Realitätsnahe Simulation von Windenergiegetrieben
Wie eine fortschrittliche Ergebnisinterpretation der Finiten-Elemente-Analyse zur zuverlässigen Verzahnungsimulation beiträgt

Eine grundlegende Herausforderung der modernen Produktentwicklung ist die Abwägung zwischen Modellierungsgrad und der Zuverlässigkeit technischer Simulationsmethoden. Computergestützte Algorithmen zur Bauteilauslegung müssen sich genau wie altbewährte analytische Berechnungsvorschriften an der erreichbaren Abbildungsgenauigkeit physikalischer Effekte messen lassen. Wegen der gleichzeitig steigenden Komplexität von Belastungsszenarien gewinnt eine möglichst treffende Analyse der Simulationsergebnisse an Bedeutung - erst sie ermöglicht es, aus mitunter enormen Datennemengen die richtigen Rückschlüsse für eine beständige Konstruktion zu ziehen.

Um die Vorgehensweise zu demonstrieren, wurde eine Ritzelwelle aus dem Windenergieanlagenbau untersucht, die sich unter Last wie in Bild 1 dargestellt verformt. Als integraler Getriebestandteil ist diese Komponente besonders sensitiv gegenüber den Kontaktdefinitionen in den Verzahnungsbe reichen - Tragbild und Drehmomentseintrag sollen die realen Randbedingungen möglichst exakt wiedergeben. Hierbei ist jedoch zu beachten, dass beide Größen gleichzeitig sowohl Eingabegrößen zur Lastdefinition als auch Berechnungsergebnis sind. Schließlich verlagert und deformiert sich jede einzelne Zahnflanke durch die Wellendurchbiegung und Torsion; die Lastannahmen an diesen Stellen sind nicht mehr aufrecht zu erhalten. Um letztlich eine neue, unter Last tZFen dier Berührungdefinition zu erstellen, benötigt man detaillierte Kenntnisse aller FEA-Knoten Tendformationen, die nur Biegungs- und Torsionseffekte enthalten – nicht jedoch

![Bild 1: Nachträglich isolierte Deformationsanteile einer Ritzelwelle](image)

- Modell I: Fest- und Loslager durch extrem steife Stäbe zum Lagerpunkt auf der Drehachse, Eingriffskräfte auf Zahnflanken im Antriebs- und Abtriebsbereich
- Modell II: zusätzliche extrem steife Stäbe längs der gesamten Welle gegen Biegung
- Modell III: zusätzliche Sperrung jedes Wellenquerschnitts gegen Torsion

Prof. Dr.-Ing. Frank Rieg
Dipl.-Math. Martin Neidnicht
Dipl.-Ing. Florian Nützel
Lehrstuhl für Konstruktionslehre und CAD Universität Bayreuth