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Summary

Land use and land cover (LULC) are fundamental elements of the global ecosystem and LULC

changes are key aspects of global change. Information on LULC is essential in a wide range of

research fields, including environmental science, ecosystem services, and environmental decision

making. The quality of LULC information significantly impacts on the outcomes of these

research applications. Hence, acquisition of appropriate LULC data is an important issue for

research, especially in complex heterogeneous agricultural landscapes. Particularly in these

types of landscapes, the existing global land cover (GLC) products are restricted in their

thematic, spatial, and temporal resolution. Therefore, the use of the GLC products may lead

to an inadequate representation of the actual landscape. For cultivated landscapes, methods

able to retrieve detailed LULC data as well as improvements of GLC products are strongly

desired.

This dissertation focuses on enhancing LULC quantification in complex heterogeneous agricul-

tural landscapes. Specifically, extraction of spatially and thematically detailed LULC information

from existing, medium resolution, multi-spectral satellite products is pursued. Three main contri-

butions to LULC quantification are presented: ground data collection, derivation of continuous

LULC, and classification of multi-crop LULC.

First, high-quality LULC observation data was collected over the study site Haean catchment,

South Korea. The observed data illustrates the detailed LULC of the catchment for the three-year

study period (2009 – 2011). A comparison with the MODerate Resolution Imaging Spectrora-

diometer (MODIS) land cover product (MCD12Q1) revealed limitations of this GLC product

in spatial and thematic resolution. The limitations were due to the large cell size and the

broadly defined cropland classes of the product. This result illustrates the difficulty in using

GLC products to monitor LULC changes in complex heterogeneous landscapes.

Second, estimation of continuous LULC was addressed. For the study site, a fractional LULC

regression model was developed for 10 LULC classes based on a MODIS multi-spectral dataset

(MODIS 13Q1) and Random Forests models. In order to allow for making informed decisions

when choosing data-processing options, three key data-processing options were evaluated: selec-

tion of spectral predictor sets (NDVI, EVI, surface reflectance, and all combined), time interval

(8-day vs. 16-day), and smoothing (no smoothing vs. Savitzky-Golay filter). The models suc-
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cessfully reproduced spatial distributions of the LULC fractions, thus illustrated the potential

of existing, medium resolution satellite products for continuous LULC estimation. Third, a

multi-crop LULC classification model was developed to improve thematic LULC representation.

LULC data tends to be imbalanced as majority types dominate over minority types (e.g. un-

equal distributions of LULC type labels in raster maps). This imbalance is partly a cause of the

under-development of multi-crop LULC products. Here, a synthetic sampling method was used

to alleviate the problem of data imbalance in the LULC observation data for the study site.

Artificial balancing of the training data substantially increased the classification performance of

some minority LULC types. However, other minority LULC types remained difficult to classify

due to substantial class overlaps (i.e. spectral similarities between LULC types).

For ecosystem research and decision making, continuous representations of LULC and multi-crop

LULC are key information sources. In this dissertation, approaches connecting extensive field

work, remote sensing and state-of-the-art analysis methods (e.g. Random Forests) are proposed

and evaluated. It is shown that a judicious choice of data processing options (e.g. avoiding exces-

sive data smoothing) and synthetic resampling methods can be useful to achieve better LULC

presentations from medium resolution remote sensing data in complex cultivated landscapes.

The data analysis approach presented in the dissertation was designed to be transferable to

other landscapes. The methods can help analysing publicly available remote sensing data for

creating detailed spatial and thematic representations of LULC types such as cultivated crops,

and enhancing existing global land use and land cover products.
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Zusammenfassung

Die Landnutzung/Landbedeckung (LULC: Land Use / Land Cover) ist ein grundlegender Faktor

im globalen sozioökologischen System und ihre Veränderung ist ein bedeutender Treiber für den

globalen Wandel. Informationen über LULC sind essentiell in Umweltwissenschaften, Forschun-

gen zu Ökosystemleistungen und für Entscheidungsprozesse in der Landschaftsplanung. Die

Qualität von Informationen zu LULC beeinflusst deshalb maßgeblich deren Ergebnisse. Daher

ist die Akquisition von geeigneten LULC-Daten von entscheidender Bedeutung, insbesondere

in komplexen heterogenen Agrarlandschaften. Für diese Landschaften weisen existierende Pro-

dukte zur globalen Landbedeckung (GLC) Einschränkungen in ihrer thematischen, räumlichen

und zeitlichen Auflösung auf. Die Nutzung dieser Produkte führt daher zu einer schlechten

Repräsentation der tatsächlichen Landschaften, was die Entwicklung einer Methode zur Ex-

traktion hochwertiger LULC-Daten als auch die Verbesserung der GLC-Produkte erforderlich

macht.

Die vorliegende Dissertation beschäftigt sich mit der Verbesserung der LULC-Quantifizierung in

komplexen, heterogenen Agrarlandschaften. Die Gewinnung detaillierter räumlicher und thema-

tischer LULC-Informationen auf Basis vorhandener grob aufgelöster multispektraler Satelliten-

Produkte wird angestrebt. Es werden drei wesentliche Beiträge zur LULC-Quantifizierung

präsentiert: Erhebung von Felddaten, kontinuierliche LULC-Repräsentation und LULC-Klassifikation

von landwirtschaftlichen Systemen mit mehreren Feldfrüchten.

Erstens wurden hochqualitative LULC-Beobachtungsdaten im Forschungsgebiet Haean in Süd-

korea erhoben. Die Daten spiegeln die detaillierte LULC des Einzugsgebiets über den Zeitraum

von drei Jahren (2009 – 2011) wider. Der Vergleich mit dem MODIS Landbedeckungsprodukt

(MCD12Q1) offenbarte dessen Einschränkungen der GLC-Repräsentation im Forschungsge-

biet. Die Einschränkungen der räumlichen und thematischen Auflösung des GLC-Produkts

ergaben sich sowohl durch die große Pixelgröße als auch durch die weit gefassten Nutzpflanzen-

Klassen.

Zweitens wurde bisher die Schätzung von kontinuierlichen LULC in Frage gestellt. In dieser Ar-

beit wurde basierend auf einem MODIS Multispektral-Datensatz (MODIS 13Q1) ein Regression-

smodell für fraktionales LULC für ein 10-Typen-System entwickelt, mit dem die kontinuierliche

Repräsentation von LULC im Forschungsgebiet erstellt wurde. Um fundierte Entscheidungen
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in Bezug auf die Auswahl geeigneter Optionen der Datenverarbeitung treffen zu können, wur-

den basierend auf dem Modell drei Schlüssel-Optionen der Datenverarbeitung evaluiert. Da

das Modell die räumliche Verteilung von LULC-Fraktionen erfolgreich reproduzierte, hat die

vorgeschlagene Methode ein Potential um gut aufgelöste Daten aus grob aufgelösten Satelliten-

Produkten zu extrahieren. Die Wirksamkeit der verschiedenen Datenverarbeitung-Optionen in

Bezug auf die Sub-Pixel LULC-Modellierung konnte durch deren Vergleich gezeigt werden.

Drittens wird in dieser Arbeit ein Klassifikationsmodell für mehrere Feldfrüchte vorgestellt,

welches die thematische LULC-Repräsentation verbessert. LULC-Daten sind oft ungleich verteilt,

weil die räumlich häufig angebauten Feldfrüchte die seltener angebauten dominieren. Dies ist

einer der Gründe für mangelnde Qualität von LULC-Produkten für landwirtschaftliche Sys-

teme mit mehreren Feldfrüchten. In dieser Arbeit wurde eine synthetische Sampling-Methode

angewendet, um das Problem der Ungleichverteilung in den LULC-Daten zu vermindern. Kün-

stliches Ausgleichen der Daten erhöhte die Klassifikationsleistung für einige Beobachtungsklassen

erheblich. Die Klassifikation einiger kleinerer LULC-Klassen blieb jedoch auf Grund von sub-

stantiellen Informations-Überlappungen zwischen diesen LULC-Klassen schwierig.

Für die Ökosystemforschung und landschaftsplanerische Entscheidungsfindungen in komplexen

und heterogenen Landschaften sind kontinuierliche Informationen über Landbedeckung und

Landnutzung und Darstellungen von landwirtschaftlichen Systemen mit mehreren Feldfrüchten

essentiell. In dieser Dissertation werden dafür Ansätze vorgeschlagen, die extensive Feldar-

beit, Fernerkundung und moderne Analysemethoden (z.B. Random Forest) miteinander kom-

binieren. Es wird gezeigt, dass eine gut gewählte Methode der Datenvorverarbeitung (die z.B.

überflüssiges Glätten vermiedet) und synthetisches Resampling zu einer Verbesserungen der

LULC-Repräsentationen aus groben Fernerkundungsdaten in komplexen Kulturlandschaften

führen kann. Die Modellierungsansätze und Ergebnisse dieser Studie bilden einen hilfreichen

Leitfaden für die Entwicklung ähnlicher Modelle in verschiedenen Landschafen. Durch den in

dieser Arbeit entwickelten Ansatz können frei verfügbare Fernerkundungsdaten zur detaillierten

Identifizierung von LULC-Typen, wie z.B. bestimmter Ackerfrüchte verwendet werden und zur

Verbesserung von globalen GLC-Produkten genutzt werden.
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Chapter 1

Introduction

Information on land, or the Earth’s terrestrial surface is key to understand human–environment

interactions. Land is an interface of social and environmental systems in which the vast majority

of human activities occurs such as agriculture, habitation, industry, and various cultural and

recreational practices. It supports the structure and functions of ecosystems across different

spatial and temporal scales, consequently ecosystem services are also tightly connected to land

and its changes (Müller et al., 2014; Tolvanen et al., 2014). Land has been and will remain a

central theme in the study of human-environment systems (Müller et al., 2014). Availability

and quality of information on land are important for ecosystem services research, decision

making and studies on global change in general (Hansen et al., 2013; Schulp et al., 2011) and

influence significantly the outcomes of environmental and ecological models (Mahecha et al.,

2010; Matthews, 1983) as well as decision making studies.

This dissertation deals with quantification of land use and land cover (LULC) in complex het-

erogeneous agricultural landscapes. Specifically, this study searches for methodological advances

in retrieving LULC information principally from pre-existing satellite data. In this chapter, a

short introduction to the dissertation will be given. First, background and motivation regarding

remote sensing of LULC in agricultural landscapes will be given. State-of-the-art of current

research on global land cover products and quantification techniques are reviewed especially

concerning complex heterogeneous agricultural landscapes. Then, the research gaps in current

research and objectives and concepts of this dissertation will be articulated. The study site is

briefly introduced at the end of the introduction.

1



2 CHAPTER 1. INTRODUCTION

1.1 Background and motivation

1.1.1 Land use and land cover (LULC)

Land use and land cover (LULC) is a term jointly denoting land use and land cover. Land

cover denotes the bio-physical cover of the earth, which is a basis of the human and physical

environments as well as a fundamental part of the global ecosystem (Di Gregorio, 2005; Herold

et al., 2009; Loveland et al., 2010) and change of land cover is an important driver in global

environmental changes (Goldewijk, 2001; Herold et al., 2009; Sterling et al., 2012; Vitousek,

1994). Land use denotes human activities taking place on a spatial unit that are directly related

to the land surface itself (Comber, 2008). Land use has a direct link to land cover as it occurs

in a certain land cover type to produce, change or maintain it. For example, “bare soil” is a

land cover term as it refers to the earth’s surface which outcrops bare soil or rocks. In contrast,

“construction area” is a land use term as it describes how people use the bare soil cover. Often

the land use and the land cover for a unit area are mixed. For example, the land cover “forest”

is most commonly used as the land use “forest” (or “forestry”). Often the distinction of the

two concepts is difficult, thus the use of the term LULC is prevalent in the research community

(Comber, 2008).

A growing body of literature emphasises that LULC changes have impacted on Earth’s climate

(e.g. Chhabra et al., 2006; Foley et al., 2005; Turner et al., 2007), biodiversity (e.g. Dawson et al.,

2011; Hoffmann et al., 2010), water cycle (e.g. Sterling et al., 2012), and ecosystem services (e.g.

Poppenborg et al., 2013) across different spatial, temporal, and thematic scales. For example,

Fu (2003) claimed that more than 60% of the East Asian natural vegetation has been affected

by human-induced LULC changes (e.g. forest conversion and desertification). Such (human-

induced) LULC changes result in significant changes of ecosystem functions and services at

various scales (e.g. local, regional, and global scale).

LULC is a key input for ecosystem services research, decision making and studies on global

change in general and influence significantly the outcomes of environmental and ecological

models as well as decision making studies (Hansen et al., 2013; Matthews, 1983; Schulp et al.,

2011; Vitousek et al., 1997). LULC is recognised as one of the most important spatial data

in global initiatives such as the United Nations Framework Convention on Climate Change

(UNFCCC) and global organisations such as Food and Agriculture Organization of the United

Nations (FAO) and the United Nations Environment Programme (UNEP) (Di Gregorio, 2005;

Mora et al., 2014). For example, many studies infer biodiversity information (e.g. habitat type)
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indirectly from land cover maps, which is often derived from the remote sensing images (e.g

Boyd et al., 2011; Tomaselli et al., 2013). The quality of LULC information is important for

these applications – acquisition of appropriate LULC data is an essential issue.

Accurate assessment of LULC and its changes are fundamental factors to sustainable manage-

ment of natural resources, societal goods and services (Di Gregorio, 2005). Therefore, quantifi-

cation of LULC is a critical research topic for a wide range of public, private and governmental

communities (Müller et al., 2014; Rindfuss et al., 2008). Thus, obtaining appropriate LULC

information is critical to secure the quality of the outcomes of the applications using the data

(Hansen et al., 2013; Mahecha et al., 2010; Matthews, 1983; Poppenborg et al., 2013; Schulp

et al., 2011).

1.1.2 Land use and land cover in cultivated landscapes

Cultivated (managed) landscapes refer to managed vegetated areas where the natural vegetation

is replaced by various vegetative LULC types of anthropogenic origin (e.g. dry field crops),

livestock grazing, or forestry (Di Gregorio, 2005). Cultivated ecosystems constitute an essential

form of human land use. These types of landscapes occupy 34% of the Earth’s land areas

(Chhabra et al., 2006) and differ greatly from unmanaged landscapes such as natural forest.

Land use practices in cultivated landscapes affects functions and services of the embedded agro-

ecosystem such as pest control, pollination or control of soil erosion (e.g. Nguyen et al., 2014).

An inappropriate land use practice in these type of landscapes can lead to serious damages on

those components.

LULC patterns in cultivated landscapes are complex and heterogeneous. In cultivated landscapes,

agricultural land use is particularly dominant over any other land use type. Agricultural land

uses in a cultivated landscape cause often complex and heterogeneous LULC patterns both

spatially and temporally. In spatial aspect, spatial configuration of the agricultural land use is

fundamentally artificial and can occur very heterogeneous and complex patterns. For example,

a mosaic of crop/non–crop land use (e.g. mixed dry field) can occur in the landscape unlike a

homogeneous unmanaged landscape (e.g. natural forest). In temporal aspect, land surface of

these agricultural land uses is ceaselessly modified (e.g. tillage and irrigation) and occasionally

with no (above ground) vegetation (e.g. harvest) due to constant human management activities.

Moreover, these land uses can be converted to different type of land uses in an extremely short

time frame (e.g. farmlands conversion). These complex and heterogeneous LULC patterns and

their rapid changes in cultivated landscapes are fundamentally affecting the related ecosystem
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functions and services at various scales such as local, regional, and global scale.

1.1.3 Global land cover products and its limitations in cultivated

landscapes

Despite the significance of LULC information in studies on cultivated(Bartholomé et al., 2005)

landscapes, available LULC information is generally limited (Fritz et al., 2013). A data collection

of site-specific LULC (i.e. LULC survey) is generally uncommon as it is usually an expensive

and laborious task. Instead, pre-existing LULC databases such as satellite-borne global land

cover (GLC) products are frequently used as LULC input data in research on cultivated land-

scapes.

In the last two decades, advancements of remote sensing technologies have supported the

derivation of LULC information (Bontemps et al., 2011; De Fries et al., 2010; Defries et al.,

1994; Loveland et al., 2000; Mora et al., 2014) and have led to the production of several GLC

databases. GLC data provides valuable information about various land systems such as urban,

forested, shrubland, and agriculture. It remains a key data source for scientific/non-scientific

decision making applications.

Even though GLC remains a key dataset for many applications and studies, existing GLC

products have limitations and there are unmatched users’ need in the existing GLC datasets

(Herold et al., 2008; Mora et al., 2014; Müller et al., 2014). Due to their coarse resolution the

GLC products are limited in representing spatial and temporal patterns of LULC, particularly in

cultivated landscapes. Such a landscape, especially with frequently changing land use, would not

be sufficiently represented by GLC products due to the aforementioned thematically, spatially,

and temporally complex nature of the LULC of the landscape.

First, the existing GLC products are limited thematically (i.e. excessively generalised LULC

types). Cultivated landscapes are often made up of spatial mosaic of different crop types. In

contrast, typically GLC products have few generalised cropland types. Moderate-resolution

Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q2) product, for instance,

provides two cropland types (Bontemps et al., 2011; Loveland et al., 2000; U.S. Geological

Survey, 2012); GlobCover 2000 is provided with two generalised cropland classes. This limited

GLC information makes it difficult to monitor crop production, land degradation, and other

agriculture associated land use.

Second, the existing GLC products are also limited in spatial resolution as those are coarse

raster maps with large cell sizes (e.g. 1 km). Use of a GLC product in complex heterogeneous
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landscapes may lead to a poor LULC representation as the LULC mosaic can be smaller than

the cell size. Therefore, the GLC products are generally limited in representing mixture classes

(i.e. unable to discriminate mixed trees, shrubs, and herbaceous vegetation) (Herold et al., 2008).

Inability to deal with small-scaled linear elements (e.g. small streams) could also lead to a

substantial misrepresentation of a target landscape.

Third, the GLC products are poor in temporal resolution and imprecise about temporal refer-

ence (Thackway et al., 2013). GLC products are commonly unspecific/unclear about temporal

reference and have 2-3 years lag between the data acquisition and the releasing date of it. Most

GLC data products are released in an irregular interval (e.g. 5–10 years). This is because the

LULC data products are released few years after the satellite images were taken. Longitudinal

land cover data constitutes an important element especially where land use changes rapidly.

However, MODIS Land Cover Type (MCD12Q1) is the only product that provides annual

information and is widely used for analysing land cover changes. Consequently, timely new and

accurate information is generally lacking in GLC products.

As discussed above, the use of the existing GLC products may be inappropriate in complex

heterogeneous agricultural landscapes. Under this circumstance, researchers often inevitably use

improperly represented LULC data in their model. If the model is sensitive to LULC input, an

inconsistent and imprecise outcome will be produced. Interpretation of the result will be also

difficult since the system and its dynamics are poorly described by the model.

There are needs to improve accuracy, stability, spatial resolution, and thematic content of

the current GLC datasets (Bontemps et al., 2011; Mora et al., 2014). On one hand, these

limitations are due to the low-quality training data (i.e. ground LULC observation) and the

input spectral data which are coarse in spatial and temporal resolution (e.g. 500 m 16-day surface

reflectance) (Mora et al., 2014; Müller et al., 2014). On the other hand, such limitations may

have been unavoidable since the GLC product entails subjective processes such as abstraction,

aggregation, classification, and simplification (Comber, 2008; Comber et al., 2005). Nevertheless,

more attention is needed to improve accuracy and overall information contents of the existing

GLC products.

1.1.4 Towards better LULC quantification in cultivated landscapes

In total, appropriate land cover type information is often unavailable and the use of the current

GLC products may be inappropriate in complex agricultural landscapes. Therefore, acquisition of

appropriate LULC data is an important issue for research in complex heterogeneous agricultural
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landscapes. Also, improvements of GLC products in thematic, spatial, and temporal scales is

desired.

To produce better LULC data, one can either use a new high-quality input data (e.g. high-

resolution satellite data) product or use a new methodology which can additionally extract

information from the existing input data (e.g. medium resolution satellite data). Using new

high-resolution data demands an additional campaign (i.e. satellite sensor) and increases com-

putational burden. In contrast, further extracting information from existing satellite data can

enrich the information contents with little additional cost. Also it can be applied to the past-time

satellite data.

Towards better quantification of LULC with relatively small cost, an appropriate modelling

framework for LULC quantification should be developed. To deal with complex heterogeneous

agricultural landscapes, such a model development process should thoroughly incorporate (1)

high-quality ground truth (i.e. LULC survey) with appropriate meta-information, (2) statistical

methods appropriate for the data and the research goal, and (3) a model evaluation scheme to

adequately assess model performance and select model and modelling options.

1.2 State-of-the-art and research gaps

This section contains literature review concerning the LULC quantification in cultivated land-

scapes and the relevant methods. Necessity of the high-quality LULC ground truth data and

feasible modelling approaches to expand the volume of the ground truth will be driven from

the review.

1.2.1 Remote sensing of LULC and global land cover (GLC) prod-

ucts

Remote sensing of LULC refers to an estimation of LULC types based on the remotely sensed

data (e.g. satellite images) using image processing (Anderson et al., 1976; Moody et al., 1995).

Estimation of land cover is a common application of remote sensing (Foody et al., 2006). Indeed,

remote sensing is an essential tool of land use science as it enables observations over large

extents of the Earth. In the last two decades, advancements of remote sensing technologies have

supported the derivation of LULC information about various LULC types such as urban, forested,

shrubland, and agriculture (Defries et al., 1994) and have nurtured ecosystem research and its

applications extensively (Bartholomé et al., 2005; Friedl et al., 2002; Mora et al., 2014).
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The first 1 km resolution GLC dataset International Geosphere-Biosphere Programme Data and

Information System’s GLC map (IGBP – DISCover) was produced for the 1992–1993 period

and used in a great variety of applications. Aided by the development of satellite data products,

continuous efforts to improve the LULC products are being made (Fritz et al., 2013; Mora et al.,

2014) and there are elaborated GLC products available (Herold et al., 2009; Masson et al., 2003;

Mora et al., 2014). Currently, the MODIS land cover type, GLC2000, and GlobCover products

are available at moderate spatial resolution down to 300 m. GLC-2000 is a global land cover

map for year 2000, produced by an international partnership of 30 institutions (Bartholomé

et al., 2005). Globcover is a global land cover map for 2005 at 300 m resolution using ENVISAT

MERIS data (Bontemps et al., 2011) and adopted FAO Land Cover Classification System

(LCCS) to describe land cover types. Annual land cover data is supplied by the MODIS land

cover product (MCD12Q1) for the period beginning from 2002. For natural vegetation, higher-

resolution surface information databases become globally available (e.g. Hansen et al., 2013;

Sexton et al., 2015).

There are currently no global available land cover products on finer than 300 m spatial resolution

(Herold et al., 2009). For enhancing GLC products spatially and thematically, GLC mapping

projects based on higher-resolution data such as Landsat are being developed by land use science

communities (e.g. Chen et al., 2015; Gutman et al., 2012). These new developments aim to

provide GLC products with an elaborated information on LULC and overcome the limitations

based primarily on 30 m Landsat in combination with high-resolution images such as QuickBird

and Worldview-2 (Gutman et al., 2012).

The Land Cover Classification System (LCCS) has been developed by FAO (Food and Agricul-

tural Organization of the United Nations) for a consistent and complete land cover description

universally applicable for the whole globe (Di Gregorio, 2005). Using the LC Metadata Language

(LCML – LCCS v.3), it describes LULC in a comprehensive and standardised way. It is flexible

and allows a dynamic creation of LULC types, which is very useful in heterogeneous landscapes

(i.e. users can create own classes by a dynamic combination of land cover attributes). It is

also powerful in describing multiple information layers for a single LULC type. The LCCS, as

a universal legend definition, has a huge potential in quantifying thematically rich land use

and land cover types and there has been thorough LULC quantification studies based on the

system either globally (Bartholomé et al., 2005; Bontemps et al., 2011) and locally (Cord et al.,

2010).
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1.2.2 GLC products in cultivated landscapes

Identification of LULC and its changes in cultivated landscapes is an important issue from

regional to global scales (Fritz et al., 2013). However, for cultivated landscapes, acquisition of

detailed LULC data is not sufficiently fulfilled by the use of the existing GLC products. While

GLC data provides valuable information about various LULC types such as urban, forested,

shrubland, and agriculture, however, fine-quality GLC data is untenable in cultivated landscapes

due to general inability of GLC products in dealing with heterogeneous agricultural LULC types

(Fritz et al., 2013; Herold et al., 2008; Seo et al., 2014). Cultivated landscapes are frequently

made up of a spatial mosaic of agricultural land use types. In contrast, the most frequently

used global land cover databases like GlobCover or MODIS Land Cover Type contain only

few crop-related classes (Bontemps et al., 2011; Loveland et al., 2000; U.S. Geological Survey,

2012). For instance, GlobCover 2000 is provided at 300 m resolution and has four cropland

or relevant mixture types, and MODIS Land Cover Type (MCD12Q2) product provides five

raster land cover layers at 500 m (Bontemps et al., 2011; Loveland et al., 2000; U.S. Geological

Survey, 2012). There are ongoing efforts to extend GLC databases in this context (e.g. Biggs

et al., 2006; Gumma et al., 2011; He et al., 2011; Pittman et al., 2010; Potgieter et al., 2007;

Wardlow et al., 2007; Wardlow et al., 2008). Enhancement of the quality and usability of the

GLC products in cultivated landscapes would be an essential aid to scientific, governmental and

non-governmental communities.

Fig. 1.1 Existing global land use and land cover databases in Haean catchment, South Korea
(2009): (a) GLC-2000, (b) GlobCover and (c) MODIS Land Cover Type. LULC becomes overly
simplified compared to the real landscape (Figure 1.3). Images courtesy of Geo-Wiki Project
(http://geo-wiki.org) (Fritz et al., 2009).

http://geo-wiki.org
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1.2.3 LULC quantification in GLC products

The quantification of LULC is a major application of remote sensing. It is based on images

such as satellite imagery, RADAR, LiDAR datasets, and aerial photographies. These images

are captured by sensors mounted on satellites, airplanes, and drones. Different data sources

and algorithms have been used to map global land cover worldwide. Input data used for global

LULC quantification vary from low- to high-resolution in spatial (250 m – 1km), temporal (daily

– annual), and spectral resolution (1–15 bands). Despite of its lower-resolution, main observation

sensors for the existing global LULC monitoring have been mid to coarse spatial resolution

multi-spectral data such as Advanced Very High Resolution Radiometer (AVHRR), MODIS,

LANDSAT, SPOT-Vegetation, and MERIS (Masson et al., 2003; Mora et al., 2014). High-

resolution datasets such as IKONOS and Quickbird are produced in irregular time interval,

which causes difficulty in continuous observation of LULC. In contrast, medium to coarse

resolution datasets (> 30 m) such as MODIS are at regular time intervals (e.g. 16-day for

Landsat, near-daily for MODIS) (e.g. Doraiswamy et al., 2006; Vittek et al., 2014; Watts et al.,

2010).

Most importantly, MODIS datasets are produced on a near daily basis on the entire Earth and

play an important role in LULC monitoring (e.g. Doraiswamy et al., 2006; Franklin et al., 2002;

Pittman et al., 2010; Thenkabail et al., 2005). Moreover, due to its acquisition interval and

composition procedure (NASA Land Processes Distributed Active Archive Center (LP DAAC),

2013a), MODIS 8-day and 16-day products are robust to cloud contamination in monsoonal

regions.

GLC products have been developed and validated using varying reference datasets (Bartholomé

et al., 2005; Bontemps et al., 2011; Friedl et al., 2010; Sulla-Menashe et al., 2011). For example,

the MODIS land cover product is trained using System for Terrestrial Ecosystem Parameteri-

zation (STEP) database (Sulla-Menashe et al., 2011) which has approximately 2000 training

locations for the whole terrestrial cover (Friedl et al., 2010; Sulla-Menashe et al., 2011). How-

ever, in general, global LULC ground truth datasets are still lacking (Herold et al., 2008). The

STEP version 6 database includes approximately 500 pixels for cultivated zones (i.e. > 60%

agriculture), however, specific crop type information is missing. Instead, five broadly defined

crop type classes, namely cereal crop, broadleaf crop, mixed crop, rice, and orchards/vineyards

are recorded. These limitations in training data restrict the thematic quality (i.e. simplified

agricultural LULC types) in most of the GLC databases.

The lack of training/validation data is partially responsible for the simplified land cover types in
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the existing global landcover databases. To enhance the situation, collaborative efforts are being

made to expand coverage and increase information contents of the global LULC ground truth

databases (e.g. Fritz et al., 2011). Collaborative and open-access mapping of LULC would be

useful to develop and validate high-resolution LULc datasets in future. These data can be also

useful to regional environmental modelling, ecosystem services research and decision making

analysis as high-quality LULC input.

A variety of supervised/unsupervised classification algorithms have been applied to quantify

LULC in GLC products (e.g. Herold et al., 2009; Mora et al., 2014, and references therein).

For example, the collection 5 MODIS land cover product (MCD12Q1) is based on the decision

tree method (Friedl et al., 2002) and Globcover on supervised spatio-temporal clustering. Typi-

cally, automated classification procedure are combined with expert opinions from local/regional

researchers.

In the recent years, more elaborated machine learning algorithms become popular in LULC

quantification as they can handle highly correlated input data (e.g. spectral data) in an explicit

way; incorporate data from various sources; deal with mass amount of data and easily amend

the missing data. Random Forest (RF) has been used to classify land cover (Clark et al., 2010;

Ghimire et al., 2010; Gislason et al., 2006; Hüttich et al., 2009; Nitze et al., 2015; Rodriguez-

Galiano et al., 2012; Thenkabail et al., 2005), vegetation type (Hüttich et al., 2009; Immitzer

et al., 2012; Senf et al., 2013), and also crop type (Nitze et al., 2015). RF is a decision-tree

based ensembling algorithm that uses bootstrap aggregation (bagging) and the random sub-

space method (Breiman, 2001). Similarly, Support Vector Machines (SVM) have also gained

increasing attention (Attarchi et al., 2014; Mountrakis et al., 2011; Vuolo et al., 2012) and used

extensively to quantify LULC (e.g. Pal, 2006; Senf et al., 2015; Vuolo et al., 2012). For example,

Vuolo et al. (2012) used SVM with MODIS data to evaluate existing GLC products. These two

algorithms are comparable in performance to the other state-of-the-art learning algorithms such

as neural networks (Attarchi et al., 2014; Gislason et al., 2006; Schwieder et al., 2014).

LULC quantification studies often determine (hyper) parameters of statistical learning algo-

rithms based on literature values or simplified preliminary runs, occasionally without cross-

validation (e.g. Dennison et al., 2003; Xiao et al., 2005). However, optimal data-processing

options are case-specific (i.e. dependent on the purpose, cost and processing capacities) (Thack-

way et al., 2013) thus should be site-specifically evaluated. Improperly selected data-processing

options can degrade the model performance by reducing information contained in the data.
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1.2.4 Fractional LULC regression

Fractional cover is the proportions of non-overlapping land cover types in pixels of a given raster

grid (Defries et al., 2000; Price, 1992; Smith et al., 1990). It is defined as the sum of patches

covered covered by a land cover type divided by the total area (Asner et al., 2000; Smith et al.,

1990). It is also called sub-pixel land cover as it can be conceived as one way to interpret sub-pixel

cover labelling (Fernandes et al., 2004). In a satellite image, it is calculated per pixel and ranges

from 0 (0% cover) to 1 (100% cover) (Obata et al., 2012). As it contains information for which

discrete raster land cover maps, it is increasingly used as a key descriptor of ecosystem and

its functions (e.g. Fernandes et al., 2004; Johnson et al., 2012; Pittman et al., 2010; Schwieder

et al., 2014; Zhang et al., 2013). For instance, Bevanda et al. (2014) used fractional cover to

add structure to land cover for animal habitat modelling.

Similarly, fractional LULC can be defined as the sum of the LULC patch area divided by the

total area in each pixel of a given raster grid (Fernandes et al., 2004). Estimating fractional

LULC from available coarse resolution satellite data can be a useful strategy (e.g. Schwieder

et al., 2014). There have been studies intended to retrieve LULC fractions from spectral data

(e.g. Colditz et al., 2011; Guerschman et al., 2009; Obata et al., 2012) and continuous efforts to

derive fractional land cover information from existing satellite data (e.g. Defries et al., 2000).

Nevertheless, fractional LULC as continuous LULC representation, especially with multiple land

cover types is still underdeveloped.

Fractional cover regression can be implemented via various techniques. The techniques include

the fuzzy classifier (Foody et al., 1996), the time series model (Lu et al., 2003), linear models

(DeFries et al., 1995; Schwarz et al., 2005), data mining algorithms (Fernandes et al., 2004;

Schwieder et al., 2014), and spectral mixture analysis (Asner et al., 2000; Guerschman et al.,

2009). Spectral mixture analysis (SMA) has been frequently used in fractional cover studies

using spectral data (Obata et al., 2012). In this approach, mixed spectral signals are decomposed

into spectral endmembers and by which sub-pixel fractions of land cover types are estimated

(Guerschman et al., 2009; Lobell et al., 2004; Obata et al., 2012). However, the SMA approach

generally favours hyperspectral data over multi-spectral data (i.e. MODIS reflectance data)

(Asner et al., 2000; Guerschman et al., 2009), which is still deficient at the global scale. Moreover,

the method is under the assumption that there are linear relationships between the area fractions

of spectral sources (e.g. land cover types) and spectral signals (e.g. surface reflectances) (Asner

et al., 2000; Lobell et al., 2004; Xiao et al., 2005). This assumption is violated when non-linear

functions such as NDVI or EVI are used as predictor (Lobell et al., 2004).
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Instead, there are studies using RF to quantify fractional cover (e.g. Colditz et al., 2011; Guer-

schman et al., 2009; Lu et al., 2003; Obata et al., 2012; Schwieder et al., 2014). RF can deal with

a large number of highly correlated features (e.g. spectral data) and non-linear relationships

(Immitzer et al., 2012) as it tends not to overfit the data (Breiman, 2001; Segal, 2004). Moreover

it is convenient to set up compared to other data mining algorithms as it has a small number

of training parameters (Liaw et al., 2002).

1.2.5 Multi-crop LULC classification

Quantifying multi-crop LULC is a multinomial classification task. In cultivated ecosystems,

LULC data type labels are often imbalance since, when aggregated, minor LULC types occupy

a substantial portion in this type of landscape. This cause data imbalance when organised

for LULC classification using statistical learning techniques (i.e. classification and regression

algorithms). In this case, training data sets are imbalanced.

Generally learning algorithms require balanced training data (e.g. Chawla et al., 2002; Fernández

et al., 2011). For instance, support vector machine (SVM) assumes training dataset is balanced

and known to be biased to major types otherwise (Akbani et al., 2004). Therefore, under a

data imbalance, rare or minor LULC types are more difficult to classify. This can be avoided by

doing a binary classification (e.g. vegetation and non-vegetation) via reclassification of the data.

However, as indicated, this imbalance may be a major challenge for multi-crop LULC mapping

which inevitably incorporates many LULC types including presumably minor LULC types such

as crop species.

In general, there are three major ways to cope with imbalanced data sets. The first is to adapt

the classification algorithm to reinforce learning of the minor classes (e.g. Bruzzone et al.,

1997; Williams et al., 2009). The second is to adjust the classifier by assigning different costs to

misclassification in rare versus frequent classes (e.g. Sun et al., 2007). The third is by re-sampling

the data set (e.g. García et al., 2011; He et al., 2009; Waske et al., 2009, and references therein).

This last approach has the advantage to be independent from the classifier used.

Oversampling of the rare classes with replacement or undersampling of the major class have

been discussed by several authors (Japkowicz et al., 2002; Ling et al., 1998; Schistad Solberg

et al., 1996). However, the potential of these approaches to improve the classification accuracy

of rare classes seems to be limited. In particular random oversampling with replacement can

lead to overfitting (Chawla, 2010).

To overcome the issue of overfitting, Chawla et al. (2002) proposed to generate new minority
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instances by a synthetic minority oversampling technique (SMOTE) instead of oversampling with

replacement. They reported that the synthetic points created by SMOTE forced the classifier to

learn larger and less specific regions and thus changed the boundaries between classes. SMOTE

performs better than oversampling the minority class by replacement and can be combined with

undersampling of the majority class.

There are other obstacles in classifying multi-crop LULC from spectral data. First, spectral

characteristics of LULC types are often altered by the spatial and temporal mixture of LULC

types. Second, vegetation development phase varies by socio-economic factors (e.g. cropping

schedule) as well as natural factors (e.g. climatic and topographic conditions), hence spectral

characteristics are highly heterogeneous even within a single type. In addition, the use of coarse

spatial resolution datasets (e.g. 250 m) induces the presence of mixed LULC types in one pixel

especially in transition zones (Foody et al., 1996). Since the pixel size of data from many remote

sensing systems is relatively large, many pixels are of mixed in LULC composition.

1.2.6 Research gaps and objectives

Although the remote sensing is widely used to retrieve LULC information for the globe, its

practical implementation does not suffice for the need of LULC information in heterogeneous

agricultural landscapes due to the limitation of the data, method and its operational difficul-

ties.

• Lack of detailed ground observation

Although LULC distribution and its change over time is essential, detailed LULC obser-

vation data is scarce or even non-existent especially for complex agricultural landscapes.

It restricts building a statistical model to estimate LULC information. Hence, collection

of detailed LULC data is necessary for a complex heterogeneous landscape.

• Deficit of continuous representation of LULC

Available global LULC data is coarse raster maps and continuous representation of LULC

is still lacking. It is primarily due to the source remote sensing data is coarse in spatial

resolution. Developing a model retrieving continuous LULC from coarse remote sensing

data would be a useful strategy.

• Deficit of multi-crop LULC

However, albeit acclaimed theoretically, the concept is still far away from being incorpo-

rated routinely into practical decision-making. In cultivated ecosystems, crop LULC types

are often important as they have significant impact on the system. LULC classification
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with multiple crop types is still underdeveloped. Most of the existing LULC databases use

lumped agricultural classes (e.g. “croplands”) and lack detailed information such as crop

species. However, model-based estimation of multi-crop LULC is challenging due to severe

imbalance in distribution of crop-type LULC types (i.e. majority types dominating over

minor types) because most standard classifiers assume a balanced distribution of training

data.

The goal of this dissertation is to enhance LULC mapping in a complex agricultural landscape of

South Korea. Specifically, extraction of spatially (i.e. continuous representation) and thematically

(i.e. multi-crop types) detailed LULC information from existing, medium resolution, multi-

spectral satellite products are pursued. Regarding the aforementioned research questions and

research gaps, three objectives were formulated.

1. Collection of detailed ground LULC observation

To establish better LULC models for complex heterogeneous landscapes, high-quality

observation data is essential. During a field campaign, a high-quality ground LULC data

was collected over the entire study area. In chapter 2, the observed data is introduced and

compared with a GLC product for the three-year study period.

2. Modelling of continuous LULC representation

To obtain spatially improved LULC representation, extraction of continuous LULC repre-

sentation can be a good approach. In chapter 3, extraction of fractional LULC as continuous

LULC representation is pursued. A Random Forest (RF) regression model was developed

to extract fractional LULC from satellite products. To attain optimal performance of the

model, various data processing options were tested and chosen based on its impact on the

performance.

3. Classification of multi-crop LULC

To thematically improve LULC mapping, LULC classification with multi-crop LULC data

is important yet underdeveloped. Often unequal distribution of LULC types prevents

classifiers from successfully recognising minor LULC types. In chapter 4, multi-crop LULC

classification using Support Vector Machine (SVM) and Random Forest (RF) is presented.

A synthetic sampling technique was applied to improve the classification performance of

minor types by artificially balancing training data.

The three objectives altogether intend to find lessons and strategies to enhance LULC quantifi-

cation in agricultural landscapes and consequently global land use and land cover databases. In

order to soundly relate the three objectives in an integrated manner, this dissertation pursues

to design a combined framework covering the three topics. The data obtained in the course of
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achieving the first goal is used as training data in the next modelling studies. The limitations of

the existing GLC products are revealed and clarified in the first study and are methodologically

addressed afterwards. Each of the LULC modelling study is dealing with one specific limitation

of the existing GLC products (i.e. coarse spatial resolution and limited thematic resolution).

The general underlying data rarity/imbalance problem of this LULC studies is addressed in the

last study by means of a data resampling technique.

1.3 Concept of the dissertation

Corresponding to the research gaps and objectives, the dissertation includes three major compo-

nents: high-quality LULC data collection, continuous representation of LULC, and classification

of multi-crop LULC. These three components are presented in the next three chapters.

In chapter 2, the ground LULC census data from the field campaign is introduced. The observed

LULC data and the collection and the processing strategies are illustrated. Additionally, the

census data is compared with the MODIS Land Cover Type product (MCD12Q1). In chapter 3,

a data mining model retrieving continuous representation of LULC is presented. It seeks after

feasible strategies to achieve spatially and thematically improved LULC representation based

on existing satellite products. In chapter 4, to thematically improve LULC representation, a

multi-crop LULC classification model is presented. In the two modelling chapters, two statistical

learning techniques (i.e. RF and SVM) and various data-processing techniques (e.g. SMOTE)

are used to improve the performance of the LULC quantification models.

Deriving a per-field land use and land cover map in an agricultural mosaic catch-

ment (Chapter 2)

During three years of field campaign (2009–2011), LULC of the study area was thoroughly

surveyed. In this chapter, the census data, its collection strategy and post-processing protocol

are introduced. The raw LULC information and various reclassified class labels are provided

with meta information.

The collected data is transformed into a thematically and spatially rich LULC data for the area.

The dataset is a ‘per-field’ data as the unit entity of the dataset is a polygon corresponding

to an actual land parcel. Based on the field observation, the polygons are associated with

ecological and physical traits. The dataset is available at the public repository Pangaea (Seo

et al., 2014).

Furthermore, a comparison between the census data and the MODIS Land Cover Type product
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(MCD12Q1) was made to quantitatively evaluate available land use and land cover products. This

comparison would clarify the potential and limitations of the GLC products in the agricultural

landscape.

This type of vector-form data should be produced extensively to develop high-resolution LULC

datasets. The detailed crop type information described with FAO-LCCS can be used for regional

environmental modelling as well as for ecosystem services research and decision making analysis.

The chapter is published at the data journal Earth System Science Data (Seo et al., 2014).

Mapping Fractional Land Use and Land Cover in a Monsoon Region: The Effects

of Data Processing Options (Chapter 3)

In chapter 3, an empirical model for deriving continuous representation of LULC is developed.

We hypothesised that, with proper methods, existing satellite products can be a useful source

of information about LULC at sub-pixel level. In that context, a fractional cover regression

for 10-type system was carried out based on a MODIS multi-spectral data (MODIS 13Q1).

Based on the regression model, an evaluation framework was created for making informed

decisions in choosing data-processing options. By using the framework the effect of three key

data-processing options were evaluated by its impact on the regression performance: selection of

spectral predictor sets (NDVI, EVI, surface reflectance, and all combined), time interval (8-day

vs. 16-day), and smoothing (no smoothing vs. Savitzky-Golay filter). The mechanism affecting

the model performance was investigated by looking at the correlation between observed and

predicted LULC fractions. Additionally, relative importance of the spectral bands and the data

acquisition dates were estimated. Through the study, cross-validation was used to rigorously

calibrate and evaluate the models. The chapter has been submitted to IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing.

Improving the classification of rare land use and land cover types using synthetic

data (Chapter 4)

LULC classification with multiple crop types is yet under-developed. One of the reasons is data

imbalance. LULC data tends to be imbalanced with majority types dominating over minor types.

Generally speaking, data mining algorithms perform best on equally distributed training data.

However, most standard classifiers implicitly assume a balanced distribution of LULC types.

Therefore, they fail to detect minor LULC types under severe imbalance. When imbalanced,

the learning of the minor LULC types will be hampered as well as the overall performance. In

cultivated ecosystems, minority types are often more important than major types as they might
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indicate changes of LULC. In chapter 4, the synthetic oversampling technique (SMOTE) is

applied to the training LULC data. It balances training data, hence improve model performance.

Among various approaches to cope with imbalanced data sets (e.g. cost sensitive learning), a

resampling approach was preferred as it is advantageous as being independent from the used

learning algorithms. The goal of the study was to improve the classification of rare LULC types

in an agricultural mosaic catchment by using SMOTE. Support Vector Machine (SVM) and

Random Forest (RF) classifiers were used to classify a multi-majority and multi-minority dataset

using the MODIS spectral product (MOD13Q1). Four scenarios were formulated to reveal the

effect of SMOTE. The mechanism affecting the model performance was investigated as well.

The chapter is under review in the journal ISPRS Journal of Photogrammetry and Remote

Sensing.

Overall concept and the guiding hypothesis

Overall, this dissertation seeks after how to better quantify LULC of a complex agricultural

landscape primarily relying on globally available multi-spectral satellite data. For guiding this

line, one working hypothesis is developed: the combination of high-quality LULC data, recent

machine learning techniques, and data-processing techniques can substantially increase the

amount of LULC information we can extract from the medium resolution satellite products.

This main hypothesis is pursued because GLC products are mostly based on the same type

of data (e.g. global satellite data) and similar algorithms (e.g. decision trees). Thus, retrieving

detailed LULC information from existing satellite products would be a convenient way to obtain

new information. An overview of the dissertation work is shown in 1.2.

These three chapters are written as part of this cumulative dissertation. Before going into the

main chapters, a description of the study site will be given. At the end of the dissertation, a

synopsis will be provided to summarise the results and discuss current capacity and potential

of the LULC science for complex heterogeneous landscapes.

All the three studies were conducted within and supported by the International Research Training

Group between Germany and South Korea (DFG/KOSEF, Complex TERRain and ECOlog-

ical Heterogeneity - TERRECO, GRK 1565/1). In the overarching project TERRECO, this

dissertation work aimed to supply LULC information for the other research projects evaluating

various ecosystem functions and ecosystem services.
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• Development of high-quality LULC 
dataset (Part 1)

• Spatial refinement of land cover 
quantification using continuous field 
LULC (Part 2)

• Thematic refinement of land cover 
quantification under data imbalance 
(Part 3)

• lack of crop information (thematic limitation) 

• coarse grid size (spatial resolution)

• long production intervals (temporal limitation) 

Quantification of land use and land cover in 
a Monsoon agricultural mosaic from space
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1 Biogeographical Modelling, BayCEER, University of Bayreuth, 95440 Bayreuth, Germany

1. Context

PhD defense
Bayreuth/15.12.2015

This doctoral thesis was prepared at Biogeographical Modelling and Ecological Modelling, University of 
Bayreuth between April 2009 and Aug 2015 and was supervised by Prof. Dr. Björn Reineking, Prof. Dr. 
Thomas Köllner, Prof. Dr. John Tenhunen, and Dr. Christina Bogner. 
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hotspot in the Soyang river watershed, South Korea. 
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Fig. 1.2 Structure of the disseration and connections of different parts

1.4 Study site

The study site Haean-myeon is located at the border between North and South Korea (128◦1′33.101′′E,

38◦28′6.231′′N, 450 - 1200 m a.s.l.) (Figure 1.3). It is a small heterogeneous agricultural catch-

ment (64.4 km2) consisting of 58% of surrounding forested area, 30% of agricultural area in the

centre, and 12% of the remaining area as residential and other semi natural LULC area such as

riparian and farm road area.

Due to its characteristic bowl shape, the land use changes from predominantly rice paddies at

the valley bottom to dry field farming on moderate slopes. The higher altitudes are covered by

deciduous and mixed forests. The agricultural area in the centre is characterised as a mosaic of

non-crop and crop patches (Figure 1.4). The LULC types are unevenly distributed due to its

topography with an imbalance ratio up to 100 : 1 (Figure 1.5).

The upland forest is at higher elevations, predominately composed of mixed deciduous oak (Quer-

cus spp.) and maple forest. Other major species include the Japanese Red Pine (Pinus densiflora),

Japanese Larch (Larix leptolepis), Pitch Pine (Pinus rigida), Korean Pine (Pinus koraiensis),
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Japanese Cedar (Cryptomeria japonica), Japanese Cypress (Chamaecyparis obtuse), Japanese

Chestnut (Castanea crenata). Five dominant weeds in the crop fields were Digitaria sanguinalis,

Conyza canadensis var. canadensis, Cyperus difformis, Cyperus orthostachyus and Cyperus

amuricus. Weeds such as Artemisia montana, Elsholtzia splendens, Aster scaber and Persicaria

nepalensis that are typically found in mountainous areas and such as Conyza canadensis var.

canadensis, Senecio vulgaris, Aster pilosus and Bidens frondosa were also found.

The study region belongs to East Asian summer monsoon (EASM) region (Yihui et al., 2005)

and shows persistent and intensive raining period in Summer. This period is called “Changma”

(long lasting rain) in Korean literature (Kang et al., 2009). The average air temperature of

the study area is 8.5° C at the central plateau (Korean Meteorological Administration, http:

//web.kma.go.kr/eng). The annual average rainfall equals 1599 mm and the maximum daily

rainfall was 223 mm between 1999 and 2010. Due to the raining period in which more than 60%

of annual precipitation is concentrated and extreme rainfall events occur frequently, acquisition

of cloud-free spectral data during summer is generally difficult (Guerschman et al., 2009; Yihui

et al., 2005).

The catchment is located in the Soyang river watershed, South Korea (127′43′′ to 128′35′′ E

and 37′41′′ to 38′29′′ N). Total 85% of the watershed is covered by deciduous forest but with

a few agricultural hotspots. There was a severe downstream water quality degradation by the

agricultural activity occurring in the catchment (Meusburger et al., 2013; Shope et al., 2014).

Accordingly, a series of policy measures including land use conversion were initiated by the local

government in 2008 (Jun et al., 2010). The land use conversion policy aimed to reduce soil

erosion by converting annual dry field crops to perennial crops such as “ginseng” by subsidising

perennial crops. This policy caused rapid LULC changes in land use and land cover (Seo et al.,

2014).

http://web.kma.go.kr/eng
http://web.kma.go.kr/eng
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Fig. 1.3 Map and the location of the study site ‘Haean’ on the Korean peninsula. The catchment is
an agricultural hotspot located in the protected forested watershed. Satellite image a SPOTMaps
mosaic product (Astrium Services, http://www.astrium-geo.com) acquired in 2009.

Fig. 1.4 Pictures of the observed LULC types taken during the three-year study period (2009–
2011). In the relatively small study area, a huge variety of crop/non-crop LULC types occurred.
By means of technical and financial aids such as strong subsidisation, the local management
promoted alternative crops such as ginseng and orchards which caused rapid changes in LULC.

http://www.astrium-geo.com
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Fig. 1.5 Land use and land cover of the Haean catchment surveyed in 2010. (a) Original polygon
data with 59 LULC types and (b) rasterised LULC upon the MODIS sinusoidal grid (H28V5)
with 28 remained types after rasterisation. The LULC types are according to the classification
scheme S1 of the original survey data and the names in bold indicate the dominant LULC types
(Seo et al., 2014).
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1.5 Record of contributions to this thesis

The three studies described in this thesis refer to three manuscripts. The first manuscript is

published at Earth System Science Data, the second manuscript is submitted to IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing, and the third to ISPRS

Journal of Photogrammetry and Remote Sensing. The following list specifies the contributions

of the individual authors to each manuscript.

Manuscript 1 (Chapter 2):

Authors: Bumsuk Seo, Christina Bogner, Patrick Poppenborg, Emily Martin, Mathias Hoffmeis-

ter, Mansig Jun, Thomas Koellner, Björn Reineking, Christopher Shope, and John Tenhunen

Title: Deriving a per-field land use and land cover map in an agricultural mosaic catchment

Status: Published (2014)

Journal: Earth System Science Data

Contributions:

Bumsuk Seo 60%, idea, data collection, methods, data analysis, figures, tables,

manuscript writing, discussion, manuscript editing, corresponding

author

Christina Bogner 20%, idea,methods, data analysis, figures, tables, manuscript writing,

discussion, manuscript editing

Patrick Poppenborg 2%, data collection

Emily Martin 3%, idea, discussion, data collection

Mathias Hoffmeister 2%, data collection

Mansig Jun 2%, idea, data collection, discussion

Thomas Koellner 2%, idea, discussion

Björn Reineking 2%, idea, data collection, discussion, manuscript editing

Christopher Shope 2%, idea, data collection

John Tenhunen 5%, idea, data collection
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Dataset (Chapter 2):

Authors: Bumsuk Seo, Patrick Poppenborg, Emily Martin, Mathias Hoffmeister, Christina

Bogner, Hamada Elsayed Ali, Björn Reineking and John Tenhunen

Title: Per-field land use and land cover data set of the Haean catchment, South Korea

Status: Published (2014)

Publisher: PANGAEA

Contributions:

Bumsuk Seo 65%, idea, data collection, data structuring, figures, metadata writ-

ing, data editing, corresponding author

Patrick Poppenborg 5%, data collection

Emily Martin 5%, idea, discussion, data collection

Mathias Hoffmeister 5%, data collection

Christina Bogner 5%, data structuring, figures, metadata writing

Hamada Elsayed Ali 5%, data collection

Björn Reineking 5%, idea, data collection, discussion

John Tenhunen 5%, idea, data collection

Manuscript 2 (Chapter 3):

Authors: Bumsuk Seo, Christina Bogner, Thomas Koellner, and Björn Reineking

Title: Mapping Fractional Land Use and Land Cover in a Monsoon Region: The Effects of

Data Processing Options

Status: Submitted

Journal: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Contributions:

Bumsuk Seo 75%, idea, data collection, methods, data analysis, figures, tables,

manuscript writing, discussion, manuscript editing, corresponding

author

Christina Bogner 10%, idea,methods, data analysis, figures, tables, discussion,manuscript

editing

Thomas Koellner 5%, idea, discussion

Björn Reineking 10%, idea,methods, data analysis, figures, tables, discussion,manuscript

editing
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Manuscript 3 (Chapter 4):

Authors: Christina Bogner, Bumsuk Seo, and Björn Reineking

Title: Improving the classification of rare land use and land cover types using synthetic data

Status: Under review

Journal: ISPRS Journal of Photogrammetry and Remote Sensing

Contributions:

Christina Bogner 50%, idea,methods, data analysis, figures, tables, manuscript writing,

discussion, manuscript editing, corresponding author

Bumsuk Seo 45%, idea, data collection, methods, data analysis, figures, tables,

manuscript writing, discussion, manuscript editing

Björn Reineking 5%, idea, methods, discussion, manuscript editing
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Chapter 2

Deriving a per-field land use and land

cover map in an agricultural mosaic

catchment

2.1 Introduction

Agricultural land use affects ecosystem services, such as the provision of drinking water or

the control of soil erosion. Inappropriate agricultural practice can lead to serious soil loss and

pollution of surface water and groundwater by agrochemicals. Detailed data on land use and

land cover (LULC) in an agricultural landscape constitute basic information for environmental

monitoring and pollution control (Conrad et al., 2010; Pittman et al., 2010; Potgieter et al.,

2007).

In general, precise information on land cover is required for running Earth system models (Ottlé

et al., 2013) because land use change directly affects numerous climate parameters such as

albedo, CO2 cycling and hydrologic cycles (Mahecha et al., 2010; Matthews, 1983). Additionally,

LULC information is crucial for ecosystem services research, decision making and studies on

global change in general (Hansen et al., 2013; Poppenborg et al., 2013; Reineking et al., 2013;

Schulp et al., 2011).

Remote sensing has been increasingly used to derive better LULC data for the past few decades

(Bartholomé et al., 2005; Friedl et al., 2010; Loveland et al., 2000, 2010). Nevertheless, because

available global land cover products are still limited thematically, continuous efforts to improve

the LULC products are being made (Blanco et al., 2010; Colditz et al., 2011; Fernandes et al.,

2004).
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Particularly for agricultural landscapes, detailed land cover information is often lacking (Fritz

et al., 2013; Pittman et al., 2010; Potgieter et al., 2007). In fact, the most widely used land cover

databases such as GlobCover or Moderate Resolution Imaging Spectroradiometer (MODIS) land

cover only have a few crop-related classes (Bontemps et al., 2011; Loveland et al., 2000; U.S.

Geological Survey, 2012). Especially for heterogeneous arable zones, such as irrigated fields (e.g.

Conrad et al., 2010), land cover products based on remote sensing are underdeveloped (Colditz

et al., 2011).

Furthermore, spatial resolution of LULC data is often restricted. This limitation is particularly

pronounced in heterogeneous landscapes, such as mixed-farming areas, due to the complex mosaic

of crop/non-crop land use and land cover types (Schulp et al., 2011). Unlike a homogeneous

landscape (e.g. plantation farm), this type of agricultural mosaic needs a comprehensive number

of LULC classes in a relatively small area. Therefore, spatial resolution up to several hundred

metres might be too coarse for this type of landscape. Longitudinal land cover data also constitute

an important element when agricultural land use changes rapidly. MODIS Land Cover Type

(MCD12Q1) is the only product that provides annual information. It has been widely used for

analysing land cover changes (Loveland et al., 2000).

As a consequence, for an agricultural mosaic landscape with frequently changing land use, the

only way to obtain detailed land cover information is surveying the study area.

In our study we address some of the above-mentioned problems and provide thematically and

spatially rich land use and land cover data. We censused a small agroecosystem with complex

agricultural land use. We recorded field-by-field land use and land cover type; hence, the unit

entity of our data set is a single land parcel and we call it “per-field”. We followed Conrad et al.

(2010), who defined “per-field” data as a data set based on actual agricultural fields.

In this paper we introduce the data and their collection and post-processing protocol. Addition-

ally we compared our data with MCD12Q1. The data are now available at the public repository

Pangaea (10.1594/PANGAEA.823677).

2.2 Material and methods

2.2.1 Study area

The study area, Haean catchment, is located at the border between North and South Korea

(128°1′33.101′′ E, 38°28′6.231′′N). It is a small agricultural catchment (64.4 km2) with rice pad-

dies, annual and perennial dry fields and orchard farms. Approximately 1200 inhabitants live in

10.1594/PANGAEA.823677
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Haean, mostly commercial farmers running their own small farms in the catchment. Agricultural

fields in this area are typically smaller than 40ha, and agricultural practice is intensive in terms

of fertilisation and tillage.

The altitudes in the Haean catchment range from approximately 500 to 1200m. Due to its

characteristic bowl shape, land use changes, consisting predominantly of rice paddies at the

valley bottom and dry-field farming on moderate slopes. The higher altitudes are covered by

deciduous and mixed forests.

The average annual air temperature is approximately 8 °C, and the mean annual precipitation

ranges from 1200 to 1300mm, with more than 60% of rainfall occurring during the summer

monsoon between June and August (Korean Meteorological Administration, http://web.kma.

go.kr/eng). Between 1999 and 2010 the maximum daily rainfall during summer reached up to

223mm.

This area has been studied intensively as it shows a typical conflict between agriculture and

environmental protection (Nguyen et al., 2012; Poppenborg et al., 2013; Reineking et al., 2013).

The downstream water quality was heavily degraded by the agricultural activity occurring in

the catchment (Meusburger et al., 2013; Shope et al., 2014). The local government pursued

different policy measures concerning this conflict, such as subsidising perennial crops, which

caused rapid LULC changes in land use and land cover.

2.2.2 Preparation of data collection

Prior to the field campaign, we collected pre-existing information to create an initial “base map”.

It served as a field template and was particularly useful for gaining access to isolated patches.

We used a SPOTMaps image (Astrium Services, http://www.astrium-geo.com), a mosaic

of multiple SPOT 5 images, with a ground resolution of 2.5m. Furthermore, we worked with

aerial photographs and a land cover map from the Korean Ministry of Environment (KME)

(http://egis.me.go.kr) to complement the SPOTMaps image. From the KME land cover

map, we extracted vector-based linear elements such as road and stream networks. An additional

land use map by the Research Institute For Gangwon (http://gdri.re.kr) from 2007 provided

information on previously surveyed agricultural land use. The data sources are summarised in

Table 2.1.

The images selected for the base map were only moderately well georeferenced. The SPOTMaps

image, for example, had an approximated location error of 10–15m according to the specification,

and the other spatial data also revealed a substantial location error. Therefore, we georeferenced

http://web.kma.go.kr/eng
http://web.kma.go.kr/eng
http://www.astrium-geo.com
http://egis.me.go.kr
http://gdri.re.kr
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them again using 14 ground control points (GCPs) distributed over the entire catchment. They

were established along linear elements, such as roads, and defined by the Global Positioning

System (GPS) coordinates averaged over several measurements. After georeferencing by the

first-order polynomial (affine) transformation, the horizontal root mean squared error (RMSE)

of the final base map image equalled 9.62m.

2.2.3 Data collection

The main goal of the data collection campaign was to survey LULC information in the entire

catchment. We carried out annual campaigns in 2009–2011 to census the entire landscape. The

term “census” is adopted here in contrast to the term “sampling” because we recorded LULC

information from the whole study area and not from a subset of land parcels. Accordingly,

we mapped the complete set of land parcels and documented land cover type together with

additional information on data quality and spatial and temporal mixture of land use types (e.g.

double dry-field cropping per year or mixed dry fields). In contrast to 2009 and 2010, we were

only able to map the northern half of the catchment in 2011 due to time and budget limitations.

Therefore, we did not consider these data when calculating descriptive statistics or analysing

land use change and only compared the years 2009 and 2010.

We divided landscape elements into two categories, namely patches and linear elements. The

former included agricultural and non-agricultural fields, forest, waterbodies and all other areal

land cover types best represented by a polygon. In general, we visited patches once per year.

However, patches with a spatially or temporally mixed land use type were inspected multiple

times. Linear elements comprised roads, stream networks, field edges or any other element that

can be represented by a polyline. They were investigated during the whole project period from

2009 to 2011 because of their large extent and relative temporal stability.

To record a landscape element, we marked vertices and edges for each spatial entity as GPS way-

points (WPs) and tracks. The WP IDs were written on the printed base map and corresponding

information in the field data book. GPS tracks were continuously stored in the device as we

moved around and gave us complementary data for drawing polygon edges and polylines.

We used several GPS devices (Garmin CSX60, Garmin Colorado 300 and Garmin eTrex 30)

simultaneously to retrieve location information. The use of multiple devices as a back-up secured

the data against sudden power loss. For devices capable of loading custom maps, we loaded the

base map in order to simultaneously review newly recorded WPs.



42
CHAPTER 2. DERIVING A PER-FIELD LAND USE AND LAND COVER MAP IN AN AGRICULTURAL

MOSAIC CATCHMENT

2.2.4 Post-processing

2.2.4.1 Digitising the field records

We digitised the field records into polygons and polylines with LULC type labels. The base

map served as background information to complement the field records. In addition to LULC

classes, we stored other descriptive information in an attribute table. In the corresponding

columns, quality assurance (QA) was recorded as: “?” (questionable), “*” (unknown) and “/”

(not valid). For instance, a question mark was assigned if we could not identify the crop reliably.

Gap-filled data were also marked by a question mark. A forward slash indicates that the data

were collected but was unreliable (e.g. incorrect identification). For further information, the

reader is referred to the readme file of the data set at the Pangaea repository.

2.2.4.2 Gap filling

After digitising the field records, some gaps remained between polygons. They occurred mostly

around patches that were irregularly shaped and therefore difficult to map. We filled these gaps

using the KME land cover map (Table 2.1) and our own data on linear elements.

First, we added the main road and stream networks extracted from the KME land cover map.

Subsequently, we created two major linear elements, namely seminatural field edges and a stream

network from our GPS track data. For this purpose, we converted the GPS tracks of field edges

and non-paved agricultural pathways, which were initially polylines, into polygons by creating

6m wide buffers encompassing the tracks. Similarly, based on the GPS tracks recorded along

small streams, we created the stream network buffers of 5m width and assigned them to the

existing “inland water” polygons.

Finally, we used the KME land cover map to fill the remaining gaps. Forest areas that were

inaccessible due to military restrictions made up the major part of the transferred land cover

information.

We updated the QA information during the gap-filling procedure. If only original observations

without any extrapolated information are of interest, the QA flag can be used to filter out

transferred land cover information. Because the LULC data were recorded yearly, the gaps

differed from year to year. Therefore, we filled them separately for each year.

2.2.4.3 Definition of LULC classes

We defined a LULC classification scheme with 67 land use and land cover classes to adequately

represent the agriculture mosaic in the catchment. If several LULC types coexisted in one
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polygon, we assigned it to the LULC type that made up the largest portion and recorded

mixture information in the attribute table. The scheme incorporates a large number of regional

crop types as well as several natural and seminatural land cover classes found in the area. In

the following we call this detailed classification scheme S1.

For vegetative classes, we also recorded information on life form, life cycle and crop type following

the land cover classification system (LCCS) developed by the FAO (Food and Agricultural

Organization of the United Nations) (Di Gregorio, 2005). We categorised the life cycle of a

class as “perennial”, “annual” or their mixture “annual/perennial” based on the life cycle of

the plant species and the local cultivation practice. In other words, if a perennial crop was

harvested after one growing season we classified it as “annual”. We distinguished between the

life forms “woody”, “herbaceous” and “lichens/mosses”, or a combination of them. Crop type

patches were further subdivided into 12 different crop types (Supplement Table S1 at Pangaea

repository). We assigned mixed crop type values for patches where various crop/non-crop

vegetation coexisted.

In addition to the S1 scheme containing 67 classes, we reclassified the LULC information

according to three simpler schemes. First, we generated a locally optimised scheme with 10

classes (called S2 in the following) that reflects the edaphic and socio-economic conditions in the

study area. It consists of the classes “barren”, “dry field”, “forest”, “greenhouse”, “inland water”,

“orchard field”, “paddy field”, “seminatural” and “urban”. Then, based on the FAO-LCCS we

regrouped the S1 classes into eight major types (Supplement Table S2 at Pangaea repository).

Two of the eight classes are relevant for crop distinction. Finally, we classified our data according

to the International Geosphere–Biosphere Programme (IGBP) Discover land cover system which

contains 17 classes, two of which are crop classes (Friedl et al., 2010; Loveland et al., 2000, 2010).

Thus, the schemes S1, S2, FAO-LCCS and IGBP differ in the total number of classes and the

number of crop classes (Table 2.2).

Table 2.2. Characteristics of the different land use and land cover classification schemes.

Name Description Total Classes related to agriculture
classes

S1 LULC types observed 67 Individual crops recorded
S2 Locally defined grouping 10 “Dry field”, “paddy field”

and “orchard field”
FAO-LCCS FAO-LCCS major land cover classes 8 “Cultivated terrestrial”

and “cultivated aquatic”
IGBP IGBP Discover system 17 “Croplands” and “cropland/

natural vegetation mosaics”
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These reclassified LULC data can be used together with global products such as MCD12Q1 or

GlobCover that follow the IGBP and FAO-LCCS schemes, respectively. For the IGBP classes,

we reclassified some of the perennial crops as non-crop types (forest or shrub) to be consistent

with the IGBP system (e.g. “orchard field” coded as “open shrub”) (Friedl et al., 2002). We

also reclassified rice paddies as “croplands”, unlike in S2, which distinguishes “paddy field” from

other agricultural types.

2.2.4.4 Comparison with MODIS land cover

We compared the proportions of different classes in our data set with those provided in MCD12Q1

Land Cover Type 1 (IGBP). Additionally, we compared maps derived from our data with those

provided in MCD12Q1 for 2009 and 2010. Therefore, we rasterised our survey data at the same

spatial resolution (MODIS 500m sinusoidal grid). We determined the LULC class label of a

grid cell covered by multiple polygons based on the exact area size. Therefore, we calculated

the fraction of the occupied area in the projected (Euclidean) space and assigned the LULC

class labels based on the highest proportion.

To measure the agreement between maps, we derived confusion matrices and calculated Cohen’s

non-weighted κ (Cohen, 1960):

κ = po − pc

1− pc
, (2.1)

where po is the proportion of pixels in which the two data sets agreed and pc is the proportion

of pixels for which agreement is expected by chance.

Recently, κ has been criticised because of its limited use in remote sensing (Pontius Jr et al.,

2011). Therefore, we also provide Pontius’s quantity disagreement Q and allocation disagreement

A. They are defined as

Q =
∑J

g=1 qg

2 (2.2)

and

A =
∑J

g=1 ag

2 , (2.3)

where qg and ag are quantity disagreement and allocation disagreement in the LULC class g.

They are calculated as

qg =
∣∣∣∣∣∣
(

J∑
i=1

pig

)
−

 J∑
j=1

pgj

∣∣∣∣∣∣ (2.4)

and

ag = 2 min
( J∑

i=1
pig

)
− pgg ,

 J∑
j=1

pgj

− pgg

 , (2.5)
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where pig is the proportion of the area of class g in the reference map, pgj is its proportion in

the comparison map and pgg is the proportion classified correctly.

The overall quantity disagreement Q indicates the difference between a reference map and a

comparison map due to the less than perfect match in the proportions of the categories. The

overall allocation disagreementA shows the difference between a reference map and a comparison

map caused by the less than optimal match in the allocation of the categories. Finally, the total

disagreement D is the sum of Q and A.

2.2.4.5 Software

We processed the data in GNU R v3.0.2 (R Core Team, 2013) and provide the R code along

with the data set in the repository Pangaea (10.1594/PANGAEA.823677). For the reclassification,

we used the package raster (Bivand et al., 2014). For the rasterisation, we used the geometry

engine GEOS (Geometry Engine - Open Source) (GEOS Development Team, 2014) through

the package rgeos (Bivand et al., 2014).

2.3 Results and discussion

2.3.1 Local classification scheme S1

The field survey resulted in vector geographic information system (GIS) data with 67 LULC

classes (S1). Overall, the study site can be characterised as an extremely heterogeneous agricul-

tural landscape with a large number of LULC types in its central part (Fig. 2.1; proportions

in the Supplement Table S3 at Pangaea repository). We provide more details on the LULC

types in the meta information of the data set (cf. Supplement to the data set at Pangaea

repository).

The data have 3377 polygons with an average size of 0.019 km2. Because in 2011 we only surveyed

the northern half of the catchment, 12.3% of the values were lacking for this year.

“Deciduous forest” at the steep hill slopes was stable during the studied period. It occupied more

than half of the study area and was therefore the most dominant type (55.6%, 2-year average).

The moderate slopes from the forest edges to the flat centre were dominated by dry-field farms

which occupied 16.3% (2-year average) of the total catchment. The major dry-field crops among

the total of the 42 we recorded were soybean, ginseng, potato, radish, European and Chinese

cabbages and maize. Rice paddies (8.3%, 2-year average) were prevalent in the central part and

surrounded the small urban core (0.86%, 2-year average).

10.1594/PANGAEA.823677
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Fig. 2.1 Land use and land cover in the Haean catchment in (a) 2009, (b) 2010 and (c) 2011
according to the classification scheme S1 containing 67 classes.



CHAPTER 2. DERIVING A PER-FIELD LAND USE AND LAND COVER MAP IN AN AGRICULTURAL
MOSAIC CATCHMENT 47

2.3.1.1 Major changes in land use

During the study period, dry fields and rice farming decreased and orchards and ginseng culti-

vation increased (Table 2.6 and Supplement Table S3 at Pangaea repository). In fact, “Ginseng”

almost doubled from 2009 to 2010 (1.26 to 2.48%). It is consistent with the rapid ginseng

expansion reported by Jun et al. (2010), who suggested replacing annual dry crops by perennial

crops to stabilise soils and thus prevent erosion. An expected reduction of soil erosion due to this

land use change was discussed in Arnhold et al. (2013), Kettering et al. (2012), and Ruidisch

et al. (2013) and Shope et al. (2014).

Additionally, fallow fields increased in 2010 (4.8%) compared to 2009 (1.9%) and replaced a

large number of dry fields. We attribute these changes partially to the subsidy for fallow fields

and partially to corporal regulations requiring at least 3 years of fallow or organic farming before

ginseng farming could start. The ginseng company Korea Ginseng Corporation only signs a

contract with farmers when those regulations are fulfilled.

Compared to the patches, linear elements such as “seminatural” (6.0%), “transportation” (0.78%)

and “inland water” (0.32%) made up a small proportion in 2009 and 2010. Nevertheless, they

covered the whole catchment (Fig. 2.1).

Field-level land use change was more pronounced than the change of the proportions due to

crop rotation, which is common for the annual crops in the region. The annual crops are rarely

cultivated in successive years and the dry-field crops commonly have a 3-year portfolio (e.g.

potato–cabbage–soybean). This pattern is most distinctive in the northern part of the arable

zone where the colours (LULC types) are displaced between 2009 and 2010 (Fig. 2.1). However

this displacement is not reflected in the proportions.

2.3.1.2 Life form and life cycle

For vegetated patches, “herbaceous” vegetation dominated the central agricultural area in

contrast to the surrounding forest which was entirely “woody” (Fig. 2.2). “lichens/mosses” type

vegetation was not recorded. The life form did not change over the period studied (Table 2.3),

possibly because land use changes mainly occurred within the “herbaceous” category (i.e. in

the agricultural area).

The distribution of life cycles changed from 2009 to 2010 (Table 2.4). “Annual”-type vegetation

dropped from 19.87 to 17.45% due to decreasing rice paddies and dry fields. In contrast, natural

“perennial” vegetation expanded over a larger area (61.53% in 2009 to 62.78% in 2010). These

changes are clearly visible in the mid-western part of the area (Fig. 2.3) and are probably
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Table 2.3. Changes in the FAO-LCCS category life form. Note that the survey data of 2011 are
incomplete.

Life form Survey (%)
2009 2010 2011

Herbaceous 30.17 29.64 19.13
Herbaceous/woody 6.82 6.91 7.03
Non-vegetated 2.85 2.81 2.56
Woody 60.15 60.60 59.01
Missing data 0.02 0.03 12.27

Herbaceous

Herbaceous/Woody

Woody

Non-vegetated

Missing data

(a) (b) (c)

Fig. 2.2 Life form of the vegetation cover according to the FAO-LCCS in (a) 2009, (b) 2010
and (c) 2011.

due to the governmental policy of replacing dry fields by perennial crops such as ginseng and

orchards.

Annual

Annual / Perennial

Perennial

Non-vegetated

Missing data

(a) (b) (c)

Fig. 2.3 Life cycle of the vegetation cover according to the FAO-LCCS in (a) 2009, (b) 2010
and (c) 2011.

2.3.1.3 Crop types

We found 6 of the 12 FAO-LCCS crop types in the study area, namely “cereals and pseudocereals”,

“roots and tubers”, “pulses and vegetables”, “fruits and nuts”, “fodder crops” and “industrial

crops” (Supplement Table S1 at Pangaea repository). We used combinations of them if multiple
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Table 2.4. Changes of the FAO-LCCS category life cycle. Note that the survey data of 2011 are
incomplete.

Life cycle Survey (%)
2009 2010 2011

Annual 19.87 17.45 10.58
Annual/perennial 15.85 16.93 13.14
Non-vegetated 2.73 2.81 2.54
Perennial 61.53 62.78 61.46
Missing data 0.02 0.03 12.27

crop types were identified on the same patch. Occasionally, the class “mixed crops” was assigned

when the combination was not precisely recorded.

For some crops, the most suitable type was difficult to find. Indeed, the LCCS manual classifies

“soybean” as an industrial crop, while in the region it is often used as a vegetable because

the green part is popular in local cuisine. “Wild sesame” is another example of a crop with

multiple purposes, namely “pulses and vegetables” and “industrial crops”. In our study we

defined “soybean” and “wild sesame” as “industrial crops”.

The 3 years of crop type information are shown in Fig. 2.4 and summarised in Table 2.5.

“Cereals and pseudocereals” and “roots and tubers” diminished as “rice paddy”, “white radish”

and “potato” cultivation decreased. In contrast, “fruit and nuts” and “industrial crops” increased

because the orchards and a few other industrial crops such as “ginseng” expanded due to the

governmental promotion of perennial crops. Additionally, “non-crop vegetation” rose from 2009

to 2010 (69.1 to 72.0%) as a consequence of an increased number of fallow fields in preparation

for future ginseng farming.

Cereals and Pseudocereals

Cereals and Pseudocereals / 
 Fodder crops

Fodder crops

Fruit and Nuts

Fruit and Nuts / Pulses and 
 Vegetables

Industrial crops

Mixed crops

Non-crop Vegetation

Non-vegetated

Pulses and Vegetables

Roots and Tubers

Missing data

(a) (b) (c)

Fig. 2.4 Crop types according to the FAO-LCCS in (a) 2009, (b) 2010 and (c) 2011.
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Table 2.5. Proportions of crop types defined according to the FAO-LCCS crop types. Note that
the survey data of 2011 are incomplete.

Crop types Survey (%)
2009 2010 2011

Cereals and pseudocereals 9.25 8.34 4.77
Cereals and pseudocereals/fodder crops 0.26 0.77 0.93
Fodder crops 0.07 0.09 0.59
Fruit and nuts 1.07 1.48 0.91
Fruit and nuts/pulses and vegetables 0.00 0.01 0.04
Industrial crops 3.76 5.35 4.27
Mixed crops 4.50 2.74 2.26
Non-crop vegetation 69.08 71.96 67.97
Non-vegetated 2.73 2.81 2.54
Pulses and vegetables 2.57 1.70 0.95
Roots and tubers 6.69 4.71 2.50
Missing data 0.02 0.03 12.27

2.3.2 Classification schemes S2 and FAO-LCCS

The coarser classification scheme S2 summarises the main changes in land use in the study area

(Fig. 2.5 and Table 2.6). Actually, “dry field” dropped from 2009 (17.83%) to 2010 (14.83%)

and the “seminatural” type increased from 11.35% to 14.18%. We attribute the latter change

to the spread of fallow fields.

Barren

Dry field

Forest

Greenhouse

Inland water

Inland Wetland

Orchard field

Paddy field

Semi natural

Urban

Missing data

(a) (b) (c)

Fig. 2.5 Land use and land cover in the Haean catchment in (a) 2009, (b) 2010 and (c) 2011
according to the classification scheme S2.

The three dominant FAO-LCCS types, namely “natural and seminatural terrestrial vegetation”,

“cultivated and managed terrestrial area” and “cultivated aquatic or regularly flooded areas”

covered 97.2% (2-year average) of the total area. The “natural and seminatural terrestrial

vegetation” prevailed (70.6%, 2-year average) and increased from 2009 to 2010 (Table 2.7). In

contrast, “cultivated and managed terrestrial area” and “cultivated aquatic or regularly flooded

areas” decreased, probably due to reduced dry-field and rice farming, respectively.

When applying the FAO-LCCS scheme to our data, the classification of “rice paddy” was
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Table 2.6. Changes in land use and land cover based on the classification scheme S2. Note that
the survey data of 2011 are incomplete.

Class Survey (%)
2009 2010 2011

Barren 0.31 0.22 0.08
Dry field 17.83 14.83 11.07
Forest 57.74 57.79 57.11
Greenhouse 0.77 0.84 0.58
Inland water 0.69 0.86 0.89
Inland wetland 0.00 0.00 0.00
Orchard field 1.07 1.48 0.91
Paddy field 8.50 8.04 4.65
Seminatural 11.35 14.18 10.86
Urban 1.72 1.72 1.57
Missing data 0.02 0.03 12.27

Artificial Surfaces and 
 Associated Area

Artificial Waterbodies, Snow and 
 Ice

Bare Area

Cultivated and Managed 
 Terrestrial Area

Cultivated Aquatic or Regularly 
 Flooded Areas

Natural and Semi-Natural Aquatic 
 or Regularly Flooded Vegetation

Natural and Semi-Natural 
 Terrestrial Vegetation

Natural Waterbodies, Snow and Ice

Missing data

(a) (b) (c)

Fig. 2.6 Reclassified land use and land cover in (a) 2009, (b) 2010 and (c) 2011 according to
the FAO-LCCS eight major land cover classes. The annual proportions are shown in Supplement
Table S2 at Pangaea repository. These classes are defined by the stratified structure with three
dichotomous levels: presence of vegetation, edaphic condition and artificiality of cover.

Table 2.7. Annual proportions of the reclassified land use and land cover data according to the
FAO-LCCS eight major land cover classes. Note that the survey data of 2011 are incomplete.

LCCS eight major classes Survey (%)
2009 2010 2011

Artificial surfaces and associated area 1.72 1.72 1.57
Artificial waterbodies, snow and ice 0.07 0.23 0.24
Bare area 0.22 0.08 0.05
Cultivated and managed terrestrial area 19.68 17.15 12.56
Cultivated aquatic or regularly flooded areas 8.50 8.04 4.65
Natural and seminatural aquatic or regularly flooded vegetation 0.09 0.09 0.07
Natural and seminatural terrestrial vegetation 69.09 72.02 67.94
Natural waterbodies, snow and ice 0.62 0.63 0.65
Missing data 0.02 0.03 12.27
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challenging. In actual fact, in Haean, rice is sometimes irrigated with water from deep wells.

However, although the “cultivated aquatic or regularly flooded areas” class excludes irrigated

cultivated areas (Di Gregorio, 2005), we assigned rice to this type as it is mostly rainfed.

2.3.3 IGBP classification scheme

2.3.3.1 Comparison between MODIS land cover and the

original survey data

We found 10 IGBP classes in our study area, namely “waterbodies”, “evergreen needleleaf

forests”, “deciduous broadleaf forests”, “mixed forests”, “closed shrublands”, “open shrublands”,

“grasslands”, “croplands”, “urban and built-up lands” and “barren or sparsely vegetated”. In

contrast, MCD12Q1 contained only five classes: “deciduous broadleaf forests”, “mixed forests”,

“grasslands”, “croplands” and “cropland/natural vegetation mosaics”. The first row of Fig. 2.7

shows the original survey data and the third shows MCD12Q1. In addition, Table 2.8 summarises

area proportions in both data sets.

Table 2.8. Changes of land use and land cover according to the IGBP 17-class system. The
columns under “survey” refer to the survey data and those under “MODIS” to MODIS Land
Cover Type (MCD12Q1) following the same classification system. Note that the “waterbodies”
and “urban” classes were not detected by MODIS, presumably as a result of coarse resolution
(500m). Note that the survey data of 2011 are incomplete.

IGBP 17 classes Survey (%) MODIS (%)
2009 2010 2011 2009 2010 2011

Waterbodies 0.69 0.86 0.89 0.00 0.00 0.00
Evergreen needleleaf forests 0.29 0.29 0.30 0.00 0.00 0.00
Evergreen broadleaf forests 0.00 0.00 0.00 0.00 0.00 0.00
Deciduous needleleaf forests 0.00 0.00 0.00 0.00 0.00 0.00
Deciduous broadleaf forests 55.39 55.41 54.73 34.73 27.73 27.41
Mixed forests 2.06 2.08 2.08 12.45 24.58 25.57
Closed shrublands 3.60 3.67 3.14 0.00 0.00 0.00
Open shrublands 1.06 1.48 0.93 0.00 0.00 0.00
Woody savannas 0.00 0.00 0.00 0.00 0.00 0.00
Savannas 0.00 0.00 0.00 0.00 0.00 0.00
Grasslands 7.89 10.80 7.82 10.67 15.67 17.01
Permanent wetlands 0.00 0.00 0.00 0.00 0.00 0.00
Croplands 26.09 22.54 15.58 31.19 26.68 26.35
Urban and built-up lands 2.49 2.57 2.15 0.00 0.00 0.00
Cropland/natural vegetation mosaics 0.00 0.00 0.00 10.97 5.34 3.67
Snow and ice 0.00 0.00 0.00 0.00 0.00 0.00
Barren or sparsely vegetated 0.44 0.22 0.09 0.00 0.00 0.00
Interrupted areas 0.00 0.00 0.00 0.00 0.00 0.00
Missing data 0.02 0.03 12.27 0.00 0.00 0.00
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Water Bodies

Evergreen Needleleaf Forests

Evergreen Broadleaf Forests

Deciduous Needleleaf Forests

Deciduous Broadleaf Forests

Mixed Forests

Closed Shrublands

Open Shrublands

Woody Savannas

Savannas

Grasslands

Permanent Wetlands

Croplands

Urban and Built-Up Lands

Cropland/Natural Vegetation
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Snow and Ice

Barren or Sparsely Vegetated

Interrupted Areas

Missing data

(a) (b) (c)

(d) (e) (f)
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Fig. 2.7 Land use and land cover reclassified according to the IGBP 17-class system: the original
survey data in (a) 2009, (b) 2010 and (c) 2011; the rasterised survey data in (d) 2009, (e) 2010
and (f) 2011; MODIS Land Cover Type product (MCD12Q1) in (g) 2009, (h) 2010 and (i) 2011.
Note that the IGBP system does not distinguish the paddy field from a general cultivated zone.
Note that “interrupted areas” is a special mask for Goode’s interrupted area (U.S. Geological
Survey, 2012).
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For “croplands” the MODIS product shows a moderate agreement with the survey data (29.0%

vs. 24.3%, 2-year averages). The mosaic class “cropland/natural vegetation mosaics” type was

not found in our survey data while in the MODIS data set it comprises 10.97% in 2009 and

5.34% in 2010. MODIS assigns this class to pixels containing a mixed of croplands, forests,

shrubland and grasslands as long as no single component comprises more than 60% of the area

(Friedl et al., 2002). By definition, this mixture class is ambiguous (Friedl et al., 2002; Friedl

et al., 2010). In contrast, we explicitly recorded the individual classes for smaller patches instead

of assigning the mosaic class for a larger area.

The shrubland classes as well as the cropland classes are relevant to agriculture as some of the

perennial crop types were classified as “closed shrublands” and “open shrublands”. We have

more than 5% of shrubland classes in the survey data which are not found in the MODIS

product for the 2-year period.

There is an overrepresentation of the agricultural area in MCD12Q1 compared to our ground

observations. If we combine all the agriculturally relevant classes, namely “croplands”, “crop-

land/natural vegetation mosaics”, “closed shrublands” and “open shrublands”, these add up to

37.1% in the MODIS land cover while they represent only 29.2% in our survey data (2-year

averages).

In contrast, the forested area is underrepresented by MODIS as “deciduous broadleaf forests”

and “mixed forests” add up to 49.7% in the MODIS land cover while they cover 57.5% in

our survey, averaged over 2 years. Individually, in our survey, the area of “deciduous broadleaf

forests” is larger (55.4% vs. 31.2%) and the area of “mixed forests” is substantially smaller

(2.08% vs. 18.5%) compared to MCD12Q1 (averaged over 2 years).

The disagreement in the agricultural and the forest types may be due to the coarser resolution

of the MODIS product (500m). This becomes more problematic for land cover types smaller

than the MODIS pixel in its typical dimension. Indeed, linear elements such as “waterbodies”

and “urban and built-up lands” were not found in the product.

We note that, for the forest classes, our limited access to the surrounding forest may have caused

inaccuracies in our data. Moreover, the agreement between the two data sets could be higher if

we used the mosaic class “cropland/natural vegetation mosaics” for our data. There may have

been patches that are better described as mixtures of cropland and natural vegetation than by

reclassifying them either as pure cropland or pure natural vegetation. However, analysing this

effect is beyond the scope of this work.
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2.3.3.2 Comparison between MODIS land cover and the

rasterised survey data

After rasterisation, six IGBP classes were found in the survey data, namely “deciduous broadleaf

forests”, “mixed forests”, “closed shrublands”, “grasslands”, “croplands” and “urban and built-

up lands”. “Urban and built-up lands” were missing in the MODIS data while “cropland/natural

vegetation mosaics” does not exist in our data. Figure 2.7 shows the rasterised ground observa-

tions (in the middle row) and MCD12Q1 (in the bottom row).

To compare the two maps, we derived confusion matrices, Cohen’s κ and Pontius’s Q and A for

2009 (Supplement Table S3 at Pangaea repository) and 2010 (Supplement Table S4 at Pangaea

repository). We excluded the year 2011 due to a lack of ground observations. The mean κ for

the 2 years equals 0.41, which indicates a fair but not substantial agreement.

For the 2-year average, the total disagreement D is 0.42, the quantity disagreement Q is 0.36

and the allocation disagreement A is 0.053. Thus, quantity disagreement accounts for 87% of

the overall disagreement. This suggests that MCD12Q1 may fail to evaluate the quantity of

different LULC classes in complex agricultural landscapes.

2.4 Data structure and data access

The data set and its description are available at the Pangaea repository under the Creative Com-

mons Attribution-NonCommercial 3.0 Unported license. The data contain LULC observations

and ancillary information in a single ESRI polygon shape file (ESRI Inc., http://esri.com).

The LULC type, QA, management and double-cropping and mixed-use information are provided

on an annual basis. The definition of classes and the reclassification table are given separately

in a legend table. For each polygon, LULC information for 3 years is given in separate columns

(e.g. LULC2009, LULC2010 and LULC2011). Note that multiple entries in a LULC type column

occur in cases when the polygon exhibited mixed land uses spatially or temporally.

2.5 Summary and conclusions

We provide an annual per-field land use and land cover data set for the agricultural mosaic

catchment Haean (South Korea). During the study period many dry fields were converted to

perennial crops such as ginseng and orchards, probably due to governmental policy measures.

The comparison between our survey data and the MODIS land cover revealed that the limitation

of MODIS cover in identifying irrigated fields could be a substantial source of error. Moreover,

http://esri.com


56
CHAPTER 2. DERIVING A PER-FIELD LAND USE AND LAND COVER MAP IN AN AGRICULTURAL

MOSAIC CATCHMENT

MCD12Q1 overrepresents agricultural types and underrepresents forest types compared to our

ground observations. Linear elements such as “waterbodies” were missing in the remote-sensing

product due to its coarse spatial resolution. We measured the agreement between the rasterised

ground truth and the MODIS land cover. The agreement was fair but not substantial for the

primary land cover type.

Global Earth system models are major information sources for global environmental discussions

and decision making. These models commonly use satellite-borne land use and land cover data

sets as input. These land databases are equipped with generalised agricultural types. However

the use of general cropland classes may be inappropriate in complex agricultural landscapes. For

example, Berger et al. (2013a) pointeds out the lack of paddy soil and subsoil studies despite

their potential impact on global carbon and nitrogen cycles. Recent studies in the same area

repeatedly suggested that complex agricultural landscapes needed greater attention (Arnhold

et al., 2013; Berger et al., 2013a,b; Kettering et al., 2012; Kim et al., 2014; Ruidisch et al.,

2013; Shope et al., 2014). Thus, thematic improvement of global land cover databases is of great

importance.

There have been ongoing efforts to extend MODIS land cover databases (Biggs et al., 2006;

Gumma et al., 2011; He et al., 2011; Pittman et al., 2010; Potgieter et al., 2007; Wardlow

et al., 2007; Wardlow et al., 2008). For natural vegetation, global high-resolution databases are

becoming available (e.g. Hansen et al., 2013). Our vector-form data can be useful in develop-

ing/validating high-resolution data sets for complex agricultural landscapes because the data

include detailed crop type information with a consistent and complete description established

by the FAO (Di Gregorio, 2005). Additionally, our data contains different classification systems

and can be transformed to any raster grid. Due to this detailed information, our data could be

used for regional environmental modelling as well as for ecosystem services research and decision

making analysis.
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Chapter 3

Mapping Fractional Land Use and

Land Cover in a Monsoon Region: The

Effects of Data Processing Options

3.1 Introduction

Conventional global land use/land cover (LULC) maps are discrete raster maps assigning land

cover types to each pixel. Recent techniques allow continuous mapping of land use such as

fractional cover. Fractional land cover consists of proportions of non-overlapping land cover

types in pixels of a given raster grid (Defries et al., 2000; Price, 1992; Smith et al., 1990). It

is often called sub-pixel land cover as it can be conceived as an interpretation of land cover

types at the sub-pixel level (Fernandes et al., 2004). It is also called ‘continuous fields’ Defries

et al., 2000; Schwarz et al., 2005. Fractional land cover is increasingly used as a key descriptor of

ecosystems and their functions (e.g. Bevanda et al., 2014; Fernandes et al., 2004; Guerschman

et al., 2009; Pittman et al., 2010; Schwieder et al., 2014).

In heterogeneous landscapes such as mixed agricultural areas, a substantial number of LULC

types often occur in a relatively small area. Therefore, a few general cropland types with spatial

resolution up to several hundred meters are insufficient to represent this type of landscape (Schulp

et al., 2011) and appropriate land cover information is restricted or often unavailable (Mora

et al., 2014; Pittman et al., 2010). Moreover, Herold et al. (2008) showed that the global land

cover products are generally limited in representing agriculture-related mixture classes.

Yet, currently available global land cover databases such as GlobCover or Moderate Resolution

Imaging Spectroradiometer (MODIS) land cover have only a few crop-related types (Bontemps et

63
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al., 2011; Loveland et al., 2000; U.S. Geological Survey, 2012) and generally lack high resolution

maps or fractional land cover data (Colditz et al., 2011; Pittman et al., 2010). For instance,

GlobCover 2000 is provided at 300 m resolution and has four cropland or relevant mixture types,

and MODIS Land Cover Type (MCD12Q2) product provides five raster land cover layers at 500

m (Bontemps et al., 2011; Loveland et al., 2000; U.S. Geological Survey, 2012), each of which

with only one or two cropland types. MODIS Vegetation Continuous Fields product (MOD44B)

is the only product that provides fractional cover data. However, in the current version (V005)

it is limited to tree-related types, namely “tree”, “non-tree”, and “bare soil”. The limitations

of the global land cover databases are particularly pronounced in heterogeneous agricultural

landscapes due to the mosaic of crop/non-crop LULC types (Mora et al., 2014).

To retrieve thematically and spatially rich land cover data, one can attempt to extract addi-

tional information from existing multi-spectral medium-resolution sensors. Deriving fractional

land cover from existing satellite products can enrich the information contents with little ad-

ditional cost. Furthermore it can be applied to the past-time data. Accordingly, there have

been continuous efforts to derive fractional land cover information from existing raster data

(Defries et al., 2000; Schwarz et al., 2005). Among various existing sensors, NASA’s MODIS

(MODerate Resolution Imaging Spectroradiometer) sensor possesses temporal continuity and

global coverage. While it has not been commonly used for cropland mapping due to its coarse

spatial resolution, it may be able to identify detailed information aided by a methodological

elaboration (Pittman et al., 2010).

In this regard, multi-type fractional land cover data can be a valuable information source about

agricultural landscapes, especially if such information can be obtained from globally available

multi-spectral products. Despite their limited spectral and spatial resolution, MODIS multi-

spectral products provide good temporal resolution and can be useful to map agricultural areas

(Pittman et al., 2010; Verbeiren et al., 2008). Indeed, MODIS time series contain the complete

seasonal dynamics and therefore potentially useful information to distinguish land cover types

(e.g. Hüttich et al., 2009; Thenkabail et al., 2005) and has been used to map agricultural LULC

types (e.g. Biggs et al., 2006; Brown et al., 2013a; Gumma et al., 2011). Regarding fractional

cover, Lu et al. (2003) showed that MODIS time series are suitable to map fractional woody

and herbaceous covers.

To develop a fractional land cover model, a number of decisions at the model formulation stage

need to be made. First, one needs appropriate predictor data – a difficult choice due to an

increasing number of satellite products (e.g. Clark et al., 2010). Second, a suitable algorithm

and training parameters should be chosen to avoid sub-optimal performance. Third, pre- and
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post-processing strategies should be determined (e.g. Guerschman et al., 2009). We will denote

all these decisions ‘data-processing options’ hereafter.

Improperly selected data-processing options can degrade the model performance by reducing

information contained in the data. Optimal data-processing options are case-specific (i.e. de-

pendent on the purpose, cost and processing capacities) (Thackway et al., 2013) thus cannot

be universally evaluated. Therefore, in the course of model building, the modeller should select

proper data-processing options.

In monsoonal areas, there is a specific problem undermining model performance. In these

areas, acquisition of cloud-free data during monsoon is generally difficult due to long-lasting

rainfalls (Guerschman et al., 2009; Yihui et al., 2005). For example, South Korean summer

shows typical East Asian monsoon weather with persistent and intensive raining period from

June to September. This period is called “Changma” (long lasting rain) in Korean literature

(Kang et al., 2009). Due to the long-lasting rainfall, cloud-free spectral data are often lacking

in the region.

In a heterogeneous agricultural landscape in South Korea, we aim to derive fractional LULC

from multi-spectral satellite data using a data mining algorithm. It is challenging because the

study area is a complex heterogeneous agricultural landscape. Spectral datasets are supposedly

cloud-contaminated because the study area is situated in a monsoon region. In this context,

we set up the main objectives as 1) to develop a fractional LULC modelling framework with

globally available data (i.e. multi-spectral data) and 2) to evaluate relevant data-processing

options, namely selection of spectral predictor sets, time intervals, and smoothing options.

The study is based on the following hypotheses: (1) the full information of a spectral data

product (e.g. all available reflectance bands) perform better than a subset of it (e.g. a single

reflectance band) or an index function (e.g. NDVI), (2) multi-day composited data with a narrow

(e.g. 8-day) composite window (Huete et al., 1999) produce a better regression performance due

to more details in the data, and (3) smoothing of input data improves the regression performance

because it reduces possible cloud contamination. These hypotheses were chosen in accordance

with the characteristics of the study area.

In addition to the main analysis, we assess the relative importance of the spectral bands and

the data acquisition dates. Based on the result, we discuss the current capacity and potential

of the multi-type fractional cover model in heterogeneous agricultural landscapes.
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3.2 Materials and Methods

3.2.1 Study area

The study area Haean-myeon is located at the border between North and South Korea (128◦1′33.101′′E,

38◦28′6.231′′N) (Figure 3.1). It is a small agricultural catchment (64.4 km2) with elevations rang-

ing between 500 m and 1200 m above see level. The catchment is a heterogeneous agricultural

landscape comprised of various natural and artificial LULC types. Seo et al. (2014) reported 67

LULC types from a three-year field-level LULC census.

The average air temperature of the study area is 8.5° C at the central plateau. The annual

average rainfall equals 1599 mm and the maximum daily rainfall was 223 mm between 1999

and 2010 (Korean Meteorological Administration, http://web.kma.go.kr/eng). The study site

belongs to the East Asian summer monsoon (EASM) region (Yihui et al., 2005). More than

60% of annual precipitation is concentrated during the monsoon period from June to August

and extreme rainfall events occur frequently.

128¡Æ9'0"E128¡Æ7'0"E

38
¡Æ1

9'0
"N

38
¡Æ1

7'0
"N

38
¡Æ1

5'0
"N

0 1 2 3 4 50.5
Kilometers

129¡Æ0'0"E127¡Æ0'0"E125¡Æ0'0"E

40
¡Æ0'

0"N
38

¡Æ0'
0"N

36
¡Æ0'

0"NSouth Korea

North Korea

Fig. 3.1 Map and the location of the study site ‘Haean’ on the Korean peninsula. The catchment
is an agricultural hotspot located in the protected temperate forest. The satellite image is
a SPOTMaps mosaic product (Astrium Services, http://www.astrium-geo.com) acquired in
2009.

3.2.2 Data

3.2.2.1 Land use/land cover and fractional cover data

For the analysis, we used the LULC polygon data censused in 2010 for the site. The reference data

consists of spatial polygons with the observed LULC information and is archived at the public

http://web.kma.go.kr/eng
http://www.astrium-geo.com


CHAPTER 3. MAPPING FRACTIONAL LAND USE AND LAND COVER IN A MONSOON REGION:
THE EFFECTS OF DATA PROCESSING OPTIONS 67

repository Pangaea (Seo et al., 2014). Additionally to the raw LULC type labels, it provides

reclassified type labels based on four classification schemes. We used a reclassified LULC labels

in a 10-class scheme, which was designed to describe the edaphic and socio-economic conditions

of the area. The scheme includes “Barren”, “Dry field”, “Forest”, “Greenhouse”, “Inland water”,

“Inland wetland”, “Orchard field”, “Paddy field”, “Semi natural”, and “Urban”. This scheme

was selected as it distinguishes paddy field from other agricultural types. More details about

the LULC data is provided in the meta information of the dataset (Seo et al., 2014).

Due to the bowl-shaped topography of the catchment, LULC types are unevenly distributed

(Figure 3.2). The steep slopes and the encompassing mountain ridges are covered by “Forest”

consisting of a variety of species from the genus Oak (Quercus spp.).

The lower area is dominated by the managed land use types. “Paddy field” occurs at the central

plateau while “Dry field” and “Semi natural” dominate on the surrounding lower slopes. The

aforementioned four LULC types are large or moderately large in area proportions (> 8%) and

cover 95.0% of the total area (Table 3.1). We will denote these types as ‘major types’. The

rest of the LULC types are smaller in area proportions (< 2%). We denote the next five types

“Urban”, “Orchard field”, “Inland water”, “Greenhouse” and “Barren” as ‘minor types’. The

smallest type by area “Inland wetland” was excluded from the analysis due to its extreme rarity.

Note that the selected 9 types make up 99.9% of the study area.

Table 3.1. The land use/land cover types in the Haean catchment in 2010. “Inland wetland” was
excluded from the analysis due to its extreme rarity.

Type Area (km2) Area (%) Category
Forest 37.195 57.805

Major typesDry field 9.543 14.831
Semi natural 9.124 14.180
Paddy field 5.178 8.047
Urban 1.108 1.723

Minor types
Orchard field 0.952 1.480
Inland water 0.556 0.864
Greenhouse 0.544 0.845
Barren 0.144 0.224
Inland wetland 0.0004 0.0007 -

Fractional vegetation cover is defined as the sum of the vegetated patch area divided by the total

area (Asner et al., 2000; Smith et al., 1990). In a satellite image, it is calculated per pixel and

ranges from 0 (0% cover) to 1 (100% cover) (Obata et al., 2012). Similarly fractional LULC can

be defined as the sum of the LULC patch area divided by the total area in each pixel of a given
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Fig. 3.2 The reference land use/land cover in the Haean catchment in 2010. The reference LULC
in cover fraction is shown in Supplementary Figure 3.9.

raster grid (Fernandes et al., 2004). The study site is located in the MODIS tile H28V5 and

covered 299 pixels of the 500 m sinusoidal grid (SR-ORG:6842). We chose the 500 m grid as the

base grid and derived a per pixel fractional cover data from the observed LULC data. To derive

per pixel LULC fractions, we first converted the MODIS raster grid to polygons by pixel (i.e.

one polygon per pixel). Then we projected the grid polygons into the WGS84/UTM52N space

(EPSG:32652) and overlaid the observed LULC polygons. In the projected space, we calculated

the area fractions of the LULC types in all grid polygons (Supplementary Figure 3.9).

3.2.2.2 MODIS spectral data

We used multi-spectral data products as predictors of the fractional LULC model. We chose

MODIS collection 5 MOD13A1/MYD13A1 products. Other satellite products such as Landsat

Thematic Mapper (https://lta.cr.usgs.gov/TM) are also often used for land monitoring

(Vittek et al., 2014; Watts et al., 2010). However, due to its 16-day repeating interval, Landsat

products are severely cloud contaminated. For the study area, the Landsat 5 collection at NASA

EOSDIS system (http://reverb.echo.nasa.gov) provides only a few cloud free images in 2010.

In contrast, the MODIS 16-day products are less cloud contaminated due to daily acquisition

and its composition procedure (NASA Land Processes Distributed Active Archive Center (LP

DAAC), 2013a).

MOD13A1/MYD13A1 products supply 23 scenes/year at 500 m resolution each. Note that a

https://lta.cr.usgs.gov/TM
http://reverb.echo.nasa.gov
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time series of MOD13A1 starts from the first day of a year but MYD13A1 from the 9th day. Hence

there is an 8-day difference in acquisition date (Didan et al., 2006). Each product contains 12

Science Data Sets (SDS) (NASA Land Processes Distributed Active Archive Center (LP DAAC),

2013a). Among the SDSs, we chose four surface reflectance bands (B1–3, B7), Normalized

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and vegetation index

quality assurance (QA). The six biophysical SDSs were used as predictors for regression. The

QA SDS was used as data weight only for smoothing. For simplicity, we will denote all the

biophysical SDSs as spectral bands in the following.

Each spectral band delivers specific information about land cover (Didan et al., 2006). The

red band 1 (B1) is sensitive to vegetation chlorophyll and its wavelength is 620–670 nm. The

near-infrared (NIR) band 2 (B2) covers 841–876 nm and has been widely used to evaluate

ground vegetation viability together with B1. Band 3 (B3) is commonly called the blue band as

it is sensitive to water vapour; its wavelength ranges between 459 and 479 nm. The mid-infrared

band 7 (B7) with wavelengths between 2105 nm and 2155 nm contains information about land

and cloud properties.

NDVI and EVI are vegetation indices designed to capture above ground vegetation properties

and biophysical processes (Didan et al., 2006; Huete et al., 1999). The indices are calculated

from the reflectance values. NDVI is defined as a function of the red (B1) and the NIR (B2)

bands:

NDVI = B2−B1
B2 +B1 . (3.1)

EVI is designed to remove soil and atmospheric contamination by incorporating additional

terms and makes use of the blue band (B3) (Huete et al., 1999). The MODIS EVI is derived

as

EVI = G · B2−B1
B2 + C1 ·B1− C2 ·B3 + L

, (3.2)

where L is the canopy background adjustment; C1 and C2 are the coefficients to correct for

aerosol influences; and G is a scaling factor. The coefficients used in the MODIS EVI algorithm

are L = 1, C1 = 6, C2 = 7.5, and G = 2.5 (Huete et al., 1999).

We acquired the MODIS products from NASA Land Processes Distributed Active Archive

Center (LP DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center

(https://lpdaac.usgs.gov).

https://lpdaac.usgs.gov
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3.2.3 Scenarios

We considered three key data-processing options: predictor set, time interval, and smoothing.

Each option comprises several choices. From all combinations of the three options, we formu-

lated 16 scenarios (Table 3.2) and evaluated them using an 16-fold cross-validation (CV) (Sec-

tion 3.2.4.2). The efficacy of a data-processing option was estimated by the average performance

of the associated scenarios. The overall research procedure is illustrated in Figure 3.3.

Predictor set We prepared four predictor sets to compare model performance based on

different spectral data. The predictor sets ‘NDVI’ and ‘EVI’ contained a corresponding vegetation

index data. ‘SR’ predictor set contained the four surface reflectance bands (B1–B3, and B7).

The predictor set ‘Full’ incorporates all the six available data bands.

Time interval Spectral input data was prepared in 8-day and 16-day intervals. For 16-day

input, we simply used MOD13A1 data. For 8-day input, we merged MOD13A1 and MYD13A1

products to produce a quasi 8-day MODIS 13A1 data using the 8-day difference in acquisition

date described in Section 3.2.2.2. This results in 46 (8-day) or 23 (16-day) data points per band

for each MODIS pixel.

Note that we used the quasi 8-day data instead of the 8-day MODIS products (MOD/MYD09A1).

This is because we want to use the 8-day data most similar to the 16-day data. Additionally,

the 09A1 products lack NDVI and EVI data sets.

Smoothing We prepared spectral input data with and without smoothing. By comparing the

two input data sets, we evaluated the efficacy of data smoothing in a monsoonal catchment. We

chose the ‘Savitzky-Golay’ (SG) filter (Savitzky et al., 1964), which is widely used for smoothing

time series data in remote sensing (e.g. Fontana et al., 2008). The filter is designed to retrieve

the upper envelope of a time series by using a local polynomial regression iteratively to fit the

time series (Hird et al., 2009). It can filter out negatively biased noises (e.g. NDVI decreases due

to cloud contamination ), which can be useful in monsoonal regions. Fontana et al., 2008

We used the adaptive SG filter provided by the software TIMESAT 3.1 (Eklundh et al., 2012;

Jonsson et al., 2004). The seasonal course of the spectral data was smoothed per pixel indepen-

dently. The MODIS QA data layer was used to weight the values. By the weighting, a data

point acquired under a non-optimal condition (e.g. cloudy weather) had only 10% of influence

during the smoothing process, compared to data acquired under optimal conditions (e.g. sunny

weather). The TIMESAT smoothing parameters were determined according to the software
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manual (Eklundh et al., 2012). The size of the fitting window was 3 for 16-day data and 5 for

8-day data. The adaptation strength was 1.5 and the number of envelope iterations was 3. Note

that the 3-year data (2009–2011) was processed concurrently as the software encourages to use

a longer time series than the target data.
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Fractional LULC cover 

(Raster images / 10 types) 

Fractional LULC 
(Training data) 

Input features  

•Predictor set: NDVI, EVI, SR and Full 
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Spatial partitioning (16-fold)
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“Continuous Land Use and Land Cover Mapping in a Monsoon Region: 
search for the best modelling options. ”

Scenario evaluation 
(RMSE) 

MODIS 16-day Vegetation 
Indices (MOD/MYD13A1) 

(7 Bands, 500m 16-Day)

Fractional LULC 
(Test data)

Relative importance 
analysis 

(NIMSEb, IMSEd)

Preprocessing

Land use and land cover 
survey (2010) 

(Polygons)

Fractional cover calculation

Prediction Variable importance

16 scenarios

Scenario option 
evaluation 

(RMSE, PMVD) 

Parameter tuning

Optimal training 
parameters per 

scenario

Fig. 3.3 Overview of the fractional cover regression model building and evaluation procedure.

3.2.4 Model construction

3.2.4.1 Random Forest regression

We hypothesised that per pixel LULC fractions can be retrieved from spectral data in line with

the previous studies (e.g. Colditz et al., 2011; Guerschman et al., 2009; Lu et al., 2003; Obata

et al., 2012; Schwieder et al., 2014). Modelling multi-type LULC fractions can be conceived as a

multi-output regression task. This task can be accomplished either by simultaneously modelling

a multi-output response, or by separately modelling single-output responses and aggregating
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Table 3.2. Specification of the scenarios in combinations of the predictor set, time interval, and
smoothing options.

Smoothing No smoothing Savitzky-Golay (SG) smoothing
Time interval 8-day 16-day 8-day 16-day

Predictor set

NDVI S1 S5 S9 S13
EVI S2 S6 S10 S14
SR S3 S7 S11 S15
Full S4 S8 S12 S16

the outcomes (Hothorn et al., 2006; Segal, 2004). In this study, we decomposed the multi-type

fractional cover regression task into a set of single-type regression tasks. Accordingly, we built

a fractional cover model for each LULC type and aggregated the model outcomes.

Fractional cover regression can be implemented via various techniques. The techniques include

the fuzzy classifier (Foody et al., 1996), the time series model (Lu et al., 2003), linear models

(DeFries et al., 1995; Schwarz et al., 2005), data mining algorithms (Fernandes et al., 2004;

Schwieder et al., 2014), and spectral mixture analysis (SMA) (Asner et al., 2000; Guerschman

et al., 2009). Among various techniques, we used the regression mode of Random Forest (RF).

RF is a decision-tree based ensembling algorithm that uses bootstrap aggregation (bagging) and

the random sub-space method (Breiman, 2001; Prasad et al., 2006). It is suitable for modelling

non-linear relationships and can handle a large number of covariates as it tends not to overfit

the data (Breiman, 2001; Prasad et al., 2006; Segal, 2004). Its performance is comparable to the

other state-of-the-art learning algorithms such as support vector machine or neural networks

(Attarchi et al., 2014; Gislason et al., 2006; Prasad et al., 2006; Schwieder et al., 2014). Moreover

it is convenient to set up compared to other data mining algorithms as it has a small number

of training parameters Liaw et al., 2002.

In land cover modelling, Random Forest (RF) has been used to classify land cover (Clark et al.,

2010; Gislason et al., 2006; Hüttich et al., 2009; Nitze et al., 2015; Rodriguez-Galiano et al.,

2012; Thenkabail et al., 2005), vegetation type (Hüttich et al., 2009; Immitzer et al., 2012; Senf

et al., 2013), and also crop type (Ghimire et al., 2010; Nitze et al., 2012). In fractional land

cover regression, Schwieder et al. (2014) used RF to estimate shrub cover fractions in which

RF showed comparable performance with support vector machine and partial least squares

regression.
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3.2.4.2 Spatial cross-validation

Due to the bagging and the random sub-spacing of RF (Breiman, 2001), the bootstrap samples

for training (in-bag data) can be correlated with the test samples (out-of-bag data), especially

for spatial models (Brenning, 2005). To avoid dependencies between training and test data,

we externally partitioned training and test data by a spatial partitioning scheme utilised by

Reineking et al. (2010). The spatial partitioning was implemented in our study as follows. First,

we binary split the whole area six-times recursively. The recursive split divides the catchment

into 64 sub-clusters. Second, we form 16 clusters by randomly sampling four sub-clusters for each;

one cluster is comprised of four spatially disjointed sub-clusters as distinguished by different

colours in Supplementary Figure 3.10.

3.2.4.3 Fractional cover estimation

Let T be the number of LULC types such that each type i has a set Fi = {fi,1, ..., fi,n} of n

observed LULC fractions, where fi,j is the fractional area of the pixel j covered by the LULC

type i, and n is the total number of pixels belonging to the study area.

A LULC fraction fi,j ∈ [0, 1] and all fractions of one pixel sum up to one

T∑
i=1

fi,j = 1 (3.3)

for all j = {1, ..., n}.

First we built a RF regression model per type. Given a type i, we used the observed frac-

tion Fi = {fi,1, ..., fi,n} as response and a set of feature vectors P = {p1, ..., pn} as predictor.

Each feature vector contained nfeature features varied by the spectral data used (Supplementary

Table 3.4).

The regression model was trained/tested with a 16-fold cross validation (c.f. Section 3.2.4.2

for details). By accumulating test pixels of all CV folds, we obtained the predicted fractions

F̂i = {f̂i,1, ..., f̂i,n} of the type i over the entire study area. Note that RF produces predictions

from all regression trees (Breiman, 2001), therefore for each pixel ntree fractions were predicted,

where ntree is the total number of regression trees. We took the mean of the ntree predictions.

This generated a set of LULC fractional cover for the study area.

Then we normalised the type-wise predictions by Eq. 3.3. The normalised prediction F̂ ∗i was

calculated as
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F̂ ∗i = F̂i∑T
j=1 f̂i,j

(3.4)

where F̂i,j is the type-wise prediction of the type i for the pixel j. Finally we obtain the predicted

LULC fractions F̂ ∗ = {f̂ ∗1 , ..., f̂ ∗T}.

3.2.4.4 Training parameters

RF has three training parameters: the number of trees in the forest (ntree), the number of

randomly selected variables on each split (mtry), and the number of minimal samples in terminal

nodes (nodesize). These parameters need to be tuned to avoid sub-optimal model performance

Rodriguez-Galiano et al., 2012; Strobl et al., 2008.

To find the optimal ntree and nodesize we performed a grid search on the training folds. We

used a grid from all combinations of ntree= {100, 200, ..., 1000} and nodesize= {1, 2, 3, 4, 5}. Grid

searching was implemented using an internal validation. We repartitioned the training data folds

into a new training data and a new test data. The new test data contained two spatial clusters,

randomly selected without replacement. We trained the model on the new training data with

different parameter values and predicted the hold-out data. This was repeated for all 9 types

and we calculated the mean root mean square error (RMSE) over all types. Overall, the model

performance improved with large ntree and small nodesize (Supplementary Figure 3.11).

We optimised ntree and nodesize separately based on its marginal RMSE on the tuning grid. We

chose parameters by minimising the marginal error metric unlike Rodriguez-Galiano et al. (2012)

or Leutner et al. (2012) who used the joint error metric on the grid. We tried both approaches

but opted for the marginal error based selection. Compared to the joint error based selection,

the marginal error based selection was less sensitive to the between-partition variations. In

consequence, it led to more stable parameter selection between scenarios.

The parameter mtry was determined by the square root of nfeature without grid searching as in

(Clark et al., 2012). Since the scenarios have unequal number of input features, mtry varied be-

tween scenarios. The chosen parameter values are summarised in Supplementary Table 3.4.

3.2.5 Model evaluation

3.2.5.1 Overall regression performance

We used the cross-validation error metrics instead of the default out-of-bag (OOB) error of

RF. As discussed in Section 3.2.4.2, the OOB error can be biased due to a possible correlation
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between in-bag training samples and out-of-bag test samples, especially for spatial models.

Instead, we used cross-validation RMSE to evaluate regression performance. The RMSE of the

LULC type i is calculated as

RMSEi =

√√√√∑n
j=1(fi,j − f̂ ∗i,j)2

n
(3.5)

where fi,j is the observed and f̂ ∗i,j is the predicted LULC fraction for the type i in pixel j, and

n is the total number of pixels.

Furthermore, we used the coefficient of determination (R2) and Spearman’s rank correlation

coefficient (ρ) (Gibbons et al., 2003) also based on cross-validation. The R2 was used to compare

our results with the previous studies on fractional cover estimation (e.g. Fernandes et al., 2004).

Spearman’s ρ was used to estimate the association between observed and predicted fractions

(Gibbons et al., 2003).

3.2.5.2 Relative contribution of data-processing options

Additionally to cross-validation error, we examined the relationship between the data-processing

options and the performance of the fractional cover regression models. For this analysis, we

built a linear model explaining the RMSE of the regression model for each LULC type by the

different data-processing options:

RMSE i = β0 + β1Op + β2Ot + β3Os + ε (3.6)

where RMSE i is the RMSE of the type i; Op is a categorical variable denoting the chosen

predictor set option, Ot time interval option, and Os smoothing option; ε is the error term.

Note that we did not include interaction terms based on the preliminary model selection using

F-statistics (not shown here).

We assumed that the ‘relative contribution’ (‘relative importance’ in Grömping (2006)) of an

option is that of the corresponding regressor to the linear model. Then we quantified relative

contributions of the regressors by decomposing the amount of explained variance of the lin-

ear model due to regressors. We used proportional marginal variance decomposition (PMVD)

method (Feldman, 2005; Grömping, 2006) which decomposes the explained variance of the linear

model into non-negative contributions, which sum to the total variance explained. PMVD is

able to deal with correlated regressors by averaging over different orderings. Moreover, it has

desirable properties such as ‘admissibility’.
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Each linear model (per type) was estimated based on the 16 samples from all 16 scenarios.

Statistical significance of the type-wise models were tested using F-statistics to validate the

model structure.

3.2.5.3 Marginal performance of data-processing options

The efficacy of a data-processing option was estimated by average regression performance of the

scenarios using the option. We will call it ‘marginal performance’ in the following. The marginal

performance (M) of a data-processing option k for a performance metric q is calculated as

Mk,q =
∑

x∈sk q(x)
|sk|

(3.7)

where sk is a set of scenarios using the option k and |sk| is the number of elements of sk.

3.2.5.4 Relative importance of spectral bands and acquisition dates

We quantified the relative importance of spectral bands and acquisition dates to identify the most

relevant ones for the regression performance. RF provides two importance metrics for quantifying

the influence of input features (Breiman, 2001; Segal et al., 2011). Among the metrics, we used

the increased mean square error (IMSE), which is a permutation-based measure. Another metric

namely increased node purity (INP) is measured by node purity, in case of regression the residual

sum of squares. We avoided to use INP because of the possible bias due to the random sub-

spacing (i.e. random selection of features). For classification, the INP is known to be biased as

the impurity measure (Gini index) favours predictor variables with many categories (Genuer

et al., 2010; Strobl et al., 2007). IMSE of a feature f is derived as

IMSEf =
∑ntree

k=1 (MSEk −MSEf,k)
ntree

× 1√
s2/ntree

(3.8)

where ntree is the size of the forest, MSEk is the mean squared OOB error of tree k, MSEf,k

is the error after permuting the feature f and s2 is the standard deviation of the differences

between the two errors; if s2 is zero, the division is omitted. Due to the cross-validation scheme,

we computed IMSEf in each cross-validation fold and averaged them. Note that the variable

importance metric is calculated from the OOB samples.

Our goal was to assess the relative importance of spectral bands and acquisition dates on the

regression model. As we used the time series of multiple spectral bands, input features can be

grouped either by band or by acquisition date.
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We defined the importance of a band as the sum of the importance metrics of the features

belonging to the band. Let a predictor set X = {x1, ..., xl} have l features some of which belong

to a spectral band b. We calculated importance of the band b as

IMSE b =
∑

x∈b IMSEx

lb
(3.9)

where lb is the number of the features belonging to the band.

To facilitate comparisons between different bands, we normalized IMSE b as

NIMSE b = IMSE b∑nband
b=1 IMSE b

(3.10)

where nband is the number of the bands in a predictor set. To derive NIMSE b we used the two

groups of the scenarios: scenarios using ‘SR’ predictor set (S3, S7, S11, and S15) and scenarios

using ‘Full’ predictor set (S4, S8, S12, and S16). As they are different in the number of spectral

bands, we calculated two sets of NIMSE b. For each group individually, we calculated the mean

importance measures from the included scenarios.

Likewise the importance of an acquisition date is defined as the sum of the importance metrics

of the features acquired at a particular date d:

IMSEd =
∑

x∈d IMSEx

ld
(3.11)

where ld is the number of the features acquired at the date d. To derive IMSEd we used the

‘Full’ predictor set based scenarios (S4, S8, S12 and S16). As 8-day and 16-day data differ in the

number of data points, we extracted two seasonal IMSEd curves individually by interval.

3.2.6 Software

We used GNU R 3.1.2 (R Core Team, 2014) and the R packages randomForest version 4.6–7

(Liaw, 2012), raster version 2.3–40 (Hijmans, 2014), and relaimpo version 2.2–2 (Grömping,

2006). The geometry engine GEOS 3.4.2 (GEOS Development Team, 2014) was used via the R

package rgeos 0.3–8 (Bivand et al., 2014) and the software TIMESAT 3.1 (Eklundh et al., 2012)

for smoothing the spectral data.
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3.3 Results

3.3.1 Overall regression performance

The average performance of all scenarios in RMSE , ρ, and R2 were 0.057, 0.624, and 0.414,

respectively (Table 3.3). The best scenario S4 used ‘Full’ predictor set in ‘8-day’ interval with

‘No smoothing’. The worst scenario S14 used ‘EVI’ predictor set in ‘16-day’ interval with ‘SG

smoothing’. Maps of the modelled LULC fractions are provided in Supplementary Figures 3.12

and 3.13 for averaged and for the best scenario, respectively.

Table 3.3. Fractional LULC regression performance by scenario. All the performance metrics
were averaged over LULC types.

Name Data-processing options Model performance
Predictor set Time interval Smoothing RMSE ρ R2

S1 NDVI

8-day

No smoothing

0.056 0.658 0.428
S2 EVI 0.057 0.639 0.438
S3 SR 0.054 0.657 0.441
S4 Full 0.053 0.663 0.455
S5 NDVI

16-day

0.056 0.630 0.410
S6 EVI 0.060 0.601 0.395
S7 SR 0.056 0.638 0.430
S8 Full 0.055 0.634 0.434
S9 NDVI

8-day

SG smoothing

0.058 0.618 0.399
S10 EVI 0.059 0.601 0.389
S11 SR 0.054 0.633 0.411
S12 Full 0.053 0.634 0.434
S13 NDVI

16-day

0.061 0.588 0.364
S14 EVI 0.064 0.572 0.347
S15 SR 0.057 0.611 0.418
S16 Full 0.056 0.609 0.424

Avg. 0.057 0.624 0.414
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624

3.3.2 Type-wise regression performance

Spearman’s rank correlation between the observed and the predicted LULC fractions were

high on the average (avg. ρ = 0.624; Table 3.3 and Supplementary Figure 3.14). Not only for

the major types but also for some of the minor types the rank correlations were rather high

(Supplementary Table 3.5). For example, ρ was 0.48 for “Orchard field” and 0.54 for “Inland

water”, for which predicting absolute fractions were not at all successful (R2 < 0.10). Similarly,

for “Greenhouse” rank correlation ρ(= 0.59) indicates better model performance than which

suggested by R2(= 0.25). This implies that the regression model may be useful to detect minor

types (i.e. binary classification).

To further investigate the performance degradation of the minor type models, we analysed the

relationship between R2 and the total area proportions of the LULC types (Figure 3.4). R2

increased with increasing area proportion. Since the minor LULC types occurred only sporadi-

cally over the area, a large number of pixels have zero fraction for the minor types. Therefore,

the distribution of the observed fractions of minor types was right-skewed (Supplementary

Figure 3.15a).
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Fig. 3.4 Observed total area proportions of the LULC types are plotted against the mean type-
wise R2 over all scenarios. The area proportions were calculated at the catchment level. The
error bars indicate the standard errors of the means over the scenarios.
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3.3.3 Relative contribution of data-processing options

Relative contributions of the data-processing options are shown in Figure 3.5 and Supplementary

Table 3.8. The linear models explaining type-wise RMSE by data-processing options were all

significant (p < 0.05) except for “Barren”.

For the 9 types averaged, 73.2% of the variance of the RMSE was explained by predictor set

(Op; 36.3%), time interval (Ot; 19.0%) and smoothing (Os; 17.9%), respectively.

Among the three options, Op was of the highest contribution for “Forest”, “Dry field”, “Paddy

field”, “Urban”, and “Greenhouse”. “Semi natural” and “Inland water” were most attributed by

Ot and “Orchard field” by Os.
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Fig. 3.5 Relative contribution of the data-processing options in explaining RMSE in a linear
regression model per type. Op is a categorical variable denoting the chosen predictor set option,
Ot time interval option, and Os smoothing option. The relative contributions were calculated
by proportional marginal variance decomposition (PMVD) (Feldman, 2005). The 9 points per
option represent the 9 LULC types.

3.3.4 Marginal performance of data-processing options

Among the four predictor set options, ‘Full’ predictor set based scenarios achieved the best

average RMSE (0.054) followed by ‘SR’ predictor set based scenarios (0.055). Between the

vegetation indices, the marginal RMSE of the predictor set ‘NDVI’ was smaller (0.058) compared

to ‘EVI’ (0.060).

The ranks of the predictor sets varied between the LULC types (Figure 3.6a). The ‘Full’ predictor

set was the best set for 6 out of 9 types. Although, “Greenhouse” and “Barren” were best
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predicted by ‘SR’ predictor set, the differences between the predictor sets were small. The single

vegetation index predictor set ‘EVI’ was the best predictor set for “Inland Water”.
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Fig. 3.6 Performance of the data-processing options measured by marginal RMSE : (a) predictor
set, (b) time interval, and (c) smoothing. The cross-validated regression metrics were averaged
over the other data-processing options to derive marginal performance metrics (3.7). The bars
indicate standard errors of the mean.

Regarding the time interval, the 8-day scenarios (mean RMSE = 0.056) marginally outperformed

the 16-day scenarios (mean RMSE = 0.058) (Figure 3.6c and Table 3.3). This does not hold for
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the LULC types “Dry field”, “Orchard field” and “Greenhouse”. These types are minor types

except “Dry field”.

The scenarios with ‘No smoothing’ performed better (mean RMSE = 0.056) than the SG

smoothed scenarios (mean RMSE = 0.058) (Figure 3.6c). For the individual types, the non-

smoothed predictors performed better except for “Barren” (Table 3.3).

3.3.5 Relative importance of spectral bands

The mean relative importance of the spectral bands were calculated with the ‘Full’ predictor

set based scenarios (Figure 3.7a) and ‘SR’ predictor set based scenarios (Figure 3.7b).

Using the variable importance metric from ‘SR’ predictor set based scenarios, we assessed the

relative importance of the four reflectance bands when used with no vegetation index (Fig-

ure 3.7b). On the average, the NIMSE b of B1 (48.6%) and B2 (46.9%) were substantially higher

than that of B3 (2.2%) and B7 (2.3%) and made up 95.5% of the total IMSE (Supplementary

Table 3.6). The two bands were almost equally important among all LULC types.

For the most dominant type “Forest”, NIMSE b of B3 (11.0%) and B7 (12.3%) were relatively

large compared to that of the rarer types. However, especially for the five rarest types, B3 and

B7 were negligible with less than 0.5% of NIMSE b.

In ‘Full’ predictor set based scenarios, NDVI, EVI and B1 bands were similar in NIMSE b

(31–33%) and made up 96.5% of the total IMSE (Figure 3.7a and Supplementary Table 3.7).

After including NDVI and EVI, B2 became negligible (1.3%), while B1 remained important

(31.8%). The contribution of B3 and B7 stayed small with an NIMSE b equalled to 1.0% and

1.1% respectively.

Only the major types such as “Forest” or “Dry field” benefitted from the bands B2, B3 and B7.

The NIMSE b of these three bands were smaller than 0.2% for the minor types.

3.3.6 Seasonal variation of relative importance

Figure 3.8 shows seasonal variation of IMSEd by type. Both in 8-day and 16-day intervals, we

observed large variable importances in the off-monsoon periods like the start and the end of the

growing season. The IMSEd during the summer monsoon season around day of a year (DOY )

200 were rather low for most of the LULC types, suggesting that the features representing this

period were less influential on the regression performance.

In a large portion of the types, peaks are found in March (around DOY 90), which is the sowing

season in the study area. Other peaks commonly occurred in September, which is the harvest
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Fig. 3.7 Normalised increased mean square error (NIMSE b) of spectral bands from (a) ‘Full’
predictor set based scenarios (S4, S8, S12, and S16) and (b) ‘SR’ predictor set based scenarios
(S3, S7, S11, and S15).

season for most of the local crops (e.g. paddy rice and annual dry field crops) as well as the

senescence of natural vegetation types.

The shapes of the seasonal IMSEd curves differed between the LULC types. For instance, the

seasonal IMSEd of “Paddy field” showed the highest peak in September (around DOY 260)

(Figure 3.8d), which shows that the model is most sensitive to the harvest season. In contrast,

“Forest” exhibits the highest peak in late February (around DOY 80) (Figure 3.8a).

The number of major peaks of relative importance was different between types. The IMSEd of

“Dry field” and “Semi natural” can be characterised as bimodal because of the two peaks around

the sowing season (around DOY 60) and the harvest season (around DOY 260). However, for

rarer types such as “Inland water” or “Greenhouse”, relative importance curves display multiple

peaks both in 8-day and 16-day IMSEd curves.

3.4 Discussion

3.4.1 Regression performance

The regression performance of the major type models was comparable to previously published

studies. Schwieder et al. (2014), for example, reported a mean R2 = 0.60 for a fractional shrub

cover model using three machine learning algorithms including RF. Verbeiren et al. (2008)

confirmed that, at sub-pixel level, land cover estimation with multiple types is challenging;

a mean R2 of the fractional cover estimation with 8 types was 0.41 using a neural network

model and 0.29 using a linear mixture model. It is similar to the R2 of the major type models
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(d) Paddy field

DOY

IM
S

E

●

●

●
●

●

●

●
●

●

●●

●

●●●
●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

50 100 150 200 250 300 350

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(e) Urban

DOY

IM
S

E

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●
●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

(f) Orchard field
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(g) Inland water
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(h) Greenhouse
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Fig. 3.8 Seasonal variations of increased mean square error (IMSEd) are displayed to visualise
relative importance of the acquisition dates; dotted line indicates the IMSEd from the 8-day
data based scenarios and solid line from the 16-day data based scenarios. Note that we used
only ‘Full’ predictor set based scenarios (S4, S8, S12 and S16).

(> 0.6) (Supplementary Figure 3.14 and Supplementary Table 3.5). Xiao et al. (2005) reported

higher R2(> 0.75) for fractional green vegetation cover estimations, however their model was

not validated against ground observation and/or with cross-validation.

A regression task with multiple responses is inherently more difficult than a single-response

regression. Our results are comparable to the work by Colditz et al. (2011), for example, who

used a 14-class land cover system in South Africa (total accuracy = 55.0%) and Germany (total

accuracy = 51.6%). Note that type-wise regression performance was missing in their study.
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Fernandes et al. (2004) reported that the regression of fractional covers of minor types was

more difficult; the average predictive R2 was 0.57 for the two dominant types (“Conifer forest”

and “Shrub”) while 0.33 for the three minor types (“Deciduous forest”, “Barren” and“Water”).

Dennison et al. (2003) reported comparable overall accuracy (55.9%) from a fractional cover

model with 6 LULC types. Note that their models were evaluated without cross-validation.

We attribute the low performance to the right-skewed distributions of LULC fractions in the

training data (Supplementary Figure 3.15a). Since the minor LULC types occurred only spo-

radically over the area, a large number of pixels have zero fraction for the minor types.

When training data are skewed, a RF regression model has a limitation in prediction due

to the way how regression trees are constructed. If the training data is right-skewed or even

zero-inflated, the model is insufficiently trained on the high response values (e.g. high LULC

fractions). As discussed in Section 3.2.4.3, the prediction is the average response of all trees.

Thus, RF does not search for the best tree but averages all trees. When trained with the skewed

data, it can cause an underestimation bias in prediction. O’Leary et al. (2009) noted the same

issue in RF classification when training data is imbalanced.

Our result confirm that minor types are difficult to estimate in fractional cover studies and thus

need more attention. It is even more important to resolve the issues related to minor types in

agricultural areas. Due to fragmented land use patterns and heterogeneities embedded in land

cover classification systems (e.g. lumped cropland types), minor types are inevitably occurring

in this type of landscape. To our knowledge, there were only few studies dealing with multiple

LULC types in continuous land cover studies and the case studies generally suffer from poor

performance regarding agricultural types (e.g. Dennison et al., 2003; Verbeiren et al., 2008) and

often lack appropriate model validation (e.g. Colditz et al., 2011; Johnson et al., 2012; Xiao

et al., 2005).

The two-step modelling approach such as the Hurdle model (Mullahy, 1986) may alleviate

the issue of minor types in fractional cover estimation. In the Hurdle model approach, first

occurrence of a desired response (e.g. LULC type) is modelled and the degree of the response is

estimated for the instances passed the first ‘hurdle’. This approach may alleviate the issue of the

right-skewed training data. However, the issue of the missing high response values in training

data needs to be resolved independently.

The Hurdle model can be used in combination with machine learning (e.g. Lieske et al., 2014;

Povak et al., 2013). Fractional LULC regression with the Hurdle formulation would be an

interesting future work.
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3.4.2 Relative importance

In our case, the information contained in the red channel (B1) was not perfectly encapsulated

in the vegetation indices. This implies that we will lose some information if we use only the

vegetation indices. The blue (B3) and MIR (B7) channels influenced only subtly on the regression

performance especially for the minor types. This contradicts our initial assumption that these

bands could be useful to distinguish LULC types due to extra information.

MODIS EVI utilises an extra band B3 compared to NDVI. However, ‘EVI’ predictor set based

scenarios were outperformed by ‘NDVI’ predictor set based scenarios as if B3 did not supply

any incremental information about the vegetation activity or land cover status. It may be due

to the way MODIS EVI is parametrised. In principle, the parameters in the EVI formula should

be determined on-site. However, fixed parameter values are used for the MODIS EVI product

for convenience. EVI could be a better predictor with site-specific calibration.

In agricultural fields, land use can be altered in a short time period by which spectral signals

can be abruptly changed. Therefore it appears natural that the 8-day scenarios outperformed

the 16-day scenarios. Vegetative LULC types are continuously changing within a single year.

Therefore it is difficult to capture its characteristics using satellite images from a small number

of overpasses (Hüttich et al., 2009; Thenkabail et al., 2005). Moreover, crops have a relatively

short life-cycles as well as frequent human interventions, thus may not be fully characterised by

a small number of images (Gumma et al., 2011; Li et al., 2014). We therefore recommend using

full time series of satellite data to model multi-type LULC cover.

Additional features may further improve regression performance. For example, phenology metrics

such as green-on or green-off dates are used to identify vegetation and land cover types (e.g.

Lu et al., 2014; Pittman et al., 2010). However, costs of adding features (i.e. computing time)

should be carefully considered.

3.5 Conclusions

Existing global land use/land cover (LULC) raster maps have limited spatial and thematic

resolution particularly unfavourable to complex agricultural landscapes. As a contribution to

resolving this issue, we developed a fractional cover regression model and a strategy to set up the

model with globally available satellite products. When properly chosen and processed, coarse

satellite products can yield useful information at the sub-pixel level such as fractional land cover.

Among the data processing options, choice of predictor sets was the most important.
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In estimating absolute fraction, the model performance differed among LULC types depending

on the distributions of the observed fraction data. For the minor types, predicting absolute

fractions remained difficult. The monsoon period was not the most important period on the

regression performance but the critical periods varied by land cover type.

Estimating fractional land cover is a useful strategy for obtaining continuous representation of

LULC. It may also alleviate computational burden related to the use of high-resolution raster

images. However, fractional cover estimation especially with multiple land cover types is still

underdeveloped. With possible elaborations such as the Hurdle formulation, it may be possible

to extract useful land cover information from coarse multi-spectral satellite products.

Our study demonstrated how to build a reliable fractional cover regression model by choosing

optimal data-processing options. Our evaluation framework and findings can be a useful guide

to make informed decisions in similar studies.
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Fig. 3.9 The reference land use/land cover (LULC) fractions of the study site in 2010. LULC
fractions were calculated from the original polygon data (Seo et al., 2014) to fit the MODIS
500 m sinusoidal grid (EPSG: 6842) and range from 0 (0% cover) to 1 (100% cover).
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Fig. 3.10 Location of the 16 clusters and the 64 sub-clusters used for spatial cross-validation.
Adjacent pixels in the same colour indicate a sub-cluster and four of the sub-clusters comprise
a cluster. In each cross-validation fold, one cluster was hold-out as test data and the rest 15
clusters trained a Random Forest regression model. The mean size of the clusters was 4.00 km2
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Fig. 3.11 Variations of RMSE with changing Random Forest parameters (a) Ntree and (b)
nodesize during the parameter tuning based on the repartitioning of the training data. For
illustrating the general response of the model, the mean RMSE of all scenarios and the LULC
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scenario.
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Fig. 3.12 Mean predicted LULC fractions of the study area. Maps from the averaged fractions
over the all 16 scenarios.
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Fig. 3.13 Predicted LULC fractions from the best performed scenario (S4). This scenario used
the non-smoothed full features in 8-day interval as predictor.
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Fig. 3.15 Distributions of cover fractions of (a) the ground LULC observations and (b) the
averaged predictions from scenarios S1 through S16.



References 101

Supplementary Tables



102 References

Table
3.4.Specification

ofthe
scenarios

and
the

R
andom

Forest
training

param
eters.T

he
param

eters
n

tr
ee and

n
od
esize

were
tuned

and
m

tr
y

was
determ

ined
by

the
square

root
of
n

f
ea

tu
r
e (C

lark
et

al.,2012;K
halilia

et
al.,2011).

N
am

e
data-processing

options
Param

eters
Predictor

set
T
im

e
interval

Sm
oothing

n
ba

n
d

n
f

ea
tu

r
e

n
tr

ee
m

tr
y

n
od
esize

S1
N
D
V
I

8-day

N
o
sm

oothing

1
46

600
6

1
S2

EV
I

1
46

700
6

2
S3

SR
4

184
400

13
3

S4
Full

6
276

700
16

1
S5

N
D
V
I

16-day

1
23

200
4

1
S6

EV
I

1
23

500
4

1
S7

SR
4

92
300

9
1

S8
Full

6
138

800
11

2
S9

N
D
V
I

8-day

Savitzky-G
olay

sm
oothing

1
46

600
6

4
S10

EV
I

1
46

500
6

1
S11

SR
4

184
500

13
1

S12
Full

6
276

400
16

1
S13

N
D
V
I

16-day

1
23

800
4

1
S14

EV
I

1
23

300
4

1
S15

SR
4

92
900

9
1

S16
Full

6
138

600
11

1



References 103

Table 3.5. Type-wise performance measures between observed and predicted fractions averaged
over all scenarios.

Classes RMSE ρ R2

Forest 0.11 0.89 0.93
Dry field 0.10 0.87 0.69
Semi natural 0.09 0.82 0.63
Paddy field 0.08 0.83 0.77
Urban 0.04 0.34 0.19
Orchard field 0.04 0.48 0.09
Inland water 0.02 0.54 0.10
Greenhouse 0.02 0.59 0.25
Barren 0.02 0.25 0.08
Avg. 0.06 0.62 0.41

Table 3.6. Normalised increased mean square error (NIMSEb) of the four spectral bands
extracted from the ‘SR’ predictor set based scenarios (S3, S7, S11, and S15).

NIMSEb (%)
Classes B1 B2 B3 B7
Forest 38.5 38.3 10.9 12.3
Dry field 45.8 47.9 2.6 3.7
Semi natural 49.0 46.6 2.1 2.2
Paddy field 49.7 44.7 3.5 2.0
Urban 50.8 48.4 0.4 0.4
Orchard field 48.1 51.4 0.2 0.2
Inland water 50.1 49.8 0.1 0.1
Greenhouse 53.0 46.8 0.1 0.1
Barren 52.0 47.9 0.1 0.0
Avg. 48.6 46.9 2.2 2.3
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Table 3.7. NIMSEb of the six bands extracted from the ‘Full’ predictor set based scenarios (S4,
S8, S12, and S16).

NIMSEb (%)
Classes NDVI EVI B1 B2 B3 B7
Forest 30.0 25.1 26.7 7.2 5.2 5.8
Dry field 30.8 30.9 33.6 1.5 1.3 1.9
Semi natural 31.4 33.1 32.1 1.2 1.0 1.1
Paddy field 34.1 32.0 29.7 1.8 1.5 0.8
Urban 34.4 33.5 31.6 0.2 0.2 0.2
Orchard field 31.0 32.5 36.2 0.1 0.1 0.1
Inland water 32.2 34.3 33.4 0.1 0.0 0.0
Greenhouse 35.3 34.2 30.5 0.0 0.0 0.0
Barren 32.7 34.7 32.5 0.0 0.0 0.0
Avg. 32.4 32.3 31.8 1.3 1.0 1.1

Table 3.8. Summary of the linear models explaining the model’s RMSE by the three data-
processing options: RMSE ∼ Op+Ot+Os, where Op is a categorical variable denoting the chosen
predictor set option, Ot time interval option, and Os smoothing option. Statistical significance
was tested by F-statistics and the relative contribution (i.e. proportion of variance explained) of
the options were calculated via proportional marginal variance decomposition (PMVD) method
(Feldman, 2005).

Type Pr(>F) Explained variance (%)
Op Ot Os

Forest 0.00 52.92 19.61 7.75
Dry field 0.00 71.78 0.80 11.65
Semi natural 0.00 29.45 50.90 3.47
Paddy field 0.00 58.65 31.62 1.86
Urban 0.02 41.32 4.14 24.30
Orchard field 0.00 10.10 2.11 65.74
Inland water 0.00 19.69 35.90 29.31
Greenhouse 0.02 32.75 19.61 16.06
Barren 0.83 9.70 5.90 1.36
Avg. - 36.26 18.96 17.94



Chapter 4

Improving the classification of rare

land use and land cover types using

synthetic data

4.1 Introduction

Detailed information on land use and land cover (LULC) is essential in many areas of environ-

mental sciences. A constantly growing body of literature emphasizes the impact that changes

in land use may have on Earth’s climate (e.g. Chhabra et al., 2006; Foley et al., 2005; Turner

et al., 2007), biodiversity (Dawson et al., 2011; Hoffmann et al., 2010) and water cycle (Sterling

et al., 2012). Among different human land use forms, cultivated ecosystems (for production of

food, feed and fibre) are particularly frequent and occupy 34% of the land surface (Chhabra

et al., 2006).

However, detecting LULC changes in cultivated and especially in agricultural areas might be

challenging. Agricultural landscapes are frequently made up of a spatial mosaic of different

crop types. In contrast, the most frequently used global land cover databases like GlobCover or

MODIS Land Cover Type contain only few crop-related classes (Bontemps et al., 2011; Loveland

et al., 2000; U.S. Geological Survey, 2012). To derive more detailed LULC maps, data from the

Moderate Resolution Imaging Spectroradiometer (MODIS) can be used (e.g. Pittman et al.,

2010; Thenkabail et al., 2005).

One advantage of MODIS is global coverage. Additionally, due to daily revisiting times the final

products can be temporally aggregated to avoid data gaps. Several different MODIS products

exist with varying degrees of preprocessing. We focus here on the Vegetation Indices product
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MOD13Q1 that has a moderate spatial resolution of 250m and provides time series of surface

reflectance with a temporal resolution of 16 days.

MODIS time series are particularly suitable to track seasonal variation of vegetation development.

Hüttich et al. (2009), for example, used MODIS time series metrics to map vegetation types in

dry African Savannah. Brown et al. (2013b) analysed land use changes in an agricultural area in

Brazil. Based on a detailed ground reference data set, the authors could distinguish 15 land-use

classes related to agriculture. However, some of these classes had to be eliminated from the

analysis because they were rare. Others had to be grouped due to their spectral similarity.

Rare or minor classes are often difficult to classify. It is commonly recognized that classifiers

perform best on (approximately) equally distributed classes (e.g. Chawla et al., 2004; Fernández

et al., 2011). However, because minor classes are ubiquitous in remote sensing, the data sets

are often imbalanced. In general, there are three major ways to cope with imbalanced data

sets. The first is to adapt the classification algorithm to reinforce learning of the minor classes

(e.g. Bruzzone et al., 1997; Williams et al., 2009). The second is to adjust the classifier by

assigning different costs to misclassification in rare versus frequent classes (e.g. Alejo et al.,

2009; Sun et al., 2007). The third is by re-sampling the data set (e.g. García et al., 2011; He

et al., 2009; Waske et al., 2009, and references therein). This last approach has the advantage

to be independent from the classifier used.

Oversampling of the rare classes with replacement or undersampling of the major class have

been discussed by several authors (Japkowicz et al., 2002; Ling et al., 1998; Schistad Solberg

et al., 1996). However, the potential of these approaches to improve the classification accuracy

of rare classes seems to be limited. In particular random oversampling with replacement can

lead to overfitting (Chawla, 2010).

To overcome the issue of overfitting, Chawla et al. (2002) proposed to generate new minority

instances by a synthetic minority oversampling technique (SMOTE) instead of oversampling with

replacement. They reported that the synthetic points created by SMOTE forced the classifier to

learn larger and less specific regions and thus changed the boundaries between classes. SMOTE

performs better than oversampling the minority class by replacement and can be combined with

undersampling of the majority class.

In remote sensing, machine learning algorithms have been widely adopted for land cover and

land use analysis. For example, Random Forests (RF) have been used in modelling land cover in

a variety of landscapes (Clark et al., 2010; Nitze et al., 2015; Schwieder et al., 2014) including a

heterogeneous agricultural region (Rodriguez-Galiano et al., 2012). A Random Forest classifier

can deal with a large number of highly correlated features (e.g. spectral data) and non-linear
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relationships (Breiman, 2001; Immitzer et al., 2012). Similarly, Support Vector Machines (SVM)

have also gained increasing attention (Attarchi et al., 2014; Mountrakis et al., 2011; Vuolo et al.,

2012). They are suitable for relatively small data sets and a large number of features (Camps-

Valls et al., 2009). Therefore, it appears natural to combine these state-of-the are machine

learning methods with SMOTE for classification tasks on imbalanced data sets (Akbani et

al., 2004; Johnson et al., 2013). Comparing alternative machine learning algorithms helps in

identifying general benefits of SMOTE that are not specific to one particular machine learning

algorithm.

In our work, we apply SMOTE to a complex real-world data set characterized by a large

imbalance ratio. It contains 17 classes (two major and 15 minor classes) – a multi-majority and

multi-minority data set (Wang et al., 2012) – and a small number of points in minority classes.

The goal of our study is to improve the classification of rare classes in an agricultural mosaic

catchment by using SMOTE on the standard MODIS product MOD13Q1. We compare four

different classification scenarios and two machine learning algorithms (RF and SVM) on original

imbalanced and synthetically oversampled data. We quantify the effect of SMOTE on overall

model performance and on different groups of land cover classes. In particular, we show that

in the presence of class overlap increasing the number of training points does not guarantee a

better classification result. To our knowledge, only few papers in the remote sensing literature

address this issue on a complex real-world data set. Finally, we analyse by which mechanism the

alternative scenarios affect model performance, looking at the relationship between class labels

and surface reflectance (mutual information) and the difficulty of classification (entropy).

4.2 Data and study area

4.2.1 Study area

The studied catchment Haean (128◦1′33.101′′E, 38◦28′6.231′′N) is located in the mountainous

watershed Soyang in the northeastern part of South Korea (Figure 4.1). This watershed is a

protected temperate forest. However, some parts, including our study area, are used intensively

for conventional agriculture. The Haean catchment has a total area of 64 km2 with elevations

ranging from 500 m to 1200 m. The agricultural zone is located in the center of the catchment and

has a mosaic structure with various LULC types such as annual and perennial crops, seminatural

and urban area. The catchment is surrounded by a dense deciduous forest (Figure 4.2a).
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Fig. 4.1 Map of the Haean catchment located at the border between North and South Korea. The
satellite image is a SPOTMaps mosaic product (Astrium Services, http://www.astrium-geo.
com) acquired in 2009.

4.2.2 MODIS surface reflectance

We used MODIS 16-day reflectance layers from the Collection 5 MOD13Q1 product (NASA

Land Processes Distributed Active Archive Center (LP DAAC), 2013b) for the year 2010. It

supplies four reflectance bands (bands 1, 2, 3 and 7) at 250 m scale. Every observation in

MOD13Q1 is a temporal composite of 16 daily measurements that were filtered to remove cloud

contamination (Huete et al., 1999; Solano et al., 2010).

The four reflectance bands have specific information related to their spectral ranges. The red

channel band 1 (B1) covers 620–670 nm and is sensitive to chlorophyll in vegetation. The near-

infrared channel band 2 (B2) covers 841–876 nm and has been widely used to evaluate ground

vegetation viability together with B1. Band 3 (B3) is commonly called the blue channel due to

its sensitivity to water vapour. It covers 459–479 nm and is used to filter the cloud covered data

or detect water bodies. Additionally, it serves to differentiate soil from vegetation. The range of

the mid-infrared band 7 (B7) equals 2105–2155 nm and is also used to examine land and cloud

properties.

Every band contained 23 images per year and we obtained 96 data points per pixel of 250 m× 250 m.

The whole catchment covered 1198 pixels of the MODIS tile H28V5. No pretreatment was applied

to the retrieved MODIS data.

http://www.astrium-geo.com
http://www.astrium-geo.com
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4.2.3 Reference land use and land cover data

The reference LULC data set was obtained by ground census of the whole study area in 2010. It

contains 67 crop/non-crop LULC types and is available online at the public repository Pangaea

(Seo et al., 2014; Seo et al., 2014). Originally, the data set consisted of projected geospatial

polygons (WGS84 / UTM 52N; EPSG:32652) with LULC classes assigned to each polygon. To

increase the sample sizes for locally important LULC types we merged similar ones and obtained

59 classes (Supplementary Table 4.2). Subsequently, for this study we converted the polygons

to a raster image on the MODIS 250 m sinusoidal grid (SR-ORG:6842).

We determined the LULC class of a grid cell covered by multiple spatial polygons based on

the exact area size: We calculated the fraction of the occupied area in the projected space and

assigned the LULC class based on the highest proportion. The rasterisation yielded a data

set containing 28 LULC classes (Table 4.1). Figure 4.2 shows the original data containing 59

classes and the rasterized data set with 28 LULC classes. The rasterisation was done in R (R

Core Team, 2014) using the geometry engine GEOS (GEOS Development Team, 2014) and the

package rgeos (Bivand et al., 2014).
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Fig. 4.2 Land use and land cover of the Haean catchment surveyed in 2010. (a) Original polygon
data (59 classes) and (b) rasterized sinusoidal grid (28 classes). The names in bold indicate the
17 classes used for classification.
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Table 4.1. Distribution of the 28 land use and land cover classes in the rasterized data set. The
first 17 classes were used for classification.

LULC Pixels Area
– (%) (km2) (%)

deciduous forest 719 60.02 35.67 55.46
paddy rice 148 12.35 5.18 8.05
fallow 62 5.18 3.08 4.78
ginseng 34 2.84 1.59 2.48
semi natural 32 2.67 3.79 5.89
potato 32 2.67 1.57 2.45
mixed forest 22 1.84 1.34 2.08
bean 20 1.67 1.47 2.28
white radish 18 1.50 1.16 1.81
dry field 14 1.17 1.22 1.90
tall grass 13 1.09 1.45 2.26
orchard 13 1.09 0.94 1.46
shrub 13 1.09 0.66 1.03
rye 10 0.83 0.49 0.77
urban 9 0.75 0.56 0.86
codonopsis 7 0.58 0.29 0.46
cabbage 6 0.50 0.69 1.07
greenhouse 4 0.33 0.54 0.85
Acanthopanax 4 0.33 0.19 0.29
reservoir 4 0.33 0.15 0.23
bare soil 4 0.33 0.14 0.22
coniferous forest 3 0.25 0.19 0.29
transportation 2 0.17 0.50 0.77
pepper 1 0.08 0.16 0.24
medicinal herb 1 0.08 0.08 0.12
Ligularia fischeri 1 0.08 0.05 0.08
C4 cover crop 1 0.08 0.05 0.07
Schisandra chinensis 1 0.08 0.01 0.02

4.3 Methods and data analysis

4.3.1 Difficulty of classification

As pointed out by Kononenko et al. (1991) the distribution of the classes is closely related to the

difficulty of the classification task. Consider a classification task withM classes Ci, i = 1, . . . ,M

with prior probabilities p(Ci). We require ∑i p(Ci) = 1. The amount of information to correctly

classify one instance with prior probability p(Ci) into class Ci equals − log p(Ci) (Shannon,

1948). Correspondingly, the amount of information we need to correctly state that an instance

does not belong to class Ci equals − log(1− p(Ci)). Then, the expected amount of information

to classify one instance equals to the entropy
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H = −
M∑
i

p(Ci) log p(Ci) . (4.1)

Intuitively, a classification task with equal prior probabilities p(Ci) = 1/M is the most difficult

one. Additionally, a problem with more classes is in general more difficult to solve. This accords

well with the properties of the entropy. Indeed, for a classification task with equal prior proba-

bilities the entropy is greater than for one with unequal probabilities (Kononenko et al., 1991;

Shannon, 1948). Moreover, if we split one class, H increases.

A classifier trained on an unbalanced data set (i.e. an easy task with small entropy) has more

potential to specialize on the majority class and to neglect minority classes. Actually, by classi-

fying every instance into the majority class it can attain a high accuracy (Valverde-Albacete

et al., 2014) (see Section 4.3.4 for the definition of accuracy). Therefore, altering the distribution

of data changes the difficulty of the classification task.

4.3.2 Data resampling and preprocessing

4.3.2.1 Generating synthetic data points

The synthetic minority oversampling technique (SMOTE) oversamples a rare class by gener-

ating new instances (Chawla et al., 2002). For every existing point Pi in a given rare class, it

inserts synthetic points along a line that connects this point to one of its k nearest neighbours.

Depending on the oversampling rate N , several k nearest neighbours can be chosen randomly

and several points can be generated along one connecting line. To create a new point, SMOTE

calculates the difference between the chosen nearest neighbour and the point Pi, weights this dif-

ference by a random number between 0 and 1 and adds this difference to the point Pi. Figure 4.3

illustrates this principle in two dimensions.

4.3.2.2 Choice of rare classes

In order to generate synthetic data, the rare class must contain at least some original points.

The distribution of the LULC types in the Haean catchment is highly imbalanced (Table 4.1).

The imbalance ratio is defined as the number of pixels in the most frequent class (in our case

‘deciduous forest’) divided by the number of pixels in the rare class. The majority class ‘deciduous

forest’ contains more than four times as many pixels as the second most abundant class ‘paddy

rice’. The imbalance ratio between the forest and the rare classes is even larger.

In the following, we will call the classes ‘deciduous forest’ and ‘paddy rice’ majority classes and
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Fig. 4.3 Illustration of the synthetic minority oversampling technique (SMOTE) in two dimen-
sions. SMOTE generates synthetic points (crosses denoted s1 through s5) along the connection
lines between a point Pi (black dot denoted Pi) and its k nearest neighbours (black dots). In
this case, the number of nearest neighbours k = 5 and the oversampling rate N = 5. Circles
show other minority samples that are not the k nearest neighbours of Pi.

denote the others as minority classes. For SMOTE we selected only minority classes containing

at least six pixels resulting in a data set with 17 LULC classes (Tables 4.1 and 4.2). They make

up 97.8% of the total number of pixels and 96.1% of the total area of the catchment.

4.3.2.3 Removing Tomek links

Additionally to oversampling the minority classes, we inspected the neighbourhood relationships

in the original data set. We calculated the Euclidean distance between the reflectance data

of all pixels in the chosen 17 LULC classes and identified the closest neighbour of every pixel

(i.e. its first nearest neighbour). The most frequent nearest neighbours of nine of 17 LULC

classes belonged to the same class (Figure 4.4). However, in eight minority classes the most

frequent nearest neighbour belonged to a different class, namely ‘deciduous forest’, ‘paddy rice’

or ‘fallow’.

Direct neighbours belonging to different classes are called Tomek links (Tomek, 1976). More

formally, a pair of points Pi and Pj belonging to different classes forms a Tomek link, if there

is no third point P` such that d(Pi, P`) < d(Pi, Pj) or d(Pj, P`) < d(Pi, Pj), where d(·, ·) is the
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distance between points. Points forming a Tomek link are either borderline instances or one of

them is noisy. We removed Tomek links by undersampling the majority class ‘deciduous forest’

in order to reduce the class overlap with the agricultural classes (Batista et al., 2004). The

removal of Tomek links was done using the R package unbalanced (Pozzolo et al., 2014).
de

ci
du

ou
s 

fo
re

st

pa
dd

y 
ric

e

fa
llo

w

gi
ns

en
g

se
m

i n
at

ur
al

po
ta

to

m
ix

ed
 fo

re
st

be
an

w
hi

te
 r

ad
is

h

dr
y 

fie
ld

ta
ll 

gr
as

s

or
ch

ar
d

sh
ru

b

ry
e

ur
ba

n

co
do

no
ps

is

ca
bb

ag
e

P
ro

po
rt

io
n 

(%
)

0
10

20
30

40
50

pa
dd

y 
ric

e

pa
dd

y 
ric

e

fa
llo

w

Fig. 4.4 Proportion of the most frequent nearest neighbours belonging to a different class (Tomek
links) in the total number of nearest neighbours. The most frequent nearest neighbours in the
classes with zero proportion belonged to the same class. All Tomek links were with ‘deciduous
forest’, except in the classes ‘semi natural’ (with ‘paddy rice’), ‘white radish’ (with ‘fallow’) and
‘orchard’ (with ‘paddy rice’).

4.3.3 Mutual information: relationship between class labels and sur-

face reflectance

Changing the distribution of classes by synthetic oversampling of minority classes and under-

sampling of the majority classes probably affects the relationship between the class labels and

the spectral bands. Spectral bands that are stronger related to minor classes might become

more influential. To quantify this change we calculated the mutual information MI between the

class labels and the surface reflectance values to see possible changes in their relationships. The

mutual information is a general measure of dependency between random variables

MI (X, Y ) = H(X) +H(Y )−H(X, Y ) , (4.2)

where H(X) andH(Y ) are the Shannon entropies of the random variables X and Y , respectively,
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and H(X, Y ) is the joint Shannon entropy of X and Y (Shannon, 1948).

We estimated the mutual information by the method of k (in our case k = 3) nearest neighbours

(Kraskov et al., 2004). It avoids the binning (discretization) of the real-valued data that is

known to produce biased estimates (Kraskov et al., 2004). The calculations were done using the

R package parmigene (Sales et al., 2012).

The mutual information is non-negative, but has no upper bound. In order to facilitate compar-

isons between different data sets, we normalized it as proposed by Joe, 1989 and modified by

Numata et al., 2008:

MI ∗(X, Y ) = sign
(
M̂I (X, Y )

)(
1− e−2|M̂I (X,Y )|

) 1
2
, (4.3)

where M̂I (X, Y ) is the estimate of the mutual information and the function sign(·) evaluates

the sign of its argument. This normalization takes possible estimation inaccuracies of MI (X, Y )

into account by using the function sign(·) (Numata et al., 2008). Although MI (X, Y ) ≥ 0, the

estimate M̂I (X, Y ) might be negative indicating estimation errors and the sign function allows

for negative values of MI ∗(X, Y ) if M̂I (X, Y ) < 0. If M̂I (X, Y ) ≥ 0, then MI ∗(X, Y ) ∈ [0, 1].

MI ∗(X, Y ) measures the overall dependency between X and Y and shows how well Y can be

predicted by X. It is 0 iff X contains no information about Y (i.e. X and Y are statistically

independent), approaches 1 for increasing M̂I (X, Y ) and equals 1 if there is a perfect functional

relationship between X and Y . If X and Y are normally distributed, MI ∗(X, Y ) becomes the

absolute value of the linear (i.e. Pearson’s) correlation coefficient (Joe, 1989).

4.3.4 Performance measures

Usually the performance of a classifier is assessed via the confusion matrix (Figure 4.5 shows

an example for a binary classification). The predicted classes appear in the columns and the

actual ones in the rows. The single cells are the number of correctly classified positive (TP:

True Positive) and negative examples (TN : True Negative) and misclassified positive (FP : False

Positive) and negative examples (FN : False Negative).

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP TN

Fig. 4.5 Confusion matrix to evaluate the performance of a binary classifier. TP: true positive,
FP: false positive, FN : false negative and TN : true negative.

A classical measure of performance is the (predictive) accuracy A = (TP + TN )/(TP + FP +
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TN + FN ). However, for imbalanced data sets A is known to be inappropriate because it masks

a poor performance on minority class (Weiss, 2004; Weiss et al., 2003). Therefore, the Receiver

Operating Characteristic (ROC) graph was proposed to compare different classification results.

In an ROC graph the false positive rate FPR = FP/(FP + TN ) is plotted on the x-axis and the

true positive rate (also called recall R) TPR = TP/(TP +FN ) on the y-axis (e.g. Fawcett, 2006).

The closer a classifier approaches the point (0, 1) in this graph, the better its performance.

To summarize the confusion matrix in our multi-class classification task we calculated G-mean,

F -score and the normalized information distance (NID) (Kraskov et al., 2005). G-mean is the

geometric mean of recall per class and is often used in classification with imbalanced data. Its

multi-class version is defined as

G-mean =
(

M∏
i=1

Ri

) 1
M

, (4.4)

where Ri = TP i/(TP i + FN i) is the recall in class i and M the number of classes (Kubat et al.,

1997; Sun et al., 2006). F -score was originally defined for binary classification and we use the

macro-averaged extension to multi-class problems because it treats all classes equally (Sokolova

et al., 2009)

F -score = 2PMRM

PM +RM

, (4.5)

where PM is the macro-averaged precision

PM = 1
M

M∑
i=1

TP i

TP i + FP i

, (4.6)

and RM the macro-averaged recall

RM = 1
M

M∑
i=1

Ri (4.7)

and M is the number of classes. Precision reports how many of instances recognized as positive

are indeed positive and recall shows how many of actually positive instances were found.

NID belongs to the group of information theoretic measures that have a strong mathematical

foundation (Vinh et al., 2010). It is a metric and a normalized measure in the range [0, 1] and

is used to assess the distance (i.e. dissimilarity) between partitions X and Y

NID(X, Y ) = 1− MI (X, Y )
max(H(X), H(Y ) , (4.8)
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where MI (X, Y ) is the mutual information, H(X) and H(Y ) are the Shannon entropies of X

and Y , respectively. NID(X, Y ) is zero iff X = Y (i.e. the partitions are identical) and 1 iff X

and Y are independent (i.e. the partitions are maximally dissimilar).

4.3.5 Classification scenarios

In order to evaluate how the classification performance of the classifiers changes when the data

are preprocessed, we compared different classification scenarios. In every scenario, we carried

out a 6-fold stratified cross validation (SCV). Thus we split the data randomly (each class

separately) in 6 folds, used 5 folds to train the classifier and the hold-out fold to test it. Because

each fold was used once as a hold-out test fold, we obtained predictions for every pixel. The

random splitting was repeated 5 times.

We used the same splitting in training and test data for all scenarios. These were defined as

follows:

S1: SCV of original data This is the base-line scenario. Any data resampling procedure

and subsequent classification has to perform at least as well as in this scenario.

S2: SCV of original data with Tomek links removed We removed Tomek links in the

majority class ‘deciduous forest’ in the training data.

S3: SCV with SMOTEd training data The goal of this scenario is to obtain an equal

distribution of minority classes for training. Therefore, after removing Tomek links as in S2,

the minority classes in the training folds were synthetically oversampled approximately up to

the number of ‘paddy rice‘ pixels (i.e. 123 pixels). The majority classes ‘deciduous forest’ and

‘paddy rice‘ were not oversampled.

S4: SCV with SMOTEd training data and undersampling Additionally to the removal

of Tomek links and SMOTE as in S3, the majority class ‘deciduous forest’ was undersampled by

randomly selecting 123 pixels for training (corresponding to the number of ‘paddy rice‘ pixels

in the training data) to obtain an equal distribution of all classes in the training folds. The

majority class ‘paddy rice‘ was not oversampled.
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4.3.6 Optimizing the hyperparameters

RF has three hyperparameters, namely the number of trees (ntree), the number of randomly

selected variables on each split (mtry) and the minimum number of samples in terminal nodes

(nodesize). A sufficiently large number of trees is necessary for a good model performance.

However, the computing time increases with increasing ntree. Similarly, a smaller nodesize value

generally increases the model performance as well as its complexity.

Prior to the main analysis, we performed a grid search to find the optimal ntree and nodesize per

scenario. We used a grid from all combinations of ntree = {100, 200, ..., 1000} and nodesize =

{1, 2, 3, 4, 5}. Rodriguez-Galiano et al. (2012) and Leutner et al. (2012) suggested to optimize

ntree and nodesize simultaneously. However, we determined them independently of each other

because this method was less sensitive to variations between partitions and led to a more stable

parameter selection. The hyperparameter mtry was set to the square root of the number of

features (Clark et al., 2012).

We used an SVM classifier with a Gaussian radial basis function (RBF) kernel. It has two

hyperparemters, namely σ and C. Caputo et al. (2002) have shown that optimal values of σ

can be determined based on the training data and lie between the inverse of the 10% and 90%

quantiles of the distance between the points. We set it to the inverse of the median.

C is a regularization parameter and controls the trade-off between model complexity and

misclassification. A large value of C strongly penalizes misclassification and might lead to a

winding decision boundary and thus to overfitting. In contrast, smaller values of C tolerate

more misclassification and force the boundary to be smoother (e.g. Hastie et al., 2009). Unlike

σ, the hyperparameter C has to be tuned. Therefore, we performed a grid search. We first used

a coarse grid C = 10−2,−1,...,5 and then refined it around the area of good performance of the

classifier and tried C = {0.01, 0.10, 0.20, 0.50, 0.75, 1.00, 2, 4, 8, 10, 15, 20, 25, 30}.

We optimized the hyperparameters in an internal cross validation. First, we split the training

folds again into 5 folds, trained the classifier on 4 folds with different parameter values and then

predicted the hold-out fold. This internal cross validation ensures that parameters are optimized

on the training data only. We compared the optimization based on F -score with parameters

chosen by the classification error (the proportion of misclassified points). In other words we

determined ntree and nodesize leading to the maximum F -score or to the minimum classification

error and compared their performance in the scenarios.

The calculations were done in GNU R (R Core Team, 2014) using the R packages randomForest

version 4.6–7 (Liaw et al., 2002) and kernlab (Karatzoglou et al., 2004).
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4.4 Results

4.4.1 Data distribution and oversampling rate

The distribution of the training data in different scenarios either equalled that of the original data

(S1) or was altered by removal of Tomek links (S2), additional oversampling (S3) or additional

over- and undersampling (S4) to approach a balance between the LULC classes (Supplementary

Figure 4.10).

The scenario S1 was characterized by a high imbalance ratio of the original data set of approx-

imately 100 : 1. Even the imbalance of the minority classes was still approximately 10 : 1 (the

ratio between ‘fallow’ and ‘cabbage’). Because only 48 points (on average) were removed in

each training fold of the 5 repetitions, the imbalance ratio in S2 remained comparable to S1. In

contrast, beside the dominance of ‘deciduous forest’, the classes became evenly distributed in

S3 after synthetic oversampling. Finally, the combination of synthetic oversampling of minority

classes and random undersampling of the majority class ‘deciduous forest’ generated a nearly

equal distribution of classes in S4. Note that Tomek links were also removed in S3 and S4.

The synthetic oversampling rate N ranged between 100% for ‘fallow’ and 2300% for ‘cabbage’

(Supplementary Table 4.3). In other words, for every existing point of class ‘fallow’ one new

sample was generated, while 23 new instances were created for every pixel in the class ‘cabbage’.

In their work Chawla et al. (2002) recommended to choose the oversampling rate not larger

than the number of nearest neighbours k. For k = 5, for example, the oversampling rate should

not exceed 500%. However, Maciejewski et al. (2011) have shown that best classification results

on data sets with a high imbalance ratio could be achieved with N four to five times larger than

k. In our study, we have chosen k = 5, thus oversampling rates up to 2300% are large but likely

not excessive.

4.4.2 Optimized hyperparameters

We compared the optimization of the RF (ntree and nodesize) and SVM (C) hyperparameters

based on F -score and the classification error (Supplementary Figures 4.11 and 4.12). F -score

responded sensitively to variations of ntree and nodesize and varied stronger between different

folds compared to the classification error. It occasionally preferred simpler parameters (i.e.

smaller ntree and larger nodesize) while the classification error generally pointed to more complex

parameters (i.e. larger ntree and smaller nodesize).

F -score and the classification error both lacked a sharp extreme (maximum for F -score and min-
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imum for classification error) and were rather flat for a large range of C values (Supplementary

Figure 4.13). To avoid selecting an unnecessarily large C, we chose the smallest value leading to

an F -score that was at most 5% smaller than the maximum or leading to a classification error

that was at most 5% larger than the minimum. Compared to the classification error, F -score

varied more between the training folds.

In general, both measures suggested rather small values for C. However, in scenarios S1 and

S2 on unbalanced data, F -score chose a larger C than the classification error and vice versa in

scenarios S3 and S4 on balanced data.

Because we are interested in increasing the classification performance on minority classes, we

selected the hyperparameters based on F -score.

4.4.3 Entropy and mutual information

The classification problem on the original data was simpler compared to the other scenarios.

Indeed, S1 had the lowest entropy (2.3) because the class distribution was dominated by ‘decid-

uous forest’. Thus, the classifier could obtain a high overall accuracy (0.97, c.f. Supplementary

Table 4.17) by classifying the majority classes correctly and ignoring at least some of the mi-

nority classes. SMOTE increased the difficulty of the classification in scenarios S3 and S4 as

indicated by the larger entropy (3.9 and 4.1, respectively) by balancing the distribution.

The mutual information MI ∗ between the surface reflectance and the class labels in the training

data of scenario S1 was relatively large. However, it varied between the four MODIS bands

(Figure 4.6). Especially in spring and late summer, MI ∗ decreased in the red channel B1 and

the near-infrared channel B2, both sensitive to vegetation viability. Additionally, these periods

showed the largest variability between the different runs in S1 and S2 and had therefore the

broadest 5% to 95% quantile ranges.

The removal of Tomek links in S2 increased MI ∗ only slightly without affecting its temporal

shape. In contrast, compared to the original data, SMOTE raised it noticeably and decreased its

temporal variability in scenarios S3 and S4. Indeed, the minima of MI ∗ in B1 and B2 in spring

and summer became less pronounced. In contrast, random undersampling of the majority class

‘deciduous forest’ in S4 hardly affected the mutual information.

4.4.4 Classification performance

We ran the scenarios five times and evaluated each repetition. To assess the classification of

single LULC classes, we used TPR and FPR (Figures 4.7a for RF and 4.7e for SVM) and for
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Fig. 4.6 Mutual information MI ∗ between class labels and predictors (i.e. MODIS spectral
bands) for 5 repetitions on 6 training folds in scenarios S1 through S4. (a) red channel B1, (b)
near-infrared channel B2, (c) blue channel B3 and (d) mid-infrared channel B7. The plain lines
show the median and the shaded areas the 5% to 95% quantile range.

overall performance in a scenario we calculated the measures introduced in Section 4.3.4.

4.4.4.1 Classification of single LULC classes

In S1 the median TPRs of the two majority classes ‘deciduous forest’ and ‘paddy rice’ were largest

and equalled 97% and 89% (RF) and 95% and 85% (SVM), respectively (c.f. Supplementary

Tables 4.4, 4.8 and 4.18 for detailed summaries). However, because many minority classes were

falsely classified as ‘deciduous forest’, its median FPRs reached 29% (RF) and 26% (SVM).

In contrast, the median FPRs of ‘paddy rice’ were low and equalled only 6% (RF) and 5%

(SVM).

In general, we observed a positive relationship between the median TPRs and the number of

pixels in minority classes for both classifiers. However, some comparably large classes like ‘mixed

forest’ and ‘bean’ or ‘shrub’ and ‘dry field’ behaved differently. In addition, RF failed to detect

five classes while only two classes had a zero TPR when classified with SVM.

In S2 the removal of Tomek links in the majority class ‘deciduous forest’ decreased its median

FPR by more than 9%. In contrast, it affected the FPRs in the other classes only slightly.

Additionally, the median TPRs of some of the minority classes increased, particularly when

classified with RF (Figure 4.7, b and f, and Supplementary Tables 4.5, 4.9 and 4.18).

The synthetic oversampling in S3 generally increased the median TPRs in the minority classes
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(Figure 4.7, c and g, and Supplementary Table 4.18), particularly in ‘codonopsis’, ‘urban’ and

‘shrub’. However, they decreased in the majority classes and in three minority classes (‘fallow’,

‘semi natural’ and ‘ginseng’ when classified RF and ‘fallow’, ‘semi natural’ and ‘potato’ with

classified with SVM). The number of classes with zero median TPR dropped from five to one

when classified with RF and to zero when classified with SVM.

Finally, due to additional random undersampling of ‘deciduous forest’ in S4 the TPRs of some

minority classes like ‘mixed forest’ or ‘fallow’ increased compared to S3 (Figure 4.7, d and h,

and Supplementary Tables 4.7, 4.11 and 4.18). However, the median FPRs also increased.

Although the number of ‘deciduous forest’ pixels was reduced substantially, its median TPR

decreased only by 9% with RF (from 91% to 80%) and 8% with SVM (from 86% to 78%).

Additionally, its FPR also dropped from 12% to 3% (RF) and 8% to 3% (SVM).
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Fig. 4.7 ROC graphs for scenarios S1 through S4 with the RF (upper row) and the SVM (lower
row) classifiers. The hyperparameters ntree and nodesize for RF and C for SVM were selected
based on F -score. Median TPRs and FPRs from 5 repetitions. Note the difference between
scales on the x- and y-axis. A point on the diagonal (grey line) indicates a random guess. The
order of the classes in the legend reflects the decreasing number of original pixels. The ROC
graph based on the parameters selected via the classification error is included in the online
Supplementary Material (Figure 4.14) for comparison.

4.4.4.2 Overall performance of scenarios

The median F -score based on the five repetitions was comparable between scenarios and ranged

from 0.37 to 0.39 (RF) and from 0.35 to 0.38 (SVM), respectively (Supplementary Table 4.12).
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The median NID varied slightly more, namely between 0.56 and 0.66 (RF) and from 0.62 to 0.65

(SVM) (Supplementary Table 4.13). Due to the zero TPRs of the minority types, the G-mean

was mostly zero except in S4 (0.32) when using SVM (Supplementary Table 4.14).

Although F -score remained stable, precision and recall were affected by SMOTE. Actually,

precision decreased from 0.6 (RF) and 0.48 (SVM) in scenarios without oversampling (mean

value for S1 and S2) to 0.36 (RF) and 0.31 (SVM) in scenarios with SMOTE (mean value

for S3 and S4) (Supplementary Table 4.15). In contrast, recall increased from 0.28 (RF) and

0.30 (SVM) to 0.41 (RF) and 0.40 (SVM) (Supplementary Table 4.16). Thus, in scenarios

with oversampling the classifiers found more false positives. However, they also identified more

actually positive instances.

4.4.4.3 Predicted land use and land cover as a map

Figure 4.8 shows the predicted classes from the repetitions with the largest F -score as a map

(c.f. Supplementary Table 4.17 for more details). In S1 and S2 minority classes at the boundary

between ‘deciduous forest’ and the agricultural area as well as in the center of the catchment

were underrepresented (Figure 4.8, a, b, e and f). In contrast, in scenarios with SMOTE some

of them (like ‘urban’, ‘shrub’ and ‘codonopsis’) appeared clearer (Figure 4.8, c, d, g and h).

Random undersampling of ‘deciduous forest’ in S4 particularly affected the ‘mixed forest’ class

in the eastern part of the catchment (Figure 4.8, d and h).

However, synthetic oversampling also increased FPRs and decreased precision in S3 and S4. In

other words, the falsely classified minority classes increased. For example, the forest edge pixels

in the northeastern part of the catchment were misclassified as dry field crops such as ‘rye’ or

‘tall grass’ (Figure 4.8, c, d, g and h).

4.5 Discussion

4.5.1 Influence of data resampling on classification performance

SMOTE increased the difficulty of the classification task by balancing the distribution and

therefore prevented the classifier from specializing on majority classes. Additionally, it raised

the mutual information MI ∗ between the LULC classes and the predictors. Thus, the predictors

contained more information on class labels in data sets augmented by synthetic oversampling

than in the original data set.

Both kinds of undersampling – removing Tomek links in S2–S4 and random undersampling in
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Fig. 4.8 Predicted land use and land cover classes of scenarios (a) S1, (b) S2, (c) S3, and (d) S4
using RF and (e) S1, (f) S2, (g) S3, and (h) S4 using SVM. The Maps from repetitions with
the largest F -score. Classes with less than 6 original pixels are marked as ‘NA’.

S4 – decreased the FPR of the majority class ‘deciduous forest’ substantially and its TPR only

slightly. While it is quite obvious that removing Tomek links cleans noisy pixels in ‘deciduous

forest’, the improvement due to random undersampling is less clear. One possible explanation is

that it balanced the distribution of training data additionally to synthetic oversampling.

Obviously, SMOTE decreased the imbalance ratio. In scenarios S1 and S2 we observed a positive

relationship between the number of training pixels (i.e. the size of a class) and the ability of the

classifier to recognize a pixel’s class correctly. Actually, Spearman’s rank correlation coefficient

between the median TPR and the number of training pixels were approximately 0.7 in S1 and

0.8 in S2, on average over the classifiers (Figure 4.9a). In contrast, the correlations dropped

sharply in S3 and S4 regardless of the classifier.

Although SMOTE decreased the imbalance ratio and increased the mutual information between

the LULC classes and the predictors, classification of some minority classes remained difficult.

To better understand why minority classes behave differently, we evaluated the neighbourhood

of the test data. Figure 4.9b shows the relationship between the median TPR and the median

of the proportion of five nearest neighbours of the test data in the training data that belong to

the same class as the test data. The Spearman correlation remained quite high in all scenarios
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indicating that pixels with a low number of nearest neighbours of the same class in the training

data were often misclassified.

The proportion of nearest neighbour of the same class is inversely related to the class overlap

which occurs if a region in feature space contains comparable numbers of points from different

classes. Such classes are particularly difficult to distinguish. SMOTE increased the proportion of

neighbours of the same class in some minority classes (Supplementary Figures 4.15 through 4.18).

However, classes like ‘dry field’ and ‘orchard’ retained a largely varying proportion of nearest

neighbours and a median proportion of zero even after synthetic oversampling. Accordingly,

these classes were particularly difficult to classify.

The optimized hyperparameter C of the SVM classifier might also indicate a substantial class

overlap. Specifically, a small C value induces a large margin and indicates that a further

decrease of the margin fails to increase the classification accuracy because the classes are not

separable.

SVM performed better than RF in the baseline scenario S1. This is in agreement with Dudoit

et al. (2003) who reported that RF performed poorly under data imbalance. However RF

marginally outperformed SVM when trained on the synthetically oversampled data. In S3 and

S4, the median F -score, precision, and recall were larger and NID was smaller compared to SVM

(Supplementary Table 4.12, 4.13, 4.15, and 4.16). Additionally, the decrease of TPRs of majority

classes and some of the larger minority classes (like ‘fallow’, ‘semi natural’ or ‘potato’) was

less pronounced when classified with RF (Supplementary Table 4.18). Similarly, performance

measures indicated a better agreement between the maps and the reference LULC data when

RF was used as classifier (Supplementary Table 4.17).

4.5.2 Issues related to learning

Our findings on the difficulty of classification related to class overlap are in agreement with

previously published results. Although it has been widely accepted that class imbalance is

responsible for a drop in classification performance, several recent studies report that imbalance

per se does not prevent learning (He et al., 2009; López et al., 2013; Sun et al., 2009). It is

rather a combination of imbalance and intrinsic characteristics of the data like small sample

size, possible sub-concepts (i.e. different clusters within single classes), class overlap or noisy

data.

Among these intrinsic characteristics, class overlap seems to play a particular role. Prati et al.

(2004), for example, reported that class overlap was at least as important as imbalance. They
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Fig. 4.9 Spearman correlation coefficient between (a) TPRs and the class sizes in the training
data; (b) TPRs and the median of the proportion of five nearest neighbours of the test data in
the training data that belong to the same class as the test data. The five points per scenario
represent the five repetitions.

have shown on a set of artificial data that for the same imbalance ratio the performance of the

classifier decreased with increasing class overlap. Moreover, Denil et al. (2010) described an

interaction between overlap and imbalance and mentioned that for a certain degree of overlap,

increasing the number of training samples did not improve the classification performance. To

our knowledge, there are only few studies in remote sensing explicitly treating class overlap. One

of them is the work by Alejo et al. (2013). They also reported that SMOTE could effectively

reduce even large class imbalance. However, it failed to increase the classification performance

in the presence of class overlap.

Overlap of LULC classes originates from spectral similarities between classes which can be

enhanced by mixture of different crops inside the same pixel. Actually, in an agricultural mosaic

landscape, mixed pixels containing several crops are common. Therefore, pure pixels that reflect

the spectral signature of one particular crop are probably even rarer. Some recent studies reported

that SMOTE might increase the class overlap because it does not take the neighbourhood of

pixels into account (Bunkhumpornpat et al., 2009; Maciejewski et al., 2011). However, using

alternative SMOTE implementations that take the neighbourhood into account will probably

not alleviate the substantial overlap already existing in the original data.

Besides the class overlap, the minor crops in our data set are rare in the absolute sense. Indeed,

some minority classes contain less than 10 pixels (Table 4.1). This might be insufficient for
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a classifier to induce a reliable model about the distribution of the data – an issue known as

the “lack of density” or the “lack of information” (López et al., 2013, and references therein).

In other words, in imbalanced small data sets the absolute rarity (i.e. small number of data

points) and the relative rarity (i.e. large imbalance ratio) amplify each other and make learning

difficult.

SMOTE helps to alleviate the issue of class imbalance, increases the number of training points

and therefore decreases the absolute rarity. However, splitting small classes for cross validation

risks to generate small subclusters (sub-concepts). Indeed, in classes with only 6 points, we left

out one point for testing and used 5 points for synthetic oversampling. This single testing point

might generate a subcluster and will be particularly difficult to classify in the presence of class

overlap. In particular, Japkowicz et al. (2002) suggested that the SVM classifier was insensitive

to class imbalance. Instead it is affected by the presence of small subclusters that are frequent

in imbalanced data sets with few training points.

4.6 Summary and conclusions

The classification of the original imbalanced data set was particularly challenging due to a

small number of training points in the minority classes (and thus a possible presence of small

subclusters) and the class overlap. SMOTE helped to alleviate the issue of class imbalance and

increased the number of training points.

Balancing the data distribution by synthetically oversampling the minority classes enhanced

the relationship between the class labels and the reflectance data (larger mutual information

MI ∗).

Synthetic oversampling increased the true positive rates of some minority classes substantially

compared to the original imbalanced data set. However, due to class overlap some of the minority

classes remained difficult to classify. Although it decreased precision and increased recall, the

combined measure F -score remained stable between scenarios.

SVM outperformed RF when trained on the original unbalanced data set. In contrast, RF

performed marginally better than SVM when trained on the synthetically oversampled data and

produced maps that agreed slightly better with reference LULC data (smaller NID). However,

the difference in performance between the classifiers was small.

Data preprocessing with SMOTE to balance the data distribution is independent of the classifier.

The implementation of the algorithm is straightforward and its functioning is easy to understand.

We have used RF and SVM, however, any other classifier could be used on the preprocessed data.
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Therefore, synthetic oversampling can be plugged in into an existing classification framework

without further adjustments.

When oversampling fails to increase the classification performance, a detailed analysis of the

pixels’ neighbourhood can yield important information. In particular, in the presence of class

overlap, increasing the number of training points does not guarantee a better classification

result.
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Fig. 4.10 Distribution of the training data sets in different scenarios. (a) S1: original data. (b)
S2: original data with Tomek links removed. (c) S3: Tomek links removed and synthetically
oversampled minority classes. (d) S4: Tomek links removed, synthetically oversampled minority
classes and randomly undersampled majority class ‘deciduous forest’.
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Fig. 4.11 Variation of F -score and classification error of RF with changing hyperparameter ntree
in 6 training folds in scenarios S1 through S4 (one repetition exemplarily). Both F -score and the
classification error were normalized by dividing them by their respective maximum or minimum.
A horizontal line at one was inserted for convenience. The grey area indicates the 5% threshold
and the symbols the chosen ntree for different folds.
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Fig. 4.12 Variation of F -score and classification error of RF with changing hyperparameter
nodesize in 6 training folds in scenarios S1 through S4 (one repetition exemplarily). Both F -score
and the classification error were normalized by dividing them by their respective maximum or
minimum. A horizontal line at one was inserted for convenience. The grey area indicates the
5% threshold and the symbols the chosen nodesize for different folds.
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Fig. 4.13 Variation of F -score and classification error of SVM with changing hyperparameter C
in 6 training folds in scenarios S1 through S4 (one repetition exemplarily). Both F -score and
classification error were normalized by dividing them by their respective maximum or minimum.
A horizontal line at one was inserted for convenience. The grey area indicates the 5% threshold
and the symbols the chosen C for different folds.
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Fig. 4.14 ROC graphs for scenarios S1 through S4 using RF (upper row) and SVM (lower row).
The hyperparameters ntree and nodesize for RF and C for SVM were selected based on the
classification error. Median TPRs and FPRs from 5 repetitions. Note the difference between
scales on the x- and y-axis. A point on the diagonal (grey line) indicates a random guess. The
order of the classes in the legend reflects the decreasing number of original pixels.
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Fig. 4.15 Proportion of five nearest neighbours of the test data in the training data that belong
to the same class as the test data in scenario S1.
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Fig. 4.16 Proportion of five nearest neighbours of the test data in the training data that belong
to the same class as the test data in scenario S2.
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Fig. 4.17 Proportion of five nearest neighbours of the test data in the training data that belong
to the same class as the test data in scenario S3.

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

● ●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

de
ci

du
ou

s 
fo

re
st

pa
dd

y 
ric

e

fa
llo

w

gi
ns

en
g

se
m

i n
at

ur
al

po
ta

to

m
ix

ed
 fo

re
st

be
an

w
hi

te
 r

ad
is

h

dr
y 

fie
ld

ta
ll 

gr
as

s

or
ch

ar
d

sh
ru

b

ry
e

ur
ba

n

co
do

no
ps

is

ca
bb

ag
e

0
20

40
60

80
10

0

P
ro

po
rt

io
n 

(%
)

Fig. 4.18 Proportion of five nearest neighbours of the test data in the training data that belong
to the same class as the test data in scenario S4

.



References 141

Supplementary Tables

Table 4.2. Modification of the LULC classification scheme by Seo et al. (2014). Similar minority
classes were merged reducing the number of classes from 67 to 59.

Original class Aggregated class
dry field, mixed dry field dry field
barren, bare soil bare soil
chinese cabbage, european cabbage, cabbage cabbage
apple, peach, grape, orchard orchard
coniferous forest, pine forest coniferous forest

Table 4.3. The average oversampling rate N in the training data of the SMOTEd scenarios (S3
and S4) in 5 repetitions.

Classes N (%)
deciduous forest -
paddy rice -
fallow 100
ginseng 300
semi natural 300
potato 300
mixed forest 500
bean 600
white radish 700
dry field 933
tall grass 1017
orchard 1017
shrub 1017
rye 1333
urban 1500
codonopsis 1967
cabbage 2300
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Table
4.6.RO

C
sum

m
ary

of5
repetitions

in
scenario

S3
using

R
F.

True
Positive

R
ate
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Table 4.12. F -score in 5 repetitions of scenarios S1 through S4.

Classifier Scenarios Min 25% Q Median Mean 75% Q Max

RF

S1 0.35 0.37 0.37 0.37 0.38 0.38
S2 0.38 0.38 0.39 0.39 0.40 0.40
S3 0.38 0.38 0.38 0.39 0.40 0.41
S4 0.37 0.37 0.38 0.38 0.39 0.41

SVM

S1 0.34 0.36 0.38 0.38 0.40 0.40
S2 0.33 0.33 0.37 0.36 0.38 0.40
S3 0.34 0.35 0.36 0.35 0.36 0.36
S4 0.33 0.35 0.35 0.35 0.35 0.35

Table 4.13. NID in 5 repetitions of scenarios S1 through S4.

Classifier Scenarios Min 25% Q Median Mean 75% Q Max

RF

S1 0.65 0.65 0.66 0.66 0.66 0.66
S2 0.61 0.62 0.62 0.62 0.62 0.63
S3 0.56 0.56 0.56 0.56 0.56 0.56
S4 0.60 0.60 0.60 0.60 0.60 0.60

SVM

S1 0.62 0.63 0.64 0.63 0.64 0.64
S2 0.60 0.61 0.62 0.61 0.62 0.62
S3 0.62 0.62 0.62 0.62 0.63 0.63
S4 0.64 0.64 0.65 0.65 0.66 0.66

Table 4.14. G-mean in 5 repetitions of scenarios S1 through S4.

Classifier Scenarios Min 25% Q Median Mean 75% Q Max

RF

S1 0.00 0.00 0.00 0.00 0.00 0.00
S2 0.00 0.00 0.00 0.00 0.00 0.00
S3 0.00 0.00 0.00 0.06 0.00 0.29
S4 0.00 0.00 0.00 0.07 0.00 0.33

SVM

S1 0.00 0.00 0.00 0.00 0.00 0.00
S2 0.00 0.00 0.00 0.00 0.00 0.00
S3 0.00 0.00 0.00 0.12 0.28 0.30
S4 0.00 0.00 0.32 0.19 0.32 0.33
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Table 4.15. Precision in 5 repetitions of scenarios S1 through S4.

Classifier Scenarios Min 25% Q Median Mean 75% Q Max

RF

S1 0.57 0.57 0.62 0.62 0.66 0.67
S2 0.55 0.55 0.58 0.58 0.59 0.63
S3 0.37 0.37 0.38 0.38 0.40 0.41
S4 0.33 0.34 0.34 0.35 0.36 0.37

SVM

S1 0.47 0.47 0.50 0.50 0.52 0.57
S2 0.41 0.42 0.46 0.47 0.48 0.55
S3 0.30 0.32 0.32 0.32 0.32 0.34
S4 0.30 0.30 0.30 0.30 0.30 0.30

Table 4.16. Recall in 5 repetitions of scenarios S1 through S4.

Classifier Scenarios Min 25% Q Median Mean 75% Q Max

RF

S1 0.26 0.26 0.27 0.27 0.27 0.27
S2 0.28 0.29 0.29 0.30 0.30 0.31
S3 0.38 0.38 0.39 0.39 0.40 0.42
S4 0.41 0.41 0.42 0.42 0.42 0.46

SVM

S1 0.27 0.30 0.30 0.30 0.31 0.32
S2 0.27 0.28 0.30 0.30 0.31 0.32
S3 0.38 0.38 0.39 0.39 0.40 0.40
S4 0.38 0.41 0.41 0.41 0.42 0.42

Table 4.17. Evaluation of the maps with the largest F -score in scenarios S1 through S4.

RF SVM
S1 S2 S3 S4 S1 S2 S3 S4

accuracy 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96
G-mean 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.32
precision 0.67 0.63 0.40 0.37 0.57 0.55 0.32 0.30
recall 0.27 0.30 0.42 0.46 0.31 0.31 0.41 0.42
F -score 0.38 0.40 0.41 0.41 0.40 0.40 0.36 0.35
NID 0.66 0.62 0.56 0.60 0.63 0.61 0.62 0.65
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Chapter 5

Synopsis

In this dissertation, improved quantification of Land Use and Land Cover (LULC) in com-

plex agricultural landscapes is explored. Specifically, extraction of spatially and thematically

detailed LULC information from existing, spatially coarse, multi-spectral satellite products is

pursued through three studies: high-quality ground LULC data collection (Chapter 2), deriva-

tion of fractional cover, i.e. continuous LULC representation (Chapter 3), and multi-crop LULC

classification (Chapter 4).

In chapter 2, the high-quality LULC census data was introduced. The LULC data provide a

comprehensive characterisation of the study site, and have been utilised in a wide range of

projects (e.g. Nguyen et al., 2012; Poppenborg et al., 2013; Reineking et al., 2013; Shope et al.,

2014). The comparison of the observed data with the MODIS land cover product (GLC) revealed

the limitations of this GLC product in the cultivated landscape. In chapter 3, a fractional LULC

model was developed and it presented an attractive way to spatially improve GLC databases

based on existing satellite products. In chapter 4, a multi-crop LULC classification model

was developed to thematically enrich LULC representation. By means of a data rebalancing

technique, the problem of the LULC data imbalance was addressed. Artificial balancing of the

training data substantially increased the classification performance of some minority, i.e. rare,

LULC types.

Overall, the presented dissertation contributes to the field of LULC quantification and provides

an assessment of methods that can help in improving LULC quantification in complex heteroge-

neous cultivated landscapes. In the following pages, key results and finding of the dissertation

are summarised. Afterwards, a general discussion on the value of the dissertation, the future
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outlook, and concluding remarks will be given.

5.1 Summary

Deriving a per-field land use and land cover map in an agricultural

mosaic catchment (Chapter 2)

The Haean Land Use and Land Cover (LULC) observation data is a per-field vector GIS data

of the Haean catchment, South Korea. The area is characterised by intensive agriculture. The

information provided here includes the land use and land cover census data (67 LULC types)

in a polygon shape file for three years (2009 – 2011). The raw data was complied regarding

Land Cover Classification System (LCCS) developed by Food and Agricultural Organizations

of the United Nations (FAO) and United Nations Environment Programme (UNEP) (Cord

et al., 2010; Di Gregorio, 2005). It is an elaborated land cover description scheme and enables

us to describe LULC consistently. Data quality information is included in the dataset following

the scheme. The resulting dataset includes detailed crop type information in a consistent and

complete manner. Additionally, the original data was reclassified into a number of classification

systems for compatibility with the land cover type definitions of various GLC products.

A total of 67 LULC types were identified. During the three-year study period, Haean catchment

underwent discernible changes of LULC both at the field level (displacement) and at the land-

scape level (composition change). A number of rice paddies and dry fields were converted to

alternative perennial crops such as “ginseng” and “orchards” in response to subsidies and other

policy measures. The alternative crops essentially replaced annual crops. It may be concluded

that the governmental policy was successful in introducing more environmentally friendly peren-

nial crops thus possibly preventing soil erosion. Field-level changes are also partially due to

crop rotation, which is common for the annual crops in the region. Note that these displace-

ments will be reflected neither in static (i.e. unchanging over time) GLC products nor in local

statistics.

The census data was compared with the MODIS Land Cover Type product (MCD12Q1). The

Cohen’s κ between the rasterised ground truth and the MODIS land cover was which is fair

but not substantial (avg. κ=0.41 for 2009 and 2010). The MODIS product failed to capture the

drastic changes presumably due to its low spatial and thematic resolution. For example, minor

crops such as “Potato” were not captured as they were not defined in the classification scheme.

Linear elements such as “Water Bodies” and “Urban and Built-Up Lands” were completely
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missing in the MODIS product due to the pixel size (500 m). This phenomenon becomes

more problematic for land cover types smaller than the MODIS pixel in its typical dimension.

The comparison revealed that the limitation of GLC products such as lack of irrigated fields

and vaguely defined cropland types could cause substantial misrepresentation of LULC in

future applications (e.g. Ecosystem Services research) particularly for complex agricultural

landscapes.

Mapping fractional land use and land cover in a monsoon region: the

effects of data processing options (Chapter 3)

To estimate multi-type fractional cover, a Random Forest (RF) regression model was developed

using globally available multi-spectral satellite products. The main objective was to evaluate

different data-processing options regarding a fractional cover LULC regression problem. The

efficacy of various spectral predictors, smoothing filters, and data interval options were evaluated

based on its impact on the regression performance. For rigorous evaluation of the data-processing

options, a spatial cross-validation scheme was adopted. Additionally, relative importance of the

spectral bands and the data acquisition dates were estimated using a RF variable importance

metric.

The regression model reproduced spatial distributions of the LULC fractions. However, predicting

absolute fractions remained difficult especially for the minor types. The model performance

differed between types due to the distributions of the observed fraction data. It is primarily due

to the imbalanced nature of the LULC data (i.e. unequal distributions of LULC types) as the

RF regression model is biased towards the major types. With elaborations such as the use of

the Hurdle formulation or the use of data-balancing techniques, the model performance may be

improved to a certain degree.

The analysis of the relative importance of input features revealed that the monsoon period was

not the most influential period on the regression performance. Moreover, the most influential

periods varied by LULC type. Therefore, the use of full time series is recommended in future

applications. Smoothing by the Savitzky-Golay filter was disadvantageous. It suggests that the

original MODIS maximum value composite algorithm already sufficiently suppresses noise. The

surface reflectance bands B1 and B2 were important in modelling fractional cover. In contrast,

the bands B3 and B7 were rather uninformative, especially for the minor types.
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Improving the classification of rare land use and land cover types

using synthetic data (Chapter 4)

The classification of the imbalanced LULC data set was challenging due to both absolute and

relative rarities as well as the class overlap. The synthetic oversampling method alleviated the

issue of class imbalance by increasing the number of minor type data points. Balancing the data

by the synthetic minority oversampling technique (SMOTE) increased the true positive rate of

some monitory LULC types substantially, however some other minority types remained difficult

to classify.

The mechanism by which data resampling affected model performance was analysed by looking

at the relationship between LULC type labels and surface reflectance (mutual information) and

the difficulty of classification (entropy). The low classification performance on some minority

types was attributed to a substantial class overlap (i.e. different classes contain comparable

data points in the same region of a feature space) already present in the original data set.

Support vector machine (SVM) outperformed RF when trained on the original unbalanced

data set, whereas RF performed marginally better than SVM when trained on the synthetically

oversampled data. RF produced maps that agreed slightly better with reference LULC data.

However, the difference in performance between the classifiers was small.

5.2 Prospective applications

To generalise the lessons for LULC modelling, further studies covering different types of land-

scapes and different spatial and temporal scales using the presented frameworks would be nec-

essary. However, in the course of this work, a number of interesting applications have emerged

that might profit from the methodological advances made in the dissertation.

The LULC census data presented in chapter 2 can be useful in developing/validating a high-

resolution LULC product for complex agricultural landscapes as it is a vector-form data with

fine spatial information. As it is described by a consistent and complete scheme ‘FAO-LCCS’, it

can be translated in any simpler scheme (e.g. IGBP-Discover), thus used to evaluate a variety

of LULC products such as MODIS land cover or GlobCover. For instance, we are planning to

use the census data to train a LULC model for the larger surrounding area, namely Soyang

watershed.

The Haean catchment has been studied intensively as it undergoes a conflict between agriculture

and environmental protection (Nguyen et al., 2012; Poppenborg et al., 2013). The LULC data
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can be also used as input for regional environmental modelling (e.g. Reineking et al., 2013;

Shope et al., 2014; Zhao et al., 2012), ecosystem services and decision making analysis (e.g.

Poppenborg et al., 2013). The LULC data can be combined with the regional economic statistics

to be used in economic and other social science research (Nguyen et al., 2014).

By using the fractional LULC framework described in chapter 3, further studies covering different

types of landscapes (e.g. Eurasian Steppe) can produce interesting outcomes. Several studies

have shown examples of deriving fractional land cover information (Asner et al., 2000; Defries

et al., 2000; DeFries et al., 1995; Fernandes et al., 2004; Foody et al., 1996; Guerschman et al.,

2009; Lu et al., 2003; Schwarz et al., 2005; Schwieder et al., 2014) but with a small number of

LULC types (e.g. few green vegetation types). Fractional cover estimation of multi-crop LULC

would be a very useful application of the presented framework. The developed fractional cover

model and multi-crop LULC model can be applied to the past-time data to trace back historic

LULC records. In such an area like dry land regions of the Northeast Asia, which has suffered

from desertification due to both climate change and livestock pastoralism (Narantsetseg et al.,

2014), back-tracing of continuous LULC trend would be a very interesting work. As there has

been MODIS spectral data for the last 15 years, there is a possibility to trace back fractional

LULC for the period (e.g. Wu et al., 2014) . Certainly, securing high-quality ground truth data

would be an important prerequisite task.

It is an essential problem for almost all modelling studies to ‘objectively’ determine modelling

parameters and select data-processing options. The overall modelling frameworks established in

chapter 3 and 4 used sound and rigorous evaluation procedures (e.g. spatial cross-validation).

These can be a useful guide for other modelling tasks in choosing optimal modelling parameters

as well as data-processing options.

When monitoring agricultural ecosystems in cultivated landscapes, minority LULC types can

be even more important than majority LULC types; they might indicate a beginning of LULC

change or impact of climate change and land policy decisions. To cope with the inherent data

imbalance in LULC data, synthetic resampling techniques presented in chapter 4 can be useful.

It can be conveniently used to obtain balanced data for training learning algorithms, hence

improve learning performance. For example, the MODIS land cover is trained by the System for

Terrestrial Ecosystem Parameterization (STEP) database in which training data is imbalanced

in land cover type. Data rebalancing of the STEP database data may produce better quality

LULC data for the globe.
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5.2.1 Research outlook

During the course of this dissertation, several opportunities based on the results of the disserta-

tion have been identified. In general, the value of the dissertation will be increased by continuing

efforts to relate this research with ecosystem services and decision-making analysis in additional

case study areas. Extension of the presented approach toward a larger study area would be an

important step to consider in future research.

In particular, the following points constitute attractive further research directions.

5.2.1.1 Standardised acquisition of high-quality LULC data

Developing a strategy to massively acquire high-quality LULC data would be an important

step to consider. Training data for GLC products are generally not very extensive. For example,

the collection 5 MODIS land cover products are trained using STEP version 6 database which

includes 2095 training sites distributed across the terrestrial part of the Earth (Friedl et al.,

2010; Sulla-Menashe et al., 2011). For agricultural cover types, limitation of training data sites

is noteworthy as it includes small number of sites for the whole cultivated zones. Precisely, the

version 6 STEP database includes 499 pixels for cultivated zones (i.e. > 60% agriculture) and

119 pixels for agricultural mosaics (i.e. 30-60% agriculture) for the whole globe. For the sites,

specific crop type information is missing but five broadly defined crop type classes are recorded

– namely cereal crop, broadleaf crop, mixed crop, rice, and orchards/vineyards. This in total

bring a problem of training data for specific crop types. Moreover,Foody (2007) noted that

errors in ground data sets used in remote sensing of land cover may be large. These types of

limitations affect the thematic quality (i.e. simplified agricultural LULC types) in most of the

GLC databases.

The geographic scale of the LULC quantification is beyond individual studies (Chen et al.,

2014) as any direct survey on LULC is limited in its spatial coverage. Thus, for acquiring

high-quality LULC for a wider area, it is necessary to develop a data collection platform for

LULC data. For bird-watching data, there are operational networks of data collection (e.g. eBird

http://ebird.org/content/ebird/) which engage a large number of people reporting locally

observed bird data. These data collection networks with open and free access to data have

successfully contributed to many large-scale biodiversity research programs (Chen et al., 2014;

Turner et al., 2015). When it comes to spatial data, the Geo-Wiki (http://geo-wiki.org) is

an active data-sharing platform available to the public (Fritz et al., 2011).

Automatic LULC data retrieval from street view images of collaborative mapping platforms

http://ebird.org/content/ebird/
http://geo-wiki.org
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(e.g. OpenStreetMap https://www.openstreetmap.org/ can be another source of data at a

wider spatial scale. Machine learning and artificial intelligence research groups (e.g. Clarifai

http://www.clarifai.com) have been analysing publicised images for various purposes such

as automatic object recognition or topic analysis.

To routinely acquire high-quality LULC data, it would be very useful to collect published data

from online data sharing platforms and produce LULC data sets with proper descriptions. The

resulting datasets can be valuable for many LULC related applications.

5.2.1.2 Application of the adopted methods to larger areas

Transferability of the presented data and the LULC quantification models is an important

issue to be addressed. As the target area was a small catchment (64 km2), the results of this

dissertation may not be sufficient to fully justify the applicability of the methods (i.e. SMOTE)

over other (larger) areas. For instance, given a LULC classification problem from spectral data,

the within class heterogeneity of a LULC class (i.e. spectral and temporal variations of the

instances of the LULC class) can be very large. In such cases, standard classifiers might fail

to identify the LULC classes located outside of the target sites. Because standard classifiers

generally search for a specific pattern of features for a class, they may fail to detect classes from

noisy and/or transformed (but informative) feature data sets. Due to spatio-temporal variations

such as in climate variables, this transform in feature data prevails (e.g. varying phenology).

This also applies to the case of a multi-year classification where the classifiers trained in a

specific year fail to recognise the LULC classes for a different test year.

To address this issue, first, additional LULC survey campaigns on different areas and on various

other LULC systems should be implemented. Second, it may be useful to develop an approach

which can learn from such a case. Recently, scale- and transform-invariant learning techniques

are being introduced to the remote sensing communities (Jones et al., 2014). For example, feature

extraction using scale invariant feature transform (SIFT) could resolve some issues related to

such heterogeneities by capturing local features in training data (Jones et al., 2014). Hu et al.

(2015) proposed to use convolutional neural networks (CNN) to learn from hyperspectral data to

classify LULC classes and their experimental results showed that proposed method can achieve

reasonable performance. These new learning algorithms should be considered in future works

to improve learning from multi-temporal/multi-regional ground truth data sets.

https://www.openstreetmap.org/
http://www.clarifai.com
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5.2.1.3 Data and model assimilation

Existing spectral data available globally are coarse in resolution till now. Spatially rich Landsat

data (e.g. 30 m Thematic Mapper) are also often used for land monitoring (Vittek et al.,

2014; Watts et al., 2010). Due to its 16-day repeating interval, the Landsat products are

severely restricted in monitoring LULC in monsoon or tropical regions, where frequent cloud

contamination occurs. In contrast, NASA’s MODIS products are less prone to noise due to its

shorter repeating interval (e.g. daily reflectance data) and its composition procedure (NASA

Land Processes Distributed Active Archive Center (LP DAAC), 2013a). However, MODIS

products are coarse in spatial resolution (> 250 m). Yet multi-spectral data is likely the best

spectral data one can get for a wide range of areas since hyper-spectral data is rare at the global

level. Hence, data assimilation between spectral data from different sensors would be needed

to prepare better input data for LULC quantification models. A fusion of a spatially rich (e.g.

30 m LANDSAT 8 data) and a temporally rich (e.g. MODIS daily 250 m data) would be a

practical option for obtaining high-quality spectral input data for LULC quantification models.

As these existing medium resolution multi-spectral products are available for the last decades

(e.g. LANDSAT 5 is available from 1984 and MODIS data from 2001), data assimilation could

increase the potential of the LULC quantification models in looking back at historical LULC

records (e.g. Gao et al., 2006; Gomez-Chova et al., 2015).

In addition to data assimilation, model assimilation needs to be further developed. The resam-

pling technique used in the multi-crop classification can be used to alleviate the problem of the

data imbalance of training data in the fractional LULC study, in which also the mixture classes

caused low model performance.

5.2.1.4 New learning algorithms

Finally, an interesting topic in future research would be to test the framework with new machine

learning algorithms such as generative models (Murphy, 2012). For instance, deep learning has

led to substantial improvements in model performance especially in object recognition, natural

language processing, and multi-media data processing (Deng et al., 2014). In LULC science,

Hu et al. (2015) and Lv et al., 2014 reported their experimental results showing that the deep

learning algorithms are useful. These new algorithms may be able to resolve the mixed pixel

problem which undermines the model performance to a certain degree. To my knowledge, it

is still rare to use the recent learning algorithm in land use science. Moreover, to generalise

the lessons of this study, further studies using new algorithms with diverse settings may be
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needed.

To deal with the potential class overlapping, it is necessary to explore new data, learning

algorithms, and pre- and post-processing methods. For instance, applying SMOTE to a high

resolution dataset would be an interesting topic as it lessens the problem of the mixed pixels.

Data pre-processing with SMOTE to balance the data distribution is independent of the classifier

and synthetic oversampling can be plugged in into an existing classification framework without

further adjustments. We only tested SMOTE with two classifiers (i.e. RF and SVM). Tests

with other state-of-the-art classifiers such as deep neural networks (Deng et al., 2014) would be

necessary to secure the value of the results.

5.3 Conclusions

Land use and land cover information is crucial for ecosystem services researches, decision making

and studies on global change in general (Hansen et al., 2013; Schulp et al., 2011; Turner et al.,

2007). Especially, it influences significantly the outcomes of environmental and ecological models

(Mahecha et al., 2010; Matthews, 1983) as well as decision making studies. The quality of LULC

information is important for these applications, thus acquisition of appropriate LULC data is

an essential issue.

GLC data provides valuable information about various land systems such as urban, forested,

shrubland, and agriculture and it remains a key data source for scientific communities and

decision making groups. As shown in the dissertation, the existing GLC products have limita-

tions in complex heterogeneous agricultural landscapes due to their coarse thematic, spatial,

and temporal resolution. Therefore, the use of the GLC products may lead to an inadequate

representation of the actual landscape. To deal with complex heterogeneous agricultural land-

scapes, improvements of the GLC data in spatial, temporal, and thematic resolution are strongly

desired.

For cultivated landscapes, acquisition of detailed LULC data is an essential need, which is not

sufficiently satisfied by the use of the existing GLC products so far. Therefore, this dissertation

focused on the extraction of spatially and thematically detailed LULC information from existing,

medium resolution, multi-spectral satellite products.

In the course of the study, three research objectives were pursued: high-quality LULC data

collection, continuous representation of LULC, and classification of multi-crop LULC. The results

showed that the existing GLC product was restricted in representing the studied landscape

(Chapter 2) and there were feasible strategies to achieve spatially and thematically improved



162 CHAPTER 5. SYNOPSIS

LULC representation (Chapter 3, 4). Two statistical learning techniques (i.e. RF and SVM)

and various data-processing techniques (e.g. SMOTE) were used to improve the performance

of the LULC quantification models.

The per-field LULC census data presented in chapter 2 revealed the complex and heterogeneous

distribution of LULC in the study site. The comparison between the census data and the MODIS

land cover revealed that the limitations of the GLC products (e.g. inability to deal with linear

elements and irrigated fields) could cause a substantial misrepresentation of the real LULC.

Consequently, the agreement between the rasterised ground truth and the MODIS land cover

was rather poor. For complex agricultural landscapes, global LULC ground truth datasets are

still lacking (Sulla-Menashe et al., 2011).

The study presented in chapter 3 is one of the few studies addressing the fractional LULC

estimation in monsoonal agricultural landscapes. Still continuous LULC representation especially

with multiple land cover types is underdeveloped at the global level. The result showed that,

when properly chosen and processed, coarse satellite products can be a useful information source

about continuous representation of LULC. Estimating fractional LULC from available coarse

resolution satellite data can be a useful strategy for obtaining that information.

In addition, the fractional cover study demonstrated how to choose optimal data-processing

options. For complex cultivated landscapes such as an agricultural mosaic catchment, appropriate

data processing options should be adopted to boost LULC modelling performance. The study

established an evaluation framework for the options with a rigorous cross-validation scheme.

Identification of a best combination of data-processing options would be a practical help for

similar modelling studies.

Furthermore, the study presented in chapter 4 tackled the multi-crop LULC classification prob-

lem for the cultivated landscape. In cultivated ecosystems, LULC data are often imbalanced

which undermines performance of standard learning techniques (i.e. classification and regres-

sion algorithms). The goal of the study was to improve the classification of rare classes in

an agricultural mosaic catchment by using SMOTE. Artificially balancing the LULC data

distribution enhanced the classification performance of some minority types and substantially

improved LULC representation of the study site (i.e. LULC prediction maps). This study demon-

strated how essential is the distribution of the LULC type labels in cultivated landscapes as

well as how to overcome such an imbalance. As the data balancing technique is independent

from other modelling steps, it can be plugged in into any learning framework without further

adjustments.

The studies in chapter 3 and 4 shed a light on further application of coarse satellite products to
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yield useful information. Retrieving detailed LULC information from existing satellite products

can be a convenient way to augment new information with a relatively small cost. Aided by the

presented modelling frameworks, publicly available remote sensing data can be used to extract

such information in cultivated landscapes. This approach may also alleviate computational

burden imposed by the use of high-resolution spectral data.

Enhancement of learning techniques, as well as improved data-processing methods can foster

developments of new high-quality LULC databases. This dissertation presents the data and the

methodological approaches to overcome the aforementioned limitations of the GLC products and

satisfy the need of sound LULC data in complex heterogeneous agricultural landscapes. Aided by

recent machine learning algorithms (e.g. SVM) and data-processing techniques (e.g. SMOTE),

the modelling frameworks produced spatially and thematically rich LULC information for the

study site. The outcome of the studies can be used as an input data for regional environmental

modelling, ecosystem services research, and decision making analysis. The lessons and findings

in this study can be used to create a local dataset which can complement the GLC products in

complex heterogeneous landscapes. As GLC products are based on the same type of data (e.g.

global satellite data) and similar algorithms (e.g. decision trees), the modelling approaches and

finding of this study can be easily applied to the development of a new GLC product.
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