = 157.6µm−1.
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Figure 3.10: Schematic illustration of the cooperative diffusion process which
is related to the relaxation of the total polymer number density towards the
average total number density. The polymer chain denoted by the index 1
moves in (a) and (b) from left to right into the FCS observation volume
enclosed by the grey ellipsoidal lines. The polymer chain diffuses into the
observation volume nearly without influencing the locations of the remaining
polymer chains in an unentangled solution in (a), while the motion of the
polymer chain leads to coherent movement of the surrounding polymer chains
in semidilute entangled solution in (b). The size of the polymer chains, the
size observation volume, and the number of polymer chains are not drawn to
absolute scale. Only the fact that in (b) the motion of the unlabeled polymer
chain denoted by the index 1 induces a correlated movement of the labeled
polymer chain denoted by the index 2 into the observation volume is relevant.
Each labeled polymer chain carries only one dye molecule at one of its ends
which is marked by a black dot. As the labeled polymer chain denoted by
the index 2 diffuses into the observation volume from left to right in (b), it
causes temporal fluctuations of the detected fluorescence intensity which can
be measured by FCS even in the case that the number of labeled polymer
chains is considerably smaller than the number of unlabeled polymer chains.
In addition selfdiffusion can be measured using FCS both in (a) and (b) as
discussed in Section IV A. In (b) selfdiffusion of polymer chains corresponds
to movements of the polymer chains along their contour through the transient
network.
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The direct DLS measurement of the slow relaxation confirms our earlier

remark that cooperative diffusion becomes highly correlated in the transient

entanglement network and can be studied using only a small fraction of la-

beled polymer chains within FCS. As is illustrated in Figure 3.10 (b) unla-

beled polymer chains (see, e.g., the polymer chain denoted by the index 1)

and labeled polymer chains (see, e.g., the polymer chain denoted by the index

2) move in a coherent manner due to entanglements into the FCS observa-

tion volume enclosed by the grey ellipsoidal lines. The resulting temporal

fluctuations of fluorescence light emitted by labeled polymer chains can be

detected by FCS in terms of the cooperative diffusion. A spherical volume

of mean size equivalent to the radius of gyration of an individual polymer

chain contains about 15 polymer chains at the concentration c+ at which co-

operative diffusion is measured with FCS. Consequently, neighbouring chains

strongly interpenetrate and entangle with each other leading to highly coop-

erative motions in this correlated state. Without entanglements cooperative

diffusion cannot be detected if only a small fraction of the polymer chains

are labeled due to insufficient chain overlap. Hence in dilute and semidilute

unentangled solutions the unlabeled polymer chain denoted by 1 in Figure

3.10 (a) moves from left to right into the FCS observation volume nearly

without influencing the remaining labeled and unlabeled polymer chains.

3.5.6 Onset of Glassy Dynamics

Upon approaching the glass transition concentration cgl ≈ 80 wt % of PS in

toluene, [51, 103] the dynamics of the polymer chains slows down considerably

(see ref [104] and references therein). A first signature of this slowing down

is given by the deviations of the measured cooperative diffusion coefficients

Dc from the solid line at high concentrations in fig 3.7. The cooperative

diffusion coefficient decreases by more than three decades as compared to its

maximum value upon further increasing the concentration (see fig 6 in ref

[51]). A second signature of the onset of glassy dynamics is given by the

shape of the autocorrelation function G(τ) measured with FCS. Figure 3.11

displays measured functions 1/G(τ) − 1 (solid symbols) for the 515 kg/Mol
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PS chains at three concentrations c = 9.1, 13, and 20 wt % together with the

autocorrelation function for the highest concentration (solid line) calculated

according to eq 3.5 with eq 3.3 and

φs(τ) = 6Dsτ + Asτ
β , β = 0.3 . (3.28)

Subdiffusive motion characterized by the stretching parameter β is observed

as an additional mode on an intermediate time scale between the fast coop-

erative diffusion (Dc) and the slow selfdiffusion (Ds). The dotted line in fig

3.11 represents the asymptotic shape of 1/G(τ)− 1 in the intermediate time

regime. Both the exponent β = 0.3 and the time scale agree with literature

values for PS. [51, 105]

Figure 3.11: The measured FCS autocorrelation function 1/G(τ) − 1 of a
515 kg/Mol polystyrene solution at three concentrations: c = 9.1 wt %, (•);
c = 13 wt %, (N); c = 20 wt %, (�). The solid line displays the result for
the highest concentration as obtained from eq 3.5 with eqs 3.4 and 3.28
as input. For short and large times cooperative diffusion and selfdiffusion
dominate, respectively. The dotted line represents the asymptotic shape of
the autocorrelation function in the intermediate time regime.
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3.6 An Application: Comparison with Mini-

mum Concentration Required to Produce

Nanofibers

The understanding of dynamical properties of semidilute entangled polymer

solutions is also important for various technological relevant applications. As

an example we discuss the formation of nanofibers from polymer solutions.

Polymer nanofibers are attractive building blocks for functional nanoscale

devices. They are promising candidates for various applications, including

filtration, protective clothing, polymer batteries, sensors, and tissue engi-

neering. [106, 107] Electrospinning is one of the most established fiber fabri-

cation methods and has attracted much attention due to the ease by which

nanofibers can be produced from polymer solutions. [108] Fibers produced

by this approach are at least one or two orders of magnitude smaller in di-

ameter than those produced by conventional fiber production methods like

melt or solution spinning. In a typical electrospinning process a jet is ejected

from the surface of a charged polymer solution when the applied electric field

strength overcomes the surface tension. The ejected jet travels rapidly to the

collector target located at some distance from the charged polymer solution

under the influence of the electric field and becomes collected in the form

of a solid polymer nanofiber. However, this method requires a dc voltage in

the kV range and high fiber production rates are difficult to achieve because

only a single fiber emerges from the nozzle of the pipet holding the polymer

solution. [108] In order to overcome these deficiencies an efficient procedure

enabling the parallel fabrication of a multitude of polymer fibers with regu-

lar morphology and diameters as small as 25 nm has been reported recently.

[109] It involves the application of drops of a polymer solution onto a stan-

dard spin coater, followed by fast rotation of the chuck, without the need of

a mechanical constriction. The fiber formation relies upon the instability of

the spin-coated liquid film that arises due to a competition of the centrifugal

force and the Laplace force induced by the surface curvature. This Rayleigh-

Taylor instability triggers the formation of thin liquid jets emerging from the
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outward driven polymer solution, yielding solid nanofibers after evaporation

of the solvent.
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Figure 3.12: The concentration c+ (•) at which the cooperative diffusion
mode appears in the FCS measurements together with the minimum con-
centration cfib (�) required to produce nanofibers [109] as a function of the

molecular weight Mw. The solid line of slope M
−4/5
w represents a scaling

relation valid for polymers in a good solvent.

The reason why the ejected jets of polymer solution do not further break

up into individual droplets, but rather give rise to continuous, solid nanofibers,

is the related to the dynamic properties of the polymer solutions. In order

elucidate this point in more detail, Figure 3.12 displays the minimum concen-

tration cfib required to produce nanofibers from 200 kg/Mol and 950 kg/Mol

poly-(methylmethacrylate) solution (open squares) [109] together with the

concentration c+ at which the cooperative diffusion mode appears in the

FCS measurements of the 67 kg/Mol, 264 kg/Mol, and 515 kg/Mol PS so-

lutions (solid circles). Interestingly, the concentrations cfib and c+ follow

approximately the same scaling relationship cfib = c+ ∼ M
−4/5
w (c.f., eq

3.13). Hence, the nanofiber formation requires that the polymer concentra-

tion exceeds the concentration c+ where basically all molecules are involved

in the correlated cooperative dynamics. Uniform fibers cannot be obtained

for lower concentrations due to insufficient chain overlap and the dominating

selfdiffusion which leads to a disentanglement under the influence of external

forces such as the centrifugal force or the electrostatic force.
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3.7 Conclusion

A general analysis of the diffusion in polystyrene solutions obtained by flu-

orescence correlation spectroscopy and by dynamic light scattering has been

presented. Two different diffusion coefficients have been obtained with fluo-

rescence correlation spectroscopy using single-labeled polystyrene in toluene

solutions [Figures 3.1 - 3.4]. The selfdiffusion coefficient Ds results from

fluorescence correlation spectroscopy in the limit of small concentrations of

labeled molecules and for arbitrary concentrations of unlabeled molecules.

Moreover, the cooperative diffusion coefficient Dc in the semidilute entangled

regime becomes accessible as well which is ascribed to an effective long-range

interaction of the labeled chains in the transient entanglement network. The

selfdiffusion coefficients Ds can be determined from the cooperative diffusion

coefficient Dc obtained by dynamic light scattering measurements and vice

versa according to eqs 3.8 and 3.9.

The measurements verify the basic scaling and reptation theory for semidi-

lute entangled polymer solutions [Figures 3.3, 3.5, 3.6 and eqs 3.10, 3.12,

3.14]. A quantitative basis for the modelling of the cooperative diffusion co-

efficient is given by a Langevin and generalized Ornstein-Zernike equation

[eqs 3.15 - 3.23]. The calculated cooperative diffusion coefficients agree with

the measured results both in the dilute and semidilute regimes [Figure 3.7].

In particular the features of the crossover region between the dilute and the

semidilute regimes are captured correctly by the underlying integral equation

theory.

For large times the decay of the fluorescence correlation spectroscopy

autocorrelation function is dominated by selfdiffusion, while intramolecular

chain relaxations in dilute solution and cooperative diffusion in semidilute

entangled solution dominate for short times [Figures 3.6 and 3.8]. An ad-

ditional slow relaxation in semidilute entangled solution can be observed by

dynamic light scattering [Figure 3.9]. Moreover, the fluorescence correlation

spectroscopy autocorrelation function exhibits an additional mode on an in-

termediate time scale upon approaching the glass transition concentration

[Figure 3.11].



98 BIBLIOGRAPHY

Finally, it has been shown the minimum concentration required to pro-

duce solid nanofibers from a polymer solution follows the same scaling rela-

tionship as the concentration at which the cooperative diffusion mode appears

in the fluorescence correlation spectroscopy measurements [Figure 3.12]. The

nanofiber formation requires that the polymer concentration exceeds the con-

centration where basically all molecules are involved in the correlated coop-

erative dynamics. Hence fluorescence correlation spectroscopy is helpful for

the understanding of dynamical properties of semidilute entangled polymer

solutions in the case of technological relevant applications.
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4.1 Abstract

We present an identification of the manner in which the dynamics of tracer

polystyrene chains varies with the concentration of matrix polystyrene chains

dissolved in toluene. Using fluorescence correlation spectroscopy and theory,

it is shown that the cooperative diffusion coefficient of the matrix polystyrene

chains can be measured by fluorescence correlation spectroscopy in the semidi-

lute entangled concentration regime. In addition the self-diffusion coefficient

of the tracer polystyrene chains can be detected for arbitrary concentrations.

The measured cooperative diffusion coefficient is independent of the molec-

ular weight of the tracer polystyrene chains because it is a characteristic

feature of the transient entanglement network.

4.2 Introduction

The dynamics of solutions composed of high molecular weight polymer chains

differs qualitatively from the dynamics of simple fluids due to entanglements.

At a microscopic scale, entanglements arise from the fact that linear poly-

mer chains are one-dimensionally connected objects which cannot cross each

other. The resulting topological interaction strongly affects dynamical prop-

erties since it imposes constraints on the motion of the polymer chains. The

common interpretation of the physical origin of entanglement phenomena is

that a transient network emerges due to the interactions between the poly-

mer chains. The so-called reptation model is the most developed and widely

applied phenomenological theory for the motion of polymer chains (see e.g.,

ref [2] and references therein). It focusses on the motion of a single polymer

chain in an static field due to the surrounding polymer chains. Although

widely accepted, there are significant discrepancies between predictions of

the reptation model and experiments on polymer solutions because the sur-

rounding polymer chains due not act as a static field but exhibit themselves

cooperative fluctuations. Hence there is an important coupling between the

single polymer chain motion and the cooperative network fluctuations. As a

result of this coupling it should be possible to detect both the single polymer
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and the cooperative dynamics using the same experimental technique. Re-

cently it has been demonstrated that two different diffusion coefficients can

be obtained with fluorescence correlation spectroscopy (FCS) using single-

labeled polystyrene (PS) homopolymer solutions [1]. The self-diffusion coef-

ficient Ds(c) results from FCS in the limit of small concentrations of labeled

PS chains and for arbitrary concentrations c of unlabeled PS chains. More-

over, the cooperative diffusion coefficient Dc(c) becomes accessible in the

semidilute entangled regime due to an effective long-range interaction in the

transient entanglement network. The self-diffusion coefficient describes the

motion of one molecule relative to the surrounding molecules due to ther-

mal motions while the cooperative diffusion coefficient describes the motion

of a number of molecules in a concentration gradient. It has been pointed

out that measurements of both Ds(c) and Dc(c) are very interesting since a

central problem in the dynamics of semidilute entangled polymer solutions is

the quantitative understanding of the interplay of self-diffusion and coopera-

tive diffusion. Motivated by this prospect, we therefore extend our previous

study of homopolymer solutions [1] to the case of macromolecular tracer dif-

fusion as is illustrated in figure 4.1. Hence we study the dynamics of long

end-labeled tracer PS chains (black wriggled lines in figure 4.1) immersed

in a polymer solution consisting of shorter matrix PS chains (gray wriggled

lines in figure 4.1). The study is devoted to an understanding of the coupling

of self- and cooperative motion due to topological constraints. Varying the

concentration and the molecular weight of the matrix PS chains allows us to

modify these topological constraints.

4.3 Dye Labeled Tracer Polystyrene Chains

Linear PS chains with different molecular weights and low polydispersity

were prepared as discussed in ref. [2]. Our samples were composed of a small

concentration (around 10−8 M) of Rhodamine B labeled tracer PS chains

of molecular weight M
(tr)
w in toluene solutions in which matrix PS chains

of molecular weight M
(ma)
w were dissolved at various concentrations. The

resulting systems are denoted as PS-M
(tr)
w /M

(ma)
w as is indicated in table 4.1.
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Figure 4.1: Schematic illustration of a polymer solution composed of a small
concentration of labeled tracer polymer chains (black wriggled lines) and
matrix polymer chains of different molecular weight (gray wriggled lines).
Each labeled polymer chain carries only one dye molecule at one of its ends
which is marked by a black dot. The FCS observation volume is enclosed
by the thick gray ellipsoidal line. The size of the polymer chains, the size
observation volume, and the number of polymer chains are not drawn to
absolute scale. Only the fact that the molecular weight of the matrix polymer
chains can be different from that of the tracer polymer chains is relevant.

Each labeled PS chain carries only one dye molecule at one of its ends. We

have used preparative gel permeation chromatography to separate labeled

polymer chains and free dye molecules [2, 3]. Therefore, the resulting PS

solutions do not contain any measurable amount of free dye molecules.

Table 4.1: Molecular weights M
(tr)
w and M

(ma)
w of the tracer and matrix PS

chains, respectively. The concentration at which the fast diffusion process
appears in the FCS measurements is denoted as c+. In the main text and
the figures the various PS solutions are denoted by the names given in the
first column of the table. For comparison the overlap concentration c? of the
matrix PS chains is shown in the last column.

Name M
(tr)
w [kg/mol] M

(ma)
w [kg/mol] c+[wt%] c?[wt%]

PS-17/17 17 17 3.5
PS-264/17 264 17 3.5
PS-67/67 67 67 20.0 1.4
PS-264/67 264 67 20.0 1.4
PS-264/264 264 264 6.5 0.54
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4.4 Fluorescence Correlation Spectroscopy

FCS is a method relying on the detection and temporal analysis of the flu-

orescence signal emitted from a small confocal detection volume (see e.g.,

refs. [24, 4]). A laser beam is focused by an objective with high numerical

aperture and excites fluorescent molecules entering the illuminated observa-

tion volume. Our FCS setup is based on the commercial ConfoCor2 setup

(Carl Zeiss, Jena, Germany) [4] with a 40× Plan Neofluar objective char-

acterized by the numerical aperture NA=0.9. Fluorescence is excited by a

He Ne-Ion laser at a wavelength of 543 nm. As a second setup we used a

MicroTime200 (PicoQuant, Berlin, Germany) [5] with a 100× oil immersion

objective (NA=1.45). Here the detection beam path was divided by a 50/50

beam splitter on two detectors to crosscorrelate the signals. This crosscorrela-

tion is necessary to prevent distortion of the fluorescence correlation function

by detector afterpulsing [6]. For details of the FCS-measurements see refs.

[4, 2, 7].

The emitted fluorescent light is detected by an avalanche photo diode.

The time dependent intensity fluctuations are analyzed by an autocorrelation

function G(τ, c), where τ denotes the time. In order to account for the

possibility of the contribution of both self-diffusion and cooperative diffusion,

the function

G(τ, c) =
∑
i∈{s,c}

Gi(0, c)

(
1 +

4Di(c)τ

w2
x,y

)−1(
1 +

4Di(c)τ

w2
z

)−1/2

(4.1)

is used to describe the experimental data [1]. Here wx,y = 296 nm is the

dimension of the observation volume perpendicular to the optical axis and

wz = 8wx,y is the dimension along the optical axis. Gi(0, c) characterizes

the contribution of the i-th component to the total amplitude G(0, c) of

the autocorrelation function. In equation (3.1) normal diffusion with mean

square displacements φi(τ, c) = 6Di(c)τ has been assumed. Deviations from

normal diffusion are due to internal chain motions (see e.g., refs. [1, 8, 9, 10,

43, 44] and references therein) or due to molecular crowding (see e.g., refs.

[1, 11, 12, 13, 14, 15, 16] and references therein).
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FCS is not only sensitive to intensity fluctuations due to the motion of

labeled molecules but also due to photokinetic processes of the fluorescent

dyes which occur for short times τ < 5×10−3 ms. This additional relaxation

has been taken into account as discussed in refs. [2, 3, 7].

4.5 Autocorrelation Functions Measured by

FCS

Two different types of macromolecular tracer diffusion behavior were ob-

tained depending on the concentration and the molecular weight of the ma-

trix polymer chains, as illustrated in figure 4.2. For the PS-264/17 sample

containing short matrix PS chains (M
(ma)
w = 17 kg/mol, see table 4.1), the

measured autocorrelation function is characterized by a single self-diffusion

process for arbitrary concentrations (open squares in figures 4.2 (a) - (d)).

With increasing concentration the decay of the autocorrelation function shifts

to longer times. The simple self-diffusion model given by equation (3.1) with

Gs(0, c) = 1 and Gc(0, c) = 0 is successful in describing the autocorrela-

tion data for such systems. This holds also for solutions containing longer

matrix PS chains for low concentrations (PS-264/67 in figures 4.2 (a), (b)

and PS-264/264 in figure 4.2 (a)). However, for higher concentrations, the

simple self-diffusion model no longer describes the data in the case of the

longer matrix PS chains. The autocorrelation data exhibit a second decay

time on a shorter time scale (solid circles in figures 4.2 (c), (d) and crosses

in figures 4.2 (b) - (d)). The experimental data can be described taking into

account both self-diffusion and cooperative diffusion in equation (3.1), i.e.,

Gc(0, c) 6= 0. The concentration c+ at which the second fast diffusion process

is detected depends on the molecular weight of the matrix PS chains. Upon

decreasing the molecular weight of the matrix PS chains the concentration

c+ decreases (see table 4.1). In the case of the short matrix PS chains of

molecular weight M
(ma)
w = 17 kg/mol no second diffusion process has been

observed as already mentioned above. As the entanglement molecular weight

of PS is 18 kg/mol, entanglements of matrix polymer chains are not possible
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at any concentration of the short matrix PS chains of molecular weight 17

kg/mol [17].

An important result of the analysis of the autocorrelation functions for

various concentrations is that the concentration c+ is independent of the

molecular weight of the tracer PS chains. For example, c+ = 20.0 wt% for

both the PS-67/67 and the PS-264/67 sample (see table 4.1). Moreover,

only self-diffusion can be observed for both the PS-17/17 and the PS-264/17

sample, i.e., no concentration c+ can be defined for these samples (see table

4.1). Hence the fast diffusion process is not a characteristic property of the

tracer PS chains but is related to the dynamics of the surrounding matrix

PS chains as will be discussed in more detail in the next section.

G
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)

�
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Figure 4.2: Normalized autocorrelation functions obtained from FCS for the
three samples PS-264/17, PS-264/67, and PS-264/264 (see table 4.1). The
concentration of the matrix PS chains increases from (a) to (d) according to
7, 13, 23, 32 wt%.



4.6. LANGEVIN AND INTEGRAL EQUATION THEORY 113

4.6 Langevin and Integral Equation Theory

The application of Langevin and integral equation theory to PS chains in

solution has been discussed earlier [1, 18, 66]. Therefore, we only present the

equations necessary for this study. The time evolution of the total dynamic

scattering function Stot(q, c, τ) is assumed to be governed by a Langevin equa-

tion [2], where q is the absolute value of the scattering vector. The total

dynamic scattering function can be measured by dynamic light scattering

(DLS). The cooperative diffusion coefficient Dc(c) determines the decay rate

of the total dynamic scattering function and is given by

Dc(c)
q→0
=

kBT

4π2η

∞∫
0

dq1
Stot(q1, c, 0)q2

1

Stot(q, c, 0)q2

(
q2

1 + q2

2q1q
log

∣∣∣∣q1 + q

q1 − q

∣∣∣∣− 1

)
,(4.2)

where the temperature T and the viscosity η characterize the solvent. Fur-

thermore, the total static scattering function reads

Stot(q, c, 0) = 1 + v̄ch(q, c)/(VpP (q, c)) , (4.3)

where Vp is the volume of a dissolved polymer chain, h(q, c) is a particle-

averaged total correlation function, and v̄ = 0.916 cm3/g is the specific weight

of PS [19]. The particle-averaged intramolecular correlation function P (q, c)

characterizes the geometric shape of the polymer chains at a given concen-

tration c. The overall size of the polymer chains is reduced considerably

upon increasing the concentration implying a concentration dependence of

the particle-averaged intramolecular correlation function. Therefore, we con-

sider the following particle-averaged intramolecular correlation function [70]

P (q, c) =
(
1 + 0.549 q2r2

g(c)
)−5/6

(4.4)

with the concentration dependent radius of gyration

r2
g(c) = r2

g(0)

(
Θ(c? − c) +

( c
c∗

)−1/8

Θ(c− c?)
)
. (4.5)
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Here Θ(x) is the Heaviside step function which is 1 for x > 0 and zero else-

where. Moreover, the overlap concentration c? is the boundary concentration

between the dilute and semidilute regimes (see table 4.1). This overlap con-

centration depends on the molecular weight according to c? ∼ (M
(ma)
w )−4/5,

and has been determined for the PS solutions under considerations using

FCS [7]. In addition the scaling law given c−1/8 in equation (3.5) has been

confirmed experimentally for PS in a good solvent using small angle neutron

scattering [20]. The particle-averaged total correlation function is related

to a particle-averaged direct correlation function C(q, c) by the generalized

Ornstein-Zernike equation of the Polymer Reference Interaction Site Model

(PRISM), which reads (see e.g., refs [54, 55] and references therein)

h(q, c) = P 2(q, c)C(q, c)/(1− v̄cC(q, c)P (q, c)/Vp) . (4.6)

This generalized Ornstein-Zernike equation is supplemented by the Percus-

Yevick approximation to account for steric effects [54]. The osmotic pressure

p(c) is evaluated from equations (3.3) - (3.8) as

p(c) = kBT v̄

c∫
0

dc′ Stot(q, c
′, 0)/Vp . (4.7)

The PRISM integral equation theory has been successfully applied to various

polymer solutions (see e.g., refs [54, 66, 58, 59]).

Figures 4.3 (a), (b), and (c) display the calculated cooperative diffusion

coefficients of the 17, 67, and 264 kg/mol matrix PS chains (solid lines) to-

gether with the experimental data measured with DLS (open squares) [1] and

FCS (solid squares). The figures demonstrate that the measured cooperative

diffusion coefficients agree with the calculated results as obtained from equa-

tions (3.2) - (3.8). In particular, the crossover region between the dilute and

the semidilute regimes is captured correctly by the Langevin and integral

equation theory. The maximum of the cooperativ diffusion coefficient in the

semidilute entangled regime marks the onset of glassy dynamics. This friction

controlled dynamics is not captured by equation (3.2). Therefore, deviations
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between the solid lines and the symbols are found for high concentrations in

figure 4.3. Nevertheless, one can conclude from figures 4.3 (b) and (c) that

the diffusion coefficient Dc(c) as obtained by FCS (solid squares) is indeed

the cooperative diffusion coefficient of the matrix PS chains. The topolog-

ical interactions in the semidilute solutions lead to coherent movements of

matrix and tracer PS chains characterized by the cooperative diffusion coeffi-

cient Dc(c). The resulting temporal fluctuations of the detected fluorescence

intensity can be measured by FCS even in the case that the number of la-

beled tracer PS chains is considerably smaller than the number of matrix PS

chains.

The self-diffusion coefficient Ds(c) as obtained using FCS measurements

(see figure 4.2) and equation (3.1) are also shown in figure 4.3 (solid circles).

Ds(c) is found to decrease with increasing concentration of the matrix PS

chains due to the friction between the polymer chains. The dashed lines in

figure 4.3 are theoretical values calculated according to [21]

Dc(c)

Ds(c)
= α (1− v̄c) dp(c)

dc
(4.8)

with both Dc(c) and p(c) obtained from the Langevin and integral equation

theory given by equations (3.2) - (3.8). As a new feature of the present

evaluation, we have introduced the parameter α in equation (3.13). This

parameter describes the difference of the system under consideration from a

homopolymer solution consisting of matrix polymer chains and tracer chains

of the same molecular weight, that is, α = 1. The dashed line in figure 4.3 (c)

demonstrates that the measured self-diffusion coefficient of the homopolymer

solution PS-264/264 can be described by equation (3.13) with α = 1 and

the Langevin and integral equation theory as input. Similarly, Ds(c) can be

calculated in agreement with experimental data for the samples PS-17/17 and

PS-67/67 using α = 1 (data not shown). In order to describe the self-diffusion

coefficients of the PS-264/67 and PS-264/17 samples, values of α = 2.5 and

α = 7.2 above unity had to be chosen (dashed lines in figures 4.3 (b) and

(a). The values of α different from unity reflect the fact that the molecular

weights of the matrix and tracer polymer chains are different in the case of
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Figure 4.3: Cooperative diffusion coefficients (Dc(c), squares) and self-
diffusion coefficients (Ds(c), circles) for the three samples PS-264/17, PS-
264/67, and PS-264/264 (see table 4.1) in panel (a), (b), and (c), respec-
tively. Solid and open symbols refer to FCS measurements (see figure 4.2).
The open squares denote DLS data obtained from the samples PS-17/17,
PS-67/67, and PS-264/264 [1]. The solid lines display the collective diffu-
sion coefficients as obtained from the Langevin and integral equation theory
according to equations (3.2) - (3.8). Dashed lines represent the calculated
results as obtained from equation (3.13) with equations (3.2) and (3.9) as
input and α = 7.2, 2.5, 1 in panel (a), (b), and (c), respectively.

the samples PS-264/67 and PS-264/17.

Scaling arguments for self-avoiding random coils lead to the prediction

α = (M
(ma)
w /M

(tr)
w )−3/5, where the Flory exponent ν = 3/5 for a good solvent

has been used. Hence one obtains α = 2.3 and α = 5.2 for the samples PS-

264/67 and PS-264/17, respectively. The predicted value α = 2.3 is close to

the value α = 2.5 used in our analysis in the case of the PS-264/67 sample.

This agreement confirms our earlier finding that the self-diffusion coefficients
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of both 264 kg/mol PS chains and 67 kg/mol PS chains fulfil scaling relations

[1]. However, the 17 kg/mol PS chains are too short to be considered as

self-avoiding random coils. Molecular stiffness leads to a more pronounced

dependence of dynamical properties on the molecular weight than in the case

of self-avoiding random coils [8, 9, 76]. Therefore, the value α = 7.2 used in

our analysis is larger than α = 5.2.

Figure 4.4 demonstrates that the FCS autocorrelation functions for the

PS-264/17 and PS-17/17 samples coincide provided the time is multiplied by

the factor α = 7.2 in the case of the PS-17/17 sample. This scaling is valid

for all concentrations under consideration because the 17 kg/mol matrix PS

chains do not form an entangled network in semidilute solution as mentioned

earlier. Hence the polymeric nature of these short matrix chains does not lead

to additional characteristic features of the FCS autocorrelation functions. In

the case of a similar comparison of the FCS autocorrelation functions for the

PS-264/67 and PS-67/67 samples, scaling can be found only for concentra-

tions lower than c+. For higher concentrations deviations from a simple scal-

ing law are found because the self-diffusion coefficient and the cooperative

diffusion coefficient exhibit different dependencies on the molecular weight

[1].

�[ms] �[ms]
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Figure 4.4: Normalized FCS autocorrelation functions for the samples PS-
264/17 and PS-17/17 (see table 4.1). The concentration of the 17 kg/mol
matrix PS chains is 7 wt % in panel (a) and 16.5 wt % in panel (b). The
autocorrelation functions of both samples coincide for a given concentration
because the time τ for the PS-17/17 sample has been multiplied by the factor
α = 7.2 as is discussed in the main text.
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4.7 Conclusions

Fluorescence correlation spectroscopy has been used to study the dynamics of

labeled tracer polystyrene chains in a system consisting of matrix polystyrene

chains dissolved in toluene [figure 4.1]. The self-diffusion coefficient of the

tracer polystyrene chains has been measured for arbitrary concentrations of

the matrix polystyrene chains. Moreover, the cooperative diffusion coefficient

has been determined in the semidilute entangled concentration regime due to

the transient entanglement network [figure 4.2]. The minimum concentration

of matrix polystyrene chains at which the cooperative diffusion coefficient

can be detected by FCS is independent of the molecular weight of the tracer

polystyrene chains [table 4.1]. It has been suggested earlier in the context of

polymer fiber spinning that a polymer solution is converted to a more stable

elastically deformable network at such a concentration [22, 23, 24, 25, 26].

Due to the resulting effective longe-range interaction of the polymer chains,

the cooperative diffusion coefficient can be detected by FCS even in the

case that the number of labeled polymer chains is considerably smaller than

the number of unlabeled polymer chains. A theoretical description of the

diffusion coefficients is given by a Langevin and integral equation theory

[figure 4.3]. Moreover, a single master autocorrelation curve has been found

for short unentangled polystyrene matrix chains [figure 4.4].

In summary, the present work gives further support to the recent con-

clusion that both the self-diffusion coefficient and the cooperative diffusion

coefficient can be obtained experimentally using the same technique [1].
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Chapter 5

Summary / Zusammenfassung

Summary

This thesis starts with the analysis of the swelling behavior and the mi-

crophase separation of block copolymers in thin films. The results of these

measurements are diffusion informations of solvent in thin block copolymer

films. In-situ ellipsometry measurements showed more than 10 % increase of

the relative solvent up-take with decreasing thilm thickness. This solvent up-

take was verified by the microphase separation patterns analysed by scanning

force microscopy on the quenched films.

For a detailed understanding of the behaviour of blockcopolymers during

the microphase separation the diffusion behaviour of polymer molecules has

to be investigated. Therefore a model system of homopolymers was used

to study the diffusion of single polymer chains in solution. The diffusion

coefficients in dilute and semidilute solutions are measured with fluorescence

correlation spectroscopy (FCS) and dynamic light scattering (DLS).

The technique of FCS was recently adjusted for synthetic polymer solu-

tions in organic solvents. This new approach leaded to the measurements of

both diffusion coefficients with one technique. In dilute solution the selfdiffu-

sion coefficient is obtained. Whereas in semidilute solutions the cooperative

diffusion appears additional in the decay curves of the FCS experiment. The

higher the molecular weight the lower is the onset concentration c+ of the

121
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cooperative diffusion. At molecular weights smaller than the entanglement

molecular weight this c+ is not reachable. c+ is the same as the minimum

concentration required to produce nanofibers by electrospinning and so the

lowest concentration for entangled polymers coils in solution. Mixing differ-

ent molecular weights in the FCS experiment approved the dependency of c+

on the molecular weight of the matrix.

Zusammenfassung

Zu Beginn dieser Arbeit wurde das Schwellverhalten von Blockcopolymere

sowie deren Mikrophasenseparation in dünnen Filmen untersucht. Die Mes-

sungen ergeben Informationen zum Diffusionsverhalten des Lösungsmittels

in den dünnen Blockcopolymerfilm. In-situ Ellipsometriemessungen zeigen

bei Filmen mit einer Dicke im Bereich einer Monolage eine bis zu ca. 10 %

stärkere Aufnahme von Lösungsmittel, als Filme mit mehreren Monolagen

Dicke. Dieses stärkere Schwellverhalten wird bestätigt durch die filmdick-

ensensiblen Muster der Mikrophasenseparation, aufgenommen mit Rasterkraft-

mikroskopie nach dem Einfrieren der Strukturen durch schnellen Entzug des

Lösungsmittels.

Für das Verständnis der Mikrophasenseparation ist das Diffusionsverhal-

ten der Polymerketten eine essentielle Information. Für die Untersuchung

der Diffusion von Polymeren auf Einzelmolekülbasis wurde ein Modellsystem

aus genau definierten Homopolymeren in Lösung untersucht. Die Diffusion-

skoeffizienten in verdünnten und halb-verdünnten Lösungen wurden mit Dy-

namischer Lichtstreuung (DLS) sowie auch mit Fluoreszenzkorrelationsspek-

troskopie (FCS) untersucht. Die Technik der FCS wurde erst vor kurzem

für synthetische Polymere in organischen Lösungsmitteln optimal angepasst.

Mit dieser Anpassung konnten zum ersten Mal beide Diffusionskoeffizienten

zeitgleich mit einer Technik gemessen werden. Im verdünnten Bereich wurde

wie erwartet der Selbstdiffusionskoeffizienten erhalten.

Im semiverdünnten Bereich erscheint zusätzlich der kooperative Diffusion-

skoeffizient in den Abklingkurven der FCS-Messungen. Die Anfangskonzen-

tration c+ ist kleiner für höhere Molekulargewichte und nur oberhalb des Ver-
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schlaufungsmolekulargewichts erreichbar. Ein Vergleich mit der benötigten

Konzentration zur Herstellung von Nano-Fäden durch Elektrospinnen zeigt,

dass es sich bei c+ um den Übergang vom unverschlauften zum verschlauften

Konzentrationsbereich handelt.

Mischt man verschiedene Molekulargewichte im FCS-Experiment, so zeigt

sich die Abhängigkeit des c+ vom Molekulargewicht der Matrixmoleküle. Die

Länge der Matrixmoleküle bestimmt also die messtechnische Erfassung der

kooperativen Diffusion in der Fluoreszenzkorrelationsspektroskopie.

Gleichzeitig wurde die Messung des kooperativen Diffusionskoeffizienten

in der Fluoreszenzkorrelationsspektroskopie mit einem theoretischen Model

auf Basis gekoppelter Moden untermauert.
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Appendix A

Direct Calculation of FCS

Functions

The derivation follows Elson and Magde [1] including the confocal detection

volume (boundary conditions of δC(r, τ) = 0 at all three directions x, y, z =

±∞) [2]. As guidelines was used the reviews of Schwille and Haustein [3]

and Krichevsky and Bonnet [4].

An elegant derivation for the autocorrelation function depend on the

root mean square displacement is presented in the appendix to Shusterman,

Gavrinyov and Krichevsky. [5]

A.1 Autocorrelation Function

The autocorrelation function is defined as (see also equ. (1.12))

G(τ) =
〈F (t) · F (t+ τ)〉

〈F 〉2

The angle brackets stand for the integral over time 〈. . .〉 =
∫
. . . dt. The flu-

orescence intensity F (t) can be expressed as sum of the average fluorescence

and the fluorescence fluctuation F (t) = 〈F 〉+ δF (t) leading to

G(τ) =
〈(δF (t) + 〈F 〉) · (δF (t+ τ) + 〈F 〉)〉

〈F 〉2
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G(τ) =

〈
δF (t)δ · F (t+ τ) + 〈F 〉 · δF (t+ τ) + 〈F 〉 · δF (t) + 〈F 〉2

〉
〈F 〉2

G(τ) =
〈δF (t) · δF (t+ τ)〉+ 〈F 〉

!
=0︷ ︸︸ ︷

〈δF (t+ τ)〉+ 〈F 〉

!
=0︷ ︸︸ ︷

〈δF (t)〉+

=〈F 〉2︷ ︸︸ ︷〈
〈F 〉2

〉
〈F 〉2

G(τ) =
〈δF (t) · δF (t+ τ)〉

〈F 〉2
+ 1 (A.1)

A.2 Number Density Autocorrelation

The so-called number density autocorrelation function (a part of equ. 1.16)

in the stationary system is

φjl(r, r’, τ) = 〈δCj(r, 0)δCl(r’, τ)〉 (A.2)

For changes due to diffusion, δCl(r, τ) is determined by the diffusion equation

(2. Fick law):
∂δCl (r, τ)

∂τ
= Dl∇2δCl(r, τ) (A.3)

To solve this differential equation it is necessary to define the Fourier trans-

formation.

C̃l(ν, τ) = Fν [δCl(r, τ)] =

(
1

2π

) 3
2
∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz ei(xνx+yνy+zνz)δCl(r, τ)

The inverse transformation is

δCl(r, τ) = F−1
r

[
C̃l(ν, τ)

]
=

(
1

2π

) 3
2
∫ ∞
−∞

dνx

∫ ∞
−∞

dνy

∫ ∞
−∞

dνz e
−i(xνx+yνy+zνz)C̃l(ν, τ)

Transformation of equation (A.3) yields

∂F−1
τ

[
C̃l(ν, τ)

]
∂τ

= Dl∇2

(
1

2π

) 3
2
∫ ∞
−∞

dνx

∫ ∞
−∞

dνy

∫ ∞
−∞

dνz e
−i(xνx+yνy+zνz)C̃l(ν, τ) =



A.2. NUMBER DENSITY AUTOCORRELATION 127

= Dl

(
1

2π

) 3
2
∫ ∞
−∞

dνx

∫ ∞
−∞

dνy

∫ ∞
−∞

dνz (
d2

dx2
+
d2

dy2
+
d2

dz2
)e−i(xνx+yνy+zνz)C̃l(ν, τ) =

= −Dl

(
1

2π

) 3
2
∫ ∞
−∞

dνx

∫ ∞
−∞

dνy

∫ ∞
−∞

dνz e
−i(xνx+yνy+zνz)(ν2

x + ν2
y + ν2

z︸ ︷︷ ︸
=ν2

)C̃l(ν, τ)

∂F−1
τ

[
C̃l(ν, τ)

]
∂τ

= −Dl F
−1
r

[
ν2 C̃l(ν, τ)

]
= F−1

r

[
−Dl ν

2 C̃l(ν, τ)
]

Because the Fourier transform is independent of the time it does not influ-

ences the differential equation.

∂〈C〉(ν, τ)

∂τ
= −Dl ν

2 〈C〉(ν, τ)

Integration leads to the following solution of the diffusion equation (A.3)

C̃l(ν, τ) = C̃l(ν, 0)e−Dlν
2τ (A.4)

Inserting of the inverse Fourier transformation in equation (A.2) leads to

φjl(r, r’, τ) =
〈
δCj(r, 0)F−1

r′

[
C̃l(ν, τ)

]〉
Since ensemble averaging and Fourier transformation are linear operations,

their order may be interchanged

φjl(r, r’, τ) = F−1
r′

[〈
δCj(r, 0)C̃l(ν, τ)

〉]
Use of equation (A.4) leads to

φjl(r, r’, τ) = F−1
r′

[〈
δCj(r, 0)C̃l(ν, 0)e−Dlν

2τ
〉]

τ is indepent on the time

φjl(r, r’, τ) = F−1
r′

[〈
δCj(r, 0)C̃l(ν, 0)

〉
e−Dlν

2τ
]



128 APPENDIX A. DIRECT CALCULATION OF FCS FUNCTIONS

Inserting of the inverse transformation yields

φjl(r, r’, τ) = F−1
r′

[
〈δCj(r, 0)Fν [δCl(r”, 0)]〉 e−Dlν2τ

]
Interchange of ensemble averaging and Fourier transformation gets

φjl(r, r’, τ) = F−1
r′

Fν
〈δCj(r, 0)δCl(r”, 0)〉︸ ︷︷ ︸

=φjl(r,r”,0)

 e−Dlν2τ


Use of equation (A.2) with τ = 0 leads to

φjl(r, r”, τ) = F−1
r′

[
Fν [φjl(r, r”, 0)] e−Dlν

2τ
]

(A.5)

The correlation function φjl(r, r”, 0) is obtained by taking into account of

the fact that the experiments under ideal conditions are in dilute solutions.

The statistics of solute molecules are independent and the fluctuations of

concentrations of different species must be uncorrelated. Having just one

kind of particles is expressed in the Kronecker symbol δjl, which is defined as

δjl = 1 for j = l and δjl = 0 for j 6= l. The delta function δ(r− r”) symbols

that the two correlated particles are at the same place. The delta function is

defined as δ(r− r”) =∞ at (r− r”) = 0 and δ(r− r”) = 0 at (r− r”) 6= 0.)

This means the intensity comes from the same single particle. Similary the

spatial correlation length of concentration fluctuations of a particular species

must be very small.

φjl(r, r”, 0) = 〈δCj(r, 0)δCl(r”, 0)〉 Poisson statistic
= 〈C〉δjlδ(r− r”) (A.6)

Substitution of equation (A.6) into equation (A.5) yields

φjl(r, r’, τ) = F−1
r′

[
Fν [〈C〉δjlδ(r− r”)] e−Dlν

2τ
]

=

= F−1
r′

[
e(−Dlν2τ)

(
1

2π

) 3
2
∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz e(i(xνx+yνy+zνz))〈C〉δjlδ(r− r”)

]
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The integral of a function multiplied with the delta funktion δ(r− r”) is the

function at the point (r− r”).

φjl(r, r’, τ) = F−1
r′

[
e(−Dlν2τ) 〈C〉

(2π)3/2
e(i((x−x′)νx+(y−y′)νy+(z−z′)νz))

]

φjl(r, r’, τ) =
〈C〉

(2π)3/2
F−1
r′

[
e(−Dlτ(ν

2
x+ν2

y+ν2
z)) · e(i((x−x′)νx+(y−y′)νy+(z−z′)νz))

]

φjl(r, r’, τ) =
〈C〉
8π3

∞∫
−∞

dνx e
(iνx(x−x′)−Dlν2

xτ)
∞∫

−∞

dνy e
(iνy(y−y′)−Dlν2

yτ)
∞∫

−∞

dνz e
(iνz(z−z′)−Dlν2

zτ)

(A.7)

To solve the integral we regard just a part:

h(νx) = e(iνx(x−x′)−Dlν2
xτ) = e−(Dlτν2

x−iνx(x−x′))

h(νx) = e
−Dlτ

(
ν2
x−

i(x−x′)
Dlτ

νx+

(
i(x−x′)
2Dlτ

)2

−
(
i(x−x′)
2Dlτ

)2
)

= e
−Dlτ

(
νx−

i(x−x′)
2Dlτ

)2

+Dlτ

(
i(x−x′)
2Dlτ

)2

h(νx) = e
−Dlτ

(
νx−

i(x−x′)
2Dlτ

)2

e
− (x−x′)2

4Dlτ

h(νx) can be integrated via substitution to u = νx − i(x−x′)
2Dlτ

∞∫
−∞

h(νx) dνx = e
− (x−x′)2

4Dlτ

∞∫
−∞

e−Dlτu
2

du
dνx
du

= e
− (x−x′)2

4Dlτ ·
√

π

Dlτ

Here the following relation was used
∞∫
0

e−a
2u2
du =

√
π

2a
with a =

√
Dlτ . Be-

cause h(νx) is symmetric, the result of the integral is twice the relation. The

derivation of backsubstitution dνx
du

= d
du

(u− (x−x′)2

2
√
Dlτ

) = 1 gives nothing further.

Now equ. (A.7) can be solved to

φjl(r, r’, τ) =
〈C〉
8π3

(√
π

Dlτ
e
− (x−x′)2

4Dlτ ·
√

π

Dlτ
e
− (y−y′)2

4Dlτ ·
√

π

Dlτ
e
− (z−z′)2

4Dlτ

)



130 APPENDIX A. DIRECT CALCULATION OF FCS FUNCTIONS

φjl(r, r’, τ) =
〈C〉
8π3
·
(

π

Dlτ

)3/2

· e−
1

4Dlτ
((x−x′)2+(y−y′)2+(z−z′)2)

Finaly the correlation of conentration fluctuation is obtained to

φjl(r, r’, τ) = 〈δCj(r, 0)δCl(r’, τ)〉 =
〈C〉

(4πDlτ)3/2
· e−

(r−r’)2

4Dlτ (A.8)

A.3 Derivation of Autocorrelation Function

Insert equ. (1.17) in equ. (1.16) gives

G(τ) =
〈C〉

(4πDτ)3/2
·
∫ ∫

W (r)W (r’) · e−
(r−r’)2

4Dτ d3rd3r’

〈C〉2(
∫
W (r)d3r)2

+ 1 (A.9)

Integration of the molecule detection function∫
W (r)d3r = W0

∫
e
−2(x2+y2)

w2
xy · e

−2z2

w2
z d3r = W0 · π3/2w2

xywz = W0 · Veff

resultes in a three dimensional ellipsoide. This is the effective detection

volume Veff scaled with the laser intensity W0. Now equ. (A.9) is obtained to

G(τ) =
〈C〉

(4πDτ)3/2
·
∫ ∫

W (r)W (r’) · e−
(r−r’)2

4Dτ d3rd3r’

W 2
0 · (〈C〉Veff︸ ︷︷ ︸

〈N〉

)2
+ 1

G(τ) =
〈C〉 ·W 2

0

〈N〉2 (4πDτ)3/2 ·W 2
0

·
∫ ∫ +∞

−∞
e
−2x

2+y2

w2
xy
−2 z

2

w2
z ·e
−2x

′2+y′2

w2
xy
−2 z

′2

w2
z ·e−

(r−r’)2

4Dτ d3rd3r’+1

(A.10)

The integral can be expanded to

Int =

∫ ∫ +∞

−∞
e
−2x

2+y2

w2
xy
−2 z

2

w2
z · e

−2x
′2+y′2

w2
xy
−2 z

′2

w2
z · e−

(r−r’)2

4Dτ d3rd3r’

Int =

∫ ∫ +∞

−∞
e

−2(x2+y2+x′2+y′2)
w2
xy

−2 z
2+z′2

w2
z
− (x−x′)2+(y−y′)2+(z−z′)2

4Dlτ d3rd3r’
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By separation of the variables we obtain

f(x, x′) =

∫ ∫ +∞

−∞
e
−2x2−2x′2

w2
xy

− (x−x′)2

4Dlτ dx dx′

f(y, y′) =

∫ ∫ +∞

−∞
e

+2y2+2y′2

w2
xy

− (y−y′)2

4Dlτ dy dy′

f(z, z′) =

∫ ∫ +∞

−∞
e
−2z2−2z′2

w2
z

− (z−z′)2

4Dlτ dz dz′

Now we focus on one variable

f(x, x′) =

∫ ∫ +∞

−∞
e
−8τDx2−8τDx′2−w2

xyx
2+2w2

xyxx
′−w2

xyx
′2

4τDw2
xy dx dx′

f(x, x′) =

∫ ∫ +∞

−∞
e
−8τDx2−w2

xyx
2+2w2

xyxx
′

4τDw2
xy e

−8τDx′2−w2
xyx
′2

4τDw2
xy dx dx′ =

=

∫ ∫ +∞

−∞
e
−

8τD+w2
xy

4τDw2
xy

(
x2−

2w2
xyx
′

8τDx2+w2
xy
x+

(
w2
xyx
′

8τDx2+w2
xy

)2

−
(

w2
xyx
′

8τDx2+w2
xy

)2
)
e
−8τDx′2−w2

xyx
′2

4τDw2
xy dx dx′ =

=

∫ +∞

−∞
e
−

8τD+w2
xy

4τDw2
xy

(
x+

(
w2
xyx
′

8τDx2+w2
xy

))2

dx

∫ +∞

−∞
e
−

8τD+w2
xy

4τDw2
xy

(
−

w2
xyx
′

8τDx2+w2
xy

)2

e
−8τDx′2−w2

xyx
′2

4τDw2
xy dx′

We solve the integral over dx via the relation
∞∫
0

e−a
2u2
du =

√
π

2a
and substitu-

tion

f(x, x′) =

√
π4τDw2

xy

8τD + w2
xy

∫ +∞

−∞
e

w4
xyx
′2

4τDw2
xy(8τDx2+w2

xy) e
−8τDx′2−w2

xyx
′2

4τDw2
xy dx′

To solve the integral over dx′ we can use the same relation direct.

f(x, x′) =

√
π4τDw2

xy

8τD + w2
xy

∫ +∞

−∞
e

w4
xyx
′2

4τDw2
xy(8τDx2+w2

xy)
−

(8τD+w2
xy)x′2

4τDw2
xy dx′

f(x, x′) =

√
π4τDw2

xy

8τD + w2
xy

∫ +∞

−∞
e
− (8τD+wxy)2−w4

xy

4τDw2
xy(8τDx2+w2

xy)
x′2

dx′
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f(x, x′) =

√
π4τDw2

xy

8τD + w2
xy

√√√√π4τDw2
xy

(
8τDx2 + w2

xy

)(
8τD + w2

xy

)2 − w4
xy

Now we obtain the following solution

f(x, x′) =
π4τDw2

xy√(
8τD + w2

xy

)2 − w4
xy

The solution for f(y, y′) und f(z, z′) is analogous. With this help we obtain

equ. (A.10) to

G(τ) =
〈C〉

〈N〉2 (4πDτ)3/2
·

π242τ 2D2w4
xy((

8τD + w2
xy

)2 − w4
xy

)
︸ ︷︷ ︸

f(x,x′)f(y,y′)

π4τDw2
z√

(8τD + w2
z)

2 − w4
z︸ ︷︷ ︸

f(z,z′)

+1

(A.11)

This Equation can bee simpified to

G(τ) =
〈C〉
〈N〉2

·
π242τ 2D2w4

xy

4πτD
(
4τD + w2

xy

) π4τDw2
z√

4πτD
√

4τD + w2
z

+ 1

G(τ) =
〈C〉
〈N〉2

·
π3/2w4

xy(
4τD + w2

xy

) w2
z√

4τD + w2
z

+ 1

By taking out w2
xy and w2

z you obtain

G(τ) =
〈C〉
〈N〉2

·
π3/2w2

xywz(
4τD
w2
xy

+ 1
)√

4τD
w2
z

+ 1
+ 1

The counter π3/2w2
xywz ist the volume of an ellipsoide an representes the

effectife detection volume Veff . Now you get the average number of particles

in the detection volume 〈N〉.

G(τ) =

〈N〉︷ ︸︸ ︷
〈C〉Veff

〈N〉2
· 1(

4τD
w2
xy

+ 1
)√

4τD
w2
z

+ 1
+ 1
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With the known equation 4DτD = w2
xy the final auto correlation function is

obtained to

G′jl(τ) =
1

〈N〉
· 1(

τ
τD

+ 1
)√(

wxy
wz

)2
τ
τD

+ 1

+ 1
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A.4 Autocorrelation Methods

In chapter 3 the two autocorrelation techniques are compared, dynamic light

scattering (DLS) and fluorescence correlation spectroscopy (FCS). Both tech-

niques evaluates the dynamics of particles in an undisturbed solution. The

setup is similar, monochromatic and polarised light passes the sample. Brow-

nian motion of the particles causes temporal fluctuations of intensity. In both

cases the self-similarity analysis of these fluctuations leads to the diffusion

coefficient.

The scattering vector q is basis of the scattering technique DLS. Here

the samples are evaluated at several different single q values. Whereas FCS

measurements collects the information of a range of q values and is most

sensitive at q = 0. [39] Rica et al. described the theory of FCS dependend on

q. Here q-range is calculated to the decay of exp(−q2Dtd) to 1/e2 by solving

the diffusion equation, comparable to appendix A.2. [6] A rough estimation

by Winkler et al. gives the q range to the inverse of the waist radius 1/wxy.

[43] Fig. A.1 compares the q-values of DLS measurements with these two

estimations for FCS measurements for the system presented in chaper 3 and

4.

1 0 4 1 0 5 1 0 6 1 0 7 1 0 8
0

1
 D L S
 F C S :  e x p ( - q 2 D τd )
 F C S :  1 / w X Y

q  [ m - 1 ]

1 / e 2

Figure A.1: Comparison of scattering vectors q for dynamic light scattering
(vertical blue lines) and the range of q vectors in fluorescence correlation
spectroscopy. The latter can be calculated with the decay of exp(−q2Dtd) to
1/e2 (red line) [6] or estimated by the inverse of the waist radius 1/wxy (green
line) [43]. The used values refer to the experiments presented in chaper 3
and 4.
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Disskussionsbereitschaft.
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