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Abstract

The Guaranteed Service Model (GSM) computes optimal order-points in multi-
echelon inventory control under the assumptions that delivery times can be
guaranteed and the demand is bounded. Our new Stochastic Guaranteed Ser-
vice Model (SGSM) with Recourse covers also scenarios that violate these as-
sumptions. Simulation experiments on real-world data of a large German car
manufacturer show that policies based on the SGSM dominate GSM-policies.
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1. Introduction

Inventory control for a spare part distribution system follows two goals:
deliver as promptly as possible to the end customer and minimize inventory
costs. One option to deal with two goals at the same time is to impose a
bound for one and optimize the other. For example: minimize inventory cost
subject to a given service level, i.e., the fraction of demands that can be served
immediately. This is the strategy that is used, e.g., by the so-called guaranteed-
service model . See [1] which includes the idea of guaranteed service times for
the first time, [2] for an extension to a tree structure network, and [3] where
the model is extended to acyclic networks. In [4] the model was applied to the
spare part distribution system of a large German car manufacturer. See also
the work of Inderfurth [5, 6] and Minner [7].

The guaranteed service model characterizes, for a given service level, optimal
order-points s for the widely accepted (s, S)-policies in multi-echelon inventory
control (see [8] for the classical problem statement and the theoretical motivation
for (s, S) policies). It can be considered as an advantage of the GSM that it
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only makes decisions on the safety stock level s for the prescribed (s, S)-policy:
even though (s, S)-policies may be suboptimal, they are transparent to human
operators – it is much easier to make plausibility checks for safety stock levels
than for models that computationally produce higher-dimensional decisions in
a black-box. An additional advantage is that the GSM can be implemented and
(approximately) solved as an integer linear program (see [3]).

The GSM, however, can only handle bounded demands and deterministic
delivery times in the network. Extreme demands and missed internal delivery
times produce situations that are not captured by the model, and thus the corre-
sponding cost can not be accounted for by the GSM. There are, of course, other
policies for multi-echelon inventory control – including sophisticated stochas-
tic service models – with other strengths and weaknesses (see, e.g., [9] for the
METRIC system, [10] for a survey, and [11] for a special version of a stochastic
service model). In particular, in stochastic service models adding further re-
strictions, e.g., imposed by the business processes of a company, can render the
method impractical, where as adding restrictions to the ILP model of the GSM
to a certain extent does not affect the solution procedure too much.

Our contribution: We introduce the new stochastic guaranteed service model
with recourse (SGSM) and apply two versions of it to the inventory control
problem in a multi-echelon warehouse system of a spare part distributor. The
model is a stochastic enhancement of the guaranteed service model by a recourse
component and demand scenario sampling, so that all demand scenarios that
are captured by the sampling process are handled inside the model. The benefit
is that service levels are now an outcome of the model. The advantage of the
GSM ILP model that can take further restrictions is maintained. The drawback
is that recourse cost data for the cases of lost demands have to be given. (See
[12] for background on stochastic programming.) The contribution of this article
goes beyond the conference presentation [13] in the following aspects (among
others):

• We introduce the new SGSM with a non-trivial complete recourse consist-
ing of a transportation option besides the penalty cost for non-sales, i.e.,
requested parts that cannot be delivered in time.

• We solve the SGSM by a combination of sample average approximation
with state-of-the art scenario reduction techniques. This way, a better
coverage of unlikely but expensive scenarios is achieved without increasing
the computation times in the MILP solver. Our new asymmetric distance
function for the asymmetric scenario reduction takes into account the
influence of the scenario reduction on the result of the optimization. To
the best of our knowledge, this is new.

• We present a more comprehensive documentation of extended computa-
tional results, including a new comparison to one representative [11] of the
class of stochastic service models that could be implemented to cope with
our test data.
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Simulation results on real-world data of a large German automobile manufac-
turer and Poisson-distributed demand with real-world intensity forecasts show
that our inventory policies based on the SGSM dominate GSM-policies and yield
better results than the considered stochastic service time model. One reason for
this is, among others, that the service level guarantees of the GSM do not take
into account that non-sales can have quite different impact on the total cost,
which depends on the particular part and on the number of parts missing. It
would be interesting from a theoretical point of view to also check performances
on artificial randomized data. For this work, we focussed on the practical impact
in real-world applications, for which randomized data is rarely representative.
We emphasize that, for this reason, our simulation test is completely indepen-
dent of the assumptions of the tested models – it rather represents our partner’s
process as closely as possible.

In the following section we introduce the modeling of the GSM and the
SGSM before we show the methods used of scenario generation and scenario
reduction in section 3. After the description of the simulation method and some
computational results in section 4 we end with some conclusions.

2. Modeling

In this section we first give an introduction to the GSM. We use the ILP
modeling approach as in [3]. Then we present the SGSM in two different ways.
First, in 2.2 we introduce the SGSM as a two stage stochastic mixed-integer
linear program with simple recourse. Second, in 2.3 we show an extension where
the recourse action of the locations supplying the end customers are modeled
as a transportation problem.

2.1. The Guaranteed-Service-Model

The GSM ILP follows the original work in [3], except for the integrality of
the order-points, which is mandatory in spare-part systems with occasionally
large, expensive parts at very small stock-levels.

Parameters of the model GSM are:

G directed graph describing the warehouse network

N number of warehouses

N(G) set of nodes in G

A(G) set of arcs in G

D(G) set of leaves in G (warehouses delivering to end-customers)

hi inventory holding cost in location i

Li delivery time to location i

s̄outi given service time for a leaf i ∈ D(G)

Φi(xi) upper bound for the demand in i ∈ N(G)

during the time period xi
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The model GSM uses the following variables for warehouses i ∈ N(G):

sini service times guaranteed by the predecessors of i

souti service times guaranteed by i for its successors

xi time period that i needs to bridge with its inventory

(i.e., the time between order and delivery

of replenishments from the predecessors of i)

yi order-point in i

The model GSM now reads as follows:

min
∑N

i=1 hi yi

s.t. xi ≥ sini − souti + Li ∀i ∈ N(G)

sini ≥ soutj ∀(j, i) ∈ A(G)

souti ≤ s̄outi ∀i ∈ D(G)

yi ≥ Φi(xi) ∀i ∈ N(G)

xi, s
in
i , souti , yi ≥ 0 ∀i ∈ N(G)

yi ∈ Z ∀i ∈ N(G)

This is not quite an ILP yet because of the upper bound on the demand in the
location i which is denoted by Φi(xi). With standard piecewise-linear modelling
techniques with additional binary variables, this model can approximately be
transformed into an ILP (see [3]).

2.2. The Stochastic Guaranteed-Service-Model with Simple Recourse

We now address two major drawbacks of the GSM: the bounded demand
(given by the prescribed service level) and the guaranteed delivery times inside
the network. Whenever one of them happens to be violated, an action has to be
taken that is not captured by the model which incurs a cost that is not taken
into account by the model.

In order to incorporate the two aspects into the model in the simplest way,
we introduce simple complete recourse for both delays and unmet demand. That
is:

• Whenever the guaranteed delivery time of a warehouse is missed, there is
some agent that for some cost per time unit delivers the part in time; this
can also be interpreted as a penalty to pay for missed deadlines.

• Whenever a warehouse can not deliver a piece, there is some (other) agent
that delivers the piece to the warehouse immediately; this can also be
interpreted as a penalty to pay for unmet demand.

Of course, in practice, the recourse may be complete but most probably not sim-
ple. A real-world model of the recourse process in use depends on the particular
application and requires data about the cost of courier services, the cost of a
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damage in reputation, and the like. However, our first goal was to investigate
how the recourse model as such would influence the resulting policy. And to
this end, simple recourse is already telling, as we will see.

Formally, the SGSM has the following additional scenario and recourse pa-
rameters:

S set of scenarios

ps probability of scenario s ∈ S

ti cost to compensate for one time unit of late delivery

ci cost to compensate for one piece of unmet demand

Ls
i actual delivery time to i in scenario s

Ψs
i (xi) actual demand in i,

during time period xi in scenario s

Following the idea of simple recourse, the SGSM has the following additional
recourse variables:

rsi recourse variable for missed deadlines;

“how many time units should be compensated at a cost of ti per unit?”

qsi recourse variable for missed pieces;

“how many pieces should be compensated at a cost of ti per unit?”

Since there is no obvious implementation of actions in the real world ac-
cording to these recourse variables, they serve as penalties for each non-sale or
missed lead time. The hope is that the SGSM can balance inventory costs and
non-sales in a more detailed way than the GSM. At the same time, we maintain
the modelling power of the MILP formulation: additional restrictions can be
easier incorporated than in stochastic service models we know of.

The two-stage stochastic model SGSM now reads as follows:

min
∑N

i=1

(

hi yi +
∑

s∈S ps(ti r
s
i + ci q

s
i )
)

s.t. xi + rsi ≥ sini − souti + Ls
i ∀i ∈ N(G), ∀s ∈ S

sini ≥ soutj ∀(j, i) ∈ A(G)

souti ≤ s̄outi ∀i ∈ D(G)

yi + qsi ≥ Ψs
i (xi) ∀i ∈ N(G), ∀s ∈ S

xi, s
in
i , s

out
i , rsi , q

s
i ≥ 0 ∀i ∈ N(G), ∀s ∈ S

yi, q
s
i ∈ Z ∀i ∈ N(G), ∀s ∈ S

Again, a linearization of Ψ(xi) can be carried out by standard piecewise-
linear modelling with additional binary variables.
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2.3. Extension with External Suppliers and Lost Sales

The model with simple recourse from the previous section can be extended
by modelling an explicit recourse process. We assume that unmet customer
demands are lost. However, internal orders are backlogged. The locations that
deliver parts to the end customers can order parts from external suppliers to
prevent lost sales.

The external suppliers deliver the parts directly to the end customers so that
there is no delay in the delivery. The costs of an order from an external supplier
depends on the distance between the ordering location and the supplier. Of
course the supplier do not have unlimited stock so that capacity constraints have
to be taken into account. To concentrate on these recourse actions we assume
that the delivery times in the system are fix. An extension with delivery time
uncertainties would be straight forward.

We need some more notation to model the new situation

J set of external suppliers

Cj capacity of the external supplier j

qsji recourse variable for parts ordered by location i at supplier j

cji costs for location i to order one part from supplier j

This leads us to the following model:

min
∑N

i=1

(

hi yi +
∑

s∈S ps
∑

j∈J cji q
s
ji

)

s.t. xi ≥ sini − souti + Li ∀i ∈ N(G)

sini ≥ soutj ∀(j, i) ∈ A(G)

souti ≤ s̄outi ∀i ∈ D(G)

yi +
∑

j∈J qsji ≥ Ψs
i ∀i ∈ N(G), ∀s ∈ S

∑

i∈D(G) q
s
ji ≤ Cj ∀j ∈ J, ∀s ∈ S

xi, s
in
i , s

out
i , qsji ≥ 0 ∀i ∈ N(G), ∀j ∈ J, ∀s ∈ S

yi, q
s
ji ∈ Z ∀i ∈ N(G), ∀s ∈ S

So far, this model does not have complete recourse. Therefore, we introduce
an other recourse variable. As before, we enable for every location the possibility
to pay a penalty for a non-sale if it can not deliver the ordered parts. For instance
one can provide the customer with a replacement vehicle until the spare part
can be delivered and the customer‘s car is fixed. The corresponding penalty
recourse variable is denoted by qsi , as in the first model, and the penalty costs
are denoted by ci again.

Note, that by using the penalty recourse variables we force complete recourse
but account for failure by some cost. The computational results in Section 4.3
suggest that the SGSM policies with the tested penalty values dominate GSM-
policies in terms of both inventory and recourse cost, not only total cost. This
means, the resulting SGSM policy, internally using those successful penalty
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values, will perform better than the corresponding GSM policies also for any
other penalty values.

We obtain a two stage stochastic model with complete recourse:

min
∑N

i=1

(

hi yi +
∑

s∈S ps

(

ci q
s
i +

∑

j∈J cji q
s
ji

))

s.t. xi ≥ sini − souti + Li ∀i ∈ N(G)

sini ≥ soutj ∀(j, i) ∈ A(G)

souti ≤ s̄outi ∀i ∈ D(G)

yi + qsi +
∑

j∈J qsji ≥ Ψs
i ∀i ∈ D(G), ∀s ∈ S

∑

i∈D(G) q
s
ji ≤ Cj ∀j ∈ J, ∀s ∈ S

yi + qsi ≥ Ψs
i ∀i ∈ N(G)\D(G), ∀s ∈ S

xi, s
in
i , souti , qsji ≥ 0 ∀i ∈ N(G), ∀j ∈ J, ∀s ∈ S

yi, q
s
ji ∈ Z ∀i ∈ N(G), ∀s ∈ S

3. Scenario Generation and Reduction

An appropriate discrete approximation of the assumed distribution of the
stochastic parameters in the model often needs many scenarios. The exten-
sive form of the deterministic equivalent problem grows quite fast with the
number of scenarios. This is the reason why we employ scenario reduction as
described in Subsection 3.2. But first we wrap-up the basics about Sample-
Average-Approximation (SAA) Methods for general discrete approximations of
probability distributions in Subsection 3.1.

3.1. SAA-Method for Scenario Generation

To approximate the distributions of the stochastic parameters we generate
random numbers according to the assumed distribution. These random num-
bers build the scenarios in the discrete distribution approximating the real dis-
tribution of the stochastic parameters. All samples are assigned probabilities
proportional to the number of times they were generated. Sampling techniques
like this are quite common in stochastic programming. See for example [12].

The idea of sampling techniques is to approximate a stochastic program

f(x) = min
x∈X

{

cTx+Q(x, ξ)
}

. (1)

Here Q(x, ξ) denotes the expected value of the optimal solution of the second
stage problem Q(x, ξ) depending on the actual realization ξ of ξ.

Assume there is a possibility to get independent, identically distributed sam-
ples {ξ1, . . . , ξS} of ξ. The problem

f̂(x) = min
x∈X

{

cTx+

S
∑

s=1

Q(x, ξs)

}

(2)
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can be solved conceptually easily and gives us an unbiased estimator for f(x) the
solution of the original problem. Further information to SAA can for example
be found in [14].

3.2. Scenario Reduction: The Fast Forward Selection

The goal of scenario reduction is to approximate a discrete distribution with
many scenarios by another discrete distribution with significantly fewer scenar-
ios. There are several methods to achieve this goal, usually based on a metric
on the space of all possible scenarios (see [15, 16, 17]).

An exact approach to find the best approximation with a fixed number of
scenarios is to model the approximation problem as a p-median problem. In
order to save computation time, we chose to apply the so-called fast forward
selection, one of the heuristics introduced in [15, 16, 17].

The approximation of the delivery times and demand distributions is split
into two parts. First, a number of samples S = {ξ1, . . . , ξS} is generated accord-
ing to the assumed distribution. These samples built a first discrete approxi-
mation where every scenario instance occurs with equal probability ps = 1/S.
Second, the resulting discrete distribution is fed into the fast-forward scenario
reduction, i.e., it is approximated by a discrete distribution over a subset of
scenarios of prescribed cardinality, which have, in general, non-uniform proba-
bilities.

Let us now sketch the principle of scenario reduction, since we have to make
some choices.

The approach to reduce the number of scenarios is based on a distance
between two scenarios denoted by d(ξ1, ξ2), a quantity that we have to define.
When the set of scenarios S′ is defined we add the probability ps for all ξ

s ∈ S\S′

to the scenario ξs
′

∈ S′ which has minimal distance to ξs.
The fast forward heuristic works as follows. It uses the fact that it is quite

easy to find the scenario ξs
′

∈ S for which the total distance to all ξs ∈ S\ξs
′

,
which is

∑

ξs∈S\ξs′

psd(ξ
s, ξs

′

) , (3)

is minimal. As ps = 1/S for all scenarios it can be replaced by a combination
of the other scenarios. Iterating this until the set S′ includes the predefined
number of scenarios is the idea of the fast forward heuristic.

Given the generated scenarios s ∈ S = {ξ1, . . . , ξS}, the distances d between
the scenarios, and the cardinality of S′, |S′| = k the fast forward selection works
as follows:

begin

S0 = {1, . . . , S}
d̄ = d
for i = 1, . . . , k do

s′i ∈ argmins∈Si−1

{

∑

j∈Si−1\s mini/∈Si−1\s

{

d̄(ξi, ξj)
}

}

Si = Si−1\s′i
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update(d̄, s′i)
S′ = S0\Sk

for s′ ∈ S′ do

p′s′ =
1
S +

∑

s∈Sk|s′=argmin{s̃∈S′}d(ξ
s̃,ξs)

1
S

return S′ and p′

end

where update(d̄, s′i) is the following function:

begin

for i = 1, . . . , |S| do
for j = 1, . . . , |S| do

d̄(ξi, ξj) = min
{

d̄(ξi, ξj), d̄(ξi, ξs
′
i)
}

end

In our computational tests we use two different kinds of distances between
two scenarios. The first distance we will refer to as symmetric distance. For the
lead time we just take the euclidean distance

d(L1
i , L

2
i ) = |L1

i − L2
i |. (4)

Since a demand scenario consists of different demand rates for every time in-
terval, we have to compare piecewise linear functions. We define the distance
between two demand scenarios Ψ1

i and Ψ2
i as

d(Ψ1
i , Ψ

2
i ) =

∣

∣

∣

∣

∣

α1,r
i − α2,r

i

2r

∣

∣

∣

∣

∣

, (5)

where αs,r
i denotes the demand rate during the time interval r at s.

There is another option that leads to asymmetric distances. The idea is
to anticipate that the approximation is constructed for the use in a stochastic
optimization problem. Thus, we would like to find the approximation that yields
the least change in the result of the optimization. To decide which scenario is
more important for optimization, we need some information about the costs that
occur in case of stockholding and in case of stockout. We have this information
given as parameter hi, costs for holding one piece in stock, and ci costs for
having a stockout of one piece.

This way, we can define the asymmetric distance between two lead time sce-
narios as

d(L1
i , L

2
i ) = |L1

i − L2
i |
ci
hi

(6)

if L1
i > L2

i

d(L1
i , L

2
i ) = |L1

i − L2
i |
hi

ci
, (7)

otherwise.
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The distance d(ξ1, ξ2) describes the costs of deleting scenario ξ1 and adding
its probability p1 to p2, the probability of ξ2.

The definition of asymmetric distance between two demand scenarios is
based on the same idea but the order Ψ1

i (xi) > Ψ2
i (xi) depends on the xi

as Ψs
i (xi) is piecewise linear. That is why we look at the values of Ψs

i (xi) where
xi equals the expected value of the delivery time to location i, Li. So we define
the following asymmetric distance between demand scenarios :

d(Ψ1
i , Ψ

2
i ) =

∣

∣

∣

∣

∣

α1,r
i − α2,r

i

2r

∣

∣

∣

∣

∣

ci
hi

, (8)

if Ψ1
i (Li) > Ψ2

i (Li)

d(Ψ2
i , Ψ

1
i ) =

∣

∣

∣

∣

∣

α1,r
i − α2,r

i

2r

∣

∣

∣

∣

∣

hi

ci
, (9)

otherwise.
We use these distances in the fast forward selection to determine the scenar-

ios s′ ∈ S′ and their new probabilities p′s′ .
The asymmetric reduction does not approximate the distribution itself as

faithfully as the reduction technique based on symmetric distances. We get a
bias in our approximation that depends on the fraction of hi and ci. It will
be shown in the next section that this biased reduction indeed approximates
better the solutions to the optimization problems because it takes into account
the cost of ending up in a certain scenario. To the best of our knowledge, this
is not yet standard in the Stochastic Programming literature.

4. Simulation

We performed comprehensive computational tests on real-world data from
our partner.

4.1. General Issues

Before we report on our tests, we want to make some general remarks con-
cerning some side-effects of modeling-decisions of the SGSM.

First, the SGSM can only take finite discrete distributions of demands and
lead times. Second, all scenarios of the demand distributions must be repre-
sented by piecewise linear approximations in order to obtain an MILP formula-
tion for the SGSM.

Our partner forecasts the demand for one month. The data include the ex-
pected total demand in the actual month, the expected total demand in the
coming month and so on. Thus, a straight-forward approach would be to ap-
proximate the demand linearly during one month. However: If we simply assume
linearity of the demand during one month, then the rough discretization of time
into months leads to demand scenarios with too little variation over time.

We can, of course, choose a finer discretization of time in weeks or days.
The finer the discretization is the more realistic becomes the demand function.
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In order to get a feeling for this influence, we generated stochastic numbers
denoting the demand over one month or one week. Figure 1 shows an example
of differences in the scenarios for discretization in months and in weeks.

0

1
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3
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6

7

8

9

10

11

12

0 1 2 3

Scenario 1
Scenario 2
Scenario 3
Scenario 4

demand
(cum)

time (month)

Figure 1: Different demand scenarios with discretization of time in month (dashed lines) and
in weeks (solid lines)

A problem arises if the discretization of time becomes too small. The shorter
the linear pieces in the demand functions, the more variables and constraints
in the resulting MILP. This is the reason why the results in section 4.3 are all
based on discretization in months or weeks. The discretization in days also does
not lead to high savings compared to the one in weeks.

Besides the time discretization, the number of scenarios included in the
model is the other quantity that is critical for the mere size and therefore to the
computing time of the SGSM. Therefore, we check the effectivity of SAA with
scenario reduction in our tests.
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4.2. Test Data

We checked the SGSM on real data (inventory costs and demand intensities
for 1127 spare parts) from our partner, a large German car manufacturer with
a star-shaped two-echelon spare part distribution with one master warehouse
(no. 0) and seven warehouses (nos. 1–7) for end customer service providers in
the US. The model SGSM is not restricted to this special structure; it can be
applied to any acyclic network structure.

The time horizon was chosen to be 25 months. The demand in the leaves of
the network was generated randomly according to Poisson distributions with the
given intensities from our historical data. Deviations of the delivery times up
to 20% were randomly generated. Stochastic data was identically reproduced
for all policies under consideration. Replenishment orders in the simulation are
triggered by (s, S)-policies, where the values for s are chosen by the models
under consideration.

Note: The expected service times in the simulation are always equal to the
service times computed in the respective models, i.e., on average there are no
early deliveries (this is debatable; other options are work in progress). Moreover,
the inventory costs in both the GSM and the SGSM are only approximations of
the actual inventory costs. The simulation reports the actual (linear) inventory
costs.

The SGSM produced scenarios by sampling from the Poisson distribution
and was solved by Sample Average Approximation (SAA) (see Section 3.1. We
tried a varying number of samples and scenario reduction as described in Sec-
tion 3.2. The network topology was easy enough for all instances to solve in less
than an hour for the testassortment of 1127 parts in the MILP solver gurobi
3.0 up to an optimality gap of five percent. The calculation was carried out
on a standard PC (CPU: Intel(R) Core(TM) 2 Quad CPU Q9559 @ 2.83 GHz,
Mem: 8GB RAM ) using ubuntu 4.4.3.

In order to find out whether stochastic modelling as such has a positive
impact on the result, we tried different parameter settings in the simulation
experiments. The GSM is parametrized by the prescribed service level: we
investigated the GSM with 90% and with 96% service level – called GSM(90%)
and GSM(96%).

Moreover, in order to substantiate the benefit of a network model as opposed
to a decentralized optimization of each separate warehouse, we give results for
the decentralized policies DEZ(90%) and DEZ(96%) for a service level of 90%
and 96%, respectively. In these models each location tries to reach the given
service level target.

The cost coefficients are taken from cost estimates of our partner for in-
ventory cost and the piece-based recourse cost (so-called “non-sales”). These
coefficients are part and warehouse dependent and cannot be listed here.

4.3. Computational Results

Table 1 shows the benefits of sampling fifty scenarios followed by a reduction
to three compared to sampling three scenarios. The results presented in this
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table are the average costs of ten calculations with the given number of scenarios
generated. The demands and delivery times are identical in all the simulations.

Table 1: results applying the SGSM with different scenario reduction techniques

Reduction Inventory Cost Recourse Cost Total Costs

no 3 → 3 1 276 701.99 20 637 929.11 21 914 631.10
symmetric 50 → 3 1 368 387.73 5 799 112.62 7 167 500.35
asymmetric 50 → 3 1 487 010.23 1 876 708.99 3 363 719.22
no 50 → 50 1 659 602.59 1 528 288.18 3 187 890.77

We can see an enormous reduction in the total costs by applying the reduc-
tion techniques introduced in section 3. In the case of generating only three
scenarios we observe a very high variability in the costs over the ten simulation
runs. During ten simulations, the minimal total costs were 16 378 814.53, and the
maximal total costs were 33 545 977.27. Applying the symmetric/asymmetric
reduction technique the minimal total costs were 6 621 614.29/3 246 031.18 and
the maximal total costs were 7 606 441.40/3 546 310.91, respectively. The costs
occurring in the single simulation runs are listed in Appendix A.

These results show that applying scenario reduction leads to a much lower
variability in the costs because also scenarios with small probability are taken
into account.

We can see that the results for the asymmetric reduction are quite close to
those where all the fifty generated scenarios are included in the model.

Table 2 includes the service levels in the different locations during the first
of the ten simulation runs.

Table 2: Comparison of service levels (%)

Warehouse 3 → 3 50 → 3 sym 50 → 3 asym 50 → 50
0 75.4 85.4 73.1 88.9
1 92.4 94.4 95.6 96.8
2 92.5 94.1 95.3 96.3
3 92.1 94.2 95.2 97.0
4 92.0 94.1 95.1 96.2
5 93.0 94.8 96.6 97.5
6 92.0 94.0 96.1 96.3
7 92.9 95.0 95.9 97.0

The service levels in table 2 show the difference between the symmetric and
the (new) asymmetric reduction technique. The asymmetric technique takes
into account that for many parts the quotient hi/ci is greater for the leaf ware-
houses than for the master warehouse. Therefore, for the symmetric technique
we get a higher service level in the master warehouse (no. 0), but lower service
levels in the warehouses (nos. 1–7).
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Simulating the situation modeled in the SGSM with simple recourse leads
to the results listed in table 3.

Table 3: Results of simulation with poisson distributed demand and equal distributed delivery time
Model Inventory Cost Recourse Cost Total Cost

(1) DEZ 90% 2 512 304.91 2 012 278.56 4 524 583.47
(2) DEZ 96% 2 987 207.93 1 018 603.98 4 005 811.91
(3) GSM 90% 2 496 925.63 1 831 689.48 4 328 615.11
(4) GSM 96% 2 983 078.69 963 058.22 3 946 136.91
(5) SGSM 50, months 1 555 212, 00 1 473 793.87 3 029 005.87
(6) SGSM 200 → 50, months, sym 1 560 619.50 1 497 695, 96 3 058 315, 46
(7) SGSM 200 → 50, months, asym 1 689 607.49 1 282 358.06 2 971 965 55
(8) SGSM 200 → 1, months 1 465 783.28 1 409 768.67 2 875 551.95
(9) SGSM 200 → 50, weeks, sym 1 867 149.91 893 382.95 2 760 532.86
(10) SGSM 200 → 50, weeks, asym 1 883 937.34 808 081.77 2 692 019.11

This table includes the average costs of the different approaches. Here we
calculated the orderpoints s using all the different methods and run the sim-
ulation ten times with different demand and delivery time. For all different
approaches the demand and delivery time in the simulation is identical.

The results for the decentralized method are a bit worse than the results,
when the orderpoints are calculated by the GSM. Using one of the listed SGSM
approaches leads to a cost reduction of 30% and more. Again, the asymmetric
scenario reduction dominates the symmetric one. Another important aspect to
notice is that the results using a discretization of time in weeks are remarkably
better than results using a discretization in month. Results for each of the ten
simulation runs for Model (4) and (10) can be found in Appendix A.

In Method (8) a special heuristic is applied (different from the fast forward
reduction) that tries to find a critical scenario of the delivery time and the
demand for every location. This shows that much of the problem’s structure
can be encoded into a single scenario. This heuristic works properly for the
discretization in months and may be extended to finer discretization. This is
work in progress.

The resulting service levels for the different methods in the first simulations
are shown in table 4.

Table 4: Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 94.1 96.0 94.2 96.3 78.9 89.7 90.0 71.3 92.4 89.8
1 97.6 98.5 97.7 98.4 96.7 96.8 96.9 96.8 97.2 97.3
2 97.1 98.0 97.1 97.9 96.4 96.6 96.7 96.6 96.9 96.9
3 97.4 98.3 97.5 98.3 96.7 97.0 97.0 97.0 97.6 97.8
4 97.4 98.1 97.4 98.1 96.5 96.5 96.6 96.4 96.8 96.8
5 98.4 99.1 98.4 99.1 97.4 97.5 97.5 97.2 97.8 97.7
6 97.1 98.0 97.1 98.1 96.5 96.7 96.7 96.1 96.7 96.7
7 97.4 98.3 97.4 98.2 97.2 97.3 97.5 97.5 97.6 97.7
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The differences in the service levels of the symmetric and the asymmetric
reduction are no longer substantial. The reason is that now the number of
scenarios in the set S′ is much higher; thus, both approaches lead to a good
approximation of the distribution and its impact on resulting service levels.

As table 3 shows, the differences in the resulting costs are still remarkable.
This is due to more scenarios in the more relevant parts of the distribution in
the asymmetric reduction (high demand and delivery time if hi/ci is low and
vice versa).

The results of simulations of the SGSM with external suppliers from which
missing parts can be ordered and lost sales (introduced in subsection 2.3) are
listed in Table 5:

Table 5: Results of simulation with external suppliers

Method Inventory costs Recourse Costs Total Costs

(1) DEZ 90% 2 294 924.33 1 314 070.63 3 608 994.96
(2) DEZ 96% 2 471 509.73 1 130 821.16 3 602 330.89
(3) GSM 90% 2 268 247.71 1 311 477.48 3 579 725.19
(4) GSM 96% 2 451 235.28 1 121 440.97 3 572 676.25
(5) SGSM 100, weeks 2 294 965.77 792 949.54 3 087 915.31
(6) SGSM 200 → 50, weeks, sym 2 271 811.47 867 706.94 3 139 518.41
(7) SGSM 200 → 50, weeks, asym 2 230 176.18 689 392 01 2 919 568.19
(8) SGSM 300 → 75, weeks, sym 2 384 222.98 859 123.94 3 243 346.92
(9) SGSM 300 → 75, weeks, asym 2 230 359.11 607 771.65 2 838 130.76

The simulation works a little bit different to the one applied in Tables 1–4.
Here the demand that can not be delivered immediately from the warehouses
(nos. 1–7) to the end customers is lost. If the warehouses have not enough stock
to deliver the ordered parts, there is the possibility to buy these parts from an
external supplier. This recourse action causes costs depending on the distance
between the warehouse and the external supplier. The supplier itself has limited
stock so that the warehouses are not able to order any amount from them. If
a demand at a warehouse can be neither delivered from stock nor ordered from
an external supplier, the demand is lost.

Internal orders (from a warehouse to the master warehouse) are still back-
logged, and the master warehouse delivers the demand as soon as possible to
the ordering warehouse.

The ordering costs and the capacities of the external suppliers are not in-
cluded in the data of our partner, so we had to set them artificially.

As we can see in the results of Table 5, the decentralized model and the GSM
perform much better in the case with only one kind of uncertainty (demand
uncertainty) than in the case of both, demand and delivery time uncertainty.
The SGSM still outperforms the deterministic models achieving 10–20% of cost
savings.

Table 6 show the resulting service levels of the different methods.
Here the service levels of the SGSM approaches are very similar to these of

the decentralized model and the GSM, both with a prescribed service level of
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Table 6: Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5) (6) (7) (8) (9)
0 84.9 87.2 85.0 87.6 88.2 88.2 88.0 88.7 88.8
1 94.2 94.3 94.2 94.3 94.5 94.5 94.6 94.6 94.6
2 94.1 94.1 94.0 94.1 94.3 94.3 94.3 94.3 94.4
3 94.4 94.5 94.4 94.5 94.7 94.7 94.7 94.7 94.7
4 93.9 94.0 93.9 94.0 94.1 94.1 94.1 94.2 94.2
5 94.3 94.5 94.3 94.5 94.7 94.8 94.8 94.8 94.8
6 93.6 94.0 93.6 93.9 94.0 94.0 94.0 94.0 94.0
7 94.1 94.2 94.1 94.3 94.4 94.5 94.4 94.5 94.5

96%. The costs in table 5 tell us that the SGSM treats different parts differently,
while the GSM and the decentralized model cover 96% of the demand for every
part, no matter what the costs hi and cji are. This is the reason why the
orderpoints calculated by the SGSM can lead to cheaper inventory costs and
recourse costs at the same time.

Last we want to compare our model to a model that was introduced by
Doǧru, de Kok and van Houtum, see [11]. In the following we will refer to this
model as DoKoHo. In the simulation we need to apply fix lead times as this is
one assumption of the DoKoHo model. We simulate a situation that fits to the
DoKoHo assumptions where demand is backlocked and there are penalty costs
if a location is not able to deliver as demanded.

Table 7 shows the results of the simulation for the GSM, the SGSM and
DoKoHo. There are some different parameter settings for DoKoHo where the
penalty costs used in the model are multiplied by a factor (γ).

Table 7: Results of simulation with poisson distributed demand and fix lead time

Model Inventory Cost Recourse Cost Total Cost

(1) DoKoHo (γ = 1) 1 450 564.94 2 510 522.12 3 961 087.06
(2) DoKoHo (γ = 5) 1 816 753.33 1 534 991.82 3 351 745.15
(3) DoKoHo (γ = 10) 1 954 727.95 1 387 486.39 3 342 214.34
(4) GSM 96% 1 834 581.46 1 980 314.45 3 814 895.91
(5) SGSM 300 → 75, weeks, asym 1 058 309.50 1 629 832.65 2 688 142.15

The DoKoHo model outperforms the GSM but causes higher costs than the
SGSM. The simulation of the different models lead to the service levels that are
shown in table 8.

The reason for the very low service levels at the master warehouse using the
DoKoHo model compared to the ones using GSM or SGSM can be explained
easily. In the DoKoHo model there are no explicit service times guaranteed to
the successors. But the lower performance of the master warehouse is considered
when the successor‘s safety stock is calculated. In the simulation we use a service
time of zero for this case so the delivery of master warehouse is often late.
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Table 8: Comparison of service levels (%)

Warehouse (1) (2) (3) (4) (5)
0 48.0 53.7 55.4 91.9 83.3
1 96.8 98.7 99.0 98.1 97.4
2 96.4 98.4 98.6 97.8 97.1
3 96.6 98.7 98.9 97.9 97.4
4 96.3 98.2 98.4 97.6 96.5
5 97.0 98.9 99.1 98.7 97.6
6 96.7 98.1 98.2 97.8 96.6
7 96.6 98.5 98.7 97.9 97.5

As we do not consider penalty costs for master warehouse in the simulation,
this does not effect the costs that we get applying the DoKoHo models.

5. Conclusion

We have introduced the Stochastic Guaranteed Service Model (SGSM), a
stochastic programming version of the Guaranteed Service Model (GSM) for
the computation of safety stock levels in a multi-echelon spare part distribution
system of a large German car manufacturer.

Whereas the GSM makes assumptions that require extreme demand scenar-
ios and missed delivery dates to be handled outside the model, the SGSM is
capable of incorporating these volatilities inside the model, thereby accounting
for the corresponding cost. The stochasticity needs to be captured by sufficiently
large sample sizes: in our example we generated 200 scenarios most of the time
and reduced them to 50 applying modified scenario reduction techniques. The
resulting MILP models could be solved straight-forwardly in our example.

The SGSM makes some assumptions that are only approximations of reality
(complete recourse, piecewise linear demand). However, our simulation was
not restricted by these assumptions; it only checked the resulting policies, no
matter what they assumed, and accounted for all the occurring costs. And
in this quite realistic simulation experiment, the policies calculated with the
SGSM performed extremely well. One reason for this is that the SGSM can
have structurally different optimal solutions than the GSM: not all optimal
SGSM solutions are extreme in the space of variables of the GSM. Thus the
SGSM sometimes finds solutions that the GSM can never provide, no matter
which parameter setting. And such solutions dominated GSM solutions in our
simulations.

We therefore think that the SGSM can be applied routinely in spare part
distribution systems like the one of our partner. Next, we will model the real-
world recourse actions in more detail in order to find more realistic recourse cost
values.
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Appendix A. Results of the simulation runs

In this section we show some of the numerical results in detail. The average
costs of the ten simulation runs listed here are given in tables 1 and 3.

The tables A.9–A.12 include the results that lead to the average costs of
table 2.

Table A.9: No reduction (3 → 3)

Run Inventory Costs Recourse Costs Total Costs

1 1 262 180.67 20 904 545.37 22 166 726.04
2 1 227 922.08 17 572 609.36 18 800 531.44
3 1 238 190.82 22 341 954.25 23 580 145.07
4 1 294 183.52 19 942 497.73 21 236 681.25
5 1 310 570.53 21 047 322.98 22 357 893.51
6 1 256 992.73 20 860 600.50 22 117 593.23
7 1 325 988.56 15 528 825.97 16 378 814.53
8 1 262 180.67 20 904 545.37 22 166 726.04
9 1 241 824.84 32 304 152.43 33 545 977.27
10 1 311 050.20 18 169 764.58 19 480 814.58

Average 1 273 108.461 273 108.461 273 108.46 20 957 681.8520 957 681.8520 957 681.85 22 183 190.3122 183 190.3122 183 190.31

Table A.10: Symmetric reduction (50 → 3)

Run Inventory Costs Recourse Costs Total Costs

1 1 344 456.16 5 885 899.06 7 230 355.22
2 1 374 833.68 6 231 607.72 7 606 441.40
3 1 357 439.20 5 264 175.09 6 621 614.29
4 1 358 487.22 5 693 121.60 7 051 608.82
5 1 377 759.11 6 037 579.32 7 415 338.43
6 1 356 518.24 5 469 194.65 6 825 712.89
7 1 376 288.85 5 947 061.26 7 323 350.11
8 1 401 105.86 5 516 129.63 6 917 235.49
9 1 358 232.81 5 828 321.03 7 186 553.84
10 1 378 756.13 6 118 036.79 7 496 792.92

Average 1 368 387.731 368 387.731 368 387.73 5 799 112.625 799 112.625 799 112.62 7 167 500.357 167 500.357 167 500.35

Table A.13 and A.14 include the results for the single runs of GSM 96%

(4) and SGSM 200 → 50, weeks, asym (10) of table 3.
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