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Abstract The Tamari lattice, thought as a poset on the set of triangulations of a
convex polygon with n vertices, generalizes to the higher Stasheff-Tamari orders on
the set of triangulations of a cyclic d-dimensional polytope having n vertices. This
survey discusses what is known about these orders, and what one would like to know
about them.

1 Introduction

One often thinks of the Tamari order as a partial order on parenthesizations, or on
binary trees. But it can also be taken as an order on triangulations of any n-gon whose
vertices lie in convex position.

Choosing the vertices of the n-gon to lie on a parabola, or 2-dimensional moment
curve, lends itself to a beautiful geometric interpretation for the order. This interpre-
tation generalizes to give two closely related orders on the set of triangulations of a
cyclic polytope C(n,d), which is the convex hull of any n points on the d-dimensional
moment curve.

These orders, called the higher Stasheff-Tamari orders HST1(n,d) and HST2(n,d),
first appeared roughly 20 years ago in the work of Kapranov and Voevodsky [24,
Defn. 3.3], and are somewhat mysterious. Nevertheless, they share many beautiful
properties with the Tamari order. Here we survey the work on them by Edelman
and Reiner [15], Rambau [31], Reiner [36, §6] Edelman, Rambau and Reiner [14],
Thomas [43, 44], and most recently, Oppermann and Thomas [26]. We also discuss
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work on the closely related Baues problem for subdivisions of cyclic polytopes and
zonotopes, as studied by Rambau and Santos [33], Athanasiadis, Rambau and Santos
[3], and Athanasiadis [2].

Along the way, we indicate which questions about them remain open.

2 Cyclic polytopes

One way to realize the vertices of an n-gon in convex position is to pick the vertices
as n points with distinct x-coordinates on the parametrized parabola {(t, t2) : t ∈ R}
within R2. More generally, one can define (see [47, Example 0.6]) the d-dimensional
moment curve in Rd as the image of the parametrization

R νd→ Rd

t 7→ (t, t2, , . . . , td).
(1)

Definition 2.1. The d-dimensional cyclic polytope with n vertices C(n,d) is the
convex hull of any n points νd(t1), . . . ,νd(tn) with distinct x1-coordinates

t1 < t2 < · · ·< tn. (2)

We adopt the convention when d = 0 that these n points are copies of the unique
point of R0.

An exercise in Vandermonde determinants and polynomial algebra and inequalities
[47, Example 0.6, Theorem 0.7, Exercise 0.8] shows that, no matter how one chooses
the x1-coordinates in (2), the polytope C(n,d) has these combinatorial properties:

• C(n,d) is a simplicial polytope, meaning that its boundary faces are all simplices,
• C(n,d) has the same subsets of indices {i0, i1, . . . , ik} indexing boundary faces

conv{νd(ti0),νd(ti1), . . . ,νd(tik)}, dictated by Gale’s evenness criterion, and in
particular,

• C(n,d) is b d
2 c-neighborly, meaning that every vertex subset of size at most d

2
spans a simplex on the boundary.

In light of these properties, it is fair to talk about C(n,d) and its bound-
ary faces indexed by sets of subscripts {i0, i1, . . . , ik}, without reference to the
choice of x1-coordinates in (2). In the terminology of oriented matroid theory,
the affine point configuration given by the points with homogeneous coordinates
{(1, ti, t2

i , . . . , td
i )}i=1,2,...,n realizes the alternating oriented matroid [9, Cor. 8.2.10],

regardless of the choice in (2).
Note also that if one fixes this choice (2), but varies the dimension d, then one

has canonical projection maps π : C(n,d′)→ C(n,d) for d′ ≥ d by forgetting the
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Fig. 1 Cyclic polytopes C(7,3), C(7,2), C(7,1), and C(7,0) (seven repeated points at the origin)
together with the canonical projections forgetting the last coordinate. The bottom triangulation 0̂7,2
of C(7,2), discussed in Section 3, is faintly visible as the (obscured) lower facets of C(7,3).

last d′−d coordinates. Figure 1 shows the cyclic polytopes C(7,d) for d = 0,1,2,3,
along with these projection maps1.

Because the oriented matroid data for the affine point configuration {νd(ti)}i=1,2,...,n
is independent of the choice (2), it is also well-defined to say when a collec-
tion T of (d +1)-element subsets {i1, i2, . . . , id+1} indexes the maximal simplices
conv{νd(ti1), . . . ,νd(tid+1)} in a triangulation of the cyclic polytope C(n,d). For
complete discussions of the motivations and technicalities here, see Rambau [31, §2]
and DeLoera, Rambau, and Santos [11, Chap. 2].

We will say more about how one encodes or characterizes the collections T of
(d +1)-subsets that index triangulations of C(n,d) in Section 4.

3 The two orders

The two Stasheff-Tamari orders come from thinking about how a triangulation T of
C(n,d) induces a section

1 The astute reader will notice that the point configurations C(7,1) and C(7,0) are not really
determined by the polytope which is their convex hull. We will tacitly use the term “polytope”, even
though in certain situations, there is a point configuration in the background which is really part of
the data. This becomes even more apparent in the case of cyclic zonotopes discussed in Section 8.
We elaborate no further on this here, but refer to [11, Chp. 2] for a technically satisfying setup.
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Fig. 2 The two triangulations (green and red) of C(d +2,d) for small d, specifically,
d = 0: {1} versus {2}
d = 1: {1,3} versus {1,2},{2,3}
d = 2: {1,2,4},{2,3,4} versus {1,2,3},{1,3,4}
d = 3: {1,2,3,4},{1,2,4,5},{2,3,4,5} versus {1,2,3,5},{1,3,4,5}, depicted here in an exploded
view: the 3-simplices are moved slightly apart to clarify how they assemble.

C(n,d)
sT→ C(n,d +1)

of the projection map C(n,d +1) π→ C(n,d), defined uniquely by insisting that sT

sends νd(ti) 7→ νd+1(ti), and then extending sT piecewise-linearly over each simplex
in the triangulation T .

From this point of view (and after staring at C(n,3) in Figure 1 for a bit), one
realizes that the top and bottom elements in the usual Tamari poset correspond to the
two canonical triangulations of C(n,2) that come from the “upper” and “lower” facets
of C(n,3). In general, one obtains a canonical upper (resp. lower) triangulation of
C(n,d) by projecting via π : C(n,d +1)→C(n,d) the boundary facets of C(n,d +1)
visible from points with large (resp. small) xd+1 coordinate. It is not hard to see that
when n = d +2, these are the only two triangulations of a cyclic polytope C(d +2,d);
for d = 0,1,2,3, they are pictured in Figure 2. See also Figure 10 for the d = 3 case.
Explicit descriptions of these canonical upper and lower triangulations for general d
may be found in [15, Lemma 2.3].

Definition 3.1. Given two triangulations T ,T ′ of the cyclic polytyope C(n,d),
say that they are related as T ≤2 T ′ in the second higher Stasheff-Tamari order
HST2(n,d) if sT (x)d+1 ≤ sT ′(x)d+1 for every point x of C(n,d), that is, the section
sT lies weakly below the section sT ′ with respect to their xd+1-coordinates.

Definition 3.2. To define the first higher Stasheff-Tamari order HST1(n,d) on tri-
angulations of C(n,d), first define when T ′ is obtained from T by an upward flip:
this means that there exists a (d +2)-subset i1 < i2 < · · ·< id+2 whose convex hull
gives a subpolytope C(d +2,d) of C(n,d) with the property that T ,T ′ restrict to
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Fig. 3 The (lower!) Stasheff-Tamari orders HST2(6,1) = HST1(6,1) on the set of triangulations
T of the line segment C(6,1). Instead of the triangulation T , its image under the piecewise linear
section sT : C(6,1)→ C(6,2) is depicted in red.

the lower, upper triangulations of this C(d +2,d), and otherwise T ,T ′ agree on all
of their other simplices not lying in this C(d +2,d).

Then define T ≤1 T ′ in HST1(n,d), if there is a sequence of upward flips
starting with T and ending with T ′. That is, HST1(n,d) is the transitive closure of
the upward flip relation.

Figure 3 illustrates HST2(6,1). It should be clear from the definitions and the
above discussion that ≤1 is a weaker partial order than ≤2, and that the lower
and upper triangulations of C(n,d) give the unique minimal 0̂n,d and maximal
1̂n,d elements of HST2(n,d). It was left open in [15], and resolved by Rambau
affirmatively in [31], that these two triangulations also give unique minimal and
maximal elements of HST1(n,d). In particular, this resolves the question of bistellar
connectivity for triangulations of C(n,d): any pair of triangulations can be related by
a sequence of bistellar flips (see Section 6). It is also closely related to the Generalized
Baues Problem for cyclic polytopes, discussed in Section 7 below.

It was shown in [15] that the two orders HST1(n,d) and HST2(n,d) are the same
for d = 0,1,2,3, and this is also not hard to check that they are the same when
n−d = 1,2,3. This raises the following question that remains open.

Open Problem 3.3. Are HST1(n,d) and HST2(n,d) the same orders?

Historically, the order HST1(n,d) is the one introduced, in the different terminol-
ogy of pasting schemes, by Kapranov and Voevodsky [24, Def. 3.3]; the second order
HST2(n,d) was defined in [15, p. 132].
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The higher Stasheff-Tamari posets for d = 0,1,2 are familiar objects, as we next
explain.
Example 3.4. For d = 0, the cyclic polytope C(n,0) is the unique point of R0,
however, it is viewed as a point configuration in which there are n different possible
labels i in {1,2, . . . ,n} for this point. A triangulation T of C(n,0) is a choice of
one of these labels i, and an upward flip replaces the label i by the label i+1. Thus
HST1(n,d) and HST2(n,d) both equal the linear order 1 < 2 < · · ·< n.
Example 3.5. For d = 1, the cyclic polytope C(n,1) is a line segment [t1, tn] inside
R1, however, it is viewed as a point configuration in which there are n−2 interior
vertices {t2, t3, . . . , tn−1}. Any subset of these interior vertices determines a unique
triangulation T of the line segment C(n,1) into smaller segments. A typical upward
flip replaces two consecutive smaller segments [ti, t j], [t j, tk] having i < j < k with the
single segment [ti, tk], or equivalently, removes t j from the subset of interior vertices
used in the triangulation. Thus HST1(n,d) and HST2(n,d) are both isomorphic to
the Boolean algebra 2{t2,t3,...,tn−1}. This was illustrated for n = 5 already in Figure 3,
depicting HST2(6,1) = HST1(6,1), which is isomorphic to the Boolean algebra
2{t2,t3,t4,t5}.
Example 3.6. For d = 2, as mentioned above, the cyclic polytope C(n,2) is a convex
n-gon. A typical upward flip starts with a triangulated sub-quadrilateral C(4,2) with
four vertices i < j < k < ` which is triangulated via the two triangles {i jk, ik`}, and
replaces it with the same triangulation except for using the two triangles {i j`, jk`}
instead. Thus HST1(n,2) is equivalent to one of the usual definitions of the Tamari
order. It is not completely obvious that HST1(n,2) = HST2(n,2); a proof appears in
[15, Theorem 3.8].
Example 3.7. Figures 4 through 6 show pictures of HST1(6,2), HST1(6,3), and
HST1(7,3), respectively, all supported by TOPCOM [32].

The following property, suggested by the previous examples and scrutiny of the
accompanying figures, is easily deduced from the definitions.

Proposition 3.8. [15, Prop. 2.11] In both posets HST1(n,d),HST2(n,d), reversal
of the labelling, that is, the relabelling 1 7→ n, 2 7→ n−1, . . . , n 7→ 1

• induces a non-trivial poset automorphism for d odd, and
• induces a poset anti-automorphism for d even.

Scrutiny of the examples and figures also suggests the following properties, which
are not as obvious, but deduced by Rambau in [31, Cor. 12.(i)].

Proposition 3.9. Given a triangulation T of C(n,d), let |T | denote its number of
maximal simplices.

• For d even, |T | is constant, independent of T , equal to
(n−e−1

e

)
if d = 2e.

• For d odd, |T | takes on all values in the range
[(n−e−1

e−1

)
,
(n−e

e

)]
if d = 2e−1. In

fact, HST1(n,d) is a ranked poset in which T has rank
(n−e

e

)
−|T |.
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Fig. 4 A picture of HST1(6,2) = HST2(6,2), similar to [15, Fig. 4(a)]. Triangulations T of C(6,2)
are depicted as the images of their corresponding sections sT : C(6,2)→ C(6,3), viewed from
above C(6,3). Labels { j`, ik} on covering relations indicate supports of the corresponding flips as
follows: the 3-simplex {i, j,k, `} with i < j < k < ` supporting the flip has lower facets {i jk, ik`},
and upper facets {i j`, jk`}.
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Fig. 5 A picture of HST1(6,3); the labels of the covering relations indicate the support of the
corresponding flip. After reading Theorem 6.6 below, the interested reader may want to find, for
each of the 6 triangulations in this figure, at least one maximal chain in Figure 4 which induces it.
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Fig. 6 A picture of HST1(7,3) (data generated by TOPCOM [32]), similar to [15, Fig. 4(b)].
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4 Encodings

Just as it is sometimes useful to encode elements of the Tamari lattice by other means,
such as Huang and Tamari’s bracketing vectors [22], it has also proven useful to
encode triangulations of C(n,d) and the Stasheff-Tamari orders in various ways. We
discuss three such encodings in the literature, as they appeared in historical order.

4.1 Submersion sets

For k ≥ 0, a subset {i1, . . . , ik+1} of {1,2, . . . ,n}, is identified with a k-simplex
σ = conv{νd(ti1), . . . ,νd(tk+1)} inside the cyclic polytope C(n,d). Denote by sσ the
unique map σ→Rd+1 that maps its vertices νd(ti j) 7→ νd+1(ti j) for j = 1,2, . . . ,k+1
and then extends piecewise-linearly over σ .

Definition 4.1. Given a triangulation T of C(n,d), say that σ is submerged by T if
sσ (x)d+1 ≤ sT (x)d+1 for all x in σ . In other words, when one lifts σ into C(n,d +1),
it lies weakly below (with respect to xd+1-coordinates) the image of the section sT .

Define the k-submersion set subk(T ) to be the collection of subsets {i1, . . . , ik+1}
indexing k-simplices σ submerged by T .

Proposition 4.2. [15, Prop. 2.15] A triangulation T of C(n,d) can be recovered
uniquely from its submersion set subd d

2 e
(T ).

Furthermore, T ≤2 T ′ in HST2(n,d) if and only if subd d
2 e

(T )⊆ subd d
2 e

(T ′).

This encoding of T via subd d
2 e

(T ) is used mainly in [15] for d ≤ 3. There it is
explained how to read off subd d

2 e
(T ) from the d-simplices of T , and the subsets

which can appear as subd d
2 e

(T ) are characterized as follows.

Proposition 4.3. [15, Props. 3.3 and 4.2] For d = 2, a collection I = {i j} ⊂
{1,2, . . . ,n} has I = sub1(T ) for some triangulation of C(n,2) if and only if

• I contains every boundary edge of C(n,2).
• Assume ik is in I.

If i < j < k, then i j is also in I.
• If ik, j` are both in I, with i < j < k < `, then i` is also in I.

For d = 3, a collection I = {i jk} ⊂ {1,2, . . . ,n} has I = sub2(T ) for some
triangulation of C(n,3) if and only if

• I contains every boundary triangle of C(n,3).
• Assume i jk is in I.

If j < k′ < k, then i jk′ is also in I.
If i < i′ < j, then i′ jk is also in I.
• If i jk,abc are in I, with a < i < b < j < c < k, then abk,a jk are also in I.
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Note that these conditions characterizing the sets sub1(T ) for d = 2 and sub2(T )
for d = 3 are closure conditions, and hence they are preserved when one intersects
sets. This immediately implies that the second Stasheff-Tamari order HST2(n,d) is a
meet semilattice for d ≤ 3, with meet operation given by intersecting these sets. Since
it has the unique maximal element 1̂n,d , one immediately deduces the following.

Theorem 4.4. [15, Thms. 3.6 and 4.9] For d ≤ 3, the higher Stasheff-Tamari order
HST2(n,d) is a lattice.

With some work, these encodings can also be used to show the following previously
mentioned result.

Proposition 4.5. [15, Thms. 3.8 and 4.10] For d ≤ 3, the two Stasheff-Tamari orders
HST1(n,d),HST2(n,d) are the same.

These encoding also have consequences for the homotopy types of intervals and
Möbius functions µ(x,y) in the orders for d ≤ 3, to be discussed in Section 5 below.

4.2 Snug rectangles

In [43], Thomas presents an amazingly simple encoding of the triangulations T of
C(n,d), and an accompanying reformulation of the order HST2(n,d).

Definition 4.6. Let L(n,d) denote the set of all strictly increasing integer sequences
(a1,a2, . . . ,ad) of length d with 1 ≤ ai ≤ n. For each d-simplex, indexed by the
(d +1)-subset i1 < i2 < · · ·< id+1, appearing in T , associate the subset of L(n,d)
(called a snug rectangle) which is the following d-fold Cartesian product:

[i1, i2−1]× [i2, i3−1]×·· ·× [id , id+1−1].

Given the triangulation T and its various snug rectangles, let

UT := {(a1,a2, . . . ,ad−1,ad) ∈ L(n,d) :
(a1,a2, . . . ,ad−1,ad),(a1,a2, . . . ,ad−1,ad−1) lie in
the same snug rectangle of T } .

Theorem 4.7. [43, Theorems 1.1, 1.2] The map sending a triangulation T of C(n,d)
to its collection of snug rectangles is a bijection between all triangulations of C(n,d)
and all decompositions of L(n,d) into snug rectangles.

Furthermore, T ≤2 T ′ in HST2(n,d) if and only if UT ⊆UT ′ .

Thomas goes on to exhibit a natural poset embedding

HST2(n,d) ↪→
n−1

∏
j=d

HST2( j,d−2)
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Fig. 7 Triangulations T of C(5,2) with their snug rectangle encodings (red), and the points of UT

circled green within the rectangles.

which for d = 2 turns into Huang and Tamari’s bracket vector encoding [22]. By
iterating this poset embedding, he improves the upper bounds that had been given
in [15] on the order dimension dimHST2(n,d), that is, the smallest N for which
HST2(n,d) has a poset embedding into a product of N linear orders. Furthermore, he
gets an exact calculation for the 2-dimension dim2 HST2(n,d), that is, the smallest
N for which HST2(n,d) has a poset embedding into a Boolean algebra 2N of rank N.

Theorem 4.8. [43, Theorem 6.1] The higher Stasheff-Tamari order HST2(n,d) has

• for d = 2e+1 odd,
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dimHST2(n,d)≤ dim2 HST2(n,d) =
(

n− e−2
e+1

)
, and

• for d = 2e even,

dimHST2(n,d)≤
(

n− e−2
e

)
,

dim2 HST2(n,d) =
(

n− e−1
e+1

)
.

4.3 Non-interlacing separated d
2 -faces

Oppermann and Thomas [26] recently uncovered a fascinating connection be-
tween the representation theory of certain algebras and triangulations of the even-
dimensional cyclic polytopes C(m,d) with d = 2e. We will not do justice to their
results here and refer the interested reader to their paper for more details and precise
statements.

Very roughly, they give two generalizations to all even d of the following algebraic
results for d = 2: when one considers the path algebra of the linearly oriented
type An quiver, the set of indecomposables in the module category which are not
simultaneously projective and injective (resp. the set of all indecomposables in the
cluster category) can be identified with the internal diagonals of C(n+2,2) (resp. of
C(n+3,2)). Furthermore, this can be done in such a way that basic tilting modules
correspond to triangulations, and mutations correspond to diagonal flips. For more
on this, see the references in Oppermann and Thomas [26], as well as in Thomas’s
survey [45] in this volume.

In their work, the role played by the internal diagonals of a triangulation T of
C(m,2) is played by the nonboundary e-dimensional faces contained in a triangula-
tion T of C(m,2e). They begin with an old observation of Dey [13] that for any d,
a triangulation T of any d-dimensional polytope is completely determined by the
b d

2 c-dimensional faces that it contains.
In the special case of cyclic polytopes C(m,2e), these collections of e-faces have

a convenient characterization.

Definition 4.9. Say that an e-face with vertex set i1 < i2 < · · ·< ie+1 is separated if
i`+1− i` > 1 for all 0≤ `≤ e. Say that two such separated e-faces

i1 < i2 < · · ·< ie+1 and j1 < j2 < · · ·< je+1

intertwine if either

i1 < j1 < i2 < j2 < · · ·< ie+1 < je+1

or if the same holds reversing the roles of i’s and j’s.
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When d = 2 and e = 1, it is not hard to see that the separated e-faces of C(m,2)
correspond to the internal diagonals as well as the “upper” boundary edge {1,m},
and that the collections of m− 2 separated e-simplices which are pairwise non-
intertwining are exactly the sets of internal diagonals of triangulations C(m,2),
combined with {1,m}. Oppermann and Thomas generalize this as follows.

Theorem 4.10. [26, Theorems 2.3 and 2.4] Given a triangulation T of C(m,2e),
consider the collections of all of its separated e-simplices, or equivalently, all of its
e-simplices that do not lie within the lower boundary of C(m,2e).

Then these are exactly the collections of
(m−e−1

e

)
separated and pairwise non-

intertwining e-simplices inside C(m,2e).

They go on to use this characterization in their study of certain categories derived
from the module category of the (e− 1)-fold higher Auslander algebra Ae

n of the
linearly oriented type An quiver. For e = 1, this algebra Ae

n is simply the path algebra
of the quiver discussed earlier in this section. They obtain generalizations of the
above algebraic statements for e = 1, by identifying [26, Theorems 1.1, 1.2] the
internal e-simplices in C(n+2e,2e) (resp. C(n+2e+1,2e)) with certain kinds of
indecomposable objects in two different categories constructed from Ae

n-modules.
Furthermore, they do this in such a way that, in each case, basic tilting modules
correspond to triangulations, and the appropriate analogues of mutation correspond
to bistellar flips [26, Theorems 4.4, 6.4].

As crucial tools in their proofs, not only do they use the above encoding of triangu-
lations, but also the result of Rambau [31] mentioned in Section 3: all triangulations
of C(m,d) are connected by a sequence of bistellar flips.

5 Lattice property, homotopy types and Möbius function

Theorem 4.4 showed that for d≤ 3, the two higher Stasheff-Tamari orders HST1(n,d)
and HST2(n,d) coincide, and both are lattices. Although it was conjectured there that
they remain lattices for all d, counterexamples were later found by computer search
showing that the lattice property fails, at least for HST2(n,d), when (n,d) = (9,4)
and (10,5); see [14, §7].

On the other hand, for d ≤ 3, the two coinciding Stasheff-Tamari lattices
HST1(n,d) and HST2(n,d) enjoy the following pleasant property, which is checked
easily for d ≤ 1, proven for d = 2 by Pallo [28, Lemma 4.1], and proven for d = 3 in
[15, Theorem 4.11].

Theorem 5.1. Let d ≤ 3. For an interval [x,y] in the lattices HST1(n,d) =
HST2(n,d), let {z1,z2, . . . ,zc} be its set of coatoms, that is the elements zi ≥ x
which are covered by y. Then distinct subsets of {z1,z2, . . . ,zc} have distinct meets.

In particular,

• if z1 ∧ ·· · ∧ zc = x, then the open interval (x,y) is homotopy equivalent to a
(c−2)-dimensional sphere, and the Möbius function µ(x,y) = (−1)c,
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• if z1∧·· ·∧ zc > x, then (x,y) is contractible and µ(x,y) = 0.

For dimensions d > 3, this homotopy type issue is not yet resolved for all intervals,
but it is known for the improper open interval (0̂n,d , 1̂n,d), that is, the proper part of
the posets, and the answer for all intervals is conjectured, as we next discuss.

Firstly, the useful tool of Rambau’s suspension lemma for bounded posets [30],
developed to handle the homotopy of the proper parts of the higher Bruhat orders,
similarly allowed Edelman, Rambau and Reiner [14, Theorem 1.1] to prove the
following.

Theorem 5.2. [14, Theorem 1.1] For n > d + 1, the proper parts of both posets
HST1(n,d) and HST2(n,d) are homotopy equivalent to (n− d− 3)-dimensional
spheres2.

Next, when considering intervals [x,y] in HST2(n,d), an exact conjecture on their
homotopy type was formulated in [14]. For this one must introduce the notion of
polyhedral subdivisions S of C(n,d) (or any point configuration), which are more
general than triangulations; we will return to this notion when discussing secondary
polytopes in Sections 6.2 and 7.1.

Informally, such a subdivision S is a decomposition of C(n,d) into subpolytopes
{Pi}i∈I , with these properties:

• each subpolytope Pi has vertex set which is a subset of the vertices of C(n,d), and
• each pair Pi,Pj of subpolytopes has pairwise intersection Pi∩Pj equal to a face

(possibly empty) common to both.

There is an obvious notion for when one such subdivision refines another. Having
fixed a particular subdivision S of C(n,d), when one considers the collection of all
triangulations T that refine it, it is not hard to see that they form an interval [xS ,yS ]
in HST2(n,d) (or in HST1(n,d)). Specifically, if S has the subpolytope Pi isomor-
phic to C(ni,d), then xS (resp. yS ) triangulates Pi according to the triangulation
0̂ni,d (resp. 1̂ni,d) of Pi. It is also not hard to see that the closed interval [xS ,yS ] will
be poset-isomorphic to the Cartesian product ∏i∈I HST2(ni,d). Hence its proper part,
the open interval (xS ,yS ) will have the homotopy type of a sphere of dimension
−2 + ∑i∈I(ni− di− 1), combining Theorem 5.2 with a lemma of Walker [8, eqn
(9.8)]: the proper part of the Cartesian product P1×P2 of two bounded posets P1,P2
is homeomorphic to the suspension of the join of their proper parts.

Open Problem 5.3. [14, Conjecture 7.1]. Prove that the noncontractible open
intervals in HST2(n,d) are exactly the (xS ,yS ) coming from subdivisions S of
C(n,d). In particular, the Möbius function of HST2(n,d) only takes on values in
{0,±1}.

These assertions are well-known for d ≤ 2; in the case d = 2, they assert that the
noncontractible intervals in the Tamari lattice HST2(n,2) are exactly the coatomic or

2 For n = d +2, we are using a standard combinatorial convention: the proper part of a poset having
only two elements {x,y}with x < y is the simplicial complex {∅} having only the (−1)-dimensional
empty face and no other faces, and considered to triangulate a (−1)-dimensional sphere.
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Fig. 8 A subdivision S of C(7,2) into a green quadrangle and a blue pentagon, along with its
facial interval [xS ,yS ] ∼= HST2(4,2)×HST2(5,2) in HST2(7,2). The open interval (xS ,yS )
is homotopy equivalent to a 1-sphere (circle). The heptagon C(7,2) is depicted with respect to
coordinates on the Caratheodory curve, rather than the moment curve, for better visibility of
triangles.

facial intervals [x,y], that is, those in which x = xS ,y = yS are the minimum and
maximum elements lying on a particular face of the associahedron, indexed by a
polygonal subdivision S of the n-gon C(n,2); see Huguet and Tamari [23], and Pallo
[28]. Figure 8 shows an example of such an interval [xS ,yS ] within HST2(7,2),
with in this case an isomorphism [xS ,yS ]∼= HST2(4,2)×HST2(5,2).
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6 Connection to Flip Graph Connectivity

The Hasse diagram for the higher Stasheff-Tamari order HST1(n,d), considered as
an undirected graph, is a special case of an important concept from discrete and
computational geometry, which we discuss here: the flip graph of all triangulations
and (bistellar) flips for an arbitrary affine point configuration A in Rd .

6.1 Bistellar flips

Recall that an edge in the Hasse diagram for HST1(n,d) corresponds to two trian-
gulations T ,T ′ of A = C(n,d) that share almost all of the same simplices except
that they restrict to the two different possible triangulations (upper and lower) of the
convex hull of a certain subset A′ = C(d +2,d) of cardinality d +2.

It remains true generally that for d +2 points A′ in Rd , there will be exactly two
triangulations of their convex hull, using only vertices in A′. It even remains true that
these two triangulations will again be the set of “upper” and “lower” facets for some
lifting of the points A′ in Rd to the vertices of a (d + 1)-simplex in Rd+1, but the
combinatorics of these two triangulations will depend upon the signs in the unique
affine dependence (up to scaling) among these points, or the oriented matroid of the
affine point configuration A′; see again [11, §2.4].

Definition 6.1. Two triangulations T ,T ′ of the convex hull of an affine point
configuration A in Rd using only vertices in A, are said to differ by a (d-dimensional)
bistellar flip if they share almost all of the same simplices, but restrict to the two
possible triangulations of the convex hull of some d +2 element subset A′ ⊂ A.

More generally than the d-dimensional bistellar flips, one also allows lower-
dimensional bistellar flips between two triangulations T ,T ′, involving a subset
A′ ⊂ A of cardinality e+2 whose affine span is e-dimensional; see again [11, §2.4]
for the precise definitions. Figure 9 illustrates some of the variety of flips possible
already for points A in R2, with the rightmost example being lower-dimensional flip.
Although the variety of possible types of flips grows in higher dimensions (see
Figure 10 for one example), when A in Rd is in general position (no d + 1 of its
points lie on an affine hyperplane of Rd), the flips are local modifications, that
affect at most d + 1 simplices on d + 2 points in a triangulation. Thus, flips are
important in computational geometry (d = 2 or d = 3, mostly!) as a means to improve
triangulations by local modifications (see [17] for just one example or [16] and [10,
Chps. 3 and 9] for the low-dimensional viewpoint of Computational Geometry).
In non-general position, flips can become quite large modifications. (See also [11,
Chp. 8] for a more detailed discussion on algorithmic issues in general dimension).

We should warn the reader that there is a closely related notion of bistellar flip in
the literature, which is not quite the same: bistellar equivalences for triangulations
of PL-manifolds, as in the work of Pachner [27]. There one does not insist that the
manifolds have a fixed embedding into space nor that the vertices in the triangulation
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Fig. 9 An edge flip and a vertex flip in dimension two (grey), whose combinatorics can be repre-
sented topologically by pushing a surface in dimension three (blue) through a tetrahedron (red) all
the way from the lower facets to the upper facets. The rightmost figure is a lower-dimensional flip,
adding vertex 4 in the middle of edge 23 (grey): its combinatorics can represented topologically by
pushing a surface in dimension three (blue) through a vertical triangle (= 2-simplex!) linked to two
vertices (red).

Fig. 10 In dimension three, general position flips will change the number of simplices, as in C(5,3)
depicted here, which has exactly these two triangulations (exploded view). Compare with the
discussion of (2,3)-Pachner moves in the survey by Stasheff in this volume [41, §4.2].

have fixed coordinates. In contrast, triangulations in our context have vertices coming
from the point set A, with fixed coordinates in Rd .
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6.2 The flip connectivity question

In discrete and computational geometry, one would like to use bistellar flips to
explore the set of all triangulations of A, or to get to any triangulation (for example, a
special desired one) from any other triangulation (for example, an obvious one, such
as the popular Delaunay triangulation [11, § 2.2.2]. This motivates the following
definition and question.

Definition 6.2. Given an affine point configuration A in Rd , its flip graph Gtri(A)
has vertex set indexed by the triangulations T of the convex hull of A using only
vertices in A, and edges between pairs of triangulations T ,T ′ whenever they differ
by a bistellar flip.

Question 6.3. Given an affine point configuration A in Rd , is Gtri(A) connected?

When either d ≤ 2, or |A|−d ≤ 3, it is not hard to prove that the answer is “Yes”.
For higher dimensions d and point configurations A, this question tantalized re-
searchers for quite some time until resolved negatively by Santos, first in [38], where
he found a counter-example with d = 6, double-checked by computer-calculations
with TOPCOM [32]. Later Santos [39] produced another counter-example d = 5 and
in general position, which can be turned into convex-position examples by a standard
construction, the Lawrence construction [11, §5.5].

Theorem 6.4. [39, Theorem 1] There is a 5-dimensional polytope with vertex set A
of cardinality 26 for which the flip graph Gtri(A) is disconnected.

This should be compared with the positive results of Gelfand, Kapranov and
Zelevinsky on secondary polytopes [19]. They distinguish a particularly well-behaved
subgraph of Gtri(A), which is not only connected, but even (|A| − d− 1)-vertex-
connected in the graph-theoretic sense, because it gives the 1-skeleton (vertices and
edges) of the (|A|−d−1)-dimensional secondary polytope. This subgraph consists
of the regular triangulations or coherent triangulations (and the regular flips or
coherent flips between them), namely those that arise as projections of lower facets
of a lifting of the point configuration.

6.3 The flip graph of a cyclic polytope

Returning to cyclic polytopes C(n,d), it is known and not hard to see that for d = 2,
all triangulations are regular/coherent. This corresponds to the fact that the Hasse dia-
gram of the Tamari order is the 1-skeleton of the Stasheff polytope or associahedron,
which is the secondary polytope for the point configuration C(n,2). However, for any
fixed d ≥ 3, one can show that, asymptotically in n, most triangulations of C(n,d)
are not regular/coherent, [11, §6.1], which raises that question of connectivity for
their flip graphs.

Theorem 6.5. [31, Thm. 1.1, Cor. 1.2]. The first higher Stasheff-Tamari order
HST1(n,d) is bounded, with the same bottom 0̂n,d and top 1̂n,d triangulations as the
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Fig. 11 The Hasse-diagram of HST1(10,6) generated by an unpublished maple package of the first
author and the Stembridge posets package [42].

second higher Stasheff-Tamari order HST2(n,d). In particular, the Hasse diagram
for HST1(n,d), which is the flip graph Gtri(C(n,d)), is connected.

Figure 11 shows the Hasse-diagram of HST1(10,6), a non-trivial case for which
boundedness was unknown before.
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6.4 Diameter

Since the flip graph Gtri(C(n,d)) is connected, it makes sense to ask for its diameter,
that is, how many flips are required to reach a triangulation from any other, in the
worst case. We explain here how the following structural result on HST1(n,d) leads
to the exact diameter when d is odd, and diameter bounds when d is even.

Theorem 6.6. [31, Thm. 1.1] There is a one-to-one correspondence between equiv-
alence classes of maximal chains in HST1(n,d) and triangulations of C(n,d + 1).
Two chains are equivalent if their covering relations are flips on identical sets of
d +1-simplices. This correspondence is induced by mapping each flip in a maximal
chain in HST1(n,d) to the corresponding (d +1)-simplex in C(n,d +1).

Fig. 12 The connection between a chain in HST1(6,1) (represented by characteristic sections) and
an element of HST1(6,2) (figures from [11, Chp. 5]).

When d is odd, so that HST1(n,d) is both ranked and bounded, this determines
the diameter of Gtri(C(n,d)) exactly, combining the previous result, Proposition 3.9,
and the following well-known fact.

Proposition 6.7. A bounded ranked poset of rank r has Hasse diagram diameter r.

Proof. Every element lies in a maximal chain of length r, and hence any pair of
elements are contained in a closed cyclic path of 2r edges that concatenates two such
maximal chains; thus they lie at distance at most r. On the other hand, the unique
bottom and top elements are at distance at least r. ut



22 Jörg Rambau and Victor Reiner

Corollary 6.8. [31, Cor. 1.2] For odd d = 2e−1, the diameter of the flip graph of
C(n,d) is

(n−e−1
e

)
.

Since a triangulation of C(n,d +1) for d even has no more simplices than there are
lower facets of C(n,d + 2) and no fewer simplices than there are upper facets of
C(n,d +2), the same argument at least gives these bounds for the diameter.

Corollary 6.9. [31, Cor. 1.2] For even d = 2e, the diameter of the flip graph of
C(n,d) is bounded between

(n−e−2
e

)
and 2

(n−e−2
e

)
.

6.5 The case d = 2: the rotation graph of binary trees

In the case where d = 2, the above diameter bounds show that the diameter of
Gtri(C(n,2)) is between n− 3 and 2n− 6. However, this case has been extremely
well-studied under the guise of the rotation graph on binary trees, e.g. in the work
of Pallo; see the survey by Dehornoy [12] in this volume for references, and for the
close connection with Thompson’s group. In particular, the above diameter bound is
superseded by the following celebrated result of Sleator, Thurston, and Tarjan.

Theorem 6.10. [40, Thm. 2] The diameter of Gtri(C(n,2)) is, for sufficiently large
values of n, exactly 2n−10.

The proof that the diameter is at least 2n− 10 for sufficiently large n employs
the three-dimensional interpretation of flips sketched above: flipping can be seen as
shifting a surface from the lower facets of a (not necessarily straight-line) tetrahedron
through the tetrahedron all the way to the upper facets of the tetrahedron.

Moreover, a sequence of flips can be seen as moving a surface all the way through
a three-dimensional triangulation, consisting of one tetrahedron per flip and having
one triangulation as the bottom and the other triangulation as the top surface. If one
could show that there are triangulations of an n-gon so that the three-dimensional
space between them needs at least 2n− 10 tetrahedra to be triangulated, then the
claim would follow. And indeed: by embedding the situation in hyperbolic geometry
(where volumes of simplices are bounded!), Sleator, Tarjan, and Thurston established
the lower bound along these lines. Along their way, they had to master a wealth
of technical difficulties, though. No combinatorial or more intuitive proof has been
given of this lower bound to date.
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Fig. 13 Flipping (from left to right) to the standard triangulation with respect to vertex 7.
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On the other hand, their argument for the diameter upper bound of 2n−10 is easy
enough to reproduce here. Pick an arbitrary vertex p of an n-gon with n > 12 and an
arbitrary triangulation T . Unless p lies in all possible interior edges, that is, its degree
degT (p) in the interior edge graph of T is n−3, we can find a flip that increases
the degree of p by one. (In that case, not all adjacent triangles in the star of p in T
can form a non-convex quadrilateral.) Thus, we need at most n−3−degT (p) flips
to transform T into the unique triangulation with degT (p) = n− 3, the standard
triangulation with respect to p. The same holds for any other triangulation T ′, so
that the flip distance dist(T ,T ′) between T and T ′ is at most

dist(T ,T ′)≤min
p

2n−6−degT (p)−degT ′(p) (3)

If one uses the worst case of this relation as an upper bound, one can not get
past 2n− 6. However, symmetry comes to our aid: Since every triangulation of
an n-gon has n− 3 interior edges, the average interior-edge degree of a vertex is
(2n−6)/n = 2−6/n. Summarized:

dist(T ,T ′)≤ 2n−6−2+6/n−2+6/n = 2n−10+12/n. (4)

Since n > 12 and the distance is integral, the claim follows.

7 Subdivisions and the Baues problem

We have already seen, in the discussion of Möbius functions for HST2(n,d) in
Section 5, the relevance of polytopal subdivisions S of C(n,d) which are coarser
than triangulations, and the importance of the refinement ordering on them.

The flip graph Gtri(A) is a one-dimensional object built from these triangulations
and bistellar flips relating them. It turns out that bistellar flips can also be thought of
as subdivisions which are only slightly coarser than triangulations, namely those that
have exactly two refinements, both triangulations. They form part of a larger structure,
the Baues poset, built from all subdivisions. The connectivity question for Gtri(A) is
closely related to the question of homotopy type for this Baues poset. We discuss
this somewhat informally here – see [36] for further discussion and references.

7.1 Subdvisions and secondary polytopes

Polytopal subdivisions of the convex hull of a point configuration A, using only
vertices in A, already appeared naturally in the work of Gelfand, Kapranov, and
Zelevinsky [19, 20] on the secondary polytope of A that was discussed in Section 6.2:
the face poset of the second polytope is exactly the poset of all regular polytopal
subdivisions S of the convex hull of A, ordered by refinement. See Figure 14 for
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the example of a pentagon (isomorphic to C(5,2)). See also [11, Chp. 5] for a more
elementary introduction into this theory.

Fig. 14 The refinement poset of a five-gon is isomorphic to the face lattice of its secondary polytope
(in this case also a five-gon); figures from [11, Chp. 5].

2 4
(134)

(124) (1234)

(14)

31

Fig. 15 A path in a tetrahedron and the corresponding cell in the square (figure from [29]).

7.2 Baues’s original problem

Meanwhile, a conjecture of Baues in the model theory of loop spaces [5] motivated
Billera, Kapranov, and Sturmfels [6] to generalize this subdivision poset. We give
here a rough idea of Baues’s goal, before explaining their generalization.

The loop space ΩX of a base-pointed topological space (X ,x) has elements which
are closed paths γ in X starting and ending at x, equipped with a certain topology.
If X happens to come from a simplicial complex, that is, it is glued from simplices,
then one might hope to model ΩX via some type of cell complex; this idea goes back
to J. F. Adams [1] who applied it to compute the homology of ΩX .

To this end, consider a piece of a closed path γ inside a d-simplex, with vertices
numbered {0,1,2, . . . ,d}, with γ entering each visited (open) face at its minimal
vertex and exiting at its maximal vertex d. Moreover, we require that it enters the
simplex at vertex 0 and exits at vertex d. The various substantially distinct options
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for how this piece of γ can traverse the simplex (in terms of visited open faces)
can be modeled by a (d− 1)-cube: the extreme possibilities are edge paths with
increasing vertex labels in the simplex, which biject with vertices of a cube: the
vertices 1 through d−1 of the simplex that are visited by γ determine the ones in the
coordinates of the vertex of the cube. All intermediate options where γ can wander
specify in a rather obvious way faces of the cube, where a path meeting the interior
of the simplex corresponds to the improper face of the cube, that is, the whole cube.

Thus, one might think that the loop space of a simplicial complex can be modeled
by a cubical complex. As always, there are technical subtleties, one of which is that a
certain structure must have the homotopy type of a sphere for things to work. Baues
conjectured that this structure actually always does have the homotopy type of a
sphere.

Fig. 16 How cellular strings in the bipyramid project to compatible subdivisions of the line; the
rightmost set of faces is not a cellular string, because the projections of those faces overlap (figure
derived from a figure in [29, Chap. 1]).

7.3 Cellular strings and the generalized Baues problem

Billera, Kapranov, and Sturmfels [6] discovered that the structure Baues was after is
an example of the following construction.

Definition 7.1. Consider a d′-dimensional polytope P and linear functional Rd′ π→R1

taking distinct values π(v) 6= π(v′) whenever v,v′ are vertices lying on an edge of P.
Say that a subdivision of the line segment π(P) in R1 into consecutive intervals

[v0,v1], [v1,v2], . . . , [v`−1,v`] is π-compatible3 if, for each i = 1,2, . . . , `, one can

3 The original term “π-induced” in [7, 6] was modified in [11] to “π-compatible” because, in general,
there are many subdivisions that are projections of faces under π , induced by the corresponding
cellular strings and π , not π alone.
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assign a face Fi of P for which π(Fi) = [vi,vi+1]. In fact, identify the subdivision with
the sequence of faces (F1, . . . , F̀ ) in P. Call this sequence a π-cellular string in P.

For example, among the π-cellular strings one finds all π-monotone edge paths
from the π-minimizing vertex to the π-maximizing vertex of P, but one also has
π-cellular strings that take steps through faces which are higher-dimensional than
edges; see Figure 16.

One defines a refinement ordering on all such π-cellular strings in P via contain-
ment of faces, which gives a poset that was baptized the Baues poset of P and π . The
result that triggered a whole line of research was this.

Theorem 7.2. [6]. For any d′-dimensional polytope and linear functional Rd′ π→R1

as above, the Baues poset is homotopy equivalent to a sphere of dimension d′−2.

Billera, Kapranov, and Sturmfels also defined a Baues poset of π-compatible
subdivisions for any linear projection π of a d′-dimensional polytope P to a d-
dimensional polytope π(P) for some d < d′. The following question arose naturally.

Question 7.3 (Generalized Baues Problem (GBP)). For a d′-polytope P and for any
linear projection π to Rd , does the (Generalized) Baues poset of P and π have the
homotopy type of a d′−d−1-sphere?

At the time when this question was phrased it had almost the status of a conjecture.
This thinking was fueled by the work of Billera and Sturmfels on the theory of fiber
polytopes [7], generalizing Gelfand, Kapranov and Zelevinsky’s secondary polytopes.
The fiber polytope of the projection π out of P distinguishes geometrically a certain
subposet of the π-compatible subdivisions S of the image polytope π(P) =: Q,
namely those subdivisions which are π-coherent: one requires that the collection
of faces {Fi} of P projecting to the subdivision S does not “wrap around P”, in
the sense that there exists a single linear functional g on the (d′−d)-dimensional
real space ker(π) so that the union ∪iFi is exactly the union over all the points q
in π(P) of the g-maximizing subfaces of the (d′−d)-dimensional polytopal fibers
π−1(q)∩P.

Denoting the subposet of π-coherent subdivisions the coherent (generalized)
Baues poset of P and π , one has the following striking result.

Theorem 7.4. [7] The coherent generalized Baues poset of P and π is always
isomorphic to the face lattice of a polytope, the fiber polytope of P and π . In
particular, this subposet is homeomorphic to a d′−d−1-sphere.

In the example of Figure 17 we see that the poset of coherent compatible subdi-
visions (solid covering relations) is indeed a proper sub-poset of the Baues poset;
this sub-poset is isomorphic to a hexagon whereas the whole poset is only homotopy
equivalent to a 1-sphere. By Theorem 7.4, the subdivisions connected by dashed
covering relations cannot be compatible, because they lie only in chains that are
too long to appear in the face lattice of a 2-dimensional polytope. Note that though
the bipyramid is isomorphic to C(5,3), the indicated projection is not the canonical
projection between cyclic polytopes, since the induced order of vertices is 2,1,3,5,4,
as opposed to 1,2,3,4,5 in the canonical projection.
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Fig. 17 The (proper part of the) Baues poset of coherent and incoherent cellular strings on a
bipyramid, projecting down to compatible subdivisions of a line (example and figure from [47,
Chp. 9]; figure also in [29, Chp. 1]).

As time went by with no affirmative answer to Question 7.3, hope diminished,
and finally a surprisingly small counter-example was constructed by Rambau and
Ziegler [34].

Theorem 7.5. [34, Thm. 1.5] There is a generic projection π of a 5-polytope P with
10 vertices to the plane, having a disconnected generalized Baues poset. In particular,
its generalized Baues poset is not homotopy equivalent to a 2-sphere.

This yields counter-examples for any set of larger parameters d,d′ with d > 2 and
d′−d > 2 by standard constructions. For the only missing parameters d′−d ≤ 2, an
affirmative answer could be given, with an involved proof, though:

Theorem 7.6. [34, Thm. 1.4] For d′ = d + 2, the generalized Baues poset always
has the homotopy type of a 1-sphere.

Thus one has a recurring dichotomy: geometrically distinguished subdivisions form
friendly structures, whereas the general subdivisions do not.

On the other hand, as in the case of triangulations, there is a family of particularly
friendly polytopes where everything is nice, and it is again – the cyclic polytopes.
Work of several authors showed4 that the canonical projections between cyclic
polytopes have indeed well-behaved generalized Baues posets.

Theorem 7.7. [33, 3] For all d′ > d, the generalized Baues poset of the canonical
projection from C(n,d′) to C(n,d) has the homotopy type of a d′−d−1-sphere.

4 For some of the history on the progress toward this result, see [36, §4].
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8 Connection to the higher Bruhat orders

We discuss here the higher Bruhat orders B(n,k) of Manin and Schechtman [25]
generalizing the weak Bruhat order B(n,1) on the set Sn of all permutations of
n letters. Their intimate connection to the higher Stasheff-Tamari orders appears
already in the original paper of Kapranov and Voevodsky, who discuss [24, §4] a poset
map B(n,k)→ HST1(n+2,k +1) generalizing the classical poset surjection from
the weak Bruhat order on Sn to the Tamari order on triangulations of C(n +2,2);
see the survey by Reading [35] and by Hohlweg [21] for more perspectives and
different generalizations of this map. Further discussion of higher Bruhat orders,
higher Stasheff-Tamari orders, and the poset map between them appears in [36, §6].

8.1 Definition of higher Bruhat orders

One can think of the higher Bruhat orders B(n,k) as orders on orders on orders . . . of
subsets. When defined for general k, they can seem a bit technical. Here we choose
instead to work our way up from k = 0,1,2, . . .

Example 8.1. When k = 0, the (lower!) Bruhat order B(n,0) is the Boolean algebra
2{1,2,...,n}. Thus it is isomorphic to the two lower Stasheff-Tamari orders on the set of
triangulations of of C(n+2,1), as described in Example 3.4.

Note that this isomorphism is most natural if one renumbers the vertices on
the line segment C(n + 2,1) as 0,1,2, . . . ,n + 1, rather than our usual numbering
1,2, . . . ,n+2, so that the internal vertices are labelled {1,2, . . . ,n}.

Also, note that one can think of B(n,0) = 2{1,2,...} in two ways:

• It is the transitive closure of the relation S < T whenever S⊂ T and |T |= |S|+1.
This is analogous to HST1(n+2,1).
• One has S ≤ T for two subsets S,T in 2{1,2,...,n} if S ⊆ T . This is analogous

to HST2(n + 2,1). When we wish to emphasize this analogy, we will borrow
Ziegler’s notation from [46] where he denotes this inclusion order B⊆(n,0), to
distinguish it from the definition via single-step inclusion.

Example 8.2. When k = 1, the poset B(n,1) is actually the weak Bruhat order on the
symmetric group Sn. As a set, it consists of all maximal chains

∅⊂ {w1} ⊂ {w1,w2} ⊂ ·· · ⊂ {w1,w2, . . . ,wn−1,wn}= {1,2, . . . ,n} (5)

of elements in B(n,0). Such chains biject with the linear orders w = (w1, . . . ,wn) in
which the elements are added, which can be read as permutations w in Sn.

To order B(n,1), recall the (left-)inversion set Inv2(w) of w is the collection of
pairs i < j (which we will call 2-packets) for which j appears before i in the order w.
Define w≤ w′ in B⊆(n,1) if Inv2(w)⊆ Inv2(w). On the other hand, one can define
the single-step ordering B(n,1) as the transitive closure of the relation w < w′ if
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Inv2(w)⊂ Inv2(w′) and | Inv2(w′)|= | Inv2(w)|+1. It is a classical result that these
two orders on Sn are the same, and define the weak Bruhat order.

Note that a linear order w can be recovered from its inversion set Inv2(w). Also
note that inversion sets Inv2(w) of permutations w are not arbitrary subsets of all
2-packets

({1,2,...,n}
2

)
: given any 3-packet i < j < k, transitivity forces that if i j, jk lie

in Inv2(w) or if both are absent from Inv2(w), then the same must be true for ik. Said
differently, for each 3-packet i < j < k, an inversion set Inv2(w) must intersect the
lexicographic order on the 2-packets

i j, ik, jk (6)

in either an initial segment, or a final segment.
Example 8.3. Things become more interesting when k = 2. Again B(n,2) can be
derived from consideration of maximal chains c in B(n,1)(= B⊆(n,2)). Such chains
are sequences of permutations

e = w(0) < w(1) < · · ·< w((n
2)) = w0 (7)

from the identity e to the longest element w0 = (n,n−1, . . . ,2,1), in which one adds
one element to Inv2(w(i)) at each stage. These maximal chains correspond to reduced
decompositions for w0 in terms of the adjacent transposition Coxeter generators
si = (i, i+1) for Sn.

One can derive from such a chain c a 3-packet inversion set Inv3(c) by considering
for each 3-packet i < j < k the two possible orders in which its 2-packet subsets
i j, ik, jk are added to the sets Inv2(w(i)) for i = 1,2, . . . ,

(n
2

)
: either they are added in

the lexicographic order from (6) and one decrees i jk /∈ Inv3(c), or they are added in
the reverse of this order and one decrees i jk ∈ Inv3(c).

As a set B(n,2) is defined to be all equivalence classes c̄ of such chains c, where
c,c′ are equivalent if Inv3(c) = Inv3(c′). In terms of reduced words for w0, this is the
same as equivalence under commuting braid moves sis j = s jsi for |i− j| ≥ 2.

Similarly to B⊆(n,1), define c̄≤ c̄′ in B⊆(n,2) if Inv3(c̄)⊆ Inv3(c̄′). On the other
hand, one can define the single-step ordering B(n,2) as the transitive closure of
the covering relation c̄ l c̄′ if their 3-packet inversion sets are nested and differ in
cardinality by one.

It is no longer obvious that these two orders B(n,2) and B⊆(n,2) on the set are
the same; this nontrivial fact was proven by Felsner and Weil [18].

And it is again true that inversions sets Inv3(c̄) are not arbitrary subsets of all
3-packets

({1,2,...,n}
3

)
: given any 4-packet i1 < i2 < i3 < i4, they are characterized

by a nontrivial biconvexity condition [46, Lemma 2.4] asserting that Inv3(c̄) must
intersect the lexicographic order on the 3-packets within this 4-packet

i1i2i3, i1i2i4, i1i3i4, i2i3i4

in either an initial segment or a final segment.
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This picture continues, allowing one to derive B(n,k) from considering maximal
chains c of elements in Bss(n,k−1). Each such maximal chain can be considered as
the sequence of k-packets added to the k-inversion sets of the elements in the chain.
For each fixed (k+1)-packet S, its subset k-packets are added either in lexicographic,
or reverse lexicographic order, as one proceeds up the chain, and one uses this to
decree whether the (k +1)-packet does not or does lie in Invk+1(c).

One defines B(n,k) as a set to be the equivalence classes c̄ of these chains c in
Bss(n,k− 1) having the same (k + 1)-packet inversion sets Invk+1(c). One orders
the set B(n,k) either as B⊆(n,k) via inclusion of the sets Invk+1(c), or denotes the
analogous poset B(n,k) defined via single-step inclusion.

Although these definitions are recursive, one can also make them nonrecursive;
see Ziegler [46]. On the other hand, the recursive description builds in a classical
result by Manin and Schechtman on how the structures of the higher Bruhat orders
B(n,k) are intertwined for different k; Theorem 6.6 was actually inspired by the
following older result.

Theorem 8.4. [25, Thm. 3] There is a one-to-one correspondence between certain
equivalence classes of maximal chains in B(n,k) and elements of B(n,k +1).

On the other hand, when k ≥ 3, a subtlety appears, in that Ziegler shows [46,
Theorem 4.5] that Bss(n,3) and B⊆(n,3) do not coincide for n≥ 8. In light of this
fact, and the existence of the map B(n,k)→ HST1(n+2,k +1), to be discussed in
Section 8.3 below, the resolution of Problem 3.3 becomes even more interesting.

8.2 Some geometry of higher Bruhat orders

The geometry that originally motivated Manin and Schechtman to define B(n,d)
comes from generalizations of the classical braid arrangement known as discriminan-
tal arrangements. We will not discuss this here, but instead focus on the interpretation
of B(n,d) via tilings of the d-dimensional cyclic zonotope Z(n,d), defined to be the
Minkowski sum

Z(n,d) =

{
n

∑
i=1

ciνd(ti) :−1≤ ci ≤+1

}
consisting of all [−1,+1] combinations of n distinct vectors νd(t1), . . . ,νd(tn) lying
on the moment curve in Rk, with t1 < · · ·< tn, as usual.

This interpretation is essentially stated without proof in the paper of Kapranov
and Voedvodsky [24, Theorem 4.9]. It was carefully justified and explained later
by Thomas in [44, Thm. 2.1], as well as by Ziegler’s discussion following [46,
Theorem 4.1] when one takes into account the equivalence between zonotopal tilings
and oriented matroid single-element liftings given by the Bohne-Dress Theorem [9,
Theorem 2.2.13].

The story begins with the observation that any zonotope which is a Minkowski
sum ∑

n
i=1[−1,+1]vi generated by n vectors v1, . . . ,vn in Rd is simply the projection
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Fig. 18 Cyclic zonotopes Z(4,3), Z(4,2), Z(4,1), and Z(4,0) (24 = 16 repeated points at the
origin) together with the canonical projections forgetting the last coordinate. Note that already
Z(4,3) has interior points, namely 6 and 11, and already Z(4,2) has repeated points, namely 7
and 10. Z(4,4) is simply a 4-cube.

of the n-cube [+1,−1]n in Rn generated by the standard basis vectors e1, . . . ,en,
under the linear projection Rn → Rd that sends ei to vi. Because of this, one has
a natural tower of projections Z(n,d′)→ Z(n,d), depicted for n = 4 in Figure 18,
analogous to the tower of projections C(n,d′)→ C(n,d) discussed in Section 2 and
depicted in Figure 1.

To explain the interpretation of B(n,d) in terms of tight zonotopal tilings of
Z(n,d), that is, tilings by subzonotopes which cannot be further refined, we will
work our way up from the low-dimensional cases, where the geometry is simpler.
For a careful discussion of the definitions of zonotopal tilings, we refer the reader to
Richter-Gebert and Ziegler [37], Billera and Sturmfels [7, §4], or DeLoera, Rambau
and Santos [11, §9.1.2].
Example 8.5. When d = 0, each vector ν0(ti) lies at the origin which is the unique
point in R0, and equals the zero-dimensional zonotope Z(n,0). However, we regard
the point Z(n,0) as having 2n different labels by subsets S of {1,2, . . . ,n}, each
corresponding to the vertex of the n-cube Z(n,n) that projects to it. Thus, an element
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S of B(n,0) = 2{1,2,...,n}, is a choice of such a label, and is considered a zonotopal
tiling of Z(n,0). Alternatively, it gives a section of the map Z(n,n) π→ Z(n,0).

Note also that the covering relation between subsets S l S′ in B(n,0) corresponds
to two vertices lying along an edge of the n-cube.
Example 8.6. When d = 1, each vector ν1(ti) = ti points along the (x1-)axis of R1,
and Z(n,1) is the line segment whose two endpoints vmin,vmax are ±(t1 + · · ·+ tn).
A tight zonotopal tiling of Z(n,1) is a sequence of intervals

[vmin,vmin +2tw1 ],
[vmin +2tw1 ,vmin +2tw1 +2tw2 ],
. . . ,

[vmin +2tw1 +2tw2 + · · ·+2twn−1 ,vmax]

corresponding to a permutation w = (w1, . . . ,wn) in Sn, or an element of B(n,1); see
Example 8.2.

On the other hand, such permutations or elements of B(n,1) correspond to max-
imal chains in B(n,0), that is, sequences of nested subsets as in (5), and hence by
our observation for d = 0, to edge-paths in the cube Z(n,n) which proceed in a
monotone fashion from the vertex labelled by the empty set ∅ to the vertex labelled
by {1,2, . . . ,n}. In other words, they give sections of the map Z(n,n) π→ Z(n,1). See
Figure 21 and following for some examples of such edges paths with n = 3.

Note also that covering relation between two permutations w l w′ in B(n,1)
corresponds to two monotone edge paths in the cube Z(n,n) that differ only in two
adjacent steps that proceed in opposite ways around a quadrilateral face of the cube

Example 8.7. Again, things become interesting when d = 2. Now the vectors ν2(ti)
in R2 generate a zonotopal polygon Z(n,2), that is, a centrally symmetric 2n-gon.

An element of B(n,2) can be thought of as a maximal chain of permutations
in B(n,1) as in (7), up to a certain equivalence relation. It is possible to model
this equivalence relation in at least two ways. One way considers the associated
pseudoline arrangement or wiring diagram, as in Figure 19, whose vertical slices
record the permutations in the chain as the ordering of the strands. These diagrams
are considered only up to the equivalence relation of isotopies in the plane that never
allow one strand to slide over the crossing of two other strands.

The other way considers each permutation wi in the chain as a monotone edge path
in the cube, and each covering relation wi lwi+1 in the chain as giving a quadrilateral
face of the cube on which the two paths take two adjacent steps that disagree. The
union of all such quadrilateral faces is a 2-dimensional surface inside the cube Z(n,n),
which is a section of the map Z(n,n)→ Z(n,2).

The concordance between these two models is that the quadrilateral faces in this
2-dimensional surface map under π to a tight zonotopal tiling of the 2n-gon Z(n,2).
This tiling can be recovered as the planar dual graph to the graph given by the
pseudoline arrangement, considered as having vertices only at the strand crossings;
see Figure 19.
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Fig. 19 An element of B(4,2) derived from a maximal chain of permutations in B(4,1), the weak
Bruhat order on S4. The chain of permutations (colored from red to cyan) leads to an arrangement
of pseudolines, also called a wiring diagram: horizontal slices have the strands ordered as in
the permutations in the chain. The planar dual of the pseudoline graph can be drawn as a tight
subdivision of the zonotope Z(4,2), in which the pseudoline strand i for i = 1,2,3,4 is dual to the
edges of the tiles in the parallelism class labelled by i. Moreover, the chain of permutations can be
recovered in the zonotopal tiling as a sequence of monotone paths (colored from red to cyan) with
covering relations coming from “flipping” the paths “upwards” through a quadrilateral.

This picture continues. The work of Thomas [44, Prop. 2.1], Ziegler [46, Theorem
4.1] shows that an element of B(n,d) can be thought of as unions of d-dimensional
faces inside the cube Z(n,n), corresponding to the image of a section of the map
Z(n,n) π→ Z(n,d), projecting to a tight zonotopal subdivision of Z(n,d).

One can furthermore show that if one instead associates to these tight zonotopal
subdivisions S of Z(n,d) a section sS of the map Z(n,d +1) π→ Z(n,d), then one
has S ≤S ′ in the higher Bruhat order B⊆(n,d) exactly when sS (x)d+1≤ sS ′(x)d+1
for all x in Z(n,d); see Figure 20 for this picture of B⊆(4,2).

Analogously to the situation for cyclic polytopes C(n,d), these tight zonotopal
subdivisions and the edges between them in the Hasse diagram for B(n,d) are special
cases of the more general notion of a zonotopal subdivision of Z(n,d), which is
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Fig. 20 A picture of B(4,2) with elements drawn as the sections of zonotopal tilings of Z(4,2)
in Z(4,3), partially ordered by height; it can be seen how the sections, on their way to the top, sub-
merge more and more points. Each chain can be built by stacking cubes, and the cubes corresponding
to a chain form a zonotopal tiling of Z(4,3), which represents an element of B(4,3).
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a π-compatible subdivision for the projection Z(n,n) π→ Z(n,d). There is again a
Baues poset of all such subdivisions, ordered by refinement, and the Baues problem
asks for its homotopy type. Athanasiadis [2] investigated the Baues problem for all
of the canonical projections Z(n,d′) π→ Z(n,d), as in Figure 18.

Theorem 8.8. [2, Thm. 1.1] For all d′ > d, the generalized Baues poset of the
canonical projection from Z(n,d′) to Z(n,d) has the homotopy type of a d′−d−1-
sphere.

8.3 The map from higher Bruhat to higher Stasheff-Tamari orders

The similarity of the description between the higher Bruhat orders B(n,k) in the last
section should make their analogy to the higher Stasheff-Tamari orders HST1(n,d)
apparent.

Tightening the connection, Kapranov and Voevodsky [24] claimed, and later
Rambau [31] proved, that there actually is a poset map between them. Later, Thomas
shed more light on this connection in [44, §4] (see Figures 21 through 24 for an
illustration).

Theorem 8.9. [31, Cor. 8.16]. There is an order-preserving map

B(n,k)
f→ HST1(n+2,k +1).

In low dimensions, the map f is familiar. Example 8.1 noted the isomorphisms

B(n,0) = 2{1,2,...,n} ∼= HST1(n+2,1).

In the next dimension up, the map B(n,1)
f→ HST1(n+2,2) is the same as the map

from the weak Bruhat order on Sn to the Tamari order on triangulations of C(n+2,2)
discussed in the survey by Reading [35, §1] in this volume5. To describe it in our
geometric setting, one must assign a triangulation of C(n+2,2) to each permutation
w in Sn, or to each monotone edge path in the n-cube. To this end, think of C(n+2,2)
as labeled by 0,1,2, . . . ,n+1, with {0,n+1} its only upper edge. In the order of the
permutation w, cut off any remaining vertex i of C(n+2,2) by inserting the diagonal
from its left to its right neighbor. Once all vertices 0 < i < n+1 have been cut off, the
set of inserted diagonals forms a triangulation. Note that two distinct permutations
can map to the same triangulation because i, j that are adjacent in the permutation
but not adjacent during the cut-off procedure can be cut off in an arbitrary order.
Compare this with the description of this map in the survey by Reading [35, §1], and
in particular, compare [35, Figure 3], with Figures 22 through 24 below.

This f extends (modulo technical details) to a map B(n,d)
f→ HST1(n+2,d +1)

via induction on d. Elements of B(n,d) are equivalence classes of maximal chains

5 This map also appears implicitly in the survey by Hohlweg [21], where it is explained how to
embed the associahedron in such a way that its normal fan coarsens that of the permutohedron.
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Fig. 21 Each permutation in B(3,1) corresponds to a monotone path in the 3-cube, which induces
a triangulation of C(5,2) by using the order in which the coordinates change as the order in which
the vertices 1,2,3 are cut-off by the triangulation. Note that this can be interpreted as an upflip
sequence in HST1(5,1). Thus, what we see here is the flip map Tflip from [31].

Fig. 22 A different monotone path can lead to an identical triangulation.

Fig. 23 A different monotone path can also lead to a different triangulation.
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Fig. 24 Monotone paths that differ by a “face flip” (that is, the corresponding permutations are
connected by an inversion) lead to triangulations that are either identical or are connected by a
bistellar flip.

Fig. 25 Illustration of the inductive structure of the map from higher Bruhat orders to higher
Stasheff-Tamari orders: A zonotopal tiling of Z(4,2) (the one from Figure 19) can be traversed
upwards by monotone paths (colored from red to cyan), which map to triangulations of C(6,2) that
form a chain (from red to cyan) inducing a triangulation of C(6,3) consisting of the flip simplices
in the chain – determining an element of HST1(6,3).

c = c1 l c2 l · · ·

of elements ci in B(n,d− 1). Each f (ci) in HST1(n + 2,d) is already defined by
induction, and thereby gives a sequence of triangulations of C(n+2,d)
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f (c1)≤ f (c2)≤ ·· · (8)

It can be shown that for each i, either f (ci) = f (ci+1) or f (ci) l f (ci+1) in the
order HST1(n+2,d). Hence, after eliminating duplicates, the sequence (8) gives a
maximal chain in HST1(n+2,d), and therefore an element of HST1(n+2,d +1) by
Theorem 6.6. This inductive construction is illustrated in Figure 25.

The results summarized in this section all required technical formal proofs, for
which we refrain from presenting any details. However, we close with one problem
on the above map f , suggested by an assertion from the original paper of Kapranov
and Voevodsky [24, Theorem 4.10], but which has so far remained unproven.

Open Problem 8.10. Prove that the map B(n,d)
f→HST1(n+2,d +1) is surjective.

9 Enumeration

We close with an enumerative question: How large are the posets HST1(n,d),HST2(n,d),
that is, how many triangulations are there of the cyclic polytope C(n,d)?

A few mostly trivial results in this direction are known, such as

• C(n,0),C(n,1),C(n,2) have n,2n−2, 1
n−1

(2(n−2)
n−2

)
triangulations, respectively,

• C(n,n−1),C(n,n−2),C(n,n−3), have 1,2,n triangulations, respectively.

The following nontrivial result was proven by Azaola and Santos [4].

Theorem 9.1. [4] The number of triangulations of C(n,n−4) is{
(n+4) ·2 n−4

2 −n for n even, and
3n+11

2 ·2 n−5
2 −n for n odd.

Another interesting unsolved problem is the following.

Open Problem 9.2. Count the triangulations of C(n,3).

How about computer-based enumeration? Table 1 below compiles a few results
achieved by the general purpose enumeration program for triangulations TOPCOM
[32]. With special purpose codes it should be possible to generate more numbers that
can be used to check conjectural enumeration formulas.
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