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Abstract

Coherent ionization dynamics induced by intense
X-ray free-electron laser pulses

In this dissertation, theoretical models of atoms, clusters, and solids irradiated by ultrashort and
intense pulses from an (X-ray) free-electron laser are investigated with the objective to find
appropriate conditions where coherent dynamics manifests itself in physical observables. The
ionization dynamics induced by an X-ray or extreme ultraviolet laser pulse is typically dominated
by inner-shell one-photon absorption and subsequent relaxation processes, ultimately leading to
sequential multiphoton ionization. If atoms are exposed to laser pulses with a photon energy well
separated from absorption edges, a rate-equation description is generally sufficient for describing
the temporal evolution of charge states. As this thesis is geared towards coherent ionization
dynamics, scenarios have been selected for further analysis where the energy of incident photons
is either in the vicinity of or below the most relevant absorption edge.

Resonant two-photon absorption is discussed within a generic model comprising a two-
level system plus an energetically separated continuum of states. The two discrete states are in
resonance with the electric field of a laser pulse; the ground state energy (relative to the lowest
continuum state) is less than twice the photon energy, allowing for an ionization process based on
the absorption of two photons. Under these circumstances, the results of two distinct approaches
are compared. In the Markovian theory, on the one hand, the coupling to the continuum is reduced
to the rate-equation level while possible Rabi cycling between the two discrete states is fully taken
into account. The rate-equation approach, on the other hand, further simplifies the situation by
treating the two-level system analogous to the Einstein rate equations. It is demonstrated that the
ionization probability grows quadratically with increasing number of incident photons for weak
pulses, which goes over into a linear scaling behavior for more intense pulses. This finding is
supported by both approaches despite the fact that the underlying mechanisms are fundamentally
different in the Markovian and the rate-equation theory. The observed phenomenon is attributed to
either Rabi cycling or equal populations induced by an equilibrium of absorption and stimulated
emission. Even though the ionization yield does not allow drawing a conclusion which of the two
theories is more adequate over a broad intensity range, they turn out to be still distinguishable
with regard to the crossover between these two intensity regimes of quadratic and linear scaling.
If, for instance, the Markovian theory is applicable, the onset of the transition is hence governed
by the Rabi frequency instead of the photon number. Finally, it is shown that the Rabi frequency
as a key variable in this scenario is subject to a renormalization due to the coupling to the
continuum.

Furthermore, an atomic crystal is simulated in one space dimension (1d) based on a Kronig-
Penney model while disregarding the electron-electron interaction. Correspondingly, emphasis is
placed on the short-time dynamics during sub- and few-femtosecond pulses, where the Auger
processes are assumed to be virtually frozen. The direct one-photon absorption is allowed in
all cases, but the photon energy is always chosen to have similar values as the K-edge, thus
generating only slow photoelectrons. As long as the analyses are confined to the short times
before the onset of relaxation processes, the rate equations for independent atoms would yield
no dependence of the ionization probability on the pulse duration if the total photon number
is kept constant. In contrast, time-dependent Schrödinger equation calculations demonstrate a
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strong dependence on the duration of transform-limited pulses. This observation is the combined
result of different causes. Transform-limited subfemtosecond pulses are spectrally very broad,
causing a large portion of the spectrum to overlap with the band gaps. Therefore, the ionization
probability tends to decrease for short pulses or, conversely, longer pulse durations enhance the
radiation damage to the crystal. This trend breaks for few-femtosecond pulses as soon as the
energy selection rule becomes sufficiently strong so that fewer states are available for efficiently
driven transitions. Hence, the radiation damage decreases with increasing pulse durations on the
longer time scale. Provided that the relaxation of off-diagonal elements of the one-body reduced
density matrix is not too fast, the ionization probability turns out to be close to zero for a certain
pulse duration of a few femtoseconds. This is interesting because returning the sample back
to its initial state by the very same pulse responsible for the excitation might open up entirely
new experimental possibilities at free-electron lasers. Complicating a potential experimental
realization, a heavy dependence on the pulse characteristics of this feature is seen. For stronger
pulses, Rabi-like dynamics is observed, reflected in both the occupation numbers and the electron
density, which exhibits characteristics of a standing wave before being partially reabsorbed. In
this context, the tuning of the photon energy for systematically coming as close as possible to an
ideal scenario for prominent Rabi-like dynamics is investigated.

To address the discrepancies between the dynamics of the isolated atom and the model crystal
with respect to the anticipated ionization probability, one investigates short ordered chains of
atoms as an intermediate level between a single atom and an infinite crystal. For this purpose,
all approximations from the model crystal are retained including the reduction to one space
dimension so that the considered chains contain a crystal similar to the model system studied
before in the limiting case of a large number of atoms. This approach deliberately disregards
electrostatic trapping in order to identify another trapping mechanism based on a coherent
time evolution, analogous to the findings obtained from the crystal model. Likewise, it is seen
that the forming of standing waves inhibits the electron flux away from the atom chain and
may lower the ionization probability via Pauli blocking, resulting in a localization effect and
a reduced ionization. Focusing on the charge density in the vicinity of the middle atom, one
surprisingly discovers that the infinite-crystal limit is reached for comparatively low number of
atoms. Relatedly, a significant modification of the evolution of the charge density is seen for a
chain comprising only three atoms, thereby clearly showing another trapping effect which does
not originate from electrostatic interactions. Further simulations with reduced models indicate
that these observations do neither require the buildup of a band structure –accompanied by a
modified density of states– nor efficient potential scattering of photoelectrons. It is concluded that
the coherent trapping phenomenon can be traced back to quantum interferences. Moreover, two
generalizations of the model address further questions. Firstly, it is demonstrated that introducing
disorder to the chain only marginally affects the results. Secondly, a time-dependent Hartree-
Fock approach, which takes electrostatic trapping into account, turns out to even weaken the
localization effect in comparable scenarios. In particular, no enhancement of the trapping is seen
by considering both mechanisms simultaneously.

In summary, a pronounced impact of coherent dynamics is seen in all considered systems
due to the choice of photon energies close to an absorption edge or a resonant transition. This
condition is often met in the region of vacuum and extreme ultraviolet or in the soft X-ray region,
and may also be fulfilled in the X-ray regime the presence of heavy atoms such as iron 26Fe or
highly charged ions.
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Kurzfassung

Kohärente Ionisationsdynamik hervorgerufen von den intensiven
Pulsen eines Röntgenlicht-Freie-Elektronen-Lasers

In dieser Dissertation werden theoretische Modelle von mit ultrakurzen und intensiven Pul-
sen eines (Röntgenlicht-)Freie-Elektronen-Lasers wechselwirkenden Atomen, Clustern und
Festkörpern untersucht, wobei das Ziel darin besteht geeignete Bedingungen zu finden unter
denen sich kohärente Dynamik in physikalischen Größen manifestiert. Die Ionisationsdynamik,
die von einem Röntgen- oder XUV-Laserpuls hervorgerufen wird, wird typischerweise von
Ein-Photon-Absorption aus inneren Schalen und deren nachfolgenden Relaxationsprozessen
beherrscht, was letztlich zu sequentieller Multiphotonionisation führt. Wenn Atome Laserpulsen
ausgesetzt werden, deren zugehörige Photonenenergie weit von den Absorptionskanten entfernt
ist, dann ist eine Beschreibung der zeitlichen Entwicklung von Ladungszuständen im Rahmen
von Ratengleichungen im Allgemeinen ausreichend. Da diese Arbeit aber auf kohärente Ioni-
sationsdynamik ausgerichtet ist, wurde eine Auswahl von Parameterbereichen vorgenommen,
für welche die Energie der einfallenden Photonen entweder in der Nähe oder unterhalb der
wichtigsten Absorptionskante liegt.

Zunächst wird resonante Zwei-Photon-Ionisation innerhalb eines generischen Modells be-
stehend aus einem Zwei-Niveau-System und einem energetisch abgegrenzten Kontinuum an
Zuständen behandelt. Die zwei diskreten Zustände sind in Resonanz mit einem den Laserpuls
repräsentierenden elektrischen Feld und die Grundzustandsenergie (relativ zum energetisch
niedrigsten Kontinuumstzustand) ist kleiner als die zweifache Photonenenergie, so dass ein
Ionisationsprozess auf der Grundlage einer Absorption zweier Photonen mit der Energieer-
haltung verträglich ist. Unter diesen Umständen werden die Ergebnisse zweier verschiedener
Herangehensweisen gegenübergestellt. Die Markovsche Theorie auf der einen Seite reduziert die
Kopplung an Kontinuumszustände auf die Stufe von Ratengleichungen, während gleichzeitig
Rabi-Oszillationen zwischen den beiden diskreten Zuständen vollständig wiedergeben werden
können. Die Ratengleichungen auf der anderen Seite vereinfachen die Situation weiter, indem
das Zwei-Niveau-System analog zu den Einsteinschen Ratengleichungen behandelt wird. Es
wird dargelegt, dass die Ionisationswahrscheinlichkeit für schwache Pulse einem quadratischen
Anstieg mit der Zahl der einfallenden Photonen unterworfen ist und für intensive Pulse in eine
lineare Skalierung übergeht. Dieser Befund ist zwar in beiden Modellen gültig, die dahinterste-
henden Mechanismen in der Markovschen Theorie und in den Ratengleichungen sind jedoch
grundsätzlich verschieden. Das beobachtete Phänomen kann entweder auf Rabi-Oszillationen
oder auf eine Gleichbesetzung bedingt durch ein Gleichgewicht zwischen Absorption und sti-
mulierter Emission zurückgeführt werden. Obwohl die Ionisationswahrscheinlichkeit in einem
breiten Intensitätsbereich keine Rückschlüsse darauf erlaubt, welche der beiden Theorien ange-
messen ist, erweisen sie sich dennoch als unterscheidbar in Bezug auf den Übergang zwischen
der quadratischen und der linearen Skalierung. Unter der Voraussetzung der Zulässigkeit der
Markovschen Theorie ist das Einsetzen jenes Übergangs nämlich durch die Rabi-Frequenz an-
stelle der Photonenzahl bestimmt. Zuletzt wird gezeigt, dass die Schlüsselgröße Rabi-Frequenz
in diesem Szenario aufgrund der Kopplung an das Kontinuum einer Renormalisierung unterliegt.
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Anschließend wird ein Atomkristall in einer Raumdimension auf Basis eines Kronig-Penney-
Modells ohne Berücksichtigung einer Elektron-Elektron-Wechselwirkung simuliert. Dementspre-
chend wird der Schwerpunkt auf die Kurzzeitdynamik während der Laserpulse mit Dauern von
unterhalb einer Femtosekunde bis zu wenigen Femtosekunden gelegt, wobei Augerzerfall als
praktisch erstarrt angenommen wird. Direkte Ein-Photon-Absorption wird zwar in allen Fällen
zugelassen, aber für die Photonenenergie werden stets Werte in der Nähe der K-Kante gewählt,
so dass nur langsame Photoelektronen erzeugt werden. Solange die Untersuchungen auf die
kurzen Zeiten vor dem Eintreten der Relaxationsprozesse eingeschränkt werden, ergäbe eine
Anwendung von Ratengleichungen für unabhängige Atome bei fester Gesamtzahl von Photonen
keine Abhängigkeit der Ionisationswahrscheinlichkeit von der Pulsdauer. Rechnungen basierend
auf der zeitabhängigen Schrödingergleichung weisen im Gegensatz dazu bei Fourier-limitierten
Pulsen eine starke Pulslängenabhängigkeit auf. Diese Beobachtung ergibt sich aus dem Zusam-
menspiel verschiedener Ursachen. Fourier-limitierte Sub-Femtosekunden sind spektral sehr breit
und bewirken, dass ein großer Anteil des Spektrums mit den Bandlücken überlappt. Folglich
zeigt die Ionisationswahrscheinlichkeit eine abnehmende Tendenz für kurze Pulse, beziehungs-
weise der Strahlenschaden am Kristall nimmt mit längerer Pulsdauer zu. Dieser Trend bricht
für Pulsdauern von wenigen Femtosekunden ab, sobald die Energieauswahlregel hinreichend
scharf wird, so dass weniger Zustände für effizient getriebene Übergänge zur Verfügung stehen.
Infolgedessen weist der Strahlenschaden auf der längeren Zeitskala eine abnehmende Tendenz
mit steigender Pulsdauer auf. Falls die Relaxation von Nichtdiagonalelementen der reduzierten
Ein-Teilchen-Dichtematrix nicht zu schnell vonstatten geht, erhält man für eine bestimmte Puls-
dauer von wenigen Femtosekunden eine beinahe verschwindende Ionisationswahrscheinlichkeit.
Dies ist insofern interessant, als eine Rückführung einer Probe zu ihrem Anfangszustand durch
genau denselben Puls, der auch für die Anregung verantwortlich ist, völlig neue experimentelle
Möglichkeiten für Freie-Elektronen-Laser eröffnen könnte. Allerdings lässt sich eine starke
Abhängigkeit dieses Merkmals von den Pulseigenschaften feststellen, wodurch eine mögliche
experimentelle Umsetzung erschwert wird. Für stärkere Pulse beobachtet man Rabi-ähnliche
Dynamik. Dies spiegelt sich sowohl in den Besetzungszahlen als auch in der Elektronendichte,
welche vor einer teilweisen Reabsorption Charakteristika von stehenden Wellen zeigt, wider.
In diesem Kontext wird eine systematische Abstimmung der Photononenergie zur Herstellung
möglichst idealer Bedingungen für eine hervorstechende Rabi-ähnliche Dynamik untersucht.

Aufgrund der gravierenden Unterschiede der Dynamik in puncto erwarteter Ionisationswahr-
scheinlichkeit zwischen einem einzelnen Atom und dem Modellkristall werden schließlich kurze
geordnete Ketten von Atomen als Mittelweg zwischen dem einzelnen Atom und dem unendlichen
Kristall untersucht. Zu diesem Zweck werden alle Näherungen des Modellkristalls beibehalten,
inklusive der Einschränkung auf eine Raumdimension. Demzufolge enthalten die in Betracht
gezogenen Ketten einen Kristall, der starke Ähnlichkeiten zum vorher beleuchteten Modell-
system hat, als Grenzfall für eine sehr große Anzahl von Atomen. Diese Herangehensweise
lässt elektrostatischen Einfang bewusst außer Acht, um einen davon verschiedenen Einfangme-
chanismus identifizieren zu können, der analog zu den aus dem Kristallmodell gewonnenen
Erkenntnissen auf kohärenter Zeitentwicklung basiert. Es offenbart sich ebenso, dass das Aus-
formen von stehenden Wellen den sich von der Atomkette wegbewegenden Elektronenfluss
hemmt und dass die Ionisationswahrscheinlichkeit durch das Pauli-Verbot gemindert wird. Dies
hat einen Lokalisationseffekt und eine reduzierte Ionisation zur Folge. Erstaunlicherweise wird
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der Grenzfall eines unendlichen Kristalls hinsichtlich der Ladungsdichte in der Umgebung
des mittleren Atoms bereits für eine verhältnismäßig kleine Anzahl von Atomen erreicht. In
diesem Zusammenhang ergeben sich bereits für eine Kette bestehend aus nur drei Atomen
signifikante Änderungen in der Zeitentwicklung der Ladungsdichte. Dabei wird offensichtlich
ein weiteres Einfangphänomen demonstriert, das nicht von elektrostatischer Wechselwirkung
herrührt. Weitere Simulationen mit vereinfachten Modellen geben Aufschluss darüber, dass diese
Beobachtungen weder des Aufbaus einer Bandstruktur –einhergehend mit einer abgewandel-
ten Zustandsdichte– noch effizienter Potentialstreuung von Photoelektronen bedürfen. Es wird
geschlussfolgert, dass das kohärente Einfangphänomen auf quantenmechanische Interferenzen
zurückzuführen ist. Darüber hinaus werden zur Beantwortung weitergehender Fragen zwei
Verallgemeinerungen des Modells herangezogen. Zum einen wird gezeigt, dass sich Unordnung
in der Kette nur geringfügig auf die Ergebnisse auswirkt. Zum anderen stellt sich heraus, dass
eine zeitabhängige Hartree-Fock-Methode, die den elektrostatischen Einfang berücksichtigt,
den Lokalisationseffekt in vergleichbaren Situationen sogar abschwächt. Insbesondere wird der
Einfang nicht dadurch begünstigt, dass beide Mechanismen gleichzeitig in Betracht gezogen
werden.

Insgesamt zeichnet sich ein markanter Einfluss kohärenter Dynamik in allen betrachteten
Systemen ab, was vor allem auf die Photonenenergien in der Nähe einer Absorptionskante oder
eines resonanten Übergangs zurückzuführen ist. Diese Voraussetzung lässt sich im Spektralbe-
reich von Vakuum- oder Extrem- Ultravioletter Strahlung oder weicher Röntgenstrahlung leicht
erfüllen, kann beim Vorhandensein schwerer Atome wie etwa Eisen 26Fe oder stark geladener
Ionen aber auch für Röntgenstrahlung vorliegen.
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XATOM X-ray and atomic physics [computational toolkit]
1RDM one-body reduced density matrix
1d one [space] dimension, 1-dimensional
2LS two-level system
3d three [space] dimensions, 3-dimensional
AL Anderson localization
ATI above-threshold ionization
BMBF Bundesministerium für Bildung und Forschung
BZ Brillouin zone
CAM collective-atoms model
CAMP CFEL-ASG Multi-Purpose [instrument at LCLS]
CAP complex absorbing potential
CDI coherent diffractive imaging [of non-periodic objects]
CN Crank-Nicolson [method]
CSPAD Cornell-SLAC Pixel Array Detector
CXI Coherent X-ray Imaging, refers to the CXI instrument at

LCLS
DVR discrete variable representation
EM electron microscopy
ESRF European Synchrotron Radiation Facility
European XFEL European X-Ray Free-Electron Laser
FDM finite difference method
FEDVR finite-element discrete variable representation
FEL free-electron laser
FEM finite element method
FERMI An FEL user facility in Trieste, Italy
FiPy A finite volume PDE solver using Python
FLASH Freie-Elektronen-Laser in Hamburg
FWHM full width at half maximum
GAMESS General Atomic Molecular and Electronic Structure Sys-

tem [suite of programs]
GDR giant (dipole) resonance
GL Gauss-Lobatto [quadrature]
GMRES generalized minimal residual [method]
GPL GNU General Public License
HDF5 Hierarchical Data Format 5
HF Hartree-Fock [method]
HFS Hartree-Fock-Slater [model]



X Abbreviations

HGHG high-gain harmonic generation
HHG high-harmonic generation
I/O input/output
IAM independent-atoms model
IBS inverse bremsstrahlung
ICD interatomic or intermolecular Coulombic decay
IMEX implicit-explicit [method]
IPD ionization potential depression
IVP (pure) initial value problem
KP Kronig-Penney [potential]
LCLS Linac Coherent Light Source
MAD multiwavelength anomalous diffraction
MCTDHF multiconfigurational time-dependent Hartree-Fock

[method]
MD molecular dynamics
MPI Message Passing Interface
NEGF nonequilibrium Green’s function
NMR nuclear magnetic resonance
NTI near-threshold ionization
NWChem NorthWest computational Chemistry [software package]
ODE ordinary differential equation
OPA one-photon absorption
PDB Protein Data Bank
PDE partial differential equation
PETRA III Positron-Elektron-Tandem-Ring-Anlage III
PETSc Portable, Extensible Toolkit for Scientific Computation
pnCCD p-n junction charge-coupled device
REA rate-equation approach
REXMI resonance-enabled X-ray multiple ionization
RIXS resonant inelastic X-ray scattering (also referred to as

resonant X-ray Raman scattering)
RK Runge-Kutta [method]
RK3BS Runge-Kutta-Bogacki-Shampine [method]
RK5DP Runge-Kutta-Dormand-Prince [method]
RK5F Runge-Kutta-Fehlberg [method]
RWA rotating wave approximation
SACLA SPring-8 Angstrom Compact free electron LAser
SAD single-wavelength anomalous diffraction
SAR spectrally averaged rates
SASE self-amplified spontaneous emission
SC soft-core [potential]
SFX serial femtosecond [X-ray] crystallography
SI International System of Units
SLEPc Scalable Library for Eigenvalue Problem Computations



XIAbbreviations

SO split-operator [technique]
SOC short ordered chain
SSP strong stability-preserving [time discretization method]
SUSY supersymmetry
SwissFEL Swiss Free-Electron Laser
TbCatB Trypanosoma brucei Cathepsin B
TDCIS time-dependent configuration-interaction singles
TDDFT time-dependent density-functional theory
TDHF time-dependent Hartree-Fock [method]
TDRDM time-dependent reduced density-matrix [theory]
TDSE time-dependent Schrödinger equation
TOF time-of-flight [spectroscopy]
TPA two-photon absorption
TVD total variation diminishing [property]
VUV vacuum ultraviolet, refers to the region of the electro-

magnetic spectrum which corresponds to photon energies
from 10 eV to 50 eV [1]

VUV-FEL Vacuum-Ultra-Violet Free-Electron Laser
WS Wigner-Seitz [cell]
X-ray refers to the region of the electromagnetic spectrum

which corresponds to photon energies from 250 eV to
100 keV [2]

XFEL X-ray free-electron laser
XFELO X-ray free-electron laser oscillator
XPCS X-ray photon correlation spectroscopy
XUV extreme ultraviolet (the acronym EUV is also common in

the literature), refers to the region of the electromagnetic
spectrum which corresponds to photon energies from
30 eV to 250 eV [1]

By and large, the acronyms introduced above are used consistently in the literature. If the full
names are rarely used and do not provide additional insights, as it is, inter alia, the case with the
names of synchrotron and free-electron laser facilities, only the abbreviations will be printed in
the main text.





III Introduction and
current state of research

This dissertation is concerned with the interaction of extremely intense, ultrashort X-ray pulses
provided by an X-ray free-electron laser (XFEL) with various forms of matter, ranging from
individual atoms to an extended solid. To give a precise idea of the meaning of the terms
extremely intense and ultrashort in the context of XFELs, consider, for instance, the following
recently conducted experiment: Yoneda et al. (2014) [3] reported intensities up to 1020 W/cm2

within a pulse duration of less than 7 fs at a photon energy of 7.1 keV. Owing to their unique
capabilities, XFELs have been demonstrated to create solid-density plasmas (see Sec. I.2) and to
provide the possibility for new experimental techniques such as the so-called serial femtosecond
crystallography (SFX), which allows to outrun the limitations of conventional crystallography
on ultrafast time scales (see Sec. I.3). In essence, one expects from this method nothing less than
to revolutionize the field of structural biology. The basic concept of SFX, often described as
diffraction before destruction, may seem simple at first glance, but in fact it assumes a detailed
understanding of the ionization dynamics. Thus, a variety of experiments have been devoted to
this matter, leading to the observation of strongly ionized atoms such as fully-stripped neon Ne10+

and highly charged xenon Xe36+ (see Sec. I.2). The present work is conceived as a contribution
to the research on ionization dynamics with a particular focus on a coherent time evolution
and its implications on XFEL experiments. Although many experiments which indicated no
signatures of coherent dynamics have been performed at XFEL facilities so far (such as the
measurement of the charge-state distribution of isolated atoms irradiated with XFEL pulses, see
Sec. I.2), coherent dynamics proves to be crucial in other cases (see Sec. I.4). In this context, it is
emphasized that the aim is not to work out small corrections to certain experiments but to identify
and qualitatively understand scenarios in similar XFEL based experiments where a coherent
quantum mechanical approach is crucial for the theoretical description of the experiment. This
approach is interesting for several reasons. Firstly, it may support deepening the understanding of
the limitations of an incoherent time evolution via a rate-equation approach. Secondly, one can
address the question whether coherent dynamics may be beneficial for experimental techniques
such as SFX even though initial estimates of its feasibility relied on rate equations. Thirdly, it is
future-oriented insofar as XFEL beam conditions will improve (see Sec. I.1), thereby potentially
revealing quantum phenomena.

This thesis is structured as follows. Chapter I is dedicated to an in-depth overview on the
current status of the science with XFELs with a special focus on SFX to acknowledge its rapid
progress in the course of the recent years. Moreover, current developments of XFEL facilities are
briefly discussed and the experimental limitations are emphasized. Chapter II is a summary of
the assumptions and simplifications that are employed in the model systems throughout the thesis.
Chapters III, IV, and V are intended to highlight coherent phenomena in ultrafast ionization
dynamics induced by an XFEL pulse under appropriate conditions in various physical systems:
Chapter III addresses the ionization dynamics of individual atoms, Chapter IV discusses an
infinitely extended crystal, and Chapter V investigates small groups of atoms. Next, Chapter VI
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deals with the numerical procedures that were implemented in order to obtain the results of
Chapters III, IV, and V while mentioning the anticipated obstacles to a potential extension of the
theory from a numerical perspective. Eventually, a summary is given in Chapter VII.

The present thesis is, along with the work by Kaiser (2014) [4], part of a BMBF project with
emphasis placed on the impact of XFEL pulses on atomic scattering factors and the scattering
pattern [5]. For more information on the topic closer to the project specification, it is referred to
the findings of, e.g., Son et al. (2011) [6], who extensively dealt with this problem in the early
stages of the project, thus leading to a shifted focus of the present work.

Important note: Atomic units are used throughout in all equations; see App. A for details.

I.1. X-ray free-electron lasers (XFELs)

Presently, XFEL facilities are still rare in comparison to synchrotron radiation sources based
on storage rings [7], so it is virtually inevitable in the scientific XFEL community to be aware
of the following four prominent XFEL facilities. Two of them, namely FLASH (Germany,
formerly VUV-FEL, first user operation in 2005) [8, 9] and FERMI (Italy, first user operation
in 2011) [10, 11], operate in the soft X-ray regime. The other two, LCLS [12–14] (USA, first
user operation in 2009) and SACLA [15–17] (Japan, first user operation in 2012), provide harder
X-rays with photon energies up to 20 keV [18]. The number of XFELs will grow in the near
future due to upcoming facilities such as European XFEL [19, 20] (Germany, first user operation
scheduled for 2016) and the SwissFEL [21, 22] (Switzerland, first use operation scheduled for
2017). For an up-to-date overview on current and planned XFELs including the parameter ranges,
consult, e.g., Refs. [7, 23]. The principle and functionality of XFELs will not be addressed
due to the availability of extensive literature [24–35], but instead some background and recent
developments will be presented in order to illustrate the difficulties and limitations of current
XFEL experiments. Furthermore, the differences between XFELs and conventional lasers or
third generation synchrotron radiation sources will be accentuated1.

Unlike the rapid recent development of XFEL suggests, FELs in general have a long history
that goes back over forty years. Madey (1971) [36] constructed an FEL operating at infrared
wavelengths in a cavity, whereas the aforementioned XFEL facilities and ongoing projects are
designed as single-pass amplifiers [32] other than early proposals suggested [37]. Contemporary
XFELs do not obey this design principle because of the lack of high reflectivity normal-incidence
mirrors2 in the X-ray regime [30, 40]. For the sake of completeness, it is pointed out that X-ray
mirrors are not the only challenge; a detailed discussion of technical problems that FELs are
subject to for X-ray but not for infrared wavelengths can be found in Ref. [27, p. 53 et seq.].
On a side note, recent progress with high-reflectivity normal-incidence X-ray mirrors based on
Bragg diffraction in synthetic diamond crystals could potentially pave the way for so-called
X-ray free-electron laser oscillators (XFELOs) [41–43].

1It is assumed that the reader is familiar with the general layout of XFELs, conventional lasers, and storage-ring-
based X-ray radiation sources.

2Note that grazing-incidence mirrors in the X-ray regime are feasible and extensively utilized in, e.g., Kirkpatrick-
Baez geometry for focusing the XFEL beam (see Ref. [38] for details). These mirrors are based on external total
reflection, which is a distinguished feature of the X-ray regime [39].
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Compared to a conventional quantum (X-ray) laser, the theory of XFELs is based on classical
electrodynamics and is –without the requirement for discrete states– thus useful in a wide range
of the electromagnetic spectrum. In principle, a continuous wavelength tunability is possible.
FELs designed in accordance with the principle of self-amplified spontaneous emission (SASE)
[44] start from shot noise in the electron beam and, accordingly, generate radiation with stochastic
features (cf. [45] and references therein). As an alternative to SASE, an external laser can be used
to initiate the emission of coherent radiation, which reduces the adaptability and the accessible
wavelength range but in return improves temporal coherence and stability [11, 46, 47]. Seeding
is typically achieved by high-harmonic generation (HHG) as demonstrated by Ackermann et al.
(2013) [46] at FLASH with the 21st harmonic of a Ti:sapphire laser pulse or high-gain harmonic
generation (HGHG), which constitutes the basis for FERMI [11]. Additionally, a technique
called self-seeding has been shown to improve temporal coherence at LCLS [48].

Rohringer et al. (2012) [49] demonstrated the feasibility of a conventional X-ray laser provided
that a sufficiently fast and intense pump laser is available in order to achieve population inversion
despite dominating nonradiative decay channels such as Auger decay. Indeed, a SASE XFEL
was employed as pump laser in order to create a population inversion of the Kα transition of
singly ionized neon [49, 50]. This scheme is capable of improving pulse properties such as
temporal coherence by taking advantage of the fact that Doppler and collisional broadening are
negligible for low-density gases and short time scales. However, the pulse intensity suffers at
an energy conversion efficiency of 0.4%. Other concepts for X-ray lasers are based on plasma
physics, achieving population inversion via electron collisions and recombination [40]. Ritson
(1987) [51] reported another ambitious attempt to realize an X-ray laser as a part of the US
Strategic Defense Initiative, namely a nuclear-explosion pumped X-ray laser. This scheme –aside
from being still science fiction 30 years later– has the serious disadvantage that the device itself
is destroyed after its first use by the initial nuclear explosion.

Compared to third generation synchrotron radiation sources such as PETRA III or ESRF, the
spectral brightness3, i.e., the number of photons per second, mm2, mrad2, and 0.1% bandwidth
(definition from Ref. [30]), is roughly 8 orders of magnitude larger at XFELs, reflecting the
simultaneous increase in total power, the decrease in beam divergence, and the narrower spectrum
[30, p. 165 et seqq.]. It should also be noted that for technical reasons, linear accelerators are
indispensable for XFELs because even modern storage rings cannot provide the necessary
electron beam quality [30].

Despite the variety of distinguished features of XFELs, such as the unprecedented peak
spectral brightness, there are still a lot of nontrivial technical limitations which have been
overcome only recently and are to some extent subject of ongoing research. For example, the
characterization of XFEL pulses is a challenging task [53]. An early experiment by Young
et al. (2010) [54] suggested that the so-called nominal pulse duration, a widespread term for
the electron bunch length in the accelerator [55], overestimates the actual X-ray pulse duration.
The pulse-length measurements by Düsterer et al. (2011) [56] confirmed this finding via a
cross-correlation technique developed for pulse durations over 40 fs. The interpretation is also
consistent with streaking spectroscopy, which was shown to enable full temporal characterization
of pulses with durations below 10 fs in single-shot measurements, so it allows to investigate

3The terms (spectral) brightness and brilliance are often used interchangeably (e.g., by Schmüser et al. (2014) [30]).
Unfortunately, the nomenclature is not consistent throughout the literature; see Refs. [27, 52] for details.
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non-reproducible temporal profiles of SASE pulses [57–59]. Furthermore, synchronization is an
important issue in pump-probe experiments due to the intrinsic timing jitter of SASE XFELs
[60–66]. Other examples of current technical development involve polarization control [67],
focusing [38], coherence properties [68], and detector design [69].

I.2. Overview on science with XFELs
The present section is primarily devoted to the fundamental phenomena of ionization dynamics
of atoms, molecules, clusters, and solids irradiated by XFEL pulses as this topic alone led to a
variety of recent publications in high-ranking journals. The most important results reported in
the literature for the different types of samples are outlined separately, divided into subsections
according to the size of the samples, i.e., atoms, molecules and clusters, and solids, reflecting the
overall structure of the present thesis. Finally, in the last part of this section, some applications
for XFELs are presented which to a greater or lesser extent require a thorough understanding of
ionization pathways.

I.2.1. Ionization of atoms by XFELs

The electronic response of noble-gas atoms from 6Ne to 54Xe at photon energies from 800 eV up
to 5.5 keV was extensively studied in Refs. [54, 55, 70–73] using by and large the same basic
experimental setup4: a supersonic gas jet of noble-gas atoms is intersected with a focused XFEL
beam in an ultrahigh-vacuum reaction chamber in order to best possibly reproduce the same
conditions at each shot by automatically replenishing the sample according to the repetition rate
of the laser system (up to 120 Hz at LCLS). After irradiation of the gas target, the charge states
of ions are measured by means of a time-of-flight (TOF) analyzer. This technique can also be
used to record photoelectron and Auger spectra [79] or ion kinetic-energy distributions [80].
Additionally, Rudek et al. (2012) [55] simultaneously recorded fluorescence spectra for xenon
using pnCCD detectors.

The resulting charge-state distributions are predominantly interpreted within a rate-equation
approach (REA) based on the Hartree-Fock-Slater (HFS) approximation (see also Secs. I.4 and
II.2) as a theoretical model, referring to the continuously extended X-ray and atomic physics
(XATOM) computational toolkit. Remarkably, each of these experiments provided evidence for
multiphoton ionization at a photon energy of up to 5.5 keV [72]. Note that only a few years
earlier Wabnitz et al. (2005) [74] were the first to demonstrate multiphoton ionization at a photon
energy above 10 eV [81], and this experiment, in turn, was performed at a considerably lower
photon energy of 12.7 eV at FLASH.

It should be borne in mind that multiphoton ionization is fundamentally different in the
X-ray and in the long-wavelength regime: the absorption of only one X-ray photon usually
permits a transition to a (more highly) charged state, whereas at long wavelengths typically
many photons are needed to trigger an ionization event. Accordingly, sequential one-photon
absorption (OPA) of inner-shell electrons plays a key role in the ionization dynamics of noble-gas

4Similar experiments with noble-gas atoms have also been performed earlier at FLASH at lower photon energies
between 12.7 and 93 eV in Refs. [74–78].
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atoms at the aforementioned photon energies of 0.8 to 5.5 keV. Each absorption process leaves
behind an ion that occupies a core-hole state, initiating –potentially even a cascade of– relaxation
processes such as the Auger (Coster-Kronig) decay and fluorescence. In the case of low atomic
numbers Z < 20, radiationless Auger decay dominates over fluorescence [82], so, instead of
emitting a photon, another electron is ejected and possibly another core-hole state is created.
Simultaneously, shakeoff processes may enhance the occurrence of higher charge states as
well [70, 72]. In general, autoionization is vital for understanding the charge-state distribution:
for instance, in Ref. [72] each 5.5 keV OPA causes in xenon on average 5 ionization events
due to subsequent processes, ultimately producing up to Xe26+. As a result, the associated time
scales of these mechanisms are crucial for an estimate of charge states based on a theoretical
model. For example, the photoabsorption cross section decreases considerably in the presence
of inner-shell vacancies, which eventually leads to intensity-induced X-ray transparency (also
referred to as frustrated absorption) for short pulse lengths [54]. This phenomenon is similar
to saturable absorption, defined as the decrease of photon absorption with increasing intensity.
Although this effect is well-known at longer wavelengths, the experimental evidence in the XUV
and X-ray regime is significantly more challenging to obtain because of the rapid relaxation
processes associated with the excited states created by high-energy photons. In fact, saturable
absorption in core-electron transitions was observed only shortly before at FLASH by Nagler
et al. (2009) [83]. If, however, inner-shell vacancies are refilled within the pulse duration by
sufficiently fast relaxation processes, sequential OPA of inner-shell electron continues and leads
to highly charged ions.

On the one hand, the processes described so far allow a basic understanding of the dynamics
of atoms irradiated by XFEL pulses, for instance, the charge-state distributions for neon and
xenon observed in Refs. [54, 55] at 2.0 keV photon energy, which include fully-stripped neon
Ne10+ and xenon charge states up to Xe32+. On the other hand, there are many situations requiring
a more elaborated theory where the situation differs only with respect to the photon energy.
Three examples shall be discussed in the following.

Firstly, the experimental value of the two-photon absorption (TPA) cross section for highly
charged neon ions Ne8+ at a photon energy of 1.11 keV reported by Doumy et al. (2011) [70]
deviates from the theoretical value based on HFS by two orders of magnitude. It was concluded
that the 1s2−1s4p resonance is likely to be responsible for the large discrepancy between
experiment and theory. However, the comparison is complicated by the fact that the TPA cross
section strongly depends on the spectral density of the pulse [84] and thus cannot be assessed
theoretically for an insufficiently characterized XFEL pulse.

Secondly, Rudek et al. (2012) [55] experimentally observed xenon charge states up to Xe36+

at a photon energy of 1.5 keV, whereas the theory outlined so far predicts an entirely different
charge-state distribution with the highest charge state being Xe27+. This outcome is intriguing
insofar as the prediction of Xe32+ at a photon energy of 2.0 keV and Xe26+ at 5.5 keV [72] was
in good agreement with the experiment. The contradiction between experiment and theory is
resolved by taking another mechanism into account, namely, resonance-enabled X-ray multiple
ionization (REXMI). As certain photon energies are distinguished, it is natural to suppose
that resonances play an important role. Indeed, for charge states from Xe19+ to Xe35+, OPA is
energetically forbidden at 1.5 keV photon energy, and resonant excitations into Rydberg orbitals
are favored instead. Accordingly, core-hole states are generated, and subsequently the ion is
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subject to Auger decay, thereby ejecting an electron. The configurations that include excited
states with initially unoccupied orbitals were omitted in calculations because the number of states
would drastically increase5. Similar results in Refs. [71, 73] were also attributed to REXMI.

Thirdly and lastly, In the XUV regime, many experiments [75, 77, 86, 87] at FLASH were
performed in order to investigate the intensely discussed collective behavior of xenon which
potentially manifests itself in the form of the giant (dipole) resonance (GDR)6 and the giant
enhancement in the HHG spectrum [91, 92] at photon energies around 100 eV. Sorokin et al.
(2007) [75] observed Xe21+ –corresponding to an absorption of at least 57 XUV photons– as
the maximum charge state in TOF spectra at a photon energy of 93 eV, an irradiance up to
1016W/cm2, and an estimated pulse duration of roughly 10 fs. The occurrence of high charge
states is under similar conditions significantly lower for lighter noble-gas atoms due to the strong
enhancement of the photoionization cross section of xenon by the giant resonance [77]. For
both the xenon GDR [93, 94] and the giant enhancement in the HHG spectrum [92], extensive
theoretical analyses can be found in the literature that go beyond the scope of a short summary.

I.2.2. Ionization of clusters and molecules by XFELs

The aim of this subsection is to highlight the differences in XFEL experiments when clusters and
molecules are irradiated instead of virtually isolated atoms, particularly with regard to the charge-
state distributions obtained from TOF spectra. Note in advance that the description of molecules
and clusters which consist of only one atomic species is easier to comprehend because the OPA
cross section strongly depends on the atomic number Z. In more detail, the OPA cross section
σεns for a hydrogen-like atom is analytically calculated as σεns ∝ Z5 ·n−3 ·ω−7/2 if the n-shell is
(singly) occupied and the photon energy is considerably larger than the ground-state energy [95,
p. 416]. This relation correctly reflects the fact that inner-shell electrons are ejected preferably
and that heavy atoms are strong absorbers although, phenomenologically, the dependence on the
atomic number Z is rather approximately proportional to Z2.7 [96]. Consequently, the absorption
of heteronuclear molecules such as biomolecules is spatially inhomogeneous and thus leads to
local distortions under irradiation [97].

Therefore, it is instructive to start with the simple case of a small homonuclear molecule.
Hoener et al. (2010) [98] measured the charge-state distribution of irradiated N2 molecules at a
photon energy of 1.1 keV at LCLS. Even though the absorption process involves primarily inner-
shell electrons, a REA based on independent atoms analogous to Ref. [54] predicts qualitatively
wrong results. The most conspicuous deviation from the theory of independent atoms is that the
relative abundances of charge states, which were also obtained from TOF spectra, are higher
for N+ than for N2+. A contrary behavior is anticipated from the idea of independent atoms
because an inner-shell ionization is typically followed by Auger decay, i.e., the absorption of
one photon most likely leads to the ejection of two electrons, thus producing rather N2+ than N+.

5This numerical problem was later solved by Ho et al. (2014) [85] (see also Sec. I.4).
6The term giant (dipole) resonance is commonly associated with collective excitations of atomic nuclei via

irradiation with gamma rays, dominating the absorption for photon energies between 10 and 30 MeV [88, 89].
Here, however, (atomic) giant resonance refers to a collective electronic resonance in xenon, which has a major
impact on absorption at photon energies around 100 eV [90, p. 1537]. Note that both the nuclear and the atomic
giant resonance have been observed long before the first XFEL was operational (cf. review articles [88, 90]).
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However, an adequate theory for the charge-state distribution of the nitrogen molecule developed
as an extension of the REA for independent atoms requires to include the dissociation channels.
For instance, after photoionization and Auger decay of only one nitrogen atom, i.e., N2+-N,
the excited molecule may dissociates into two singly ionized atoms, N+ and N+. The physics
prior to the fragmentation of the molecule is, by contrast, captured by the rate equations of
independent atoms. This interpretation is supported by the observation of frustrated absorption
for N2 analogous to Ref. [54] for neon atoms.

The theoretical description of macromolecules and clusters has to be significantly modified
compared to independent atoms and the diatomic molecule N2 because further processes such as
collisional ionization (also referred to as secondary ionization or impact ionization [80, 99]),
electron trapping and (three-body) recombination gain in importance for a group of N � 1
atoms. This can be understood as follows. Imagine for simplicity a group of identical atoms
undergoing simultaneous ionization. Analogous to the atomic case, the ionic potential grows
with increasing charge state, and thus slower photoelectrons are generated at later times during
the pulse. The crucial difference is now that the ejected electrons require a higher amount of
kinetic energy to escape the attractive potential of positively charged ions, which approximately
rises by a factor of N compared to the isolated atom as the total charge increases by a factor
of N . As a result, a portion of the emitted electrons will eventually be trapped inside the sample
by the Coulomb attraction of positively charged ions. Additionally, Auger electrons and slow
electrons stemming from collisional ionization contribute to the trapped-electron population
while recombination events reduce the final charge state. Under sufficiently intense irradiation,
the combination of these processes creates a nanoplasma, which due to quickly thermalized
trapped electrons consists of a net-neutral core localized within a shell of positively charged
ions. Later, the nanoplasma expands on the time scale of atomic motion and evaporates within
nanoseconds [80, 100].

More specifically, Thomas et al. (2012) [101] conducted an experiment at LCLS at 850 eV
photon energy with a xenon-cluster target of roughly 11 000 atoms and identified two key
processes which are negligible for independent atoms, namely collisional ionization and three-
body recombination. The latter reduces the highest observed charge state in a theoretical model
drastically from Xe26+ to Xe5+. In reality, higher charge states still appear, possibly caused by the
phenomenon of a reduced recombination probability for the shell ions around the nanoplasma
core. By measuring the kinetic-energy distribution of the ions, evidence for a hydrodynamic
expansion of the xenon plasma was found, similar to the observation made by Krikunova et al.
(2012) [102] at a lower photon energy of 90 eV at FLASH.

In contrast, Murphy et al. (2014) [80] inferred a Coulombic expansion of fullerene C60
samples from the scaling of the mean ion kinetic energy. The experiment was conducted at
LCLS for pulse durations between 4 and 90 fs at a comparatively low photon energy of 485 eV
in order to enhance the OPA cross section7. Consequently, fully-stripped carbon atoms C6+ were
detected based on an efficient photoabsorption of 180 photons per molecule, corresponding to an
absorbed energy of 87 keV or a dose of 11.65 GGy. As seen before, collisional ionization and
recombination have a significant impact on charge-state distributions. These processes are not
directly reliant on the XFEL pulse, i.e., trapped electrons may evaporate or recombine long after

7Recall that the K-edge of atomic carbon 6C is at E1s ≈ 284.2 eV [103, Table 1-1].
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the pulse. In fact, the simulations in Ref. [80, Fig. 7b] suggest that recombination persists on a
picosecond time scale. Further, molecular Auger effect was taken into account in order to improve
the agreement between theoretical and experimental charge-state distributions. Compared to
collisional ionization and recombination, however, the contribution from the molecular Auger
effect is less pronounced.

Another important question in the context of serial femtosecond crystallography (SFX) raised
by Murphy et al. (2014) [80] is whether a mechanism analogous to frustrated absorption for
neon and molecular nitrogen causes a suppression of photoabsorption also in C60 for sufficiently
short pulses even though the number of ionization events due to collisions increases for shorter
pulses [80, Fig. 5b]. In the case of atomic neon and molecular nitrogen, frustrated absorption
was decisively influenced by atomic Auger decay lifetime in absence of collisional ionization.
Here, without a quantitative analysis it cannot even be ruled out that KLL Auger decay is entirely
suppressed based on an potentially efficient removal of L-shell electrons by collisional ionization.
However, it turned out that the averaged experimental final charge state is still reduced for
decreasing pulse length for C60, but the driving force behind this behavior is the enhancement of
electron trapping in conjunction with recombination.

Interestingly, Murphy et al. (2014) [80] also estimated the impact of chemical bonds and
concluded that the disregard of chemical bonds in the theoretical description with respect to the
predicted kinetic energies and charge state distribution is applicable for short pulse durations
and high intensities. This finding is in accordance with assumptions in early simulations where
molecular binding forces were neglected in dynamic calculations compared to the forces between
ions [104].

In addition to the studies of homonuclear molecules and clusters, different polyatomic
molecules were investigated in Refs. [105–108]. For example, Erk et al. (2013) [108] studied
methylselenol under irradiation with intense XFEL pulses at 2 keV photon energy and 5 fs pulse
duration at LCLS. A methylselenol molecule CH3SeH consists, apart from the light constituents
hydrogen and carbon, of one heavy atom, namely selenium 34Se. With the photon energy being
well below the K-edge of neutral selenium of 12.66 keV, K-shell OPA is forbidden. In con-
trast, L-shell OPA is feasible; the binding energies of L-shell electrons range from 1.43 keV
to 1.65 keV [103, Table 1-1]. As mentioned in the beginning of this subsection, heavy atoms
are usually stronger absorbers: in quantitative terms, the L-shell photoionization for selenium
is in this case almost two orders of magnitude more probable than photoabsorption of other
atoms. Therefore, the initial absorption is strongly localized at the selenium atom. The L-shell
vacancy of selenium is most likely refilled by LMM Auger decay, similar to the case of isolated
atoms. The subsequent relaxation processes which are responsible for the decay of the M-shell
holes may involve valence electrons of neighboring atoms (MVV Auger decay on a time scale of
roughly 10 fs). This leads, even without taking collisional ionization into account, to an ultrafast
charge rearrangement within the molecule. Furthermore, Erk et al. (2013) [108] found evidence
for significant distortions > 1 Å of the molecule in the vicinity of the heavy atom during the
ionization process in spite of the short pulse duration of 5 fs.

Whether processes other than that mentioned above are relevant, critically depends on the
wavelength and time scale. Wabnitz et al. (2002) [109] observed a maximum charge state Xe8+

for clusters comprising 1 500 xenon atoms at a photon energy of 12.7 eV despite the fact that only
singly ionized xenon was reached for isolated atoms. This substantial difference was attributed
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to inverse bremsstrahlung (IBS) [109–111]. However, IBS plays a minor role for higher photon
energies ω due to the scaling∝ ω−8/3 [112, 113]. Likewise, cluster interatomic or intermolecular
Coulombic decay (ICD) [114–118] can be of importance depending on the time scale. For
instance, Schnorr et al. (2013) [118] estimated the ICD lifetime of an excited neon dimer Ne+

2
(2s−1) to be of the order of 100 fs.

I.2.3. Ionization of solids by XFELs

In principle, it can be expected that the fundamental phenomena occurring in solids under
irradiation with XFEL pulses are already known from the studies of large clusters. The situation
might be even simpler from a theoretical point of view because boundary effects, such as escaped
electrons and the distinction of the positively charged shell around the generated nanoplasma,
play a minor role. From an experimental perspective, however, one has to deal with the fact
that the charge-state distribution is no longer directly accessible via TOF spectra. Indeed, it
was seen in the previous subsection that for a sample as small as molecular nitrogen N2 the
abundance of different charge states sheds light on the dissociation channels rather than on the
ionization dynamics during the pulse. For this reason, similar to the aforementioned study on
xenon by Rudek et al. (2012) [55], experiments with solid targets are interpreted by means of
X-ray emission spectroscopy instead. In Refs. [119–121], for instance, an aluminum8 foil 13Al
was irradiated with X-ray pulses of 80 fs duration at photon energies between 1.5 and 1.83 keV
at LCLS while simultaneously recording the fluorescence spectra, specifically around the Kα
line. The Kα line provides information about the electronic configuration of the emitting atom
owing to the fact that the values of K- and L-shell energies are not equally affected by an increase
of the charge state. In general, the Kα line is shifted towards larger frequencies for more highly
charged ions. By this means, Vinko et al. (2012) [119] found experimental evidence for the
pivotal role of collisional ionization in the solid target. Similar to the study of Murphy et al.
(2014) [80] devoted to the fullerene, collisional processes compete with –and may even surpass–
Auger decay.

Interestingly, the aluminum foil is heated isochorically due to the comparatively slow atomic
nuclei during the pulse duration. To be specific, Vinko et al. (2012) [119] estimated an expansion
time of 20 ps for a 1µm aluminum target. By contrast, the electrons thermalize quickly, and, as
a result, a solid-state density plasma is formed benefiting from an enhancement of collisional
ionization because of the high concentrations of both free electrons and ions.

The theoretical description of the environment-dependent process known as ionization po-
tential depression (IPD) based on classical models by, e.g., Stewart and Pyatt (1966) [122] of
solid samples was refined for solid-density plasmas [123, 124]. IPD has a substantial influence
on ionization dynamics of solids by modifying the free-electron temperature and the density
distribution, which is in turn imprinted on the collisional rates [121].

One can conclude from the present and the previous subsection that the environment of
individual atoms is crucial for a correct description of the ionization dynamics under irradiation
with XFEL pulses. On the one hand, three-body recombination and trapping effects reduce the
radiation damage and, on the other hand, collisional processes enhance the ionization.

8Note that the binding energy of K-shell electrons in neutral 13Al is 1.56 keV. L-shell binding energies range from
72.55 eV to 117.8 eV [103, Table 1-1].
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I.2.4. Applications of XFELs

Naturally, there is a variety of existing and potential applications that profit from XFELs besides
basic research on ionization mechanisms, which has been focused on so far. The most prominent
technique based on XFELs is undoubtedly serial femtosecond crystallography (SFX) to which a
separate section, Sec. I.3, in the present chapter is devoted, accordingly. To give a broader view
and to avoid the impression of XFELs being single-purpose machines, additional examples of
other techniques shall be referred to without going into detail.

The ultraintense X-ray pulses enable nonlinear phenomena that are widespread in the liter-
ature for longer wavelengths to be extended to the X-ray regime. For instance, Glover et al.
(2012) [125] achieved X-ray and optical wave mixing, Shwartz et al. (2014) [126] observed
X-ray Second Harmonic Generation in diamond at a photon energy of 7.3 keV, and Tamasaku
et al. (2014) [127] found experimental evidence for two-photon absorption (TPA) at a photon
energy of 5.6 keV in germanium.

Furthermore, Raman spectroscopy, which is a standard technique in molecular physics and
most commonly employed at optical wavelengths [128], benefits from XFELs as well. Recall
that there are several variations of the basic idea behind Raman spectroscopy such as resonant
Raman spectroscopy, also called resonant inelastic X-ray scattering (RIXS) in the X-ray regime.
In fact, RIXS is established as a reliable tool, whose feasibility has been shown long before the
construction of early XFELs [129], but still the issues of radiation damage and low fluorescence
rates compared to Auger decay rates have to be addressed9. Based on the high intensities
provided by XFELs, it has been shown that one can take advantage of stimulated emission in
order to enhance fluorescence yields while simultaneously reducing sample damage inflicted by
Auger decay [129–131].

X-ray photon correlation spectroscopy (XPCS) [132] in its present state is suitable for the
investigation of comparatively slow dynamics down to microseconds at nanometer resolution
[133]. For instance, Leitner et al. (2009) [134] reported measurements of dynamics on a time
scale of 10 s at atomic resolution at the synchrotron radiation source ESRF. Also XPCS is
anticipated to profit from the development of XFELs [133, 135, 136]; in particular, XFELs might
be the stepping stone to achieve a temporal resolution on the femtosecond time scale in XPCS.

Finally, it is worth mentioning a few examples of the numerous pump-probe experiments
performed at FLASH and SACLA devoted to the investigation of the dissociation of small
molecules [137, 138], the temporal evolution of ultrafast phase transitions [139], and spin
dynamics [140].

I.3. Serial femtosecond crystallography

X-ray crystallography [142, 143] as a method for structure determination of macromolecules
plays alongside electron microscopy (EM) [144] and nuclear magnetic resonance (NMR) a major
role in the subject area structural biology [145] as reflected by the Protein Data Bank (PDB)

9On a side note, this issue is similar to SFX dealing with low elastic scattering cross sections and, likewise, with
radiation damage.
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Figure I.1.: Amount of structures of macromolecules deposited in the Protein Data Bank (PDB) over the
period from 1980 to 2014 with a special focus on the amount structures derived from X-ray diffraction
experiments. The relative importance of the latter is depicted as a black line for clarity, referring to the
right y axis. Data obtained from the PDB web page [141].

[146], which is a well-established10 archive for structural data of proteins, nucleic acids and
their complexes. By the end of 2014, exactly 105 407 structures were available in the PDB, and
93 695 of them have been solved based on X-ray diffraction experiments. Fig. I.1 shows the
development of the PDB over more than 30 years. The bars indicate the near-exponential growth
of deposited structures, demonstrating not only the capacities of the aforementioned methods but
also the interest in understanding the function and structure of biological macromolecules for
applications such as drug discovery [147, 148]. Also highlighted in Fig. I.1 is the continuous
predominance of data based on X-ray crystallography over time even though crystallography
faces the issue of radiation damage [96]: photoabsorption cross sections are typically much larger
than elastic scattering cross section in the X-ray regime, so a potentially uncontrolled alteration
of the sample during the measurement via absorption is more probable than the mechanism
which gives rise to the measured signal [149]. At this point, it is important to note that the
radiation damage, quantified by the absorbed dose11, is largely independent of the crystal size.
The scattering probability of incident photons, quite the contrary, increases with the crystal size
while the measured signal may at the same time benefit from coherence. Therefore, a minimum
crystal size of typically tens of µm in each direction is required for solving the structure of
a macromolecule by X-ray diffraction [96]. As a result, crystallography is not applicable for
approximately 40% of all proteins because they do not form suitable crystals [54]. Examining
the situation in more detail, one can estimate a tolerable dose limit characterized by the property
that the radiation damage to the average protein crystal inflicted by the measurement itself does

10As a measure for the popularity of the PDB: the number of citations in the Web of Science database of Berman
et al. (2000) [146] is 14 054 (status as of 2 September 2015).

11The (absorbed) dose is defined as the energy deposited in the crystal divided by its mass and is measured in gray,
1 Gy = 1 J/kg.
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not prevent a reconstruction of the structure. At room temperature, the tolerable dose is of the
order of 1 MGy, which can be extended up to approximately 30 MGy for crystals cooled to
liquid nitrogen temperature [150, 151].

For a protein of average composition H50C30N9O10S1, a simple back-of-the-envelope cal-
culation analogous to Chapman et al. (2014) [149] gives clearer insight into the underlying
mechanisms. It is important to note that an exposure of 30 MGy corresponds to 2.27 eV per
atom for this average protein. This implies that at the high photon energies of, e.g., 8 keV on
average only 2.27 eV/8 keV ≈ 0.03% of the atoms in the protein crystal absorb a single photon.
Assuming an ideally efficient energy redistribution by Auger decay and collisional ionization, it
is immediately plausible that only few photoionization events are capable of inflicting severe
damage to the whole sample during slow exposure since 2.27 eV per atom are of the order of
the energy of chemical bonds. This estimate is consistent with simulations of a urea crystals
where one 6 keV photoelectron causes a cascade of secondary electrons and thereby induces 285
ionization events after approximately 100 fs. Hence, due to secondary ionization, an exposure of
400 MGy, which corresponds to ≈ 0.4% of the atoms in the average-protein crystal absorbing
one 8 keV photon, is in general sufficient to trigger one ionization event per atom [149].

I.3.1. General concept of SFX

The basic idea behind serial femtosecond crystallography (SFX) is to overcome radiation damage
induced limitations in crystallography by recording the diffraction pattern on a time scale shorter
than the dominant ionization mechanisms [152]. In simple words, one uses pulses that deliver
just as many photons as needed for collecting the data, ignoring the fact that the resulting
dose would utterly destroy the sample after a sufficiently long time. Ultrashort pulse durations
are then supposed to solve the issue of radiation damage as they limit the time window of
elastic scattering to the initial stage of damage processes. This principle is often summarized
as diffraction before destruction [149, 153, 154] and holds promise for providing conclusive
scattering patterns at doses exceeding 1 GGy, which surpasses the conventional dose limits by
orders of magnitude [149]. Accordingly, SFX is applicable for nanocrystals that are too small
for structure determination with conventional crystallography [149, 152, 154, 155] and might
eventually enable the structure of single molecules to be solved. The prerequisites for SFX can
be fulfilled by the distinguished properties of XFELs, most importantly delivering ultrahigh
intensities in pulse durations as short as femtoseconds.

A correct interpretation of the diffraction pattern obtained by SFX requires thorough under-
standing of ionization processes discussed in Sec. I.2. For example, exposing the sample to the
same amount of photons on a shorter time scale implies an increase in intensity and thus an
enhancement of nonlinear processes such as two-photon absorption (TPA) [127]. Fortunately, the
probability for these transitions is generally negligible compared to one-photon absorption (OPA)
for light atoms in the X-ray regime. Moreover, phenomena such as frustrated absorption [6,
54, 98, 152] and electron trapping plus recombination [80] result in a reduction of the radiation
damage for femtosecond pulses. In fact, hollow atoms are beneficial for imaging experiments
insofar as the scattering cross section typically decreases significantly less than the absorption
cross section upon the presence of inner-shell vacancies [6, 149, 156]. Collisional ionization can
be suppressed with subfemtosecond pulse durations [6, Sec. III E] or by using isolated molecules
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instead of crystals [149]. Damage reduction via single-particle imaging assumes, however, that
the photoelectron mean free path is larger than the size of the individual molecule, which is not
guaranteed in general. Further, single-particle imaging has also certain disadvantages compared
to SFX. For instance, one has to consider incoherent scattering [157] and one cannot exploit
the phenomenon of self-terminating Bragg diffraction [158]. The latter rests upon the idea that
the collection of the diffraction pattern is not necessarily terminated by a short X-ray pulse but
by the onset uncorrelated motion of atoms destroying the crystalline order and thus the Bragg
diffraction.

Principally, the direct retrieval of structures from single-shot diffraction patterns in single-
particle imaging of comparatively large samples, such as bacteriophage T4 at 20 to 40 nm, is
feasible [159]. For imaging of biomolecules, however, a high number of diffraction patterns
is indispensable in order to improve the signal-to-noise ratio. In fact, this is the origin of the
term serial in serial femtosecond crystallography (SFX). Correspondingly, the sample has to
be replaced after the collection of each diffraction pattern because severe radiation damage
sets in after the pulse. The continuous supply of pristine samples is realized by a liquid jet
intersected with the XFEL beam. As a result, snapshots contain diffraction patterns of the sample
in random orientations or –in case the pulse does not hit a sample– no diffraction pattern at
all. For instance, Redecke et al. (2013) [151] recorded 4 million snapshots that consisted of
293 195 diffraction patterns, which is obviously a challenge with respect to data processing.
Software devoted to this problem has already been developed and is openly available under the
GNU General Public License (GPL) [160, 161]. Dealing with the randomly oriented samples
is still an important issue, which is addressed in different ways. First, sophisticated solutions
for orientation determination have been published in Refs. [154, 162, 163]. Second, diffraction
based on aligned single molecules is discussed in the literature [164–167] in order to facilitate
the data analysis for structure determination [154].

I.3.2. The phase problem in crystallography

The so-called phase problem [168] plays a pivotal role in both conventional crystallography and
SFX. It can be briefly summarized as follows: by recording the diffraction pattern, one acquires
only the magnitude of the elastic scattering factor. Therefore, after having the experimental data
collected, the solution of the structure is equivalent to the knowledge of the phases. Correspond-
ingly, structure determination is often also referred to as phasing. The key questions are now
whether the phases are relevant for structure determination in the first place, and, if so, how to
obtain them.

The phase problem can be nicely illustrated by making use of the fact that the Fourier transform
not only constitutes the relationship between the elastic scattering factor and the electron density
[39] but is also a common image processing technique [169]. Fig. I.2 demonstrates, analogous
to Taylor (2003) [168], the issues of a naive attempt at structure determination of a randomly
chosen object about which no prior knowledge is assumed. Assume that Fig. I.2a is the measured
coherent diffraction pattern, i.e., the intensity pattern produced by the Fourier transform of
the structure shown in Fig. I.2b. For an intuitive understanding of the significance of phase
information, Figs. I.2c and d answer the question of what can go wrong if incorrect phase
information is used in an attempt to derive the structure. It turns out in Fig. I.2c that using the
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(a) (b) (c) (d)

Figure I.2.: Illustration of the phase problem by means of the Fourier transform as a standard image
processing tool [169] analogous to Taylor (2003) [168] with 256×256 pixel images. (a) represents the
coherent diffraction pattern of (b) [on a logarithmic scale] or, seen from the opposite perspective, (b) is
the structure derived from (a) using the correct phase information. The importance of phase information
is demonstrated in (c) and (d): (c) is the result of the attempt to derive the structure (b) from its diffraction
pattern using the phase information produced from an entirely different structure, in this case Tux (mascot
of the Linux kernel, by Larry Ewing, lewing@isc.tamu.edu, and The GIMP). Inversely, (d) is obtained by
using the phase information of the original image (b) and the amplitudes of Tux.

amplitudes produced by the original structure Fig. I.2b in combination with the phases generated
from a penguin gives a grasp of the penguin but looks nothing like the original structure. As seen
in Fig. I.2d, it works vice versa as well. This visual example demonstrates that phase information
is crucial for structure determination, i.e., only amplitudes and phases together reveal nature’s
beauty in Fig. I.2b.

A lot of techniques have been developed in conventional crystallography to address the phase
problem: single-wavelength anomalous diffraction (SAD), multiwavelength anomalous diffrac-
tion (MAD), molecular replacement, isomorphous replacement [143, 168], and oversampling
[170–172]. The latter method was originally designed for noncrystalline samples and is thus,
strictly speaking, developed for another extension of conventional crystallography which is
commonly referred to as coherent diffractive imaging (CDI) [142]. Miao et al. (2003) [170]
demonstrated that oversampling enables solutions of nonperiodic µm-sized structures at 7 nm
resolution at a synchrotron radiation source. The basic idea behind oversampling can be applied
to SFX by measuring the diffraction amplitudes between Bragg peaks [173–175].

It is not self-evident that these phasing methods, particularly SAD and MAD, can be easily
transferred to SFX. Both SAD and MAD are used at wavelengths near absorption peaks [168]
because dispersive effects are most dominant due to the Kramers-Kronig relation between real
and imaginary part of the dispersion corrections associated with the atomic scattering factor [39,
143, 176]. To this end, comparatively heavy atoms have to be targeted in accordance with the
desired resolution. For example, the K-edge of 26Fe is roughly 7.1 keV [103, Table 1-1], which
corresponds to a wavelength of λ ≈ 1.75 Å and, in turn, to a diffraction-limited resolution length
of approximately 3.37 Å if the angular acceptance of the detector is 15◦ [177]. Consequently,
the sample is subject to strong ionization enhanced by both heavy atoms and the vicinity to
absorption edges (cf. Sec. I.2.2). These complications were previously addressed in theoretical
studies, and, in this context, novel phasing methods have been proposed which turn the ionization
processes into an advantage for phasing [176, 178–180].
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I.3.3. Recent developments in SFX

In the following, selected milestones and some of the recent accomplishments in SFX or related
CDI experiments are summarized while briefly mentioning the respective phasing method. An
early proof-of-principle experiment of diffraction before destruction at a comparatively large
wavelength of λ = 32 nm, corresponding to a photon energy of ≈ 39 eV, was conducted at
FLASH by Chapman et al. (2006) [177]. The concept of diffraction before destruction was
experimentally demonstrated for a known non-periodic µm-sized sample with 25 fs long, near
transform-limited pulses. In this work, no radiation damage was observed in the reconstructed
images, which were obtained from single-shot coherent diffraction patterns and phasing through
oversampling. A second measurement of the same sample revealed that it was completely
destroyed by the first FEL pulse. Hence, all characteristics of diffraction before destruction
were present. This technique was used, e.g., for analyzing a single mimivirus with a diameter of
0.75µm [181].

With the research on SFX gaining impetus from the success of CDI experiments [172, 174],
first publications demonstrating the feasibility of SFX with protein nanocrystals at an XFEL
with subnanometer resolution appeared in 2011 [150, 182–184]. These early findings were
based on diffraction patterns recorded with pnCCD detector modules at the CFEL-ASG Multi-
Purpose (CAMP) instrument at LCLS at photon energies around 2 keV. For instance, Chapman
et al. (2011) [182] found evidence that at 1.8 keV the conventional dose limit of 30 MGy
for nanocrystals of photosystem I, a structure previously solved by means of conventional
crystallography [185], can be circumvented by using XFEL pulses. Indeed, pulse durations of
70 fs enabled to overcome the limitations of radiation damage at doses up to 700 MGy at the
observed resolution of 8.5 Å.

After the commissioning of the LCLS Coherent X-ray Imaging (CXI) instrument, photon
energies in the range from 5 to 11 keV and Cornell-SLAC Pixel Array Detectors (CSPADs)
specifically designed for imaging at LCLS [186] became available. Boutet et al. (2012) [187]
demonstrated SFX for microcrystals of a well-known protein at comparatively low average dose
rates of 33 MGy with 40 fs pulse duration at room temperature surpassing the conventional dose
limit of 1 MGy (see page 11). No significant signs of radiation damage were observed at the
obtained resolution of 1.9 Å. The phasing of the structure was accomplished via molecular
replacement.

The first previously unknown high-resolution structure of a protein [188] was obtained by
Redecke et al. (2013) [151] at the LCLS CXI instrument. In this work, a 2.1 Å resolution
structure of natively inhibited Trypanosoma brucei Cathepsin B (TbCatB) was determined based
on 178 875 diffraction patterns of microcrystals of TbCatB collected at room temperature with
9.4 keV pulses, a duration of 40 fs, and doses up to 31 MGy. This result was considered as
a first breakthrough of SFX even though the phase retrieval by molecular replacement gave
cause for criticism [188]. The reason was that Redecke et al. (2013) [151] took advantage
of prior knowledge of TbCatB, namely the coordinates of the mature enzyme sequence of
TbCatB [183] as a search model, implying that SFX was not yet proven to be an autonomous
technique. Similarly, further accomplishments in structure determination at XFELs such as
Refs. [189–194] at photon energies between 8 and 10 keV relied on phasing via molecular
replacement. Furthermore, the predicted dose limits (see above) are often not exhausted in
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order to avoid damage to the detector [149]. For instance, Kern et al. (2012) [189] reported an
average dose of 200 MGy. The fact that the radiation dose required for the solution of TbCatB
by Redecke et al. (2013) [151] is of the order of the conventional dose limit of cryogenically
cooled samples suggests a potential reproducibility of the experiment at a synchrotron. Indeed,
Gati et al. (2014) [195] collected consistent data at the third-generation synchrotron radiation
source PETRA III using the same microcrystals as Redecke et al. (2013) [151], a photon energy
of 10 keV, and similar dose. In this case, however, the sample receives the dose on a time scale
of seconds, i.e., orders of magnitude slower than in SFX. This indicates the superiority of XFELs
for imaging experiments where time resolution is crucial [196–207].

Ultimately, direct, or de novo, structure determination for finite crystals in SFX experiments
was achieved by Barends et al. (2014) [208] at the LCLS CXI instrument by means of single-
wavelength anomalous diffraction (SAD) phasing.

I.4. Theoretical methods
The rate-equation approach (REA) [39] for the simulation of inner-shell multiphoton ionization
in the X-ray regime has a variety of advantages. First and foremost, the conceptual simplicity
provides an intuitive understanding of the relevant mechanisms behind the ionization dynamics
of atoms. Moreover, the numerical effort is comparatively low and the theory is nevertheless
capable of capturing the quantitative results obtained from the majority of experiments mentioned
in Sec. I.2. For larger samples, the REA for atoms can be combined with a screening model
[209], a molecular dynamics (MD) [80, 97, 100, 152, 210] or a transport approach [100, 211].
These extensions allow, e.g., a description of the formation of nanoplasmas [80]. As mentioned
in Sec. I.2.1, the predominant part of the cited references refer to the same implementation of
the REA, the so-called XATOM toolkit. This approach relies on rates based on the HFS method
for transitions between all possible q-hole electronic configurations of an atom where q ranges
from zero to the atomic number Z if fully-stripped atoms are considered. For instance, in the
case of neon, there are one zero-hole configuration, 1s22s22p6, three one-hole configurations,
1s12s22p6, 1s22s12p6, and 1s22s22p5, etc.

At optical wavelengths, different approximations are employed depending on the so-called

Keldysh parameter γK =
√

1
2
εB/Up, which results from the ratio between the ionization potential

εB and the ponderomotive energy Up [212, 213]. In this situation, the latter can be expressed
in terms of the irradiance I and the photon energy ω according to Up = 2παI/ω2. Naively
applying this concept to XFEL experiments yields numerical values of Up that vary by orders
of magnitude since FELs are greatly tunable. Extracting Up according to the aforementioned
formula for prominent experiments such as Refs. [54, 55] at LCLS reveals that Up is significantly
lower than 1 eV even for the comparatively low photon energy of 800 eV. Hence, the Keldysh
parameter γK � 1 suggests a perturbative approach [75, 211]. However, even though the REA
indeed had a great success in describing the experimental data in, e.g., Ref. [54], this is not a
valid justification because this analysis is not applicable in the XUV and X-ray regime [77].

It should be noted that even the REA is computationally very demanding for heavy atoms.
The number of configurations that are needed in a simulation that includes the fully-stripped atom
are shown in Fig. I.3. Following the procedure described in Ref. [54], one easily calculates the
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number of configurations as a simple exercise in combinatorics. An exponential fit is shown to
guide the eye and highlight the overall trend. This figure reproduces, e.g., the 27 configurations
of carbon 6C from Ref. [6], the 63 configurations of 10Ne from Refs. [49, 54], and the 27 783
configurations of 26Fe from Ref. [176]. The experiment by Rudek et al. (2012) [55] with 54Xe
at photon energies of 1.5 and 2.0 keV involved no K- or L-shell absorption, so the number of
configurations, 13 774 524, can be divided by 63 (equal to the number of configurations of
10Ne), which yields 1 120 581 configurations in total. These configurations are then coupled by
processes such as photoionization and Auger decay, which are represented by a sparse matrix in
dynamical calculations. However, it has been pointed out by Son and Santra (2012) [214] that
a Monte Carlo implementation of the REA is capable of avoiding the requirement for keeping
track of all configurations simultaneously in the algorithm. Furthermore, recent progress by Ho
et al. (2014) [85] allows to take the REXMI mechanism into account within the framework of
the theory behind XATOM.
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Figure I.3.: Number of configurations considered
within the XATOM toolkit for different atomic
species if fully-stripped atoms are predominantly
produced by sequential K-shell absorption and sub-
sequent processes.

Of course, not all phenomena can be explained
based on only the REA. One example is the in-
tensity pattern obtained by coherent diffractive
imaging (CDI). The latter is, strictly speaking,
given by two-particle correlations, which can-
not be deduced from the occupation numbers
of configurations without approximation. In the
case of nanocrystals considered in SFX the two-
particle correlations effects are negligible due
to Bragg scattering [215, 216]. Furthermore, a
more elaborated treatment is required when co-
herences play a role [217–222]. For instance,
Demekhin and Cederbaum (2012) [222] theoret-
ically investigated the impact of dynamic inter-
ference on the photoelectron spectra for atomic
hydrogen under pulsed XUV irradiation at a photon energy 40 eV above the K-edge of 13.6 eV.
This analysis cannot be performed within the typical REA because the latter reduces the compu-
tational costs by modeling only the residual ion, i.e., these spectra are usually not calculated in
the first place. Similarly, Chapters IV and V of the present dissertation address situations where
the interference of photoelectrons becomes important as it even affects the ionization dynamics
of populations.

Although Murphy et al. (2014) [80] state with regard to the ionization dynamics of the
fullerene C60 discussed in Sec. I.2.2 that a quantum simulation might be required for a better
agreement with the experiment, they also stress that such a calculation is not generally feasible
with respect to computational costs and that the quantum mechanical approach (as seen in Chap-
ters III, IV, and V) is sensitive to pulse parameters which have not yet been fully characterized
for XFELs. For future development and in appropriate special cases one may consider a variety
of more sophisticated theoretical approaches [223]: the time-dependent Hartree-Fock (TDHF)
theory [224, 225] and related [226–228], the multiconfigurational time-dependent Hartree-Fock
(MCTDHF) theory [223, 229, 230], the nonequilibrium Green’s function (NEGF) approach
[231–235], the time-dependent configuration-interaction singles (TDCIS) method [84, 87, 92,
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220, 236], the time-dependent density-functional theory (TDDFT) [231, 237–240], and the
time-dependent reduced density-matrix (TDRDM) [4, 223, 241–243].

The present thesis focuses on TDHF and related approximations (see Sec. II.2). In the
context of the previous work within the scope of the aforementioned BMBF project [5], a
potential extension of the theory to TDRDM will be discussed occasionally but not in depth.
The theoretical background for this technique adapted to the present situation is provided in,
e.g., Ref. [4, page 65 et seqq.]. Note that the dependence on the system size of the TDRDM
theory is relatively weak, contrary to the radical increase of the numerical effort with the
number of electrons in the framework rate equations. Nevertheless, TDRDM is computationally
considerably more challenging than the REA for typical XFEL based experiments. The reasons
are discussed below.

The decisive advantage of both TDHF and TDRDM over the REA is, above all, their capability
of describing a coherent time evolution. For this reason, the present dissertation, as its title
suggests, is primarily concerned with coherent phenomena that are for the most part identified
via comparison with the REA.



IIIIII Basic assumptions
of the applied models

The present chapter provides an overview of the approximations and simplifications in the
models employed in Chapters III to V and, associated therewith, the limitations that have to be
borne in mind for a correct interpretation of the results obtained in this framework. Naturally,
rigorous simplifications are mandatory for taking into account the coherent ionization dynamics
for a generic solid (Chapter IV) or for an arbitrary number of atoms (Chapter V). The most
far-reaching approximation in the present thesis is the reduction to one space dimension (1d),
which nevertheless has been proven useful to capture qualitative features of ionization dynamics
in many cases [229, 234, 237, 238, 241, 244–257]. On a side note, there is also an extensive 1d
theory for FEL radiation [24, 30].

Carrying over the time-dependent Schrödinger equation (TDSE) to 1d implies an ambiguity
with respect to the Coulomb operator because the straightforward replacement 1/r → 1/ |x|
leads to an infinite binding energy. Thus, different strategies for truncating the Coulomb potential
arose [244, 245]. Besides the softened Coulomb operator [258, 259] (also referred to as soft-core
(SC) potential), which is probably most common in the literature, other model potentials such
as the Mathieu or the Kronig-Penney (KP) potential are sometimes employed [260, 261]. The
choice of the model potential is in fact crucial for the present purposes. It turns out that the
SC potential, and similarly any other differentiable potential with a local minimum, displays
characteristics of the harmonic oscillator for high binding energies. Even on a qualitative level,
the results obtained within such a model are largely artificial [262], which led to the utilization
of the KP model in Chapter IV.

The restriction to 1d has further implications. These shall be discussed in the following along
with the introduction of further simplifications divided into two categories: approximations
related to electron-photon and electron-electron interaction. Lastly, Sec. II.3 is devoted to a
discussion of limiting cases where the assumptions outlined in this chapter are most suitable.

Generally, the time scale plays a key role for all applied models. The simulations are limited
to the dynamics during the interaction with the XFEL pulse, i.e., processes that occur on the
femtosecond time scale and below1. Therefore, no effort is made to capture the Coulomb
explosion initiated by ionic repulsion after electrons escape from the sample because, typically,
the time scale of atomic displacement is tens of femtoseconds [80]. Accordingly, pulse durations
of the order of only a few femtoseconds are considered throughout Chapters IV and V in order
to maintain consistency with experiments in neglecting the atomic motion.

1Note that even subfemtosecond pulses are within reach [3].
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II.1. Electron-photon interaction

The interaction of the electromagnetic field with matter is assumed to be captured by a semi-
classical2 description, i.e., the Schrödinger equation coupled to a classical electromagnetic field.
This premise is only partially justified by the intensities and coherence properties of seeded
XFEL pulses [264, p. 511 et seq.]. Indeed, the situation is more complicated in the X-ray regime
since relevant processes such as, first, inelastic Compton scattering and, second, fluorescence are
axiomatically disregarded [2]. The first deficiency could prove problematic because the scattered
intensity is known to be dominated by Compton scattering for strong incident pulses [263, p.
390 et seqq.]. However, this issue can be bypassed by focusing on other physical quantities
such as sample damage, which is only slightly affected by Compton scattering compared to
photoabsorption [95, p. 416]. The absence of inelastic scattering in the semiclassical model is
therefore only a minor drawback. This is far from being the case for the neglect of fluorescence
processes, which are vital for the simulation of heavy atoms according to the dependence of
X-ray fluorescence rates of approximately ∝ Z4 on the atomic number Z. For instance, the
K-hole lifetime in krypton 36Kr is as short as τ1s ≈ 0.24 fs at a K-edge of E1s ≈ 14.3 keV and is
dominated by fluorescence [39, 265].

A realistic semiclassical modeling of SASE pulses includes an ensemble of temporal envelopes
consisting of several intensity spikes that form a flat-top pulse on average [50]. Although this
approach is inherently parallel and thus efficiently implementable with respect to computational
runtime, it is not applied here because it might conceal signatures of coherent dynamics, whose
identification is the main target of the present dissertation. Therefore, the focus is placed on
seeded pulses with ideal temporal profiles and coherence properties. On a side note, recent
theoretical progress by McNeil et al. (2013) [266] suggests that a so-called high-brightness SASE
FEL might be capable of generating (near) transform-limited pulses even without seeding.

Photoionization is the most important process based on electron-photon interaction (see [95,
p. 416]) in the range of the electromagnetic spectrum accessible with contemporary XFELs.
Even though photoionization can be principally well described within the semiclassical approach,
the 1d model is incapable of reflecting the rich structure of the photoabsorption cross sections
as functions of the wavelength due to phenomena such as Fano resonances, Cooper minima,
and GDR [267]. Even simpler properties –for example, the observation that via one-photon
absorption (OPA) predominantly inner-shell electrons are ejected if energetically feasible– are
not guaranteed for arbitrary 1d model potentials [262]. Consider, for instance, a 1d rectangular
potential, whose periodic continuation leads to the KP model used in Chapter IV. In this
case, the eigenvalue spectrum exhibits no accumulation point at zero energy, but all bound
eigenstates [268, p. 48 et seqq.] decrease exponentially outside the support of the potential
similar to the 3d hydrogen atom. The latter is important as it influences the transition rates [39,
95, 269]. By contrast, the relative magnitudes of partial cross section in the 1d models considered
here are not consistent with the 3d hydrogen atom. This deviation is of qualitative nature because
ionization pathways may be altered. Hence, 1d models are best suited for situations where only
one ionization channel is investigated.

2This term is used ambiguously in the literature. Here, the definition of semiclassical is consistent with standard
textbooks of quantum optics such as Refs. [263, 264].
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Furthermore, the wavevector ~k and the magnetic field ~B of the electromagnetic wave are
omitted in the 1d calculation because ~k and ~B are perpendicular to the electric field ~E. Strictly
speaking, the electromagnetic wave considered here should be rather denoted oscillating electric
field. It is nevertheless assumed that there is an associated intensity given by I = 1

8πα
E2

0 .
Consequently, the spatial dependence of the pulse is disregarded as well because the envelope
of XFEL pulses is typically orders of magnitude larger than the length scale dictated by the
wavevector (see Sec. II.3). The implication is that one may introduce the dipole approximation
without loss of generality or, in other words, nondipole effects are neglected. The applicability of
this approximation in the X-ray regime is questionable due to the short wavelengths [2, 270–272].
For example, two-photon above-threshold ionization (ATI) [273] is known to be essentially a
nondipole effect in the X-ray regime [272].

Finally, the broad angular distribution of photoelectrons stemming from OPA [2, p. 119
et seqq.] is reduced to two directions. In real systems, the situation is completely different:
the distribution depends strongly on the initial orbital of the ejected electron and is largely
independent of the field strength but is rather affected by high photon energies of the incident
pulse [2, 27]. On a side note, the first effect is well-known and useful for experimental purposes.
For instance, collecting the signal from 2s photoelectrons can be avoided by detecting only
electrons perpendicular to the polarization axis of the XFEL pulse [219].

II.2. Electron-electron interaction

The models presented in the ensuing chapters rely on the assumption that the electron-electron
interaction can be treated to a good approximation on a Hartree-Fock (HF) level [274–276].
Indeed, the major part of the models, where adequate, completely neglects all many-particle
effects except for the Pauli exclusion principle. This strategy is accompanied by severe limitations
although many of the references cited in Chapter I rely on an even simpler theory, namely the
Hartree-Fock-Slater (HFS) approximation3 [277, 278]. However, HFS is only the starting point
for the calculation of orbitals and rates; additionally, one has to determine the transition rates
of processes that go beyond a straightforward time-dependent HFS approach. One important
example of such a process is Auger decay. In this work, the dynamical equations are the time-
dependent Hartree-Fock (TDHF) equations [224, 225, 279–281] without further amendments.

Let % be the one-body reduced density matrix (1RDM), let Vcore be a one-body potential,
and let Vee be a two-body potential. For simplicity, it is assumed that Vee(x1, x2) depends
only on the distance |x1 − x2| between x1 and x2, so there is no distinction made between the
notations Vee(x1, x2) and Vee(x1 − x2). Moreover, the analysis is restricted to systems without
spin polarization to avoid explicitly dealing with the spin variable, i.e., each orbital is postulated
to be doubly occupied. Then, including a time-dependent spatially homogeneous electric field
E(t), the TDHF equations in 1d coordinate space are given by [89, p. 485 et seqq.]:

3In order to emphasize the widespread use of this approximation consider the following list of references [6, 55,
70, 84, 92, 117, 123, 156, 157, 209, 214, 217, 265], which is only a subset where HFS was employed.
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Time-dependent Hartree-Fock (TDHF) equation

i ∂
∂t
%(x1, x2) + 1

2

(
∂2

∂x21
− ∂2

∂x22

)
%(x1, x2)

− (Vcore(x1)− Vcore(x2)) %(x1, x2) + E(t) (x1 − x2) %(x1, x2)

=

∫
dx [Vee(x1 − x)− Vee(x2 − x)]

[
%(x1, x2) %(x, x)− 1

2
%(x1, x) %(x, x2)

]
.

(II.1)

A direct simulation of Eq. (II.1) evidently requires a larger computational effort than the solution
of an exact two-particle problem. In exchange, Eq. (II.1) can in principle be used for any
number of particles without a substantial increase of the numerical costs. Note that the TDHF
equations based on the 1RDM can be simplified on the basis of the conservation of the product
character, % = %2 [89, p. 489]. Therefore, Eq. (II.1) is consistent with the orbital formulation of
TDHF [225]:

Time-dependent Hartree-Fock (TDHF) equation (orbital formulation)

i ∂
∂t
ϕi(x) =

(
−1

2
∂2

∂x2
+ Vcore(x)− xE(t)

)
ϕi(x) +

+

∫
dy Vee(x− y)

[
%(y, y)ϕi(x)− 1

2
%(x, y)ϕi(y)

]
,

(II.2)

where ϕi for i = 1, . . . , N are the N doubly occupied orthonormal orbitals of the Slater
determinant that generates a 1RDM % according to

%(x1, x2) = 2
N∑

i=0

ϕ∗i (x2)ϕi(x1) . (II.3)

In this case, the number of electrons, 2N , explicitly appears in the dynamical equations.
There are several shortcomings of the TDHF method regarding ionization experiments. Even

in the optical regime, TDHF is long known to be incapable of describing the famous knee structure
in the intensity dependence of double-ionization yield of helium [251, 282, 283]. This effect is
attributed to correlations, similar to the GDR phenomenon around 100 eV discussed in Sec. I.2.1.
Additionally, the TDHF description of ionization dynamics contains further basic flaws4 [250,
256, 284]. There are even cases where qualitative discrepancies between the TDHF and the full
solution occur, whereas a model neglecting the electron-electron interaction completely predicts
the correct tendencies [256]. For this reason, the major part of this dissertation is based on the
special case Vee ≡ 0. The only exception can be found in Sec. V.2.6 where the significance of
electrostatic trapping is estimated.

For a correct interpretation of the results obtained via TDHF, it is indispensable to be aware
of the general limitations of this approach. Correspondingly, the phenomena that shaped the
dynamics of the experiments reported in Chapter I and are affected by the TDHF approximation
shall be briefly analyzed in the following.

4exact quote from Ref.[284, p. 139]
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Auger decay, which is essential in most XFEL based experiments, is beyond the TDHF
approach [39]. Particularly for light atoms, inner-shell vacancies are subject to fast Auger
processes: in the case of neon 10Ne (K-edge E1s ≈ 870 eV) the K-hole lifetime τ1s ≈ 2.4 fs is
dominated by Auger decay [49, 285]; the prevalent decay mechanism of inner-shell vacancies
for heavy atoms is fluorescence (see Sec. II.1).

Moreover, TDHF is inconsistent with the wide-spread contrary assumption that trapped
electrons quickly reach thermal equilibrium [104, 123, 216]. In reality, the truth lies, of course,
in between these two extreme cases of absent and instantaneous thermalization. Obviously,
electron-electron collision of trapped electrons is essential for the simulation of macromolecules,
clusters, and solids irradiated by XFEL pulses, but it is also discussed that electrons may not
equilibrate within the short pulse durations [215]. One can estimate that the thermalization
proceeds on the time scale of a few femtoseconds, benefiting from high density and low photon
energy of ejected electrons [123].

IPD in solids is only partly included. On the one hand, the impact of the charged environment
is captured on the Hartree-Fock (HF) level [123]. On the other hand, IPD depends on the
free-electron density distribution [121], which is, in turn, not correctly modeled due to the
aforementioned omission of interaction processes.

Lastly, as established in Sec. I.2, charge state distributions are strongly affected by collisional
ionization, which is also implicitly disregarded in the TDHF approach. Still, it is intuitively clear
that the role of collisional ionization depends on the kinetic energies of ejected electrons and
their mean free path. Therefore, depending on the photon energy and the sample, it might be
possible to outrun this ionization process with subfemtosecond pulses (cf. the following section).
The absence of collisions implies further that IBS does not contribute to the ionization within
this model [110]. This is not an issue here because the importance of IBS decreases with higher
photon energies.

II.3. Discussion

All in all, the assumptions introduced above are accompanied by severe limitations regarding the
applicability to real XFEL based experiments. One can argue that the model is overly restrictive
to describe the irradiation of a real sample with X-rays: the simulation of heavy atoms within
this model is fundamentally incompatible with the neglect of fast fluorescence processes, and
light atoms cannot be satisfactorily treated without taking Auger decay into account5.

Therefore, the focus lies on situations where the pulse duration is short compared to the inner-
shell decay lifetimes, which is reasonable for subfemtosecond pulses [26, 32] and light atoms.
Longer pulses may be adequate as well depending on the specific Auger lifetime of typically
a few femtoseconds. The implication is that the cases of interest are similar to the situation
of frustrated absorption [54, 98], i.e., the decay channel is virtually frozen on the ultrashort
time scale. This phenomenon enables the restriction on the initial dominating photoionization
channel.

5On a side note, the equation of motion based on the 1RDM in Eq. (II.1) can in principle be phenomenologically
extended to incorporate Auger decay [221].
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As mentioned in Sec. II.2, subfemtosecond pulses are required to avoid collisional ionization at
a photon energy of 12 keV. This time scale tc is characterized by tc = λc/vel for a photoelectron
with an average velocity of vel and an electron mean free path λc [6, Sec. III E]. If high photon
energies ω and light atoms are considered, λc can be estimated by the Bethe formula and the
electron velocity is approximately given by vel ∝

√
ω [286], and thus tc grows with increasing

photon energy, i.e., high photon energies inhibit collisional ionization by photoelectrons. For
near-threshold ionization (NTI), however, vel ∝

√
ω is not valid because the binding energy is

not negligible compared to ω and also the Bethe formula does not apply [286]. Nevertheless,
λc varies between a few Å and 100 Å for practical conditions [286], and thus the photon energy
and the pulse duration can be chosen appropriately, aiming at a tc longer than the pulse duration.
Note that the case of slow photoelectrons implies a possible onset of resonance-enabled X-ray
multiple ionization (REXMI) or two-photon absorption (TPA) in the corresponding experiment.

Upgrading the level of the theory to TDRDM might enable to capture transitions such as Auger
decay, shakeoff and potentially the relevant collisional processes [4]. However, the TDRDM
treatment of ionization dynamics initiated by XUV pulses is computationally not feasible in
3d, and a 1d implementation is likely to exhibit many artificial properties discussed above.
Intuitively, one might expect that the 1d approximation will break down entirely if electron-
electron collisions –even if consistently modeled within the 1d model– have a considerable
influence on the quantities of interest.

Next, the level of theory discussed above is analyzed from a numerical perspective. Interest-
ingly, the models without electron-electron interaction are similar to the 1d system for a study of
above-threshold ionization (ATI) that was numerically solved by Javanainen et al. (1988) [246]
via the Crank-Nicolson (CN) method. Although the findings in this reference are roughly as
old as the author of the present thesis, the numerical task is not trivial on modern computers.
The computational costs of the simulations performed in the course of this dissertation depend
substantially on the time and length scales. Consider, e.g., the simplest situation in Chapter V, i.e.,
a single atom irradiated by a coherent XUV or X-ray pulse without taking the electron-electron
interaction into account. The length scales are largely given by the kinetic energy of the ejected
electrons: the computational system size, for which a lower bound –typically much larger than
the atom– exists in order to correctly model ejected electrons without artificial reflections at the
boundaries of the grid (see Sec. VI.1), and the discretization, which needs to be appropriate for
the description of the spatial variation of the wave function of free electrons. Likewise, there
are usually two well-separated time scales, namely the duration and the frequency of the XFEL
pulse.

For a quantitative analysis of the length and time scales in a TDHF description (even if Vee

vanishes identically) of a typical SFX experiment, a wavelength of λ = 1 Å is assumed as a
starting point6. Then, the photon energy Eph is given as Eph = 2π

αλ
≈ 456 a.u. ≈ 12.4 keV.

Provided that the sample contains light atoms such as carbon, the kinetic energy of photoelectrons
is of the order of the photon energy Eel ≈ Eph. In the nonrelativistic approximation, this
corresponds to a de Broglie wavelength of λel = 2π/

√
2E ≈ 0.21 a.u. < λph, which determines

the discretization far away from the atom. Moreover, there are two distinct inherent time scales,

6The wavelength λ = 1 Å is currently available only at SACLA. The minimum wavelength at LCLS is 1.2 Å [12],
whereas SACLA provides wavelengths down to 0.634 Å [15]. The wavelength range will be extended further at
European XFEL [23].
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namely the pulse duration around 1 fs ≈ 41 a.u. and the period of the classical light field
Tph = αλph ≈ 1.38 · 10−2 a.u.

Note that of all the mentioned length and time scales only the pulse duration is explicitly
present in the rate-equation approach described in Sec. I.4. The implication is that the photon
energy crucially affects the performance of the simulations based on TDHF but is irrelevant from
the numerical perspective within the framework of rate equations. Therefore, when extending
the TDHF approach to the X-ray regime, one has to keep in mind that the computational costs
increase with increasing photon energy. Naturally, this problem is even more serious for a theory
beyond TDHF such as TDRDM: in previous work by Kaiser (2014) [4], converged results within
the TDRDM approach, despite comparatively low photon energies below 100 eV, were obtained
only in special cases.

In summary, the complexity of the scenario requires several assumptions that entail a lot of
constraints on XFEL based experiments which can be adequately described within this approach.
The premises of the models partially exceed the contemporary experimental capabilities. To
assess the discrepancies originating from the 1d theory, a more advanced theoretical description
is required.





IIIIIIIII Resonant
two-photon ionization

This chapter is devoted to coherent phenomena that might become apparent in the ionization
dynamics of isolated atoms irradiated by XFEL pulses. In particular, the nonlinear process two-
photon absorption (TPA) close to an intermediate resonance will be addressed. This phenomenon
has been experimentally studied in the VUV and the X-ray regime: the TPA cross section
was measured for helium 2He at photon energies between 20 and 23 eV around the 1s2−1s 2p
and 1s2−1s 3p resonances [287], and similar investigations were performed for the case of
helium-like neon 10Ne8+ in the vicinity of the 1s2−1s 4p resonance at 1.11 keV photon energy
[70, 84]. Non-resonant TPA has also been observed in solid germanium 32Ge at 5.6 keV photon
energy.

It should be noted that this mechanism can become important in cases where the photon
energy is above the K-edge of the neutral atom and, accordingly, one-photon absorption (OPA)
dominates initially. However, as the ionization under irradiation with the XFEL pulse progresses
via OPA, ions with significantly enhanced binding energies are created. Hence, the K-edge of a
(highly) charged configurations potentially surpasses the photon energy and thus inhibits further
OPA. For example, the positions of the K-edge are at E1s ≈ 870 eV for 10Ne [103, Table 1-1]
and at 1195 eV for 10Ne8+ [84]. Note that depending on the specific situation, this scenario can
alternatively be dominated by REXMI.

This chapter includes a general approach for resonant TPA in Sec. III.1, which consistently
treats the aforementioned cases of TPA in the XUV [287] and soft X-ray regime [70, 84]. This
strategy enables one, firstly, to reduce the physical system to its essentials and, secondly, to
investigate phenomena that do not depend on a specific sample. Contrary to the simulations
which are the basis for the results in Chapters IV and V, this model is not based on a reduction
to 1d. The content of this chapter is based on Ref. [288], to which the author of the present
thesis contributed. Compared to the original publication, the theory is simplified without loss of
generality and the focus is slightly shifted towards the coherent saturation phenomenon while
pointing out the differences to comparable results obtained by means of a rate-equation approach
(REA).

III.1. Generic model

The aim of this section is to develop a model that captures the substantial physics behind
resonant TPA. Accordingly, the corresponding Hilbert space H is required to contain at least
two discrete bound states, namely the ground state |G〉 (eigenenergy ωG<0) and an excited state
|X〉 (eigenenergy ωX < 0). Further, H comprises a continuum of states |ων〉 representing the
singly ionized atom (eigenenergy ω>0, degeneracy ν). The usual orthogonality relations are
assumed. In the case of helium in Ref. [287], |G〉 corresponds to the ground-state configuration
1s2 and |X〉 to one of the excited charge-neutral configurations 1s 2p or 1s 3p, depending on the
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intermediate resonance that is driven by the respective photon energy. The continuum of states
|ων〉 describes a state “1s plus a photoelectron with a kinetic energy ω”. Then, the Hamiltonian
H0 of the system without light-matter interaction reads

H0 = ωG|G〉〈G|+ ωX |X〉〈X|+
∞∫

0

dω
∑

ν

ω|ων〉〈ων|. (III.1)

Next, the eigenstates of H0 are coupled by a time-dependent laser pulse described within
the semiclassical approximation (cf. page 20) in the form of a linearly polarized, spatially
independent electric field ~E(t) = E(t)~eL where |~eL| = 1. For the sake of brevity, the following
parameters are introduced:

µων := ~eL · 〈ων|~r|X〉,
µ0 := ~eL · 〈X|~r|G〉.

(III.2)

The dipole coupling Hamiltonian HL(t) is then assumed to be of the form

HL(t) = E(t)
[
µ∗0|G〉〈X|+ µ0|X〉〈G|+

∞∫

0

dω
∑

ν

(µ∗ων |X〉〈ων|+ µων |ων〉〈X|)
]
. (III.3)

Ultimately, the model system defined by

H(t) = H0 +HL(t) (III.4)

will hereafter be referred to as generic model.

ionization continuum

Figure III.1.: Schematic representation
of the generic model

Although the generic model is, in contrast to the major part
of this dissertation, not limited to 1d, a lot of simplifying
assumptions are implied in Eq. (III.4). The following
elements of real systems are disregarded: (i) all discrete
excited states except for |X〉, (ii) direct ionization from
|G〉 to |ων〉, (iii) transitions between distinct continuum
states |ων〉, (iv) decay mechanisms from |X〉 to |G〉 via
fluorescence or from |X〉 to a continuum state |ων〉 via
Auger decay, and (v) the statistical properties introduced
by SASE pulses.
The basic scenario described by the model is sketched
in Fig. III.1. Provided that E(t) has a main frequency
component at ωL where ωL is tuned to the vicinity of
the resonant transition, ωL ≈ ωX − ωG, the omission of
further bound states can be expected to be legitimate. At
this point, one assumes at least near-resonant TPA, i.e., a potentially nonzero but small detuning
δω = ωX − ωG − ωL. For a discussion of the implications of a detuning δω 6= 0, the reader
is referred to Ref. [4, p. 35 et seqq.]; the analysis below in Sec. III.3 concentrates on resonant
TPA. Assuming ωL + ωX > 0, one guarantees the presence of the following ionization pathways
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for a system initially in the state |G〉 (see Fig. III.1): two sequential OPAs, the (near-)resonant
excitation from |G〉 to |X〉 followed by a promotion to a continuum state |ων〉, and the direct
TPA from second-order perturbation theory. Energy conservation suggests that this process
requires the absorption of two photons. Hence, all the key ingredients of resonant TPA are
contained in the model.

The validity of approximation (iv), i.e., the neglect of decay mechanisms, depends strongly
on the system of interest. Situations favorable for these simplifications are the cases of light
atoms where fluorescence lifetimes are comparatively long and Auger decay is suppressed. For
instance, the excited states in the aforementioned cases, 1s 2p in 2He and 1s 4p in 10Ne8+, are
obviously not subject to Auger decay. The situation can be completely different in other cases. If
|G〉 and |X〉 are given by the configurations 1s2 2s2 3p6 (neon ground state) and 1s−1 3p [217]
of neutral neon atoms or by the configurations 2p−1 and 1s−1 of singly-charged neon atoms [219,
221], Auger decay is important and a calculation based on the density matrix is required.

Here, however, there is no controversy at all: if the initial state is pure, it remains pure during
the time evolution defined by the generic model. Accordingly, an ansatz for the time-dependent
solution with respect to the initial condition

lim
t→−∞

|ψ(t)〉 = |G〉 (III.5)

can be written as a pure state

|ψ(t)〉 = αG(t) e−iωGt|G〉+ αX(t) e−iωX t|X〉+

∞∫

0

dω
∑

ν

αων(t) e
−iωt|ων〉. (III.6)

Note that pG := |αG(t)|2 and pX := |αX(t)|2 are the occupation probabilities of the states |G〉
and |X〉, respectively. The initial condition Eq. (III.5) in terms of the coefficients αG, αX , and
αων now reads

lim
t→−∞

αG(t) = 1, lim
t→−∞

αX(t) = lim
t→−∞

αων(t) = 0. (III.7)

The coupling to the continuum does not cause decoherence as in Ref. [220] because the continuum
states |ων〉 consist of both the ion and a photoelectron. Although αων is not explicitly calculated
in the following (cf. Eq. (III.8)), there is no trace over the photoelectron involved.

Finally, it should be mentioned that the generic model is, of course, not newly invented.
Similar models have been used in the past without connections to FELs [289–292] and have also
contributed to the understanding of FEL based experiments in the context of resonant Auger
decay [217, 218] or resonant TPA [293].

III.2. Equations of motion

Although the generic model is easily solvable from a numerical perspective, different levels of
simplifications are introduced in the following. This strategy enables one to obtain analytical
solutions and to identify the features that emerge only in the sufficiently thorough treatments.
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This section is devoted to the derivation and the additional assumptions of the three levels
of theory considered here: the resonant approximation, the Markovian theory, and the rate-
equation approach (REA). Note that the generic model and these approximations can be arranged
hierarchically because each method can be obtained as a reduction of the previously mentioned
method, i.e., the resonant approximation reduces the complexity of the generic model, the
Markovian theory is a simplified version of the resonant approximation, and, lastly, the REA
provides the most primitive perspective considered here. The results based on these models will
be presented later in Sec. III.3.

III.2.1. Resonant approximation

Let the electric field be of the form E(t) = < (E0(t) eiωLt), where ωL = ωX − ωG and E0(t)
changes slowly on the time scale of 1/ωL. For instance, E0(t) may represent the temporal
envelope of the laser pulse and/or may contain a detuning.

An equation of motion for αG and αX can now be easily derived from the ansatz in Eq. (III.6).
Starting with the time-dependent Schrödinger equation (TDSE) corresponding to the Hamiltonian
from Eq. (III.4), one straightforwardly employs the rotating wave approximation (RWA) to further
reduce the complexity of the generic model1. Then, in seeking for the solution with respect to
the initial condition in Eq. (III.5), one eliminates the variables αων at the expense of a memory
integral and directly obtains the following equations of motion, which are hereafter referred to as
the resonant approximation:

Resonant approximation

α̇G(t) = −1
2
iE∗0(t)µ∗0αX(t) ,

α̇X(t) = −1
2
iE0(t)µ0αG(t)− 1

4
E∗0(t)

t∫

−∞

dτ γ(t− τ)αX(τ)E0(τ) ,
(III.8)

where γ(τ) :=

∞∫

0

dω
∑

ν

|µων |2 e−i(ω−ωL−ωX)τ . (III.9)

The material-dependent parameters µ0 ∈ C and the function γ : R→ C can be adjusted to the
specific atomic species and states. For instance, the parameters can be obtained within a 1d
model (see Sec. III.3). Note that Eq. (III.8) is computationally trivial; it can be reduced to a linear
system of ordinary differential equations (ODEs) with three complex variables, αG, αX , and an
auxiliary variable. Alternatively, for the special case of near-resonant TPA with detuning δω and
a constant electric field amplitude E0(t) ∝ eiδωtθ(t), Eq. (III.8) can be analytically solved in
Laplace space [288].

1Non-RWA contributions in bound-free transitions are not discussed here because they have been subject to
extensive studies in the past [294, 295].
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III.2.2. Markovian theory

In order to investigate the influence of the memory integral in Eq. (III.8), a Markovian approx-
imation can be applied. This idea is based on the assumption that γ(τ), defined in Eq. (III.9),
decreases rapidly compared to the time scale of the variations of αX(τ) and the temporal en-
velope of the electric field E0(τ). This enables the resonant approximation, Eq. (III.8), to be
simplified by neglecting the contribution of the memory according to

t∫

−∞

dτ γ(t− τ)αX(τ)E0(τ) ≈
t∫

−∞

dτ γ(t− τ)αX(t)E0(t) ≈ γ0αX(t)E0(t)

with γ0 =

∞∫

0

dτ γ(τ) . (III.10)

The physical implications of this approximation are elucidated below in Sec. III.2.4. For now,
one benefits from even simpler equations of motion, which are written as

Markovian theory

d

dt

(
αG(t)
αX(t)

)
=

(
0 −1

2
iE∗0(t)µ∗0

−1
2
iE0(t)µ0 −1

4
γ0 |E0(t)|2

)(
αG(t)
αX(t)

)
. (III.11)

Strictly speaking, Eq. (III.11) assumes the validity of both the resonant and the Markovian
approximation, but, for the sake of brevity, it is referred to only as Markovian theory. The
equations of motion Eq. (III.11) contain just two material-dependent parameters µ0, γ0 ∈ C and
thus enable a comprehensive parameter study to be performed without focusing on a specific atom
and/or transition. The implications of the Markovian approximation are most easily demonstrated
in the special case µ0 =0 and the initial condition lim

t→−∞
|ψ(t)〉 = |X〉. Eq. (III.11) yields then

without further assumptions

d
dt
|αX(t)|2 = −1

2
<(γ0) |E0(t)|2 |αX(t)|2 . (III.12)

Hence, Eq. (III.11) can be reduced to Fermi’s golden rule for a single discrete level coupled to a
continuum, which is a standard textbook model [264, page 19 et seqq.].

III.2.3. Rate-equation approach (REA)

It follows from Eq. (III.12) that the coupling to the continuum is virtually treated on the rate-
equation level. Although a density matrix approach would be beneficial for an exact theoretical
comparison to rate equations, it is omitted here for the reason of being analogous to what can
be found in pertinent literature. One proceeds analogous to the calculation of the Einstein
coefficients [296, p. 52 et seqq.]. Let I be the intensity and

Jph =
I

ωL
=

1

8πα

|E0|2
ωL

(III.13)
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be the photon flux. The rate-equation approach (REA) is then defined as

Rate-equation approach (REA)

d

dt

(
pG
pX

)
= Jph(t)

(
−σGX σGX
σGX −σGX − σX

)(
pG
pX

)
. (III.14)

The cross section σGX depends on the spectral properties of the pulse due to the sharp energy
levels of the discrete states and thus, in the case of transform-limited pulses, σGX depends also
on the pulse duration. The cross section σX follows directly from the Markovian theory and
does not depend on pulse characteristics except for the photon energy ωL. Recall that a further
assumption was made in Sec. III.2.2 to ensure this property. Eventually, the cross sections for
Gaussian pulses read

σGX = 4παωL
√

2πτ |µ0|2 ,
σX = 4παωL< (γ0) .

(III.15)

To check against inconsistencies in the derivation, the cross sections in Eq. (III.15) in conjec-
ture with the REA were tested to predict the same final populations as the Markovian theory in
the limit of weak pulses with the photon flux being described by Gaussian temporal envelopes of
different standard deviations τ (see Fig. III.2a on page 35).

As mentioned above, the Markovian theory and the REA produce the same results –more
precisely speaking, the same occupation probabilities– in the special case µ0 = 0. Note also
that the REA depends only on two real-valued parameters, σGX and σX , with a ratio σGX/σX
being proportional to the pulse duration. Accordingly, the latter is not only a material-dependent
property, and it is thus reasonable to examine scenarios where the cross sections are varied
independently of one another.

III.2.4. Interpretation of the parameters

Comparing the Markovian theory, Eq. (III.11), and the REA, Eq. (III.14), one notices a consider-
able reduction of the number of parameters in the rate limit. In particular, it can be inferred from
Eq. (III.15) that the phase of µ0 and the imaginary part of γ0 are presumably of minor importance
for the dynamics of occupation probabilities. This speculation will be discussed before the
presentation of the results in order to provide an intuitive view on the relevant parameters.

It is easily proven that in the resonant case of the Markovian theory, Eq. (III.11), E0(t) and µ0

can be chosen to be real valued without loss of generality or, to be more precise, the occupation
probabilities do not depend on the phase of the product µ0E0(t) due to the RWA. Therefore,
it is sufficient to choose the parameter σGX to specify the relevant part of µ0 for a fixed pulse
duration within the Markovian theory.

Furthermore, it is self-evident that the imaginary part of γ0 does influence the occupation
probabilities in the framework of the Markovian theory. Indeed, =(γ0) 6= 0 introduces a time-
dependent detuning. Subsequently adding an imaginary part to γ0 in Eq. (III.11) is equivalent to
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the substitution

αX(t)→ αX(t) exp
(

2πiαωL=(γ0)

t∫
Jph(t′) dt′

)
,

E0(t)→ E0(t) exp
(

2πiαωL=(γ0)

t∫
Jph(t′) dt′

)
.

(III.16)

This means that γ0 introduces a constant detuning for a flat-top pulse. Note that the detuning
must not be large, i.e., the parameter must be consistent with the resonant approximation and the
RWA. Correspondingly, results for γ0 /∈ R have to be interpreted with caution. Since the impact
of detuning was already extensively studied by Kaiser (2014) [4], γ0 is assumed to be real valued
here. Seen from the opposite perspective, a detuning δω can be introduced to effectively render
γ0 real.

Most importantly, the physical meaning of γ0 shall be addressed. It is instructive to examine
the premise of the Markovian theory from another perspective: let g(ω) be an auxiliary quantity
defined by

g(ω) :=
∑

ν

|µων |2 , (III.17)

which is related to the absorption spectrum of atoms prepared in the state |X〉 (see below). If
the ionization dynamics, the pulse envelope, and αX(τ) evolve on the femtosecond time scale,
one can estimate from Eq. (III.9) that g(ω) must decrease slowly on the energy scale of 1 eV to
ensure the applicability of the Markovian theory. The question as to whether this premise is valid
cannot be clarified within the generic model because it crucially depends on the specific system
and ωL.

For now, it follows from the definition of γ0 (see Eq. (III.10)), Eq. (III.9), and Eq. (III.17):

γ0 =

∞∫

0

dτ γ(τ) = π

∞∫

0

dω g(ω) δ(ω − ωL − ωX)− iP
∞∫

0

dω
g(ω)

ω − ωL − ωX
, (III.18)

provided that g(ω) is a “well-behaved” function of ω. Apparently, γ∗0 as a function of ωL
satisfies the Kramers-Kronig relation [39, 297]. More technically, γ∗0 can be (apart from an
additive constant) interpreted as the dynamic polarizability αXP in the state |X〉 disregarding the
coupling to states other than the continuum and assuming the validity of the RWA [39, 95], i.e.,
αXP = iγ∗0 . However, this model contains only the dispersion corrections and not the contribution
of Thomson scattering in forward direction. The absent term is real and identical to the number
of electrons located at the atom [39]. Nevertheless, the imaginary part of αXP can be inferred from
γ0 as it fulfills the optical theorem: recall that the knowledge of the dynamic polarizability yields
the atomic scattering factor in forward direction f(ωL, ~eL) according to f(ωL, ~eL) = −ω2

Lα
X
P .

Then, the optical theorem is written in the form

=(f(ωL, ~eL)) = −ω2
L<(γ0) = − ωL

4πα
σX .

This is consistent with the definition of the cross section σX in Eq. (III.15) and with Eq. (III.12).
Similarly, the Markovian theory ensures that σX is positive due to < (γ0) = g(ωX + ωL) ≥ 0.
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In summary, <(γ0) and =(γ0) are associated with the absorption and the anomalous scattering
cross section, respectively. Without a specific model or experimental data, the relative importance
of the real and the imaginary part cannot be decided. In general, however, absorption processes
are more probable than scattering in the X-ray regime [152], so one may anticipate that the
relation <(γ0) > |=(γ0)|, which will become important at a later stage, holds in most cases.

III.3. Results
In the following, results will be shown that demonstrate the influence of the key parameters
σX and σGX within the Markovian approximation and the REA. In particular, the ionization
probability PI(t), which is defined as

PI(t) := 1− pG(t)− pX(t) , (III.19)

after the pulse, i.e., for t→∞, and the renormalization of Rabi frequencies are discussed.

III.3.1. Ionization yield

The resonant TPA probability will be investigated in the frameworks of the Markovian theory,
Eq. (III.11), and the REA, Eq. (III.14). No distinction is made between the terms TPA probability
and the (overall) ionization yield since OPA is forbidden in all considered models and other
multiphoton processes are usually not distinguished in experiments. In order to facilitate
comparisons with experiments, the study does not concentrate on time-dependent phenomena
but on the more conveniently accessible ionization yield after the pulse. It is assumed in all
calculations that the initial condition is given by Eq. (III.5), i.e., the initial state for t→ −∞ is
the ground state |G〉.

Let Jph(t) be the photon flux with a Gaussian temporal profile

Jph(t) =
Nph√
2πτ

exp

(
− t2

2τ 2

)
, (III.20)

where τ is the standard deviation and Nph is the total photon number. Then, the integrated flux
Nph(t) can be expressed in terms of the error function erf(t):

Nph(t) :=

t∫

−∞

Jph(t′) dt′ = 1
2
Nph

(
1 + erf

(
t√
2τ

))
(III.21)

Note that lim
t→∞

Nph(t) = Nph. The time-dependent solution of the REA, Eq. (III.14), can be
easily obtained analytically:

pG(t) =
[
cosh(κNph(t)) +

σX
2κ

sinh(κNph(t))
]

exp(−ηNph(t)) ,

pX(t) =
σGX
κ

sinh(κNph(t)) exp(−ηNph(t)) ,
(III.22)

where κ = 1
2

√
σ2
X + 4σ2

GX , η = 1
2

(σX + 2σGX) . (III.23)
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Figure III.2.: Time-dependent occupation probabilities of the discrete states |G〉 and |X〉 for =(γ0) = 0
and constant ratio σGX/σX = 10 in all cases. The individual figures (a), (b), and (c) correspond to
different pulse energies (or cross sections) σGXNph = 0.1, σGXNph = 5, and σGXNph = 50. The
temporal pulse envelope of the intensity is sketched in the background in arbitrary units.

The parameters κ and η fulfill the inequality condition η ≥ κ ≥ 0, where equality holds only
in the trivial case where at least one cross section σX or σGX vanishes. It is easy to see that the
form of the time-dependent solution in Eq. (III.22) is valid for arbitrary pulse shapes.

To provide the necessary background for the parameter study, it is essential to draw the
attention to the degrees of freedom. A straightforward analysis reveals that after rescaling the
time variable to t/τ the REA depends only on two parameters, the scaled cross sections σGXNph

and σXNph. Similarly, the Markovian theory has the same two independent parameters but
also σANph with σA := 2πiαωL=(γ0) as in Eq. (III.16). Likewise, the dependence on τ can
be circumvented by the same rescaling while keeping the rates, Eq. (III.15), fixed. To prove
these assertions [not shown], one assumes µ0 ∈ R without loss of generality (cf. Sec. III.2.4).
The subsequent analysis focuses on the case σA = 0, so both models are fully characterized by
σGXNph and σXNph.

For an intuitive understanding of the differences between the Markovian theory and the REA,
selected time traces of the analytic rate-equation solution, Eq. (III.22), and numerical results for
the Markovian theory are shown in Fig. III.2. In all cases, the transitions between the discrete
states are considerably more likely than promoting an electron to the continuum from the excited
state by fixing the ratio σGX/σX = 10. Fig. III.2a depicts the temporal monotonic behavior of
the occupation probabilities in both models for small doses. The transition between the discrete
states is clearly seen, whereas the ionization plays a minor role. The final value of pG is estimated
by σGXNph = 0.1. As stated before in Sec. III.2.3, the REA reproduces the final occupation
numbers for weak pulses. Similar to the well-known two-level system, the time-dependent
populations of the discrete levels exhibit a tendency towards a balance of stimulated emission
and absorption, i.e., identical occupation probabilities, for higher doses as seen in Figs. III.2b
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Figure III.3.: Ionization probability PI after the pulse for different doses and ratios σGX/σX as obtained
from the REA (a) and the Markovian theory with σA=0 (b).

and c. The Markovian theory, by contrast, stands out due to the Rabi cycling (further discussed
below in Sec. III.3.2). The final populations predicted by the two models deviate strongly for the
intermediate dose in Fig. III.2b, which is mitigated again for the highest dose in Fig. III.2c. This
feature is universal and will play a key role later in the interpretation of the ionization yield.

Now that the qualitative temporal behavior was demonstrated in both models, the final
ionization probability PI , Eq. (III.19), will be analyzed for a broad parameter range. Within the
REA, it follows immediately from the analytic solution Eq. (III.22):

PI := lim
t→∞

PI(t) = 1−
[
cosh(κNph) +

η

κ
sinh(κNph)

]
exp(−ηNph) . (III.24)

This result, as already mentioned, holds for an arbitrary pulse shape. Therefore, the theory on this
level is rather insensitive to fluctuations of SASE pulses and does not suffer from insufficiently
characterized pulses as much as the Markovian theory. In the limit of small doses one obtains

PI = 1
2
σGXσXN

2
ph +O

(
N3

ph

)
, (III.25)

where the factor 1
2

appears compared to the scenario of independent processes with transition
probabilities σGXNph and σXNph. It is easy to show that this is attributed to the simultaneity of
the processes rather than stimulated emission.

A false-color representation of Eq. (III.24), i.e., the ionization yield as predicted by the REA,
is shown in Fig. III.3a. Along each straight line through the origin, one can trace the monotonic
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Figure III.4.: Log-log plot illustrating the intensity scaling of the ionization yield via resonant TPA
obtained (a) from a 1d model for helium (data from Ref. [288]) and (b) from the Markovian theory where
σGX/σX = 1000. Note that both abscissae can be replaced by the total photon number Nph or the pulse
energy in arbitrary units because both the intensity for a fixed pulse duration and the scaled cross section
are proportional to Nph and the pulse energy. The gray lines highlight the power laws PI ∝ Nph and
PI ∝ N2

ph.

dependency of the ionization yield on the absorbed dose for a constant ratio σGX/σX . Recall
that this ratio can be altered by changing the pulse duration τ (cf. Eq. (III.15)). Increasing
only one of the two parameters σGXNph and σXNph generally entails an enhancement of the
ionization yield. Obviously, both transitions have to be sufficiently probable in order to promote
the ionization yield to 1. For example, the depletion of the bound states is very efficient if both
scaled cross sections are around 10. For small doses, the ion yield is constant along rectangular
hyperbolae in Fig. III.3a as follows from Eq. (III.25). However, one can easily discern that this
approximation breaks down already for comparatively small pulse energies.

In contrast, the analogous results from the Markovian theory for σA=0 depicted in Fig. III.3b
exhibit a qualitatively different dependency on σGXNph, which can be attributed to the onset of
Rabi oscillations around σGXNph ≈ 5 (see Fig. III.2b). As a result, the population of the ground
state grows with increasing pulse energy at the expense of the population of the excited state.
Subsequently, a deexcited atom cannot be subject to direct ionization in the present model but
requires another excitation preceding the ejection of an electron. It is further interesting to see
that the results quantitatively coincide with the REA only for very small doses.

Next, a link between Fig. III.3 and experimentally accessible data in typical XFEL based
studies will be established. Consider Fig. III.4a where the ionization probability as a function of
the incident intensity for a simulated 1d helium atom in an analogous scenario2 is shown; similar
curves can be obtained from experiments [71, 287]. The pulse duration determines the ratio
σGX/σX and then the corresponding curve can be extracted from Fig. III.3 along the associated

2consult Ref. [288] for details
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straight line through the origin. All curves in Fig. III.4 grow quadratically with Nph for small
pulse energies. Then, a near-linear scaling can be observed for higher pulse energies before PI
eventually saturates. The scaling behavior is indicated by the gray lines in both Fig. III.4a [for
12 fs pulse duration] and Fig. III.4b. According to perturbation theory the exponent is expected
to be approximately 2 because the continuum states are reached through the absorption of two
photons. This simplified picture is consistent with experimental observations for non-resonant
TPA but not with the exponents around 1 in the resonant case [287]. Here, one discerns both
exponents for resonant TPA by varying the intensities over many orders of magnitude: the
PI ∝ N2

ph dependence is clearly seen for low intensities and also a crossover to a near-linear
scaling can be identified.

This phenomenon experienced by the 1d helium is also captured by the minimalistic models
considered here, Eq. (III.11) and Eq. (III.14). The simplicity of the models is advantageous
for the interpretation of the results. For now, the analysis concentrates on the physics behind
Fig. III.4b. Similar to the tendency observed in Fig. III.2, the ionization probabilities for the
Markovian approximation and the REA coincide for large photon numbers Nph even though
the rate equations were obtained in the limit of weak pulses. Thus, for small pulse energies
the situation is obvious: the Markovian theory and the REA yield the same scaling behavior
for PI , where the analytic solution in the framework of rate equations was already obtained in
Eq. (III.25).

The linear scaling for higher pulse energies can be derived fairly easily as well. First, in both
models it follows straightforwardly from the respective equations of motion Eq. (III.11) and
Eq. (III.14) without approximation:

d
dt
PI = σXJphpX . (III.26)

An approximation in the shape of a closed ODE for PI is obtained within the REA as follows. If
stimulated emission and absorption compensate rapidly, i.e., σGX � σX , then the populations
for both discrete states will have approximately the same values during the ionization process,
pX ≈ pG. Thus, one can write pX ≈ 1

2
(1− PI) and finds

d
dt
PI = σXJphpX ≈ 1

2
σXJph (1− PI) . (III.27)

The same equation can be obtained within the Markovian theory as long as large pulse areas are
concerned, i.e., the time scale of the Rabi oscillations is assumed to be short compared to the
time scale of the ionization process. In this case, the resonantly driven atomic states are subject
to fast oscillations as in Fig. III.2c. Consequently, the same estimate pX ≈ 1

2
(1− PI) holds on

time average. Again the same ODE for the ionization yield PI , Eq. (III.27), follows despite the
fact that the underlying mechanisms are completely different. Finally, one derives the linear
scaling of PI in the aforementioned limiting cases by solving Eq. (III.27) for an arbitrary pulse
profile

PI(t) = 1− exp
(
−1

2
σXNph(t)

)

⇒ PI = 1− exp
(
−1

2
σXNph

)
= 1

2
σXNph +O

(
N2

ph

)

The conclusion to draw from this result is twofold. Firstly, the REA and the Markovian theory
provide two different mechanisms that lead to a linear scaling of the ionization yield PI so that
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they cannot be distinguished by measuring PI in a broad intensity regime. Hence, although
the REA fails to take into account the Rabi cycling mechanism, the underlying theory can be
extended to higher pulse energies provided that only PI is detected. Secondly, seen from the
opposite perspective, this result infers that a correct prediction of the ionization yield by rate
equations does not imply a correct representation of all relevant processes.

However, if a sufficiently broad energy range is accessible where the crossover between the
linear and the quadratic scaling can be observed, it may be possible to distinguish between the
two mechanisms, Rabi cycling and the striving for equal populations: on the one hand, the onset
of Rabi cycling is characterized by the pulse area, which is proportional to the electric field,
and, on the other hand, the saturation between the discrete states within the incoherent REA
depends on the integrated photon flux, which is proportional to the intensity. In the case of the
fully coherent simulation for a 1d helium shown before in Fig. III.4a, it can be anticipated that
the variation in the scaling behavior is attributed to Rabi cycling. The intensities corresponding
to the pulses where the Rabi oscillation completes exactly half a cycle, i.e., the pulse area equals
π, are indicated. Evidently, the onset of the crossing is well estimated by this consideration.

Finally, it is interesting to note that the ionization yield can be calculated analytically within
the Markovian theory for flat-top pulses investigated below in Sec. III.3.2. The occupation
probabilities pG and pX for finite pulses can be easily extracted from Eq. (III.31) in the ensuing
section because pG and pX are constant in each time interval where the electric field vanishes
identically. The consequence is that pG and pX after a flat-top pulse of duration T are equal
to |αG(T )|2 and |αX(T )|2 from Eq. (III.31). The corresponding ionization probability for a
constant electric field amplitude behaves similarly and coincides with the results obtained by the
REA for high pulse energies (not shown in Fig. III.4b). As an alternative to the analysis above,
one can recover the same scaling behavior for flat-top pulses directly from the analytic solution.

III.3.2. Renormalization of Rabi frequencies

The Rabi frequency, which was demonstrated to characterize the crossover between the linear
and quadratic scaling behavior in the previous subsection, can in fact not be calculated using
the formula obtained for the two-level system. The aim of this analysis is to complement
the discussion in Refs. [4, 288] because it was already intensely discussed in the original
publication [288] and by Kaiser (2014) [4] that the coupling to the continuum leads to a shift
of the Rabi frequency. In the course of this, a more straightforward derivation of the analytic
result in Ref. [288] is outlined. This subsection addressing the topic of renormalization of Rabi
frequencies is, however, kept brief because this phenomenon is supposed to be very challenging
to measure at contemporary XFEL facilities. It should be mentioned that the equation of motion
considered for this purpose is solely the Markovian theory, Eq. (III.11) because Rabi cycling is
not included in the REA (see Fig. III.2 on page 35).

For the simplicity of the analysis, a flat-top pulse E0(t) = θ(t)E0 is assumed so that the Rabi
frequency does not depend on time. The initial condition |ψ(0)〉 = |G〉 translates into

αG(0) = 1, αX(0) = αων(0) = 0. (III.28)

In this case, Eq. (III.11) reduces to a system of first-order linear ODEs with constant coeffi-
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cients:

d

dt

(
αG(t)
αX(t)

)
=

(
0 −iΩ∗0
−iΩ0 −2Γ

)(
αG(t)
αX(t)

)
, (III.29)

where Γ := 1
8
|E0|2 γ0, Ω0 := 1

2
E0µ0. (III.30)

Hence, Eq. (III.29) is trivially solvable by means of standard analytical techniques. The eigen-

values of the coefficient matrix are −Γ± iΩ, where Ω =
√
|Ω0|2 − Γ2 ∈ C. Then, the solution

with respect to the initial condition in Eq. (III.28) can be written in the form

αG(t) =

[
cos(Ωt) +

Γ

Ω
sin(Ωt)

]
e−Γt

αX(t) = −iΩ0

Ω
sin(Ωt) e−Γt

(III.31)

Note that |Ω0| is the Rabi frequency of the pure two-level system. This limiting case can be
obtained by setting Γ = 0 or γ0 = 0. Evidently, the coupling to the continuum leads to a
renormalization of the Rabi frequency according to

Ω

|Ω0|
=

√
1− Γ2

|Ω0|2
=

√
1− πα

2

γ2
0

|µ0|
I. (III.32)

One can infer from Eq. (III.32) that the general tendency of the reported renormalization
mechanism is an initial decrease of the Rabi frequency. This assertion is easily proven by noting
that the derivative of < (Ω/ |Ω0|) is negative at I = 0 if and only if

<
(
γ2

0

)
= (<(γ0))2 − (=(γ0))2 > 0.

Since the latter statement is often true (see page 34), the intensity dependence of the renormal-
ization for the resonant case in Ref. [288] is as expected. However, for the near-resonant case
with nonzero detuning, the intensity dependence may deviate from this conclusion because –as
discussed above– the introduction of a detuning is equivalent to changing the imaginary part
of γ0. Accordingly, <(γ2

0) may be negative, which, in turn, leads to an increase of the Rabi
frequency for small intensities. In fact, this behavior was observed in simulations of 1d helium
by Kaiser (2014) [4]. Note that it is not clear whether this interpretation is applicable in general
since in the case of a larger detuning δω 6= 0, further bound states are indispensable for the
theoretical description and the resonant approximation breaks down.



IVIVIV Coherent ionization
dynamics in crystals

Incoherent ionization dynamics as implicitly postulated in rate descriptions is known to reflect
the essential physics behind experiments based on sequential multiphoton inner-shell ionization
of atoms under XFEL irradiation (see Sec. I.2.1). Indeed, as concluded in the previous chapter,
successful modeling with rate equations is even sufficient for resonant two-photon absorption
(TPA) in broad intensity regimes where it was anticipated to break down. Applying the rate-
equation approach to larger samples such as clusters or macromolecules can be largely reduced to
the response of single atoms [6, 298]. This idea is suggested by the well-established experimental
and theoretical evidence that X-ray photoabsorption primarily involves inner-shell electrons,
which are hardly affected by their environment through effects such as chemical bonding.
However, secondary processes come into play after the inner-shell excitation and involve the
surroundings of the individual atoms; among them are collisional ionization, electrostatic
trapping, and recombination. Effective strategies to consistently account –not only from a
mathematical perspective but also with respect to physical intuition– for these processes with the
atomic rate-equation approach have been developed for molecules [80] and solids [211].

As the previous chapter revealed that the rate description may have deficiencies that are
likely not to be unveiled by commonly measured quantities such as the charge-state distribution,
the present chapter is devoted to finding favorable conditions for the observation of coherent
ionization dynamics in crystals. For this purpose, the lattice periodic potential is accounted
for explicitly. The computation of such a system is feasible as long as the absence of electron-
electron interaction is assumed, which implies that many well-known phenomena of extended
systems are axiomatically disregarded (as described in Chapter II). This approach is not only
interesting as a model study, designed in order to identify potentially overlooked processes,
but may also be more applicable in the future for fully coherent pulses that are capable of,
e.g., outrunning collisional ionization with subfemtosecond pulses [6]. Thus, this idealistic
perspective is anticipated to be boosted by the ongoing development and technological advances
of XFELs.

In general, the focus lies on photon energies slightly above an inner-shell edge in order to
avoid the cases where the rate description is normally well suited, namely far above the ionization
threshold. This scenario, hereafter referred to as near-threshold ionization (NTI), is beneficial for
the validity of the model since photoelectrons with sufficiently low kinetic energy (and frozen
Auger channels) suppress collisional ionization. The major part of the content of this chapter has
been published by the author and coworkers in Ref. [299].

IV.1. Theory

To begin with, a simplistic model of a crystal is introduced as the basis for all numerical
simulations that led to the results shown in the present chapter. The model treats both the
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inner-shell and free electrons uniformly as Bloch waves. It is shown here, inter alia, that this
approach automatically results in different characteristics of wave functions associated with
deeply bound and free electrons.

The general assumptions adopted in this chapter were extensively discussed in Chapter II.
In particular, the model is based on the dynamical equation for the 1RDM given by the TDHF
equations, Eq. (II.1) but even further reduced in computational complexity: the electron-electron
interaction is omitted by setting Vee ≡ 0 in Eq. (II.1) (cf. page 22). The electron-core interaction
described by Vcore in Eq. (II.1) is approximated by a Kronig-Penney (KP) potential VKP for the
reasons outlined on page 19:

VKP(x) =




−V0, if x ∈ ⋃

n∈Z
[−a+ nd, a+ nd] ,

0, otherwise.
(IV.1)

The physical meaning of the three parameters a, V0, and d is the following: the width and the
depth of the potential of an individual atom are given by a and V0, respectively; d is the core-core
distance. For notational simplicity, one defines g as the reciprocal lattice vector of minimal
length, which results directly from d according to g := 2π

d
. To enable a numerical analysis, the

following parameters are chosen throughout this chapter:

d = 5 a.u., a = 1 a.u., and V0 = 6 a.u. (IV.2)
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Figure IV.1.: (a) Band structure of the Kronig-
Penney (KP) model. The real-space representation
of the eigenstates |ψnk=0〉 of each band is sketched
in the background. (b) k dependence of transition
matrix elements illustrated by |〈ψnk|p̂|ψmk〉|2.

These parameters are appropriate for model-
ing inner-shell orbitals due to both the large
V0 = 6 a.u. ≈ 163 eV and the fact that a is
small compared to the core-core distance d,
thereby ensuring that the ground-state orbitals
are tightly bound and strongly localized at
the cores. Under these conditions, the elec-
tronic band structure εnk shown in Fig. IV.1a
is formed, where n denotes the band index
and k the Bloch wave vector in the first Bril-
louin zone (BZ), k ∈

[
−1

2
g, 1

2
g
]
. The Bloch

states with single-particle eigenenergies εnk
and spin σ are correspondingly characterized
by n, k and are thus written as |ψnkσ〉. As all
considered interactions are spin independent,
the spin index σ does not play an important
role and is not explicitly written in most cases.

Electrons occupying states with a positive
energy εnk>0 are interpreted as free electrons
because they principally possess sufficient en-
ergy to leave the crystal even though the elec-
trons cannot actually exit the infinite crystal.
Accordingly, bands n with εnk> 0 for all k will be referred to as free bands. To highlight the
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difference between bound and free bands, two distinct indices nb, nf ∈ N are used to label the
nb-th (nf -th) bound (free) band. In the present case, i.e., for a KP potential with the parameters
chosen in Eq. (IV.2), there are only two bound bands. The first bound band nb = 1 is seen in
Fig. IV.1a at −112 eV. It distinguishes itself from other bands by a small width � 0.01 eV
and associated electron densities which are strongly localized at the cores as indicated by the
real-space representation of the eigenstates at k=0 seen in the background of Fig. IV.1a. This
finding is in conformity with the physical intuition that deeply bound electrons exhibit identical
eigenenergies because they are not influenced by their environment. The second bound band
nb = 2 has eigenenergies between −4.5 and −0.9 eV and is not shown in Fig. IV.1a. There is
a relatively large gap between the nb = 2 and nf = 1 bands of roughly 9 eV. Consistent with
the interpretation of free bands, the wave functions for positive eigenenergies are subject to a
wider spread of the electron density (cf. the depicted cases nf = 1, . . . , 4 in Fig. IV.1a). There
are, however, two aspects that should be mentioned regarding this understanding of free bands.
Firstly, in real systems, the finite work function, which increases for a more highly charged
sample and ultimately leads to a trapping of electrons as reported in Sec. I.2.2, must be taken
into account. Secondly, depending on the choice of parameters in Eq. (IV.2), there may exist a
band that has both negative and positive eigenenergies. Hence, it cannot be classified as carried
out above.

The gaps between free bands are not artificial by-products of the model. For quasi-free
electrons, there is a standard textbook analysis1 that predicts band gaps proportional to |V±g|.
However, for 3d systems it is immediately plausible that the density of states does not generally
vanish in the regions of the 1d band gaps. To prove this assertion, one can simply consider a
3d potential that separates into a sum of KP potentials. Nevertheless, van Hove singularities
will still appear due to the critical points of the eigenenergies as a function of the Bloch wave
vector k.

Next, the time-dependent Hamiltonian for describing the dynamics of the system under
irradiation with a laser pulse is defined based on the knowledge about the band structure εnk
and the corresponding Bloch basis. Although the system size is large –or even infinite within
this model–, the laser pulse is still assumed to be spatially independent because this premise
is inevitable for 1d models (cf. Sec. II.1). Accordingly, the structure of the associated time-
dependent Hamiltonian H(t) as shown below is significantly simplified. Let c†nkσ and cnkσ be
the creation and annihilation operators of an electron in the Bloch state |ψnkσ〉. Then, one can
prove that the minimal-coupling Hamiltonian [39] can be written as

H(t) =
∑

n,m,k,σ

(
εnkδnm + αA(t) 〈ψnkσ|p̂|ψjkσ〉+ 1

2
α2A2(t) δnm

)
c†nkσcmkσ. (IV.3)

Since the term ∝ A2 is merely a multiple of unity, it has no physical ramifications. Thus, the
term is dropped without loss of generality. Note that –by virtue of the simple form of the vector
potential– the Hamiltonian H is diagonal in k, which follows directly by exploiting the identity
〈ψnkσ|p̂|ψjk′σ〉 = 0 for k 6= k′.

For the interpretation of the results in Sec. IV.3, it turns out that a knowledge of the qualitative
k dependence exhibited by the transition matrix elements 〈ψnk|p̂|ψmk〉 is extremely useful; their

1See, for example, Ref. [261, p. 100 et seqq.]. The estimate therein, however, does not apply to the present
situation because |V0| is not small compared to the band gaps.
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absolute square for transitions between selected bands n and m is shown in Fig. IV.1b. It is
striking that in the case of the bound-bound transitions 1b → 2b, only a comparatively weak
k dependence of the matrix elements is seen. Further, the magnitude of the transition matrix
elements is large compared to bound-free transitions. The k dependence of bound-free transitions
is easily understood by noting that the parity selection rule holds exactly for k=0. Hence, the
transitions 1b → 1f and 1b → 3f are strongly suppressed at k=0 and feature a broad distribution
of transition matrix elements varying by orders of magnitude.

IV.2. Equations of motion

In analogy to Sec. III.2 of the previous chapter, several equations of motion are presented
arranged in a hierarchical order, starting with the most sophisticated treatment. Since the most
elaborated theory employed here, Sec. IV.2.1, is rather modest with respect to computational
costs, there is again no need for further simplifications in order to reduce the numerical effort.
However, the different levels of theory are useful for an intuitive interpretation of the results.

In order to avoid confusion, it is explicitly stated that although the resonant approximation
and Markovian theory in this chapter are conceptually similar to the eponymous approaches in
Chapter III, they differ in many aspects. As a consequence, it is indispensable to specify these
methods in the present context.

IV.2.1. Schrödinger equation for non-interacting electrons

The equations of motion for the spin-independent 1RDM %nm(k, k′) := 〈c†nkσcmk′σ〉 can be
derived from the Heisenberg equations for the creation and annihilation operators:

i d
dt
%nm(k, k′) = (εmk′ − εnk) %nm(k, k′) +

∑

j

(
Wmj(k) %nj(k, k

′)−W ∗
nj(k) %jm(k, k′)

)
,

(IV.4)
where the matrix elements are given by Wnj(k) := αA(t) 〈ψnkσ|p̂|ψjkσ〉. Due to the simple form
of the Hamiltonian H , the equations of motion automatically decouple for every pair k, k′. As
the analyses in this chapter concentrate on occupation probabilities of bands, it is sufficient to
restrict Eq. (IV.4) to the k-diagonal part of the 1RDM %nm(k) := %nm(k, k). Alternatively, one
can argue that the k-off-diagonal parts remain zero for all times according to Eq. (IV.4) if the
initial state is diagonal. In both cases, one obtains the following closed set of equations of motion
for %nm(k):

Time-dependent Schrödinger equation (TDSE)

i d
dt
%nm(k) = (εmk − εnk) %nm(k) +

∑

j

(
Wmj(k) %nj(k)−W ∗

nj(k) %jm(k)
)
. (IV.5)

Being a direct consequence of the time-dependent Schrödinger equation (TDSE) with respect to
the Hamiltonian in Eq. (IV.3), these equations of motion are referred to as TDSE or Schrödinger
theory below.
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The physical quantities of interest are the average occupation probabilities of all bands. For
this purpose, Eq. (IV.5) has to be solved for an appropriate discretization of the k domain, the
first BZ. To be more precise, the periodic boundary conditions suggest that the k domain should
be divided into a uniform grid [261]. For each Bloch wave vector k, there is a corresponding
equation of the form Eq. (IV.5) that is decoupled from the values of the 1RDM at a distinct
k′ 6= k. The average occupation probabilities of a band n are then obtained as the k average over
%nn(k). For the sake of brevity, the parametric dependence on k is omitted in spite of actually
being present in Eq. (IV.5) and equations below.

IV.2.2. Resonant approximation

The derivation of the rate description in the present and the ensuing subsection follows the
procedure from Rossi and Kuhn (2002) [300]. This simplified perspective, where ultimately only
the diagonal elements of the 1RDM %nn(k) appear in the dynamical equations, is known to be
applicable if both non-resonant contributions and the memory effects can be safely disregarded.
To distinguish the implications of these two distinct approximations, an approach will be
introduced which solely requires the assumption of the dominance of resonant terms in the
equations of motions. This intermediate level of theory between the TDSE and the rate-equation
approach is straightforwardly achieved by using an intermediate result of the aforementioned
derivation.

For this purpose, the strategy consists in the first instance of a reformulation of Eq. (IV.5)
emphasizing on the occupation probabilities:

d
dt
%nn =

∑

j 6=n

gjn(t) , (IV.6)

with gjn(t) := 2=
(
Wnj%nj

)
. (IV.7)

In this step, the generation rate gjn(t) for the occupation of state n stemming from state j was
introduced. Eqs. IV.6 and IV.7 obviously do not constitute a closed set of equations because
the generation rate depends on the off-diagonal elements of %nm. To resolve this issue, the
off-diagonal elements are replaced in Eq. (IV.7) by the formal solution of the TDSE with respect
to the initial condition lim

t→−∞
%nm (t)=0. Step by step, one writes

%nm(t) = −ieiωnmt

t∫

−∞

dt′e−iωnmt′
∑

j

(
Wmj(t

′)%nj(t
′)−W ∗

nj(t
′)%jm(t′)

)
, n 6= m, (IV.8)

with the transition frequency ωnm := εn − εm. For a compact notation, one defines the auxiliary
quantities W̃nj(t) := eiωnjtWnj(t) and %̃nj(t) := e−iωnjt%nj(t). Then, one obtains the generation
rate

gjn(t) = 2<
[
W̃nj(t)

t∫

−∞

dt′
∑

l

(
W̃jl(t

′)%̃nl(t
′)− W̃ ∗

nl(t
′)%̃lj(t

′)
)]
. (IV.9)
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So far, no further approximation compared to the TDSE has been made. Now, it will be shown
that under appropriate conditions the main contribution to the integral in Eq. (IV.9) stems from
diagonal elements. This procedure allows to neglect the off-diagonal terms and thus yields a
theory that is closer to the rate description. To be able to continue with the derivation, the form
of the laser pulse, which is characterized by a time-dependent vector potential A(t), is further
constrained by assuming that

A(t) = A0(t) cos(ω0t) , (IV.10)

where ω0 is interpreted as the photon energy and A0 is the slowly varying amplitude (compared
to the fast time scale of 1/ω0). The premise of the approximative treatment is that oscillations
on the fast time scale 1/ω0 and 1/ωnm for n 6= m average out in the integral in Eq. (IV.9). Note
that the time dependence of %nm is, based on Eq. (IV.8), roughly given by %nm(t) ∝ eiωnmt, i.e.,
%̃nm(t) has a component on the slow time scale for all n,m. In contrast, W̃nm (t) contributes if
and only if |ωnm| ≈ ω0. It is assumed that for each k there is only one pair of indices n,m such
that this condition is fulfilled. Now, two cases are distinguished.
(i) Let n, j be the pair of indices such that |ωnj| ≈ ω0. Then, the sum in Eq. (IV.9) is reduced to
l = n in the first term and l = j in the second term. This procedure yields

gjn(t) ≈ gres
jn (t) := 2<

(
W̃nj(t)

t∫

−∞

dt′ W̃jn(t′)
(
%jj(t

′)− %nn(t′)
))
. (IV.11)

(ii) Let n, j be a pair of indices such that |ωnj| ≈ ω0 is not fulfilled. This implies that the factor
in front of the integral causes the generation rate itself to vary on the fast time scale and thus
even the slowly varying contributions to the integral do not affect the occupation numbers on the
time scale of the ionization process. Correspondingly, one can assume that Eq. (IV.11) holds
approximately in this case as well. It should be mentioned that this choice is the reason that the
fast time scale is still present in the generation rate of the preliminary approach in this subsection.

An alternative derivation of the generation rate Eq. (IV.11) relies on treating the laser pulse as
a perturbation. However, the rather complicated consideration presented here based on different
time scales has the advantage that it is not limited to weak pulses, so it is able to explain the
results close to those obtained with the TDSE for relatively large intensities (see Sec. IV.3).
Of course, this is only valid to a certain extent because increasing the intensity leads to faster
ionization dynamics and thus a more rapid time scale of occupation probabilities. Therefore, the
separation of time scales breaks down for sufficiently high intensities.

Lastly, a rotating wave approximation (RWA) is introduced by replacing

W̃nj(t)→ αA0(t) eiδωnjt〈ψnkσ|p̂|ψjkσ〉, (IV.12)

where δωnj :=

{
ωnj − ω0 for ωnj > 0,

ωnj + ω0 for ωnj < 0.

The resonant approximation is now defined as the equation of motion in Eq. (IV.6) with the
approximative generation rate in Eq. (IV.11) including the RWA. It can be equivalently formulated
as
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Resonant approximation

i d
dt
%nn =

∑

j

(
W̃mj%nj − W̃ ∗

nj%jm

)
,

i d
dt
%nm = W̃mn (%nn − %mm) , for n 6= m.

(IV.13)

Evidently, oscillations on the fast time scale are still present in the resonant approximation;
despite the assumption that the fast time scale does not contribute to the occupation probabilities,
not all of the corresponding terms have been dropped.

IV.2.3. Markovian theory

The final step for achieving the rate-equation limit within the procedure by Rossi and Kuhn
(2002) [300] is to approximate the integral in the resonant generation rate, Eq. (IV.11), by
assuming short-lived memory effects and applying a Markovian approximation (cf. Sec. III.2.2).
Provided that the amplitude of the vector potential is described by a Gaussian function, i.e.,

A0(t) = Ā0 exp

(
− t2

2τ 2
0

)
, (IV.14)

one obtains the following Markovian generation rate:

Markovian generation rate

gMarkov
jn (t) =

(
%jj(t)− %nn(t)

)
2π
∣∣W (0)

nj (t)
∣∣2S(δωnj) . (IV.15)

Here, W (0)
nj (t) is defined as W (0)

nj (t) := αA0(t) 〈ψnkσ|p̂|ψjkσ〉 and contains no frequency compo-
nent in the range of ω0 and ωnm for n 6= m. Further, spectral properties of the transform-limited
pulse enter the Markovian generation rate through S(ω) := τ0√

2π
exp(−τ0ω

2). Note that Fermi’s
golden rule can be recovered from Eq. (IV.15) in the limit τ0 → ∞ as S(ω) → δ(ω). The
equations of motion defined by the Markovian generation rate in conjunction with Eq. (IV.6) will
be referred to as Markovian theory in the following. Originally, the Markovian generation rate
was termed semiclassical generation rate by Rossi and Kuhn (2002) [300] but renamed here in
order to avoid confusion with the more common definition of semiclassical on page 20.

It should be mentioned that relaxation processes occur in real systems characterized by an
energy and a phase relaxation time, τE and τph. There is a relationship between τE and τph

that follows directly from the Cauchy-Schwarz inequality [220], namely τph ≤ 2τE. This
means that the decay time of off-diagonal elements τph of the 1RDM is bounded by the decay
time of diagonal elements τE so that the property of the 1RDM of being positive semidefinite
is not violated. Contrariwise, there is no lower bound on τph, i.e., the case τph � τE is
conceivable and is known in various physical systems to result from elastic collisions [296]. In
the cases considered here, the energy relaxation time τE is typically fast due to Auger decay or
fluorescence (cf. Chapters I and II). To the author’s knowledge, there have been no conclusive
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results measuring the phase relaxation times τph at XFEL based experiments so far; by contrast,
the energy relaxation times τE are widely known [103, 301]. For instance, the L-hole lifetime in
aluminum 13Al around 19 fs [131], i.e., for hole states corresponding to electron binding energies
around 100 eV. There are two things to learn from that. Firstly, the models discussed so far
break down if τE is on the order of the pulse duration τ or lower (cf. Chapter II). Secondly, if
off-diagonal elements decay rapidly, i.e., τph � τE, the Markovian theory may even provide
a more accurate description than the TDSE, Eq. (IV.5). Hence, the Markovian theory can
be not only regarded as an approximate to the TDSE but can also be interpreted as the limit
τph � τ0 � τE since the coherences exhibit a fast decay so that memory effects in Eq. (IV.8) are
naturally avoided.

IV.2.4. Atomic and spectrally averaged rates

In order to identify phenomena that can be traced back to the environment effects contained in
the TDSE description, it is instructive to compare the rates obtained for the case of a crystal with
the analog in the atomic case. Let H(1)

field be the term in the minimal-coupling Hamiltonian that is
responsible for OPA in perturbation theory [39]:

H
(1)
field = αp̂A0(t) . (IV.16)

Then, time-dependent perturbation theory estimates the transition rate Γatomic between a bound
state |ψi〉 and a continuum state |ψf〉 of an individual atom:

Γatomic := 2π
∣∣〈ψi|H(1)

field|ψf〉
∣∣2Datomic(ωex), (IV.17)

where ωex is the excess energy ωex = ω0 + ωi > 0 (or rather the eigenenergy ωf of the final state
|ψf〉) and ωi < 0 is the eigenenergy of the initial state |ψi〉. Datomic(ωex) is the density of states
of the atomic system at the excess energy ωex = ωf .

Contrary to the Markovian theory, Pauli blocking in continuum states is disregarded here.
Additionally, the final populations do not depend on pulse parameters other than the total photon
number as long as no further processes such as Auger decay with inherent time scales are
accounted for. In order to capture spectral effects, one may extend Eq. (IV.17) by replacing the
rate with its weighted average with respect to a weight function given by the spectral density
– similar to the Markovian generation rate or to Ref. [84] in the case of the TPA cross section.
However, this strategy is incapable of describing the pronounced dependency of the ionization
yield on the pulse duration that will be shown later in Sec. IV.3. This deficiency can be traced
back to the weak variation of the transition rate Γatomic as a function of the excess energy ωex on
the scale of 1/τ . By contrast, the density of states in the present crystal model Dcrystal(ωex) is
subject to strong variations in the relevant energy range due to van Hove singularities. Hence,
it is tempting to replace the atomic orbitals in Eq. (IV.17) and the density of states with those
quantities that were obtained in the crystal model, i.e., one writes
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Spectrally averaged rates (SAR)

d
dt
Pn = −ΓSARPn, (IV.18)

ΓSAR := S(ω − ωex) ∗
(

2π|〈ψnkσ|H(1)
field|ψjkσ〉|2Dcrystal(ω)

)
. (IV.19)

where Pn is the average population of the bound band n, S(ω) is defined as in Eq. (IV.15), and the
symbol ∗ denotes the convolution operation. These equations of motions will be hereafter referred
to as spectrally averaged rates (SAR), and the analogous dynamical equations in conjunction
with Eq. (IV.17) are called atomic rates. As an alternative to the phenomenological consideration
above, the SAR approach can be rigorously derived from Eq. (IV.15) if the populations %nn can
be approximated by a constant for each band and Pauli blocking is neglected. Note that the SAR
approach exhibits no parametric dependence on k unlike all other equations of motion introduced
in the previous sections.

IV.3. Results

Due to the constraints of the model reported in Chapter II, only one ionization channel is
considered. For this purpose, one proceeds as follows. The initial conditions in all simulations
are lim

t→−∞
%nm(t) = δn1δm1 and other bound bands (in this case only one) are excluded in the

calculation. The excluded states can be physically interpreted as occupied states that are not
affected by the laser pulse. The photon energy ω0 is chosen such that OPA is feasible in all
cases. All simulations were performed with the laser field modeled by Gaussian temporal profiles
described by Eq. (IV.14) where τ := 2

√
ln 2τ0 is the FWHM of the intensity.

This section is structured as follows. In the first part, Sec. IV.3.1, moderate intensities are
considered and the influence of the spectral density on the ionization yield is discussed. The
second part, Sec. IV.3.2, is devoted to phenomena arising for higher intensities, still focusing
on the ionization yield. In the last section, other physical quantities such as the time-dependent
electron density are shown for a qualitative understanding of the ongoing processes.

IV.3.1. Ionization dynamics at moderate doses

The following analysis focuses on the pulse-length dependence of the ionization yield in the
model crystal under irradiation with a transform-limited laser pulse. For this purpose, the
dynamics of occupation numbers is simulated for different durations τ but a fixed number of
photons per pulse Nph and a fixed photon energy ω0. The term moderate doses in the title of this
subsection refers to the comparatively low photon number Nph, which was chosen such that the
depletion of the lowest orbital is less than 30% according to the atomic rates. The atomic rates
are suitable to characterize the strength of the laser pulse based on solely the photon number
because the ionization yield after the pulse depends only on Nph and no other pulse properties
(cf. Sec. IV.2.4). After rescaling the time axis in units of τ , the time-dependent occupation
numbers of bound states are independent of τ , yielding a universal curve for all τ . This curve is
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Figure IV.2.: Ionization yields at a photon energy ~ω0 =125 eV for a fixed total number of photons Nph.
The time-dependent occupation of free bands is shown for different pulse durations τ and for the different
levels of theory as described in Sec. IV.2. The pulse durations vary from 0.01 fs to 5 fs and the time axis
is scaled accordingly. For this reason, the temporal envelope of the laser intensity (in arbitrary units)
sketched in the background overlaps for all pulses. (a) SAR and atomic rates. Since the curves calculated
for the atomic rates overlap for all pulse durations, only one of them is shown. Also the time traces for
τ = 1.0 fs and τ = 5.0 fs overlap (barely distinguishable). (b) Markovian theory. (c) Schrödinger theory
(TDSE) and resonant approximation as continuous and dashed lines, respectively.

shown in black in Fig. IV.2a at a photon energy of ω0 = 125 eV, tuned to the resonance of the
transition 1b → 1f at k= 1

4
g. The monotonic time-dependence of this time trace is –just like

the SAR results in Fig. IV.2a– trivially described by Eq. (IV.18) and thus not further examined.
Close attention is paid to the pronounced pulse-length dependence in all other levels of theory
depicted in Fig. IV.2. In the following, the individual features of the different equations of
motions described in Sec. IV.2 are discussed step by step, starting with the simplest approach.

Apparently, the time-dependent ionization yield based on SAR in Fig. IV.2a exhibits a
monotonic dependence on the pulse duration. The ionization yield rises strongly between
τ = 0.01 fs and 0.2 fs and approaches a universal curve for τ > 1 fs, which does not coincide
with the curve obtained from atomic rates. This can be easily understood by estimating the
spectral width and comparing it with the density of states that is implied by the band structure in
Fig. IV.1a. For pulses with a transform-limited Gaussian temporal/spectral profile, the product of
the spectral FWHM bandwidth ~δω and the FWHM pulse duration τ is given by2

~δω · τ ≈ 1.82 eV · fs. (IV.20)

Accordingly, the pulse durations from τ = 0.01 fs to 5 fs correspond to spectral bandwidths from
182 eV to 0.36 eV FWHM. Hence, for τ = 0.01 fs the weighted average in Eq. (IV.19) is spread
across a large part of the absorption spectrum, including band gaps and occupied bound states.

2As an exception to the statement on page 2, atomic units are avoided in this case.
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This implies that a large part of the spectrum does not contribute to the ionization rate, which, in
turn, leads to a rather weak absorption for short pulses. The time traces converge once the pulse
duration is sufficiently long so that the absorption spectrum does not vary significantly3 on the
energy scale given by the associated spectral bandwidth. The converged time trace obviously
deviates from the result obtained with atomic rates because they are distinct in both cases due to
the modification of the density of states. Note that the observed monotonicity in the pulse-length
dependence is not mandatory in general for arbitrary absorption spectra.

The situation in Fig. IV.2b based on the Markovian theory is similar. All time traces are
monotonic and the results are close to the SAR estimates for spectrally broad pulses. However,
one discerns a significant drop in the ionization yield for spectrally narrow excitations with τ=1
and 5 fs. This effect occurs when the spectral bandwidth is around 1 eV or below so that the
energy selection rule gives rise to an inhomogeneous distribution of populations as a function of
the Bloch wave vector k in one band. With the requirements for the validity of the SAR approach
not being met anymore, the deviations from the SAR results are self-evident. Furthermore, the
decrease of the ionization yield can be understood as the outcome of the two selection rules in k
and in energy where the constraints enforced by the energy selection rule become stricter the
longer the pulse duration. The combination of both constraints reduces the number of allowed
transitions and hence the overall ionization. In this case, Pauli blocking effects, which are
neglected in the SAR approach, might increase in importance.

The time-dependent occupation probabilities as calculated by means of the coherent dynamical
equations are shown in Fig. IV.2c. The most prominent difference compared to the observations in
Figs. IV.2a and b is the qualitatively different behavior of time traces. The non-RWA contributions
exhibited by the Schrödinger theory but not on the resonant approximation are most clearly
seen for τ = 0.01 fs, where the spectral bandwidth of 182 eV is of the same order as the photon
energy 125 eV. The origin of this feature is immediately clear as it is dealt with few-cycle
pulses for low τ considering that the photon frequency is f ≈ 30 1

fs
. Based on the fact that

the time scales of pulse duration and field frequency obviously do not separate anymore, one
might expect the resonant approximation to break down. This treatment can, however, also be
justified by a perturbation argument (cf. Sec. IV.2.2) so that the quantitative overall description
still turns out to be valid to a good approximation. Next, the non-monotonic behavior of the
time traces in the coherent theories for large τ , i.e., spectrally narrow pulses, can be understood
based on the knowledge about the optical excitation in a two-level system (2LS). If the spectral
bandwidth is sufficiently small, one might reduce the system to two bands selected by the
resonance and the initial condition. Taking the parametric k dependence into account, the system
can be reinterpreted as a 2LS ensemble with a distribution of the detuning and coupling strength
parameters given by the model system. The optical excitation of individual two-level atoms is
well-known from standard textbooks [263, 296]: non-monotonic populations, or rather Rabi
oscillations, stem from off-diagonal elements of the density matrix, which are omitted in the
theories that led to the results in Figs. IV.2a and b (see also the ensuing section, Sec. IV.3.2). If
the spectral bandwidth of a pulse is large, these oscillations are effectively averaged out, but if
the bandwidth is sufficiently small, they become visible as seen for τ=1 and 5 fs in Fig. IV.2c.

3This limiting case cannot be reached at van Hove singularities.
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Figure IV.3.: Final values of the ion yield over a contin-
uous range of pulse lengths τ while keeping the photon
number Nph fixed. The parameters are identical to those
in the previous figure, Fig. IV.2, where the corresponding
time traces are depicted for selected values of τ .

For a more concise comparison of the
different dynamical equations over a con-
tinuous range of pulse lengths, attention
is now paid to the final values of the time-
dependent populations of free bands con-
sidered so far in Fig. IV.2. Accordingly,
the ionization yield as a function of τ ,
depicted in Fig. IV.3, will be discussed
in the following. The qualitative depen-
dencies have already been investigated
and explained before in Fig. IV.2, so the
main focus lies on features that are more
clearly seen in Fig. IV.3. Though all lev-
els of theory exhibit mostly a fundamen-
tally different τ dependence among each
other, all curves apart from the atomic
limit coincide for the very short pulse du-
rations τ ≤ 0.05 fs. This observation is
also true for the time-dependent curves
in Fig. IV.2. The SAR results stand out
because they approach a constant value
for τ > 0.5 fs as discovered above. To
better understand the nature of the de-
viation from the next-best alternative introduced in Sec. IV.2, i.e., the Markovian theory, an
additional intermediate approach is shown, namely the Markovian theory without Pauli blocking.
By comparing this approach to the original Markovian theory, one discerns that Pauli blocking
significantly reduces the ionization yield but does not result in qualitative changes. Hence, Pauli
blocking is not the dominant influencing factor for the non-monotonic behavior because the
phenomenon appears even if the blocking is switched off. Therefore, the drop in ionization yield
for long pulses in the Markovian theory compared to the SAR approach can be attributed to the
interplay between the energy and k selection rule, which, in turn, effectively implies a reduced
number of efficiently driven transitions.

Another prominent feature apparent in Fig. IV.3 is the minimum within the coherent equations
of motion in the ionization yield around τ ≈ 3.5 fs with practically no sample damage. If this
phenomenon was observed in a real system, one would, in principle, be able to perform SFX
(see Sec. I.3) without replacing the crystal after each shot. The strategy would be to tune the
pulse duration so that the holes created during irradiation are refilled at the end of each pulse and
thus no decay mechanisms are initiated afterwards. However, the pulse profile must be tuned to
the respective sample, which is very challenging in experiments. Further, the coherent dynamics
is vital to observe this feature in the case of our model crystal: if the phase relaxation is fast
τph � τ , the Markovian theory is more applicable than the coherent equations of motions and
no minimum appears.



53IV.3. Results

IV.3.2. Rabi cycling

Initial indications of Rabi cycling were observed in the previous section for spectrally narrow
pulses with pulse lengths of τ=1 and 5 fs. Now, it is investigated whether Rabi oscillations can
be observed more clearly for higher intensities and, if so, how this feature depends on the photon
energy. For this purpose, the time traces analogous to Fig. IV.2 are analyzed for a fixed pulse
duration τ=1 fs, i.e., for a spectral bandwidth of 1.82 eV (FWHM), and a hundred times higher
intensity than in the corresponding simulation in the previous section. Note that the spectral
bandwidth is small compared to the energy range of the free bands nf = 1, 2 (cf. Fig. IV.1).
Therefore, as established on page 51, the occupation probabilities of bands within the TDSE, the
resonant approximation, and the Markovian theory can be interpreted as an average over a 2LS
ensemble, where the value of k determines the coupling strength and the detuning of each 2LS.

The time traces for selected photon energies ~ω0 = 120, 125, 153, and 165 eV are shown in
Fig. IV.4, where Fig. IV.4b represents the same scenario as in Fig. IV.2 but with a significantly
increased photon flux Nph → 100 ·Nph. It is striking that the curves obtained in the Markovian
theory are monotonic and deviate substantially from the qualitative behavior demonstrated for
coherent dynamics by the TDSE and the resonant approximation. As already the Markovian
theory fails to reproduce Rabi cycling, lower levels of theory are neither considered in the present
discussion nor shown in the respective figures. Additionally, first significant deviations between
the resonant approximation and the TDSE appear in the simulations, which is in conformity
with expectations at high intensities (cf. Sec. IV.2.2). The non-RWA contributions cause an
apparent broadening of time traces due to fast oscillations, especially in Fig. IV.4a. Before
going into detail, one obvious observation should be pointed out in advance: although one is
effectively dealing with a 2LS ensemble, the time traces are qualitatively entirely different from
the dynamics experienced by an individual 2LS.

An intuitive understanding of the Rabi-like dynamics, demonstrated by the individual curves
in Fig. IV.4, is provided by means of the band structure and the k dependence of transition
matrix elements shown before in Figs. IV.1a and b, respectively. The photon energy in Fig. IV.4a
is tuned to the resonance energy of the transition 1n → 1f at k= 0. In this case, a van Hove
singularity enhances the resonance condition in a region where the magnitude of the transition
matrix elements varies by many orders of magnitude. Accordingly, the occupation probability
of a band is based on the contributions from a broad distribution of coupling strengths and thus
also a broad distribution of Rabi frequencies. The overall ionization yield exhibits barely visible
Rabi-like dynamics because the different oscillations average out. By contrast, the situation for
the observation of Rabi-like dynamics is much more preferable in Fig. IV.4b at a photon energy
that corresponds to the transition 1n → 1f at k = 1

4
g. Here, the magnitude of the transition

matrix elements is smooth in the vicinity of the resonance and the time trace exhibits significantly
more apparent Rabi-like oscillations. By comparing the TDSE with the resonant approximation,
one recognizes that off-resonant contributions, which are treated differently in both approaches,
may also conceal Rabi cycling. The same considerations apply to Fig. IV.4c and also –consistent
with the present interpretation– the observations are similar. Most pronounced Rabi cycling
is seen in Fig. IV.4d at a photon energy tuned to the transition 1n → 1f at k= 0. The energy
selection rule is enhanced by the density of states analogous to the case in Fig. IV.4a so that
a large part of the 2LS ensemble is in resonance and the resonant approximation captures the
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Figure IV.4.: Ionization dynamics analogous to Fig. IV.2 for τ=1 fs but a 100 times higher intensity and
varying photon energies in (a) to (d). The photon energy in (b) is the same as in the previous figures,
Figs. IV.2 and IV.3. In all cases, the photon energy corresponds to a resonant transition to a nf = 1, 2
band at a different value of k shown as insets, respectively.

dynamics of the TDSE to a good approximation. Simultaneously, the 2LSs are weighted by the
resonance condition, and therefore the main contribution stems from fairly similar values for the
Rabi frequency and the detuning.

In summary, Rabi-like behavior may be unveiled in NTI for ultrashort transform-limited
pulses in the XUV regime. Spectrally broader pulses would imply an additional averaging, which
is counterproductive for this purpose. To the best of the author’s knowledge, this has not been
measured so far and will prove both experimentally and theoretically (as far as a more realistic
model is concerned) very challenging.

IV.3.3. Spatiotemporal behavior of the electron density

The observation of Rabi cycling in the previous subsection assumed the full knowledge of the
time-dependent ionization yield, which is experimentally challenging in XFEL based studies.
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This section is devoted to the influence of the most ideal analyzed Rabi scenario within the
model system, namely the one seen in Fig. IV.4d, on the elastic scattering factor. The latter
can be, contrary to Compton scattering, assessed in the semiclassical approach through the
current density. For this purpose, the spatiotemporal dynamics of the electron and the current
density is discussed beforehand in order to support a correct interpretation of the form factor. It
should be mentioned that the possibility of an experimental realization of this scheme is highly
questionable for fundamental reasons as addressed at the end of this section.

Figure IV.5.: (a) Time-dependent electron density in a
Wigner-Seitz cell, (b) the corresponding current density,
and (c) the atomic form-factor f(q) calculated within the
Schrödinger theory for the parameters chosen in Fig. IV.4d.

The time-dependent electron density
under irradiation with the laser pulse
centered around t = 0 is depicted in
Fig. IV.5a. For early times t < 2 fs, the
density differs only slightly from the ini-
tial situation, which is characterized by
a strongly localized charge density near
the atomic core at x = 0. With an in-
creasing electric field at later times be-
tween t = −2 fs and t = −1 fs, a con-
tinuous flow away from the core can
be discerned on the logarithmic scale
[typically barely noticeable on a linear
scale]. Around the maximum of the laser
intensity, between t = −1 fs and t =
1 fs, the fluxes emerging from the atom
at x = 0 and the neighboring atoms at
x = ±d form a coherent superposition
and show characteristics of a standing
wave. This leads to a buildup of a sig-
nificant part of the density correspond-
ing to free electrons spatially separated
from the core region and centered around
x=±d/4. Therefore, the free electrons
are essentially trapped in the vicinity of
the cores and are available for recombi-
nation through Rabi cycling. This is also
discernible via the oscillatory time dependence synchronous to the corresponding occupation
probabilities in Fig. IV.4d. For times t>1.5 fs the occupation probabilities are virtually constant,
and the separated density peaks as well as the oscillation that can be attributed to coherences
remain visible. This peculiarity is the result of the absence of both energy and phase relaxation.

The corresponding current density is shown in Fig. IV.5b. It was checked that the main
contribution to the current density stems from the term ∝ ρA, where ρ is the electron density and
A is the vector potential. This is plausible when comparing Figs. IV.5a and b. Hence, dispersion
corrections [39] can be expected to be negligible and elastic scattering is determined by ρ or
rather the form factor calculated as the Fourier transform of ρ.

As a direct consequence of the periodic broadening of the electron density and the Fourier
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relationship, the square of the absolute value of the scattering factor, shown in Fig. IV.5c as a
function of the momentum transfer q, is narrowed repeatedly. Apparently, the Rabi-like dynamics
leads to a significant oscillation in time around q = 2g. By contrast, the presence of inner-shell
vacancies is hardly recognizable for small |q|. This is consistent with the theoretical analysis in
Ref. [6] because significant deviations between the form factor for pristine and hollow atoms are
only expected for high resolutions, i.e., for large q, of the order of 1 Å.

However, this consideration faces a fundamental problem because the form factor is only
measured for |q| smaller than the maximum momentum transfer in elastic scattering qmax.
At the low photon energy considered here, the momentum transfer has an upper bound of
qmax = 2αω0 ≈ 0.09 a.u., whereas g≈1.26 a.u. The consequence is that the atomic form factor
in Fig. IV.5c can be obtained from elastic scattering experiments only for q � g.

It is tempting to think that this issue can be avoided by simply adapting the photon energy.
However, one does not achieve meaningful results by analyzing the same model system for the
analogous case but heavier atoms in order to increase the photon energy of NTI eventually up to
~ω0 ≈ 12 keV, which is the order of magnitude of the photon energy required for typical SFX
experiments (see Sec. I.3). This strategy does not work because another fundamental problem
arises: heavy atoms with inner-shell vacancies are subject to short fluorescence lifetimes (cf.
Sec. II.1), causing the adopted assumptions to break down immediately.



VVV Coherent ionization
dynamics in clusters

Coherent dynamics was demonstrated in the previous chapter to shape the time-dependent
behavior of near-threshold ionization (NTI) within a simplistic crystal model under ideal cir-
cumstances. It led, inter alia, to standing waves of free electrons that recombined via Rabi
cycling (cf. Sec. IV.3.3). In atomic samples, by contrast, it was anticipated from the start that this
phenomenon does not occur. Indeed, atoms are supposed to be well captured by the incoherent
time evolution as described by the rate approach. The present chapter focuses on elucidating the
questions that arise naturally in the light of these two extremes, atom and crystal: how does the
system size affect the theoretical observations and what is the role of the ideal ordering of atoms
in the crystal?

To clarify these questions, the NTI of N equally spaced, identical atoms is analyzed in the
following. Obviously, the numerics is required to be sufficiently flexible that the number of
atoms N can be varied over a broad interval, here N = 1, . . . , 21. For the most part, equidistant
spacing between the atoms is assumed in order to simplify the parameter study, i.e., once all
atomic parameters are fixed, the Hamiltonian is solely characterized by the number of atoms. It
is not immediately clear what this model of a short ordered chain represents physically: one may
interpret it as a finite-sized crystal due to the strict order of atoms or as a homonuclear cluster
owing to the low number of atoms. In fact, N=21 is even clearly surpassed by the samples in the
cluster studies mentioned in Sec. I.2.2 or by the macromolecules such as TbCatB. Anticipating
Sec. V.2.5, the latter interpretation is supported by the finding that the ordering is not vital for the
qualitative tendencies of the results. For this reason and for the sake of brevity, the title of this
section refers to clusters even though the term short ordered chain (SOC) is, strictly speaking,
closest to the model system of interest and will be adopted below.

The main goal of the present chapter is to identify a coherent trapping mechanism that
leads to a localization of photoelectrons in the vicinity of the cores from which they were
ejected, analogous to the insights into the dynamics of the crystal in Sec. IV.3.3. The simplistic
assumptions from the previous chapter, which include the neglect of electron-electron interaction,
are kept to ensure comparability and to reduce the computational effort to enable a flexible
simulation of N = 1, . . . , 21 atoms. As a consequence, the choice of Vee ≡ 0 in the TDHF
equations, Eq. (II.2), automatically entails the absence of electrostatic trapping, which is vital for
the description of the ionization of clusters (see Sec. I.2.2). This might appear to be a conceptual
flaw at first sight; however, this strategy has, in fact, the tremendous advantage of being capable
of demonstrating an additional trapping mechanism distinct from electrostatic trapping. In this
sense, the present chapter is primarily conceived as a model study, but of course, the analysis is
not purely academic as it is most adequate under the same circumstances as the crystal model in
Chapter IV.

This chapter is based on Ref. [302].
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V.1. Theory

This section covers all models that are employed in this chapter and can be regarded as an
overview of the different theoretical approaches that were implemented to describe the system
and/or identify the relevant mechanisms in the context of other more sophisticated strategies.
Since the physical implications are discussed later, the reader may skip the remainder of this
section after learning about the basic model in Sec. V.1.1 and continue with the main discussion,
Sec. V.2 Results. Then, one may consult the respective subsection of the present section once the
eponymous theoretical approach is mentioned.

All dynamical equations are special cases of the TDHF equation, Eq. (II.2), where aside
from Sec. V.1.4 the electron-electron interaction is completely disregarded, i.e., Vee is assumed
to vanish identically. Due to the simplistic theory based on the assumptions in Chapter II, it
is computationally feasible to simulate a rather general physical system comprising N distinct
atoms at arbitrary positions. Accordingly, one may as well choose a more general situation of
arbitrary atomic positions and potentials without additional computational costs, thus mimicking
a 1d molecule. However, to achieve a comparable situation to the crystal model only homonuclear
clusters with equally spaced atoms (hereafter referred to as short ordered chains (SOCs)) are
considered for the most part even though this constraint of equidistant spacing turns out to be not
crucial for observing the trapping mechanism mentioned at the beginning of the present chapter.
To be specific, the identical atomic potentials are assumed to be centered around the atomic
positions

Rj = (j − 1

2
(N + 1))d, where j = 1, . . . , N. (V.1)

The SOC spacing d is the distance between adjacent atoms. This uniform structure resembles
the crystal model as in Chapter IV in the limit of a large number of atoms, N � 1.

In order to fully characterize a system that is subject to the dynamics described by the TDHF
equations in Eq. (II.2) the potentials Vcore and Vee and the number of atomsN have to be provided
for each model. This strategy will be pursued in the following while making sure that N can be
treated as a free parameter in order to enable the modeling of a flexible system size.

V.1.1. Collective-atoms model (CAM)

First, the potential of a single core centered around x=0 is defined, which is later straightfor-
wardly extended to a system of N equidistant atoms. The soft-core (SC) Coulomb potential
Vsc(x) is used as a non-singular approximate to the (bare) 1d Coulomb potential −Z/ |x| [258,
p. 101 et seqq.]. It is explicitly written as

Vsc(x) = − Z√
a2 + x2

, (V.2)

with adjustable parameters a, Z. Since Vsc(x) approaches the bare Coulomb potential in the limit
x � a, the parameter Z is generally chosen to be compatible with the electric charge of the
respective atom. The parameter a can be set to a value that results in the desired ground-state
energy of the 3d atom which is intended to be approximated. It is assumed that a is smaller than
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the SOC spacing d so that the spread of the electron density of the lowest orbital is smaller than
the distance to the neighboring atom.

Due to the disregard of the electron-electron interaction, it is immediately clear that an ejected
photoelectron is subject to a binding force of a fully-stripped atom with charge Z regardless
of the actual charge state of the atom. This becomes more prominent when N > 1 atoms are
considered. Then, all electrons would experience a temporally constant trapping due to an
electrostatic force of a system with charge N ·Z. In real systems, this charge is initially screened
and is usually lower than N ·Z even during very strong pulses because of trapped and remaining
bound electrons. This phenomenon is referred to as electrostatic trapping and is obviously a
dynamical effect contrary to what the name suggests. Electrostatic trapping can be artificially
eliminated in a model with Vee ≡ 0 and by using a short-range potential instead of the SC
potential, Eq. (V.2). For this purpose, the following screening model is introduced. Analogous
to the crystal model, Chapter IV, only the two electrons occupying the innermost shell (with a
binding energy below the photon energy) are explicitly taken into account. Further electrons of
the atom, e.g., valence electrons, are reduced to a homogeneous background density. The SOC
spacing d is chosen to determine the length of the region

[
−1

2
d, 1

2
d
]

where the homogeneous
background density is located. This choice implies that the background is equally spread over the
whole SOC, analogous to a jellium-like model. The atomic potential Vatomic(x) is then written as

Vatomic(x) = Vsc(x) + Vhom(x) , (V.3)

where Vhom(x) =
1

d

1
2
d∫
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2
d

Z√
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 . (V.4)

In the limit case x� d, one finds Vhom ≈ Z
|x| . This means that Vatomic is completely screened

for large distances. Alternatively, one might replace Z → Z − 1 if the long-range contribution
of the potential is only intended to be weakened and not entirely avoided. There is a decisive
difference insofar that the long-range potential would add up for multiple atoms, which has to be
borne in mind when comparing the dynamics of SOCs with different numbers of atoms N .

Now that the atomic potential is fully characterized, the potential Vcore of the whole SOC with
an arbitrary number of atoms N reads

Vcore (x) =
N∑

j=1

Vatomic (x−Rj) , (V.5)

where Rj are the atomic positions from Eq. (V.1). The model defined by this potential, the TDHF
equations, Eq. (II.2), and Vee ≡ 0 is hereafter referred to as the collective-atoms model (CAM).
The electric field is specified later on page 63. Due to the elimination of electron-electron
interaction, the TDHF equations are substantially simplified from a numerical perspective.
Provided that the initial state can be expressed as a single Slater determinant, all orbitals
can be propagated independently resulting in an inherently parallel algorithm. Therefore, the
computation time in parallel execution does in principle not depend on the number of atoms N .
Note that there is a genuine many-particle effect included in this model, namely Pauli blocking,
which is implicitly accounted for by using a Slater determinant. For an intuitive picture of this
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Figure V.1.: Schematic representation of the relation between the CAM in (a) and (b) and the IAM in (c)
for a SOC that consists of N=3 atoms. The red curves reflect the respective potential based on the shape
of the soft-core (SC) potential, Eq. (V.2), whereas the homogeneous background density is not shown.
The electrons in the innermost shells are illustrated as green spheres with arrows according to the spin
degree of freedom.

effect, note that the orthonormality of the orbitals which constitute the initial state (in the form
of a Slater determinant) is conserved throughout the simulation period. In this sense, the orbitals
repel each other, even if Vee ≡ 0, because the overlap between distinct orbitals must always lead
to a vanishing scalar product.

To avoid confusion, it should be mentioned that the term collective in CAM does not stem from
collective effects in the context of the giant (dipole) resonance (GDR) in xenon (see Sec. I.2.1).
The nomenclature will become clear in the following subsection, Sec. V.1.2, where a model of
completely independent atoms is introduced. The description collective is used to highlight this
crucial difference.

V.1.2. Independent-atoms model (IAM)

In order to assess the influence of neighboring atoms in the SOC, an additional dynamical equa-
tion is introduced, namely the independent-atoms model (IAM). The IAM is the straightforward
procedure to obtain the spatiotemporal charge density for a system of N > 1 atoms where all
atoms are completely independent. More precisely, let %(N)

CAM(x, t) be the time-dependent charge
density calculated within the CAM model for N atoms. The corresponding IAM charge density
%

(N)
IAM(x, t) is then defined as

%
(N)
IAM(x, t) =

N∑

j=1

%
(1)
CAM(x−Rj, t) . (V.6)

As no other physical quantity is extracted from this model, the IAM is fully characterized.
Obviously, for N=1 atom, the IAM charge density is identical to the associated CAM result. In
the general case N>1, however, the two models are not equivalent. Their relation is outlined by
means of Fig. V.1 for N=3 atoms. Fig. V.1a is closest to the formulation of the CAM: according
to Eq. (V.5), the potential is given as the sum of individual atomic potentials, and 2 ·N = 6
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electrons occupy single-particle eigenstates with almost identical eigenenergies. As noted above,
this situation is mathematically equivalent to what is sketched in Fig. V.1b: the individual orbitals
can be propagated independently, and for a Slater determinant comprising orthonormal orbitals
the charge density is calculated as the sum of “single-particle” charge densities that are obtained
for the individual orbitals [indicated by the plus signs]. Though the corresponding case in the
IAM model depicted in Fig. V.1c seems very similar at first sight, it is essential to note that the
neighboring atoms are disregarded. The latter is now equivalent to three CAM simulations for
N=1 (which can be reduced to one by virtue of the translational symmetry) and subsequently
summing up the charge densities as specified in Eq. (V.6).

V.1.3. Reflectionless potential

It is natural to suspect that distinct observations within the CAM and IAM can be attributed to
potential scattering of photoelectrons and are thus characterized by reflection and transmission.
To obtain an intermediate level of theory where one of these two components is absent, one can
replace the atomic potential Eq. (V.3) with a reflectionless potential

Vreflectionless(x) = − n (n+ 1)

2a2 cosh2
(
x
a

) , (V.7)

where a ∈ R and n ∈ N are adjustable parameters. The exact energy of the lowest orbital
is analytically known and can be expressed as ε0 = −1

2

(
n
a

)2. By means of supersymmetric
quantum mechanics, one can show that all potentials of the form of Eq. (V.7) are related to the
zero potential in terms of being supersymmetry (SUSY) partners and thus exhibit no reflection
at any energy [303, 304]. There is no additional screening introduced to the modified atomic
potential because the reflectionless potentials in Eq. (V.7) are inherently short ranged so that
electrostatic trapping is inherently suppressed.

Hereafter, the modified CAM approach where the atomic potential from Eq. (V.3) is substituted
by a reflectionless potential Eq. (V.7) is called reflectionless CAM. The reflectionless IAM is
defined analogously. For the interpretation of the results based on reflectionless models, it is
assumed that the sum of well-separated reflectionless potentials is likewise reflectionless.

V.1.4. Time-dependent Hartree-Fock (TDHF) model

So far, all models discarded the electron-electron interaction in the TDHF equations, Eq. (II.2),
in order to artificially switch off the trapping mechanism based on electrostatics by introducing a
full and temporally constant screening via the background density. Now, the time-dependent
screening due to the dynamics of the electrons initially residing in the innermost shell is taken
into consideration. The TDHF approach is a rather simple extension of the CAM; it accounts
for dynamic screening via the Hartree term. Accordingly, TDHF is the method of choice to
assess the influence of electrostatic trapping on the results obtained from the CAM theory. It was
noted before in Sec. II.2 on page 22 that the TDHF is subject to fundamental issues in ionization
dynamics. Unfortunately, TDHF simulations have to be restricted to the case of low intensities
in the case of NTI to allow for drawing reliable conclusions [256]. This is a severe constraint
because the electrostatic trapping is obviously weak for a low degree of ionization. In other



62 V. Coherent ionization dynamics in clusters

words, one is obliged to investigate the phenomenon in the case where it is anticipated to only
mildly affect the dynamics.

The TDHF theory corresponding to the CAM is now specified to ensure the best possible
comparability with the CAM. Again, only the two inner-shell electrons per atom are explicitly
taken into account. These electrons are subject to the electron-electron interaction described by
the potential

Vee(x) =
1√

a2 + x2
. (V.8)

Accordingly, the homogeneous background density is now assumed to consist only of Z − 2
electrons per atom, i.e., one performs the replacement Z → Z − 2 in the atomic potential,
Eq. (V.4). Then, one constructs Vcore(x) as a sum analogous to Eq. (V.5) of the CAM (see
Eq. (V.5)).

This procedure evidently affects the orbital binding energies of the ground state. Hence, when
constructing the TDHF extension of a CAM with given parameters a, Z, one may readjust a
in order to optimize the resemblance between these models from a physical perspective. For
NTI, the dynamics is presumably sensitive to the kinetic energy of ejected photoelectrons, so it
is reasonable to modify a to obtain the same K-edge in both approaches. This guarantees that
the energetic properties are close. However, the transition matrix elements usually change as
well, which can be mitigated, in turn, by adapting the laser intensity using the case N=1 as a
reference. The exact parameters are discussed later in Sec. V.2.6.

V.2. Results

Since the present chapter is primarily conceived as a model study, the simulations are performed
for a seemingly arbitrary system of lithium atoms that does not match any of the experiments
alluded to above in Chapter I. The reasons for building the analysis on a 1d lithium model are,
firstly, that the approximations of Chapter II are most adequate for light atoms due to long
fluorescence lifetimes. Secondly, prior investigations on the ionization dynamics of 1d lithium
have been published by Ruiz et al. (2005) [253]. Adopting the strategy of the previous chapters,
the discussion contains only qualitative conclusions by comparing theory with theory owing to
the simplicity of the model system.

The numerical values for the stationary parameters of the CAM (identical to those of the
IAM) are listed at this point, whereas the other models, which come into play only later in
the continuing discussion, are specified below. Ruiz et al. (2005) [253] simulated a single
1d lithium atom based on the TDSE while taking the full electron-electron interaction into
account. To match the ground-state energy of −199.44 eV, the parameters of the SC potential
were chosen to be Z = 3 and a = 0.262 Å; the latter parameter, a, was also used for the SC
potential characterizing the electron-electron interaction. Being clearly more simplistic in the
case of a single atom, the present model leads to a different ground-state energy. One can
compensate for the energy shift by adjusting the parameter a to a = 0.3078 a.u. = 0.163 Å. The
SOC spacing d is set equal to the lattice parameter in a body-centered cubic lithium crystal,
d = 6.63 a.u. = 3.51 Å [305].
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All simulations are performed for an electric field of the form

E(t) = Emax exp

(
− t2

2τ 2

)
sin (ω (t− t0)) , (V.9)

where the FWHM of the electric field, 2
√

2 ln 2τ , is chosen to be 5 fs. In other words, the
pulse length (referring to the intensity profile) is 5 fs/

√
2 ≈ 3.54 fs (FWHM). Similarly, the

frequency ω = 4 a.u., which is above the K-edge of 3.67 a.u., is identical in all calculations.
This means that the photoelectrons stemming from OPA have an approximate kinetic energy of
Ekin = 0.33 a.u. = 9.1 eV and thus –assuming the dispersion relation of a free electron– a group
velocity of vg =

√
2Ekin = 0.81 a.u. = 18 Å

fs
. Characterizing the photon flux with a total photon

number Nph, the maximum field amplitude is varied over the range Emax ∈ [0, 10 a.u.]. Note
that due to the relation Nph ∝ E2

max, a factor of 10 in Emax corresponds to a factor of 100 in Nph.
The peak intensity is estimated as Ipeak = E2

max

8πα
≈ 545 a.u. ≈ 3.5 · 1018 W

cm2 .
Even though the assessment of tunneling dynamics via Keldysh parameter is inconclusive in

the present case (see page 16), the corresponding values are provided as a rough estimate. Since
the maximum ponderomotive energy Up =

(
1
2
Emax/ω

)2 ≈ 1.5625 a.u. is of the same order of
magnitude as the binding energy εB, the Keldysh γK parameter may momentarily reach values
down to the order of one according to

γK =

√
εB

2Up
=

√
2εBω

E
≈ 10.83

E
. (V.10)

Nevertheless, tunneling dynamics, which would be important for γK < 1 at optical wavelengths,
is excluded from the discussion.

The figures below visualize almost exclusively the behavior of the electron density during or
after the laser pulse and no other physical quantity except for the ground-state population. It is
emphasized that the homogeneous background density is not included in all these cases.

V.2.1. Time-dependent charge density in the crystal limit

The main motivation for considering a short ordered chain (SOC) was the creation of a compara-
ble situation to the crystal model from Chapter IV in the limit of a large amount of atoms N . A
rough assessment of the number N required for achieving a crystal-like evolution of the charge
density around the atom in the center of the SOC can be made based on the group velocity
vg ≈ 5 d

fs
. During 10 fs (twice the FWHM of the electric field) the quasi-free photoelectrons

in a crystal pass approximately 50 atoms. Accordingly, one might expect N = 101 to be a
reasonable choice for an interpretation as a crystal-like situation. This estimate is in contrast
to the simulations shown in Figs. V.2 and V.3, which suggest that the crystal limit is already
achieved for significantly smaller N .

Displayed in Fig. V.2 is the time-dependent charge density in the spatial interval x ∈[
−1

2
d, 1

2
d
]

and a temporal interval centered around the pulse maximum at t= 0 for the cases
of N=1 and 21 atoms. Note that the spatial interval is not chosen at random as it corresponds
to the Wigner-Seitz (WS) cell in the crystal limit. For finite and odd N ≥ 3, it would be more
precise to speak of the Voronoi cell associated with the atom in the center of the SOC (in the
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Figure V.2.: Time-dependent charge density in the
vicinity of the middle atom for N=1 (a) and 21 (b)
atoms both simulated within the CAM at the same
field amplitude of Emax = 5 a.u.
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Figure V.3.: Slices of the time-dependent charge
density in the adjacent figure at different times t =
−4τ (a), t = −2τ (b), t = 0 (c), and t = 4τ (d).
Additionally, the analogous cases for N = 3 and 5
atoms are shown.

Voronoi diagram to the atomic locations {Rj|j = 1, . . . , N}), but for simplicity it is not adhered
to this more specific nomenclature here. In fact, the interval x ∈

[
−1

2
d, 1

2
d
]

and the term WS cell
are used interchangeably here. It is striking in Fig. V.2 that the time-dependent charge density of
the individual atom and the atom embedded in a SOC of N=21 atoms are radically different at
times around and after the pulse maximum at t=0. Similarities can be discovered only for early
times during the pulse, t<−2 fs. Apparently, the single atom in Fig. V.2a is subject to an efficient
ionization process. Bound electrons are promoted to the continuum states and subsequently wave
packets are formed that leave the vicinity of the atom at a speed of roughly the group velocity.
Even before the pulse maximum is reached at t=0, the transition is saturated in the sense that no
further electrons are available for ionization1. In comparison to the observations for the single
atom, the ionization dynamics in a SOC is seen to be strongly suppressed in Fig. V.2a. At the
pulse maximum t=0, the electron charge is spread over the WS cell but is largely confined to
the vicinity of the atom. After the pulse, a large portion of the electron charge is again localized
near the atom, implying a substantially less efficient ionization.

Evidently, the charge density is highly sensitive to the number of atoms N in the SOC for
small N . This leads to the question of how many atoms are required to eventually reach the
crystal limit. This issue is addressed now, whereas the physical reasons for the pronounced
dependency on N are investigated below in the ensuing sections. Fig. V.3 depicts the charge

1Recall that other channels are assumed to be frozen on the short time scale of the pulse duration.
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density in the WS cell for selected times, t = −4τ , −2τ , 0, and 4τ . For early times on the
rising edge of the pulse envelope in Figs. V.3a and b, N only slightly affects the charge density,
which is evident for Fig. V.3a as the SOCs are essentially still in the respective ground state.
Apparently, all ground states exhibit the same charge density in the considered interval, which
is an indispensable foundation for a direct comparison of the dynamics. The time evolution
changes the situation markedly for later times in Figs. V.3c and d as observed above. There is
also one novel insight that can be gained from this figure by noting that the cases N = 3 and
5 behave very similar to N = 21 and not the single atom. This indicates that the crystal limit
with respect to the charge density around the middle atom of the SOC is basically reached for
very small N . Since the results for N = 5 and N = 21 coincide, one anticipates no significant
changes for N of the order of 100. This discrepancy with the initial assessment suggests that the
photoelectrons do not propagate with the group velocity of free electrons. Alternatively, one may
also presume that the charge density is not sensitive to photoelectrons stemming from atoms
more than 2d away. Of course, these two explanations are not mutually exclusive. Note that the
second conjecture is supported by the remark in Sec. IV.3.3 that a logarithmic scale is required
to discern the flow of photoelectrons away from the respective atomic site.

V.2.2. Evolution of the charge density in short ordered chains (SOCs)

For a detailed understanding of the influence of neighboring atoms on the ionization dynamics,
the charge density is now considered as a function of time t and the spatial coordinate x with a
domain that contains the whole SOC for all times in a nontrivial case N > 1. Emphasis is put on
a SOC comprising N=5 atoms, which was already analyzed in the vicinity of the middle atom
(see Fig. V.3) and found to be close to the crystal limit while still being a relatively small and
thus simple system. The corresponding spatiotemporal behavior of the charge density over the
whole SOC is illustrated in Fig. V.4a. Further, the analogous case within the IAM is depicted in
the adjoining figure, Fig. V.4b, in order to rule out the possibility that the local charge increases
with N only due to photoelectrons which were ejected from other atoms and pass through the
surrounding area of the middle atom. It turns out that the photoelectrons hardly affect the charge
density near the atomic sites by comparing with the corresponding calculation for the single atom
[not shown]. This finding is consistent with the symmetry in Fig. V.4b regarding the similarity of
the time evolution undergone by the charge density in the vicinity of inner and boundary atoms,
which are actually, depending on the position, subject to a delay of passing photoelectrons from
other atomic sites. Accordingly, the IAM simulation in Fig. V.4b can be associated with the
N = 1 case in Figs. V.2 and V.3 to a good approximation. It should be pointed out that due
to the logarithmic scale, a charge density with a magnitude of 10−2 e

a0
and less, though barely

noticeable in Figs. V.2 and V.3, remains visible even after the pulse.
When comparing Figs. V.4a and b, one discerns that boundary atoms in the CAM behave

similarly to the IAM, whereas the inner atoms reveal a resemblance among each other but differ
significantly from the boundary atoms. In particular, the charge density that resides in the vicinity
of the respective atom is clearly enhanced. This phenomenon is naturally interpreted as an impact
of neighboring atoms, which inhibit the charge flow away from the inner atoms. Intuitively,
the time evolution of the charge density of boundary atoms is closer to the case of independent
atoms because only one adjacent atom directly affects the photoelectron dynamics. The electrons
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Figure V.4.: Logarithmic contour plot of the time-dependent charge density ρ(x, t) for a SOC with
N=5 atoms under irradiation with a laser pulse described by the electric field from Eq. (V.9). The plots
in the first row [(a) and (b)] are calculated for Emax = 5 a.u. and in the second row [(c) and (d)] for
Emax = 9 a.u. Similarly, the first column [(a) and (c)] is based on the CAM and the second column [(b)
and (d)] on the IAM. The white area corresponds to coordinates (x, t) where the magnitude of the electron
density is below 10−4 e

a0
.

ejected from inner atoms are essentially trapped by the coherent dynamics despite the fact that
the commonly known phenomenon of electrostatic trapping was deliberately disregarded.

To answer the question whether this behavior crucially depends on the laser intensity, the
analogous case for a larger field amplitude of Emax = 9 a.u. is shown in Figs. V.4c and d. The
increase in intensity leads to numerical values of the IAM charge density below 10−4 e

a0
around

the atomic positions once the pulse has reached its maximum at t= 0; hence, the remaining
charge is considerably smaller than for the low intensity case in Fig. V.4b. By contrast, the CAM
results, Fig. V.4c, demonstrate again a trapping of electrons near inner atoms, albeit far less
pronounced than for low intensity, Fig. V.4a. These two examples, Emax = 5 a.u. and 9 a.u., are
now embedded in an extensive model study that is concerned with a broader intensity range. In
order to characterize the response of a SOC comprising an arbitrary number of atoms N to a
laser pulse of the form in Eq. (V.9) with respect to the localization phenomenon near inner atoms,
one defines the following quantity that simplifies the illustration by eliminating the dependency
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Figure V.5.: Fraction of electrons flown away from the interval
[
−1

2d,
1
2d
]

of a SOC comprising N atoms,

as measured by the time average of Y (N)
flow (t), simulated within the CAM (a) and the IAM (b).

on the spatial coordinate x:

Y
(N)

flow (t) := 1− 1

qat

1
2
d∫

−1
2
d

ρ (x, t) dx, (V.11)

where qat = −2 is the charge per atom minus the homogeneous background density, i.e., the
charge corresponding to the explicitly simulated electrons in the innermost shells; ρ (x, t) is the
associated charge density as shown in Fig. V.4. The integration interval is equal to the WS cell
in the crystal limit. Y (N)

flow is a measure for the amount of the charge density that is localized
around the middle atom, where Y (N)

flow = 0 means that the interval
[
−1

2
d, 1

2
d
]

contains the same
total charge as in the initial state and Y (N)

flow = 1 implies that the whole charge density has left the
vicinity of the atom. Accordingly, Y (N)

flow = 1 is referred to as delocalization yield below. Next,
one evaluates the time average of Y (N)

flow (t) over the pulse duration, here [−4τ, 4τ ], to obtain the
quantity Y

(N)

flow, which characterizes how efficiently the middle atom is stripped off its inner-shell
electrons by a given pulse.

This strategy allows the illustration of the localization/trapping mechanism for a continuous
intensity range and for SOCs of different lengths in Fig. V.5. Here, only SOCs with an odd
number of atoms are shown for the trivial reason that the middle atom is unambiguously identified.
Starting with the simple case of the IAM in Fig. V.5b, one can directly infer a monotonic decrease
of the localization as a function of the intensity for independent atoms in accordance with the
rate-equation approach for single atoms. The dependence on the number of atoms N is trivially
described by a slight monotonic decrease due to other photoelectrons passing through, which
only mildly affects Y

(N)

flow for N = 1, 3, 5, and 7 as indicated above. One can conclude that the
definition of the delocalization yield Y (N)

flow is well suitable for highlighting deviations from the
model of independent atoms.
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The intensity and N dependence of the delocalization yield depicted in Fig. V.5a strongly
contrasts with the IAM. As observed above in Sec. V.2.1, the localization is strongly enhanced
for N>1, which leads to a large discrepancy between the curves for N=1 and N ∈ {3, 5, 7}
atoms. For Emax = 5 a.u. one can recognize the already studied case from Figs. V.2 and V.3,
where the difference between N = 1 and N > 1 is very pronounced and N ∈ {3, 5, 7} exhibit
similar values among themselves. The non-monotonic behavior of the delocalization yield can
be interpreted as evidence of a coherent saturation process. Carefully examining the cases N=5
and N=7, one further observes that the curves for different N are not strictly ordered.

Based on Fig. V.5 alone, it is not possible to identify the relevant mechanism for this phe-
nomenon. The following speculations are conceivable explanations: analogous to the crystal
model in Chapter II one might expect (i) the buildup of standing waves by quantum interference
(see Sec. IV.3.3) and, additionally, (ii) Pauli blocking might inhibit further ionization and thus
influence also the populations of bound states and not only the charge density. Furthermore,
(iii) the formation of a band structure2 might affect the ionization probabilities. Lastly, one might
suppose that (iv) reflections suppress the diffusion of photoelectrons in spite of neither Fig. V.2
nor Fig. V.4 providing direct evidence for back and forth traveling waves. Note that due to the
comparatively small systems, the buildup of the band structure is considered separately from the
role of reflections although these phenomena are strongly related in crystals [306].

Further investigations for resolving this issue are presented in the ensuing sections. Anticipat-
ing Sec. V.2.3, one can refute assertion (iii) by calculating the density of states, which proved to
be crucial for the interpretation of the results in Chapter IV. Likewise, hypothesis (iv) is shown
below in Sec. V.2.4 not to be an essential component of the phenomenon described above.

V.2.3. Ionization yield of SOCs

In the following, the question is addressed as to how the localization mechanism affects the
overall ionization in the SOC. Analogous to the delocalization yield Y (N)

flow from Eq. (V.11), a
further quantity, the ionization yield Y (N)

esc , is defined in order to characterize the amount of
electrons that have left the vicinity of the entire SOC

Y (N)
esc (t) := 1− 1

qtot

1
2
L∫

− 1
2
L

ρ (x, t) dx, (V.12)

where qtot = −2N is the total charge of the electrons of interest and L = Nd is the length of
the SOC. Unlike the definition of the delocalization yield Y (N)

flow , the domain of integration of
the ionization yield Y (N)

esc is extended to contain the whole SOC and the normalization factor
qtot is adjusted so that the codomain of Y (N)

esc is [0, 1]. The limiting case Y (N)
esc = 0 (Y (N)

esc = 1)
corresponds to a situation where no (all) inner-shell electrons have escaped from the vicinity of
the SOC.

2This explanation seems unlikely regarding the fact that the localization is apparent already for a SOC comprising
N=3 atoms. It is still taken into consideration because this mechanism might be artificially enhanced in the 1d
simulation.
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Figure V.6.: Fraction of electrons which escaped from the interval
[
−1

2Nd,
1
2Nd

]
of a SOC comprising

N atoms as measured by the time average of Y (N)
esc (t) (see Eq. (V.12)) over the time interval [−4τ, 4τ ],

simulated within the CAM (a) and the IAM (b).

Analogous to the previous section, the time-averaged ionization yield Y
(N)

esc is considered to
characterize the response of the SOC towards pulses with varying photon numbers Nph implied
by the range of the field amplitude Emax. Again, the definition of the ionization yield is designed
to be fairly insensitive to changes of the number of atoms N in the IAM as depicted in Fig. V.6b.
One discerns once more only a slight monotonic dependence on N attributed to the fact that the
photoelectrons are considered to be in the vicinity of the SOC over a range of length L, which,
in turn, increases linearly with the number of atoms N .

The ionization yield Y
(N)

esc in Fig. V.6a demonstrates large deviations from the behavior
expected for independent atoms, albeit less pronounced than the delocalization yield Y

(N)

flow in
Fig. V.5. The dependence on N is weakened because boundary atoms contribute to the integral,
which, as observed above, behave similarly to the independent atoms and thus smooth out the
curves. Nevertheless, the trapping mechanism obviously has a significant impact on the degree of
ionization during the pulse. Consistent with the interpretation from above, the curve progression
for a SOC comprising two boundary atoms, N=2, is both qualitatively and quantitatively more
similar to the N=1 than to the N=3 case.

To accomplish deeper insights in the cause of the trapping (see the possible explanations
mentioned on page 68), it will prove expedient to characterize the ionization yield not only by
the charge density but also by the ground-state occupation probability. After all, the ionization
yield as defined in Eq. (V.12) can be influenced by both standing waves that inhibit the flow out
of the crystal and by a suppression of the prior process of promoting electrons to unbound states.
However, when focusing on the ground-state dynamics, one encounters the problem that a fair
comparison between the ground-state population of SOCs with different lengths is not trivial.
The situation is simplified by considering the following scenario. Let p(N)

g (t) be the population
of the ground state of a SOC comprising N atoms. If all atoms were identical and independent,
one would have the relation

p(N)
g (t) =

(
p(1)
g (t)

)N
(V.13)
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Figure V.7.: (a) Ground-state occupation attributed to a single atom N

√
p

(N)
g calculated with the CAM

averaged in time over the interval [−4τ, 4τ ]. (b) Density of statesD(ε) for a CAM potential corresponding
to a SOCs with N atoms. All curves virtually coincide with the analytic expression for a free particle

D(ε) = 1
π

√
2
ε . Only the graph for N = 21 exhibits a small deviation in the region of interest, i.e., around

ε ≈ 0.33 a.u.

Hence, it is more meaningful to compare N

√
p

(N)
g (t) rather than p(N)

g (t), which can be interpreted
as the ground-state occupation attributed to a single atom for SOCs with different N . The
time-averaged values of this quantity are shown in Fig. V.7a for the cases with N = 1, 3, 5, and
7 atoms. The situation is directly connected to the respective delocalization and ionization in
Fig. V.5a and Fig. V.6a. For completely independent atoms, all curves would coincide exactly
with the result for N=1, making a comparison to the IAM superfluous. The graphs for N ≥ 3
exhibit a qualitatively different behavior while being subject to only small quantitative deviations.
This suggests that the formation of a band structure accompanied by a mere change of ionization
rates is not a decisive prerequisite for the trapping mechanism. This supposition is supported
by Fig. V.7b, which demonstrates that the density of states for the CAM for N ≥ 7 is to a
good approximation identical to the analytic result for a free particle. One can deduce that
the transition rates are similar in the cases N = 1, 3, 5, and 7, but the buildup of standing
waves significantly enhances the trapping of photoelectrons, as seen above in Fig. V.6, and,
simultaneously, the trapped electrons slightly inhibit further ionization due to Pauli blocking
shown in Fig. V.7a.

V.2.4. The impact of reflections

The formation of a band structure as an explanation for the modified ionization in SOCs with
different lengths was ruled out in the previous section. The findings rather suggested that standing
waves emerge from the wave packets emitted during the ionization process, but it is not yet
apparent whether this phenomenon is the result of the interference of wave packets between
neighboring atoms or between a wave packet and its own reflection from adjacent potentials.
Fortunately, one can establish an intermediate level of theory that is positioned between the
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Figure V.8.: Logarithmic contour plot of the time-dependent charge density ρ(x, t) for a SOC with N=5
atoms under irradiation with a laser pulse described by the electric field from Eq. (V.9) for Emax = 5 a.u.
The simulations are based on the reflectionless CAM (a) and the reflectionless IAM (b).

CAM and the IAM by explicitly excluding potential reflections by means of a reflectionless
potential as reported in Sec. V.1.3. The parameters of the reflectionless potential are adjusted to
match the K-edge of the single-atom case in the CAM model3. To be specific, the length a and
the dimensionless integer parameter n were chosen to be a=0.73864 a.u. and n=2.

No detailed parameter study will be performed for this potential dealing with the question
whether the absence of reflections weakens or enhances the trapping phenomenon because the
different scenarios are not directly comparable. The most obvious discrepancy is the ionization
rate of the reflectionless potential, which deviates considerably from the model based on the
screened SC potential in spite of coinciding K-edges. This is demonstrated in Fig. V.8 for
Emax = 5 a.u. The ionization rate is clearly increased as indicated by the corresponding IAM
simulation shown in Fig. V.8b. Indeed, by comparing it to earlier results in Figs. V.4b and d, it
resembles more the case of Emax = 9 a.u. in Fig. V.4d than Emax = 5 a.u. in Fig. V.4b.

However, despite the lack of a straightforward comparability to the results in previous sections,
one can still learn from Figs. V.8a and b that the qualitative features of the trapping observed
above in Sec. V.2.2 remain visible. Most importantly, the absence of potential reflections does
not destroy the observed phenomenon and thus another possible interpretation (iv) mentioned
on page 68 is made unlikely. Further, the origin of the interference (option (i)) is rendered
more precisely. Hereafter, the coherent trapping phenomenon will be referred to as interference-
induced localization/trapping.

3The precise parameters used in the CAM and IAM simulations are listed on page 62.
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V.2.5. The impact of disorder
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Figure V.9.: Ionization yields analogous to Fig. V.6 for
a SOC with N=7 atoms and two further sets of atomic
positions whose inner atoms have a random displacement
from the SOC positions uniformly distributed within
±1 a.u.

Being familiar with Anderson localization
(AL) [307–311], which is a phenomenon
induced by disorder in crystalline struc-
tures resulting in a localization of wave
functions, one might anticipate parallels,
particularly because AL is also character-
ized by coherent quantum dynamics and
known to be very important in 1d systems
[308, 312]. Furthermore, there are investi-
gations on a dependence of AL on the sys-
tem size which are commonly explained
via the so-called scaling theory [308, 310,
311]. The mechanism is, however, differ-
ent from the interference-induced localiza-
tion observed in the present thesis. For the
description of AL, impurity backscattering
is typically taken into account. Backscat-
tering per se was demonstrated not to be
crucial in the present treatment and crystal defects in SOCs can be associated only with the
boundaries4 because all other atomic positions resemble an ideal crystal. Therefore, one would
expect that the localization decreases for increasing N , ultimately reaching a situation with
negligible impact of boundary atoms. This tendency was not observed here. Nevertheless, it is
tempting to think that disorder might affect the interference-induced localization.

To address this speculation, simulations for disordered systems were performed and compared
to the ionization yield Y

(7)

esc of a SOC comprising N = 7 atoms as a reference. The resulting
time-averaged ionization yield is shown in Fig. V.9 analogous to Fig. V.6. To be specific, the
disordered systems are characterized by different random displacements from the SOC positions
of each inner atom (uniformly distributed within ±1 a.u.). The boundary atoms are kept fixed
for the sole purpose of maintaining the meaning of the definition of Y (N)

esc (t) in Eq. (V.12).
One can conclude from Fig. V.9 that the disorder generally, contrary to the expectation, even

enhances the ionization yield. From a different perspective, one may interpret the similarity of
the graphs over a broad parameter range as an extension of the significance of the model because
the basic result remains valid even if the strict ordering according to the definition of SOCs is not
fulfilled. Therefore, one can easily argue that the qualitative conclusions drawn in this chapter
are likewise valid for 1d clusters.

4Note that also the electric field is spatially homogeneous.
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Figure V.10.: Time-dependent ionization (a) and delocalization (b) yield as defined in Eqs. V.12 and V.11
calculated with the CAM where Emax = 0.1 a.u. and in the TDHF model where Emax = 0.4 a.u. for the
single atom N = 1 and a SOC comprising N = 3 atoms. In the background, the pulse envelope of the
intensity is depicted in arbitrary units.

V.2.6. The impact of electrostatic trapping

It was already mentioned in the beginning of the present chapter on page 57 that there is another
trapping mechanism in real systems due to electrostatic attraction of the residual ions. So far,
this phenomenon was completely excluded from the discussion because it was intentionally
disregarded in the model in order to enable the identification of a novel trapping mechanism that
is guaranteed to be distinct from electrostatic trapping. Naturally, the question arises which of
these two conceivable trapping mechanisms will dominate in reality. One can respond to this
question only to a limited extent as long as the 1d approximation is kept. However, with moderate
additional computational costs, one may find at least an adequate answer for 1d systems using
the TDHF approach from Sec. V.1.4, which is capable of taking the electrostatic trapping into
account while still maintaining the foundations for the coherent localization mechanism.

As stated before, the parameter a of the atomic potential has to be adjusted to compensate
for the energy shift of HF orbitals due to the electron-electron interaction. Analogous to
the comparison with the reflectionless potential (see Sec. V.2.4), the choice of a is based on
establishing similar situations exclusively with regard to the K-edge. To be specific, the numerical
value a=0.2805 a.u. leads to the same K-edge and thus the same excess energy of photoelectrons
as in previous simulations. Of course, this holds only for weak pulses because the K-edge in
TDHF simulations during an ionization process generally depends on time [256]. In particular,
if the K-edge drops below the photon energy, which may occur quite easily in NTI, the results
will exhibit artificial signatures that deviate strongly –even on a qualitative level– from the
dynamics observed so far. In the present case, one can achieve similar dynamics for single atoms
with respect to Y (1)

esc (t) or Y (1)
flow (t) for small photon numbers. As an example, the situations for
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Emax = 0.1 a.u. in the CAM and Emax = 0.4 a.u. in the TDHF model are compared to each
other in Fig. V.10. Based on this choice of parameters, the time-dependent delocalization and
ionization yield for N=1 evidently evolve similarly in both models. Note that the delocalization
and ionization yield are identical in the single-atom case, i.e., Y (1)

esc (t) = Y
(1)

flow (t). This is also
seen in the present case by comparing Figs. V.10a and b.

First and foremost, Fig. V.10a indicates that a reduction of the overall ionization in a SOC
for N > 1, albeit weakened, still occurs in simulations based on a TDHF model as reflected by
the deviations between the curves for N=1 and 3. The localization in Fig. V.10b experiences
the same tendencies. Certainly, the two theories, the CAM and TDHF model, are too dissimilar
for a quantitative assessment of the trapping even though the K-edge and the laser intensity was
adjusted. Nevertheless, it is interesting to discover that the system shows no signs of the two
mechanisms adding up and thus increasing the localization. On the contrary, the phenomenon
of localization and the reduced ionization is even less prominent in the TDHF theory. This can,
for example, be attributed to the fact that the Hartree term in TDHF mimics the screening in the
CAM only if the charge density is evenly smeared out over the entire SOC. Normally, however,
the charge density is –in particular for the small intensities considered here– located near the
atomic sites and leads to a flattening of the effective core potential through the Hartree term. The
impact of neighboring potentials is then weakened and the CAM becomes increasingly similar to
the IAM and thus exhibits less pronounced signatures of the trapping effect. Furthermore, it can
be seen that the localization in Fig. V.10b is affected more significantly by the electron-electron
interaction than the reduction of the overall ionization Fig. V.10a. This can be interpreted as an
indication of the TDHF calculations being in favor of electrostatic trapping because the middle
atom is expected to play a less important role in the case of a dominance of electrostatic over
interference phenomena.

To summarize this subsection, it was shown that a trapping mechanism is still present in
TDHF calculations. However, due to the lack of comparability of the two models it cannot be
determined without further investigations whether the localization based on electrostatic or the
interference effects dominates in 1d systems.
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This chapter is exclusively dedicated to the algorithms and selected details of the implementation
behind the simulations that led to the results shown in the previous chapters. Although the
computational costs of the implemented 1d models do not at all meet the limits of up-to date
computer hardware, the numerical approach was, along with the work by Kaiser (2014) [4],
planned to be extensible to solve the time evolution as described by the time-dependent reduced
density-matrix (TDRDM) theory, i.e., a partial differential equation (PDE) in effectively four
space dimensions (see Ref. [4]). It was pointed out by Kaiser (2014) [4] that the convergence of
TDRDM calculations could not be guaranteed based on only a shared-memory parallelization
due to memory limitations. For this reason, the strategy was to take advantage of distributed-
memory parallelization gradually by adapting the algorithms first for the TDSE, then the orbital
formulation of the TDHF theory (see Eq. (II.2)), the one-body reduced density matrix (1RDM)
formulation of the TDHF theory (see Eq. (II.1)), and last the TDRDM approach. Within the scope
of the present project, distributed algorithms1 were implemented up to the 1RDM formulation of
the TDHF theory but not for the TDRDM approach. Accordingly, numerical strategies will be
reviewed in detail for the PDEs of interest in order to facilitate potential future work. Because
the numerics of PDEs is obviously a broad field, it is not intended to give a full summary of the
research. In fact, there will be in most cases only recommendations of the pertinent literature
if available. Sec. VI.5 can be regarded as guide through important technical aspects of the
implementation, whereas the core issue, the numerical representation of operators within the
finite-element discrete variable representation (FEDVR), is dealt with extensively in Sec. VI.4.
For this purpose, the reader is briefed beforehand about the discrete variable representation
(DVR) in Secs. VI.2 and VI.3. It is assumed that the reader is familiar with the fundamentals
of the numerical solution of PDEs such as the finite difference method (FDM) and the basic
concept behind a Galerkin solution [314, 315].

Much emphasis is put on constructing and dealing with sparse matrices because the alternative,
namely dense matrices, are intrinsically counterproductive for distributed algorithms. One way
to understand this, is to consider a simple matrix-vector multiplication w = Mv with a dense
matrix M and vectors v, w, where w and v typically have the same parallel layout in practical
applications. Although there are different strategies for splitting the entries of M and v over
a given number of processors p, usually v and w have entries on all processors2. A mapping
represented by a dense matrix implies that all entries of the vector v contribute to each entry
of w, i.e., each processor has to communicate with all others. Therefore, the workload of each
processor with respect to communication increases with the total number of processors p, which,
in turn, means that the performance of the algorithm may deteriorate for large p. For sparse
matrices, by contrast, each processor in the present 1d scenario communicates –independent of p–

1For a definition/explanation of the term distributed algorithm, consult, e.g., Ref. [313].
2For the sake of completeness, it is pointed out that, for example, the computational toolkit PETSc [316] supports

redundant storage for faster access.
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only with two adjacent processors, which results in a considerably more efficient parallelization.
To begin with, the simple but important problem of appropriate boundary conditions is

illustratively discussed in Sec. VI.1. This matter can be interpreted as the step preceding the
numerical implementation where boundaries are introduced to an infinite system with the aim
that it still mimics the unbounded case in the sense that ideally no distortions of the solutions
occur in a certain subdomain.

VI.1. Boundary conditions

For the simulation of ionization experiments based on the time-dependent charge density as
shown, for example, in Fig. V.4 of the previous chapter, the modeling of an open system is
required in the sense that electrons are capable of leaving the finite numerical system. The naive
approach of extending the computational boundaries is not feasible even in the case of the 1d
calculations because it immediately encounters its limits if electrons are ejected with high kinetic
energy, which is very likely in the X-ray regime. Since this proved to be an important issue in
practice, the present chapter is devoted to, first of all, elucidating the problems accompanied by
finiteness of the numerical system with the aid of a simple and elementary example. Subsequently,
it is demonstrated how to significantly mitigate the finite-system artefacts by using a complex
absorbing potential (CAP).

To illustrate the underlying issue, one may consider a very simple system, namely the time-
dependent Schrödinger equation (TDSE) for one particle in 1d. Specifically, one seeks the
solution of

i ∂
∂t
ψ(x, t) = −1

2
∂2

∂x2
ψ(x, t) (VI.1)

with respect to the initial condition

ψ(x, t = 0) =
1
4
√
π
e−

1
2
x2+ipx. (VI.2)

For a (pure) initial value problem (IVP) on the infinite interval x ∈ ]−∞,∞[, the time
evolution of Gaussian wave packages is well-known and analytical solutions are easily obtained.
Accordingly, this example is helpful for testing purposes of the implementations of numerical
approaches described later (see App. C) and, further, it is adequate to illustrate the impact of
unphysical numerical boundaries.

Consider the following scenario: one seeks a numerical solution of the IVP for p = 0.5 in
Eq. (VI.2). In many simulations of ionization experiments, it is sufficient to find the solution in the
vicinity of the atomic sites unless, for example, photoelectrons are investigated explicitly [318].
For illustration purposes, it is assumed in the following that only ψ|[−5,5], the restriction of the
wave function on the interval [−5, 5], is of interest. Now compare the analytic solution of the IVP
on the extended interval [−10, 10] in Fig. VI.1a with the solution of the mixed initial-boundary
value problem on the same interval with Dirichlet boundary conditions, ψ(−10) = ψ(10) = 0,
in Fig. VI.1b. Apparently, the wave package is reflected at the boundaries at times t > 2 a.u.,
which subsequently leads to a modification of the global behavior of the time evolution. In
particular, the wave function is altered on the interval of interest [−5, 5] even though the interval
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Figure VI.1.: Time-dependent probability density of the solution of the TDSE shown in Eq. (VI.1) with
respect to the initial state from Eq. (VI.2) [p = 0.5] using (a) an infinite system, (b) Dirichlet boundary
conditions, and (c) again Dirichlet conditions in conjunction with the CAP from Eq. (VI.3) [α = 0.05,
r = 5]. For comparison, the time-dependent solution to the Fokker-Planck type equation Eq. (VI.5)
[p = 0.5] with the initial condition ρ(x, t = 0) = |ψ(x, t = 0)|2 using Dirichlet conditions is shown in
(d). The latter has been simulated with FiPy [317].

length of the simulation was doubled. This, of course, depends crucially on the time scale and
the initial linear momentum p. The fundamental problem is that the particle does not leave the
interval [−10, 10] due to the Dirichlet conditions because the probability current j = =

(
ψ∗ ∂

∂x
ψ
)

vanishes at the boundaries. Hence, it is immediately clear that replacing Dirichlet with Neumann
conditions will not resolve the present issue. A simple way of remedying this deficiency is,
analogous to Refs. [81, 319], the introduction of a complex absorbing potential (CAP) of the
form

W (x) =

{
−iα (|x| − r)2 , if |x| > r,

0, otherwise,
(VI.3)

where r and α ≥ 0 are adjustable parameters. The continuity equation corresponding to the
probability density ρ = |ψ|2 resulting from the TDSE, Eq. (VI.1), is then complemented by a
generation term, i.e.,

∂
∂t
ρ(x, t) + ∂

∂x
j = 2=(W (x)) ρ(x, t) . (VI.4)

The particle can be (partially) removed from the system if the probability density ρ is nonzero
for |x| > r, where the removal of charge density is more rapid, the larger the parameter α. The
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time evolution of the probability density in the case of Dirichlet conditions in combination with
a CAP for the parameters α = 0.05, r = 5 are depicted in Fig. VI.1c. Although, the reflections
are rigorously damped, they still affect the solution in the interval [−5, 5] compared to the IVP
in Fig. VI.1a. In general, the parameter α needs to be chosen with great care depending on the
kinetic energy of the particle. If α is chosen too small, the limiting case of the initial situation
as seen in Fig. VI.1b will be approached. If α is too large, reflections will occur at x = ±r.
Thus, there is often no alternative to an extension of the numerical interval, which is also the
case in the illustration example Fig. VI.1c. For instance, the computational system size in the
simulations shown in the previous chapter (see, for example, Fig. V.4) was roughly ten times
larger than what is shown in the figures.

These circumstances certainly leave room for improvement, which is particularly essential
for a potential extension of the level of theory to TDRDM. Indeed, there are investigations on
reflection-free CAPs [265, 320–324] that were not taken advantage of in the present algorithms.
Reflection-free CAPs are more complicated than the CAP in Eq. (VI.3). To give an idea of this
concept consider the following. Assume that instead of adding a CAP, the TDSE is continuously
transformed into a Fokker-Planck type equation in the vicinity of the boundaries. This has
far-reaching consequences and shall thus be briefly demonstrated for the Fokker-Planck equation
of the form

∂
∂t
ρ(x, t) = 1

2
∂2

∂x2
ρ(x, t)− p ∂

∂x
ρ(x, t) . (VI.5)

Then, the probability current j = −1
2
∂
∂x
ρ+ pρ does not generally vanish at the boundaries for

Dirichlet conditions. The time evolution described by the Fokker-Planck equation, depicted
for comparison in Fig. VI.1d, behaves very similarly to the case of the open system as it does
not exhibit reflections at the boundaries but instead allows the probability to leave the space
interval [−10, 10].

VI.2. Discrete variable representation (DVR)

The discrete variable representation (DVR) is classified as a so-called pseudospectral method [325]
or spectral-collocation method [326] and is, as such, one of many computational tools for dis-
cretizing partial differential equations (PDEs). These classifications reflect the close relation
to spectral methods, which rest upon finding the Galerkin solution in a specified basis set, and
collocation methods, whose objective are approximate solutions that fulfill the PDE exactly
at so-called collocation points. Accordingly, the DVR demonstrates conceptual similarities to
both methods in the sense that both conditions are (approximately) equivalent due to a set of
localized basis functions. Throughout the present and the following sections, the focus lies on
the representation of operators and functions and not on the subsequent procedure of solving
PDEs.

Scientific literature brought forth various types of DVRs [327] accompanied by different
techniques of constructing the associated DVR bases. For this reason, it is difficult to give a
general definition of DVR methods used in different publications such as Refs. [229, 328–330].
Nevertheless, for all DVR methods the crux of the matter is the respective DVR basis, which is
composed of functions characterized by further desired properties besides orthogonality, namely
the localization about discrete values of a chosen variable, often the spatial coordinates x. For the
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time being, the term localization shall be considered as a characteristic that guarantees that local
operators can be represented and evaluated at low computational cost in a good approximation,
i.e., not necessarily exact. In the present scenario, the prime example of a local operator is the
potential V (x), which is then expressed as a diagonal operator in the DVR basis containing its
local values on the grid associated with the localized basis functions. This preliminary definition
will be rendered more precisely in the following.

For this purpose, the DVR will be presented within the general framework established in
Refs. [331, 332], which were originally concerned with the extension of the DVR to multidimen-
sional systems without limiting oneself to the trivial case of a Cartesian product. Despite the
generality of the approach, the exact procedure is only given for standard DVR sets based on
orthogonal polynomials.

As a first step, the Hilbert space H is truncated in order to obtain a subspace S ⊂ H of
finite dimension. S can be chosen arbitrarily within the general DVR approach, but in the
special case treated in this section it is defined by means of classical orthogonal polynomials:
let {pk|k ∈ {0, . . . , n − 1}} be a set of classical orthogonal polynomials relative to the inner
product

〈f |g〉µ =

∫
f ∗g dµ =

∫
f ∗(x) g(x)w(x) dx, (VI.6)

which is defined by a measure µ or, alternatively, by its Lebesgue density3 or weight function
w(x). For example, Legendre polynomials are the orthogonal polynomials with respect to the
weight function w(x) = 1 if |x| < 1 and w(x) = 0 otherwise. The support of the measure is
thus supp(µ) = [−1, 1] (cf. Ref. [336]).

Then, one obtains the truncated Hilbert space S by defining its basis functions

φk(x) :=
√
w(x)pk(x) , k ∈ {0, . . . , n− 1}, (VI.7)

i.e., S := span({φ0, . . . , φn−1}). In the case of Legendre polynomials, S consists of all polyno-
mial functions up to degree n− 1 restricted on [−1, 1] and continued by the zero function on R.
Although this basis of the n-dimensional subspace S is orthonormal in the usual sense, one has
not yet obtained an adequate DVR basis due to lack of locality of the basis functions {φk}. Note,
however, that the original continuous problem on a Hilbert space H is already converted to a
discrete problem with a finite basis. Hence, one might as well stop the mathematical endeavors
at this point and start with the numerical implementation by seeking the Galerkin solution to the
respective PDE problem. This alternative approach is called spectral method [325].

As a second step, a more convenient basis comprising in a certain sense localized functions
of the n-dimensional subspace S is constructed, namely the DVR basis. One interpretation of
the DVR method pursues the idea of projecting perfectly localized functions from the original
Hilbert spaceH (approximating the Dirac delta function) onto S. To this end, one defines the
projection operator P onH as

P :=
n−1∑

k=0

|φk〉〈φk| (VI.8)

3In the following, a compact notation for integrals will be used which is common in measure theory [333] or
probability theory [334, 335]. Nevertheless, no deeper insights in these subject areas are required from the
reader.
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by making use of the known orthonormal basis of S from Eq. (VI.7). One can now generate
n basis functions localized about grid values xk (k = 0, . . . , n − 1) of the form ϕk(x) ∝
P(δ(x− xk)) for adequate grid values. Constructing an orthogonal basis in this manner has the
advantage that it automatically fulfills the so-called interpolation property

〈ϕk|ϕm〉 = ϕm(xk)
!

= δmkvm, vm > 0 ∀k,m ∈ {0, . . . , n− 1}, (VI.9)

and vice versa, i.e., the interpolation property and orthogonality condition are equivalent (cf.
Ref. [332, Sec. III]). In light of the various situations and geometries one is facing when
developing a generic discretization technique for PDEs, finding appropriate grid values (which
satisfy Eq. (VI.9)) is anticipated to be the most complicated part in constructing the DVR basis
for the general multidimensional case.

For the present case of orthogonal polynomials, the situation is substantially easier: one can
simply choose the n pairwise distinct zeros of pn in supp(µ) (cf. [337, p. 438]). Then, one can
write the DVR basis explicitly as

BDVR = {ϕk(x) =
P(δ(x− xk))
‖P(δ(x− xk)) ‖

| x0 < x1 < . . . < xn−1 roots of pn}. (VI.10)

The interpolation property Eq. (VI.9) (and thus also the orthogonality) for this choice of grid
values can be verified using the Christoffel-Darboux formula [337, p. 438].

As an alternative to the expression in Eq. (VI.10), the decisive restrictions resulting from
the interpolation property Eq. (VI.9) can be exploited as follows. One can easily conclude
that the DVR basis functions are of the form

√
w(x)p(x) where p is a polynomial of degree

deg(p) = n− 1 with given roots. This is sufficient information to uniquely construct the basis
functions by means of Lagrange polynomials.

As indicated above, the DVR method is characterized by its simple representation of local
operators due to the locality of the DVR basis functions. For a closer understanding, one may
analyze this feature from the perspective of a Gaussian quadrature formula. Interestingly, there
is a related Gauss quadrature formula for each set of classical orthogonal polynomials with n
nodes given by the grid values xk chosen above [338, p. 236 et seq.]. This quadrature rule is
exact for polynomials of degree ≤ 2n− 1 and can be defined in terms of a discrete measure

η =
n−1∑

i=0

wkδ(x− xk) , (VI.11)

where wk are the associated weights.
Analogous to Eq. (VI.6), one can define a corresponding inner product 〈, 〉η on S. Note that

the inner product 〈, 〉η is identical to the usual inner product for elements in S, so the basis
functions are orthonormal with respect to the inner product 〈, 〉η on S and in the usual sense. For
functions f /∈ S , the sesquilinear form 〈, 〉η features only the properties of a positive-semidefinite
Hermitian form. Thus, one can replace local operators approximately by a diagonal operator,
because each basis function contributes to the approximated integral only on its associated grid
point. For instance, the matrix element of the operator V̂ corresponding to the potential V (x) is
approximated by



81VI.3. Lobatto DVR

〈ϕm|V̂ |ϕk〉 ≈ 〈ϕm|V̂ |ϕk〉η = δmkV (xk) .

Note, however, that V̂ does not define an endomorphism on S in most cases, i.e., V̂ S * S . Hence,
projecting on |ϕm〉 implies an additional approximation. Then again, differential operators such
as the operator for the kinetic energy can be evaluated exactly for Legendre DVR because, in this
case, S is an invariant subspace and the degree of the polynomial integrand does not increase.

VI.3. Lobatto DVR
For a natural treatment of nonzero boundary conditions, the Lobatto DVR from Manolopoulos
and Wyatt (1988) [329] is appropriate because it involves grid values which are directly located
on the boundaries of the interval. Though being based on orthogonal polynomials, the so-called
Lobatto polynomials4, the Lobatto DVR is not a mere special case of the DVR for orthogonal
polynomials discussed in the previous section. The noteworthy difference is a slight modification
which is required to enforce grid values at the boundary. This matter will be analyzed more
precisely in the following.

In preparation for the construction of the Lobatto DVR, one should consider the following
explicit formula of the Lobatto polynomials:

Ln(x) = d
dx
Pn+1 (x) , (VI.12)

where Pm (x) is the Legendre polynomial of degree n, which can be evaluated according to
Rodrigues’ formula [337, p. 442]

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
. (VI.13)

Now, the Lobatto DVR basis is constructed by starting right with condition from Eq. (VI.9), where
the grid points are chosen according to the Gauss-Lobatto (GL) quadrature [340]. Analogous to
Eq. (VI.11) one defines a discrete measure L associated with the Lobatto DVR:

L =
n−1∑

i=0

wiδ(x− xi) , (VI.14)

where the n GL points x0 < x1 < . . . < xn−1 are the roots of (1− x2)Ln−2(x) and the corre-
sponding GL weights are given by

wi =
2

n(n− 1)[Pn−1(xi)]2
> 0 (VI.15)

Explicit analytic expressions for the GL points for small n are listed in the appendix, Table B.1.
The approach from the previous section by contrast suggests to use the roots of Ln(x) as grid

4Lobatto polynomials are orthogonal polynomials relative to the measure µ with the Lebesgue density w(x) =(
1− x2

)
for x ∈ supp(µ) = [−1, 1] (cf. [339, Appendix A]).
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Figure VI.2.: DVR basis functions for n = 3 (a) and n = 5 (b). In both cases, ϕ0 is depicted in blue, ϕ1

in green, ϕ2 in red, etc.

values. This inconsistency will have consequences for the associated quadrature formula, which
turns out to be similar to the Gauss-Legendre quadrature [337, p. 80]. Analogously to the
Legendre DVR, one chooses S to consist all polynomials of degree ≤ n− 1 and then constructs
the DVR basis functions according to Eq. (VI.9) as Lagrange polynomials:

ϕm : [−1, 1]→ R, ϕm(x) =
1√
wm

∏

k 6=m

x− xk
xm − xk

(VI.16)

Then, let the DVR basis of S be denoted by BDVR = {ϕm|m = 0, . . . , n−1}.
Examples of Lobatto DVR basis functions are shown in Fig. VI.2 for very small subspaces

S of dimension n= 3 and 5. Most striking with regard to the postulated locality of the basis
functions is that all of them in both Figs. VI.2a and b are spread over the whole interval,
supp(ϕm) = [−1, 1]. Being aware of the numerical values of grid points (cf. Table B.1 for a
table of grid values), one can uniquely assign each basis function to an associated grid point
because only one basis function is nonzero at each grid point. Observe that for both cases
depicted in Figs. VI.2a and b the property ϕm(x) = ϕn−m(−x) is fulfilled. This is a general
rule for all n because the symmetry of the Legendre and Lobatto polynomials in Eqs. VI.12 and
VI.13 induces a symmetry for GL points and weights, i.e., xi = −xn−1−i and wi = wn−1−i and
likewise for the basis functions according to Eq. (VI.16).

Stemming from the modifications regarding the boundary conditions, the discrepancies
between the DVR described in the previous section and the Lobatto DVR are briefly analyzed.
For this purpose, one compares the quadrature formula based on classical orthogonal polynomials
with Lobatto’s integration formula (also referred to as GL quadrature) from ([341, p. 888])
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Figure VI.3.: Remainder Rn from Eq. (VI.18) for different functions to illustrate the qualitative behavior
of approximation errors. Note that Rn does not depend on ξ for polynomials of degree ≤ 2n− 2. (a) In
the case of f(x) = cos(πx), the unknown parameter ξ is chosen to maximize the absolute value of Rn.
(b) Likewise, the remainder Rn is shown for indices i, j that maximize the absolute value of Rn.

including the remainder Rn:

1∫

−1

f(x) dx =

∫
f(x) dL(x) +Rn , (VI.17)

where Rn =
−n(n− 1)322n−1[(n− 2)!]4

(2n− 1)[(2n− 2)!]3
f (2n−2)(ξ), (−1 < ξ < 1) (VI.18)

In this case, the weight function w(x) does not appear in the integral of the left-hand side of
Eq. (VI.17), making Lobatto’s integration formula very similar to the Gauss-Legendre quadrature,
as stated above. As a result, the preceding choice of S becomes plausible even though the general
treatment suggested to include the factor

√
w(x).

However, compared to the Gauss-Legendre formula, one pays the price for fixing the two
grid values at the boundary by reducing the accuracy of the quadrature formula. To be specific,
the n-point quadrature formula integrates only polynomials of degree 2n−3 exactly, whereas
the n-point Gauss-Legendre formula is exact for polynomials of degree 2n−1. Hence, inner
products on S, which have integrands of degree up to 2n−2 are not evaluated exactly. As a
consequence, the DVR basis of Eq. (VI.16), which was chosen to be orthonormal with respect
to the inner product 〈, 〉L on S defined by the GL quadrature, is only approximately orthogonal
with respect to the usual inner product.

To have a quantitative estimate of the approximation introduced by the GL quadrature,
some examples of the remainder are shown in Fig. VI.3. For a bounded function such as
f(x) = cos(πx), which can be well approximated by a polynomial of finite degree within the
interval [−1, 1], one obtains exponential convergence as can be seen in Fig. VI.3a. The remainder
for f(x) = x2n−2 behaves qualitatively similarly, albeit strongly reduced in accuracy. This is
due to the sharp increase of f (2n−2)(ξ) = (2n− 2)! with n. For the evaluation of inner products
on S , the function f(x) = x2n−2 plays a special role for being proportional to the only occurring
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term that is not integrated exactly. Assessing the discrepancies between orthogonality in the
sense of 〈, 〉L and the usual inner product 〈, 〉, one has to take into account that the coefficient of
the term x2n−2 grows with an increasing number of GL points since the sum of all weights wi is
required to be equal to 1 (cf. Eqs. VI.15 and VI.16). The result is a rather poor convergence in
Fig. VI.3b in comparison to the examples shown in Fig. VI.3a. It should be mentioned that in
spite of these deviations from the usual inner product, 〈, 〉L fulfills all characteristics of an inner
product on S . Hence, the linear independence of the basis functions in Eq. (VI.16) is guaranteed
for all n.

In summary, the Lobatto DVR can be defined by its standard representation

φBDVR
: S → Cn, p(x) 7→

n−1∑

i=0

êi〈p, ϕi〉L =
n−1∑

i=0

p(xi)√
wi
êi, (VI.19)

where êk is the k-th element of the standard basis of Cd. In the following, this mapping will
be continued on H as given in Eq. (VI.19) if required. Hence, φ−1

BDVR
◦ φBDVR

may also be a
projection operator onH which projects upon the subspace S.

Then, local operators on S, such as V̂ , are straightforwardly represented by matrices on Cd

with matrix elements according to

Vkm :=
(
φBDVR

◦ V̂ ◦ φ−1
BDVR

)
km

= 〈ϕk, V · ϕm〉L = δkmV (xk) .

Again, this involves an approximation since V̂ is not an endomorphism on S , i.e., it requires the
use of the continuation of φBDVR

. Analogously, differential operators can be evaluated exactly,
e.g.,

Dkm :=
(
φBDVR

◦ ∂
∂x

(x) ◦ φ−1
BDVR

)
km

= 〈ϕk, ∂
∂x
ϕm〉 = 〈ϕk, ∂

∂x
ϕm〉L =

√
wkϕ

′
m(xk) , (VI.20)

because S is an invariant subspace of ∂
∂x

. Besides, matrix elements are identical for both inner
products due to the reduction of the integrand to a polynomial of degree 2n−3.

Note that Dkm is not strictly a skew-symmetric matrix because not all basis functions are zero
at the boundaries. To be specific, Dkm is a skew-symmetric matrix with exception of the two
entries D00 = −Dn−1,n−1 6= 0; for all other diagonal entries, Dmm = 0 =

√
wkφ

′
m(xm) is valid.

Graphically speaking, each inner DVR basis function has a local extremum at the associated
grid point. This can be examined for the special cases n=3 and 5 in Fig. VI.2. In this context,
it should be mentioned that both the derivation and the kinetic energy operator are represented
by dense matrices even though the DVR is designed to be local. For instance, each inner basis
functions in Fig. VI.2 contributes to the derivation at every grid point distinct from its associated
grid point. This observation holds for all n and is easily verified by a proof by contradiction:
assume that a DVR basis function, i.e., a polynomial of degree n−1 with n−1 pairwise distinct
zeros, has an extreme value at a grid point distinct from its associated grid point. Then, the
multiplicity of this root has to be at least 2, which implies that the degree of the polynomial basis
function is at least n. This is inconsistent with the definition of the basis, thus proving the claim.

Therefore, apart from relatively sparse matrix representations of the kinetic energy operator
for direct product DVRs in the multidimensional case [327, 330], the DVR method involves
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dense matrices. Dense matrices are very troublesome with regard to a parallel implementation of
the algorithm (cf. page 75). For this reason, the Lobatto DVR method will be generalized in the
following section in order to obtain sparse matrix representations for differential operators even
in the 1d case.

VI.4. Finite-element DVR (FEDVR)

The DVR discretization techniques described in the previous sections, Secs. VI.2 and VI.3,
provide a diagonal representation of local operators but a dense representation of differential
operators in 1d. One can achieve a sparse representation for both types of operators by con-
structing basis functions that have a small support compared to the domain to be discretized.
This procedure is a fundamental idea behind the well-known finite element method (FEM) (see,
e.g., [314]). In the following, this concept of the FEM will be emulated to improve the DVR
method by ensuring a sparse representation of the Hamiltonian. One proceeds as follows. After
dividing the domain (interval) into a collection of small subdomains (subintervals), one applies
the Lobatto DVR on each of the subdomains while taking the communication of data between the
subdomains into account by using suitable boundary conditions5. This method is employed in
Refs. [4, 223, 232, 233, 255, 318, 342–345] for 1d and 3d systems. Accordingly, this technique
will henceforth be called finite-element discrete variable representation (FEDVR). As the concept
of the FEM is considerably more widespread than the DVR method, this section will be far
less extensive than the previous sections. The recipe for constructing the FEDVR basis will be
presented in conjunction with the resulting nonzero structure of the matrix which represents the
Hamiltonian. This is in general a very helpful information for testing the implementation.

Let the interval of interest [a, b] be arbitrarily divided into ne subintervals [xi, xi+1] where
x0 = a and xne−1 = b. Further, let Mi := 1

2
(xi+1 + xi) be the center and si = 1

2
(xi+1 − xi)

be the scaling factor of the i-th interval with respect to the original interval [−1, 1]. On each
subinterval, one constructs a ng dimensional Lobatto DVR from Eq. (VI.16) via scaling and
translation

ϕim : [a, b]→ R, ϕim(x) =

{
ϕm

(
x−Mi

si

)
, if x ∈ [xi, xi+1] ,

0, otherwise.
(VI.21)

One can now easily define the continuous and normalized FEDVR basis functions in terms of
the ϕim. For (i,m) ∈ I := ({0, . . . , ne − 1} × {0, . . . , ng − 2}) \ {(0, 0)}, one writes

χim(x) =





1√
si−1+si

(
ϕi−1
ng−1 (x) + ϕi0 (x)

)
, if m = 0 ∧ i 6= 0,

1√
si
ϕim (x) , otherwise.

(VI.22)

Correspondingly, the FEDVR basis is defined as B := {χim(x) | (i,m) ∈ I}. Note that the DVR
functions localized about the same value of adjacent intervals are merged into one continuous
basis function. The DVR functions localized at the boundary of the global interval are dropped,
which complies with Dirichlet boundary conditions.

5Recall that the Lobatto DVR was constructed for an easy implementation of boundary conditions.
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−5 −4 −3 −2 −1 0 1 2 3 4 5

x

0.0

0.5

1.0

Figure VI.4.: Small FEDVR basis for ng = 3 and ne = 10 in the interval [−5, 5] with equally spaced
boundaries of subintervals xi ∈ {±1,±3,±5}. The basis comprises 9 functions, which have zeros at
each grid point with one exception. Each basis function is identified with the grid point at which it has a
nonzero value: χ0

1 (blue) is localized around x=−4, χ1
0 (green) around x=−3, etc. This small basis is

not used in practice; it is shown for illustrative purposes only.

An example of a very small FEDVR basis is depicted in Fig. VI.4. The interval size is
constant, and thus the scaling factor is trivially si=1 for all intervals. Therefore, the FEDVR
basis essentially consists of the shifted DVR basis functions from Fig. VI.2a. Adopting the term
of Balzer et al. (2010) [232], the merged FEDVR basis functions localized at the boundaries
of the intervals are called bridge functions. In this special case, the bridge functions are,
according to Eq. (VI.22), scaled in value by 1√

2
with respect to the DVR basis Fig. VI.2a to

ensure normalization of the resulting bridge function. Moreover, one shall keep in mind that the
bridge functions are obviously not differentiable at the associated grid point. This has further
implications: firstly, regarding the representation of functions within the FEDVR, differentiable
functions in the Hilbert space F := span(B) spanned by the FEDVR are not arbitrary linear
combinations of basis functions. This means that one might be restricted to subspaces such as
F ∩ C1 ([a, b]) for certain purposes. Secondly, regarding the representation of operators within
the FEDVR, differential operators are only well-defined on the subspace of “well-behaved”
functions in F . Consequently, differential operators do not have a unique continuation on F .
This ambiguity is, however, rather commonplace than irritating if one is accustomed to the finite
difference method (FDM).

Analogous to the previous sections, Secs. VI.3 and VI.2, one can define a quadrature rule and
likewise an inner product on F by making use of the following discrete FEDVR measure

D =
∑

(i,m)∈I

wimδ
(
x− xim

)
, (VI.23)

where xim := sixm +Mi are the FEDVR grid points and wim are FEDVR grid weights defined
by wim := (χim(xim))

−2.
The corresponding quadrature formula can be obtained from Eq. (VI.17) by splitting the inter-

val into subintervals and transforming all arising integrals into integrals of the form Eq. (VI.17).
As usual, the basis functions from Eq. (VI.22) are orthonormal with respect to the inner prod-
uct 〈, 〉D. Before presenting the utilized standard representation, which determines the nonzero
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structure of matrices that represent operators, the canonical mapping of the two indices (i,m) is
given as

M : I → {0, . . . , d− 1}, (i,m) 7→ i (ng − 1) +m− 1, (VI.24)

where d := dim(F) = #I = ne (ng − 1)− 1 is the dimension of F . Note thatM is obviously
a bijection. The standard representation φB can be now written as

φB : F → Cd, φB(g) =
∑

(i,m)∈I

g(xim)

χim(xim)
êM((i,m)), (VI.25)

where êk is the k-th element of the standard basis of Cd.
Again, analogous to Eq. (VI.19) this mapping may be continued onH as given in Eq. (VI.25)
if required. Note that for any function g ∈ H, even if g /∈ F , the values on the grid points are
reconstructed properly. This condition was also fulfilled by the DVR.

To appreciate the sparse matrices, the matrix representation of the operator for the first
derivative D is analyzed in a little more detail. For further information and representation of the
Hamiltonian, see App. B. The derivation matrix D ∈ Cd×d is characterized by D = φB ◦ ∂

∂x
◦φ−1
B

on the subspace F ∩ C1 ([a, b]) and adapted to the Dirichlet boundary conditions. The explicit
calculation is given in App. B.3.1. It turns out that D can be written in terms of another matrix

D̃ ∈ Cd×d so that D = BD̃B where B = diag

(
d−1∑
k=0

bM(k)êk

)
, b(i,m) := χim(xim) and D̃ does

not depend on the interval sizes. To illustrate the structure of the sparse matrices D and D̃ (the
nonzero structure is identical in both cases), D̃ is given below for a very small system of ng = 4
and ne = 6:

D̃ =




Dloc
11

Dloc
12

Dloc
13

Dloc
21

Dloc
22

Dloc
23

Dloc
31

Dloc
32

0
Dloc

01

Dloc
02

Dloc
03

Dloc
10

Dloc
11

Dloc
12

Dloc
13

Dloc
20

Dloc
21

Dloc
22

Dloc
23

Dloc
30

Dloc
31

Dloc
32

0
Dloc

01

Dloc
02

Dloc
03

Dloc
10

Dloc
11

Dloc
12

Dloc
13

Dloc
20

Dloc
21

Dloc
22

Dloc
23

Dloc
30

Dloc
31

Dloc
32

0
Dloc

01

Dloc
02

Dloc
03

Dloc
10

Dloc
11

Dloc
12

Dloc
13

Dloc
20

Dloc
21

Dloc
22

Dloc
23

Dloc
30

Dloc
31

Dloc
32

0
Dloc

01

Dloc
02

Dloc
03

Dloc
10

Dloc
11

Dloc
12

Dloc
13

Dloc
20

Dloc
21

Dloc
22

Dloc
23

Dloc
30

Dloc
31

Dloc
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0
Dloc

01

Dloc
02

Dloc
10

Dloc
11

Dloc
12

Dloc
20

Dloc
21

Dloc
22




, (VI.26)
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where Dloc
mk =

√
wkwm

1∫

−1

ϕk(x)ϕ′m(x)dx. (VI.27)

In general, the nonzero diagonals of Dloc
mk (cf. the derivation operator in the DVR) cancel each

other out, thus generating a skew-symmetric matrix due to Dirichlet boundary conditions. For
test purposes, there is an instructive example for differential operators in App. B.3.3. It is also
shown that in this special case, the FEDVR can be reduced to a nontrivial FDM, which may be
more intuitive for the reader.

The matrix representing the kinetic-energy operator can be chosen to have the same nonzero
structure as the derivation operator in Eq. (VI.26) except for the diagonal. This is shown in
App. B.3.2, expressed in simpler terms as in the original publications [232, 233] without loss of
generality. It is worth mentioning that the matrix for the kinetic energy is not utilized in the form
1
2
DTD or −1

2
D2 because, first, there is a sparser representation and, second, problems due to

finite floating-point precision can be mitigated (see also Sec. VI.5).
The FEDVR provides sparse representations of the relevant operators in a very flexible

way, allowing for an arbitrary enhancement of the local accuracy (increase ng) at the expense
of sparsity. On a side note, the dense matrices appearing in the orbital form of the TDHF
equation Eq. (II.2) due to the nonlocal exchange operator do not necessarily mean that the
DVR is preferable over the FEDVR because a dense matrix is involved anyway6. Common
time-propagation algorithms may distinguish between terms with different properties, so one can
still benefit from the sparsity (cf. the ensuing section).

VI.5. Numerical time propagation

Various numerical time propagation schemes have been established to cover a broad spectrum
of applications as documented by the abundant literature on this subject [346, and references
therein], implying that a complete overview would certainly go beyond the scope of the present
thesis. Nevertheless, it is intended to outline the principles behind the techniques which proved to
be useful while providing a wider context to briefly demonstrate their superiority over alternative
methods. For the sake of brevity, emphasis is placed on pointing out selected non-obvious
issues to give the reader an intuition rather than to develop a consistent mathematical formalism.
Subsequently, reference is made to the potential solutions without explaining them in detail.

Being confronted with memory limitations, Kaiser (2014) [4] suggested to implement the
TDRDM approach on a distributed memory machine, which is generally accompanied by severe
additional programming effort because all algorithms –if sufficiently suited for parallelization at
all– have to be adapted. As runtime is also an issue, one strives for so-called scalable algorithms,
i.e., algorithms that are characterized by the ideal speedup S(p) := Tsim(1) /Tsim(p) = p, where
Tsim(p) is the runtime of the program on p processors [347, 348]. In simple words, p times as
many processors ideally are p times as fast. On a side note, the cases of superlinear speedup

6In addition, the DVR potentially produces sparse matrices in the multidimensional cases of Eq. (II.1) and the
TDRDM (as stated above).
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S(p) > p occurring rarely in practice due to cache effects are, though frequently reported
in the literature [347, 349], not discussed here. For clarification of the technical aspects, it
should be mentioned that all parallelized algorithms were implemented based on MPI [350, 351]
with parallel I/O achieved by means of the HDF5 library [352]. MPI can be considered as a
quasi-standard [353] and, similarly, HDF5 is widely spread7 and proven to be very efficient
[355].

It is instructive to begin with an illustrative example that is reduced to its essentials. Consider
the 1d heat equation as a simple parabolic PDE to be solved with a FDM. For demonstration
purposes, the FDM is deliberately preferred over the FEDVR because the latter is more compli-
cated and it shall be emphasized that this problem is not exclusive to the FEDVR. Now assume
that a corresponding initial value problem is numerically solved via the θ-method [346, p. 35 et
seqq.], which includes the (forward/explicit) Euler (θ = 0), backward/implicit Euler (θ = 1),
and the Crank-Nicolson (CN) (θ = 1

2
) method as special cases. It is very important to note that

Euler and backward Euler are both consistent of order 1 but exhibit completely different stability
properties, which clearly manifests itself in the practical applications. Although it is not intended
to repeat findings already well established in textbooks, it shall be made clear that and why one
never should use Euler – not even for testing purposes. Despite using very small time steps,
one will often not obtain convergent results. The underlying issue is demonstrated by means of
Fig. VI.5, which focuses on one of the many problems one may experience when using Euler.
Let g(x) = exp

(
−1

2
x2
)

be the initial state at time t = 0 stored on a finite grid (see caption for
details), and let4d be the standard second-order central difference that is very common in the
FDM for parabolic problems [314, 356]. The time-dependent solution g(x, t) at time t after n
steps obtained of the Euler method is then written in a somewhat sloppy notation as

g(x, t) =
(
1 + t

n
4d

)n
exp
(
−1

2
x2
)
. (VI.28)

Hence, many consecutive numerical derivations, as seen in Fig. VI.5, are evaluated, which are
subject to an rapidly growing error due to the finite discretization and the finite floating-point
precision. Interestingly,42

dg perfectly estimates the analytical solution on the scale of Fig. VI.5
but is in fact subject to numerical noise, i.e., small fluctuations between adjacent grid points. If a
subsequent numerical derivation is applied to obtain43

dg, the procedure yields an approximate
to the derivative of the noise and not of the smooth curve 42g. Crucially depending on the
discretization in space, the emergence of large errors very likely leads to divergent results. This
is in strong contrast to ODEs of the form y′ = f(t, y) where the numerical evaluation of the
“right-hand side” function f(t, y) is virtually exact. In the case of Fig. VI.5, the finite floating-
point precision is of paramount concern, whereas increasing the consistency order does not
mitigate the situation [not shown]. Regarding the region of absolute stability, the Euler method
is anticipated to be even worse for the TDSE [338, p. 284 et seqq.].

In sharp contrast, the backward Euler method is L-stable [346, p. 146], i.e., it introduces
numerical damping. Accordingly, there is, due to limited floating-point precision, a decisive
difference between the forward and backward Euler method in practice even though both methods
are consistent of the same order. There is an important lesson to learn from this: consistency is
not everything. Nevertheless, the CN scheme is often more attractive because it is only A-stable,

7also for XFEL data in SFX experiments [354]
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i.e., it induces no artificial damping, and is consistent of order 2. Note, however, that L-stability
can prove advantageous in certain cases. For a formal definition of A- and L-stability see, e.g.,
Ref. [357, p. 40 et seqq.]. The situation is somewhat intuitive in the sense that the inverse of
the discretized derivation operator can be associated with integration, which, in turn, exhibits a
smoothing property [358, 359].
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dg(x)

43
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Figure VI.5.: The function g(x) = exp
(
−1

2x
2
)

and its
discrete derivations with double-precision floating-point
numbers on a uniform grid of 6000 points on the interval
[−10, 10] using the standard second-order central differ-
ence. With the discrete method failing dramatically for
43
dg, the analytic solution43g is shown as well.

Likewise, explicit propagation meth-
ods within the FEDVR are facing the
same intrinsic problem. One might con-
jecture that this can be avoided within
the FEDVR by increasing ng and low-
ering ne at the expense of the locality
of the derivation operator as outlined
above in Eq. (VI.26). However, this idea,
analogous to the attempted solution in
the FDM based on increasing the con-
sistency order of the derivation operator,
does not resolve the present issue.

For practical calculations the compu-
tational toolkits PETSc [316] and SLEPc
[360] were utilized. Here, one follows
the philosophy behind PETSc that al-
lows for choosing various numerical time-
propagation schemes via runtime options
because it is often too time-consuming
to investigate beforehand which algo-
rithm best matches the respective prob-
lem. This philosophy applies in particular to the deeper level of the implicit methods concerned
with the solution the underlying sparse linear systems. Accordingly, many different numerical
approaches have been tested and proven useful, including purely explicit methods such as those
described in the following.

The utility of well-established embedded Runge-Kutta (RK) formulae has been investigated,
which are in each case associated with three integers. One of them is number of stages, which is
related to the number of evaluations of the “right-hand side” per time step (but is not necessarily
identical due to standard optimizations [361, p. 167]). A precise definition of the term stages
of an explicit RK method can be found in Ref. [361, p. 134]. Then, using the notation from
Ref. [361, p. 166], one characterizes an embedded RK method of order n(m) by the property
that it consists of a scheme of order n and an error estimator of order m and therewith specifies
the remaining two integers. The following embedded RK schemes have been tested: the Bogacki-
Shampine (RK3BS) method of order 3(2) with four stages, the Fehlberg (RK5F) of order 4(5)
with six stages, and the Dormand-Prince (RK5DP) method of order 5(4) with seven stages. It
is interesting to note that for the calculations performed in the course of Chapter V, RK3BS
significantly outperformed both the RK5F and RK5DP method with respect to the requirements
in computational runtime and iterations. This is related to the numerical phenomenon seen
above in Fig. VI.5 because the performance deteriorates upon increasing the order. However,



91VI.5. Numerical time propagation

this conclusion is of course not universal as it depends on the grid spacing, so the situation can
change considerably for a different photon energy, which may produce faster photoelectrons and
thus require a finer numerical grid.

Moreover, strong stability-preserving (SSP) or total variation diminishing (TVD) time dis-
cretization methods [362–364] have been tested to meet a practicality comparable to the embed-
ded RK methods. SSP/TVD methods fulfill the TVD property8, i.e., the methods avoid artificial
oscillatory behavior even for problems with discontinuous solutions. Interestingly, the explicit
Euler method maintains the TVD property for sufficiently small time steps as proven in Ref. [346,
p. 226 et seqq.] followed by an example why one should still not use this method but rather its
extensions.

The split-operator (SO) technique reliably produced convergent results in 1d TDSE calcula-
tions at high runtime performance without a trial-and-error search for adequate parameters even
for the inexperienced user. The basic concept of the SO method is the decomposition of matrix
exponentials [342, 346, 365–367] according to

ψ(x, t+ δt) = exp
(
−iV (t+ δt) δt

2

)
exp(−iT δt) exp

(
−iV (t) δt

2

)
ψ(x, t) +O

(
δt3
)
, (VI.29)

where ψ(x, t) is the time-dependent solution to the TDSE described by the Hamiltonian H(t) =
T +V (t) with the kinetic operator T , whose FEDVR representation is a matrix with the structure
from Eq. (VI.26), and a time-dependent potential term V (t), which is represented by a diagonal
matrix. On the one hand, numerically evaluating the matrix exponential of the diagonal matrices
and the subsequent matrix-vector multiplication is computationally inexpensive, and there is
thus no need for further discussion of these terms. On the other hand, the straightforward
calculation of the term exp(−iT δt) yields a dense matrix, which strongly impairs the efficiency
of parallelization as noted on page 75. Different strategies arose to circumvent this drawback.
For example, one can proceed by splitting T into a sum of two block matrices and applying the
same decomposition without affecting the consistency order [342]. However, the implementation
of this approach showed that the stability was considerably reduced. Alternatively, one may use
one of many algorithms to directly evaluate exp(M) v for a sparse matrix M and a vector v [368].
Here, the algorithm from Ref. [369, p. 136 et seqq.], which is implemented in SLEPc, proved to
be reliable and efficient for the TDSE, but the rapid convergence slowed down markedly for the
mathematically equivalent calculations based on the 1RDM.

In TDHF simulations the concept of implicit-explicit (IMEX) methods [346, 370–372] is
favorable because it allows to distinguish terms of the dynamical equations according to their
stiffness, i.e., their suitability for a numerical treatment with explicit methods. Accordingly, the
nonlinear Fock term, which is represented by a relatively dense matrix9 in FEDVR (see below in
Sec. VI.6), is treated as a non-stiff term.

So far, it was not addressed how the sparse linear systems appearing in, e.g., the IMEX and
the CN method are solved. This subject area shall be merely mentioned in passing due to the
availability of standard textbooks [373, 374] and implementations of various algorithms (for
example, in PETSc) to solve such systems. It should be noted that algorithms developed for
dense linear systems such as Gaussian elimination, albeit suitable for a parallel implementation

8A formal definition of the TVD property can be found in Refs. [346, 362].
9The corresponding matrix is, of course, not necessarily explicitly stored in memory.
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[338, p. 150 et seq.], can commonly not be efficiently applied without more ado because, for
instance, Gaussian elimination tends to destroy the sparsity of matrices [373]. Alternatively,
iterative algorithms such as the generalized minimal residual (GMRES) method are frequently
used despite the fact that fast convergence of GMRES is debatable in the general case [375].

Finally, it shall be briefly explained why the numerical eigenvalue problem is barely touched.
First, the standard algorithms provided by the similar framework of SLEPc [360] were generally
unproblematic and, second, the size of the numerical grid can be markedly reduced in ground-
state calculations due to the absence of photoelectrons (see Sec. VI.1). The result can then be
extrapolated to obtain the initial state on a grid appropriate for the time-dependent problem.

VI.6. Time-dependent Hartree-Fock

For the sake of completeness, the FEDVR representations of the two formulations of the time-
dependent Hartree-Fock (TDHF) theory are given without further explanation because they can be
straightforwardly derived from Sec. VI.4. Using a somewhat sloppy notation, it is not explicitly
distinguished between an operatorO and its FEDVR matrix representation φB ◦O◦φ−1

B (standard
representation φB from Eq. (VI.25)) as the difference can be easily inferred from the context. It
should be mentioned that Hartree-Fock (HF) calculations can alternatively be performed based
on well-established toolkits such as the GAMESS suite of programs [376] and the NWChem
software package [377, 378]. They were, however, not employed here from the start; primarily for
the reason that an extension to TDRDM was aspired. In general, the numerical time propagation
is similar to iterations for self-consistent solution of HF orbitals, so one may refer to the abundant
literature on the topic of an efficient implementation of the Fock operator [379–382].

The FEDVR representation of the orbital formulation of TDHF, Eq. (II.2), for 2N electrons
in N doubly occupied orbitals ϕi, i = 1, . . . , N reads

i d
dt
~β(i) = (H0 − xE(t)) ~β(i) + F

(
~β(1), . . . , ~β(N)

)
~β(i), (VI.30)

with discretized orbitals ~β(i) := φB(ϕi) ∈ Cd, a sparse matrix H0 = T + Vcore (T = − ∂2

∂x2
is

sparse, Vcore is diagonal), a diagonal matrix x, and a nonlinear term in the form of the dense HF
matrix F . The latter is defined as

Flk
(
~β(1), . . . , ~β(N)

)
= −Vee(xl − xk)

N∑

i=0

(
β

(i)
k

)∗
β

(i)
l + 2δlk

d−1∑

k′=0

Vee(xl − xk′)
N∑

i=0

∣∣β(i)
k′

∣∣2.

(VI.31)
Obviously, F does not stem from a local operator, but still the entries of its matrix representation
can typically be truncated for large |xl − xk|. Avoiding the explicit storage of the dense matrix,
one can implement F based on matrix-free methods.

The FEDVR representation of the density-matrix formulation of TDHF, Eq. (II.1), on a
Cartesian grid, i.e.,

%(x1, x2) =
d−1∑

k,l=0

γkl χk(x1)χl(x2) , (VI.32)
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(a) Nonzero structure associated with the
FEDVR d×d matrix representation of the
operator H0 in Eq. (VI.30).

(b) Nonzero structure associated with the FEDVR
d2×d2 matrix representation of the commutator with
respect to H0 in Eq. (VI.33).

Figure VI.6.: Illustration of the nonzero structure of Jacobian matrices as produced by means of PETSc
in the corresponding time-propagation schemes with respect to H0 on a very small grid with ng = 3,
ne=5, and d=9.

can be written in terms of matrices, (γ)kl = γkl, namely

i ∂
∂t
γ = [H0, γ]− E(t) [x, γ] + [F (γ) , γ] . (VI.33)

The HF operator can be expressed as a function of the discretized density matrix γ:

Fkl(γ) = −1
2
Vee(xk − xl) γkl + δkl

d−1∑

m=0

γmmVee(xk − xm) . (VI.34)

On a side note, the Hartree-Fock-Slater (HFS) approach (see Sec. II.2, employed in 3d
calculations) instead of a Hartree-Fock (HF) model generates a diagonal approximation of the
HF operator, which significantly reduces the computational costs.

To apply, for instance, the IMEX methods mentioned in the previous section, it is helpful
to form the sparse matrices associated with H0 or with the corresponding commutator. For
illustrative purposes, the respective matrices are shown in Fig. VI.6. The matrix shown in
Fig. VI.6a appears to be relatively dense at first sight, but this is attributed to the low dimension
d = 9, and is thus not a practical issue. The implementation of the Jacobian matrix in time-
propagation schemes corresponding to γ → [H0, γ] and its associated nonzero structure, as seen
in Fig. VI.6b, requires a larger programming effort.

Then, the physical quantities of interest such as the occupation probability Pϕ of an orbital ϕ
can be easily calculated as

Pϕ(γ) = ~βHγ~β, (VI.35)
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Figure VI.7.: Figure reproduced from Ref. [234, Fig. 3 (a)] using a numerical time-dependent Hartree-
Fock (TDHF) propagation based on the finite-element discrete variable representation (FEDVR) outlined
in Sec. VI.4. The time-dependent electric field is depicted in green in the background.

where ~β := φB(ϕ) ∈ Cd and ~βH is the Hermitian transpose of ~β.
It is common practice to test programs via simple test cases. Possessing many visible features,

the curves produced on the level of TDHF in 1d by Hochstuhl et al. (2010) [234] depicted in
Fig. VI.7 are an ideal candidate for checking the implementation. The precise parameters can be
learned from the original publication; they are not repeated here. Many more (simpler) test cases
were utilized which are suitable for automatic testing. These are summarized in App. C.



VIIVIIVII Conclusions
and outlook

In summary, the ionization dynamics of different model systems, from an isolated atom to an
infinite crystal, have been inspected for peculiar features attributed to coherences. The conclu-
sions drawn from the different models are briefly outlined in the following and, additionally, it is
pointed out in all cases what ideas and open questions are potentially be interesting for future
research.

In Chapter III, resonant two-photon absorption (TPA) was discussed in general terms using a
model that is principally suitable for the description of a resonant transition in both helium in
the VUV regime and in highly charged neon Ne8+ in the soft X-ray region. It was analytically
demonstrated within a partially coherent theory that the ionization probability as a function of
the total number of incident photons is prior to saturation subject to either a linear or a quadratic
scaling in different intensity regimes or rather in different ranges of the Rabi frequency. A similar
observation was made based on rate equations with the decisive difference however that the
photon number instead of the Rabi frequency is key for the separation of these two regimes. The
deviation introduced to the system by disregarding the coherences between the two discrete states
was then clearly apparent in the intensity regime of the crossover between the linear and the
quadratic scaling behavior. Although the considered model with only three real-valued material
parameters seems to be very simplistic at first sight, the parameter study did not address the
impact of all of them. It was intensely discussed how the absorption cross sections σGX (referring
to transitions between the ground and the excited state) and σX (referring to transitions between
the excited state and the continuum) affect the ionization probability while the parameter σA,
which is related to dispersion effects, was set to zero. The case σA 6= 0 was excluded from
the analysis because it has far-reaching consequences that have been previously discussed by
Kaiser (2014) [4]. To be more precise, Kaiser (2014) [4] analyzed the influence of a detuning,
which was demonstrated to be mathematically equivalent to σA 6= 0 in the case of flat-top pulses.
Future studies may shed some light on how the ionization probability is affected if both σA does
not vanish and the laser pulse has a different temporal profile. One might expect, for example,
that the system effectively behaves as if a chirped laser pulse interacts with the atom.

In Chapter IV, the ionization dynamics of an infinite 1d crystal was investigated in the XUV
regime or, more precisely, for photon energies ranging from 120 to 165 eV adjusted to the K-edge
of the model system to ensure that predominantly slow photoelectrons are generated. Particular
attention was paid to the pulse-length dependence of the ionization probability during ultrashort
pulses. Contrary to the idea of the atoms independently interacting with the laser field through
inner-shell ionization, the pulse length turned out to strongly affect the ionization yield for pulse
durations between 0.01 and 5 fs. Moreover, the potential emergence of Rabi-like oscillations for
1 fs pulses was discussed with respect to their implications on occupation probabilities and the
electron density. The low photon energies, however, do not support an experimental verification
based on elastic scattering. This outcome may seem discouraging at first but, of course, not all
possibilities have been exhausted. An alternative idea which was not yet pursued in order to
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find experimental proof for the Rabi-like dynamics is analogous to an early study by Freund and
Levine (1970) [383] that was aimed at optical modulations in X-ray diffraction. The Rabi-like
oscillations could presumably lead to similar modulations.

Chapter V was devoted to the photon-matter interaction of a short ordered chain (SOC) in 1d
with N = 1, . . . , 21 atoms as a intermediate system between the isolated atom and the infinite
crystal, containing each of them as a limiting (1d crystal for N →∞) or a special case (single
atom for N = 1). It was demonstrated that coherent dynamics is responsible for a prominent
localization phenomenon in SOCs already for N>3 atoms due to the inhibition of the escape
of photoelectrons. The electron-electron interaction was switched off in the majority of cases
in order to correctly identify the origin of this feature. This strategy then unveiled another
trapping mechanism independent of electrostatic effects. The equidistant spacing of the atoms in
SOCs proved not to be vital for observation of the localization mechanism, which, on the one
hand, allows the results to be generalized to 1d clusters and, on the other hand, points out the
differences to Anderson localization (AL).

The analyses of Chapters IV and V can be extended in many ways. For instance, one open
question is how the reduction to 1d affects the observed localization effects, suggesting that an
extension of the FEDVR to 3d [255, 318] would provide deeper insights. Another candidate for
further development is motivated by the findings of Kaiser (2014) [4], which indicated that Auger
decay can be consistently included on the level of the TDRDM theory. It might further support
electron-electron scattering of trapped electrons, which was absent in the simulations performed
for this work but is a fundamental process in real systems. This is important especially in view
of the fact that Pauli blocking, which is the only many-particle effect considered here, may
not be capable of qualitatively replacing the Coulomb interaction for free electrons. However,
a 1d TDRDM theory has potential downsides. Firstly, assuming that scattering between free
electrons turns out to be essential in the SOC, the practicality of the 1d approximation is highly
questionable. Secondly, considering a scenario whose outcome considerably depends on Auger
decay implies that at least two shells of an atom are filled. This premise may also be an issue
because it is not guaranteed that the 1d model correctly reproduces the relative absorption
probabilities, which is key to the qualitative description of the ionization process. Thirdly, it was
extensively discussed in Chapter II that the TDRDM approach involves a very high numerical
effort in the X-ray regime; the computational requirements are possibly too demanding for an
application at photon energies characteristic for SFX experiments. Significant progress would
also be achieved if the models of near-threshold ionization were adapted to the X-ray region by
taking fluorescence into account. The absence of this process was the main reason that the major
part of this dissertation was dedicated to XUV pulses because NTI in the X-ray regime requires
heavy atoms whose inner-shell vacancies are subject to a rapid decay due to fluorescence.

Nevertheless, this thesis contributes to the understanding of the ionization dynamics in
different samples by investigating fundamental processes beyond the rate-equation approach in
the XUV regime. For instance, a previously not discussed trapping mechanism was identified in
a 1d system that might, as soon as the analysis is extended to a more realistic scenario, lead to
novel interpretations of the ionization dynamics in clusters.



AAA Atomic units

This appendix is intended as an overview of atomic units, which were used in all equations
throughout the main text. For readers who are not used or even not familiar with the concept of
atomic units, a list of the most frequently appearing physical quantities and the respective value
in common or SI units is provided in Table A.1.

Physical
quantity

Value in common units

mass me ≈ 9.109 · 10−31 kg

length a0 ≈ 0.5291 Å

energy Eh ≈ 27.21 eV

time ~
Eh

≈ 0.02419 fs

electric charge e ≈ 1.602 · 10−19 C

electric field Eh

ea0
≈ 5.142 · 1011 V

m

vector
potential

~
αea0

≈ 1.705 · 10−3 Vs
m

photon flux Eh

~a20
≈ 1.476 · 1037 1

m2s

intensity E2
h

~a20
≈ 6.436 · 1015 W

cm2

velocity αc ≈ 21.88 Å
fs

polarizability e2a20
Eh

≈ 1.649 · 10−41 A2s4

kg

Table A.1.: Table of frequently used atomic units. The
expressions and conversion factors are consistent with
Ref. [384, Table 3-5, p. 27].

Analogous to the International Sys-
tem of Units (SI), atomic units can be
written in terms of a few base units,
but contrary to SI, which defines ex-
actly seven base units, atomic units di-
rectly rest upon the following fundamen-
tal constants: the electron rest mass me,
the elementary (positive) charge e, the
reduced Planck constant ~, the Boltz-
mann constant kB, vacuum permittivity
ε0, and the speed of light in vacuum c
[384, 385]. The atomic unit of energy is
then defined as the hartree Eh = ~2

mea20
and the unit of length is the bohr a0 =
4πε0~2
mee2

. In general, the units have to be
inferred from context. For example, an
energy of 1 a.u. is equal to one hartree,
Eh, and a length of 1 a.u. corresponds
to one bohr, a0. Accordingly, no distinc-
tion is made in the main text between
the photon energy and the frequency.
The dimensionless fine-structure con-
stant α = 1

4πε0
e2

~c ≈ 1
137

appears in many
equations.
The derived atomic units follow naturally in most cases but there are some exceptions; one of
them is the atomic unit of intensity. The latter is not always used consistently in the literature.
For example, the definition in Ref. [218] differs from Ref. [385] (the present thesis conforms to
Ref. [218]). The unit of the vector potential (see, e.g., Eq. (IV.3)) is chosen according to Santra
(2009) [39].





BBB Technical details
of the FEDVR

B.1. Gauss-Lobatto (GL) points

The Gauss-Lobatto (GL) quadrature rule, Eq. (VI.17), and the formulation of the Lobatto DVR
basis in Eq. (VI.16) assume the knowledge of the GL weights and points. The latter can be
calculated for any number of desired GL points n as the roots of the Lobatto polynomials,
Eq. (VI.12). For an implementation of the FEDVR, the GL points are typically required only for
small n. In those cases, analytical expressions, such as those listed in Table B.1, are available.
Alternatively, the numerical values are provided in [341, p. 920].

n Gauss-Lobatto (GL) points

3 0 ±1

4 ±
√

1
5

±1

5 0 ±
√

3
7

±1

6 ±
√

1
3

(
1− 2√

7

)
±
√

1
3

(
1 + 2√

7

)
±1

7 0 ±
√

1
11

(
5− 2

√
5
3

)
±
√

1
11

(
5 + 2

√
5
3

)
±1

Table B.1.: Analytic expressions for the Gauss-Lobatto (GL) points for small n.

The numerical values are easily obtained in practice –including cases with large n � 7–
because efficient and robust root-finding algorithms are available for polynomials [386]. In fact,
the problem of finding the GL points can be solved with only one function call in both Python
[387] or Maple [388]. For this reason, the following workflow was adopted: the FEDVR basis is
generated in Python and stored in HDF5 format to provide a starting point for a C++ program
based on PETSc. This procedure has another advantage as the main program is decoupled from
the creation of the FEDVR basis, which is in general not fully characterized by a few values but
by the length of all intervals (cf. Ref. [4, p. 72]) and is thus not suitable for a specification via
runtime options.

B.2. Lobatto shape functions

For the calculation of the matrix representation of derivation operators in the ensuing section,
the following definition of a set of functions {fm|m = 0, . . . , n− 1} which is identical to the
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DVR basis, Eq. (VI.16), except for normalization turns out to be practical:

fm :=
√
wmϕm ∀m ∈ {0, . . . , n− 1}. (B.1)

It is easy to see that the set of functions {fm} fulfills the property fm(xk) = δmk, which, in turn,
fully characterizes the polynomials {fm} of degree n−1 analogous to Eq. (VI.16). This feature
can be exploited to evaluate the coefficients αjm ∈ R of the polynomials {fm} as follows. Let fm
be of the form

fm(x) =
n−1∑

j=0

αjmx
j. (B.2)

Then, the property fm(xk) = δmk leads to n2 linear equations which can be expressed as



α0
0 α1

0 . . . αn−1
0

α0
1 α1

1 . . . αn−1
1

...
... . . . ...

α0
n−1 α1

n−1 . . . αn−1
n−1







x0
0 x0

1 . . . x0
n−1

x1
0 x1

1 . . . x1
n−1

...
... . . . ...

xn−1
0 xn−1

1 . . . xn−1
n−1


 =




1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


 . (B.3)

All coefficients of the polynomials {fm} can be obtained via matrix inversion of the n × n
Vandermonde matrix, which is obviously nonsingular due to the pairwise distinct GL points
x0, . . . , xn−1 (cf. Ref. [339, Appendix A]).

Now, one defines analogous to Refs. [232, 233] the so-called Lobatto shape functions {f im|m=
0, . . . , ng− 1∧ i=0, . . . , ne− 1} as in Eq. (VI.21) apart from the normalization and the merging
of boundary DVR functions:

f im : [a, b]→ R, f im(x) =

{
fm

(
x−Mi

si

)
, x ∈ [xi, xi+1] ,

0, otherwise.
(B.4)

Hence, the support of each f im is always the i-th interval, which avoids the necessity of a
distinction of cases with respect to bridge functions {χi0|i= 1, . . . , ne−2} after replacing the
FEDVR basis functions χim by the Lobatto shape functions f im. Neither the basis nor the functions
have to be stored explicitly as the evaluation of both can be reduced to values of the ng functions
{fm} by means of Eq. (B.4). The latter and its derivatives can then be efficiently calculated using
Horner’s method.

It is important to note that the polynomials in Eq. (B.2) can be evaluated for any x ∈ R, i.e.,
the FEDVR contains a natural interpolation scheme. The implementation of the latter is very
useful in general because it can be easily tested and allows the change of FEDVR bases, of which
one can take advantage by employing so-called multigrid methods [389].

B.3. FEDVR representation of operators

Using the bijective mappingM from Eq. (VI.24) for an arbitrary matrix M , one can explicitly
distinguish between the indices that pertain to an interval i, j and those which refer to a function
within the interval (or a bridge function) k, m:

M ij
mk := MM((i,m))M((k,j)). (B.5)
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This notation will facilitate the distinction of cases to be carried out in the following.

B.3.1. First-derivative matrix

Changing the notation according to Eq. (B.5), one obtains the following expression for the matrix
representation of the first derivative in Eq. (VI.20):

Dij
mk = 〈χjk, ∂

∂x
χim〉 =

b∫

a

χjk(x) ∂
∂x
χim(x) dx = 〈χjk, ∂

∂x
χim〉D. (B.6)

Since the bridge functions are continuous but not continuously differentiable, the integrand has a
jump discontinuity at the interval boundaries. This is, however not an issue for the integration. It
is easy to show that this definition is equivalent to the interpolation addressed above in App. B.2
and a subsequent analytical derivation for each differentiable function.

Now, it is shown how to obtain the result from Eq. (VI.26). Consider, for instance, the case
k 6= 0∧m 6= 0. First, the FEDVR basis functions are written in terms of Lobatto shape functions
f im. These are, in the next step, reduced to the polynomials {fm} from Eq. (B.1) via substitution,
whereby the integration interval is transformed to [−1, 1]. Translated in formulas,

Dij
mk = χjk

(
xjk
)
χim
(
xim
)
δij

xj+1∫

xj

f jk(x) ∂
∂x
f jm(x) dx,

= χjk
(
xjk
)
χim
(
xim
)
δij

1∫

−1

fk(x) ∂
∂x
fm(x) dx

︸ ︷︷ ︸
=Dloc

mk

,

where Dloc
mk from Eq. (VI.27) was identified. The other cases can be calculated analogously and

yield altogether:

Dij
mk = χjk

(
xjk
)
χim
(
xim
)
·





δij D
loc
mk, if m > 0 ∧ k > 0,

δijD
loc
0k + δi,j+1D

loc
ng−1,k, if m = 0 ∧ k > 0,

δijD
loc
m0 + δi,j−1D

loc
m,ng−1, if m > 0 ∧ k = 0,

δi,j+1D
loc
ng−1,0 + δi,j−1D

loc
0,ng−1, if m = 0 ∧ k = 0.

(B.7)

B.3.2. Kinetic-energy matrix

Similar to Eq. (B.6), the matrix representation of the kinetic-energy operator can be expressed as

T ijmk = 1
2
〈 ∂
∂x
χjk,

∂
∂x
χim〉 = 1

2

b∫

a

∂
∂x
χim(x) ∂

∂x
χjk(x) dx = 1

2
〈 ∂
∂x
χjk,

∂
∂x
χim〉D. (B.8)
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One can again verify that this definition is consistent with the interpolation scheme. It is easy to
show that T ijmk can be written in terms of

T loc
mk = 1

2

∫ 1

−1

f ′m(x)f ′k(x) dx (B.9)

by means of straightforward substitutions, resulting in

T ijmk = χjk
(
xjk
)
χim
(
xim
)
·





δij
1
si
Tm,k, if m > 0 ∧ k > 0,

δi,j
1
si
T0,k + δi,j+1

1
sj
Tng−1,m2 , if m = 0 ∧ k > 0,

δi,j
1
sj
Tm1,0 + δi+1,j

1
sj
Tm,ng−1, if m > 0 ∧ k = 0,

δij

(
1
si
T0,0 + 1

si−1
Tng−1,ng−1

)
+

+δi,j+1
1
si
T0,ng−1 + δi+1,j

1
sj
Tng−1,0, if m = 0 ∧ k = 0.

(B.10)

Hence, the d× d matrix T ijmk is traced back to a ng × ng matrix T loc
mk. Due to this relation, only

one calculation of T loc
mk is required, which can then be used to fill all overlapping blocks of the

matrix as shown in the main text in Fig. VI.6a on page 93.

B.3.3. Example

In the following, it is briefly demonstrated that the FEDVR in the case ng = 3 can be reduced to
a nontrivial finite difference method (FDM) on an equidistant grid. To start with, one extracts the
Lobatto DVR basis functions in the special case with three GL points, ng = 3, from Eq. (VI.16)
as

ϕ0 (x) = 1
2

√
3x (x− 1) ,

ϕ1 (x) = −1
2

√
3 (x− 1) (x+ 1) ,

ϕ2 (x) = 1
2

√
3x (x+ 1) .

As stated in Sec. VI.3, the basis functions are not orthonormal in the usual sense. The remainder
Rn from Eq. (VI.18) for a product of two arbitrary basis functions is in fact rather large,Rn = ±1

5

(independent of ξ). Nevertheless, the basis functions are guaranteed to be linearly independent,
so the basis is well-defined. The FEDVR derivation matrix Dmk from Eq. (VI.20) is then

Dmk =



−3

2
1 −1

2

−1 0 1
1
2
−1 3

2




So far, one cannot immediately recognize a consistent FDM because the GL weights are generally
different for each grid point. However, the row sum of the middle row vanishes as the grid
weights are symmetric, i.e., the grid points ±1 have the same associated weights. This is not
the case for the upper and lower row, where the grid weight of the basis function centered in
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the interval is four times as large as the weight of the basis functions located at the interval
boundaries ±1.

Defining the constant step size h = 1
2

(xi+1 − xi) = s (two steps per interval) and taking into
account the grid weights, one approximates the derivative of an analytic function y(x) in the
center of each interval xi1 and at the boundaries xi0 by

y′
(
xim
)
≈
{

1
h

[
−1

2
y(x− h) + 1

2
y(x+ h)

]
, if m = 1,

1
h

[
1
4
y(x− 2h)− y(x− h) + y(x+ h)− 1

4
y(x+ 2h)

]
, if m = 0,

= y′(x) +O
(
h2
)
.

This form of the FEDVR is very similar to the FDM. Note, however, that the kernel of the
derivative matrix does not exclusively consist of the constant grid function. For instance, the
numerical derivative of the grid function y(xim) = δm1, which represents a non-differentiable
function (the sum of all “inner” functions in Fig. VI.4), vanishes at all grid points and can thus
not be distinguished from the zero function. Therefore, great caution needs to be exercised when
trying to numerically estimate of the antiderivative Y to a function y by finding the solutions of
DY = y.





CCC Test cases

In practice, programming involves a lot of testing. In this respect, the versatility of the FEDVR
approach from Chapter VI has the important advantage that it includes analytically solvable
textbook examples as special cases. This appendix briefly mentions the model systems that were
implemented to test the code.

Eigenvalues and eigenfunctions: standard textbook examples such as the harmonic oscillator
and the sech2 potential [268, p. 94 et seqq.]; HF energies from [390, Table I].

Dynamics of Gaussian wave packets: assume a Hamiltonian H of the form

H = −1

2

∂2

∂x2
+ Ex. (C.1)

One seeks the solution ψ(x, t) of the (pure) initial value problem (IVP) with respect to the initial
condition

ψ(x, t = 0) = ϕ(x) :=
(
σ2π
)− 1

4 exp

(
− x2

2σ2

)
exp(ip0x) . (C.2)

Consider, for example, the following time-dependent solutions [268, 391]:

• dispersive propagation for E = 0 and p0 = 0:

ψdisp(x, t) =
1√

1 + i t
σ2

ϕ


 x√

1 + i t
σ2


 with 〈x〉 = 0.

• propagation with a uniform velocity for E = 0 and p0 6= 0:

ψvel(x, t) = ψdisp

(
x− ip0σ

2, t
)

exp

(
−1

2
p2

0σ
2

)
with 〈x〉 = p0t.

• uniformly accelerated particle for E 6= 0 and p0 = 0:

ψacc(x, t) = ψdisp

(
x+

1

2
Et2, t

)
exp

(
−iEt

(
x+

1

6
Et2
))

with 〈x〉 = −1

2
Et2.

Test cases of TDHF: see, for instance, Fig. VI.7.
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