
Foundations of Regular Languages for
Processing RDF and XML

Von der Universität Bayreuth
zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

von

Katja Losemann

Tag der Einreichung: 15. April 2015

Deutsche Kurzfassung

Die vorliegende Arbeit befasst sich mit der Komplexität und Optimierung von Pro-
blemen, die bei der Verwendung von regulären Sprachen für die web-basierte Da-
tenverarbeitung entstehen. Die betrachteten Problemstellungen sind insbesondere
durch Anwendungen motiviert die eines der folgenden zwei Datenformate benutzen:
die Extensible Markup Language (XML) [BPSM+08] und das Resource Description
Framework (RDF) [CWL14]. Wir werden uns zunächst mit der Komplexität von
regulären Sprachen in dem Kontext XML und RDF beschäftigen. Danach unter-
suchen wir die Auswertung von dynamischen Daten, die aus heutiger Sicht immer
relevanter für die web-basiere Datenverarbeitung wird.

In dem ersten Teil dieser Arbeit liegt unser Fokus auf regulären Ausdrücken
(kurz RAs) zur Repräsentation von regulären Sprachen. Reguläre Ausdrücke ha-
ben sich in praktischen Anwendungen für die XML- und RDF-Datenverarbeitung
weitestgehend gegenüber anderen Repräsentationen für reguläre Sprachen, wie zum
Beispiel endlichen Automaten oder logischen Charakterisierungen, als effizient wie
auch nutzerfreundlich durchgesetzt. Um den einzelnen Anforderungen in den ver-
schiedenen praktischen Anwendungen gerecht zu werden, sind außerdem mit der
Zeit mehrere Varianten regulärer Ausdrücke entstanden. Eben diese Varianten und
deren Komplexität sind Betrachtungsgegenstand unserer Forschung in dem ersten
Teil dieser Dissertation. Zu diesem Zweck werden wir verschiedene Varianten regu-
lärer Ausdrücke, die im Kontext der XML- und RDF-Datenverarbeitung benutzt
werden, formal definieren und untersuchen, ob diese eine ihrem Verwendungszweck
entsprechend effiziente Nutzung zulassen oder eventuell sogar verhindern. Wir be-
schäftigen uns dabei im Detail mit Schemasprachen für XML und Anfragesprachen
für RDF, in denen durch semantische und syntaktische Zusatzbedingungen einige
interessante Varianten regulärer Ausdrücke entstanden sind.

Anschließend werden wir in dem Kontext von Anfragesprachen die Komplexität
regulärer Sprachen aus einer etwas allgemeineren Perspektive untersuchen. Dafür
lösen wir unsere Betrachtungen sowohl von konkreten Datenformaten als auch von
regulären Ausdrücken. Stattdessen untersuchen wir die web-basierte Datenverar-
beitung mit dem Fokus auf das Verhalten moderner Datenbanken. In diesen sind
heutzutage zwei Tendenzen deutlich zu erkennen: Erstens, die in den Datenbanken
gespeicherten Datensätze werden immer größer; sie nehmen dabei Dimensionen an
die mit klassischen Methoden nicht mehr effizient beherrschbar sind. Aus diesem
Grund ist zu erwarten, dass die Ergebnisse von Datenbankanfragen immer komple-

iii

xer werden und dem Nutzer eine (möglicherweise sehr große) Menge an korrekten
Ergebnissen zurückgegeben wird. Zweitens, unterliegen die in den Datenbanken ent-
haltenen Daten ständigen Änderungen, so dass eine gerade abgeschlossene Analyse
der Daten im nächsten Moment schon wieder veraltet sein kann.

Wir stellen uns die Frage, ob reguläre Datenbankanfragen in diesem Kontext ef-
fizient ausgewertet werden können. Um große Antwortmengen effizient verarbeiten
zu können, untersuchen wir sogenannte Enumerationsalgorithmen, die das Ergeb-
nis einer Anfrage nicht direkt in einem Schritt berechnen, sondern vielmehr Stück
für Stück an den Nutzer zurückgeben. Da wir außerdem dynamische Daten betrach-
ten, sollen diese Algorithmen zudem auf eintreffende Datenupdates schnell reagieren
können. Dabei betrachten wir Anfragen, die in ihrem Kern regulär sind, und durch
ein spezielles endliches Automatenmodell dargestellt werden können. Obwohl für
ähnliche Anfragen bereits effiziente Enumerationsalgorithmen bekannt und gut un-
tersucht sind (siehe zum Beispiel [Bag06, Cou09, DS11, KS13a, KS13b, Seg13]),
können diese Algorithmen nicht dafür genutzt werden Anfragen über dynamischen
Datenbanken effizient auszuwerten.

Im Folgenden erläutern wir den Aufbau dieser Dissertation und beschreiben die
erarbeiteten Ergebnisse im Einzelnen.

Eine ausführliche Einleitung in unser Forschungsthema wird in Kapitel 1 ge-
geben. Die notwendigen Grundlagen der Theoretischen Informatik, der Formalen
Sprachen und der betrachteten Datenformate werden in Kapitel 2 eingeführt und
anhand von Beispielen erläutert. Um dem Leser den Überblick über die im Folgenden
benutzten Varianten regulärer Ausdrücke zu erleichtern, werden wir in Kapitel 3
die untersuchten semantischen und syntaktischen Zusatzbedingungen für reguläre
Ausdrücke formal definieren und bereits bekannte relevante Ergebnisse wiederholen.
Anschließend wenden wir uns den folgenden Forschungsthemen zu.

Reguläre Ausdrücke in dem Kontext XML-Schemasprachen Seit 1998
wird die Meta-Sprache XML von dem World-Wide-Web Consortium (W3C) als
Standardformat für semi-strukturierte Daten empfohlen [BPSM+08]. Die in einem
XML-Dokument enthaltenen Daten werden dabei hierarchisch in einer Baumstruk-
tur formatiert. Um zusätzliches Wissen über diese Struktur — sofern vorhanden —
für die automatisierte Datenverarbeitung nutzen zu können, werden in der Praxis
XML-Schemasprachen verwendet, die es dem Nutzer erlauben ein Schema über dem
von ihm gewünschten Vokabular zu definieren, das dann die hierarchische Struktur
von unter dem Schema gültigen XML-Dokumenten zweckmäßig einschränkt. In die-
sem Sinne stellt das Schema eine Art Schablone für die Struktur der zulässigen
Dokumente dar. Das in dem Schema enthaltene Wissen kann in der Praxis zum
Beispiel dafür genutzt werden Anfragen oder den Austausch von Daten effizienter
auszuwerten. Die zurzeit am häufigsten genutzten XML-Schemasprachen sind Do-
cument Type Definitions (DTDs) [BPSM+08], XML Schema (XSDs) [FW04] und
Relax NG [CM01].

Für uns interessant ist die Verwendung von regulären Ausdrücken in den ers-
ten beiden Schemasprachen. In diesen darf aufgrund einer Zusatzbedingung, die aus

iv

Kompatibilitätsgründen in den Spezifikationen von DTDs und XSDs des W3C’s
enthalten ist, nur eine semantisch eingeschränkte Art von regulären Ausdrücken
verwendet werden. Diese Art von Ausdrücken werden aufgrund ihrer Eigenschaften
als deterministische reguläre Ausdrücke (oder DRAs) bezeichnet und in Kapitel 4
genauer untersucht. Während ein deterministisches Verhalten Probleme aus der In-
formatik in vielen Fällen stark vereinfachen kann, werden wir sehen dass in diesem
Fall grundlegende Probleme erheblich erschwert werden.

Zwei Eigenschaften von DRAs sind dabei besonders unangenehm für den Nutzer.
Es ist bereits seit 1998 bekannt, dass nicht alle regulären Sprachen durch DRAs
definiert werden können [BKW98], so dass Nutzer nicht beliebige reguläre Sprachen
in einem Schema verwenden können. Zusätzlich ist für den Nutzer im Allgemeinen
nur schwer erkennbar welche Ausdrücke in einem Schema gültig sind. Deswegen ist
es in der Praxis erforderlich die Integrität von Schemata automatisiert zu testen
um das Schema gegebenenfalls dem Nutzer zur Korrektur zurückgeben zu können.
Um einen solchen Test durchzuführen muss insbesondere auch das folgende Problem
gelöst werden, mit dessen Komplexität wir uns in Abschnitt 4.1 beschäftigen:

Sei eine reguläre Sprache L gegeben.
Kann die Sprache L auch durch einen DRA definiert werden?

Dieses Problem werden wir im weiteren Verlauf als DRE-Definability Problem
bezeichnen. Bereits 1998 haben Büggemann-Klein und Wood gezeigt, dass DRE-
Definability entscheidbar ist [BKW92, BKW98]. Daher sind wir im Folgenden an
der exakten Komplexität des Problems interessiert. Die hier vorgestellten Ergebnisse
sind in Zusammenarbeit mit Wojciech Czerwiński, Claire David und Wim Martens
entstanden und wurden zuvor in [CDLM13] veröffentlicht. Als Grundlage unserer
Arbeit dienten uns insbesondere die folgenden zwei bekannten Ergebnisse: DRE-
Definability kann in polynomieller Zeit entschieden werden wenn die Eingabe
ein minimaler deterministischer endlicher Automat (DEA) ist [BKW98] und es ist
PSPACE-schwer wenn die Eingabe ein nichtdeterministischer endlicher Automat
(NEA) oder ein RA ist [BGMN09].

Wir beweisen dass DRE-Definability für NEAs und RAs PSPACE-vollständig
ist indem wir einen Algorithmus angeben der auf dem Ergebnis von Brüggemann-
Klein und Wood in [BKW98] aufbaut und das Problem für NEAs in PSPACE löst.
Mit Hilfe dieses Algorithmus zeigen wir außerdem dass DRE-Definability für RAs
mit Zähloperatoren in EXPSPACE ist. Eine dazu passende untere Schranke beweisen
wir durch Adaption einer Reduktion von Groz [Gro12]. Abschließend geben wir noch
eine NLOGSPACE untere Schranke für DRE-Definability mit minimalen DEAs
als Eingabe an.

In Abschnitt 4.2 befassen wir uns mit der Beschreibungskomplexität von deter-
ministischen regulären Ausdrücken. Das heißt, wir untersuchen, ob — verglichen mit
anderen Repräsentationen für reguläre Sprachen — die Repräsentation als DRA mit
weniger oder mehr Aufwand möglich ist. Dabei werden wir zeigen, dass im Allge-
meinen DRAs exponentiell größer als RAs und DEAs sind. Außerdem zeigen wir in
Abschnitt 4.3 dass sich DRAs unter der Anwendung von Booleschen Operationen
nicht optimal verhalten. Hierbei kann bereits die einmalige Anwendung einer Boole-

v

schen Operation auf zwei gegebene DRAs in einem DRA resultieren der exponentiell
größer ist.

Die Ergebnisse in den Abschnitten 4.2 und 4.3 sind zum Teil in Zusammenarbeit
mit Wim Martens und Matthias Niewerth entstanden und wurden zuvor in [LMN12]
veröffentlicht. Einige der Ergebnisse aus [LMN12] stammen dabei bereits aus der Di-
plomarbeit der Autorin und werden aus diesem Grund zusätzlich mit [Los10] gekenn-
zeichnet. Ergebnisse ohne entsprechende Referenzen wurden allein von der Autorin
verfasst und sollen in Zukunft in einer Journalversion zu [LMN12] veröffentlicht
werden.

Die Komplexität von Regulären Ausdrücken in SPARQL 1.1 Anfragen
Um große unstrukturierte Datenmengen effizient auswerten zu können, entwickel-
te das W3C das Resource Description Framework (RDF) [CWL14], in dem Da-
ten als Graphen dargestellt werden und mit beliebigen öffentlichen Bezeichnern ge-
kennzeichnet werden. Zur Auswertung von RDF-Daten entwickelt das W3C seit
2008 außerdem die Anfragesprache SPARQL Protocol and RDF Query Language
(SPARQL)1. Wir untersuchen die Komplexität der Auswertung von SPARQL An-
fragen im Hinblick auf das sogenannte Property Path Feature. Dieses wurde 2010
zu der SPARQL 1.1 Spezifikation hinzugefügt und erlaubt es reguläre Ausdrücke in
Anfragen zu verwenden. Als Grundlage für unsere Studie dient uns der vorläufige
Entwurf der SPARQL Anfragesprache aus 2012 [HS12].

Laut dieser Spezifikation sind in SPARQL Anfragen reguläre Ausdrücke mit ei-
nigen zusätzlichen Operatoren, wie beispielsweise Zähloperatoren und eine einge-
schränkte Negation, erlaubt. Außerdem wird in der Spezifikation eine spezielle Se-
mantik zur Auswertung von Ausdrücken über Graphen definiert, die verlangt dass

– bestimmte Ausdrücke nur über einfachen Pfaden (d.h. über Pfaden in denen
jeder Knoten maximal einmal besucht wird) ausgewertet werden dürfen und

– die Anzahl der richtigen Antworten auf eine Anfrage bestimmt werden muss.

Diese besonderen Bedingungen haben uns dazu veranlasst im November 2011 eine
kurze Studie aktueller SPARQL Implementierungen durchzuführen. Im Einzelnen
wurden die folgenden Implementierungen betrachtet: das Jena Semantic Web Fra-
mework [Apa11], Sesame [KFB08], RDF::Query [Wil], und Corese 3.0 [Cor12]. Im
Laufe unserer Studie überraschte es uns, dass bereits für sehr einfache Anfragen
auf sehr kleinen Graphen (mit nur zwei Knoten) alle Implementierungen doppelt-
exponentiell viel Zeit in der Größe der Eingabe benötigten um eine Antwort zu be-
rechnen. Aus diesem Grund haben wir formal untersucht, ob ein solches Verhalten
vermieden werden kann oder ob eine effiziente Auswertung von SPARQL Anfragen
unter den oben-genannten Bedingungen nicht möglich ist. Unsere Ergebnisse präsen-
tieren wir in Kapitel 5. Die vorgestellten Ergebnisse sind dabei in Zusammenarbeit
mit Wim Martens entstanden und wurden zuvor in [LM12, LM13] veröffentlicht.

Um mögliche Ursachen für das ineffiziente Verhalten der SPARQL Implemen-
tierungen aufzudecken und unabhängig voneinander bewerten zu können, definieren

1Der Name der Anfragesprache ist tatsächlich ein rekursives Akronym.

vi

wir zu Beginn des Kapitels in den Abschnitten 5.1 und 5.2 zwei verschiedene Seman-
tiken für SPARQL Anfragen. Die erste Semantik, genannt Simple-Walk-Semantik,
entspricht unserer Abstraktion der von dem W3C gewünschten Semantik einschließ-
lich der oben genannten Bedingungen. Die zweite Semantik, genannt Regular-Path-
Semantik, vernachlässigt indes die Bedingung bestimmte Ausdrücke auf einfachen
Pfaden auszuwerten.

In Abschnitt 5.3 untersuchen wir zunächst die Komplexität der zusätzlichen Ope-
ratoren die laut Spezifikation in den Ausdrücken erlaubt sind. Insbesondere gilt für
diese Operatoren, dass durch die verwendeten Zähloperatoren reguläre Ausdrücke im
Allgemeinen exponentiell kürzer werden [KT03]. Für reguläre Ausdrücke (ohne zu-
sätzliche Operatoren) war dagegen bereits vorher bekannt, dass diese über Graphen
in polynomieller Zeit ausgewertet werden können [MW95, AV99, ABE09]. Wir zei-
gen, dass auch die zusätzlichen SPARQL Operatoren (inklusive der Zähloperatoren)
auf Graphen in polynomieller Zeit ausgewertet werden können. Dabei ist zu beach-
ten, dass dieses Ergebnis nur für die Auswertung unter Regular-Path-Semantik gilt,
das heißt ohne die zusätzlichen Bedingungen aus der SPARQL Spezifikation. Wir
zeigen, dass die Auswertung von SPARQL Anfragen unter Simple-Walk-Semantik
bereits für stark eingeschränkte reguläre Ausdrücke NP-schwer und für die Menge
aller erlaubten SPARQL Ausdrücke NP-vollständig ist. Eine effiziente Umsetzung
der Bedingung, dass alle richtigen Antworten zu einer Anfrage gezählt werden müs-
sen, ist sogar unter beiden Semantiken nicht effizient umsetzbar. In den Abschnit-
ten 5.4 und 5.5 beweisen wir, dass das dazugehörende Zählproblem bereits für stark
eingeschränkte reguläre Ausdrücke #P-schwer und für alle SPARQL Ausdrücke #P-
vollständig ist.

Zusammenfassend können wir sagen, dass die zusätzlich definierten Operatoren
kein Problem in der SPARQL Spezifikation darstellen. Die Einschränkung auf ein-
fache Pfade und die Bedingung, dass Antworten gezählt werden sollen, verhindern
dagegen eine effiziente Implementierung. Unter Regular-Path-Semantik wäre eine ef-
fiziente Implementierung von SPARQL Anfragen jedoch umsetzbar. In Abschnitt 5.6
zeigen wir darüber hinaus, dass unsere Ergebnisse für die Auswertung von Anfra-
gen unter Regular-Path-Semantik auch auf verschachtelte Ausdrücke (sogenannte
Nested Regular Expressions [PAG10]) erweitert werden können.

Abschließend möchten wir noch betonen, dass ähnliche Ergebnisse über die Kom-
plexität von SPARQL Anfragen zeitgleich zu unserer Arbeit in [LM12] von Arenas et
al. in [ACP12] vorgestellt wurden. Zusammen konnten wir überzeugende Argumen-
te vorlegen die Spezifikation von SPARQL 1.1 Anfragen, die seit 2013 auch offiziell
vom W3C für die Auswertung von RDF-Daten empfohlen wird, in eine entspre-
chende Richtung anzupassen. So wurden mittlerweile die Auswertung auf einfachen
Pfaden und das Zählen von Antworten aus der Spezifikation entfernt. Bedauerlicher-
weise sind außerdem auch die Zähloperatoren aus der Spezifikation entfernt worden.
Eine ausführliche Diskussion über die Veränderungen in der aktuellen SPARQL Spe-
zifikation [HS13] wird in Abschnitt 5.7 gegeben.

vii

Enumerationsalgorithmen für Reguläre Anfragen auf Dynamischen Da-
ten Wie oben bereits erwähnt untersuchen wir zum Schluss dieser Dissertation die
Komplexität von regulären Anfragesprachen mit unserem Fokus auf Anfragen, die
potenziell eine große Menge von richtigen Antworten an den Nutzer zurückgeben,
und auf dynamischen Daten, die durch Datenupdates regelmäßig verändert werden.
Um unter diesen Bedingungen Anfragen weiterhin effizient auswerten zu können
untersuchen wir in Kapitel 6 Enumerationsalgorithmen, die auf eintreffende Da-
tenupdates schnell reagieren können.

Als Anfragen dienen uns spezielle endliche Automaten, sogenannte k-ary nonde-
terministic finite selecting (tree) automata, die wir in Abschnitt 6.1 formal definie-
ren und die über Wörtern und Bäumen ausgewertet werden können. Eine formale
Definition der betrachteten Probleme geben wir in Abschnitt 6.2. Die im Folgenden
präsentierten Ergebnisse sind in Zusammenarbeit mit Wim Martens entstanden und
wurden zu großen Teilen bereits in [LM14] veröffentlicht.

Für die Auswertung über Wörtern der Länge n konstruieren wir in Abschnitt 6.3
einen Algorithmus, der für eine gegebene Anfrage Vorberechnungen in Zeit O(n)
durchführt und danach alle Antworten mit O(log n) Verzögerung nacheinander aus-
gibt. Trifft ein Update für das Wort ein hält der Algorithmus sofort an und kann
nach Zeit O(log n) erneut damit anfangen richtige Antworten für die Anfrage auszu-
geben. In Abschnitt 6.4 erweitern wir diesen Algorithmus für die Auswertung über
Bäumen der Größe n. Der vorgestellte Algorithmus gibt, für eine gegebene Anfra-
ge und nach Vorberechnungen in Zeit O(n), alle Antworten mit einer Verzögerung
von O(log2 n) nacheinander aus und reagiert auf Updates in Zeit O(log2 n). In den
einzelnen Abschnitten erläutern wir die genaue Funktionsweise der Algorithmen,
beweisen ihre Korrektheit und führen außerdem eine genauere Komplexitätsanalyse
durch.

Zusätzlich zeigen wir in Abschnitt 6.5, dass unsere Ergebnisse auch für Anfra-
gen, deren Ergebnis ein Multiset ist, angewendet werden können. Ein praktisches
Anwendungsbeispiel für unsere Ergebnisse erläutern wir in Abschnitt 6.6 näher. In
Abschnitt 6.7 diskutieren wir abschließend zukünftige Anwendungen und mögliche
Optimierungen unserer Ergebnisse.

Schließlich fassen wir in Kapitel 7 die Ergebnisse dieser Dissertation noch einmal
kurz zusammen und diskutieren mögliche zukünftige Forschungsfragen im Detail.

Die meisten Ergebnisse in dieser Dissertationsschrift sind bereits im Vorfeld in
folgenden Publikationen veröffentlicht worden: [LMN12, LM12, Los12, CDLM13,
LM13, LM14].

viii

ix

Acknowledgements

First of all, my thanks go to my advisor Wim Martens for all his support during my
time as a PhD student. After finishing my diploma in computer science at the end
of 2010, he gave me the opportunity to join his group and start my PhD studies at
the TU Dortmund. After approximately one year in Dortmund, the time was come
to move to Bayreuth. Although our research group in Bayreuth was not very big, I
always felt that I was exposed to many interesting new research problems that not
only provided a good foundation for our research but also were attractive due to
their practical relevance. I am very grateful for the time Wim spent with me in a
lot of fruitful discussions on our research problems.

Special thanks go to Claire David for introducing me to new research topics
and for many interesting discussions. I thank Thomas Schwentick for providing
constructive comments on my work every time I visited my former group at the
TU Dortmund. For his careful proofreading I thank Thomas Zeume.

I also thank my family and friends who always supported me during my time as
a PhD student.

Bayreuth, April 2015
Katja Losemann

xi

Contents

1 Introduction 1

2 Preliminaries 9
2.1 Representations of Regular Languages 9
2.2 Graphs and Trees . 12
2.3 Relations and Join Operations . 15
2.4 Basic Complexity Results . 16
2.5 Data, Schemas, and Queries . 18

2.5.1 XML and XML Schema Languages 18
2.5.2 Linked Data, RDF, and SPARQL 20

3 Regular Expressions in the Context of RDF and XML 23
3.1 Regular Expressions with Additional Operators 23
3.2 Chain Regular Expressions . 25
3.3 Deterministic Regular Expressions . 26

3.3.1 Recognizing DRE-definable Languages 27
3.3.2 Closure Properties of DRE-definable languages 30
3.3.3 Determinism for Variants of Regular Expressions 31

4 Regular Expressions in XML Schema Languages 33
4.1 The Complexity of the DRE-Definability Problem 34

4.1.1 Level-Automata . 36
4.1.2 A Bound on the Recursion Depth of the BKW-Algorithm . . . 38
4.1.3 Consistency Violations . 41
4.1.4 DRE-Definability for REs and NFAs 42
4.1.5 DRE-Definability for RE(#)s and minimal DFAs 51

4.2 Descriptional Complexity of Deterministic Regular Expressions 53
4.2.1 DREs for Finite Languages 54
4.2.2 DREs for Infinite Languages 56

4.3 Descriptional Complexity of Operations on DRE-Definable Languages 57
4.3.1 Boolean Operations on DFAs 58
4.3.2 Operations on DREs . 59

xiii

CONTENTS

5 Querying RDF Data using SPARQL Property Path Expressions 65
5.1 Modelling RDF data using IRIs . 69
5.2 Alternative Semantics for Property Paths 71
5.3 The Complexity of the Evaluation Problem for Property Paths 73

5.3.1 Evaluation under Regular Path Semantics 75
5.3.2 Evaluation for Regular Expressions with Negation 80
5.3.3 Evaluation under Simple Walk Semantics 81

5.4 The Complexity of the Counting Problem for Property Paths 85
5.4.1 Counting under Regular Path Semantics 85
5.4.2 Counting under Simple Walk Semantics 98

5.5 The Complexity of the Finiteness Problem for Property Paths 99
5.6 SPARQL and Nested Regular Expressions 103
5.7 Recent Developments in the SPARQL 1.1 Specification 105

6 Enumerating Answers under Updates 107
6.1 Tuple Selecting Automata . 109
6.2 Problems of Interest . 110
6.3 Incremental Enumeration for Words 111

6.3.1 An Algorithm for Incremental Evaluation 111
6.3.2 Preprocessing an Auxiliary Data Structure for Words 112
6.3.3 Enumerating Query Answers for Words 115
6.3.4 Computing the First Answer to a Query 118
6.3.5 Computing the Next Answer to a Query 131

6.4 Incremental Enumeration for Trees 134
6.4.1 Preprocessing an Auxiliary Data Structure for Trees 135
6.4.2 Enumerating Query Answers for Trees 138

6.5 Incremental Enumeration under Multiset Semantics 144
6.6 Spanners in the Context of Information Extraction 145

6.6.1 Variable-Stack and Variable-Set Automata 145
6.6.2 Incremental Enumeration for k-εNFSAs 148
6.6.3 Incremental Enumeration for Spanners 150

6.7 Incremental Enumeration: Logic, XPath, and Future Work 151

7 Conclusions 153

Bibliography 170

List of Notations 172

Index 173

xiv

1
Introduction

We investigate the complexity of regular languages for data processing on the web.
More precisely, our focus is on problems arising from two particular data formats:
the Extensible Markup Language (XML) [BPSM+08] and the Resource Description
Framework (RDF) [CWL14]. Regular languages can be found in a wide array of
technology on the web. To process XML- or RDF-data, regular expressions (REs)
became a well-established concept because of their user-friendly behavior and good
complexity compared to other representations for regular languages, e.g., finite au-
tomata or logical characterizations. Thereby, different practical applications require
different variants of regular expressions that are enhanced with additional operators
or restrained by semantical constraints.

These variants and their computational complexity are the main object of our
studies in the first part of this dissertation. We examine a wide range of distinct
classes of regular expressions that are used in prevalent XML or RDF applications.
In detail, we focus on the use of regular expressions in schema languages for XML
and query languages for RDF where certain syntactical and semantical constraints
form interesting and challenging variants of regular expressions. Although some of
these constraints are very specific, it is the case that several of them are reused
in different applications in another context. Therefore, our results will likely be
relevant in other contexts than XML and RDF processing as well.

In the last part of this dissertation we study query languages for data processing
on the web from a more general point of view. Here, our main motivation comes
from two problems arising in today’s databases: First, the amount of data that
is stored in databases exploded during the last decade such that classical meth-
ods from database theory are sometimes not sufficient anymore. When querying
these data it is likely that queries return a huge set of rightful answers in gen-
eral. Second, very often the stored data is dynamic, i.e., the data is subject to
frequent updates over time. We are interested in whether efficient query evalua-
tion is still feasible under these constraints. Towards a positive answer, we examine

1

1. Introduction

enumeration algorithms which, after some preprocessing phase, compute the query
result step by step and output answers sequentially within a certain delay. Al-
though enumeration algorithms for similar queries were examined in the literature
before [Bag06, Cou09, DS11, KS13a, KS13b, Seg13], there exist - as far as we know -
no such algorithms that can efficiently handle data updates. For that matter we in-
vestigate whether it is possible to construct an enumeration algorithm for regular
queries that can quickly recompute the new query result after a data update oc-
curred.

We present a detailed overview of the structure of this dissertation next.

In Chapter 2 we review basic notions of theoretical computer science and define
abstract models for XML and RDF data. Moreover, we review fundamental results
that are used throughout the dissertation. A complete overview of the different
classes of regular expressions that are examined in this dissertation can be found in
Chapter 3.

Afterwards, we investigate the complexity of the following problems on regular
languages. Although we motivate the problems under consideration by prevalent
practical applications, we formalize our results independently (from the particular
data format, schema language, etc.) in order to emphasize their connection to formal
language theory.

Regular Expressions in XML Schema Languages The Extensible Markup
Language (XML) is the W3C-recommended standard for semi-structured data since
1998 [BPSM+08]. Data in an XML document is hierarchically formatted in a tree-
like form via the use of application-defined tags and labels. To use additional
knowledge about the structure of XML documents, the user can use the option
to write schemas. Such schemas, which are written in an XML schema language,
constrain the hierarchical structure of valid XML documents to the particular pur-
pose. In this way schemas serve as patterns for valid XML-documents. In the
presence of a schema, applications can then be optimized to exploit the schema
information before processing the XML document itself, e.g., schemas can be used
to make query answering or data exchange for XML more efficient. Renowned
schema languages for XML are Document Type Definitions (DTDs) [BPSM+08],
XML Schema (XSDs) [FW04], and Relax NG [CM01].

In Chapter 4 we examine the use of regular expressions in the first two of the
above XML schema languages. In DTD- and XSD-schemas it is not allowed to
use arbitrary regular expressions due to compatibility reasons with SGML, which
is a more general mark-up language to format documents. Instead, the user is
compelled to use expressions that can always be processed in a deterministic way.
These expressions are also known as deterministic regular expressions (or DREs)
in the literature [BKW98]. For example, the expression (a + b)∗a(a + b)∗ is not
deterministic because when reading an a in the beginning of a word it is ambiguous
whether the a should be “matched” to the first or the second a in the expression.
The equivalent expression b∗a(a + b)∗, however, is deterministic. Thus, in order to
apprehend the complexity of schema languages for XML, it is important to develop

2

a good understanding of DREs first. Moreover, since the concept of determinism in
regular expressions is rather fundamental, we believe our results to be relevant in a
larger scope as well.

The concept of determinism is often used to decrease the complexity of com-
putational problems in computer science. Although there exist problems that are
computationally much easier for DREs (e.g., language inclusion [Hov12] or con-
structing an equivalent deterministic finite automaton [BKW92]), we believe that
there are more drawbacks than benefits of this representation for regular languages
in the context of schema languages for XML. One property of the class of DREs
that is especially cumbersome to the user is that not every regular language can be
defined via a deterministic regular expression [BKW98]. For example, the language
of the expression (a+ b)∗a(a+ b) cannot be expressed by an equivalent deterministic
expression [BKW98]. Therefore, not every regular language can be used in a DTD
or XSD schema such that the following natural question has to be answered when
checking schemas for validity:

Given a regular language L, is it possible to define L as a DRE?

It is already known that the corresponding problem is decidable [BKW92, BKW98].
Here, we are interested in the exact complexity of the problem, which we investigate
in Section 4.1. The following relevant complexity results were known before: The
problem can be solved in polynomial time when the input language is given as
a minimal deterministic finite automaton (or a DFA) [BKW98], and the problem
is PSPACE-hard when the input is given as an RE or a nondeterministic finite
automaton (NFA) [BGMN09]. Using the polynomial-time result of Brüggemann-
Klein and Wood, it follows that the problem can also be solved for REs and NFAs
by converting them into a minimal DFA before running their procedure. In this
way, an exponential upper bound on the problem for REs and NFAs is achieved.

We can improve this upper bound and show that the problem can be solved in
PSPACE for REs and NFAs, i.e., together with the lower bound by Bex et al. we
show that the problem is PSPACE-complete. Towards the proof, we exhibit struc-
tural properties of the polynomial-time decision algorithm of Brüggemann-Klein and
Wood which we exploit to show that their algorithm can be implemented for NFAs
in PSPACE. Although the proof is rather technical, it provides fundamental insights
into the class of deterministic regular expressions which might be useful for future
work on DREs as well.

Using our PSPACE algorithm for NFAs we also obtain an EXPSPACE upper
bound for the problem when the input is a regular expression with counting op-
erators. We also prove that this problem is EXPSPACE-complete by providing a
matching lower bound via a reduction from universality for regular expressions with
squaring [MS72]. At last, we provide an NLOGSPACE lower bound for the problem
when the input is given as a minimal DFA by a reduction from the reachability
problem in directed acyclic graphs [Jon75].

The aforementioned results are joint work with Wojciech Czerwiński, Claire
David and Wim Martens and have been previously published in [CDLM13].

3

1. Introduction

We have seen that it is not easy to decide whether a particular language can
be used in a schema or not due to the determinism constraint in DTDs and XSDs.
However, if we assume that this problem is solved then the user may want to write
an expression that is as succinct as possible to optimize the processing of the schema.
By examining the relative descriptional complexity of deterministic regular expres-
sions, we prove in Section 4.2 that such a succinct expression does not always exist.
More precisely, we investigate whether deterministic regular expressions are more
succinct than other representations for regular languages, e.g., finite automata or
(arbitrary) regular expressions. In fact, we show that, when converting an RE to a
minimal DRE, an exponential blow-up cannot be avoided in general. To strengthen
these results we consider in Section 4.3 the descriptional complexity of several op-
erations on deterministic regular expressions, i.e., we study the complement, union,
intersection, reversal, and concatenation operation on DREs. We show that, after
applying one of these operations only once on two arbitrary DREs, the resulting
DRE can be exponentially larger in general.

Parts of the results in Sections 4.2 and 4.3 are joint work with Wim Martens
and Matthias Niewerth and are previously published in [LMN12]. Since some of
these results were already obtained during the master’s thesis of the author, they
are marked by an additional reference to [Los10]. Results without a reference are
obtained by the author alone and will be published in the long version of [LMN12].

Regular Expressions in the RDF Query Language SPARQL The Resource
Description Framework (RDF) [CWL14] was developed by the W3C to represent
and process data in the semantic web. In particular, RDF data is designed to serve
as linked data. Here, linked data is (unstructured) data that is published in a form
that is easy to process automatically and easy to extend by new data [BHBL09].
RDF documents, often denoted as RDF graphs, consist of a set of RDF triples which
define an edge labeled graph where the labels are specified by global identifiers which
are published on the web.

We examine the complexity of regular expressions in the SPARQL Protocol and
RDF Query Language (SPARQL)1. SPARQL is the W3C-recommend query lan-
guage for RDF data since 2008. Since 2010, regular expressions can be used in
SPARQL 1.1 queries in form of SPARQL property paths. Our results are based on
the January 2012 working draft of SPARQL 1.1 [HS12]. According to the draft,
regular expressions in SPARQL queries are defined as regular expressions with ad-
ditional syntactical operators and semantical constraints. For example, SPARQL
regular expressions are allowed to use counting operators (making them exponen-
tially more succinct than standard regular expressions [KT03]) and a limited form
of negation. Moreover, the evaluation semantics of SPARQL queries has to fulfill
the following constraints:

– the simple walk requirement which says that when evaluating a SPARQL reg-
ular expression over an RDF graph some subexpressions are allowed to match

1SPARQL is a recursive acronym.

4

only onto simple paths (which is a path without loops), whereas other subex-
pressions can be matched onto arbitrary paths, and

– the path counting requirement which says that the number of different answers
to a query has to be counted.

Apart from these non-standard semantics our theoretical investigation was mo-
tivated by an experimental study that we conducted in November 2011 on sev-
eral prevalent SPARQL engines, i.e., the Jena Semantic Web Framework [Apa11],
Sesame [KFB08], RDF::Query [Wil], and Corese 3.0 [Cor12]. In this study we dis-
covered that these engines deal with property paths very inefficiently. All of them
require double-exponential time for query evaluation in the size of the query. This
holds even for very small queries on very small data graphs (with two nodes).

We investigate in Chapter 5 whether SPARQL query evaluation is still feasible
under these constraints. Since SPARQL queries are built over a (possibly) infinite
vocabulary consisting of the global label identifiers (called IRIs), we adapt our
formal definitions of finite automata and regular expressions in Section 5.1. Although
our results do not depend on the infinite vocabulary, we choose to model vocabulary
and queries accordingly to their formal specification. To investigate the complexity
of the previously mentioned constraints independently from each other, we define
two different semantics in Section 5.2. First, simple walk semantics which is our
abstract model of the semantics proposed by the W3C and, second, regular path
semantics which neglects the simple walk requirement.

For regular path semantics it was already known that regular expressions (with-
out counting operators) can be evaluated over graphs in polynomial time [MW95,
AV99, ABE09]. We prove in Section 5.3 that the additional operators (including the
counting operators) in SPARQL regular expressions can be evaluated over graphs in
polynomial time as well and, therefore, that they do not prevent efficient SPARQL
query evaluation under regular path semantics. Opposed to that SPARQL query
evaluation is infeasible under simple walk semantics because of the proposed simple
walk requirement. More precisely, we show that evaluating SPARQL regular expres-
sions under simple walk semantics is NP-complete even for very restricted classes
of regular expressions. Concerning the path counting requirement the situation is
even more critical, which we show in Sections 5.4 and 5.5. In these sections we show
that counting the number of correct answers to a SPARQL query (using regular ex-
pressions) is #P-complete already for very restricted classes of regular expressions
(and even under regular path semantics). Under both semantics, the path counting
problem is only tractable for (restricted) classes of unambiguous expressions. Fi-
nally, we examine the complexity of deciding whether the query result contains a
finite number of answers to get a more comprehensive overview of the complexity of
the path counting requirement. In this way we provide a fair comparison between
the two semantics since a query answer is always finite under simple walk semantics.
For SPARQL regular expressions under regular path semantics the corresponding
problem can be solved in polynomial time.

In summary, our results show that, opposed to the two additional requirements,
the supplementary operators (including the counting operators) in SPARQL regular

5

1. Introduction

expressions do not pose a problem for efficient query evaluation. Furthermore, we
show that our results can be extended for nested regular expressions which we illus-
trate in Section 5.6. Nested regular expressions were proposed as an extension for
SPARQL queries that is more expressive and still efficient by Pérez et al. [PAG10].

The previously mentioned results are obtained in joint work with Wim Martens
and have been previously published in [LM12, LM13]. We remark that similar results
were obtained by Arenas et al. [ACP12]. Moreover, the results in [ACP12] and our
results were able to provide good arguments to cause some changes in the current
SPARQL specification [HS13]. These changes and more developments regarding
SPARQL 1.1, which became an official W3C recommendation in 2013, are discussed
in Section 5.7.

Enumeration Algorithms for Regular Queries on Dynamic Data To get
a better understanding of the challenges arising in query evaluation of today’s
databases we also investigate query evaluation from a more general perspective.
More precisely, we investigate the query evaluation problem for queries that return
a set or multiset of answers instead of a boolean answer. Since such answer sets can
be extremely large in general, it may be infeasible to compute the set in its entirety
before returning the result to the user. Instead algorithms evolved that do not re-
turn all answers at the same time but sequentially enumerate the answer set to the
user. The corresponding problems are known as query enumeration problems and
attracted some attention in the last decade (see, e.g., [Bag06, Cou09, DS11, KS13a,
KS13b, Seg13]). Another database problem that recently got more attention again
is the incremental maintenance problem for databases, i.e., efficiently computing
the answer to a fixed query over a database that is subject to small updates.

Here, we study algorithms that tackle both of the aforementioned problems.
In particular, we study efficient enumeration algorithms for queries defined over
data that is likely to change. We denote the corresponding problem as incremental
enumeration and, to the best of our knowledge, we are the first to consider the
problem for queries with arbitrary arity. (For boolean queries the problem was
studied by Balmin et al. [BPV04], though in this case only one answer is returned
and no enumeration is needed.)

To be able to perform efficient query evaluation under the aforementioned con-
straints, we examine in Chapter 6 enumeration algorithms that are sensitive to
updates. Our queries are specified by k-ary nondeterministic finite selecting (tree)
automata (k-NSFAs or k-NSFTAs, respectively), which we define in Section 6.1 and
which are evaluated over words and trees. Since it is known that run-based node-
selecting tree automata are as expressive as MSO-queries on trees (see, e.g., [NPTT05,
TW68]), we believe that our results for k-NSFTAs are a good yardstick for the com-
plexity of these kind of algorithms. In Section 6.2 we give a formal definition of the
considered problems (including the allowed types of updates).

We start investigating the computational complexity of the incremental enumer-
ation problem for words in Section 6.3. For a word of size n, our algorithm solves
the problem with a linear time preprocessing in the beginning. Afterwards, it sub-
sequently enumerates all answers with O(log n) delay between two answers. In the

6

case an update of the data occurs, the algorithm stops immediately and starts enu-
merating the new answer set within O(log n) time. In Section 6.4 we show how to
extend this algorithm to trees by adapting a technique from Balmin et al. [BPV04].
In this way we can solve the problem for trees of size n within a linear time pre-
processing and O(log2 n) enumeration delay such that updates can be processed in
O(log2 n) time. In the respective sections we explain these algorithms in full detail,
prove their correctness, and analyze their complexities in terms of data and query
complexity.

Moreover, we show in Section 6.5 that the previously mentioned results can be
extended to work for more expressive semantics, i.e., multiset semantics. Although
we were mainly motivated by the goal to provide a proof of concept for such algo-
rithms, there exists a direct practical application of our results which originates from
Information Extraction and is illustrated in Section 6.6. In Section 6.7 we discuss
possible research questions on incremental enumeration in the future.

The presented results on incremental enumeration are joint work with Wim
Martens and large parts of them were previously published in [LM14].

Conclusions can be found in Chapter 7 where we briefly summarize the presented
results and discuss some further questions and open problems.

Most of the results in this dissertation were previously published in [LMN12, LM12,
Los12, CDLM13, LM13, LM14].

7

1. Introduction

8

2
Preliminaries

In this chapter, we review basic notions for regular languages, graphs, XML, and
RDF that will be used in the following.

For a finite set S we denote by |S| the cardinality of S and by P(S) the power
set of S. If not mentioned otherwise then S contains every element at most once.
We sometimes also need to model multisets where it is allowed that elements can
be contained more than once in one set. We define multisets as follows. For a finite
set S we define a multiset M over S as a function mM : S → N. Here, mM(a) is the
multiplicity of a in S. We say that a ∈M ifmM(a) > 0. The size ofM , denoted |M |,
is the sum

∑
a∈SmM(a) of all multiplicities of elements in M . We denote multisets

in brackets {| and |}. For example, for M = {|1, 1, 3|} we have that mM(1) = 2 and
mM(3) = 1. The union M = M ′ ∪M ′′ (intersection M = M ′ ∩M ′′) of multisets is
defined as usual, taking mM(a) = m′M(a) + m′′M(a) (M(a) = min{m′M(a),m′′M(a)},
respectively) for every a ∈ S. We say that M ′ ⊆ M ′′ if m′M(a) ≤ m′′M(a) for
all a ∈ S.

2.1 Representations of Regular Languages

An alphabet is a finite and non-empty set of symbols. We always denote an alphabet
by Σ and call the elements in the alphabet (Σ-)symbols. If Σ contains only one
symbol then we call Σ a unary alphabet.1 A (Σ)-word w is a finite sequence a1 · · · an
of symbols where, for i ∈ {1, . . . , n}, each ai ∈ Σ. The set of positions of w is
the set {1, . . . , n} and the symbol of w at position i is ai. By |w| we denote the
length n of w. The empty word is denoted by ε. A set of words is called a (word)
language. The language that contains all Σ-words is denoted by Σ∗ and is called the
universal language. By w1 ·w2 or w1w2 we denote the concatenation of two words w1

and w2. For two word languages L1, L2 ⊆ Σ∗, we define their concatenation, denoted

1In Chapter 5, we also examine infinite sets of symbols to study the SPARQL query language.

9

2. Preliminaries

by L1·L2, to be the set {w1w2 | w1 ∈ L1, w2 ∈ L2}. We abbreviate L·L · · ·L (i times)
by Li. The reversal LR of a language L is the set of words {an · · · a1 | a1 · · · an ∈ L}.
There exists various formalisms to represent regular languages, i.e., several types of
finite automata and regular expressions.

2.1.1 Definition. A (nondeterministic) finite automaton (or NFA) N is a tuple
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite alphabet, δ is the
transition function with signature Q × Σ → P(Q), q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states.

Whenever q2 ∈ δ(q1, a) we know that, if N is in state q1 then reading an a ∈ Σ
takes N to state q2. For readability, we sometimes denote q2 ∈ δ(q1, a) as q1

a−→ q2 ∈ δ
or as a tuple (q1, a, q2). Moreover, we say that the transition q2 ∈ δ(q1, a) is q1-
outgoing, q2-incoming, or a-labeled. A run of N on a word w = a1 · · · an is a
sequence r = q0 · · · qn such that qi ∈ δ(qi−1, ai) for every i ∈ {1, . . . , n}. For such
a run r, we say that r visits position i in state qi, denoted r(i) = qi, for each i.
If qn ∈ F , then the run is accepting. A word w is accepted by N if there exists
an accepting run of N on w. By the language L(N) of N we denote the set of all
words accepted by N . The class of regular languages is the set of all languages L
such that there exists an NFA N with L(N) = L. We extend δ to words in the
canonical way. That is, we define a function δ∗ such that δ∗(q, a) = δ(q, a) and
δ∗(q, aw) = ∪q′∈δ(q,a)δ

∗(q′, w) for q, q′ ∈ Q, a ∈ Σ, and w ∈ Σ∗. We say that a run r
of N on w is a partial run if r fulfills all conditions of a run except that r does not
have to start with the initial state q0. A state in an automaton is useful if it appears
in at least one accepting run. For the remaining chapters, we assume that all states
of an automaton are useful unless mentioned otherwise.

2.1.2 Definition. An unambiguous finite automaton (or a UFA) is an NFA N
where, for every word w ∈ L(N), there exists exactly one accepting run of N on w.

2.1.3 Definition. A deterministic finite automaton (or DFA) is an NFA where δ
is a (partial) function with signature Q× Σ→ Q.

Notice that every DFA is a UFA but not every UFA is a DFA. All previously
defined notions for NFAs transfer to UFAs and DFAs, except that we write δ(q1, a) =
q2 if there exists an a-labeled transition from a state q1 to a state q2 in a DFA. We
sometimes abuse notation and denote the minimal DFA with no states by ∅. For an
NFA N we denote the size of the NFA by |N | =

∑
q,a |δ(q, a)|, i.e., the total number

of transitions in N . In the case that N is deterministic we define the size of N as
the cardinality of {(q, a) | δ(q, a) is defined}.

2.1.4 Definition. Let N = (Q,Σ, δ, q0, F) be an NFA. Then, the power set au-
tomaton of N is defined as the DFA P(N) = (P(N),Σ, δP , {q0}, FP) where,

– δP(S, a) =
⋃
q∈S

δ(q, a) for every S ∈ P(Q) and a ∈ Σ, and

– FP = {S ∈ P(Q) | S ∩ F 6= ∅}.

10

2.1. Representations of Regular Languages

For a regular language L we define the set of Myhill-Nerode classes of L as the
equivalence classes of the relation R = {(v, w) | v, w ∈ Σ∗ ∧ ∀z ∈ Σ∗ : v · z ∈ L ⇔
w · z ∈ L}. For an NFA N we use [N] to denote the minimal DFA for L(N). The
minimal DFA [N] is unique for L(N) and the number of states in [N] is equal to
the number of Myhill-Nerode classes of L.

2.1.5 Definition. The set of regular expressions (RE) over Σ is defined as follows:

– ∅, ε and every Σ-symbol is a regular expression, and

– whenever r and s are regular expressions, then (r ·s), (r+s), and (r∗) are also
regular expressions.

Without loss of generality we assume that ∅ is not used as a subexpression of
another regular expression. We also call Σ-symbols, ε, and ∅ atomic expressions.
For readability, we often omit concatenation operators and parentheses in examples.
The language L(r) of a regular expression r is defined as usual:

– L(∅) = ∅, L(ε) = {ε}, L(a) = {a},

– L(r1 · r2) = L(r1) · L(r2),

– L(r1 + r2) = L(r1) ∪ L(r2), and

– L(r∗) = {ε} ∪
∞⋃
i=1

L(r)i.

In addition, we define the following abbreviations: L(r?) = ε+L(r) and L(r+) =
L(r)L(r∗). Let r1 and r2 be regular expressions. We say that r1 and r2 are equivalent
if L(r1) = L(r2). By |r1| we denote the size of r which we define as the number of
occurrences of ε, ∅, Σ-symbols, and operators occurring in r, i.e., the number of nodes
in the syntax tree of r. A regular expression r is minimal if there does not exist a
regular expression r′ with L(r′) = L(r) and |r′| < |r|. However, notice that minimal
regular expressions are not unique for a regular language (even up to reordering
disjunctions). For example, the expressions r1 = a · (b + ε) and r2 = a + (a · b) are
equivalent and of the same size, i.e., |r1| = |r2| = 5. Furthermore, we define, for a
regular language L and symbol a ∈ Σ,

– first(L) = {a ∈ Σ | ∃ w ∈ Σ∗ : aw ∈ L},

– last(L) = {a ∈ Σ | ∃ w ∈ Σ∗ : wa ∈ L},

– followlast(L) = {a ∈ Σ | ∃ v ∈ L,w ∈ Σ∗ : vaw ∈ L}, and

– follow(L, a) = {b ∈ Σ | ∃ v, w ∈ Σ∗ : vabw ∈ L}.

For example, consider the language L = L((a + b)∗a). Then, first(L) = {a, b},
last(L) = {a}, followlast(L) = {a, b}, and follow(L, a) = follow(L, b) = {a, b}. We
analogously define, for a regular expression r and a symbol a, the sets first(r), last(r),
followlast(r), and follow(r, a) according to the language L(r).

11

2. Preliminaries

2.1.6 Definition. For a regular language L and a word w, the Brzozowski derivative
w\L is defined as w\L = {v ∈ Σ∗ | wv ∈ L}. For two languages L1 and L2 the
derivative is defined as L2\L1 = {v ∈ Σ∗ | w ∈ L2 ∧ wv ∈ L1}.

For example, we have that abba\L = L for the language L = L((a+b)∗a). Moreover,
regular languages are closed under Brzozowski derivatives [Brz64].

2.2 Graphs and Trees

We use graphs basically in two contexts. First, we examine the exact underlying
structure of finite automata in terms of graphs, i.e., we model the structure of an
automaton as a directed labeled graph where initial and accepting states are pro-
jected away. Second, we consider graph-structured input data for query evaluation.
For more details on graph theory see, e.g., [Die12].

A directed graph G is a tuple (V,E) where V is the set of nodes and E ⊆ V × V
is the set of edges. An edge in the graph is denoted by an ordered tuple (u, v)
where u, v ∈ V . A directed (edge-)labeled graph is a tuple (V,E) where the edge
relation is a subset of V ×Σ× V . An edge e in a labeled directed graph is denoted
by an ordered triple (u, a, v). Moreover, we say that the edge e is a-labeled. We
also consider undirected (unlabeled) graphs (V,E) where edges (u, v) are unordered
tuples. The connectivity matrix of a graph G = (V,E) is a V × V -matrix M where
M [u, v] = 1 if u = v or (u, v) ∈ E, and M [u, v] = 0 otherwise.

For an undirected graph G = (V,E), a path from node x to node y in G is a
sequence p = v0v1 · · · vn such that v0 = x, vn = y, and (vi−1, vi) is an edge for each
i = 1, . . . , n. We say that G is connected if there exists a path from x to y for every
pair of nodes x, y ∈ V . For a directed labeled graph G = (V,E), a path from node x
to node y in G is a sequence p = v0[a1]v1[a2]v2 · · · vn−1[an]vn such that v0 = x,
vn = y, and (vi−1, ai, vi) is an edge for each i = 1, . . . , n. If additionally v0 = vn
then p is also called a cycle. The Σ-word induced by the path p in G is a1 · · · an
and is denoted by labG(p). If G is clear from the context then we sometimes also
write only lab(p). When we are not interested in the labels on the edges we write
p = v0v1 · · · vn. The length of p is defined as n. Notice that a path of length zero
does not follow any edges. If there is a path from node x to node y then we say
that y is reachable from x. A graph that contains a cycle is called cyclic; otherwise
the graph is acyclic. In Section 5.3.3 we are especially interested in paths or cycles
that contain every node at most once.

2.2.1 Definition. Let n ≥ 0 and p = v0[a1]v1[a2]v2 · · · vn−1[an]vn be a path. Then

– p is a simple path if each node vi for i = 0, . . . , n in p occurs exactly once,

– p is a simple cycle if n ≥ 1, v0 = vn and each node vi for i = 1, . . . , n− 1 in p
occurs exactly once, and

– p is a simple walk if p is either a simple path or a simple cycle.

12

2.2. Graphs and Trees

We define the concatenation of two paths p1 = v0[a1]v1 · · · vn−1[an]vn and p2 =
vn[an+1]vn1 · · · vn+m−1[an+m]vn+m to be the path

p1 · p2 := v0[a1]v1 · · · vn−1[an]vn[an+1]vn1 · · · vn+m−1[an+m]vn+m.

We consider two paths p1 = v1
0[a1

1]v1
1 · · · [a1

n]v1
n and p2 = v2

0[a2
1]v2

1 · · · [a2
m]v2

m in a
graph to be different when either the sequences of nodes or the sequences of labels
are different, i.e., v1

0v
1
1 · · · v1

n 6= v2
0v

2
1 · · · v2

m or lab(p1) 6= lab(p2). This implies that
we consider two paths going through the same sequence of nodes but using different
edge labels to be different.

2.2.2 Definition. Let G = (V,E) be a directed graph. A set of nodes V ′ ⊆ V is
strongly connected if, for every pair of nodes x, y ∈ V ′, x is reachable from y and y
is reachable from x. Then, we also say V ′ is a strongly connected component of G.
If there exists no set V ′′ ⊆ V such that V ′′ is a strongly connected component of G
and V ′ ⊆ V ′′ then V ′ is maximal.

For an NFA N we often refer to N as the graph that is obtained by considering
its states as nodes and its transitions as labeled directed edges. Then, we use the
notation for graphs analogous for automata. For example, we refer to a path in N
or the strongly connected components of N . We also consider paths in a graph that
are specified by fixed sets of source and target nodes.

2.2.3 Definition. Let G = (V,E) be a directed labeled graph, x ∈ V , and Y ⊆ V .
Then, (V,E, x, Y) is the s-t graph of G with respect to x and Y . The node x is called
the source node and the nodes in Y are called target nodes of G. If Y contains only
one node y then (V,E, x, y) is an s-t graph of G with respect to x and y.

Moreover, we sometimes leave the facts that x and y are source and target
implicit and just refer to (V,E, x, y) as a graph. We recall the following graph-
theoretical result which states that the number of arbitrary paths between two nodes
in a graph can be counted efficiently.

2.2.4 Theorem ([Ber73]). Let (V,E, x, y) be an s-t graph and let max be a number
given in binary. Then, the number of paths from x to y of length at most max can
be computed in polynomial time in G and the number of bits of max.

The reason why the number of paths can be counted efficiently is due to fast
squaring. Using fast squaring one can compute, for a square matrix M , the matrix
Mk by performing O(log k) matrix multiplications. Furthermore, observe that if M
is the connectivity matrix of G then Mk[x, y] is the number of paths from x to y of
length at most k.

A tree t is an undirected, connected, acyclic graph with a unique root node. For
every tree t we denote the set of nodes of t by Nodes(t) and the number of nodes (or
the size) of t by |t|. We call a tree labeled if the nodes v ∈ Nodes(t) bear a (unique)
Σ-label, denoted by lab(v). Every node in a tree has a finite set of child-nodes. A
tree where every node has at most two children is called binary. If there is no limit

13

2. Preliminaries

t

p1

p2

p3 p4

Figure 2.1: A binary tree t with its max-
imal heavy paths HPaths(t).

+

+ ∗

a · c

b a

Figure 2.2: Syntax tree for the regular
expression r = a + ba + c∗.

to the number of children for a node in the tree, we call the tree unranked. (Notice
that the set of children has to be finite.) Nodes in trees that have no children are
called leaves. For a tree t and a node v in t, we denote by tv the subtree of t that is
rooted at v.

2.2.5 Definition ([HT84, ST83]). For a node v the heavy path hp(v) of v is de-
fined as follows:

– v belongs to hp(v), and

– if v′ ∈ hp(v) has children v1 and v2, then v1 belongs to hp(v) if |tv1| ≥ |tv2|.

A heavy path of v is maximal if it is not included in another heavy path (i.e., if
it is not included in the heavy path of v’s parent). The (maximal) heavy path of t,
denoted hp(t), is the path hp(r) where r is the root of t. The set HPaths(t) is the
set of all maximal heavy paths of nodes in t.

For a binary tree t, the set HPaths(t) can be calculated in time and space linear
in t [HT84, ST83]. In Figure 2.1, we illustrate the maximal heavy paths for a
binary tree t. The set of all maximal heavy paths for the tree t is HPaths(t) =
{p1, p2, p3, p4}. Each heavy path is encircled and depicted by a separate shape of
nodes in Figure 2.1. Later, we need the following result on the set of all maximal
heavy paths for a binary tree.

2.2.6 Lemma ([ST83]). Let t be a binary tree. The maximum number of dis-
tinct maximal heavy paths crossed by any path from the root of t to some leaf is at
most log |t|.

In the following, we mainly use trees to model the abstract structure of input
data. However, we also consider another special kind of tree that is closely connected
to regular expressions, namely the syntax tree of a regular expression. The syntax

14

2.3. Relations and Join Operations

tree of a regular expression r represents the abstract syntactical structure of r and,
therefore, can be defined by structural induction on the syntax of regular expressions.
In Figure 2.2 we illustrate the syntax tree for the expression r = a+ ba+ c∗. Notice
that we consider syntax trees to be binary trees. Thus, it is possible that there exist
more than one syntax tree for an expression. However, it is irrelevant for our proofs
which binary syntax tree is examined. For simplicity, we therefore always refer to
the syntax tree of an expression in the following.

2.3 Relations and Join Operations

For finite sets S1, . . . , Sk we define a k-ary relation R over domain S1 × · · · × Sk to
be a subset of S1 × . . . × Sk. If k = 2 we call the relation binary. The size of a
relation R, denoted by |R|, is the number of elements in R. Let S be a finite set and
let R1 and R2 be binary relations over the signature S × S. We define the natural
join of R1 and R2 to be the set

R1 ./ R2 = {(u, v) | ∃z ∈ S : (u, z) ∈ R1 ∧ (z, v) ∈ R2}.

The next lemma states the cost of a single join using a rather naïve algorithm.

2.3.1 Lemma ([RG02]). Let R1, R2 ⊆ {1, . . . , n}2 be binary relations for some
n ∈ N. The relation R1 ./ R2 can be computed in time O(n3).

Proof. When one represents R1 and R2 as boolean n× n matrices M1 and M2, the
matrix representation for R1 ./ R2 can be obtained by multiplying M1 with M2,
costing time O(n3).

The above result suffices for our purposes when we aim to show that there is
a polynomial-time algorithm for a problem that involves joins. However, there are
other join algorithms that are more efficient in certain practical instances. For
example, we will use the following result on joining two relations later.

2.3.2 Lemma. Let R1, R2 ⊆ {1, . . . , n}2 be binary relations for some n ∈ N. The
relation R1 ./ R2 can be computed in time O(|R1| log |R1| + |R2| log |R2|
+ j log |R1 ./ R2|) where j = |{(u, z, v) | (u, z) ∈ R1 and (z, v) ∈ R2}|.

Proof. The result is obtained using a variant of the sort-merge join algorithm (see,
e.g., [RG02]). Therefore, we start by sorting R1 and R2 on their respective join at-
tributes which can be done in time O(|R1| log |R1|+|R2| log |R2|). Once the relations
are sorted, the algorithm proceeds similar to the sort-merge join. This means that,
the algorithm determines the tuples in the result using two interleaved iterations
on the relations. Since the output shall be a set of tuples rather than a multiset of
tuples, the algorithm has to eliminate duplicates. In order to do this, it maintains
the set of tuples that are already discovered to be in R1 ./ R2 in a self-balancing
binary search tree (e.g., an AVL tree [SW11]). When a new candidate tuple for
R1 ./ R2 is found, the algorithm can always determine in time O(log |R1 ./ R2|)
whether the tuple has bee found before or not. Since there are j candidate tuples,
this last step costs time O(|R1|+ |R2|+ j log |R1 ./ R2|) in total. �

15

2. Preliminaries

In the worst case, the number j in Lemma 2.3.2 could be n3. However, it is expected
that j is usually small in practice and the literature emphasizes that the worst case
is very unlikely [RG02].

We next review the complexity of applying the natural join on a relation more
than once. For a binary relation R ⊆ {1, . . . , n}2 and k ∈ N\{0}, we define Rk := R
if k = 1 and Rk := R ./ Rk−1 otherwise. To efficiently compute Rk we use the
following method known as fast squaring :

Rk =

R, if k = 1,

R ./
(
R

k−1
2 ./ R

k−1
2

)
, if k is odd,(

R
k
2 ./ R

k
2

)
, if k is even.

Using this method the following result can be obtained.

2.3.3 Lemma (see, e.g., [Ber73]). Let R be a binary relation and k ∈ N. Then,
the relation Rk can be computed by performing O(log k) joins.

2.4 Basic Complexity Results

In the following we use the complexity classes in Figure 2.3. Known inclusions
for these classes are depicted by edges from bottom to top, i.e., lower classes are
included in the higher ones in the figure. We assume familiarity with the mentioned
classes and reductions. For a more extensive overview of complexity theory see,
e.g., [AB09, Pap94].

EXPSPACE
(4)
= NEXPSPACE

EXPTIME

PSPACE
(2)
= NPSPACE

(3)
= coPSPACE

coNP NP

P

NLOGSPACE
(1)
= coNLOGSPACE

LOGSPACE

FP, #P

Figure 2.3: Summary of complexity classes.

In 1970, the equivalences (2) PSPACE = NPSPACE and (4) EXPSPACE =
NEXPSPACE were proved. They are a consequence of Savitch’s Theorem [Sav70].
Then, the equivalences (1) NLOGSPACE = coNLOGSPACE and (3) PSPACE =
coPSPACE are due to the Immerman-Szelepcsényi Theorem [Imm88, Sze88].

16

2.4. Basic Complexity Results

Later, we also use that the Reachability problem is known to be NLOGSPACE-
complete.

Problem (Reachability).
Given: A directed acyclic graph G = (V,E) and x, y ∈ V .
Question: Is y reachable from x by a path?

2.4.1 Theorem ([Jon75]). Reachability is NLOGSPACE-complete.

Moreover, we consider the classes FP and #P which are defined as follows. The
class Function polynomial time (FP) generalizes the definition of the class P from
decision problems to functions.

2.4.2 Definition (see, e.g., [AB09]). The class Function Polynomial Time (FP)
contains all functions f such that, for every x, the value f(x) can be computed in
deterministic polynomial time.

The class Sharp-P (#P) is defined as the set of counting problems for decision
problems in NP.

2.4.3 Definition (see, e.g., [AB09]). The class Sharp-P (#P) contains all func-
tions f such that, for a fixed NP Turing machine M , the value of f(x) equals the
number of accepting runs of M when given x as input.

The following problems are #P-complete under Cook reductions.

Problem (#SAT).
Given: A boolean formula ϕ in conjunctive normal form.
Question: How many different assignments satisfy ϕ?

Problem (#DNF).
Given: A boolean formula ϕ in disjunctive normal form.
Question: How many different assignments satisfy ϕ?

Problem (#SimplePaths).
Given: An s-t graph G = (V,E, x, y).
Question: How many different simple paths from x to y exist in G?

2.4.4 Theorem ([Val79b]). The problems #SAT, #DNF, and #SimplePaths
are #P-complete.

By the definition of #P it is not very surprising to see that the problem #SAT
is #P-complete. However, there also exist #P-complete problems that correspond
to decision problems in P see, e.g., #DNF. Already in 1979, Valiant showed the
existence of this strange behavior by proving that counting the number of perfect
matchings in a bipartite graph is #P-complete [Val79a]. Moreover, we remark that
we always use polynomial time Turing reductions (also known as Cook reductions)
to show completeness for the class #P.

For the class NP there exist many typical NP-complete problems [Kar72]. We
will use the following problem in our proofs.

17

2. Preliminaries

Problem (EvenSimplePath).
Given: An s-t graph G = (V,E, x, y).
Question: Is there a simple path from x to y of even length?

2.4.5 Theorem ([LP84, MW95]). EvenSimplePath is NP-complete.

Regarding Theorem 2.4.5, Lapaugh and Papadimitriou proved that it is NP-
complete to compute whether there exists a simple path of even length from x to y.
Later, Mendelzon and Wood proved that it is NP-complete to compute whether
there is a simple path from x to y such that the induced word of the path is in the
language L((aa)∗). Despite the fact that the result was first proved in [LP84] we
also refer to [MW95] because their work is closely related to ours.

We also consider the following language theoretic problems.

Problem (Membership).
Given: A regular expression r and a word w.
Question: Is w ∈ L(r)?

Problem (Universality).
Given: A regular expression r.
Question: Is L(r) = L(Σ∗)?

2.4.6 Theorem ([MS72]). Universality is PSPACE-complete.

2.5 Data, Schemas, and Queries

Next, we review basics on the Extensible Markup Language (XML) [BPSM+08] and
the Resource Description Framework (RDF) [CWL14]. In Section 2.5.1 our focus is
on XML schema languages which are used to constrain the format of XML docu-
ments. Regarding the RDF data format, we focus on the use of regular expressions
in RDF query languages. In Section 2.5.2 we review basics on RDF and the SPARQL
Protocol and RDF Query Language (SPARQL) [HS12].

2.5.1 XML and XML Schema Languages

When processing data on the web the Extensible Markup Language (XML) is the
W3C-recommended format for semi-structured data. The language is used to struc-
ture data by defining individualized tags which can be arranged into a tree-like form
in XML documents. For our purposes it is sufficient to model XML documents
as finite unranked labeled trees over a finite alphabet. For a more comprehensive
overview on XML see, e.g., Abiteboul et al. [ABS99].

2.5.1 Example. In Figure 2.4(a) we depict an example of an abstract XML doc-
ument which stores information about a music bibliography. The bibliography
mymusiclist contains two elements of the type radiostation and one element
of the type album. Each element is enclosed by an opening and closing tag and can

18

2.5. Data, Schemas, and Queries

<mymusiclist>
<radiostation>

<title> "Funkhaus Europa" </title>
<mhz> 103.3 </mhz>

</radiostation>
<radiostation>

<title> "Einslive" </title>
<mhz> 106.7 </mhz>
<mhz> 96.0 </mhz>

</radiostation>
<album>

<band> "Muse" </band>
<title> "Showbiz" </title>

</album>
</mymusiclist>

(a) Example for an XML document.

mymusiclist

radiostation radiostation album

title mhz title mhz mhz band title

“Funkhaus Europa” 103.3 “Einslive” 106.7 96.0 “Muse” “Showbiz”

(b) The representation of the XML document in (a) as a tree.

Figure 2.4: An XML document and its abstract representation as a tree.

contain other elements. For example, elements of the type mhz are contained in the
radio elements. Moreover, elements can contain values. For example, 103.3 is the
value of the first mhz element in the XML document. In Figure 2.4(b) we illustrate
the abstract tree model of the XML document from Figure 2.4(a). For simplicity,
we do not distinguish between nodes that are labeled by an element name and nodes
that bear a value as a label.

The allowed alphabet and the structure of the tree can be controlled by a schema
which is specified in an XML schema language. Examples for XML schema languages
are Document Type Definitions (DTD) [BPSM+08], XML Schema (XSD) [FW04],
and Relax NG [CM01]. The information that is stored in a schema can be highly
advantageous when managing, exchanging, and querying XML data. It is known
that the presence of schema information is crucial for automatic error detection in
the data (which is called validation in, e.g., [BPSM+08, SV02, BPV04, KM13]) and
in data transformation [MSV03, MN05, MBPS05]. Schemas provide information
for query optimization, processing [NS06, Woo03], and data integration [ABLM14].
Moreover, they provide a high-level overview of the structure of the data for the
user. The complexity of using regular word or regular tree languages in schemas
was investigated in [MN07, MNS07, MNS09, GIM+13].

In the following, we consider schemas that, in their core, specify the structure of
well-formed XML documents through a set of constraints that are very similar to

19

2. Preliminaries

extended context-free grammar productions. Such constraints are usually denoted
as a set of rules of the form

type→ content

where content is a regular expression defining the allowed content inside the ele-
ment specified by type. For this reason, regular expressions are pivotal for schema
languages.

2.5.2 Example. Next, we illustrate a possible schema for the XML document in
Figure 2.4(a). For our purposes it is sufficient to represent the schema as an extended
context-free grammar:

mymusiclist → radiostation∗ album∗

radiostation → title mhz+

album → (band + artist) title year?

The schema specifies that an element mymusiclist contains a (possible empty) list of
elements radiostation and, subsequently, a (possible empty) list of elements album.
A radiostation has a title and one or more frequencies specified by elements mhz.
Each album is associated with a band or an artist, a title, and, optionally, a year.

The W3C specifications for XML Schema and DTDs do not allow arbitrary regu-
lar expressions to define content. Instead, they require that all regular expressions in
the schema are deterministic in some way. (We formalize this notion in Chapter 3.)
This semantical constraint is contained in the specifications due to a requirement in
the ISO standard for the Standard Generalized Markup Language (SGML) where it
was introduced to ensure efficient parsing in the first place.

2.5.2 Linked Data, RDF, and SPARQL

Since the turn of the new millennium more and more data on the web is specified
in the Resource Description Framework (RDF) [AP11]. In fact, nowadays, RDF
is the de-facto standard for linked data. Here, linked data is the generic term for
the idea to publish data such that it is accessible for automatic processing. More
precisely, linked data on the web has the purpose to improve the way in which
data on the web is readable by computers and to enable new ways of querying web
data. Resources on the web are thereby specified via a unique name, i.e., a so-
called Uniform Resource Identifier (URI) [BLFM05]. For example, every URL is
a URI. Tim Berners-Lee published the following four principles that characterize
linked data in general [BL09]:

– Use URIs as names for things.

– Use HTTP URIs so that people can look up those names.

– When someone looks up a URI, provide useful information, using the standards
(RDF, SPARQL).

– Include links to other URIs, so that they can discover more things.

20

2.5. Data, Schemas, and Queries

(radiostation,mhz,frequency), (Einslive,is,radiostation),
(frequency,is,96.0), (Einslive,mhz,106.7),
(frequency,is,103.3), (Einslive,plays,Muse),
(frequency,is,106.7), (Muse,is,band),
(Funkhaus Europa,is,radiostation), (Showbiz,by,Muse),
(Funkhaus Europa,mhz,96.0), (Showbiz,is,album),
(Funkhaus Europa,mhz,103.3), (mhz,abbreviates,megahertz)

(a) The set of RDF triples specifying the graph in (a).

radiostation

Einslive

Funkhaus Europa

Muse

Showbiz

album

106.7

96.0

103.3

frequency
band

megahertz

is

is

playsmhz

mhz

is

is

is

mhz

mhz

is

is

by

abbreviates

(b) An example RDF graph.

Figure 2.5: An RDF graph and its triple representation.

An HTTP URI is a URI that starts with the prefix http addressing a website
which is readable by humans. However, in the RDF standard it is even allowed to
specify resources by IRIs instead of URIs. An Internationalized Resource Identi-
fier (IRI) is a generalization of URIs that allows for a wider range of words [DS05].
Thus, every URI is also an IRI but not every IRI is an URI. Moreover, we remark
that no limit on the number of characters in a URI or IRI is given in the standards
such that, in theory, the sets of URIs and IRIs are infinite. The exact definition of
URIs and IRIs is, however, irrelevant for our purposes.

Next, we define our abstract model of RDF data. In its core, RDF data consists
of a set of RDF triples which are of the form (subject, predicate, object) where, for
simplicity, we assume that the components subject, predicate, and object range over
an infinite set of IRIs. (Notice that, according to the RDF specification, subject
and object can also be replaced by variables.) Furthermore, predicates can be used
as subject or object of other triples. Our abstract model of this set of triples is a
directed labeled graph, called RDF graph.

2.5.3 Example. Figure 2.5(a) contains a set of example RDF triples. The RDF
graph that can be retrieved from the triples in (a) is illustrated in Figure 2.5(b).
The edge (mhz, abbreviates, megahertz) is consistent with the RDF standard since
it is allowed that the predicate mhz of the edge (Funkhaus Europa, mhz, 103.3) is
the subject of the edge (mhz, abbreviates, megahertz).

21

2. Preliminaries

For our purposes it is sufficient to model subjects and objects of an RDF triple
as nodes in a graph and predicates of an RDF triple as edge labels. Other kind of
edges (RDF triples, respectively) can always be modelled by additional nodes in the
graph (see [PAG10] for details). For this reason, we do not explicitly consider edges
that contain a predicate of another edge as a subject or object in the following.

The W3C-recommended language for querying RDF data is the SPARQL Pro-
tocol and RDF Query Language (SPARQL). In SPARQL queries it is allowed to use
regular expressions since the property path feature was released in the SPARQL 1.1
specification in 2010. The property path feature extends the navigational capabili-
ties of the query language in the following way. For example, a SPARQL query of
the form

SELECT ?x,?y WHERE {?x r ?y},

where r is a regular expression, asks for all tuples (x, y) such that there is a path
from x to y that is labeled with a word in the language L(r). The regular ex-
pressions that are allowed as property paths in SPARQL queries are enhanced with
additional operators that allow counting and even a restricted form of negation.
Moreover, the evaluation semantics for these regular expressions are defined in a
non-standard way requiring that parts of the expression have to be matched against
simple paths in the graph and that the output of the above query is, according to
the W3C’s semantics, in fact a multiset that contains each tuple (x, y) as often as
the number of paths from x to y that are labeled with a word in L(r). By the
requirement that certain subexpressions are matched only against simple paths, the
W3C specification therefore ensures that such an answer is always finite. We study
the complexity of evaluating SPARQL queries under these semantics in Chapter 5.
A formal definition of these semantics can be found in Section 5.2. A collection of
more detailed examples on SPARQL 1.1 queries can be found in [HS12].

22

3
Regular Expressions in the
Context of RDF and XML

In this dissertation we study regular expressions enhanced by various additional fea-
tures that are used in the context of RDF and XML. In the following we summarize
the classes of regular expressions under consideration and review useful results con-
cerning these classes. In Section 3.1, we first define classes of regular expressions
that contain additional operators as syntactic sugar, e.g., counting operators, nega-
tions and wildcards. Then, in Section 3.2, we review the definition of chain regular
expressions, which is a syntactically very restricted class of expressions that aims to
be expressive enough in practice but tractable in general. In Section 3.3, we define
deterministic regular expressions which are specified by a semantical constraint that
specifies determinism for regular expressions similar as for finite automata.

3.1 Regular Expressions with Additional
Operators

We define the following four additional syntactical features for regular expressions.
First, we define regular expressions with counting operators which allow to write ex-
pressions that are exponentially more succinct in general [KT03, Gel10]. For exam-
ple, the expression a10,100 describes the language of all a-words with length at least 10
and at most 100. Moreover, it is known that testing membership for regular expres-
sions with counting operators can be done in polynomial time [KT03] and, later, we
show that these expressions can be evaluated over graphs in polynomial time as well.
We are motivated to examine counting operators because counting operators are
used to define expressions in XML Schema [GSMT+12, GMN09, CGS09a, CGS09b]
and because they are useful when querying RDF data [HS12, LM13].

23

3. Regular Expressions in the Context of RDF and XML

Afterwards, we define two negation operators: the full-fledged negation (¬) and
a restricted negation (!). The motivation for the !-operator comes from the SPARQL
query language where it is defined as a shortcut for a forbidden subset of symbols.
At last, we define a wildcard symbol (•) which can be used to specify an arbitrary
symbol (6= ε). The •-symbol is allowed in SPARQL property paths.

3.1.1 Definition. Let r be an RE. The following operators are defined for the class
of regular expressions:

operator token syntax
Counting
Operators #

If k ∈ N and ` ∈ N \ {0} ∪ {∞} with k ≤ ` then
(rk,`) is a regular expression.

Negation ¬ If r is a regular expression then so is (¬r).
Negated
label test !

If {a1, . . . , an} is a non-empty, (finite) subset of Σ
then !(a1 + · · ·+ an) is a regular expression.

Wildcard • The symbol • (where • /∈ Σ) is a regular expression.

To avoid confusion on the set of allowed operators for a class of regular ex-
pressions, we refer to RE for the class of (standard) regular expressions over the
operators +, ·, and ∗ (see, e.g., Definition 2.1.5). For the aforementioned additional
operators, we refer to RE(X) for the class of regular expressions with additional fea-
tures X ⊆ {#,¬, •, !}. For example, RE(#,¬) denotes the set of regular expressions
with counting operators and negation.

Throughout the document we consider !(a1 + · · ·+ an) as an atomic expression.
For readability, we sometimes abbreviate rk,k by rk. The language L(r) of a regular
expression r with additional features from the set {#,¬, •, !} is defined by extending
the semantics of REs as follows:

– L(rk,`) =
⋃`
i=k L(r)i,

– L(¬r) = Σ∗\L(r),

– L(!(a1 + · · ·+ an)) = Σ\{a1, . . . , an}, and

– L(•) = Σ.

The size |r| of r is defined analogously to Section 2.1, i.e., as the number of nodes
in the syntax tree of r with additional occurrences of (k, `), ¬, !, and • as nodes in
the tree. Additionally, if the expression contains a counting operator k, ` then we
add the sizes of the binary representations for every number k and ` to the size of r.
In this case, a number k ∈ N has size dlog ke if k > 0 and size one if k = 0.

The definition of the negated label test expression (!) seems to be quite unin-
teresting in the first place. Later, we also model expressions over an infinite set of
symbols to cope with the infinite set of IRIs in the SPARQL specification. In these
expressions it is more functional to use the negated label test.

Expressions in the class RE(¬) are also often called generalized regular expres-
sions in the literature. Any class of expressions that does not use the Kleene star
operator (∗) is also called star-free.

24

3.2. Chain Regular Expressions

3.2 Chain Regular Expressions

When a problem is intractable for the class of regular expressions, we study chain
regular expressions in order to trace the tractability frontier of the problem. These
expressions have already been used to trace the tractability frontier for the regular
expression containment problem [MNS04, MNS09] and it has been shown that they
can be efficiently learned [BNV07, BGNV10, BNSV10, FR13], which is especially
favorable in practical applications. However, they were first examined as a model
for expressions that are frequently used in practice [Cho02, BNdB04, MNS04]. The
following definition of chain regular expressions comes from [MNS09].

3.2.1 Definition. A base symbol is a regular expression w, w∗, w+, or w? where w
is a non-empty word; a factor is of the form e, e∗, e+, or e? where e is a disjunction of
base symbols of the same kind. That is, e is of the form (w1+· · ·+wn), (w∗1+· · ·+w∗n),
(w+

1 + · · · + w+
n), or (w1? + · · · + wn?) where n ≥ 0 and w1, . . . , wn are non-empty

words. A chain regular expression (CHARE) is ∅, ε, or a concatenation of factors.

We use the same shorthand notation for CHAREs as in [MNS09]. The shorthands
we use for the different kind of factors are illustrated in Table 3.1. We denote by a
and ai arbitrary symbols in Σ and by w, wi non-empty words in Σ+.

Factor Abbr.
a a
a∗ a∗

a+ a+

a? a?
w∗ w∗

w+ w+

w? w?

Factor Abbr.
(a1 + · · ·+ an) (+a)
(a1 + · · ·+ an)∗ (+a)∗

(a1 + · · ·+ an)+ (+a)+

(a1 + · · ·+ an)? (+a)?
(a∗1 + · · ·+ a∗n) (+a∗)
(a+

1 + · · ·+ a+
n) (+a+)

Factor Abbr.
(w1 + · · ·+ wn) (+w)
(w1 + · · ·+ wn)∗ (+w)∗

(w1 + · · ·+ wn)+ (+w)+

(w1 + · · ·+ wn)? (+w)?
(w∗1 + · · ·+ w∗n) (+w∗)
(w+

1 + · · ·+ w+
n) (+w+)

Table 3.1: Possible factors in chain regular expressions and how they are denoted [Mar06].

For example, the regular expression ((abc)∗+b∗)(a+b)?(ab)+(ac+b)∗ is a CHARE
with factors of the form (+w∗), (+a)?, w+, and (+w)∗ from left to right. The
expression (a+ b) + (a∗b∗), however, is not a CHARE due to the nested disjunction.
Notice that each kind of factor that is not listed in Table 3.1 can be simulated
through one of the other ones. For example, a factor of the form (a+

1 + · · ·+ a+
n)? is

equivalent to (a∗1 + · · ·+ a∗n). For a similar reason no factor of the form w is listed.
We refer to CHARE(X) for the fragment of the class of chain regular expressions

where only factors X are allowed. For example, the above mentioned expression is
a CHARE((+w∗), (+a)?, w+, (+w)∗).

25

3. Regular Expressions in the Context of RDF and XML

3.3 Deterministic Regular Expressions

For regular expressions the concept of determinism was introduced to supplement
the ISO standard of SGML. Since the schema languages XML Schema (see, e.g., the
Unique Particle Attribution (UPA)) and Document Type Definitions basically derive
from SGML, their specifications also require that regular expressions which are used
in XSDs and DTDs are deterministic. The theoretical foundations of these so-called
deterministic regular expressions (or DREs) were developed in a seminal paper by
Brüggemann-Klein and Wood [BKW98]. Since then DREs have been studied in the
context of language approximations [BGMN09], learning [BGNV10], descriptional
complexity [GN12, LMN12] and static analysis [CC08, CGS09b].

In the following, we review the basics of deterministic regular expressions, which
are sometimes also called one-unambiguous expressions. Before we define them
formally, we introduce the notion of unambiguous regular expressions to stress the
differences between these two notions. In Section 3.3.1 we outline the decision
procedure of Brüggemann-Klein and Wood that decides whether the language of a
given minimal DFA can be defined by a deterministic regular expression. Since not
every regular language can be defined by a deterministic expression, we consider the
closure property for several relevant operations for languages that are definable by
a deterministic expression in Section 3.3.2. In Section 3.3.3 we extend the notion of
determinism for expressions using the restricted negation operator ! and a wildcard
symbol •.

For an RE r we define the annotated expression of r, denoted r#, as the expres-
sion r where every symbol a ∈ Σ of r is replaced by the symbol ai if a is the ith
symbol of r when reading from left to right. For example, for r = (a+ b)∗a(a+ b)∗

it holds that r# = (a1 + b2)∗a3(a4 + b5)∗. For a word w ∈ L(r#) we denote by w\
the word without the subscript numbers. Notice that we have that w\ ∈ L(r) for
every w ∈ L(r#).

3.3.1 Definition. An RE r is unambiguous if there are no words w ∈ L(r) and
u, v ∈ L(r#) such that u 6= v but u\ = v\ = w.

In other words, for every word in the language of an unambiguous expression,
there is one unique way how to “match” the word in the expression. For example, the
expression (ba + b)(b + ab) is not unambiguous since the word bab can be matched
in two different ways, i.e., the words b1a2b4 and b3a5b6 are both in the language
L((b1a2 + b3)(b4 + a5b6)). The equivalent expression bab+ baab+ bb is unambiguous.

Every regular language can be defined by an unambiguous regular expression.
Given a regular language L and an RE r with L(r) = L, one can obtain an unam-
biguous expression for L by converting r into a deterministic finite automaton and
converting this automaton back into an (unambiguous) expression using the stan-
dard conversion algorithm for regular expressions (see, e.g., [HMU13] for details).

For a deterministic regular expression (also called one-unambiguous expression)
the following holds: When reading a word from left to right every single symbol can
be uniquely matched in the expression without looking ahead in the word.

26

3.3. Deterministic Regular Expressions

3.3.2 Definition. An RE r is deterministic (or a DRE) if there are no words vaiw
and vajw′ in L(r#) with v, w, w′ ∈ Σ∗, a ∈ Σ and i 6= j.

Observe that every deterministic regular expression is unambiguous but not every
unambiguous regular expression is deterministic. For example, the unambiguous
expression bab+baab+bb from above is not deterministic (or one-unambiguous) since
when reading a word beginning with b we do not know to which b in the expression it
should be matched (without looking ahead in the word). More precisely, the words
b1a2b3 and b8b9 are both in the language L(b1a2b3 + b4a5a6b7 + b8b9). An equivalent
DRE for this language is b(a(b+ ab) + b).

However, not every regular language has an equivalent DRE, i.e., the language
L((a+b)∗a(a+b)) is not DRE-definable [BKW98]. We say that a regular language L
is DRE-definable if L can be defined by a DRE.

3.3.3 Theorem ([BKW98]). The set of DRE-definable languages is a strict sub-
class of the set of regular languages.

Moreover, it is known that every finite language is DRE-definable [BKW98].
Since every DRE is an RE we reuse notations introduced for regular expressions
also for DREs. In particular, we define minimal DREs analogously for regular
expressions and remark that minimal DREs are (as well as REs) not unique up to
reordering of disjunctions. Take, for example, the deterministic regular expressions
(a+ ε)(c+ d) + b(c+ ε) + ε and a(c+ d) + (b+ ε)(c+ ε) + d.

In the remainder, we also use the following Kleene-like definition of DRE-definable
languages to argue whether regular languages are DRE-definable or not.

3.3.4 Theorem ([BKW98]). Let Σ be an alphabet. The set of DRE-definable lan-
guages over Σ is the smallest set L of languages that satisfies the following languages:

– ∅, ε, and {a}, for each a ∈ Σ, are in L.

– If L1, L2 ∈ L and first(L1) ∩ first(L2) = ∅ then L1 ∪ L2 ∈ L.

– If L1, L2 ∈ L, ε /∈ L1, and followlast(L1) ∩ first(L2) = ∅ then L1 · L2 ∈ L.

– If L1 ∈ L then L1\{ε} ∈ L.

– If L1 ∈ L and followlast(L1) ∩ first(L1) = ∅ then (L1)∗ ∈ L.

3.3.1 Recognizing DRE-definable Languages

Although it can be checked in linear time whether a regular expression is determin-
istic [GMS12], we will see in Chapter 4 that it is computationally harder to check
whether a regular language (given as an RE, NFA, RE(#), or minimal DFA) is DRE-
definable. To investigate this problem we need the theoretical basics of the class of
DRE-definable languages which basically come from [BKW98]1. In this paper, the

1For the interested reader this paper is the designated introduction to deterministic regular
languages.

27

3. Regular Expressions in the Context of RDF and XML

q0

q1

q2

q3 q4

b

c

c

b

c
a

a

a

b

(a) An NFA with two orbits {q0, q1, q2, q3} and {q4}
and four gates q1, . . . , q4.

q0

q1

q2

q3

b

c

c

b

cb

(b) The orbit automaton Nq0 with
an Nq0-consistent symbol c.

Figure 3.1: An NFA N and the orbit automaton Nq0 .

main contribution is a characterization of the class of DRE-definable languages in
terms of structural properties of finite automata. Using this characterization it was
proved that it is decidable whether a given regular language is definable by a DRE.
We review this characterization of DRE-definable languages next. To this end, we
need the following terminology which originates from [BKW98].

3.3.5 Definition. Let N be an NFA and q a state in N .

– The orbit of q, denoted O(q), is the maximal strongly connected component
of N that contains q. If q is the only state in O(q) and q has no self-loops then
the orbit O(q) is called trivial.

– The state q is called a gate of O(q) if q is accepting or q has an outgoing
transition (q, a, q′) such that q′ /∈ O(q).

In Figure 3.1(a) we illustrate an NFA with two orbits {q0, q1, q2, q3} and {q4}.
The states q1, q2, and q3 are gates of the first orbit and the state q4 is a gate of the
trivial orbit {q4}. Using the notion of orbits and gates we define the orbit property,
which is central for testing DRE-definability.

3.3.6 Definition. Let N be an NFA. Then N has the orbit property if the following
holds for every pair of gates q1, q2 in the same orbit:

(1) q1 is accepting if and only if q2 is accepting, and

(2) q ∈ δ(q1, a) if and only if q ∈ δ(q2, a) for every state q /∈ O(q1).

We say that a transition (q1, a, q2) is an inter-orbit transition if O(q1) 6= O(q2),
i.e., q1 and q2 belong to different orbits. For an NFA N the orbit automaton of
a state q, denoted Nq, is obtained from N by removing all states that are not
in O(q), fixing q as initial state, and the gates of O(q) as accepting states. The
language L(Nq) is called orbit language of q. In Figure 3.1(b) we illustrate the orbit
automatonNq0 ofN . The following theorem characterizes the class of DRE-definable
languages.

28

3.3. Deterministic Regular Expressions

3.3.7 Theorem ([BKW98]). Let D be a minimal DFA. The language L(D) is
DRE-definable if and only if D has the orbit property and every orbit language of D
is DRE-definable.

Although the last theorem gives a precise characterization of DRE-definable
languages, the result is not sufficient to construct a recursive decision procedure
for testing whether a language is DRE-definable. Since we cannot test whether the
language of an automaton that consists of exactly one orbit is DRE-definable, we
also need the following.

LetD be a DFA. A symbol a ∈ Σ is calledD-consistent if there exists a state c(a)
such that every accepting state q of D has a transition (q, a, c(a)). For example, the
symbol c is Nq0-consistent in the automaton of Figure 3.1(b). We sometimes also call
the transition (q, a, c(a)) D-consistent. For a set S of D-consistent symbols the S-
cut of D, denoted by DS, is the automaton that is obtained from D by removing the
transitions (q, a, c(a)) for every accepting state q and symbol a ∈ S. The following
theorem provides another characterization of DRE-definable languages.

3.3.8 Theorem ([BKW98]). Let D be a minimal DFA and let S be a set of D-
consistent symbols. Then, L(D) is DRE-definable if and only if DS has the orbit
property and every orbit language of DS is DRE-definable. Moreover, if D consists
of a single, nontrivial orbit and L(D) is DRE-definable then there is at least one
D-consistent symbol.

We also review the following result by Brüggemann-Klein and Wood.

3.3.9 Lemma ([BKW98]). Let D be a minimal DFA and S be the set of D-
consistent symbols.

(1) If DS has the orbit property then (DS)q is minimal for each state q in D.

(2) If p and q are states in the same orbit of DS then L((DS)p) is DRE-definable if
and only if L((DS)q) is DRE-definable.

Point (1) of the above lemma is immediate from combining Lemmas 5.9 and 5.10
from [BKW98]. Point (2) is immediate from the fact that DRE-definable regular
languages are closed under derivatives [BKW98]. Notice that DS does not have to
be a minimal DFA in general. In particular, it can have states that are not reachable
from the initial state.

Finally, these results lead to a recursive test that decides whether the language
of a minimal DFA is DRE-definable. We present this test in Algorithm 1. In the
algorithm it is ensured by Lemma 3.3.9 that the DFA for the recursive call in line 11
is always minimal. Correctness of the algorithm can be obtained by combining
Theorems 3.3.7 and 3.3.8. Whenever we refer to the BKW-Algorithm in the
remainder we consider Algorithm 1.

3.3.10 Theorem ([BKW98]). Given a minimal DFA D it is decidable whether
L(D) is DRE-definable in time O(|D|2).

29

3. Regular Expressions in the Context of RDF and XML

Algorithm 1 The BKW-Algorithm [BKW98].
Algorithm BKW

2: Input: Minimal DFA D = (Q,Σ, δ, q0, F)
Output: true if L(D) is DRE-definable, else false

4: S ← the maximal set of D-consistent symbols
if D has only one trivial orbit then return true

6: if D has precisely one orbit and S = ∅ then return false
compute the orbits of DS

8: if DS does not have the orbit property then return false
for each orbit O in DS do

10: choose a state q in O
if not BKW((DS)q) then return false

12: return true

Moreover, Brüggemann-Klein and Wood showed how to build an equivalent DRE
from a minimal DFA for a DRE-definable language. The constructed DREs are
exponential in the size of the DFA in the worst case.

3.3.11 Theorem ([BKW98]). Given a minimal DFA D, an equivalent DRE for
L(D) can be constructed in exponential time if L(D) is DRE-definable. The con-
structed DRE is of size O(|Σ||δ|).

In [BGMN09], Bex et al. discussed a variant of the BKW-Algorithm which
constructs smaller expressions than the original result above. Since the produced
expressions are still exponentially larger than the input automaton in the worst
case, we refer to the result in [BKW98] when necessary. Moreover, we remark that
the algorithm in [BGMN09] contains a minor imprecision. The suggested optimiza-
tion ((S + ε) · BKW(AS))∗ for line 7 (in their paper) is not correct. Even under
the obtained constraints the language of the constructed expression can become in-
equivalent to the input automaton which is due to the fact that the accepting states
of AS do not have to be equal to the states c(a) that are reached by a symbol a ∈ S.

3.3.2 Closure Properties of DRE-definable languages

Next, we review the closure property of DRE-definable languages for several language-
theoretic operations. In particular, we consider the union, intersection, difference,
concatenation, star, and reversal operation. For each operation we consider the
closure for languages over arbitrary and unary alphabets. Notice that several of
these operations are relevant in XML schema management [GIM+13, MNS10]. We
summarize the known closure properties of DRE-definable languages in Table 3.2.

DRE-definable languages are not closed under complement [GN08, GN12], con-
catenation [BKW98], and union [BKW98] even when the alphabet of the language is
unary. Moreover, DRE-definable languages over arbitrary alphabets are not closed
under intersection [Los10, CHM11], reversal [LMN12], and Kleene star [BKW98].

30

3.3. Deterministic Regular Expressions

|Σ| = 1 |Σ| ≥ 1
\ no no
· no no
∪ no no
∩ yes no
rev yes no
∗ yes no
w\ yes yes

Table 3.2: Closure properties of DRE-definable languages. By “\” we denote the com-
plement Σ∗\L for a given language L. By “rev” we denote the reversal operation and by
“w\” the Brzozowski derivative with respect to words w over Σ.

DRE-definable languages over unary alphabets are closed for these three opera-
tions [LMN12]. In addition, we remark that DRE-definable languages are closed
under taking the Brzozowski derivative with respect to words [BKW98]. That is,
for every DRE-definable language L over an alphabet Σ and word w ∈ Σ∗, the
language w\L is DRE-definable.

3.3.3 Determinism for Variants of Regular Expressions

In the following we introduce the notion of determinism for the class RE(!, •). Recall
that, by ! we denote the restricted negation (for a finite set of symbols) and by • we
denote the wildcard symbol (see Definition 3.1.1). We formally define determinism
for the class RE(!, •) using Glushkov automata (see [BEGO71, Glu61]) instead of a
semantical definition like in Definition 3.3.2.

Let r be a regular expression in RE(!, •) over an alphabet Σr. By num(r) we
denote the numbered regular expression obtained from r by replacing each subex-
pression of the form !(a1 + · · · + an), •, or a ∈ Σ (that is not in the scope of an
!-operator) with a unique number, increasing from left to right. For example, for
r = a !(a) • (a + bc)∗• !(a + b) we have num(r) = 1 2 3 (4 + 5 6)∗7 8. More
precisely, num(r) can be obtained by traversing the syntax tree of r depth-first left-
to-right and replacing each atomic expression by unique increasing numbers. By
denumr we denote the mapping that maps each number i to the subexpression it re-
placed in r. For the above example, we have that denumr(1) = a, denumr(2) =!(a),
denumr(3) = •, et cetera. Notice that rm can be seen as a regular expression over a
finite alphabet Σ′ ⊆ N where |Σ′| is the number of leaves in the syntax tree of r.

3.3.12 Definition. Let r be an RE(!, •) and rm its numbered expression. The
Glushkov automaton Gr of r is the tuple (Qr,Σr, δr, q0, Fr) where the following holds:

– Qr = {q0}] Σ′ is a finite set of states. That is, Qr contains an initial state
and one state for each position i in the numbered expression rm.

– If ε ∈ L(r) then the set of accepting states is Fr = last(rm)] {q0}; otherwise,
Fr = last(rm).

31

3. Regular Expressions in the Context of RDF and XML

– The transition function δr contains the following transitions for every a ∈ Σr

and i ∈ Qr:

- δr(q0, a) = {i ∈ first(rm) | denum(i) = a, denum(i) = •,
or denum(i) = !(a1 + · · ·+ a`) with a /∈ {a1, . . . , a`}}, and

- δr(i, a) = {j ∈ follow(rm, i) | denum(j) = a, denum(j) = •,
or denum(j) = !(a1 + · · ·+ a`) with a /∈ {a1, . . . , a`}}.

It is known that, for a regular expression r, an equivalent Glushkov automaton
can be constructed in polynomial time in |r| [BK93]. The following is a direct
corollary of this result.

3.3.13 Corollary. For every RE(!, •) r the Glushkov automaton Gr of r can be
constructed in polynomial time in |r|. Moreover, it holds that L(r) = L(Gr).

The definition of Glushkov automata reveals that determinism in regular expres-
sions is very similar to determinism in finite automata, i.e., an RE r is deterministic
if and only if the Glushkov automaton of r is a DFA. Moreover, there exists a similar
connection for unambiguity in regular expressions and finite automata, i.e., an RE r
is unambiguous if and only if the Glushkov automaton of r is a UFA. We exploit
this connection to define the notions of determinism and unambiguity for RE(!, •)
expressions.

3.3.14 Definition. Let r be an RE(!, •) then

– r is deterministic (or a DRE(!, •)) if Gr is a DFA, and

– r is unambiguous if Gr is a UFA.

Determinism has also been studied for the class RE(#), i.e., the class of regular
expressions with counting operators [KT07, GGM12, Hov09]. For such expressions
determinism seems to bring up even more challenging research questions. In fact,
the class RE(#) even leads to two different but natural notions of determinism,
i.e., weak and strong determinism. Weak determinism for regular expressions with
counting operators is defined analogously to determinism for regular expressions
without counting operators. Opposed to that strong determinism also requires that
the use of counting operators and the Kleene-star operator has to be deterministic.
For example, the expression (a1,2)3,4 is not strongly deterministic because when
reading an a one does not know which counting operator is “raised”. However,
these notions are even less understood than the notion of determinism for standard
regular expressions. For example, it is still unknown if it is decidable whether the
language of a regular expression is definable by a weakly deterministic expression.
In the following, we focus on determinism for the classes RE and RE(!, •) and
investigate their complexity for several computational problems. All lower bounds,
however, can be trivially transferred to weakly and strongly deterministic regular
expressions (with counting operators).

32

4
Regular Expressions in XML
Schema Languages

In two of the most prevalent schema languages for XML, namely Document Type
Definitions (DTDs) and XML Schema (XSDs), it is not allowed to use arbitrary
regular expressions. Instead, all used regular expressions have to be deterministic to
ensure compatibility with SGML where they were introduced to guarantee efficient
parsing. In this chapter we examine the complexity of theoretical problems for
deterministic regular expressions which become relevant when processing DTDs and
XSDs. Although DRE-definable languages have been around for quite some time,
they are not yet well-understood. This motivates us to study their foundational
properties.

Since not every regular language can be represented by a deterministic regular
expression, it is natural to examine whether a regular language is definable by a DRE
or not. Although it can be checked in linear time whether a regular expression is
deterministic [GMS12], we will see that it is computationally harder to check whether
a regular language is DRE-definable. In Section 4.1, we consider this problem for
several representations of regular languages, i.e., we consider the problem for input
REs, NFAs, RE(#)s, and minimal DFAs. (Notice that in XML Schema one is
allowed to write regular expressions with counting operators.) We have already seen
that the problem is decidable for each variant due to [BKW98]. We focus on the
exact computational complexity of these problems. We can settle the complexity
for the variants regarding NFAs, REs, and RE(#)s, though for minimal DFAs the
exact complexity remains open.

In Sections 4.2 and 4.3, we examine the relative descriptional complexity of
DRE-definable languages. That is, we study whether the representation of regular
languages as minimal DREs is less succinct than alternative (more general) repre-
sentations, e.g., minimal DFAs and REs.

33

4. Regular Expressions in XML Schema Languages

Previously, Brüggemann-Klein and Wood showed that there exists an algorithm
that, given a DRE-definable language as a minimal DFA, constructs an equivalent
DRE that is at most exponentially larger than the minimal DFA [BKW98]. However,
in [BKW98] the main focus was on proving that the problem is decidable and it is
known that the constructed DREs are not necessary minimal. Nonetheless, we show
that there cannot exist a significantly better procedure for constructing deterministic
regular expressions in Section 4.2. More precisely, we prove that an exponential
blow-up cannot be avoided when translating a DFA or an RE into an equivalent
DRE in general.

Finally, we examine the descriptional complexity of several language-theoretic
operations on DRE-definable languages in Section 4.3. In particular, we investigate
the boolean operations (\, ∩, and ∪), the reversal, and concatenation operation.
We have already seen in Section 3.3.2 that DRE-definable languages are not closed
under any of these operations. Therefore, there basically exist two alternatives to
define the worst-case descriptional complexity blow-up when applying one of the
aforementioned operations on two DREs. The first alternative allows to write the
result as an RE in general (since the resulting language may not be DRE-definable)
and studies the worst-case complexity of minimal REs for the resulting language.
This setting was already examined in [GN08, GN12]. The second alternative exam-
ines the descriptional complexity of the result if and only if the resulting language
is still DRE-definable. We will study the descriptional complexity of DRE-definable
languages according to the second alternative. As far as we know, we are the first
to consider this setting and we remark that the results from [GN08, GN12] cannot
naïvely be transferred to work in this setting. We start our studies by reviewing ba-
sic results on the state complexity of boolean operations on DFAs for DRE-definable
languages. Afterwards, we examine the descriptional complexity of DREs that are
the result of applying an operation on two input DREs and prove that an exponential
blow-up cannot be avoided for each of the above operations in general.

4.1 The Complexity of the DRE-Definability
Problem

In this section we study the complexity of deciding whether a regular language is
DRE-definable, i.e., we examine the complexity of the following decision problem:

Problem (DRE-Definability(X)).
Given: A regular language L represented as X.
Question: Is L DRE-definable?

We consider the problem for several variants depending on the input. For each
variant, we choose the parameter of the problem X to be one of the following rep-
resentations: an NFA, RE, RE(#), or a minimal DFA. To refer to the particular
variants, we put the respective representation between braces at the end. For exam-
ple, DRE-Definability(RE) is the problem: Given a regular expression r, is L(r)
DRE-definable?

34

4.1. The Complexity of the DRE-Definability Problem

input lower bound upper bound
min. DFAs NLOGSPACE (Th. 4.1.25, [CDLM13]) P [BKW98] / (NLOGSPACE [LBC14])

NFAs PSPACE [BGMN09] PSPACE (Th. 4.1.23, [CDLM13])
REs PSPACE [BGMN09] PSPACE (Th. 4.1.23, [CDLM13])

RE(#)s EXPSPACE (Th. 4.1.24, [CDLM13]) EXPSPACE (Th. 4.1.24, [CDLM13])

Table 4.1: Complexity of the DRE-Definability problem.

We summarize all known results about the DRE-Definability problem in
Table 4.1. The DRE-Definability problem was first studied by Brüggemann-
Klein andWood nearly two decades ago. It is known that the problem can be decided
in polynomial time in the size of a given minimal DFA [BKW98]. Furthermore, it is
known that DRE-Definability for NFAs and REs is PSPACE-hard [BGMN09].

In [CDLM13] we obtained the results that will be presented in the remain-
der of this section. Our main result is a PSPACE algorithm for the problem
DRE-Definability(NFA). By the existence of such an algorithm the PSPACE
upper bound for DRE-Definability(RE) and the EXPSPACE upper bound for
DRE-Definability(RE(#)) are direct consequences.

We use Section 4.1.1 to 4.1.4 to present the PSPACE algorithm for NFAs. To-
wards the result we need a more detailed analysis of the BKW-Algorithm (see,
e.g., Algorithm 1). To this end, we define, in Section 4.1.1, level automata which
describe the detailed structure of the input automata for every recursion step of the
algorithm. Using the notion of level automata we can prove certain properties of the
automata during a run of the algorithm in the subsequent sections. In Section 4.1.2,
we prove an upper bound on the recursion depth of the algorithm that is polynomial
in the size of a given NFA for the input language. (We remark that the upper bound
is also polynomial in the size of a minimal NFA for the input language.) Moreover,
this bound is crucial for understanding why there exists a PSPACE algorithm for
DRE-Definability(NFA). In Section 4.1.3, we analyze the different causes of why
the algorithm returns that the input language is not DRE-definable. To this end,
we define three violations that uniquely characterize in which cases the algorithm
fails for a certain input. Finally, in Section 4.1.4, we construct an algorithm that
decides whether there exists a violation for the input automaton at some point in
the recursion, i.e., whether the algorithm outputs that the input language is not
DRE-definable. The algorithm thereby adapts Algorithm 1 and applies it on the
minimal DFA that is computed on-the-fly from the input NFA. Using the polynomial
upper bound on the recursion depth we prove that the algorithm runs in PSPACE
by a long mutual induction. Since PSPACE is closed under complement the result
holds in the end.

At last, we examine the complexity of the problems DRE-Definability(RE(#))
and DRE-Definability(minDFA) in Section 4.1.5. We prove that the prob-
lem DRE-Definability(RE(#)) is EXPSPACE-complete and that the problem
DRE-Definability(minDFA) is NLOGSPACE-hard. Lu et al. [LBC14] showed
that DRE-Definability is in NLOGSPACE when the input is a minimal DFA over
an alphabet that has at most logarithmic size in the number of states in the DFA.

35

4. Regular Expressions in XML Schema Languages

4.1.1 Level-Automata

In this section our goal is to define a set of automata that describe the detailed
structure of the input DFA for every recursive call (in line 11) during a run of
the BKW-Algorithm (see Algorithm 1). Using this notion we can analyze the
BKW-Algorithm in more detail afterwards.

For the remainder of this section let D be a minimal DFA. Whenever we refer
to a set S of D-consistent symbols we assume that the set is maximal for D, i.e.,
there does not exist a D-consistent symbol a that is not in S. Henceforth, we always
refer to the set of D-consistent symbols. It is important to keep in mind that our
automata always contain only useful states in the following.

We now define, for a given minimal DFA D, a set of level automata which de-
scribe the structure of the orbit of some state q at the moment of the recursive call (in
line 11) of the BKW-Algorithm when it is called with D as the input automa-
ton. Using these automata we can examine how, for a state q of D, the orbit of q
evolves during the recursion. To this end, observe that we always delete two kinds
of transitions in every iteration of Algorithm 1: the D-consistent transitions (which
we delete to obtain DS from D) and the inter-orbit transitions in DS (which we
delete to obtain (DS)q). Moreover, in every round of the algorithm either of the sets
can be empty but not both together as otherwise the algorithm fails.

4.1.1 Definition. For a state q of a minimal DFA D and k ∈ N the level k au-
tomaton of D for the state q, denoted levk(D, q), is inductively defined as follows:

– lev0(D, q) = D.

– Let S be the maximal set of D-consistent symbols. Then

lev1(D, q) =

(DS)q if D has more than one orbit and

DS has the orbit property,
(DS)q if S 6= ∅ and DS has the orbit property,
∅ otherwise.

– For k > 1, let B := levk−1(D, q) and Sk−1 be the maximal set of B-consistent
symbols. Then

levk(D, q) =

{
(BSk−1

)q if Sk−1 6= ∅ and BSk−1
has the orbit property,

∅ otherwise.

The above definition complies exactly with the construction in Algorithm 1 if
state q is chosen every time in line 10. Notice that, the top level recursion of the
BKW-Algorithm is slightly different from the others: the input DFA D of the top
level can have multiple orbits, whereas this is not the case for deeper recursive levels.
Thus, the definition of lev1(D, q) is different to the definition of level automata for
larger k. Moreover, levk(D, q) is always minimal according to Lemma 3.3.9.

36

4.1. The Complexity of the DRE-Definability Problem

4.1.2 Example. We now illustrate the notion of level automata for an example.
Consider the following DFA D from Figure 4.1.

q0

q1

q2

q5 q3 q4

f

f

f

d

d

e

b

b
a

a

a

b

d

Figure 4.1: The automaton D, i.e., lev0(D, q0), S = ∅.

By definition, lev0(D, q0) is the automaton D itself. In order to build the level
automaton for the next iteration of Algorithm 1, observe that D has two orbits:
one orbit contains the states q1, . . . , q4 and the other orbit contains only q5. The
set of D-consistent symbols S is empty since q5 has no outgoing transitions, i.e., DS

equals D. Moreover, DS has the orbit property since all transitions that leave O(q0)
are f -labeled and go to state q5. As such, lev1(D, q0) equals (D∅)q0 which is the
orbit automaton of q0 in D. We illustrate lev1(D, q0) in Figure 4.2.

q0

q1

q2

q3 q4

d

d

e

b

b
a

a

a

b

d

Figure 4.2: The automaton lev1(D, q0) with lev1(D, q0)-consistent symbols S1 = {a}.

For the second iteration of the BKW-Algorithm the level automaton is built
as follows. The maximal set of lev1(D, q0)-consistent symbols is S1 = {a}. Since
the set is not empty we obtain the S1-cut of lev1(D, q0) (see Figure 4.3). Moreover,
we can observe that the automaton in Figure 4.3 has the orbit property because
it contains only one orbit. Thus, the BKW-Algorithm proceeds with the next
recursive call. By the definition of level automata, we get that lev2(D, q0) is the orbit
automaton of q0 in the S1-cut of lev1(D, q0) (that is, lev2(D, q0) = (lev1(D, q0)S1

)q0).
The automaton is illustrated in Figure 4.4.

37

4. Regular Expressions in XML Schema Languages

q0

q1

q2

q3

d

d

e

b

bd

Figure 4.3: The S1-cut of lev1(D, q0).

q0

q1

q2

d

d

e

d

Figure 4.4: lev2(D, q0), S2 = ∅.

Finally, we observe that lev2(D, q0) has only one orbit but no lev2(D, q0)-consistent
symbols. In accordance with the BKW-Algorithm, this means that L(D) is not
DRE-definable. By the definition of level automata, we have that lev3(D, q0) = ∅.

We conclude the section by proving that the definition of level automata is a
valid characterization of DRE-definable languages.

4.1.3 Lemma. Let D be a minimal DFA. Then the following are equivalent:

(1) L(D) is DRE-definable,

(2) for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable,

(3) for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable and levk(D, q)Sk

has the orbit-property.

Proof. The implications (3)⇒ (2) and (2)⇒ (1) are obvious. It remains to show the
implication (1)⇒ (3). Assume that there exist a state q of D and k ∈ N such that
levk(D, q) is not DRE-definable or levk(D, q)Sk

does not have the orbit-property
where Sk is the set of levk(D, q)-consistent symbols. By (2) in Lemma 3.3.9, we
know that the choice of a state in line 10 of the BKW-Algorithm is arbitrary.
Consider a run of the BKW-Algorithm on D where, at each recursion level i < k,
state q is chosen in line 10 when the current orbit O contains q. Then, at level k,
Algorithm 1 is called on levk(D, q) and returns false by definition, i.e., L(D) is not
DRE-definable. �

4.1.2 A Bound on the Recursion Depth of the
BKW-Algorithm

Using the notion of level automata we are now able to prove a polynomial upper
bound on the maximal recursion depth of the BKW-Algorithm in terms of the
size of an input NFA. Moreover, this bound will be central when assembling the
PSPACE-algorithm for NFAs. We first observe that once a state becomes a gate in
the BKW-Algorithm its outgoing transitions disappear in deeper recursion levels.

38

4.1. The Complexity of the DRE-Definability Problem

4.1.4 Lemma. Let D be a minimal DFA and q be a gate in levk(D, q) for some
k > 0. Then either levk+1(D, q) = ∅ or q has strictly less outgoing transitions in
levk+1(D, q). In the latter case, q is also a gate in levk+1(D, q).

Proof. We know that levk(D, q) has precisely one orbit because k > 0. Thus, there
exist no inter-orbit transitions in levk(D, q). Since q is a gate by assumption, q
has to be accepting. Assume that the set of levk(D, q)-consistent symbols Sk is not
empty and that levk(D, q)Sk

fulfills the orbit property. By definition it holds that
levk+1(D, q) = (levk(D, q)Sk

)q, which is obtained from levk(D, q) by removing all
transitions that leave an accepting state and are labeled with a symbol in Sk first
and taking the orbit automaton of q afterwards. Since q is accepting and Sk 6= ∅
it follows that there exists at least one q-outgoing levk(D, q)-consistent transition
which is not present in levk(D, q)Sk

. This transition is also not present in levk+1(D, q)
and, therefore, q has strictly less outgoing transitions on this level. If there does not
exist a levk(D, q)-consistent symbol or levk(D, q)Sk

does not fulfill the orbit property
then levk+1(D, q) = ∅ by definition. �

Now we are able to provide an upper bound on the number of recursion levels
that is needed until a gate is deleted in the BKW-Algorithm. We thereby use
the fact that in a minimal DFA every state has at most |Σ| outgoing transitions.

4.1.5 Lemma. Let D be a minimal DFA and q be a gate in levk(D, q) for some
k ≥ 0. Let n = |Σ| + 1 if k = 0 and n = |Σ| otherwise. Then either q is a trivial
orbit in levk+n(D, q) or levk+n(D, q) = ∅.

Proof. Choose n as desired in the lemma and assume that levk+n(D, q) 6= ∅. By
definition, q exists and is a gate in levk+`(D, q) for every 0 ≤ ` ≤ n. Since q
has at most |Σ| outgoing transitions in levk(D, q) the lemma statement holds by
Lemma 4.1.4. �

Using Lemma 4.1.5 we can also give an upper bound on the number of recursion
levels that are needed until a state p in D becomes a gate in the BKW-Algorithm.

4.1.6 Lemma. Let D be a minimal DFA and p be a state of levk(D, p) for some
k ∈ N. Let ` be the length of a shortest path from p to a gate in levk(D, p). Then
either levk+|Σ|·`+1(D, p) = ∅ or p is a gate in levk+|Σ|·`+1(D, p).

Proof. Let `j be the length of a shortest path from p to a gate in levj(D, p). If `j = 0
then p is a gate. If `j > 1 then we show that within |Σ| recursion levels (|Σ| + 1
levels if j = 0) this value decreases strictly. Let q be a gate such that there is a path

p = p0 −→ p1 −→ · · · −→ p`j−1 −→ p`j = q

of length `j from p to q in levj(D, p).
Notice that `j cannot increase as long as no transition on the path is removed.

(If q is a gate at some level then it remains a gate at the next level). Assume now
that a transition pi −→ pi+1 is removed from levj+m(D, p) for some m ∈ N. By
definition of level automata, the transition is either levj+m(D, p)-consistent or an

39

4. Regular Expressions in XML Schema Languages

inter-orbit transition. In both cases pi is a gate in levj+m(D, p) and thus `j+m < `j.
Therefore, `j cannot increase when considering ascending levels.

From Lemma 4.1.5 we know that after at most n = |Σ| recursion levels (|Σ|+ 1
if we start from level j = 0) the orbit automaton levj+n(D, q) is either empty or
trivial. But this means that the transition p`j−1 −→ q is an inter-orbit transition
in levj+n(D, q), i.e., p`j−1 is a gate. Thus, `j+n < `j which proves that `j strictly
decreases within |Σ| recursion levels (|Σ| + 1 if j = 0). In summary we know that
after at most j = `·|Σ| + 1 recursion levels either levk+j(D, p) is empty or `j = 0,
which means p is a gate in levk+j(D, p). �

We also need the following observation about NFAs and their minimal DFAs
which states that paths to accepting states in minimal DFAs are always short when
compared to NFAs. Recall that we denote by [N] the minimal DFA for an NFA N .

4.1.7 Lemma. Let N be an NFA of size n. Then, for every state in the minimal
DFA [N] of N , there is a path leading to some accepting state of length at most n−1.

Proof. We prove the assumption by examining the states in the power set automaton
P(N) (see Definition 2.1.4). Let N = (Q,Σ, δ, q0, F) be an NFA and p = {q1, . . . , qk}
be a non-empty subset of Q (that is, a state in P(N)). Remember that we only
consider NFAs where all states are useful. Thus, for every state q ∈ Q, there exists
a path to some accepting state qf ∈ F of length at most n − 1. In particular, this
means that there is such a path from q1 to an accepting state qf1 ∈ F . Then, by
definition of P(N), there exists a path from p to an accepting state pf in P(N) that
contains qf1 of length at most n − 1. Let w be a word such that δ∗P(N)(p, w) = pf

and |w| = n − 1. Then, it also holds that δ∗[N]([p], w) = [pf], which concludes the
proof. �

Using Lemmas 4.1.5, 4.1.6 and 4.1.7 we provide an upper bound on the number
of recursion levels that a state can be present in the BKW-Algorithm.

4.1.8 Lemma. Let N be an NFA of size n. Then, levn·|Σ|+2([N], p) = ∅ for every
state p of [N].

Proof. Let p be a state in [N]. By Lemma 4.1.7 there exists a path from p to
some accepting state q in [N] of length at most n − 1. Since q is accepting, q is a
gate in [N]. Thus, the length of a shortest path from p to a gate in [N] is smaller
or equal to n − 1. Remember that [N] = lev0([N], p). By Lemma 4.1.6 we know
that p is a gate in lev(n−1)·|Σ|+1([N], p) or lev(n−1)·|Σ|+1([N], p) is empty. In the latter
case the lemma is shown. In the first case p is a trivial orbit in levn·|Σ|+1([N], p) by
Lemma 4.1.5. Then it holds that levn·|Σ|+2([N], p) = ∅, which concludes the proof. �

Finally, we prove that the maximal recursion depth of the BKW-Algorithm
is polynomially bounded in the size of an NFA for the input language.

4.1.9 Theorem. Let N be an NFA with size n. The recursion depth of Algorithm 1
on [N] is at most n · |Σ|+ 2.

Notice that, by Theorem 4.1.9, the recursion depth of the BKW-Algorithm is
also polynomially bounded in the size of a minimal NFA for the language.

40

4.1. The Complexity of the DRE-Definability Problem

4.1.3 Consistency Violations

In the following we analyze the possible causes of failure for the BKW-Algorithm.
To this end, we identify three properties such that the BKW-Algorithm fails if
and only if one of them holds for some orbit automaton at some level k.

When examining Algorithm 1 one can immediately see that there are two sit-
uations in which it can reject at some point in the recursion: (in line 6) when the
automaton consists only of one orbit that has no D-consistent symbols or (in line 8)
when the S-cut of the automaton does not have the orbit property. The latter means
that there exist two gates of the same orbit in the S-cut such that either they do
not have the same transitions to the outside or one of them is accepting while the
other one is not. We now formalize these different types of violations and prove
afterwards that the BKW-Algorithm fails for some input if and only if one of
these violations is found at some point in the recursion.

4.1.10 Definition. Let D be a minimal DFA D and S the set of D-consistent
symbols. Then, D has an

– out-consistency violation if there exist gates q1 and q2 in the same orbit O
of DS and there exists a state q outside O such that there is a transition
q1

a−→ q and no transition q2
a−→ q,

– acceptance consistency violation if there exist gates q1 and q2 in the same orbit
of DS such that q1 is accepting and q2 is not, and

– orbit consistency violation if there exists an accepting state q1 such that, for
every symbol a, there exists another accepting state q2 in O(q1) in D such
that for every state q at most one of the transitions q1

a−→ q and q2
a−→ q exists.

(Notice that δ(q1, a) may be empty because D contains only useful states.)

We say that a DFA D has a violation if and only if it has at least one of the above
violations.

Notice that similar to the BKW-Algorithm the first two violations focus onDS

and the last one on D. We show next that these violations are a valid characteriza-
tion of DRE-definable languages.

4.1.11 Theorem. Let D be a minimal DFA. Then, L(D) is not DRE-definable if
and only if there exist a state q of D and a number k ∈ N such that levk(D, q) has
a violation.

Proof. We prove the direction from right to left first. Therefore, we distinguish three
cases depending on the violation that occurs in levk(D, q).

If for some state q of D and a number k ∈ N the automaton levk(D, q)Sk
has an

out-consistency violation or an acceptance consistency violation then levk(D, q)Sk

does not fulfill the orbit property. By Lemma 4.1.3 it holds L(D) is not DRE-
definable.

41

4. Regular Expressions in XML Schema Languages

If levk(D, q) has an orbit consistency violation then there does not exist a
levk(D, q)-consistent symbol. In the case that k ≥ 1 we also know that levk(D, q)
has only one orbit. Thus, L(levk(D, q)) is not DRE-definable by Theorem 3.3.8. It
follows that L(D) is not DRE-definable by Lemma 4.1.3. In the case that k = 0 the
automaton lev1(D, q) is the orbit automaton of q in D. This automaton consists of
a single orbit whose states are the ones in the orbit of q in D. (Since there does not
exist a D-consistent symbol by assumption we have that DS = D.) Furthermore,
there still cannot exist a lev1(D, q)-consistent symbol because all accepting states of
the orbit of q in D are still accepting in lev1(D, q). Therefore, L(lev1(D, q)) is not
DRE-definable by Theorem 3.3.8 and, thus, the language L(D) is not DRE-definable
by Lemma 4.1.3.

It remains to prove the direction from left to right. Therefore, assume that L(D)
is not DRE-definable. By Lemma 4.1.3 there exist a state q and a number k such
that L(levk(D, q)) is not DRE-definable, i.e., the BKW-Algorithm fails when
given levk(D, q) as input. If we assume that it fails in line 6 then there does not
exist a levk(D, q)-consistent symbol. Thus, an orbit consistency violation occurs in
levk(D, q). If we assume that it fails in line 8 then levk(D, q)Sk

does not have the
orbit property. Thus, either an out-consistency violation occurs in levk(D, q)Sk

or an
acceptance consistency violation occurs in levk(D, q)Sk

. This concludes the proof. �

4.1.4 DRE-Definability for REs and NFAs

We are now ready to prove that DRE-Definability for NFAs and REs is in
PSPACE. Therefore, we construct an algorithm that exploits Theorem 4.1.11 in
the following way. Given an NFA N , it searches for a level k and a state p in the
minimal DFA [N] such that levk([N], p) has a violation. Since PSPACE is closed
under complement the result holds.
Notice that [N] can be exponentially larger than N in general and, therefore, that
we cannot simply compute [N] in polynomial space in the size of N . To overcome
this difficulty we use the following two ideas:

(1) Use the fact that the maximal recursion depth of Algorithm 1 on [N] is poly-
nomial in the size of the NFA N (see Theorem 4.1.9).

(2) Adapt Algorithm 1 using Theorem 4.1.11 and apply it on the minimal DFA [N]
which is constructed on-the-fly from the NFA.

In the following we explain how the algorithm can detect whether there is a
violation in the minimal DFA [N] on-the-fly. To this end, we fix the following
notation. By N = (QN ,Σ, δN , q

0
N , FN) we always denote an NFA. By [N] we denote

the minimal DFA for L(N). Since the algorithm computes [N] on-the-fly we often
identify the states in [N] only by a set of states in QN . For a set of states q ⊆ QN we
denote by [q] the corresponding state in the minimal DFA [N]. More precisely, [q]
is the state that can be reached by the following set of words in the minimal DFA:
{w | ∃t ∈ q such that δ∗N(t, w) ∩ FN 6= ∅}, i.e., the Myhill-Nerode equivalence class
of q. (Notice that the automaton [N] can be obtained by merging states of the

42

4.1. The Complexity of the DRE-Definability Problem

power set automaton P(N) [HMU13].) Whenever we talk about levk([N], [q])Sk
the

set Sk is the set of levk([N], [q])-consistent symbols.
The key result of this section (which is obtained in Lemma 4.1.22) proves that

we can detect whether there is a violation for [N] in level k in polynomial space in k
and the size of N . To this end, we consider the following precise problems:

– Out-Cons-Violation: Given an NFA N and a number k ∈ N.
Is there a q ⊆ QN such that levk([N], [q])Sk

has an out-consistency violation?

– Acc-Cons-Violation: Given an NFA N and a number k ∈ N.
Is there a q ⊆ QN such that levk([N], [q])Sk

has an acceptance consistency
violation?

– Orbit-Cons-Violation: Given an NFA N and a number k ∈ N.
Is there a q ⊆ QN such that levk([N], [q]) has an orbit consistency violation?

To decide the above problems we study the complexity of the following subprob-
lems first. For an NFA N , non-empty sets p, q ⊆ QN , a ∈ Σ, and a number k ∈ N
we define:

– BkwEdge: Given (N, p, q, a, k).
Is [p]

a−→ [q] a transition in levk([N], [p])?

– BkwReachability: Given (N, p, q, k).
Is [q] reachable from [p] in levk([N], [p])?

– SameOrbit: Given (N, p, q, k).
Are [p] and [q] in the same orbit of levk([N], [p])?

– InterOrbit: Given (N, p, k).
Is there an inter-orbit transition [p]

a−→ [q] for some label a and q in levk([N], [p])?

– BkwAcceptance: Given (N, p, k).
Is [p] accepting in levk([N], [p])?

– IsGate: Given (N, p, k).
Is [p] a gate in levk([N], [p])?

Notice that SameOrbit and InterOrbit are only non-trivial if k = 0. (Level k
automata for k > 0 always have exactly one orbit.) Moreover, we consider for each
of the above problems X a variation called X-Cut which decides, given the same
input, whether the problem X is true for the automaton levk([N], [p])Sk

(instead of
levk([N], [p])). Whenever we say that a problem X (or X-Cut) for N at level k can
be decided, we mean that it can be decided for the NFA N and arbitrary sets of
states p, q ⊆ QN , a ∈ Σ, and k.

Our proof that DRE-Definability(NFA) is in PSPACE is a careful mutual
induction on the above problems. We briefly outline the proof in the following.
First, we show that BkwEdge, BkwEdge-Cut, and BkwAcceptance for N

43

4. Regular Expressions in XML Schema Languages

at level 0 can be decided (see Lemmas 4.1.12 and 4.1.13). Second, we prove in
Lemmas 4.1.14 to 4.1.18 a set of implications that are of the form: If problem X
for N at level k can be decided then problem Y for N at level k (or level k + 1)
can also be decided. In Lemmas 4.1.19 to 4.1.21 we combine the previous lemmas
to prove that each of the above problems for N at level k can be decided. Finally,
we prove in Lemma 4.1.22 that we can detect whether there is a violation for [N] at
level k. In Theorem 4.1.23 we state that DRE-Definability(NFA) is in PSPACE.

The basis of the entire mutual induction relies on being able to test whether
some state is accepting in [N], whether a certain transition is present in [N], and
whether a certain transition is present in the S-cut [N]S. Before we can decide
these questions, we need that it can be decided whether two states [p] and [q] for
p, q ⊆ QN are equivalent in [N].

4.1.12 Lemma. Given N and p, q ⊆ QN , it can be tested whether [p] = [q] in space
O(|N |2).

Proof. We show that a nondeterministic Turing machine can test in nondeterminis-
tic space O(|N |) whether [p] 6= [q]. The statement then holds by Savitch’s Theorem
and the Immerman-Szelepscényi Theorem (see, e.g., Section 2.4).

Notice that we will consider the power set automaton of N with its useless states
in this proof because we want to state a procedure that is correct even if p or q are
not states of P(N). To this end, let P(N)′ = (QP(N)′ ,Σ, δP(N)′ , {q0

N}, QP(N)′) be the
power set automaton of N (with all useless states). That is, QP(N)′ is the power set
of QN and δP(N)′(q, a) = {s | ∃t ∈ q such that s ∈ δN(t, a)}.

The nondeterministic Turing machine checks whether there exists a Σ-word w
such that exactly one of the two states δ∗P(N)′(p, w) and δ∗P(N)′(q, w) is accepting. If
such a word w exists, it implies that the two states p and q are not in the same
Myhill-Nerode equivalence class. Towards the test, the Turing machine checks first
whether exactly one of the two states p or q is accepting in P(N)′. If this is the
case then it accepts immediately. (This situation corresponds to w = ε above.)
Otherwise, it guesses the word w = a1 · · · ak symbol by symbol and stores, for every
i = 1, . . . , k, the current states δ∗P(N)′(p, a1 · · · ai−1) and δ∗P(N)′(q, a1 · · · ai−1) on the
tape. The machine updates these two states after every new guess of a symbol ai ∈ Σ.
Since a state in P(N)′ is a set of states of N the test requires space O(|N |). �

4.1.13 Lemma. BkwEdge, BkwAcceptance, and BkwEdge-Cut for N at
level 0 can be decided in space O(|N |2).

Proof. We first show how to check, for a given non-empty set p ⊆ QN , whether [p]
is a state in [N], i.e., whether it is useful. Since N only has useful states there exists
a path from [p] to some accepting state in [N]. Thus, it is enough to check whether
there is a path from [{q0

N}] to [p] which can be done by a nondeterministic algorithm
working in space O(|N |). The algorithm guesses a word symbol by symbol, simu-
lates P(N) on-the-fly starting from {q0

N}, and tests at each step whether the reached
state q is equivalent to p, i.e., if [p] = [q]. By Savitch’s Theorem and Lemma 4.1.12,
this can be done by a deterministic algorithm working in space O(|N |2).

44

4.1. The Complexity of the DRE-Definability Problem

We now turn our attention to BkwEdge when given (N, p, q, a, 0) as input. We
have to decide whether the transition [p]

a−→ [q] is present in [N]. Since [N] only has
useful states we have to show that the following holds in [N]:

– [p] and [q] are states in [N], and

– [δP(N)(p, a)] = [q] where P(N) is the power set automaton of N .

The former can be decided in O(|N |2) as we have seen above. For the latter notice
that, given p and a, we can compute δP(N)(p, a) in space O(|N |). According to
Lemma 4.1.12 we can then decide if [δP(N)(p, a)] = [q] in space O(|N |2).

We now show that BkwAcceptance for N at level 0 can be decided in space
O(|N |2) when given (N, p, 0) as input. We know that [p] is accepting in lev0([N], [p])
if and only if [p] is a (useful) state in [N] and p∩FN 6= ∅. Using the same arguments
as above, the former can be done in space O(|N |2) and the latter in space O(|N |).

Finally, we focus on BkwEdge-Cut when given (N, p, q, a, 0) as input. Notice
that lev0([N], [p])S = [N]S where S is the set of [N]-consistent symbols. We have to
decide whether the transition [p]

a−→ [q] is present in [N]S and is not deleted in the
S-cut [N]S. We can test whether [p]

a−→ [q] is a transition in [N] in space O(|N |2)
by the test for BkwEdge from above. If [p]

a−→ [q] is a transition in [N] then we
test whether [p] is accepting, which can be done in space O(|N |2) (as we have seen
above). If [p] is accepting then [p]

a−→ [q] is a transition in [N]S if and only if a is
not [N]-consistent. To decide this we iterate over all states p′ ⊆ QN of P(N), test
whether [p′] is accepting in [N], and whether [p′] does not have an a-transition to [q].
More precisely, we test, for every state p′ of P(N), whether BkwAcceptance
for [p′] returns true and BkwEdge for (N, [p′], [q], a, 0) returns false. As we have
seen above BkwEdge and BkwAcceptance can be decided in space O(|N |2) in
this case. This concludes the proof. �

In the following we show that if BkwEdge can be decided at a certain level
then also BkwReachability, SameOrbit, and InterOrbit can be decided at
this level. This statement also holds for the Cut-variants of these problems.

4.1.14 Lemma. Assume that BkwEdge for N at level k can be decided in space
f(k, |N |). Then,

– BkwReachability for N at level k can be decided in space f(k, |N |)+ O(|N |2),

– SameOrbit for N at level k can be decided in space f(k, |N |) +O(|N |2), and

– InterOrbit for N at level k can be decided in space f(k, |N |) +O(|N |2).

Analogously, if BkwEdge-Cut for N at level k can be decided in space f(k, |N |)
then BkwReachability-Cut, SameOrbit-Cut, and InterOrbit-Cut for N
at level k can be decided in space f(k, |N |) +O(|N |2).

Proof. We prove the statement for BkwReachability, SameOrbit, and In-
terOrbit. For the Cut-variants the statement can be proved analogously using
BkwEdge-Cut instead of BkwEdge.

45

4. Regular Expressions in XML Schema Languages

We show first how to decide BkwReachability when given (N, p, q, k) as input.
The proof is analogous to the one of Savitch’s Theorem (which shows that graph
reachability is in space O(log2 n)). The proof of Savitch’s Theorem can be sketched
as follows. Let G be a graph, x and y be nodes in G, and ` be a number. The
predicate Path(G, x, y, `) denotes whether there is a path from x to y in G of
length at most `. It can be computed in space O(log2 |G|) by a recursive algorithm
that searches for a mid-point on the path. In our case we ask whether there exists
a path from [p] to [q] in levk([N], [p]). To answer this question we use a very similar
procedure as in the proof of Savitch’s Theorem. The only difference is that when we
need to test whether there is a transition we use the procedure BkwEdge for N at
level k. Since the size of [N] is O(2|N |) this needs space f(k, |N |) +O(|N |2).

Next, we show how to decide SameOrbit for N at level k when given (N, p, q, k)
as input. We know that [p] and [q] are in the same orbit if and only if BkwReach-
ability is true for (N, p, q, k) and for (N, q, p, k), i.e., [q] is reachable from [p] in
levk([N], [p]) and vice versa. Thus, if BkwReachability for N at level k can
be decided in space f(k, |N |) + O(|N |2) then SameOrbit for N at level k can be
decided in space f(k, |N |) +O(|N |2).

Finally, we show how to decide InterOrbit for N at level k when given (N, p, k)
as input. The problem can be decided by enumerating all a ∈ Σ and testing
whether [p] and [δP(N)(p, a)] are not in the same orbit, i.e., checking whether Same-
Orbit returns false for these states. Since SameOrbit can be decided in space
f(k, |N |) + O(|N |2) this test requires space f(k, |N |) + O(|N |2 + |N | + log |Σ|) =
f(k, |N |) +O(|N |2) in total. �

Next, we show that if BkwEdge and BkwAcceptance can be decided at a
certain level then also BkwEdge-cut can be decided at this level.

4.1.15 Lemma. Assume that BkwEdge and BkwAcceptance for N at level k
can be decided in space f(k, |N |) and that levk([N], [p]) has no violation. Then
BkwEdge-Cut for N at level k can be decided in space f(k, |N |) +O(|N |).

Proof. Let the input for BkwEdge-Cut at level k be (N, p, q, a, k). Then there is
a transition [p]

a−→ [q] in levk([N], [p])Sk
if and only if all of the following hold:

– there is a transition [p]
a−→ [q] in levk([N], [p]),

– [p]
a−→ [q] is not deleted in the Sk-cut, and

– levk([N], [p]) has no violation.

By assumption we know that levk([N], [p]) has no violation and that we can test
whether there is a transition [p]

a−→ [q] in levk([N], [p]) in space f(k, |N |). In order to
check whether the transition is deleted in the Sk-cut we test whether [p] is accepting
in levk([N], [p]). By assumption this can also be done in space f(k, |N |). Afterwards,
we check whether there is a state p′ ⊆ QN in [N] such that [p′] is accepting and does
not have an a-transition to [q] in levk([N], [p]). Again, both can be decided in space
f(k, |N |) by assumption. In total we need space O(|N |) to store p, q, p′ and a and
space f(k, |N |) to decide BkwEdge and BkwAcceptance. This concludes the
proof. �

46

4.1. The Complexity of the DRE-Definability Problem

In Lemmas 4.1.16 to 4.1.18 we prove that we can compute the structure of the
automaton at level k + 1 under the assumption that the automaton at level k is
already computed. In this way, the next lemmas formalize a single induction step
of our overall proof for DRE-Definability(NFA) is in PSPACE.

4.1.16 Lemma. Assume that BkwEdge-Cut and BkwAcceptance for N at
level k can be decided in space f(k, |N |) and that levk([N], [p]) has no violation.
Then, BkwAcceptance for N at level k + 1 can be decided in space f(k, |N |) +
O(|N |2).

Proof. Let (N, p, k+1) be the input for BkwAcceptance. Then [p] is an accepting
state in levk+1([N], [p]) if and only if levk([N], [p])Sk

has the orbit property and either

– [p] is accepting in levk([N], [p]), or

– [p] has an outgoing inter-orbit transition in levk([N], [p])Sk
.

Since levk([N], [p]) has no violation we know that levk([N], [p])Sk
has the orbit prop-

erty. By Lemma 4.1.14 we can test whether [p] has an outgoing inter-orbit transition
in levk([N], [p])Sk

in space f(k, |N |) +O(|N |2). �

4.1.17 Lemma. Assume that BkwEdge-Cut for N at level k can be decided in
space f(k, |N |) and that levk([N], [p]) has no violation. Then, BkwEdge for N at
level k + 1 can be decided in space f(k, |N |) +O(|N |2).

Proof. Let (N, p, q, a, k+ 1) be the input for BkwEdge. Then there is a transition
[p]

a−→ [q] in levk+1([N], [p]) if and only if all of the following hold:

– there is a transition [p]
a−→ [q] in levk([N], [p])Sk

,

– [p] and [q] are in the same orbit in levk([N], [p])Sk
, and

– levk([N], [p]) has no violation.

By assumption we know that levk([N], [p]) has no violation and that we can test
whether there is a transition [p]

a−→ [q] in levk([N], [p])Sk
in space f(k, |N |). By

Lemma 4.1.14 we can check whether [p] and [q] are in the same orbit in levk([N], [p])Sk

in space f(k, |N |) +O(|N |2). �

4.1.18 Lemma. Assume that BkwEdge and BkwAcceptance for N at level k
can be decided in space f(k, |N |) and that levk([N], [p]) has no violation. Then,
BkwEdge and BkwAcceptance for N at level k + 1 can be decided in space
f(k, |N |) +O(|N |2).

Proof. Since BkwEdge and BkwAcceptance for N at level k can be decided
in space f(k, |N |) by assumption, BkwEdge-Cut for N at level k can be de-
cided in space f(k, |N |) + O(|N |) by Lemma 4.1.15. Then BkwEdge-Cut and
BkwAcceptance for N at level k can be decided in space f(k, |N |) such that
BkwAcceptance for N at level k+ 1 can be decided in space f(k, |N |) +O(|N |2)
by Lemma 4.1.16. Finally, since BkwEdge-Cut for N at level k can be de-
cided in space f(k, |N |), BkwEdge for N at level k + 1 can be decided in space
f(k, |N |) +O(|N |2) by Lemma 4.1.17. �

47

4. Regular Expressions in XML Schema Languages

We now combine the previous lemmas to show that BkwEdge and BkwAc-
ceptance for N (see Lemma 4.1.19) and IsGate-Cut for N (see Lemma 4.1.20)
can be decided for an arbitrary level k and in polynomial space in k and the size
of N . For technical reasons we need the assumption that all level i (0 ≤ i ≤ k − 1)
automata levi([N], [p]) have no violation. This is because, otherwise, the level k
automaton would be empty.

4.1.19 Lemma. Assume that for 0 ≤ i ≤ k − 1 all automata levi([N], [p]) have no
violation. Then, BkwEdge and BkwAcceptance for N at level k can be decided
in space O((k + 1)|N |2).

Proof. To prove the desired upper bound we show that there is a constant c > 0
such that BkwEdge and BkwAcceptance for N at level k can be decided using
at most space c(k + 1)|N |2. By Lemma 4.1.13 we know that there is a constant
c1 such that BkwEdge and BkwAcceptance for N at level 0 can be decided
in space c1|N |2. Similarly, let c2 be the constant from Lemma 4.1.17 such that
BkwEdge and BkwAcceptance for N at level k + 1 can be decided in space
f(k, |N |) + c2|N |2. Notice that c2 does not depend on k. We take c = max{c1, c2}.

The proof is by induction on k. For the base case, k = 0, the lemma statement
holds by Lemma 4.1.13. Assume that the lemma is true for k, i.e., BkwEdge
and BkwAcceptance can be decided for N at level k in space c(k + 1)|N |2. By
Lemma 4.1.17 BkwEdge and BkwAcceptance for N at level k+1 can be decided
in space c(k + 1)|N |2 + c2|N |2 ≤ c(k + 2)|N |2. This concludes the proof. �

4.1.20 Lemma. Assume that, for 0 ≤ i ≤ k−1, all automata levi([N], [p]) have no
violation. Then, IsGate-Cut for N at level k can be decided in space O((k + 1)|N |2).

Proof. Let (N, p, k) be the input for IsGate-Cut. Then the state [p] is a gate in
levk([N], [p])Sk

if and only if levk([N], [p]) has no violation and at least one of the
following holds:

– [p] is accepting in levk([N], [p])Sk
, or

– [p] has an outgoing inter-orbit transition in levk([N], [p])Sk
.

By assumption levk([N], [p]) has no violation. By Lemma 4.1.19 BkwAccep-
tance and BkwEdge for N at level k can be decided in space O((k + 1)|N |2).
Thus, InterOrbit for N at level k can be decided in space O((k + 1)|N |2) by
Lemma 4.1.14. �

We are now ready to show that we can decide all the necessary subproblems of
a level k automaton for arbitrary k ∈ N in polynomial space. However, notice that
we only need the Cut-variant of the problem IsGate.

4.1.21 Lemma. Assume that, for 0 ≤ i ≤ k − 1, all automata levi([N], [p]) have
no violation. Then, BkwEdge, BkwReachability, SameOrbit, InterOrbit,
BkwAcceptance and BkwEdge-Cut, BkwReachability-Cut, SameOrbit-
Cut, InterOrbit-Cut, and IsGate-Cut for N at level k can be decided in space
O((k + 1)|N |2).

48

4.1. The Complexity of the DRE-Definability Problem

Proof. By Lemma 4.1.19 BkwEdge and BkwAcceptance for N at level k can
be decided in space O((k + 1)|N |2). For IsGate-Cut the statement holds by
Lemma 4.1.20. Thus we have that, for Lemmas 4.1.14 and 4.1.15, f(k, |N |) ∈
O((k + 1)|N |2). Therefore, the assumption holds for BkwReachability, Same-
Orbit, InterOrbit, BkwReachability-Cut, SameOrbit-Cut, InterOr-
bit-Cut, and BkwEdge-Cut. �

By Lemma 4.1.21 we can decide on-the-fly which transitions are present and
which states are accepting in a level k automaton (still under the assumption that
no violations occur in levels smaller than k). Since we can compute the entire
structure of a level k automaton via these subproblems, we can now also decide
whether there is a violation at level k.

4.1.22 Lemma. Assume that, for 0 ≤ i ≤ k − 1, all automata levi([N], [p]) have
no violation. Then, Out-Cons-Violation, Acc-Cons-Violation and Orbit-
Cons-Violation for N at level k can be decided in space O((k + 1)|N |2).

Proof. Let N be the input for Out-Cons-Violation at level k. By definition an
out-consistency violation occurs at level k of N if and only if there exist p, q ⊆ QN

such that the following holds:

– all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation,

– [p] and [q] are gates in levk([N], [p])Sk
,

– [p] and [q] are in the same orbit of levk([N], [p])Sk
, and

– there exist a symbol a ∈ Σ and [q′] outside the orbit of [p] such that [p]
a−→ [q′]

but [q]
a9 [q′] in levk([N], [p])Sk

.

By assumption all levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation. Then, IsGate-
Cut and SameOrbit-Cut for N at level k can be decided in space O((k + 1)|N |2)
by Lemma 4.1.21. The last point can then be decided by enumerating all a ∈ Σ and
states q′ ⊆ QN where for each pair a and q′ it is checked whether [p] and [q′] are in
different orbits and [p]

a−→ [q′] exists but [q]
a−→ [q′] does not exist. By Lemma 4.1.21

this can be done in space O((k+1)|N |2), which concludes the proof for Out-Cons-
Violation.

Now, let N be the input for Acc-Cons-Violation at level k. By definition, an
Acc-Cons-Violation occurs at level k of N if and only if there exist p, q ⊆ QN

such that the following holds:

– all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation,

– [p] and [q] are in the same orbit of levk([N], [p])Sk
,

– [p] and [q] are gates of levk([N], [p])Sk
, and

– exactly one of the states [p] and [q] is accepting in levk([N], [p])Sk
.

49

4. Regular Expressions in XML Schema Languages

By assumption all levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation. By Lem-
mas 4.1.21 and 4.1.20 SameOrbit-Cut, IsGate-Cut and BkwAcceptance at
level k for N can be decided in O((k + 1)|N |2), which concludes the proof to Acc-
Cons-Violation.

Next, let N be the input for Orbit-Cons-Violation at level k. We know an
Orbit-Cons-Violation occurs at level k of N if and only if there exists a set
q1 ⊆ QN such that the following holds:

– all automata levi([N], [q1]) for 0 ≤ i ≤ k − 1 have no violation,

– [q1] is accepting in levk([N], [q1]), and

– for every symbol a, there exists an accepting state [q2] ∈ O([q1]) such that, for
every state [q] ∈ [N], at most one of the transitions [q1]

a−→ [q] and [q2]
a−→ [q]

exists in levk([N], [q1]).

By assumption all levi([N], [q1]) for 0 ≤ i ≤ k − 1 have no violation. By
Lemma 4.1.21 SameOrbit, BkwAcceptance and BkwEdge can be decided
in space O((k + 1)|N |2). In addition, space O(|N |) is needed to store [q1], [q2], [q],
and a. This concludes the proof for Orbit-Cons-Violation. �

Finally, we have all the ingredients to prove our main result.

4.1.23 Theorem. DRE-Definability(NFA) and DRE-Definability(RE) are
PSPACE-complete.

Proof. It is known that DRE-Definability(RE) is PSPACE-hard which was first
proved by a reduction from corridor tiling (see, e.g., [vEB97]) in [BGMN09]. A much
shorter and less complex proof of this result is given in the thesis of Groz [Gro12]. We
illustrate this proof in the following. Groz reduces from Universality for regular
expressions. For a regular expression e the reduction constructs the expression
r = Σ∗#(a + b)∗a(a + b) + e#Σ∗. For this expression, it holds that L(r) is DRE-
definable if and only if L(e) = Σ∗. (Recall that L((a + b)∗a(a + b)) is not DRE-
definable.) Since an RE can be translated to an equivalent NFA in polynomial time,
the lower bound directly holds for NFAs.

We now prove that DRE-Definability for an NFA N is in space O(|N |4). We
assume that |Σ| ≤ |N | without loss of generality. By Theorem 4.1.11 we know that
L(N) is not DRE-definable if and only if a violation occurs at some level k for N .
By Theorem 4.1.9 the recursion depth of Algorithm 1 is at most |N |2 + 2, i.e., only
levels k ∈ {0, . . . , |N |2 + 2} are relevant for the problem.

Our PSPACE algorithm checks for violations starting from level 0 on moving to
higher levels up to |N |2 + 2. For every single level k violations can be detected in
space O((k+ 1)|N |2) by Lemma 4.1.22. Notice that we can apply the above lemma
because we know that all smaller levels are checked beforehand and, therefore, do
not contain any violation. In summary, DRE-Definability for an NFA N can be
tested in space O((k + 1)|N |2) for k = |N |2 + 2, i.e., in O(|N |4). The upper bound
directly transfers to REs. �

An alternative algorithm for DRE-Definability(NFA) that was obtained in-
dependently needs only quadratic space and was presented in [LBC14].

50

4.1. The Complexity of the DRE-Definability Problem

4.1.5 DRE-Definability for RE(#)s and minimal DFAs

We now settle the complexity for the problem DRE-Definability(RE(#)). After-
wards, we prove an NLOGSPACE lower bound for DRE-Definability(minDFA).

4.1.24 Theorem. DRE-Definability(RE(#)) is EXPSPACE-complete.

Proof. The EXPSPACE upper bound is immediate from Theorem 4.1.23 and the
fact that RE(#)s can always be translated to REs that are only exponentially larger
by unfolding the counting operators.

We prove the lower bound by a reduction from Universality for RE(#).
This problem is known to be EXPSPACE-complete which was proved by Meyer
and Stockmeyer. In [MS72] they showed that Universality for regular expres-
sions with squaring (i.e., regular expressions that only allow counters (2, 2)) is
EXPSPACE-complete. The reduction for RE(#) is analogous to the reduction for
RE in [Gro12] (see also Theorem 4.1.23) which shows that DRE-Definability(RE)
is PSPACE-hard. More precisely, it constructs, given an RE(#) e, the expression
r = Σ∗#(a + b)∗a(a + b) + e#Σ∗ where # is a symbol that is not used in the lan-
guage of e. To prove correctness of the reduction recall that L((a + b)∗a(a + b)) is
not DRE-definable. Thus, L(r) is DRE-definable if and only if L(e) = Σ∗. �

As mentioned before, DRE-Definability can be solved in polynomial time
when the input is a minimal DFA [BKW98]. In [LBC14] it was shown that DRE-
Definability is in NLOGSPACE when the input is a minimal DFA over an al-
phabet that is of size at most logarithmic in the number of states in the DFA. We
prove that the problem is NLOGSPACE-hard. The precise complexity for arbitrary
regular languages remains open.

4.1.25 Theorem. DRE-Definability(minDFA) is NLOGSPACE-hard.

Proof. The proof is by a LOGSPACE reduction from the complement of the Reach-
ability problem for directed acyclic graphs, which is known to be NLOGSPACE-
complete [Jon75]. For our reduction we use that Reachability for directed acyclic
graphs is already NLOGSPACE-complete when every node in the graph has out-
degree at most two. We restrict ourselves to such instances because we aim to
construct a reduction over an alphabet of fixed size. Moreover, the reduction re-
lies on the fact that finite languages are always DRE-definable [BKW98]. Since
NLOGSPACE coincides with coNLOGSPACE this proves the assumption.

Let G = (V,E) be an acyclic graph where every node in V has at most out-
degree two and let x and y be nodes in V . The Reachability problem decides
whether y is reachable from x by a directed path. In our reduction we construct a
minimal DFA D such that L(D) is DRE-definable if and only if node y is reachable
from node x in G.

The minimal DFA D is defined as the tuple (Q,Σ, δ, q0, {q|V |}) where Q = V]
{q0, q1, . . . , q|V |} is the finite set of states (i.e., each node in V is associated with
a state in Q and, additionally, D has new states q0, q1, . . . , q|V |), q0 is the initial
state, q|V | is the only accepting state, and Σ = {a, b, c, d, e} is the finite alphabet.
Moreover, let V = {v1, . . . , vn} be the nodes of G. Then D contains the following
transitions:

51

4. Regular Expressions in XML Schema Languages

– δ(vi, a) = v1
j and δ(vi, b) = v2

j for each node vi ∈ V and edges (vi, v
1
j) ∈ E and

(vi, v
2
j) ∈ E (if vi has only one outgoing edge then D has only one a-labeled vi-

outgoing transition, and if vi has no outgoing edges then D has no vi-outgoing
transitions),

– δ(q0, a) = vi and δ(vi, c) = qi for each node vi,

– δ(qi, d) = qi+1 for each node qi with 0 < i < |V |, and

– δ(y, e) = x.

This concludes our reduction. Notice that it is computable in LOGSPACE. Next,
we prove that the reduction is correct. Therefore, we prove that the following holds
for the minimal DFA D:

(1) D is a minimal DFA, and

(2) L(D) is DRE-definable if and only if y is not reachable from x in G.

We prove (1) first. By definition D is a DFA. To see that D is minimal observe
that, for every pair q and q′ of states in D, it holds that either δ(q, cdi) = q|V | and
δ(q′, cdi) 6= q|V |, or δ(q, di) = q|V | and δ(q′, di) 6= q|V |, for some i ∈ {0, . . . , |V |}.
Thus, there do not exist two states that are in the same Myhill-Nerode equivalent
class of D. This proves that D is minimal.

Concerning (2) we prove first that the implication from right to left holds. As-
sume that there is no path from x to y in G. Towards a contradiction, assume
also that there exists a cycle in D. The cycle cannot contain one of the states
q0, . . . , q|V | because q0 has no incoming transitions, every state qi reaches only states
qj with j > i, and q|V | has no outgoing transitions. Hence, the cycle can only use
transitions that originate from the edges of G and the transition from y to x. More-
over, the cycle has to contain the transition from y to x since the graph G is acyclic
(and the structure of the graph is maintained in D). Thus, the rest of the cycle
forms a path from x to y, which contradicts our assumption. It follows that D has
to be acyclic, which means that L(D) has to be finite. Since every finite language
is DRE-definable, the implication from right to left holds.

Second, we show that the implication from left to right holds. Towards a contra-
diction, assume that L(D) is DRE-definable but y is reachable from x in G. Then,
x and y are in the same orbit of D. This orbit cannot contain any of the states
q1, . . . , q|V | because these states cannot reach a state vi in D. Therefore, the transi-
tions (x, c, qi) and (y, c, qj) with i 6= j are inter-orbit transitions and, hence, x and y
are gates of the same orbit. However, these transitions are not out-consistent which
implies that D does not fulfill the orbit property. By Theorem 3.3.7, L(D) is not
DRE-definable. This contradicts our assumption and concludes the proof. �

Notice that, in contrast to our proof in [CDLM13], we provide here a reduction
that constructs a minimal DFA that works over an alphabet of fixed size (instead of
an alphabet of size |Q|2).

52

4.2. Descriptional Complexity of Deterministic Regular Expressions

4.2 Descriptional Complexity of Deterministic
Regular Expressions

In this section we consider the relative descriptional complexity of REs, DREs
and DFAs. It is well-known that an exponential blow-up cannot be avoided when
translating REs to minimal DFAs in the worst case [HMU13]. Ehrenfeucht and
Zeiger [EZ76] proved that there also are minimal DFAs that are exponentially more
succinct than every equivalent RE. In [GH08, GJ08] the authors exhibited certain
characteristics of automata which make equivalent regular expressions large. How-
ever, these results cannot naïvely be transferred to DREs because the languages that
are used to prove lower bounds on the size of REs (see, e.g., [EZ76, GH08, GJ08])
are not definable by DREs. Therefore, we have to find new languages and techniques
to prove similar bounds for DRE-definable languages. An overview of our results on
the descriptional complexity of DRE-definable languages is shown in Table 4.2.

RE DRE DFA case exists? reference
Θ(n) Θ(n) Θ(n) yes Obs. 4.2.1
Θ(n) 2Ω(n) 2Ω(n) yes Cor.4.2.6
2Ω(n) 2Ω(n) Θ(n) ?
Θ(n) 2Ω(n) Θ(n) yes Cor.4.2.7

Table 4.2: Relative descriptional complexity for DRE-definable languages [LMN12]. In
the table, n is the size of a minimal representation for a given language. If a case exists,
then there exist infinitely many DRE-definable languages such that the minimal REs,
DREs, and DFAs for these languages exhibit the specified complexity.

Since every DRE is an RE, we know that every minimal RE for a language L
is smaller or equal to a minimal DRE for L. Moreover, Brüggemann-Klein and
Wood showed that, given a DRE r, one can construct a DFA D for L(r) with size
O(|Σ||r|) [BK93]. Therefore, the table contains all substantial cases that ought to
be considered. However, one special case that is not in the table is whether there
are minimal REs that are double-exponentially more succinct than their equivalent
minimal DREs. More precisely, this means that for such REs there would exist an
exponential blow-up when translating them to a minimal DFA and another expo-
nential blow-up when translating the DFA to a minimal DRE. Whether there exist
DRE-definable languages that exhibit such a behavior is still an open problem.

Before we prove the results from the table above, we briefly examine the relative
descriptional complexity of REs, DFAs, and DREs for finite languages. Since every
finite language is DRE-definable (see, e.g., [BGMN09]), all known lower bounds
on the descriptional complexity for DFAs and REs for finite languages transfer to
DREs (see Table 4.3).

53

4. Regular Expressions in XML Schema Languages

RE DRE DFA case exists? reference
Θ(n) Θ(n) Θ(n) yes Obs. 4.2.1
Θ(n) 2Ω(n) 2Ω(n) yes [Man73, BKW98]
2Ω(n) 2Ω(n) Θ(n) no [EKSW04]
Θ(n) 2Ω(n) Θ(n) yes Th.4.2.4
nΩ(logn) nΩ(logn) Θ(n) yes [GJ08]

Table 4.3: Relative descriptional complexity for finite languages. In the table, n is the
size of a minimal representation for a given language. If a case exists, then there exist
infinitely many finite languages such that the minimal REs, DREs, and DFAs for these
languages exhibit the specified complexity.

In Sections 4.2.1 and 4.2.2, we present the proofs for the results from Tables 4.2
and 4.3. Before, we start with a trivial observation which shows that there are
languages that do not cause any significant blow-up between the different represen-
tations.

4.2.1 Observation. There exists a family of finite languages (Ln)n∈N and a family
of infinite languages (L′n)n∈N such that, for each n ∈ N, the minimal DFAs, minimal
REs, and minimal DREs for Ln and L′n have size Θ(n).

To see that the observation is true consider, for each n ∈ N, the finite language
L(an) and the infinite language L((an)∗).

4.2.1 DREs for Finite Languages

We briefly review known results on the descriptional complexity of finite languages.
In 1973, Mandl showed that there is a family of finite languages such that a minimal
RE for a language in this family is exponentially more succinct than the equivalent
minimal DFA. Brüggemann-Klein and Wood showed that, for these languages, a
minimal RE is also exponentially more succinct than an equivalent minimal DRE.

4.2.2 Theorem ([Man73, BKW98]). Let Ln = L((a + b)0,na(a + b)n) for every
n ∈ N. Then, every minimal RE for Ln has size Θ(n), the minimal DFA for Ln has
size 2Ω(n), and every minimal DRE for Ln has size 2Ω(n).

Ellul et al. [EKSW04] showed that, for every finite language with a DFA (or
even NFA) D of size n, there exists an RE for L(D) of size nO(logn). Gruber and
Johannsen showed that this upper bound is also tight [GJ08].

4.2.3 Theorem ([EKSW04, GJ08]).

– Let D be a DFA of size n and let L(D) be finite. Then, there exists an RE r
for L(D) such that |r| ≤ nO(logn).

– There exists a family of finite languages (Ln)n∈N such that, for each n ∈ N,
the minimal DFA for Ln has Θ(n) states but every minimal RE for Ln has
size nΘ(logn).

54

4.2. Descriptional Complexity of Deterministic Regular Expressions

q0

q1

q2

q3

q4

. . .

. . .

. . .

q2n−1

q2n

q2n+1

a

b

a

b

a

b

a

b

a

b

b

b

Figure 4.5: Minimal DFA for the language Ln.

We prove that there are infinitely many finite languages (Ln)n∈N such that every
minimal RE and the minimal DFA for Ln are exponentially more succinct than a
minimal DRE for Ln. The following theorem was not published before and solves
an open case in [LMN12].

4.2.4 Theorem. There exists a family of finite languages (Ln)n∈N such that, for
each n ∈ N, every minimal RE for Ln has size Θ(n), the minimal DFA for Ln has
size Θ(n), and every minimal DRE for Ln has size 2Ω(n).

Proof. To prove the assumption we consider the family (Ln)n∈N where

Ln = {(a+ b)0,n · b | n ≥ 1}, for every n ∈ N.

For every n, the regular expression (a+b)0,n ·b is equivalent to the regular expression
(a+b+ε) · · · (a+b+ε)·b where the subexpression (a+b+ε) appears n times. Observe
that the latter expression has size 6n + 1. Moreover, every regular expression that
is equivalent to Ln has to be at least of size n since Ln is finite and contains a word
of length n. The minimal DFA for Ln is shown in Figure 4.5 and has size 4n.

Assume that rn is a minimal DRE for Ln. We show that rn has at least size 2n.
The proof is by induction on n. For the base case, n = 0, the assumption holds
because L0 = L(b) and, thus, |r0| ≥ 1.

Now, assume that rn−1 has at least size 2n−1. For the induction step, we show
that

rn = a · rn−1 + b · (ε+ rn−1).

Towards a contradiction, assume that rn has a concatenation operation as top-
most operation in its syntax tree, i.e., rn = s1 · s2 for some DREs s1 and s2. Then,
we distinguish two cases depending on whether ε ∈ L(s1) or not.

If ε /∈ L(s1) then first(s1) = {a, b}. Since b ∈ Ln it follows that ε ∈ L(s2) and,
thus, that every word in L(s1) ends with b by definition of Ln. Moreover, we know
that s2 6= ε because rn is minimal. Let ub be a longest word in L(s1) and vb be a
longest word in L(s2) such that ubvb ∈ Ln. By the structure of Ln it follows that
also uavb ∈ Ln. Since ua and vb are of maximal length for s1 and s2, respectively,
we have that ua ∈ L(s1). It follows that also ua ∈ L(rn) (because ε ∈ L(s2)) which
contradicts the assumption that L(rn) = Ln.

55

4. Regular Expressions in XML Schema Languages

If ε ∈ L(s1) then it holds that ε /∈ L(s2). Since b ∈ L(rn) and rn is a DRE it
follows that first(s1) = {a} and first(s2) = {b}. Let bw be a longest word in L(rn),
then we know that bw ∈ L(s2). Since s1 6= ε (because rn is minimal) bw is not a
longest word in Ln, which contradicts our assumption. This proves that rn is not
a concatenation but has to be a disjunction s1 + s2. (Recall that the expression rn
cannot be an expression (s1)∗ because ε /∈ Ln.)

Since rn is a DRE and ε /∈ Ln, the expression rn has to be of the form a ·s1 +b ·s2

for some DREs s1 and s2. Moreover, we have that a\Ln = Ln−1 such that s1 = rn−1.
This proves that rn = a · rn−1 + b · s2.

It remains to prove that, for L(s2) = b\Ln = L(rn−1 + ε), every minimal DRE
for the language Ln ∪ {ε} is of the form rεn = rn + ε with L(rn) = Ln.

Towards a contradiction, assume that rεn has a concatenation operation as top-
most operation in its syntax tree, i.e., rεn = s1 · s2. Then, we know that ε ∈ L(s1)
and ε ∈ L(s2). Thus, every word (6= ε) in L(s1) and every word (6= ε) in L(s2)
has to end with b. Let ub be a longest word in L(s1) and vb be a longest word
in L(s2) such that ubvb ∈ L(rεn). By the structure of Ln ∪ {ε} it follows that also
uavb ∈ L(r) such that ua ∈ L(s1) and ua ∈ L(rεn). This contradicts the assumption
that L(rεn) = Ln ∪ {ε}.

Therefore, rεn has to be a disjunction s1 + s2. (The expression rεn cannot be
an expression (s1)∗ because Ln ∪ {ε} is finite and Ln 6= {ε}.) It remains to prove
that s1 or s2 equals ε. Towards a contradiction, assume that first(s1) = {a} and
first(s2) = {b} without loss of generality. (Recall that first(s1) ∩ first(s2) 6= ∅ is not
allowed since rεn is a DRE.) Furthermore, we know that ε ∈ L(s1) or ε ∈ L(s2).
Without loss of generality, let ε ∈ L(s1). This directly contradicts our assumption
since it is not possible to write a DRE for L(s1) with first(s1) = {a} and ε ∈ L(s1)
such that s1 is not a disjunction s′1 + ε. This concludes the proof. �

4.2.2 DREs for Infinite Languages

It is well-known that an exponential blow-up is unavoidable when translating be-
tween REs and DFAs for infinite regular languages in the worst case.

4.2.5 Theorem ([HMU13, EZ76]).

– For each n ∈ N the minimal DFA for L((a+ b)∗a(a+ b)n) has size 2Θ(n).

– There is a family of infinite regular languages (Ln)n∈N such that, for each
n ∈ N, the minimal DFA for Ln has size Θ(n2) and every minimal RE for Ln
has size 2Ω(n).

To prove that there exists an unavoidable exponential blow-up when translating
a minimal RE for an infinite DRE-definable language to a minimal DFA in the worst
case, we extend the finite languages of Theorem 4.2.2 to infinite languages.

4.2.6 Corollary. Let Ln = L((a+ b)0,na(a+ b)n#∗) for every n ∈ N. Then, every
minimal RE for Ln has size Θ(n), the minimal DFA for Ln has size 2Ω(n), and every
minimal DRE for Ln has size 2Ω(n).

56

4.3. Descriptional Complexity of Operations on DRE-Definable Languages

To prove that there exists an unavoidable exponential blow-up when translating
the minimal DFA for an infinite DRE-definable language to a minimal DRE in the
worst case, we extend the finite languages of Theorem 4.2.4 to infinite languages.
In this way, we provide a much shorter and less complex proof of this result than
compared to the proof in [Los10, LMN12].

4.2.7 Corollary. Let Ln = {(a + b)0,n · b · #∗ | n ≥ 1}. For each n ∈ N, every
minimal RE for Ln has size Θ(n), the minimal DFA for Ln has size Θ(n), and every
minimal DRE for the language has size 2Ω(n).

Our initial motivation to study the descriptional complexity of DRE-definable
languages was an unproven claim in [BKW98] which states that, for expressions of
the form Σ∗w where w ∈ Σ∗, every equivalent DRE is at least exponential in the
length of w. This claim was proved in the master thesis of the author [Los10] and its
proof is published in [LMN12]. Proving the claim turned out to be rather non-trivial.
Since such languages have polynomial-size REs and DFAs, we needed to develop new
techniques for proving lower bounds on the size of DREs. In [LMN12] we presented
a general technique to show lower bounds on the descriptional complexity of DREs.
The main idea of this technique is to identify concatenations of a minimal DRE
in a minimal DFA. To this end, we search for so-called bottleneck states which are
states that every accepting run needs to visit. Using these bottlenecks, the following
results have been obtained in [LMN12]. Let Lbottle

n = L((b+ ab+ · · ·+ anb)∗an) for
every n ∈ N.

4.2.8 Lemma. For each n > 0 there exists a minimal DRE for the language Lbottle
n

that contains at least 2n concatenations.

4.2.9 Theorem. For each n ∈ N every minimal RE for Lbottle
n has size Θ(n),

the minimal DFA for Lbottle
n has size Θ(n), and every minimal DRE for Lbottle

n has
size 2Ω(n).

Although the proof in [LMN12] is much more complex than the proof of The-
orem 4.2.4, we believe that both proofs are valuable because they both provided
additional insights into different aspects of the descriptional complexity of DRE-
definable languages.

4.3 Descriptional Complexity of Operations on
DRE-Definable Languages

In the following we study several language-theoretic operations on DRE-definable
languages. Our study is motivated by the use of DREs in XML schema languages
where the obtained knowledge about the descriptional complexity of operations on
DREs can be useful for, e.g., merging schemas or schema optimization.

In Section 4.3.1, we briefly review results on the state complexity of DFAs that
are the result of applying a boolean operation on DRE-definable languages. Since

57

4. Regular Expressions in XML Schema Languages

DREs can always be efficiently translated to a DFA the state complexity for DFAs
provides lower bounds on the descriptional complexity for DREs as well. Previously,
the state complexity of boolean operations on DFAs has been studied in [KW80,
Man73, PS02, SY97, Yu01]. In [PS02] the focus has been on unary languages. The
results in [Yu01] that involve only finite languages can be directly transferred to
DFAs for DRE-definable languages.

In Section 4.3.2, we study the descriptional complexity of several language-
theoretic operations on DREs, i.e., we study the complement, intersection, union,
reversal, and concatenation operation on DREs. Our results show that the restric-
tion to deterministic regular expressions does not significantly decrease the descrip-
tional complexity in comparison to the class of all regular expressions. Previously,
the descriptional complexity of the complement and intersection operation for REs
has been independently examined by Gelade and Neven [GN08, GN12] and Gruber
and Holzer [GH09]. They show that, in the worst case, the size of a minimal RE for
the intersection of a fixed number of REs is exponentially larger than the input and
that the size of a minimal RE for the complement of an RE is double-exponentially
larger than the input. Moreover, they prove that these bounds are tight. Gelade
and Neven also study these operations on DREs. They prove that, in the worst
case, the size of a minimal RE for the intersection of a fixed number of DREs can be
exponentially larger than the input and that the complement of a DRE can always
be written as an RE that is only polynomially larger than the input DRE. However,
in their proofs the languages of the resulting REs are not DRE-definable. (Recall
that DRE-definable languages are not closed under any boolean operation see, e.g.,
Section 3.3.2). The concatenation and reversal operation on regular languages has
been studied in [CCSY01, JJS05, Jir08, SWY04, YZS94]. In [YZS94] the authors
also examine languages over unary alphabets.

4.3.1 Boolean Operations on DFAs

Next, we review known results on the state complexity of minimal DFAs that define
a DRE-definable language and are the result of applying an operation on some
minimal DFAs for DRE-definable languages. We consider this problem for DFAs
over arbitrary and unary alphabets. In each case we also consider a single use of a
boolean operation as well as its k-fold application. The results are summarized in
Tables 4.4 and 4.5.

|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [HMU13] — Θ(m) [HMU13] —
∩ Θ(min{m1,m2}) [Yu01] Θ(min{m0, ...,mk}) [Yu01] Θ(m1m2) [Yu01] 2Ω(k) [Los10, LMN12]
∪ Θ(max{m1,m2}) [Yu01] Θ(max{m0, ...,mk}) [Yu01] Θ(m1m2) [Yu01] 2Ω(k) [Los10, LMN12]

Table 4.4: State complexity of minimal DFAs for finite languages. For every opera-
tion, 1, 2 or k + 1 minimal DFAs with m,m0, . . . ,mk states are given as input. The table
entries specify the number of states of the minimal DFA for the resulting language in the
worst case. By “\” we denote the complement Σ∗\L for a given language L.

58

4.3. Descriptional Complexity of Operations on DRE-Definable Languages

|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [HMU13] — Θ(m) [HMU13] —
∩ Θ(m1m2) [Los10, LMN12] kΩ(k) [Los10, LMN12] Θ(m1m2) [Los10, LMN12] kΩ(k)[Los10, LMN12]
∪ Θ(max{m1m2})[Los10, LMN12] Θ(max{m0, ...,mk}) [LMN12] Θ(m1m2) [Los10, LMN12] 2Ω(k)[Los10, LMN12]

Table 4.5: State complexity of minimal DFAs for infinite DRE-definable languages. For
every operation, 1, 2 or k + 1 minimal DFAs with m,m0, . . . ,mk states are given as in-
put. The table entries specify the number of states of the minimal DFA for the resulting
language in the worst case. By “\” we denote the complement Σ∗\L for a given language L.

It is well-known that there is no blow-up for the complement operation on
DFAs [HMU13]. This result holds for finite as well as for infinite languages.

Regarding the results for finite languages in [Yu01] notice the following: For the
union and intersection of two finite languages Yu proved an m1m2 upper and lower
bound. Nevertheless, only the result for the upper bound has been stated in the
paper since in [Yu01] the focus was on the exact state complexity, which depends on
the following problem: Given two DFAs for finite languages, is it possible that the
minimal DFA for the union (intersection, respectively) has exactly m1m2 states? To
see that this is in fact not possible observe that even the product automaton of two
DFAs for finite languages cannot have exactlym1m2 states. For example, let s be the
initial state of one automaton and q be a non-initial state of the other automaton,
then the state (s, q) can neither be part of the product for the union nor for the
intersection of the two automata. As far as we know, the exact state complexity of
the union or intersection of two finite languages is still open. In [Los10, LMN12] we
proved an exponential lower bound for the k-fold application of the intersection and
union operation on finite languages over an arbitrary alphabet.

For infinite DRE-definable languages the state complexity for boolean operations
on DFAs is not lower than for all regular languages in general (see Table 4.5). We
only found one case in which the state complexity is strictly lower than for regular
languages, namely when considering DFAs for the union of DRE-definable languages
over unary alphabets.

4.3.2 Operations on DREs

In this section we investigate the descriptional complexity of DREs that are itself
the result of applying an operation on some DREs. We study the complement, inter-
section, union, reversal, and concatenation operation on DREs. An overview of our
results is illustrated in Table 4.6. The results in Table 4.6 hold for DRE-definable
languages over alphabets with at least two symbols. The results without a reference
have not been published before. Another result that we present in the following is
that, for DRE-definable languages over unary alphabets, the descriptional complex-
ity of DREs for operations is basically the same as the state complexity for their
equivalent minimal DFAs.

To this end, we prove that, for a minimal DFA D for a DRE-definable language
over a unary alphabet, there always exists an equivalent DRE that has linear size
in |D|. For the proof we exploit that DFAs for languages over unary alphabets have

59

4. Regular Expressions in XML Schema Languages

input (one or two) DREs of size O(n)

\ 2Ω(n) (Th. 4.3.5)
∩ 2Ω(n) (Th. 4.3.6)
∪ 2Ω(n) (Th. 4.3.7)
rev 2Ω(n) [Los10, LMN12]
· 2Ω(n) [Los10, LMN12]

Table 4.6: Descriptional complexity of several operations on DREs over an alphabet Σ
with |Σ| ≥ 2. The table entries specify the size of a minimal DRE for the resulting language
in the worst case. By “\” we denote the complement Σ∗\L for a given language L. and
by “rev” the reversal operation.

a very restricted form. The following notation has been introduced in Pighizzini and
Shallit [PS02]: A DFA with state set Q = {q0, . . . , qn+m} where q0 is the initial state
is a chain followed by a cycle if its transition function is of the form δ(q0, a) = {q1},
. . . , δ(qn−1, a) = {qn}, δ(qn, a) = qn+1, . . . , δ(qn+m−1, a) = qn+m, δ(qn+m, a) = qn,
where qi 6= qj for i 6= j. Moreover, at least one of the states in {qn, . . . , qn+m} is an
accepting state. We refer to the states qn, . . . , qn+m as the cycle states of this DFA.
(Notice that Pighizzini and Shallit referred to a tail instead of a chain.)

4.3.1 Lemma ([PS02]). Every minimal DFA for an infinite regular language over
a unary alphabet is a chain followed by a cycle.

The next result can be obtained by applying Theorem 3.3.7 on Lemma 4.3.1.

4.3.2 Corollary. An infinite regular language L over a unary alphabet is DRE-
definable if and only if it has exactly one accepting cycle state.

In the following we show that, for every DRE-definable language L over a unary
alphabet, the size of a minimal DRE for L is linear in the size of the minimal DFA
for L.

4.3.3 Theorem. Let L be a DRE-definable language over a unary alphabet and D
be a minimal DFA for L with m states. Then, there exists a minimal DRE r for L
such that r is of size O(m).

Proof. Let L be a DRE-definable language over the alphabet Σ = {a} and let D
be the minimal DFA for L with m states. If L is equal to L(ε) or L(∅) then the
assumption holds. Otherwise, we distinguish two cases depending on whether L is
finite or infinite.

If L is finite thenD is a chain with some accepting states. Let Q = {q0, . . . , qm−1}
be the states of D and F ⊆ Q be the set of accepting states. We now that qm−1 ∈ F
since D is a minimal DFA and contains only useful states. We construct a DRE r
for L(D) as follows:

r = r0 where rj =

a · rj+1 if qj /∈ F and j < m− 1,
(a · rj+1 + ε) if qj ∈ F and j < m− 1,
ε if j = m− 1.

60

4.3. Descriptional Complexity of Operations on DRE-Definable Languages

If L is infinite then D is a chain and a cycle where exactly one cycle state is
accepting. Let Q = {q0, . . . , qm−1} be the states of D such that qn, . . . , qm−1 are the
cycle states of D. Let qi be the accepting state in the cycle of D. (Notice that D
can have more accepting states in the chain.) We construct a DRE r for L(D) as
follows:

r = r0 where rj =

a · rj+1 if qj /∈ F and j < i,
(a · rj+1 + ε) if qj ∈ F and j < i,
(am−n)∗ if j = i.

By a straightforward induction it holds that r is a DRE for L of size O(m). �

In the remainder of this section we present the proofs of the results that are
illustrated in Table 4.6. For the reversal operation the result can be obtained using
the language L((a + b)0,na(a + b)n) for n ∈ N [Los10, LMN12]. For the concatena-
tion operation the result can be obtained using the languages L1

n = (a + b)0,n and
L2
n = a(a+ b)n for n ∈ N [Los10, LMN12].
Before we can prove the exponential blow-up for the complement operation,

we need the following auxiliary result on minimal DREs. Recall that a regular
language L is prefix-free if and only if, for every word v ∈ L, there does not exist a
word z ∈ Σ∗ such that v · z ∈ L.

4.3.4 Lemma. Let La = L · {a} be a prefix-free DRE-definable language. Then,
there exists a minimal DRE for La that is either a or of the form r · a for some
regular expression r.

Proof. The proof is by structural induction on a minimal DRE s for La. For the
base case, s = a, the assumption holds. (Notice that La cannot be L(∅) or L(ε) by
definition.)

Let the assumption hold for DREs s1 and s2. The expression s cannot be a star
expression (s1)∗ since La does not contain ε.

Assume that s = s1 + s2. By the structure of La we know that L(s1) = L1 · {a}
and L(s2) = L2 · {a} for some some languages L1 and L2 such that L1 · {a} and
L2 · {a} are prefix-free DRE-definable languages. By induction hypothesis it follows
that, for every i = {1, 2}, there exists a minimal DRE for L(si) of the form a or ri ·a.
This implies that s is of the form (a+a), (r1 ·a+r2 ·a), or (ri ·a+a) where i ∈ {1, 2}.
In each case, there exists an expression for L(s) that is of the required form and of
the same size or more succinct, i.e., a, (r1 + r2) · a, or (ri + ε) · a, respectively.

Assume that s = s1 ·s2. We know that ε /∈ L(s2) because La is prefix-free. Thus,
L(s2) is of the form L1 ·{a} for some language L1 such that L1 ·{a} is DRE-definable
and prefix-free. By induction hypothesis there is a minimal DRE for L(s2) that is of
the form a or r1·a. Since s is a DRE we know that followlast(L(s1))∩first(L(s2)) = ∅.
Thus, there exists a minimal DRE for La that is of the form s1a or s1r1a, which
concludes the proof. �

Now, we are ready to prove that complementing a DRE can cause an unavoidable
exponential blow-up (when the result is represented as a minimal DRE).

61

4. Regular Expressions in XML Schema Languages

q0 q1 q2 · · · qn−1 qn
a a a a a

b

b

b b b

Figure 4.6: Minimal DFA for the language LCn from Theorem 4.3.5.

4.3.5 Theorem. There exists a family of DRE-definable languages (Ln)n∈N such
that, for each n ≥ 1, every minimal DRE for Ln has size O(n) and every minimal
DRE for Ln = Σ∗ \ Ln has size 2Ω(n).

Proof. We prove the assumption by showing that, for each n ≥ 1, the language LCn
(see Figure 4.6) has a minimal DRE of size O(n) and that the size of every minimal
DRE for the language LCn = Σ∗\LCn is at least 2n. Intuitively, the language LCn
contains all words over the alphabet Σ = {a, b} that do not contain the subword an.
The regular expression

rn = (ε+ a(ε+ a(· · ·)))︸ ︷︷ ︸
n times

·(b · (ε+ a(ε+ a(· · ·)))︸ ︷︷ ︸
n times

)∗

is a DRE for LCn that has size O(n).
Now, let Lbottle

n be the language from Theorem 4.2.9 and observe that

LCn = Lbottle
n · L(a · (a+ b)∗).

We show that every minimal DRE for LCn is of the form rn · a(a+ b)∗ where L(rn) =
Lbottle
n . Then, the assumption holds by Theorem 4.2.9.
Let r be a minimal DRE for LCn . We show first that r is a concatenation. Since

there exists a word of length two in LCn , the expression r is not atomic (i.e., a
Σ-symbol, ε, or ∅). Since ε /∈ LCn , the expression r is not a star expression.

Towards a contradiction, assume that r is a disjunction r1 + r2. Since ε /∈ LCn
and r is a DRE we know that first(r1) = {a} and first(r2) = {b} without loss
of generality. Using the same arguments as above r1 and r2 cannot be atomic or
star expressions. Since ε /∈ LCn , r is a DRE, and | first(r1)| = first(r2)| = 1, the
expressions r1 and r2 cannot be disjunctions themselves. Thus, r1 and r2 have to
be concatenations. Moreover, r1 and r2 end with a star expression because they are
DREs and for every word w ∈ L(r) there is a word wv ∈ L(r) with v 6= ε. Hence,
they are of the form r′1 · (r′′1)∗ and r′2 · (r′′2)∗, respectively.

Towards a contradiction, assume that (r′′1)∗ is not equivalent to (a + b)∗. Then,
consider words w ∈ L(r1) and v /∈ L((r′′1)∗). Observe that wv ∈ LCn because w ∈ L(r)
and wv′ ∈ LCn for every v′ ∈ Σ∗. However, wv /∈ L(r) because r is a DRE. This
contradicts the assumption that r is a DRE for LCn . Thus, r = r′1 ·(a+b)∗+r′2 ·(a+b)∗

which directly contradicts that r is minimal. Therefore, r is a concatenation.

62

4.3. Descriptional Complexity of Operations on DRE-Definable Languages

Finally, it remains to prove that r cannot be represented more succinct than in
rn · a(a+ b)∗. Using the same arguments as above we get that every minimal DRE
for r is of the form r′ · (a+b)∗. Then, every minimal DRE is of the form rn ·a(a+b)∗

by Lemma 4.3.4, which concludes the proof. �

Next, we prove that the intersection and union operation on DREs can cause an
unavoidable exponential blow-up (when the result is represented as a minimal DRE).

4.3.6 Theorem. There exist families of DRE-definable languages (L1
n)n∈N and

(L2
n)n∈N such that, for each n ≥ 1, minimal DREs for L1

n and L2
n have size O(n)

and every minimal DRE for L1
n ∩ L2

n has size 2Ω(n).

Proof. To prove the assumption, we show that the language

Ln = {(a+ b)0,n · b} with n ≥ 1

can be expressed as the intersection of two DREs of size O(n). By Theorem 4.2.4
we know that the size of every minimal DRE for Ln is at least 2n. Consider the
languages

L1
n = L((a∗b)∗) and L2

n = L((a+ b)1,n+1).

The expression (a∗b)∗ is a DRE for L1
n of size 5. L2

n is finite and, therefore, DRE-
definable. Furthermore, (a+ b)(ε+ (a+ b)(ε+ · · ·)) is a DRE for L2

n of size O(n).
It remains to show that Ln = L1

n ∩L2
n. We first prove that Ln ⊆ L1

n ∩L2
n. Let w

be a word in Ln. Then, we know that w is a word over {a, b} that always ends with b
and has at most length n+ 1. Thus, w is in L1

n and L2
n.

Second, we prove that Ln ⊇ L1
n ∩ L2

n. Let w be a word in L1
n ∩ L2

n. Then, w has
at least length one and at most n + 1 because w ∈ L2

n. Moreover, w ends with b
because w ∈ L1

n. Thus, w ∈ Ln which proves the assumption. �

4.3.7 Theorem. There exist families of DRE-definable languages (L1
n)n∈N and

(L2
n)n∈N such that, for each n ≥ 1, minimal DREs for L1

n and L2
n have size O(n)

and every minimal DRE for L1
n ∪ L2

n has size 2Ω(n).

Proof. To prove the assumption we show that the language Linf
n with n ≥ 1 from

Figure 4.7 can be expressed as the union of two DREs of size O(n) and that the size
of every minimal DRE for Linf

n is at least 2n. Consider the languages

L1
n = L((a∗b)∗) and L2

n = L((a+ b)n+2(a+ b)∗).

The expression (a∗b)∗ is a DRE for L1
n of size 5. L2

n is finite and, therefore, DRE-
definable. Furthermore, a DRE for L2

n that has size O(n) can be obtained from the
expression (a+ b)n+2(a+ b)∗ by unfolding the counters.

Next, we show that Linf
n = L1

n∪L2
n. First, we prove that Linf

n ⊆ L1
n∪L2

n. Let w be
a word in Linf

n . If |w| is smaller or equal to n+ 1 then w ends with b and, therefore,
w ∈ L1

n; otherwise w ∈ L2
n.

Second, we prove that Linf
n ⊇ L1

n ∪ L2
n. Let w be a word in L1

n ∪ L2
n. If w ends

with b then w ∈ Linf
n . If w ends with an a then |w| is greater than n + 1. Thus,

w ∈ Linf
n .

63

4. Regular Expressions in XML Schema Languages

q0

q1

q2

q3

q4

. . .

. . .

. . .

q2n−1

q2n

q2n+1

a

b

a

b

a

b

a

b

a

b

b

b

a, b

Figure 4.7: Minimal DFA for the language Linf
n from Theorem 4.3.7.

It remains to prove that every minimal DRE for the language Linf
n has at least

size 2n. Analogously to the the proof of Theorem 4.3.5 every minimal DRE for
Linf
n is of the form r · (a + b)∗ such that L(r) = Ln where Ln is the language from

Theorem 4.2.4. This concludes the proof. �

64

5
Querying RDF Data using
SPARQL Property Path
Expressions

In this chapter we examine regular expressions used as a query language for graph-
structured data. Such query languages have been investigated in the database com-
munity for more than a decade, often under the name of regular path queries or
general path queries [AQM+97, BDHS96, CM90, CMW87, FFLS00, Yan90, LY02].
Various problems for regular path queries have been studied, such as optimiza-
tion [AV99], query rewriting [CGLV02], query answering using views [CGLV00b],
and query containment [CGLV00a, DT01, FLS98]. Recently, there has been a re-
newed interest in path queries on graphs, for example, on path queries using expres-
sions with data value comparisons [LV12, LTV13, KRV14] or using certain XPath
dialects [LMV13].

We examine variants of regular expressions that are used in the SPARQL query
language. According to the working draft from January 2012, SPARQL 1.1 queries
(see Section 9 in [HS12]) can contain property paths which are defined as regular
expressions including counting operators (#), restricted negation operators (!), and
wildcard symbols (•). Property paths without counting operators have been studied
in [PAG10, ABE09, ACP12]. As far as we know we are the first to study the
complexity of full SPARQL property paths (including counting operators). Most
closely related to the results in this chapter is [ACP12] which complements them
in several aspects. A detailed discussion on the results in [ACP12] can be found in
Section 5.7. Further results on the complexity of SPARQL query evaluation can be
found in [PAG09, SML10, AP11, LRV13].

In the following we study two kinds of semantics for property path expressions:
simple walk semantics and regular path semantics. Simple walk semantics is our
formalization of the W3C’s intended semantics for property paths, whereas regular

65

5. Querying RDF Data using SPARQL Property Path Expressions

path semantics is our alternative suggestion for SPARQL semantics. We will see
that regular path semantics exhibits a better computational complexity than simple
walk semantics for several problems.

In our abstract framework we model SPARQL property paths as RE(#, !, •)
expressions over an infinite set of symbols and RDF graphs as directed labeled
s-t graphs. In particular, we investigate the complexity of the following three prob-
lems that are central for SPARQL query processing. Notice that it depends on
the chosen semantics (i.e., simple walk or regular path semantics) whether a path
“matches” a regular expression.

Problem (Evaluation).
Given: A graph (V,E, x, y) and a regular expression r.
Question: Is there a path from x to y that matches r?

Problem (Counting).
Given: A graph (V,E, x, y), a regular expression r, and a number max in unary.
Question: How many different paths of length at most max between x and y
match r?

Problem (Finiteness).
Given: A graph (V,E, x, y) and a regular expression r.
Question: Are there only finitely many different paths from x to y that
match r?

As it may be clear that Evaluation is pivotal for SPARQL query evaluation,
it is important to consider Counting and Finiteness because of the SPARQL
counting requirement. This requirement demands that all correct answers to a query
have to be counted. To get a fair comparison between simple walk and regular path
semantics we also study the complexity of Finiteness. (Later, we will see that the
result for a query under simple walk semantics is always finite. For a query under
regular path semantics, however, this is not the case.)

Moreover, we parameterize the problems with the kind of regular expressions
or automata that we consider. For example, when we talk about Evaluation for
RE(#,¬), we mean the Evaluation problem where the input is a graph (V,E, x, y)
and an expression r in RE(#,¬).

Before we study the complexity of these problems, we examine a cumbersome
detail about regular expressions in SPARQL, i.e., the fact that the expressions are
built over the theoretically infinite set of IRIs (see Section 2.5.2). In Section 5.1, we
formally define such expressions and introduce slightly different automata that can
handle words over a potentially infinite set of symbols. We mark these automata
with a superscript w, e.g., NFAw, DFAw, and UFAw. However, we remark that
all results that are presented in this chapter do not depend on an infinite set of
symbols and can be proved for finite alphabets analogously. In Section 5.2, we
define the two above mentioned semantics for evaluating regular expressions over
graphs. Therefore, we examine particular parts of the SPARQL specification that
contain the definition of the W3C intended simple walk semantics.

66

In Section 5.3, we study the Evaluation problem. As an introduction to the
problem we illustrate a practical study of SPARQL query engines and their effi-
ciency. The lack of efficiency of these engines motivated us to study the semantics
of SPARQL queries in more detail. In contrast to the deficient results of the studied
SPARQL engines we prove that Evaluation under regular path semantics remains
tractable under combined query evaluation complexity, even when counting opera-
tors are added to regular expressions. Our algorithm is cubic in the size of the graph
and will be presented in Section 5.3.1. We prove in Section 5.3.2 that Evaluation
under regular path semantics cannot remain tractable when full-fledged negation is
allowed. In Section 5.3.3, we illustrate that Evaluation under simple walk seman-
tics is already NP-complete for the regular expression (aa)∗ which holds directly by
results in [LP84, MW95]. Moreover, notice that this result makes the problem NP-
complete even under data complexity. We also identify a fragment of expressions
for which Evaluation under simple walk semantics remains in P, though for this
fragment simple walk semantics coincides with regular path semantics.

The picture is even more drastic for the Counting problem. For regular path
semantics we provide a detailed study of the tractability frontier. Counting can
be solved in polynomial time when the considered expressions can be translated to a
DFAw in polynomial time. As such, we know that Counting is in P for unambigu-
ous expressions (see Section 3.3). However, even for expressions with a very limited
amount of nondeterminism beyond unambiguity, Counting is #P-complete. For
simple walk semantics the situation goes from bad to worse. Counting under
simple walk semantics is already #P-complete for the regular expression a∗. Basi-
cally, this shows that, as soon as the Kleene star operator is available, Counting
is #P-complete under simple walk semantics. Tractable fragments for Counting
under simple walk semantics we found only in the set of fragments for that simple
walk semantics coincides with regular path semantics. The Counting problem is
closely related to two problems studied in the literature: (1) counting the number
of words of a given length in the language of a regular expression and (2) count-
ing the number of paths in a graph that satisfy certain constraints. We chose to
represent the number max in unary because this was the case in previous related
work on (1) and (2) (e.g., [KSM95, AJ93, Val79b]). Furthermore, such an encoding
only strengthens our hardness results. We remark that our polynomial-time results
for Counting can be transferred to the setting where the number max is given in
binary (Theorems 5.4.6 and 5.3.8).

An overview of our results in combined complexity is presented in Table 5.1. One
result, which is not in the table but may be of independent interest, is on the word
membership problem for regular expressions with counting operators and negation.
In Theorem 5.3.4 we prove that this problem is in P. Another result that is not in the
table is that the complexity of Evaluation under regular path semantics remains
the same if we extend our expressions by a nesting operator, thereby obtaining a
variant of nested regular expressions (see, e.g., [PAG10]). This result is presented in
Section 5.6.

Our results in data complexity are presented in Table 5.2. For regular path
semantics all considered problems that are #P-hard for combined complexity are

67

5. Querying RDF Data using SPARQL Property Path Expressions

Problem Fragment Regular path Simple walk
semantics semantics

Evaluation CHARE((+a)∗,(+a)+, in P in P (5.3.8)
(+w),(+w)?)

star-free RE in P in P (5.3.9)
(aa)∗ in P NP [LP84, MW95]
RE, RE(#, !, •) in P (5.3.2) NP (5.3.7)
RE(¬) non-elem. (5.3.6) —
RE(#, !,¬, •) non-elem. (5.3.6) —

Counting DFAw, UFAw in FP (5.4.6) —
CHARE(a, (+a)) in FP in FP (5.4.8)
a+, a∗ in FP #P (5.4.8, [Val79b])
Det-RE in FP #P
CHARE(a, a?) #P (5.4.6,5.4.7) #P (5.4.8)
CHARE(a, a∗), #P (5.4.6,5.4.7) #P
CHARE(a, (+a+)),
CHARE(a, (+a)+),
CHARE(a, w+),
CHARE((+a), a+),
RE

RE(#, !, •) #P (5.4.7) #P (5.4.8)
RE(#, !,¬, •) #P (5.4.7) —

Finiteness RE, RE(#, !, •) in P (5.5.1) —
RE(¬), RE(#, !,¬, •) non-elem. (5.5.3) —

Table 5.1: An overview of our results in combined complexity. The results printed in bold
are new and published in [LM13]. All complexities are completeness results, unless stated
otherwise. The entries marked by “—” signify that the question is either trivial or not
defined. We annotated new results with the relevant theorem numbers. If no such number
is provided, it means that the result directly follows from other entries in the table.

tractable under data complexity, i.e., when the query is fixed we can always translate
it to a DFAw and perform the algorithm for DFAws. For simple walk semantics all
NP-hardness or #P-hardness results also hold under data complexity, except for
the CHARE(a, a?) fragment. Indeed, if a CHARE(a, a?) expression is fixed then we
can translate it to a DFAw and perform the algorithm for Counting under regular
path semantics. (For this fragment simple walk semantics coincides with regular
path semantics.) Thus, the difference between regular path semantics and simple
walk semantics is rather severe under data complexity.

Finally, we remark that Arenas et al. independently provided similar results on
the intractability of SPARQL 1.1 queries in [ACP12]. Together we obtained strong
arguments to adapt the current SPARQL query specification. In Section 5.7, we
discuss the progress that has been made in the SPARQL specification since then.

68

5.1. Modelling RDF data using IRIs

Problem Fragment Regular path Simple walk
semantics semantics

Evaluation CHARE((+a)∗,(+a)+, in P in P
(+w),(+w)?)

star-free RE in P in P
(aa)∗ in P NP [LP84, MW95]
RE, RE(#, !,¬, •) in P NP

Counting DFAw, UFAw, NFAw in FP —
CHARE(a, (+a)), in FP in FP
CHARE(a, a?)

a+, a∗ in FP #P [Val79b]
RE, RE(#, !,¬, •) in FP #P

Finiteness RE, RE(#, !,¬, •) in P —

Table 5.2: An overview of our results when interpreted under data complexity [LM13].

5.1 Modelling RDF data using IRIs

When querying RDF data some data points in the graph refer to an Internationalized
Resource Identifier (IRI). An IRI is a unique resource name which is specified by
the user (see Section 2.5.2 for details). As such IRIs are not fixed and can be added
to the considered data at any time. Therefore, the languages that are defined by
SPARQL property paths are created over a possibly infinite but countable set of
symbols (i.e., IRIs). We denote this set as ∆. Although the results in this chapter
do not depend on an infinite set of symbols, we choose to model alphabet and queries
according to the RDF specification. To this end, we have to adapt the definitions
of regular expressions and automata.

Let ∆ be an infinite set of symbols. We define regular expressions over ∆ analo-
gous to Section 2.1 and Chapter 3 using ∆ instead of Σ. For simplicity, we overload
notation in this chapter and refer to different classes of regular expressions via
the shortcuts that are defined in Chapter 3 (for example, we refer to RE(#) and
RE(#, !, •)). However, all regular expressions that are considered in this chapter are
defined over a (possibly) infinite set of symbols.

According to the working draft from January 2012, SPARQL 1.1 queries can
contain the following regular expressions (see Section 9.1 in [HS12]).

5.1.1 Definition. Let ∆ be an infinite set of symbols. The set of SPARQL regular
expressions (or SPARQL property paths) is the set RE(#, !, •) over ∆.

Notice that an infinite set of symbols makes the definition of the restricted nega-
tion operator (!) interesting in the first place. Moreover, we assume that we can
test for equality between elements of ∆ in constant time such that we can still test
membership of a word and a regular expression in linear time.

Next, we adapt our notion of finite word automata to finite automata that read
∆-words. The automata behave very similarly to standard finite automata (as they
have been introduced in Section 2.1) but they can make use of a wildcard symbol “◦”

69

5. Querying RDF Data using SPARQL Property Path Expressions

to deal with the infinite set of labels. To handle this new symbol the transition
function of these automata is defined over a finite subset Σ of ∆ and over the
symbol ◦ (where we assume that ◦ is not a symbol in Σ).

5.1.2 Definition. A nondeterministic finite automaton with wildcards NFAw N is a
tuple (Q,Σ,∆, δ, q0, F) where Q is a finite set of states, Σ ⊆ ∆ is a finite alphabet, ∆
is a (possibly) infinite set of input symbols, δ is the transition function with signature
Q× (Σ]{◦})→ P(Q), q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states.

The semantics of an NFAw N is defined as follows. A run of N on a ∆-word
w = a1 · · · an is a sequence r = q0q1 · · · qn such that, for every i = 1, . . . , n,

– qi ∈ δ(qi−1, ai) if ai ∈ Σ, and

– qi ∈ δ(qi−1, ◦) if ai /∈ Σ.

If qn ∈ F then the run is accepting. A ∆-word w is accepted by N if there exists
an accepting run of N on w. By L(N) we denote the language of N , i.e., the set of
all ∆-words accepted by N .

5.1.3 Remark. When the NFAw is in a state q and reads a symbol a ∈ ∆, we
distinguish two cases. If a ∈ Σ then the transitions labeled with Σ-symbols can
be followed. If a /∈ Σ then the outgoing transitions labeled with the ◦-symbol can
be followed to the target state. Thus, the ◦-label in outgoing transitions is used to
deal with every symbol that is not specified by the finite alphabet Σ. Notice that
the semantics of the ◦-label in automata is therefore different from the •-symbol
in regular expressions. We choose to model the semantics of automata in this way
because of two reasons: first, we are able to define a natural notion of determinism
for automata reading ∆-words and, second, our definition of ◦ makes it easy to
handle subexpressions of the form !(a1 + · · ·+an) in automata. Opposed to that one
could also implement these goals by defining the semantics of ◦ to be “all symbols
for which the current state has no other outgoing transition”. In our opinion, the
current definition is more transparent since the semantics of every ◦-transition is
defined equally across the whole automaton. In addition, every RE(•) can still be
translated to an equivalent NFAw in polynomial time.

Analogously to our definition of NFAws we adapt the notions of unambiguity
and determinism for automata.

5.1.4 Definition. An unambiguous finite automaton with wildcards (or a UFAw) is
an NFAw N where, for every ∆-word w ∈ L(N), there exists exactly one accepting
run of N on w.

5.1.5 Definition. A deterministic finite automaton with wildcards (or a DFAw) is
an NFAw where δ is a (partial) function with signature Q× (Σ] {◦})→ Q.

70

5.2. Alternative Semantics for Property Paths

Finally, we adapt the definition of Glushkov automata for RE(!, •) expressions
(see Definition 3.3.12). Using this definition we are able to formally define unambigu-
ity and determinism for regular expressions RE(!, •) over an infinite set of symbols ∆.
For an RE(!, •) r we define its numbered expression analogous to Section 3.3.3. For
example, for r = a !(a) • (a+ bc)∗• !(a+ b) we have num(r) = 1 2 3 (4 + 5 6)∗7 8.
Recall that by denumr we denote the mapping that maps each number i to the
subexpression it replaced in r. For the above example, we have that denumr(1) = a,
denumr(2) =!(a), denumr(3) = •, et cetera.

5.1.6 Definition. Let r be an RE(!, •) over ∆, rm its numbered expression, and
Gr = (Qr,Σr,∆, δr, q0, Fr) be the Glushkov automaton of r. The Glushkov automa-
ton with wildcards Gω

r of r is the tuple (Qr,Σr,∆, δ
ω
r , q0, Fr) where δωr contains all

transitions of δr and, additionally, the transitions

– δr(q0, ◦) = {i ∈ first(rm) | denum(i) = • or
denum(i) = !(a1 + · · ·+a`) for some a1, . . . , a`}, and

– δr(i, ◦) = {j ∈ follow(rm, i) | denum(j) = • or
denum(j) = !(a1 + · · ·+ a`) for some a1, . . . , a`}.

Similarly to Corollary 3.3.13 for finite alphabets, the following proposition holds
for SPARQL regular expressions over a possibly infinite set of symbols.

5.1.7 Proposition. Let ∆ be an infinite set of symbols. For every RE(!, •) r over ∆
the Glushkov automaton with wildcards Gω

r of r can be constructed in polynomial time
in |r|. Moreover, it holds that L(r) = L(Gω

r).

Finally, we use the notions of unambiguity and determinism for RE(!, •) over ∆
analogously to Definition 3.3.14. That is, we say that r is unambiguous if Gω

r is
a UFAw and r is deterministic (or a DRE(!, •)) if Gω

r is a DFAw.

5.2 Alternative Semantics for Property Paths

In this section we formally define the semantics for SPARQL property path expres-
sions. More precisely, we define two different semantics for SPARQL property path
expressions which we examine independently in the following. The first semantics,
called regular path semantics, is analogous to the semantics of regular expressions
that is given in Section 3.1. Since SPARQL expressions are evaluated over paths p
in a graph we interpret the semantics over path labels lab(p) rather than over words.
However, we only consider finite paths and, therefore, every label lab(p) can be seen
as a ∆-word.

5.2.1 Definition. Let r be a regular expression, N be a finite automaton, and p
be a path in a directed labeled graph. Then,

– p matches r under regular path semantics if lab(p) ∈ L(r), and

– p matches N under regular path semantics if lab(p) ∈ L(N).

71

5. Querying RDF Data using SPARQL Property Path Expressions

The second semantics is called simple walk semantics. This semantics is our
formalization of the semantics that are defined for property paths in the SPARQL
working draft of January 2012 [HS12]. In the SPARQL algebra (see Section 18.4
of [HS12]) the semantics of subexpressions of the form r∗ and r+ is defined through
the operators ZeroOrMorePath and OneOrMorePath, respectively. These op-
erators are specified by the following definitions which come from [HS12] and read
as follows:

ZeroOrMorePath: An arbitrary length path P = (X (path)∗ Y) is all
solutions from X to Y by repeated use of path such that any nodes in the
graph are traversed once only. ZeroOrMorePath includes X.

OneOrMorePath: An arbitrary length path P = (X (path)+ Y) is all
solutions from X to Y by repeated use of path such that any nodes in the
graph are traversed once only. This does not include X, unless repeated
evaluation of the path from X returns to X.

In these definitions X and Y are RDF terms (or variables) of the query, i.e.,
they bind to nodes of the graph in the answer. By path they denote an arbitrary
subexpression. It is assumed that the semantics of path is already known to the
user. Since the precise intentions of these definitions are veiled to us, we try to for-
malize our interpretations of them (and the SPARQL specification) in the following.
On the one hand, the definition of ZeroOrMorePath seems to require that the
subexpression path is matched only by paths from X to Y in the input graph that
contain each node at most once. That is, subexpressions are allowed to be matched
only by simple paths (see Definition 2.2.1). On the other hand, in the definition
of OneOrMorePath it seems that subexpressions are allowed to be matched by
paths that return to X at the end. That means, subexpressions are allowed to be
matched by simple paths and simple cycles (see Definition 2.2.1). For this reason, it
is unclear to us whether the informal definition of the W3C allows simple cycles or
not. However, examples in the working draft suggest that simple cycles are allowed.
Therefore, we choose to answer this question positive and consider simple walks in
the presentation of our proofs. (Remember that a simple walk is either a simple
path or a simple cycle.) In particular, we assume that the following constraint holds
for the evaluation of property paths under the SPARQL 1.1 specification.

5.2.2 Note. Property paths that are evaluated under the SPARQL 1.1 specification
are required to fulfill the simple walk requirement, that is, subexpressions of the form
r∗ and r+ should be matched by simple walks in RDF graphs.

In the following we formally define simple walk semantics as an abstraction of the
definitions of the W3C working draft [HS12] from January 2012. Therefore, recall
that we did not define r+ as an abbreviation of the expression rr∗ in Section 2.1
since r+ and rr∗ have different semantics in the following.

72

5.3. The Complexity of the Evaluation Problem for Property Paths

5.2.3 Definition. Let p = v0[a1]v1[a2]v2 · · · vn−1[an]vn be a path in a graph and r
be an RE(#, !, •) over ∆. Then p matches r under simple walk semantics if r and p
fulfill the following properties:

structure of r properties of a path p that matches r
r = ∅,
r = ε,
r = •,

r = a, a ∈ ∆,
r = !(a1 + · · ·+ an)

lab(p) ∈ L(r)

r = s∗, r = s+ lab(p) ∈ L(r) and p is a simple walk
r = s? p = v0 or p matches s under simple walk semantics

r = s1 · s2 p = p1 · p2 and path pi matches si under simple walk
semantics for every i = 1, 2.

r = s1 + s2 p matches s1 or s2 under simple walk semantics

r = sk,`, ` 6=∞
p = p1 · · · pm with k ≤ m ≤ ` and path pi matches s
under simple walk semantics for every i = 1, . . . ,m.
(Notice that if ` = 0 then p has length zero.)

r = sk,∞ p = p1 · p2 where p1 matches sk,k under simple walk
semantics and p2 matches s∗ under simple walk semantics

If it is clear from the context we only say that a path matches a regular expres-
sion and omit a reference to the concrete semantics. We added the case r = ∅ for
compatibility with regular expressions. To provide some intuition for simple walk
semantics we remark the following. Notice that we no longer have that a∗ is equiv-
alent to a∗a∗ under simple walk semantics. We neither have that a1,∞ is equivalent
to a+ nor that aa∗ is equivalent to a+ under simple walk semantics. However, aa∗ is
still equivalent to a1,∞ under simple path semantics. For counting operators, like in
an expression (a+ b)5,7, simple walk semantics is defined in exactly the same way as
regular path semantics. Moreover, observe that we do not say that a path matches
a finite automaton under simple walk semantics since it is unclear how simple walk
semantics transfers to automata.

Finally, we remark that all complexity results presented in this chapter also hold
if one considers simple paths instead of simple walks.

5.3 The Complexity of the Evaluation Problem
for Property Paths

Before we study the complexity of SPARQL 1.1 queries in a formal framework, we
illustrate the results of a practical study on the efficiency of SPARQL engines for
property path evaluation. We conducted our study in November 2011 and evaluated
the most prevalent SPARQL query engines that support property paths at that time:
the Jena Semantic Web Framework [Apa11], Sesame [KFB08], RDF::Query [Wil],
and Corese 3.0 [Cor12].

73

5. Querying RDF Data using SPARQL Property Path Expressions

0 5 10 15 20 25
0

10,000

20,000

30,000

40,000

50,000

60,000

fail

k

m
s

Jena
RDF::Query

(a) Evaluation time for Jena and RDF::Query.

0 2 4 6 8 10 12 14
0

1,000

2,000

3,000

4,000

5,000
fail

k

m
s

Sesame

(b) Evaluation time for Sesame.

Figure 5.1: Time taken by Jena, Sesame and RDF::Query for evaluating the expression
(a + b)1,k for increasing values of k on a graph with two nodes and four edges [LM13].

The four frameworks were tested with the query

ASK WHERE { :x (a|b){1,k} :y }

for increasing values of k ∈ N on the graph

x y
a

a

b

b

consisting of two nodes and four labeled edges. An ASK-query in SPARQL returns
a boolean value that is true if and only if there exists at least one answer for the
query in the graph. Answering this query therefore corresponds to solving the
Evaluation problem on the above graph for the expression (a + b)1,k. Moreover,
notice that, for every k ∈ N, the answer to this query is true and that the query
result under regular path semantics is same as under simple walk semantics.

The performance of three of the four systems is depicted in Figure 5.1. The
results are obtained from an evaluation on a desktop PC with 2 GB of RAM. For the
Jena and Sesame framework the points in the graph depict all the points for that we
could obtain data. When we increased the number k by one, the systems ran out of
memory and failed (as shown in the figure). Our conclusion from our measurements
is that all three systems seem to exhibit a double-exponential behavior: from a
certain point, whenever we increase the number k by one (which does not mean
that one more bit is needed to represent it), the processing time doubles. The
fourth SPARQL query engine, namely Corese 3.0, evaluated queries of the above
form very quickly. However, when we asked the engine to answer the query

ASK WHERE {x ((a|b)/(a|b)){1,k} y},

which basically searches for the existence of even length paths, its time consumption
was as bad as for the other three systems. In contrast to the other three systems,
Corese did not run out of memory so quickly.

74

5.3. The Complexity of the Evaluation Problem for Property Paths

In a related study by Arenas, Conca, and Pérez [ACP12] a similar double-
exponential behavior is also observed for SELECT queries using property paths. In
general SELECT queries are more difficult to answer than ASK queries because SELECT
queries should output all tuples that witness the query, whereas an ASK query simply
asks if there exists such a tuple or not. However, the queries for which [ACP12] ob-
served an double-exponential behavior did not exploit counting operators. As such,
the experiments here and in [ACP12] seem to complement each other.

In Section 5.3.1, we show that the double-exponential behavior that we observed
in practice can be improved to polynomial-time combined complexity.

5.3.1 Evaluation under Regular Path Semantics

We present a polynomial-time algorithm for the Evaluation problem for SPARQL
regular expressions under regular path semantics. Previously, it has already been
shown that Evaluation is in P for standard regular expressions without counting
operators (see, e.g., [MW95, AV99, ABE09]). In this case, the problem is very similar
to testing intersection non-emptiness of two finite word automata. In order to see
this, one has to interpret the input graph G with given nodes x and y as a finite
nondeterministic automaton NG. In this automaton the nodes of G are considered
as states and the edges as transitions. Accordingly, x is the initial state and y an
accepting state in NG. The expression r is converted to an NFA Nr in polynomial
time by using standard methods. Finally, it holds that there is a path from x to y
in G that matches r if and only if the intersection of L(NG) and L(Nr) is not empty,
which can be tested in polynomial time.

In this section we prove that Evaluation is also in P when the expressions
are allowed to use counting operators, wildcards, and restricted negation. To this
end, we construct a polynomial-time algorithm for Evaluation of RE(#, !, •)-
expressions which follows a dynamic programming approach. The connection be-
tween dynamic programming and regular expressions goes back at least to 1956 when
Kleene used recursive formulas to extract a regular expression from a DFA [Kle56].
In addition, dynamic programming is also used to test membership for regular ex-
pressions see, e.g., [HMU13]. In [KT03], Kilpeläinen and Tuhkonen adapted this
approach to test membership for RE(#) expressions. However, the algorithm from
Kilpeläinen and Tuhkonen does not naïvely extend to graphs. On graphs their al-
gorithm would require exponential time in the expression since it exploits the fact
that the length of the longest match of the expression on the word cannot exceed
the length of the word. For example, the regular expression a42 can only match a
word if the word contains 42 a’s. This assumption no longer holds for graphs.

Our algorithm for Evaluation gets an RE(#, !, •) r as input and computes
bottom-up, for every subexpression s in the syntax tree of r, the binary relation
eval(s) ⊆ V × V such that

(u, v) ∈ eval(s) if and only if
there exists a path from u to v in G that matches s. (*)

We demonstrate our approach on an example first.

75

5. Querying RDF Data using SPARQL Property Path Expressions

5.3.1 Example. We illustrate a run of the dynamic programming evaluation algo-
rithm for the regular expression r = (b+ c)∗b3,5 and the graph G from Figure 5.2.

1 2 3 4 5 6 7 8 9 10 11

12 13

b c b c b b b b b b

b

b

b

Figure 5.2: An edge-labeled graph G.

Figure 5.3 depicts how to evaluate the regular expression r on the graph G using
dynamic programming. Therefore, we compute the relation eval(r) via one bottom-
up pass in the syntax tree of r. During the computation each node v of the syntax
tree gets annotated with the binary relation eval(s) where s is the subexpression
that is associated with the node v.

·

∗

+

b c

3, 5

b

(1,2)
(3,4)
(5,6)
(4,12)
. . .

(2,3)
(4,5)

(1,2)
(2,3)
(3,4)
(4,5)
(4,12)
(5,6)
. . .

(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
. . .

(3,13)
(3,5)
(3,6)
(4,5)
(4,6)
. . .

(1,13)
(1,5)
(1,6)
. . .
(1,11)
(2,8)
. . .

Figure 5.3: Illustration of the dynamic programming approach to evaluate r on G.

Finally, the relation eval(r) is computed at the root node of the syntax tree and
contains all pairs (x, y) such that there is a path from x to y that matches r.

In the following we prove that this approach is correct and can be implemented
to run in polynomial time. We present the result in two versions (see Theorem 5.3.2
and Corollary 5.3.3), i.e., both results present a polynomial-time result, though the
result in Theorem 5.3.2 is not very practical. The biggest bottleneck in the proof of
the result is the join procedure for two relations of size n, which has a worst-case
time complexity of n3 (see Lemma 2.3.1). Moreover, if we represent the relations as
matrices then the procedure has a best-case complexity of Ω(n2), even if the resulting
relation is much smaller than n. We therefore look at an alternative algorithm that
replaces the matrix multiplications by sort-merge joins (see Lemma 2.3.2). In this
way we obtain in Corollary 5.3.3 an algorithm that has a worst-case time complexity
of n3 where the expected runtime is usually small in practical instances. Moreover,
the literature emphasizes that the worst case is very unlikely [RG02].

76

5.3. The Complexity of the Evaluation Problem for Property Paths

type of expression computation of eval
eval(∅) ∅
eval(ε) {(u, u) | u ∈ V }
eval(•) {(u, v) | ∃a ∈ ∆ with (u, a, v) ∈ E}

eval(a), for a ∈ ∆ {(u, v) | (u, a, v) ∈ E}
eval(!(a1 + · · ·+ an)) {(u, v) | ∃a ∈ ∆\{a1, . . . , an} with (u, a, v) ∈ E}

eval(s1 + s2) eval(s1) ∪ eval(s2)
eval(s1 · s2) eval(s1) ./ eval(s2)
eval(s?) eval(s) ∪ eval(ε)
eval(s+) the transitive closure of eval(s)
eval(s∗) the reflexive and transitive closure of eval(s)
eval(sk,∞) eval(sk) ./ eval(s∗)

eval(sk,`), for ` 6=∞ eval(s)k ./ eval(s?)`−k

Table 5.3: Inductive definition of the relation eval.

5.3.2 Theorem. Let G be a graph and r be an RE(#, !, •). Evaluation for r
and G under regular path semantics is in time O(|r| · |V |3).

Proof. We first formally define our dynamic programming algorithm for the evalua-
tion of expressions in RE(#, !, •). Afterwards, we show that the algorithm is correct
and discuss its complexity. To simplify notation we identify nodes from the syntax
tree of r with their corresponding subexpressions. The main idea of our algorithm
is to traverse the syntax tree of r bottom-up and compute, for every node with
associated subexpression s, a binary relation eval(s) ⊆ V × V such that

(u, v) ∈ eval(s) if and only if
there exists a path from u to v in G that matches s. (*)

The relation is computed by joining already computed relations for the subexpres-
sions of the child-nodes while going up in the syntax tree. Thereby, the type of
join that is computed depends on the associated subexpression of the node. All
possible cases for the computation are depicted in Table 5.3. Finally, if the input
for Evaluation is an edge-labeled graph G = (V,E, x, y) and an RE(#, !, •) r then
the algorithm returns the answer true if and only if (x, y) ∈ eval(r).

Next, we show that our algorithm for Evaluation is correct and can be im-
plemented to run in polynomial time. Therefore, we prove that the computation of
the sets eval(s) is correct in terms of (*) and show that they can be computed in
polynomial time in the graph and the expression. The correctness proof is a straight-
forward induction on the structure of the expression r. More precisely, we show that
the following invariant (I) holds for every relation eval(s) that is computed:

For each subexpression s of r, we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v such that lab(p) ∈ L(s). (I)

In particular, the correctness of the invariant implies the correctness of the algorithm.

77

5. Querying RDF Data using SPARQL Property Path Expressions

The base cases, i.e., the cases where s = ∅, s = ε, s = a for some a ∈ ∆, s = •,
or s = !(a1 + · · ·+ an) are immediate.

For the induction step let s be a node in the syntax tree of r such that (I) holds
for all of its children. We distinguish several cases depending on the structure of s.

If s = s1 + s2 then we compute eval(s) = eval(s1) ∪ eval(s2). Let (u, v) be an
arbitrary tuple in V × V . First, we show that if (u, v) in eval(s) then there exists
a path p from u to v in G such that lab(p) ∈ L(s). By construction of eval(s)
we know that (u, v) ∈ eval(s1) or (u, v) ∈ eval(s2). By induction hypothesis we
know that eval(s1) and eval(s2) are computed correctly. Therefore, there exists a
path p from u to v that matches s1 or s2. By definition of s this implies that p also
matches s. Second, we show that if there exists a path p from u to v in G with
lab(p) ∈ L(s) then (u, v) in eval(s). To this end, let p be a path from u to v in G with
lab(p) ∈ L(s). By definition of s we have that p matches s1 or s2. Since s1 and s2

are computed correctly by induction hypothesis, we have that (u, v) is in eval(s1)
or in eval(s2). Since eval(s) = eval(s1) ∪ eval(s2) it follows that (u, v) ∈ eval(s) and
eval(s) fulfills (I).

If s = s1 · s2 then we compute eval(s) := eval(s1) ./ eval(s2), where

eval(s1) ./ eval(s2) := {(u, v) | ∃z ∈ V : (u, z) ∈ eval(s1) ∧ (z, v) ∈ eval(s2)}

is the (natural) join of the relation eval(s1) and eval(s2). Let (u, v) be an arbitrary
tuple in V × V . First, we show that if (u, v) in eval(s) then there exists a path p
from u to v in G such that lab(p) ∈ L(s). By the definition of the join operator
we know that for every tuple (u, v) ∈ eval(s) there exist tuples (u, z) and (z, v)
such that (u, z) ∈ eval(s1) and (z, v) ∈ eval(s2). Since eval(s1) and eval(s2) are
computed correctly by induction hypothesis there exists a path p1 from u to z in G
with lab(p1) ∈ L(s1) and a path p2 from z to v with lab(p2) ∈ L(s2). Thus the
concatenation of these two paths p = p1 · p2 is a path from u to v in G with
lab(p) ∈ L(s1 · s2). Second, we show that if there exists a path p from u to v in G
with lab(p) ∈ L(s1 · s2) then (u, v) in eval(s). Therefore, let p be such a path. Since
lab(p) ∈ L(s1 · s2) we know that there exist paths p1 and p2 such that p = p1 · p2

and p1 is a path from u to some node z with lab(p1) ∈ L(s1) and p2 is a path from z
to v with lab(p2) ∈ L(s2). Since eval(s1) and eval(s2) are computed correctly by
induction hypothesis, we know that (u, z) ∈ eval(s1) and (z, v) ∈ eval(s2). It holds
that the tuple (u, v) is also in eval(s) by definition of the join operator. Moreover,
it follows that eval(s) fulfills (I). Notice that if ε ∈ L(s1) (or ε ∈ L(s2)) then the
relation of s1 (or s2, respectively) is reflexive.

If s = s1? then we compute eval(s) := eval(s1)∪eval(ε). In this case invariant (I)
follows immediately from the correctness of the union operation.

If s = s∗1 then we compute eval(s) as the reflexive and transitive closure of
eval(s1). Let (u, v) be an arbitrary tuple in V × V . By construction we have that
(u, v) ∈ eval(s) if and only if (u, v) is in the reflexive and transitive closure of eval(s1).
This means that either u = v, (u, v) ∈ eval(s1), or there exist nodes v1, . . . , vk with
k ≥ 1 such that (u, v1), (v1, v2), . . . , (vk, v) ∈ eval(s1). In the first case we have that
(u, u) corresponds to a path of length 0. Therefore and since ε ∈ L(s∗1), there is a
path from u to u that matches s. In the second case there is a path p from u to v

78

5.3. The Complexity of the Evaluation Problem for Property Paths

that matches s1 (and therefore also s) by the induction hypothesis. Finally, in the
third case we know that, by induction hypothesis, there are paths

– p0 from u to v1 that matches s1,

– pi from vi to vi+1 that match s1 for every i = 1, . . . , k − 1, and

– pk from vk to v that match s1.

It follows that the path p = p0p1 · · · pk matches s = s∗1. Now, let p be a path from u
to v that matches s = s∗1. By definition of the Kleene star we either have that
u = v or there exist paths p0, p1, . . . , pk with k ≥ 0 and p = p0p1 · · · pk such that pi
matches s1 for each i = 0, . . . , k. By the definition of the reflexive and transitive
closure and since eval(s1) is computed correctly by induction hypothesis, we then
have that (u, v) ∈ eval(s). Therefore, eval(s) fulfills (I).

If s = s+
1 then we compute the transitive closure of eval(s1). The proof of

correctness is analogous to the proof for the case s = s∗1.
The last two cases concern the counting operators. If s = sk,`1 and ` 6= ∞ then

eval(s) := eval(s1)k ./ eval(s1?)`−k. Moreover, we know that s = sk1 · (s1?)`−k. For
eval(s1)k invariant (I) holds immediately by correctness of the concatenation case
and by induction hypothesis. By correctness of the ?-operator it follows that eval(s)
fulfills (I).

If s = sk,∞1 then we compute eval(s) as the relation for the expression sk1 · s∗1.
Since eval(s1) is calculated correctly by induction hypothesis, (I) follows directly
from the case sk1, the concatenation case, and the Kleene star case. This concludes
our proof of correctness.

It remains to prove that the algorithm can be implemented to run in polynomial
time. Since the syntax tree of the input expression s has linear size and the algorithm
processes the syntax tree bottom-up we only need to show that each case can be
implemented in time O(|V |3 · log k) for cases s = sk1 and s = sk,∞1 , in time O(|V |3 ·
log `) for the case s = sk,`1 , or in time O(|V |3) otherwise. Moreover, notice that each
relation eval(s) has size O(|V |2). The proof of the assumption for the cases s ∈ ∆,
s = ε, s = •, s =!(a1 + · · · + an), s = s1 · s2, s = s∗1, s = s+

1 , and s = s1? are either
straightforward or immediate from Lemma 2.3.1. The cases s = sk1 and s = sk,∞1 can
be computed in time O(|V |3 · log k) by applying Lemmas 2.3.1 and 2.3.3. Similarly,
we obtain that the case s = sk,`1 can be implemented in time O(|V |3 · log `). This
concludes the proof. �

We conclude this section with a more precise analysis of the complexity of the
algorithm from Theorem 5.3.2. Therefore, consider the algorithm where the join
operation from Lemma 2.3.1 is replaced by the join operation of Lemma 2.3.2. To
this end, let

– Rmax be the maximal size of any relation eval(s) for any subexpression s in
the algorithm of Theorem 5.3.2 (including the intermediate results for fast
squaring), and

79

5. Querying RDF Data using SPARQL Property Path Expressions

– jmax be the maximum of Rmax and every number

j = |{(u, z, v) | (u, z) ∈ eval(s1) and (z, v) ∈ eval(s2)}|

where eval(s1) and eval(s2) range over all joins that the algorithm performs
during a computation (including the intermediate results for fast squaring).

5.3.3 Corollary. Let G be a graph and r be an RE(#, !, •). Evaluation for r
and G under regular path semantics is in time O(|r| · jmax logRmax).

Since our evaluation algorithm is still rather naïve we feel that further improve-
ments towards better data complexity are very likely to be possible. However, our
main goal in [LM12, LM13] was to show that SPARQL property path expressions
are tractable under regular path semantics. Later, we will see that this is not the
case under simple path semantics.

5.3.2 Evaluation for Regular Expressions with Negation

In the last section we have seen that Evaluation for SPARQL regular expressions
is tractable under regular path semantics. Our algorithm for this problem handles
counting operators as well as a restricted negation operator (!). In this section we
revisit the tractability of negation operators in regular expressions and show that
once unlimited negation is allowed in regular expressions the Evaluation problem
over graphs becomes intractable.

Nevertheless, we first provide a positive result by proving that Evaluation for
regular expressions with full-fledged negation (¬) over words (instead of graphs) is
in P. Notice that this problem is better known as Membership in the literature (see,
e.g., Section 2.4). To obtain the result we use the algorithm from Theorem 5.3.2. We
will also use this result again to examine the complexity of Counting in Section 5.4.

5.3.4 Theorem. Let r be an RE(#, !,¬, •) and w be a word. Membership for r
and w is in time O(|r| · |w|3).

Proof. To simplify the technical presentation in this proof we abstract a word as an
acyclic, connected, edge-labeled graph in which every node has at most one incoming
or outgoing edge. As such, we can re-use the algorithm from Theorem 5.3.2. We
already showed in the proof of Theorem 5.3.2 that Evaluation (and therefore
also Membership) for RE(#, !, •) is in P. Next, we show how the algorithm of
Theorem 5.3.2 can be extended to RE(#, !,¬, •) expressions in the case that the
input is a word (instead of a graph). Therefore, we extend our algorithm by the
following extra case:

– If s = ¬s1 then eval(s) := {(u, v) | (u, v) /∈ eval(s1)}.

Next, we prove that the algorithm is correct. To this end, let r be an RE(#, !,¬, •).
We prove the same invariant (I) as in the proof of Theorem 5.3.2, that is:

For each subexpression s of r, we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v such that lab(p) ∈ L(s). (I)

80

5.3. The Complexity of the Evaluation Problem for Property Paths

Since we are considering only words we get that, by (I), a tuple (u, v) represents
two positions in the input word such that (u, v) ∈ eval(s) if and only if the subword
from u to v is in L(s).

The induction base cases and the cases for all operators, except ¬, can be proved
analogously to the cases in Theorem 5.3.2. Thus, it remains to consider the case
eval(¬s1) = {(u, v) | (u, v) /∈ eval(s1)}. By the definition of the negation operator
and since we are dealing with a word, the (unique) path from u to v matches ¬s1

if and only if it does not match s1. By induction hypothesis eval(s1) is calculated
correctly, i.e., a tuple (u, v) is in eval(s1) if and only if there exists a path from u to v
such that lab(p) ∈ L(s1). By definition we have that (u, v) ∈ eval(¬s1) if and only
if (u, v) /∈ eval(s1). Thus, eval(¬s1) fulfills (I). It is straightforward to implement
the new case in time O(|r| · |w|3). �

Notice that, for arbitrary graphs and expressions in RE(#, !,¬, •), the algorithm
from Theorem 5.3.4 would fail because we cannot assume that there is only one
unique path from node u to node v in a graph. Intuitively, it can be the case that
(u, v) ∈ eval(s) and (u, v) ∈ eval(¬s) in the same graph (in this case there exist two
distinct paths that are labeled respectively).

In fact, if we want to evaluate over graphs instead of words, allowing unrestricted
negation in expressions does not allow for an efficient algorithm for Evaluation on
graphs and makes the complexity of Evaluation non-elementary. The reason why
is that Evaluation is at least as hard as testing non-emptiness for the considered
class of regular expressions.

5.3.5 Lemma. Let C be a class of regular expressions over a finite alphabet Σ.
Then there exists a LOGSPACE reduction from the non-emptiness problem for C-
expressions to Evaluation for C-expressions under regular path semantics.

Proof. The proof is immediate from the observation that non-emptiness of an ex-
pression r over an alphabet Σ is the same decision problem as Evaluation for r
and the graph G = (V,E) with V = {x} and E = {(x, a, x) | a ∈ Σ}. �

Since it is well-known that the non-emptiness problem for star-free generalized
regular expressions is non-elementary [Sto74] it immediately follows that Evalua-
tion is non-elementary for the class RE(¬) by applying Lemma 5.3.5. However, ev-
ery RE(#, !,¬, •) can be converted to an RE(#, !, •) with a non-elementary blow-up
such that Evaluation still remains decidable for regular expression with negation.

5.3.6 Theorem.

– Evaluation for RE(¬) under regular path semantics is non-elementary.

– Evaluation for RE(#, !,¬, •) under regular path semantics is decidable.

5.3.3 Evaluation under Simple Walk Semantics

In Section 5.3.1, we have seen that SPARQL regular expressions can be efficiently
evaluated under regular path semantics via a rather simple algorithm. In this sec-
tion we investigate how the complexity of Evaluation changes when simple walk

81

5. Querying RDF Data using SPARQL Property Path Expressions

semantics is applied. In this case it follows from classical results that Evaluation
under simple walk semantics is already NP-complete for very restricted expressions.
However, Evaluation remains in NP even when counting operators are allowed.

5.3.7 Theorem.

(1) Evaluation for expressions (aa)∗ and (aa)+ under simple walk semantics is
NP-complete.

(2) Evaluation for RE(#, !, •) under simple walk semantics is NP-complete.

(3) Evaluation for RE under simple walk semantics is NP-complete.

Proof. (1) Lapaugh and Papadimitriou showed that, given a directed graph and
two nodes x and y, it is NP-hard to decide whether there exists a simple path
of even length from x to y (see, e.g., Theorem 2.4.5). The NP upper bound
is obtained by guessing a simple path from x to y and checking if it has even
length. Since the path has to be simple it is of linear size in the graph.

Moreover, the theorem shows that Evaluation under simple walk semantics
is also NP-hard when considering data complexity.

(2) The NP lower bound is immediate by (1). The NP upper bound follows from
an adaptation of the algorithm of Theorem 5.3.2 where in the cases s = s∗1 and
s = s+

1 simple walks are guessed between nodes to test whether they belong to
eval(s). We illustrate this algorithm in the following. Let G = (V,E, x, y) be
the input graph and let r be the input regular expression. Our NP algorithm
traverses the syntax tree of the expression r bottom-up and computes, for every
node with associated subexpression s, a binary relation evalsw(s) ⊆ V ×V such
that

(u, v) ∈ evalsw(s)⇔ ∃ path p in G from u to v such that
p matches s under simple walk semantics.

The type of join that is computed, while going up in the syntax tree, depends
on the associated subexpression of the node. All possible cases for the compu-
tation are depicted in Table 5.4. In the table we denote by eval the function
for evaluating expressions under regular path semantics (as it is defined in
Table 5.3). Finally, the algorithm returns true if and only if evalsw(r) contains
the pair (x, y).

82

5.3. The Complexity of the Evaluation Problem for Property Paths

type of expression computation of evalsw
evalsw(∅) ∅
evalsw(ε) {(u, u) | u ∈ V }
evalsw(•) eval(•)

evalsw(a), for a ∈ ∆ eval(a)
evalsw(!(a1 + · · ·+an)) eval(!(a1 + · · ·+ an))

evalsw(s1 + s2) evalsw(s1) ∪ evalsw(s2)
evalsw(s1 · s2) evalsw(s1) ./ evalsw(s2)
evalsw(s?) evalsw(s) ∪ evalsw(ε)

evalsw(s+)
{(u, v) | ∃ simple walk p from u to v

such that lab(p) ∈ L(s+)}
evalsw(s∗) evalsw(s+) ∪ evalsw(ε)
evalsw(sk,∞) evalsw(s)k ./ evalsw(s∗)

evalsw(sk,`), for ` 6=∞ evalsw(s)k ./ evalsw(s?)`−k

Table 5.4: Inductive definition of the relation evalsw.

It remains to show that evalsw(s) can be computed in polynomial time us-
ing nondeterminism. Therefore, we basically implement the polynomial-time
algorithm of Theorem 5.3.2 except for the case evalsw(s+). In this case non-
determinism is needed. To decide whether a pair (u, v) is in evalsw(s+) the
algorithm guesses a simple walk p from u to v, which trivially has polynomial
length, and tests whether lab(p) ∈ L(s+).

Correctness of the algorithm is proved analogously to the proof of Theo-
rem 5.3.2. To this end, we have to adapt invariant (I) to nondeterminism
and simple walk semantics. Formally, the new invariant is:

There is a run of the algorithm such that, for every subexpression s of r,
(u, v) ∈ evalsw(s)⇔ ∃ path p in G from u to v such that

p matches s under simple walk semantics.

The proof of the induction is straightforward.

(3) Directly holds by (1) and (2). �

The results in Theorem 5.3.7 restrain the possibilities for finding polynomial-time
fragments for Evaluation under simple walk semantics rather severely. In order to
find such fragments and in order to trace a tractability frontier for the problem, we
examine syntactically very restricted regular expressions in the following. That, is
we investigate the Evaluation problem for CHAREs (see Definition 3.2.1) under
simple walk semantics. In this way we can show that it is possible to use the ∗- and
+-operators in an expression and obtain a polynomial-time evaluation complexity at
the same time. However, below these operators it is only allowed to use a disjunction
of single symbols.

83

5. Querying RDF Data using SPARQL Property Path Expressions

5.3.8 Theorem. Evaluation for CHARE((+a)∗, (+a)+, (+w), (+w)?) under sim-
ple walk semantics is in P.

Proof. The theorem directly holds by the observation that, for every expression r ∈
CHARE((+a)∗, (+a)+, (+w), (+w)?) and graph G, we have that whenever there is
a path in G that matches r under simple walk semantics there also exists a path
in G that matches r under regular path semantics. In particular, this means that
evalsw(r) = eval(r) and that r can be evaluated in polynomial time by Theorem 5.3.2.
(For the formal definitions of eval(r) and evalsw(r) see Tables 5.3 and 5.4). �

Regarding the result of Theorem 5.3.8 we would like to point out the following
two remarks. First, we stress that for the proof of Theorem 5.3.8 it makes a minor dif-
ference if we would only allow simple paths instead of simple walks. (For details, on
the simple path versus simple walk discussion revisit our formalization of ZeroOr-
MorePath and OneOrMorePath in Section 5.2.) However, the result holds for
both variants. More precisely, Evaluation for CHARE((+a)∗, (+a)+, (+w), (+w)?)
remains in P, even if we would not allow simple cycles to match expressions of the
form (+a)∗ or (+a)+. To see that this is true let id be the identity relation and let
eval′(r) be the set of pairs of nodes (u, v) such that there exists a path from u to v
in the graph that matches an expression r under these semantics (i.e., simple walk
semantics that do not allow simple cycles). Then, observe that

– for every subexpression s of the form (a1 + · · · + ak)
∗ or (a1 + · · · + ak)

+ we
have eval′(s) = eval(s)− id,

– for every subexpression s of the form (w1 + · · · + wk) or (w1 + · · · + wk)? we
have eval′(s) = eval(s), and

– eval′(s1 · s2) = eval′(s1) ./ eval′(s2) for all subexpressions s1 and s2.

Second, we stress that there exists an odd relationship between Theorem 5.3.8
and Theorem 1 in [MW95]. According to the first theorem it can be decided whether
there exists a path that matches the expression a∗ba∗ under simple walk semantics
in polynomial time. The latter theorem states that deciding whether there exists
a simple path that matches the expression a∗ba∗ is NP-complete. The difference,
however, is that under simple walk semantics we do not require the entire path to
be simple.

Regarding the search for more polynomial-time cases we note that the range of
possible fragments between the expressions in CHARE((+a)∗, (+a)+, (+w), (+w)?)
and the expressions in Theorem 5.3.7 is quite limited. For example, a limitation
of Theorem 5.3.8 is that CHAREs do not allow arbitrary nesting of disjunctions.
Since simple walk semantics and regular path semantics coincide for RE-expressions
that do not use the Kleene star or the +-operator Evaluation for those expressions
under simple walk semantics is tractable as well.

5.3.9 Observation. Evaluation for star-free regular expressions under simple
walk semantics is in P.

84

5.4. The Complexity of the Counting Problem for Property Paths

To conclude we remark that Bagan et al. recently studied a variation of the
Evaluation problem under simple walk semantics in which the whole regular ex-
pression should be matched by a simple path in [BBG13]. Under the assumption
that P 6= NP, they can precisely characterize which kinds of regular expressions can
be efficiently evaluated on graphs (when considering data complexity).

5.4 The Complexity of the Counting Problem
for Property Paths

Our motivation to study the Counting problem originates from the SPARQL 1.1
working draft [HS12] which requires that, for example, for SPARQL queries of the
form SELECT ?x, ?y WHERE {?x r ?y} where r is a property path the result is a
multiset that has n copies of a pair (x, y) ∈ V × V where n is the number of paths
between x and y that match r. Thus, the SPARQL 1.1 specification demands that
that all correct answers to certain queries have to be counted. We informally refer
to this requirement as the path counting requirement.

5.4.1 Note. Property paths that are evaluated under the SPARQL 1.1 specification
are required to fulfill the path counting requirement, that is, the number of paths
from x to y that match a property path expression r needs to be counted.

Notice that, according to the path counting requirement, the answer to the
previous stated SELECT query needs to contain the answer to the Counting problem
in unary notation and that the number of paths that match an expression is always
finite under simple walk semantics. Under regular path semantics this is not always
the case. To complete the picture for the comparison between regular path semantics
and simple walk semantics, we discuss the complexity of Finiteness in Section 5.5.

In the following we first investigate Counting under regular path semantics
and, afterwards, under simple walk semantics.

5.4.1 Counting under Regular Path Semantics

To get some intuition for the challenges of Counting for regular path semantics
we illustrate the problem on an example instance in the following. In the example
we also illustrate that, although dynamic programming has been a good approach
to attack Evaluation, this is no longer true for Counting (at least not in an
obvious manner).

5.4.2 Example. Consider the graph (V,E, 0, 6) in Figure 5.4. We are interested in
how many paths from node 0 to node 6 match a regular expression r. An obvious
approach for solving this problem is through divide-and-conquer (as we did for
Evaluation in Section 5.3.1). To this end, we could try to count partial results
for subexpressions and subgraphs and combine these partial results to obtain the
overall result. Next, we briefly demonstrate on two instances why such an approach
will not work in a naïve way.

85

5. Querying RDF Data using SPARQL Property Path Expressions

0

1

2

3

4

5

6

a

b

c

d

e

f

g

h

Figure 5.4: The edge-labeled graph (V,E, 0, 6) from Example 5.4.2.

Consider the expression r = (a • • •) + (• c • •). If we would recursively count
the number of paths that match s1 = a • • • and s2 = • c • • and add these numbers
together then the result does not equal the number of paths that match r. More
precisely, there are two paths from 0 to 6 that match s1 and two paths that match s2.
However, these are the same two paths such that there are only two paths that
match r. (We counted the paths labeled aceg and acfh twice.)

An idea that would solve this problem for the above expression is to color all
the edges that are on some path that matches one of the subexpressions and count
the number of colored paths from 0 to 6 afterwards. For the above expression, this
approach would color the edges labeled a, c, e, g, f , and h and would therefore lead
to the correct result.

However, this approach does not work in general. To see that this is true, consider
the expression r = (ac(eg + fh)) + ((ac + bd)fh). With this expression, we would
color all the edges in the graph. Thus, the number of colored paths from node 0 to
node 6 would be four but the number of paths that match r is only three. Here the
problem is that we erroneously add the path bdeg to the result.

A key for obtaining a polynomial-time algorithm therefore seems to lie in some
way to decompose the paths of the graph such that matching paths are not counted
twice and such that partial paths that are not allowed to occur together are not
erroneously combined. In Theorem 5.4.7, we show that it is unlikely that such an
algorithm exists for the class of arbitrary SPARQL regular expressions by proving
that Counting under regular path semantics is #P-hard (even for very restricted
CHARE fragments).

Before we prove these lower bounds, we show that Counting for unambiguous
regular under regular path semantics can be solved in polynomial time using an
automata-based approach. Regarding this result notice that, although every regular
expression can be converted to an unambiguous one (see, e.g., Section 3.3), the
conversion results in an exponentially larger expression in the worst case. Since
deterministic regular expression are a proper subclass of unambiguous expressions
it follows that Counting can also be solved for deterministic regular expressions
in polynomial time. To prove this polynomial-time result for Counting we use
a unique product graph of the automaton for the input expression and the input
graph. The definition of this product graph is very similar to the standard product
for finite automata (see, e.g., [HMU13]). In the following definition we also use
s-t graphs that have a set of target nodes (see Definition 2.2.3).

86

5.4. The Complexity of the Counting Problem for Property Paths

5.4.3 Definition. Let G = (V,E, x, y) be an s-t graph and N = (Q,Σ,∆, δ, q0, F)
be an NFAw. Then, the product graph Gx,y × N of G and N is the s-t graph
(VG,N , EG,N , xG,N , YG,N) where

– the set of nodes VG,N is V ×Q,

– the source node xG,N is (x, q0),

– the set of target nodes YG,N is {(y, qf) | qf ∈ F}, and

– for each a ∈ ∆ there is an edge ((v1, q1), a, (v2, q2)) ∈ EG,N if and only if there
is an edge (v1, a, v2) in G and either

- a ∈ Σ and q2 ∈ δ(q1, a), or

- a /∈ Σ and q2 ∈ δ(q1, ◦).

If N is a UFAw then there exists a strong relation between paths from x to y
in G and paths from xG,N to YG,N in Gx,y × N . We formalize this relation by a
mapping ϕPaths. Let p = x[a1]v1[a2]v2 · · · vn−1[an]y be a path in G. Then,

ϕPaths(p) = (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn)

where q0q1 . . . qn is the unique accepting run of N on the word a1 . . . an. There is only
one accepting run for a1 . . . an since N is unambiguous. Thus, ϕPaths is well-defined.

5.4.4 Lemma. If N is a UFAw then ϕPaths is a bijection between paths from x
to y in G that match N and paths from xG,N to some node in YG,N in Gx,y × N .
Furthermore, ϕPaths preserves the length of paths.

Proof. Observe that the mapping ϕPaths preserves the length and label of a path by
definition. We show that ϕPaths is a bijection from

– the set P (G) of paths from x to y in G that match N , to

– the set P (G×N) of paths from xG,N to some node in YG,N in Gx,y ×N .

To this end, we need to show that ϕPaths is surjective and injective.
We show first that ϕPaths is surjective. LetN = (Q,Σ,∆, δ, q0, F) be a UFAw and

let p = (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn) be a path in P (Gx,y ×N)
with (y, qn) ∈ YG,N . We prove that for the path pG = x[a1]v1[a2]v2 · · · vn−1[an]y it
holds that p = ϕPaths(p

G). By the definition of the graph Gx,y × N there is an
edge ((vi, qi), a, (vj, qj)) if and only if there is a transition in δ that takes qi to qj by
reading a. As such, the existence of p in Gx,y×N implies that there is an accepting
run q0 · · · qn of N on the word a1 · · · an. By the unambiguity of N the run q0 · · · qn
is unique. Therefore, we have that, by definition of ϕPaths,

ϕPaths(p
G) = ϕPaths(x[a1]v1[a2]v2 · · · vn−1[an]y)

= (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn) = p.

87

5. Querying RDF Data using SPARQL Property Path Expressions

We now show that ϕPaths is injective. Let p = x[a1]v1 · · · vn−1[an]y and p′ =
x[a′1]v′1 · · · v′n−1[a′n]y be two paths in P (G) with ϕPaths(p) = ϕPaths(p

′). We prove
that p = p′. Let ϕPaths(p) = (x, q0)[a1](v1, q1)[a2](v2, q2) · · · (vn−1, qn−1)[an](y, qn).
Since ϕPaths preserves the labels on edges and the nodes in V it follows that p =
x[a1]v1[a2]v2 · · · vn−1[an]y = p′. This concludes the proof. �

Next, we illustrate a short example of how the product graph from Defini-
tion 5.4.3 can be used to efficiently solve Counting for UFAws.

5.4.5 Example. Let A be the UFAw from Figure 5.5(a) and G = (V,E, 0, 6) be the
s-t graph from Figure 5.5(b). Notice that A describes the language L(aΣ∗ + Σ+h)
where Σ is an abbreviation for the expression (a + b + c + d + e + f + g + h). The
product graph G0,6×A of A and G is depicted in Figure 5.5(c). On closer inspection
of the product graph we can observe that the number of paths from node 0 to 6
in G that match A is precisely the number of paths from the source node to a target
node in G0,6 × A.

q0

q1

q2

q3

a

Σ\{
a}

h

Σ

Σ

(a) A UFAw A.

0
1

2
3

4

5
6

a

b

c

d

e

f

g

h

(b) An s-t graph G = (V,E, 0, 6).

0, q0

1, q2

2, q1

3, q2

3, q1

4, q2

5, q2

4, q1

6, q2

6, q2

6, q1

5, q1 6, q3

a

b

c

d

e

f

f

e

g

h

h

g

(c) Fragment of the graph G0,6 ×A. (Nodes in YG,A are gray.)

Figure 5.5: An illustration of the algorithm for Counting and UFAws.

In the following we prove some general upper bounds for the Counting problem
under regular path semantics. More precisely, we show that Counting can be
solved in polynomial time for each class of regular expressions that can be converted
to UFAws in polynomial time. Afterwards, it directly follows that Counting for
unambiguous (and deterministic) regular expressions can be solved in polynomial
time. In addition, we observe that Counting for the class of all regular expressions
is in #P.

88

5.4. The Complexity of the Counting Problem for Property Paths

5.4.6 Theorem.

(1) Counting for UFAws under regular path semantics is in P, even if the number
max is given in binary.

(2) Counting for DFAws under regular path semantics is in P, even if the number
max is given in binary.

(3) Counting for unambiguous and deterministic regular expressions under reg-
ular path semantics is in P, even if the number max is given in binary.

(4) Counting for RE(#, !,¬, •) under regular path semantics is in #P.

Proof. (1) To prove the assumption we present a polynomial-time algorithm that
reduces Counting for UFAws to the problem of counting the number of paths
in a graph using the product graph from Definition 5.4.3. Notice that, due to
Theorem 2.2.4, the latter problem can be solved in polynomial time even if
the number max is given in binary. Now, let G = (V,E, x, y) be a graph and
A = (Q,Σ,∆, δ, q0, F) be a UFAw. Then, the algorithm works as follows:

– Construct Gx,y × A, i.e., the product graph of (V,E, x, y) and A.

– Return
∑

qf∈F Paths((x, q0), (y, qf)) in Gx,y × A.

Here, Paths((x, q0), (y, qf)) denotes the number of paths from node (x, q0)
to (y, qf) in Gx,y × A that have at most length max. By Lemma 5.4.4 this
algorithm is correct. In fact, the lemma shows that the number of paths from x
to y in G that have at most length max and match A equals the number of
paths of length at most max from (x, q0) to some node in {y}×F of Gx,y×A.

(2) Since every DFAw is a UFAw, (2) directly holds by the proof of (1).

(3) The statement directly holds by translating the expressions to Glushkov au-
tomata (see Proposition 5.1.7). By the definition of unambiguous regular
expressions their Glushkov automata are UFAws.

(4) Let G = (V,E, x, y) be the input graph, r be an RE(#, !,¬, •) expression,
and max ∈ N be a number given in unary notation. The nondeterministic
Turing machine for the #P -procedure guesses a path p of length at most max
in G and tests whether lab(p) ∈ L(r) afterwards. Since Membership for
RE(#, !,¬, •) can be solved in polynomial time by Theorem 5.3.4 and the
number max is given in unary, this can be done in polynomial time. The only
nondeterminism in the algorithm originates from guessing the path. Thus, the
number of accepting computations of the Turing machine corresponds to the
number of paths of length at most max in G that match the expression. �

We now turn our attention to lower bounds for the Counting problem and show
that the problem becomes intractable as soon as we allow only a little bit more non-
determinism in the input expressions. To this end, we consider the complexity

89

5. Querying RDF Data using SPARQL Property Path Expressions

of Counting for chain regular expressions (see Section 3.2). In more detail, we
show that Counting is #P-complete for all classes of CHAREs that allow a single
label (i.e., “a”) as a factor and cannot be trivially converted to DFAws or UFAws in
polynomial time.

Our lower bound proofs are obtained by adapting a proof in [Mar06, MNS09]
which shows that language inclusion for various classes of CHAREs is coNP-hard.
Moreover, the technique from [Mar06, MNS09] is itself a robust generalization of a
proof by Miklau and Suciu [MS04] which shows that inclusion for particular XPath
expressions is coNP-hard.

5.4.7 Theorem. Counting under regular path semantics is #P-complete for

(1) CHARE(a, a∗),

(2) CHARE(a, a?),

(3) CHARE(a, w+),

(4) CHARE(a, (+a+)),

(5) CHARE(a, (+a)+),

(6) CHARE((+a), a+), and

(7) RE(#, !,¬, •).

Moreover, #P -hardness already holds if the graph G is acyclic.

Proof. We prove the cases (1) to (6) first. The upper bounds for the cases (1)
to (6) are immediate from Theorem 5.4.6. We prove the lower bounds for these
cases by reductions from #DNF. As previously mentioned the used techniques are
heavily inspired by proofs in [Mar06, MNS09, MS04]. To this end, we first describe a
meta-reduction for the cases (1) to (3) and then instantiate it with slightly different
subgraphs and expressions to deal with the different cases. For the cases (4) to (6)
we perform a similar approach.

Meta-reduction for the cases (1) to (3): Let Φ = C1∨ · · ·∨Ck be a propositional
formula in 3DNF using variables {x1, . . . , xn}. We encode truth assignments for Φ
by paths in the graph. In particular, we construct a graph G = (V,E, x, y), an
expression r, and a number max such that each path from x to y of length at most
max in G that matches r corresponds to a unique satisfying truth assignment for Φ
and vice versa. Formally, we will prove that the following holds:

The number of paths from x to y of length at mostmax in G that match r
is equal to the number of truth assignments that satisfy Φ. (*)

The structure of the graph G is depicted in Figure 5.6.

90

5.4. The Complexity of the Counting Problem for Property Paths

. .
x xA yA y

α α # # α α # #ptrue

pfalse

$ $p
true

pfalse

α α # # α α

B B

(k times B)
A B B

(k times B)

Figure 5.6: The graph G from the proof of Theorem 5.4.7 for the cases (1)–(3).

Basically, the graph has the structure BkABk where

– B is a path labeled #α$α$ · · · $α# (containing n copies of α), and

– A is a subgraph with a distinguished source node xA, a target node yA, and
containing n copies of the gadget labeled ptrue/pfalse. Notice that all paths
from x to y will enter A through the node xA and leave A through yA.

The subgraphs α, ptrue, and pfalse are supposed to be paths themselves which we
instantiate differently in each of the cases (1) to (3). Moreover, notice that we
instantiate α, ptrue, and pfalse with acyclic graphs such that the instantiated graphs
remain acyclic in each case.

By the structure of the graph each path from xA to yA in A can be associated
to exactly one truth assignment for the variables {x1, . . . , xn}. That is, for each
truth assignment ψ, there is a path pψ in A from xA to yA and, for each path p
in A from xA to yA, there is a corresponding truth assignment ψp. More precisely,
consider the structure of A as depicted in Figure 5.6 with n occurrences of ptrue
and pfalse. Here, ptrue and pfalse are paths in A whose labels depend on the case (or
the CHARE fragment) we are considering. The paths ptrue and pfalse do not use any
of the special labels, i.e., $ or #. A path through A from xA to yA therefore has n
choices of going through ptrue or pfalse. If the i-th choice goes through ptrue then this
corresponds to a truth assignment that sets xi to true. The same holds for pfalse and
an assignment that sets xi to false. This concludes the description of the graph.

We now illustrate the structure of the expression r that is used in the meta-
reduction for the cases (1) to (3). To this end, we construct an expression

r = NF (C1) · · ·F (Ck)N

such that

– each path labeled lab(B)i for i = 1, . . . , k matches N ,

– each subexpression F (Ci) can be associated with clause Ci where i ∈ {1, . . . , k},

– each path B matches every subexpression F (Ci), and

– for each clause Ci and path p in A the path p matches F (Ci) if and only if the
truth assignment ψp that is associated with p satisfies Ci.

In the following we use the subexpressions rtrue, rfalse, and rall to define the ex-
pressions F (Ci). Intuitively, these expressions correspond to a variable occurring

91

5. Querying RDF Data using SPARQL Property Path Expressions

positively, negatively, or not at all in a clause Ci. Later, we instantiate these ex-
pressions separately for the cases (1) to (3). Formally we define, for each clause C,
the expression

F (C) = #e1$ · · · $en#

where, for each j = 1, . . . , n,

ej :=

rfalse, if xj occurs negated in C,
rtrue, if xj occurs positive in C,
rall, otherwise.

The subexpression N will be defined differently for each case.
Next, we want to prove some general properties about the meta-reduction that

we need later to prove correctness for the different cases. Therefore, we make the
following assumptions on paths and expressions. In the proofs of the cases (1) to (3)
we then prove that the assumptions are met:

lab(α) ∈ L(rfalse) ∩ L(rtrue) (P1)
lab(ptrue) ∈ L(rtrue)− L(rfalse) (P2)
lab(pfalse) ∈ L(rfalse)− L(rtrue) (P3)
{lab(ptrue), lab(pfalse), lab(α)} ⊆ L(rall) (P4)

Notice that (P2) and (P3) imply that lab(ptrue) 6= lab(pfalse). Due to the struc-
ture of G and since ptrue and pfalse do not use the symbols $ or #, we therefore
have that paths p1 and p2 from x to y are different if and only lab(p1) 6= lab(p2).
Moreover, we know that the only part where paths from x to y can differ is in the
subgraph A (because B is a path). Thus, we can uniquely identify a path p from x
to y in G with the label of the subpath p′ of p that goes from xA to yA. In addition,
we can associate a truth assignment to each such path and vice versa:

– For a path with label w = #w1$ · · · $wn# we define Vw as the truth assignment
where, for each j = 1, . . . , n,

Vw(xj) :=

{
true, if wj = lab(ptrue),

false, otherwise.

– For a truth assignment V we define the word wV = #w1$ · · · $wn# such that,
for each j = 1, . . . , n,

wj =

{
lab(ptrue), if V (xj) = true,
lab(pfalse), otherwise.

Notice that wV is always the label of a path in A.

Next, we prove that the above encoding between truth assignments and paths
is always unique due to the particular structure of the graph G. Since we basically

92

5.4. The Complexity of the Counting Problem for Property Paths

(1) CHARE(a, a∗) (2) CHARE(a, a?) (3) CHARE(a, w+)
lab(α) a aa aaaa

lab(ptrue) ab aaa aaa

lab(pfalse) ba a aa

N (#∗a∗$∗ · · · $∗a∗#∗)k (#?a?a?$? · · · $?a?a?#?)k (#aaaa$ · · · $aaaa#)+

lab(rtrue) a∗b∗ aaa? a+(aa)+

lab(rfalse) b∗a∗ aa? (aa)+

lab(rall) a∗b∗a∗ aa?a? a+

Table 5.5: Paths and subexpressions for cases (1)–(3) from Theorem 5.4.7.

transferred the structure of the respective expression from the proof of [MNS09] into
a graph, the formal proof below is analogous to Claim 3.3 in [MNS09]. For the sake
of completeness we review the proof adapted for graphs in the following.

Assume that C is a clause from Φ. First, we show that if Vw |= C then w ∈
L(F (C)). Therefore, let w = #w1$ · · · $wn# be the label of a path from xA to yA
in A such that Vw |= C and let F (C) = #e1$ · · · $en# be as previously defined.
Then we distinguish three cases for j ≤ n:

– If xj occurs positively in C then ej = rtrue. Since Vw |= C we know that
Vw(xj) = true and, by definition of Vw, it follows that wj = lab(ptrue). Thus,
we get that wj ∈ L(rtrue) = L(ej) by condition (P2).

– If xj occurs negatively in C then ej = rfalse. Since Vw |= C we know that
Vw(xj) = false and, by definition of Vw, it follows that wj = lab(pfalse). Thus,
we get that wj ∈ L(rfalse) = L(ej) by condition (P3).

– If xj does not occur in C then ej = rall. Since wj ∈ {lab(ptrue), lab(pfalse)} we
know that wj ∈ L(ej) by condition (P4).

It follows that wj ∈ L(ej) for each j = 1, . . . , n and, therefore, w ∈ L(F (C)).
Second, we show that if wV ∈ L(F (C)) then V |= C. Towards a contradiction,

let V be a truth assignment that does not make clause C true. We show that
wV 6∈ L(F (C)) and distinguish two cases in the following:

– There exists an xj that occurs positively in C but V (xj) is false. By definition
we know that the component ej in F (C) is rtrue and that the component wj
in wV is lab(pfalse). By condition (P3) it follows that wj 6∈ L(rtrue). Therefore,
we have that wV 6∈ L(F (C)).

– There exists an xj that occurs negatively in C but V (xj) is true. By definition
we know that the component ej in F (C) is rfalse and that the component wj
in wV is lab(ptrue). By condition (P2) it follows that wj 6∈ L(rfalse). Therefore,
we have that wV 6∈ L(F (C)).

This proves that the above encoding between truth assignments and paths is unique.

93

5. Querying RDF Data using SPARQL Property Path Expressions

Instantiation of the meta-reduction for the cases (1) to (3): We instantiate the
meta-reduction for the cases (1) to (3) by the paths and subexpressions that are
specified in Table 5.5. It is straightforward to verify that each instantiation fulfills
the conditions (P1) to (P4). Moreover, notice that all expressions are defined over
the fixed alphabet {a, b, $,#}. Before we finally prove (*) for the cases (1) to (3), we
need to prove the following additional properties about the relation between paths
in G and the expression r:

(a) lab(B)i ∈ L(N) for every i = 1, . . . , k,

(b) lab(B) ∈ L(F (Ci)) for every i = 1, . . . , k, and

(c) for a label w of a path from xA to yA in A it holds that if there exists a path p
from x to y in G with lab(p) = lab(B)k ·w · lab(B)k ∈ L(r) then w ∈ F (Ci) for
some i = 1, . . . , k.

Again, these properties basically come from Martens et al. and are transferred from
the original proof (see Claim 3.4. in [MNS09]) to our graph setting. For the sake of
completeness we review the proof in the following with a notation that is consistent
to our setting.

Properties (a) and (b) hold for each case (1) to (3) immediately by their defini-
tions and the definitions of conditions (P1) to (P4). Therefore, it remains to prove
that condition (c) holds.

Let p be a path as desired in (c), i.e., a path from x to y in G such that ukwuk ∈
L(r) with u = lab(B) is the label of p. We need to show that the subword w is
in the language of some expression F (Ci). To this end, we use that every word
u, w, and every word in some L(F (Ci)) is of the form #z# where z ∈ {a, b, $}+.
In addition, every word in the language L(N) is of the form #z1##z2# · · ·#z`#
where z1, . . . , z` ∈ {a, $}+ or a subsequence thereof. By the precise definitions of
the subwords z, z1, . . . , z` for each case we get that ukwuk ∈ L(r). Moreover, we
know that either w ∈ F (Ci) for some i or w is entirely contained in the language of
a sub-expression of N because no word z, z1, . . . , z` contains “#”.

In the following we distinguish between cases (1)–(2) and case (3) to prove
that w is always in the language of some F (Ci). Remember that, by assumption,
lab(p) = ukwuk.

– Cases (1–2): We know that words in L(N) contain at most k subwords zj,
i.e., ` ≤ k. Therefore, the word ukw (or a longer prefix of lab(p)) cannot be
in the language L(N) for the left occurrence of N in r because ukw contains
at least k + 1 subwords of the form zj. For the same reason the word wuk

(or a longer suffix of lab(p)) cannot be in the language of L(N) for the right
occurrence of N in r. Therefore, the subword w has to be in the language of
some F (Ci).

94

5.4. The Complexity of the Counting Problem for Property Paths

– Case (3): By definition we have that ` ≥ 1. However, notice that every
word in L(F (C1) · · ·F (Ck)N) contains at least k+ 1 subwords of the form zj.
Towards a contradiction, assume that the word ukw (or a longer prefix of
lab(p)) is in the language L(N) for the left occurrence of N in r. Then, it
follows that uk (or the remaining suffix of lab(p)) is too short to be in the
language L(F (C1) · · ·F (Ck)N). We can argue analogously that the word wuk
(or a longer suffix of lab(p)) cannot be in the language L(N) for the right
occurrence of N in r. Therefore, the subword w has to be in the language of
some F (Ci).

This concludes the proof of property (c) for the cases (1) to (3). We are now ready
to prove (*) for these cases.

Therefore, we show that every path of length at most max in G from x to y
that matches r corresponds to exactly one truth assignment that satisfies Φ and
vice versa. Formally, we define a bijection ϕ between paths from x to y of length
at most max in G and truth assignments for Φ. Let p be an arbitrary path from x
to y in G. Since max is at most the number of nodes in G and every path in G can
visit every node at most once (G is acyclic), every such path p has length at most
max. Let lab(p) = lab(B)k ·w · lab(B)k. We define ϕ(p) := Vw where Vw is the truth
assignment as previously defined. Notice that there are exactly 2n paths from x
to y and the same amount of truth assignments for Φ. Moreover, by the definition
of Vw and the structure of G it is immediate that ϕ is a bijection. In addition, ϕ−1

maps each truth assignment V onto the path labeled wV where wV is as previously
defined. It follows from properties (a) to (c) that ϕ is a bijection between the paths
from x to y that have at most length max and match r, and the truth assignments
that satisfy Φ. This concludes the proof for the cases (1) to (3).

Modifying the meta-reduction for the cases (4) to (6): Next, we prove the lower
bounds for the cases (4) to (6). Therefore, we have to slightly modify the given
meta-reduction. The main difference of these cases and the cases (1) to (3) is that
we will not use a fixed size alphabet. Instead, we use, for j = 1, . . . , n,

– symbols bj and cj,

– paths ptruej and pfalsej (instead of the paths ptrue and pfalse), and

– expressions rtruej , rfalsej , and rallj (instead of expressions rtrue, rfalse, and rall).

Moreover, we require that, for every j, these expressions fulfill properties (P1)
to (P4) where ptrue, pfalse, rtrue, rfalse, and rall are replaced by ptruej , pfalsej , rtruej , rfalsej ,
and rallj , respectively. To this end, we need to redefine the structure of the graph G
and the expression r. The structure of the graph G in the meta-reduction for the
cases (4) to (6) is depicted in Figure 5.7.

95

5. Querying RDF Data using SPARQL Property Path Expressions

subgraph (4) CHARE(a, (+a+)) (5) CHARE(a, (+a)+) (6) CHARE((+a), a+)
lab(α) a a a

lab(ptruej) bj bj bj
lab(pfalsej) cj cj cj

N a+ a+ a+

lab(rtruej) (a+ + b+
j) (a+ bj)

+ (a+ bj)

lab(rfalsej) (a+ + c+
j) (a+ cj)

+ (a+ cj)

lab(rallj) (a+ + b+
j + c+

j) (a+ bj + cj)
+ (a+ bj + cj)

Table 5.6: Paths and subexpressions for cases (4)–(6) from Theorem 5.4.7.

. .
x xA yA y

α α α α
ptrue1

pfalse1

ptruen

pfalsen

α α α α

B B

(k times B)
A B B

(k times B)

Figure 5.7: The graph G from the proof of Theorem 5.4.7 for the cases (4)–(6).

Basically, the graph has the structure BkABk where B is a path consisting of n
concatenations of the subpath α. The subgraph A is analogous to the cases (1)
to (3) except that now we use distinct subpaths ptruej and pfalsej for each j = 1, . . . , n.

The expression r is defined as NF (C1) · · ·F (Ck)N where for a clause C of Φ the
subexpression F (C) is defined as follows:

e1 · · · en

where, for each j = 1, . . . , n,

ej :=

rfalsej , if xj occurs negated in C,
rtruej , if xj occurs positive in C,
rallj , otherwise.

Instantiation of the meta-reduction for the cases (4) to (6): We instantiate the
meta-reduction for the cases (4) to (6) by the paths and expressions that are specified
in Table 5.6. It is straightforward to verify that the conditions (P1) to (P4) are
fulfilled for each of the cases.

We now prove that the reduction is correct for the cases (4) to (6). Again, we
can associate the paths from xA to yA in G with truth assignments for Φ:

– For a path with label w = w1 · · ·wn we define Vw as the truth assignment
where, for every j = 1, . . . , n and wj ∈ {ptruej , pfalsej },

Vw(xj) :=

{
true, if wj ∈ L(rtruej),

false, otherwise.

96

5.4. The Complexity of the Counting Problem for Property Paths

– For a truth assignment V we define the word wV = w1 · · ·wn such that, for
each j = 1, . . . , n,

wj =

{
ptruej , if V (xj) = true,
pfalsej , otherwise.

Notice that wV is always the label of a path in A.

Analogously to cases (1) to (3) it can be proved that the encoding of different
paths in the graph and different truth assignments for the formula Φ is unique.
Properties (a) and (b) hold for the cases (4) to (6) directly by their definition.

Analogously to [MNS09] we argue that property (c) holds for every instantiated
case (4) to (6) in the following. Let p be a path as desired in (c) from x to y in G
such that ukwuk ∈ L(r) with u = lab(B) is the label of p. We need to show that
the subword w is in the language of some expression F (Ci). For every j = 1, . . . , n
let Σj denote the set {bj, cj}. Observe that the word w is of the form z1 · · · zn
where zj ∈ Σ+

j for every j = 1, . . . , n. Moreover, no words in L(N) contain symbols
from Σj for any j = 1, . . . , n. Hence, there does not exist a subword of w that
is in the language L(N). Consequently, there exists a subword v1wv2 of ukwuk
which is in the language L(F (C1) · · ·F (Ck)). Notice that every word in every F (Ci)
for i = 1, . . . , k is of the form z′1 . . . z

′
n, where each z′j is a word in (Σj ∪ {a})+. By

the structure of w and since all alphabets Σj are distinct, it follows that w is in the
language of some expression F (Ci). This proves that (c) holds for cases (4) to (6).

Finally, the proof of (∗) is analogous to the proof for the cases (1) to (3). In
addition, the constructed graphs G are always acyclic such that every case is #P-
hard even if G is acyclic. This concludes the proof of the lower bounds for the
cases (1) to (6).

It remains to prove (7), i.e., Counting under regular path semantics is #P-
complete for RE(#, !,¬, •). The lower bound directly holds from any of the proofs
for the cases (1) to (6). The upper bound comes from Theorem 5.4.6. �

To conclude we remark that Arenas et al. studied a similar problem as above
in [ACP12]. They also examined the tractability of SPARQL 1.1 queries, though
they focus was on a different part of the SPARQL specification to formalize their
interpretation of the W3C’s semantics. In particular, they showed that Counting
under regular path semantics is complete for the complexity class spanL. This class
was introduced by Alvarez and Jenner [AJ93] and, informally, contains all func-
tions f such that f(x) is the size of the set of different output values of accepting
paths of a LOGSPACE Turing machine. Opposed to that, functions in #P compute
the size of the multiset containing all different output values of accepting paths of
a polynomial-time Turing machine. Moreover, it is known that if #P = spanL then
it follows that NLOGSPACE = P = NP [AJ93]. Therefore, it seems quite haz-
ardous (at first glance) that Counting under regular path semantics is complete
for the class #P as well as for the class spanL. However, both results are correct
since we use polynomial Cook reductions to obtain our results and it is very unlikely
that spanL is closed under such kind of reductions.

97

5. Querying RDF Data using SPARQL Property Path Expressions

5.4.2 Counting under Simple Walk Semantics

In this section we investigate how the complexity of Counting changes under
simple walk semantics. We will see that the situation is even more severe than in
Section 5.3.3 for the Evaluation problem. Although our results also include a
polynomial-time result for a very small class of CHAREs, we show that Counting
turns #P-complete as soon as the Kleene star (*) or plus (+) operator is used. To
complete the picture we show that Counting remains in #P for the full fragment
of SPARQL regular expressions, i.e., expressions in RE(#, !, •).

5.4.8 Theorem. Counting under simple walk semantics is

(1) in P for the class CHARE(a, (+a)),

(2) is #P-complete for expressions a∗ and a+,

(3) is #P-complete for the class CHARE(a, a?), and

(4) is #P-complete for the class RE(#, !, •).

Proof. (1) The result holds since for this fragment simple walk semantics coincides
with regular path semantics and every expression in CHARE(a, (+a)) can be
translated to a DFAw in polynomial time.

(2) We show that the problem is #P-hard by a reduction from the #P-complete
problem #SimplePaths (see, e.g., Section 2.4). Notice that #SimplePaths
is also #P-hard when the source and target node for the input are different. We
restrict ourselves to such instances in the following to prove that the hardness
result also holds for simple walks.

Given an s-t graph G = (V,E, x, y) with x 6= y and a number max in unary,
we construct an edge-labeled s-t graph G′ = (V,E ′, x, y) by labeling each edge
with a. The number of simple walks from x to y in G of length at most max
is equal to the number of paths from x to y in G′ of length at most max
that match the regular expression a∗. The reduction for the expression a+ is
similar. Notice that this immediately implies that Counting under simple
walk semantics is #P-hard for the classes CHARE(a, a∗), CHARE(a, w+),
CHARE(a, (+a+)), CHARE(a, (+a)+), and CHARE(a+, (+a)).

(3) The lower bound is immediate from the observation that the reduction for
regular path semantics from Theorem 5.4.7 applies here as well.

(4) Finally, we show how to solve Counting for RE(#, !, •) in #P. To this end,
we construct an NP Turing machine that guesses a path from x to y of length
at most max in the graph and then tests whether it matches the expression
under simple walk semantics. For the path the Turing machine needs to guess
the nodes as well as the labels. Since the number max is given in unary it can
guess the entire path in polynomial time. Moreover, notice that the entire path
does not have to be simple walk because only subexpressions of the form s∗

98

5.5. The Complexity of the Finiteness Problem for Property Paths

and s+ have to be matched by simple walks. Afterwards, the Turing machine
runs the dynamic programming procedure for words (i.e., the one given in the
proof of Theorem 5.3.4) on the path, but during the computation it removes
all pairs in all relations that do not correspond to simple walk semantics. In
particular, it removes all pairs (x, y) in a relation eval(s∗) and eval(s+) such
that the subpath from x to y is not a simple walk. Otherwise, the procedure
remains unchanged. Since the only nondeterminism in the algorithm comes
from guessing the path, the number of accepting computations of the Turing
machine corresponds to the number of paths of length at most max that match
the expression. �

5.5 The Complexity of the Finiteness Problem
for Property Paths

For a regular expression r and a graph G = (V,E, x, y) there cannot exist infinitely
many paths p in G such that p matches r under simple walk semantics. Under
regular path semantics this can be the case. In order to be able to make a fair
comparison between the complexity of counting paths for regular path semantics
and for simple walk semantics, we study the Finiteness problem. However, we
only consider regular path semantics in the following.

We start with a simple observation. Using the product graph from Defini-
tion 5.4.3 we can test in polynomial time whether there is a path p from x to y
that is labeled by a word uvw such that a subpath of p labeled with v ∈ Σ∗ is a
cycle and uvkw ∈ L(r) for every k ∈ N. If there is such a cycle then we return that
there are infinitely many paths. This solves Finiteness for RE in time O(|r| · |G|).

We now show how to solve Finiteness for RE(#, !, •) in polynomial time by
adapting the algorithm for Evaluation in Section 5.3.1.

5.5.1 Theorem. Finiteness for RE(#, !, •) is in P.

Proof. Let G = (V,E, x, y) be a graph, x and y be nodes in G, and r be an
RE(#, !, •). To prove the assumption we construct an algorithm that adapts the
polynomial-time algorithm from Section 5.3.1 such that it additionally annotates
the length of the longest paths associated to a pair of nodes in every computed
relation. We use a pumping argument to argue that the number of paths from x
to y that match r is infinite if and only if there is a very long path p from x to y
such that lab(p) ∈ L(r).

We first formally define when a path p is considered to be “very long”, i.e., we
prove an upper bound of the length for paths from x to y that match r. More
precisely, we show that it suffices to consider paths of at most exponential length
in |r|. To this end, we translate the RE(#, !, •) r to an RE(!, •) r′ by unfolding
the counting operators. (That is, we replace subexpressions of the form sk,k with
a concatenation of k expressions s.) The size of the resulting expression r′ is at
most exponential in the size of r. Let N be an NFAw for L(r) which is obtained

99

5. Querying RDF Data using SPARQL Property Path Expressions

from r′ via the Glushkov construction. We know that N has polynomial size in r′,
i.e., exponential size in r.

Next, we examine the product graph Gx,y × N = (VG,N , EG,N , xG,N , YG,N) (see
Definition 5.4.3). In this graph the following holds:

There are infinitely many paths from x to y in G that match r if and
only if there are infinitely many paths from xG,N to some node in YG,N
in Gx,y ×N .

The latter holds if and only if there is a cycle in Gx,y ×N or, more precisely, there
exists a path from xG,N to some node in YG,N of length at least |G| · |N | + 1 in
Gx,y × N . Since the size of N is exponential in |r| it follows that we only need to
consider paths of at most exponential length in |r|.

In the following we adapt the algorithm that solves Evaluation for RE(#, !, •)
(see Section 5.3.1) such that it remembers the lengths of already computed paths
while trying to find more paths that are as long as possible. To this end, we define
M := |G| · |N |+ 1 as upper bound on the length of relevant paths. Once a path be-
comes longer thanM the algorithm simply remembers that the path is long enough.
The algorithm works as follows. Let r be an RE(#, !, •) and let G = (V,E, x, y) be
a graph. It computes, for all subexpressions s of r, the ternary relation

evalc(s) ⊆ V × V × {0, . . . ,M}

such that if (u, v, i) ∈ evalc(s) then there exists a path from u to v that matches s
and has at least length i. More precisely, the following holds for evalc:

– for each (u, v) ∈ V ×V there is at most one tuple of the form (u, v, i) ∈ evalc(s),

– if there is a path from u to v in G that matches s then there exists a tuple
(u, v, i) ∈ evalc(s),

– for each (u, v, i) ∈ evalc(s) with i ∈ {0, . . . ,M − 1} there is a path from u to v
of length i in G that matches s, and

– there is a path from u to v in G of length at least M that matches s if and
only if (u, v,M) ∈ evalc(s).

The relation evalc(s) can be computed inductively on the structure of r by one
bottom-up pass of the syntax tree of r and joining already computed relations for
the subexpressions on the way. All possible cases for the computation are depicted
in Table 5.7. Basically, the definition of evalc from Table 5.3 is an extension of
the relation eval (see Table 5.3) to a ternary relation. During the computation of
evalc the algorithm checks the length of the longest paths for every subexpression in
every step. Since we already showed that it is sufficient to keep track of paths upto
length M we change the definition of the original relation eval accordingly. That
means the algorithm stores the exact length of a path as long as it is smaller thanM .
Once length M is reached it only stores the information “long enough” (i.e., entries
annotated with M). Next, we present the differences between the relation eval and
evalc in more detail.

100

5.5. The Complexity of the Finiteness Problem for Property Paths

type of expression computation of evalc
evalc(∅) ∅
evalc(ε) {(u, u, 0) | u ∈ V }
evalc(•) {(u, v, 1) | ∃a ∈ ∆ with (u, a, v) ∈ E}

evalc(a), for a ∈ ∆ {(u, v, 1) | (u, a, v) ∈ E}
evalc(!(a1 + · · ·+ an)) {(u, v, 1) | ∃a ∈ ∆\{a1, . . . , an}with (u, a, v) ∈ E}

evalc(s1 + s2) evalc(s1) ∪min evalc(s2)

evalc(s1 · s2)
{(u, v, i) | i = max{j | ∃z : (u, z, k) ∈ evalc(s1),

(z, v, `) ∈ evalc(s2), and j = min(k + `,M)}}
evalc(s?) evalc(s+ ε)
evalc(s∗) evalc((s+ ε)M)
evalc(s+) evalc(s · s∗)

evalc(sk)
- k = 1: evalc(sk) = evalc(s)
- even k: evalc(sk) := evalc(sk/2 · sk/2)
- odd k: evalc(sk) := evalc(s · sk/2 · sk/2)

evalc(sk,∞) evalc(sk · s∗)
evalc(sk,`), for ` 6=∞ evalc(sk · (s?)`−k)

Table 5.7: Inductive definition of the relation evalc.

For the base cases we additionally store the length of the considered path, i.e.,
paths that match ε are of length 0 and paths that match •-symbols, ∆-symbols, and
restricted negation expressions are of length 1.

We define evalc(s1 +s2) = evalc(s1)∪min evalc(s2) where, for two ternary relations
R1, R2 ⊆ V × V × {0, . . . ,M}, the set R1 ∪min R2 contains all tuples (u, v, i) such
that either

– (u, v, i) ∈ evalc(s1) and @j : (u, v, j) ∈ evalc(s2),

– (u, v, i) ∈ evalc(s2) and @j : (u, v, j) ∈ evalc(s1), or

– (u, v, k) ∈ evalc(s1), (u, v, `) ∈ evalc(s2), and i = min(max(k, `),M).

In this way we guarantee that the relation evalc(s1 + s2) stores, for each pair of
nodes (u, v), the length of the longest paths from u to v in the graph that matches
the expression s1 + s2.

For the concatenation case evalc(s1·s2) the relation can be computed by searching
for the best (intermediate) node z such that there exist a path p1 from u to z that
matches s1, a path p2 from z to v that matches s2, and no other such paths p′1 and p′2
with |p′1p′2| > |p1p2|.

Notice that for the Kleene-star case evalc(s∗) it is not necessary to compute the
transitive closure of the relation. It is sufficient to test whether a path of length M
can be found in the relation evalc((s+ ε)M), which can be done in polynomial time
by adapting the fast squaring method as specified in Table 5.7.

101

5. Querying RDF Data using SPARQL Property Path Expressions

Given a graph G, nodes x and y, and an RE(#, !, •) r, the algorithm returns
true for Finiteness if and only if evalc(r) contains the triple (x, y,M). Analogously
to the computation of eval the relation evalc can be computed in polynomial time.
The proof of correctness is a straightforward induction and analogous to the proof
of Theorem 5.3.2. �

Next, we show that the complexity of the Finiteness problem becomes non-
elementary once unrestricted negation is allowed in regular expressions. The result
is obtained by proving that Finiteness is at least as hard as testing emptiness for
the considered class of regular expressions.

5.5.2 Lemma. Let C be a class of regular expressions r over a finite alphabet Σ
such that testing whether ε ∈ L(r) is in P. Then there exists a polynomial reduction
from the emptiness problem for C-expressions to Finiteness for C-expressions.

Proof. Let r be a C-expression over Σ. For the reduction we construct a graph
G = (V,E, x, y) and a C-expression s such that L(r) = ∅ if and only if Finiteness
is true for s and G. We distinguish two cases:

– If ε ∈ L(r) then we know that L(r) 6= ∅. In this case we return the expres-
sion a∗ and the graph G = (V,E, x, x) with V = {x} and E = {(x, a, x)}.

– If ε /∈ L(r) then we return the expression r∗ and the graph G = (V,E, x, x)
with V = {x} and E = {(x, a, x) | a ∈ Σ}.

We now prove that the reduction is correct. If ε ∈ L(r) then it holds that L(r) 6= ∅
and Finiteness for a∗ and G is false. If ε /∈ L(r) then it holds that either L(r) = ∅
or L(r) contains at least one word w with |w| > 0. In the case that L(r) = ∅ we
know that L(r∗) = {ε}. Thus, there exists only one path with length 0 in G that
matches r∗, i.e., Finiteness returns true. In the case that L(r) 6= ∅ it follows that
wi ∈ L(r∗) for all i ≥ 1. Thus, for every i ≥ 1, there is a path pi with lab(pi) = wi

in G. Since all paths pi and pj for i 6= j are different there exist infinitely many
paths p in G that match r∗, i.e., Finiteness returns false. �

For an RE(¬) r we can test whether ε ∈ L(r) in linear time by traversing the
syntax tree of r. Since Stockmeyer showed that the language emptiness problem
for the class RE(¬) of generalized regular expressions is non-elementary [Sto74] the
following statement holds by applying Lemma 5.5.2.

5.5.3 Theorem. Finiteness for RE(¬) is decidable but non-elementary.

102

5.6. SPARQL and Nested Regular Expressions

type of expression computation
JεKG {(u, u) | u ∈ V }
J•KG {(u, v) | (u, a, v) ∈ E for some a ∈ ∆}
JaKG {(u, v) | (u, a, v) ∈ E}
Ja−KG {(u, v) | (v, a, u) ∈ E}

J!(a1 + · · ·+ an)KG {(u, v) | ∃a ∈ ∆\{a1, . . . , an} with (u, a, v) ∈ E}
Jr + sKG JrKG ∪ JsKG
Jr · sKG JrKG ./ JsKG
Jr∗KG reflexive and transitive closure of JrKG
Jrk,`KG (JrKG)k ./ (Jr + εKG)`−k

J〈r〉KG {(u, u) | ∃z : (u, z) ∈ JrKG}

Table 5.8: Regular paths semantics of NREs with respect to a graph G = (V,E).

5.6 SPARQL and Nested Regular Expressions

In this section we show that the complexity upper bound for Evaluation from The-
orem 5.3.2 also translates to more complex queries. Therefore, we consider nested
regular expressions (NREs) which are regular expressions that are enhanced by a
mechanism to branch out in the graph. For such expression it is already known
that they can be evaluated in linear-time using the product construction for au-
tomata [AI00, PAG10]. In fact, since nested regular expressions are a fragment of
propositional dynamic logic (PDL), linear-time evaluation of such expressions al-
ready holds by linear-time evaluation of PDL [CS93, AI00]. Nested regular expres-
sions (without counting operators) have also been studied in the context of SPARQL
queries by Pérez et al. [PAG10]. They showed that nested regular expressions can be
evaluated over RDF graphs in linear-time in the size of the expression and the graph.
Since the complexity of evaluating them is essentially not worse than for ordinary
regular expressions, NREs are an interesting extension for SPARQL queries.

Next, we show that nested regular expressions under regular path semantics
remain tractable even when they are built over SPARQL property path expres-
sions (i.e., over RE(#, !, •) expressions). To this end, we equip NREs with counting
operators, the wildcard symbol (•), and the restriction negation operator (!) and
show that Evaluation for these expressions can be solved in polynomial time.

5.6.1 Definition. Let ∆ be an infinite set of symbols. The set of SPARQL nested
regular expressions or NRE(#, !, •) over ∆ is defined as follows:

r, s := ε | • | a | a− | !(a1 + · · ·+ an) | (r + s) | (r · s) | (r)∗ | (r)k,` | 〈r〉

where a, a1, . . . , an ∈ ∆, k ∈ N, and ` ∈ {k, k + 1, . . . ,∞}.

The class NRE(#, !, •) strictly generalizes SPARQL regular expressions by ex-
tending them with the nesting operator 〈·〉. The semantics of NRE(#, !, •) expres-
sions under regular path semantics is defined in Table 5.8. Notice that we added
an additional operator a− for a ∈ ∆. This expression allows to navigate through

103

5. Querying RDF Data using SPARQL Property Path Expressions

a directed a-edge in the reverse direction and is also inspired by a corresponding
operator in the SPARQL working draft [HS12]. We illustrate an example instance
of Evaluation for nested regular expressions in the following.

5.6.2 Example. Consider the expression r = a〈(b2,2)∗c〉d and the graph G from
Figure 5.8. For r and a pair (x, y) of nodes in G we know that Evaluation is
true for (x, y) if and only if there is a path from x to y over some node z labeled
with ad and there is a path from z to some node in G that is labeled with a word
in L((b2,2)∗c). Notice that none of these nodes has to be distinct to another under
regular path semantics.

1 2 3 4
a b, d

b

b, c

Figure 5.8: An edge-labeled graph G

For the graph from Figure 5.8 Evaluation is true for (1, 3) since there is a path
from node 1 to node 3 labeled with ad and a path from node 2 to node 4 labeled
with bbbbc ∈ L((b2,2)∗c). (The path from 2 to 4 is not a simple walk.)

All our previous lower bounds from Chapter 5 transfer to NRE(#, !, •) expres-
sions immediately. Next, we show that Evaluation for NRE(#, !, •) under regular
path semantics can be solved in polynomial time by adapting the algorithm from Sec-
tion 5.3.1. We only study the Evaluation problem for NRE(#, !, •) under regular
path semantics because Evaluation under simple walk semantics and Counting
under regular path semantics is already intractable for very restricted classes of
regular expressions (without nesting).

5.6.3 Theorem. Let G be a graph and r be an NRE(#, !, •). Evaluation for r
and G under regular path semantics is in time O(|r| · |V |3).

Proof. To prove the assumption we construct an algorithm that, givenG = (V,E, x, y)
and r, decides whether (x, y) ∈ JrKG in polynomial time. Basically, this algorithm is
an extension of the algorithm in the proof of Theorem 5.3.2. Therefore, we extend
the previous algorithm that computes the relation eval(s) by two additional cases:

– for every a ∈ ∆, eval(a−) := {(v, u) | (u, a, v) ∈ E}, and

– eval(〈s〉) := {(u, u) | ∃z : (u, z) ∈ eval(s)}.

Both cases can be computed in linear time such that the entire algorithm still runs
in polynomial time. We argue correctness similar to the proof of Theorem 5.3.2.
More precisely, we prove that the following invariants (I1) and (I2) hold:

For each subexpression s 6= 〈s1〉 of r we have
(u, v) ∈ eval(s)⇔ ∃ path p in G from u to v such that lab(p) ∈ L(s). (I1)

104

5.7. Recent Developments in the SPARQL 1.1 Specification

For each subexpression s = 〈s1〉 of r we have
(u, v) ∈ eval(s)⇔ (u = v) ∧ (∃ node z, path p from u to z in G

such that lab(p) ∈ L(s1)). (I2)

The proof of invariant (I1) is analogous to the proof of the invariant (I) in Theo-
rem 5.3.2 and the proof of (I2) is immediate from the above definition of eval(〈s〉). Fi-
nally, Evaluation for G = (V,E, x, y) and r is true if and only if (x, y) ∈ eval(r). �

To conclude our study of SPARQL queries we remark that we believe the results
in this chapter to be relevant in a larger context, too. In particular, foundational
research on formal languages for querying graph databases can benefit from the
proven lower and upper bounds. For example, in [LMV13], the authors examine
the behavior and applicability of XPath-like query languages for graphs which are
closely related to nested regular expressions. In addition, they showed that efficient
evaluation can even be extended to variants of nested regular expressions that use
a more powerful negation.

5.7 Recent Developments in the
SPARQL 1.1 Specification

At the time we investigated the computational complexity of SPARQL queries, the
W3C specification for SPARQL 1.1 was still under development. We therefore
started studying regular path semantics which seems to be, based on our obser-
vations, a recommendable alternative from a complexity point of view.

Opposed to that, the NP-complete and #P-complete data complexities make the
semantics recommended by the W3C in [HS12] highly problematic from a computa-
tional complexity perspective. More precisely, two orthogonal requirements render
the evaluation of simple queries of the form

SELECT ?x, ?y WHERE {?x r ?y}

computationally difficult: the simple walk requirement and the path counting re-
quirement (see Note 5.2.2 and 5.4.1, respectively). In 2012 our work as well as
the work of Arenas et al. [ACP12] proposed that the W3C should use a semantics
for property paths without the simple walk and path counting requirement. These
proposals were taken into consideration by the W3C and influenced the following
changes to the official W3C recommendation for SPARQL 1.1 in 2013 [HS13]:

(1) The ambiguity between the definitions of ZeroOrMorePath and OneOr-
MorePath in Sections 18.4 and 18.5 in [HS12] has been removed and the
simple walk requirement has been dropped.

(2) The path counting requirement has been dropped for subexpressions of the
form r∗ and r+.

(3) Subexpressions of the form rk,` with k, ` ∈ N are no longer part of the property
path syntax.

105

5. Querying RDF Data using SPARQL Property Path Expressions

We feel that change (1) is very welcome. Change (2) will undeniably make the
evaluation of SPARQL property paths more efficient. However, we feel that, even
after this change, the semantics of property paths may be rather counter-intuitive
since the change does not completely remove multiset semantics for property paths.
Instead, change (2) means that, for a given regular expression r, its subexpressions of
the form s∗ and s+ are evaluated under set semantics and the others under multiset
semantics. As such, it is difficult to understand the number of occurrences of tuples
in the output of a query. For example, the combination of set semantics and multiset
semantics has as a result that a+ is not equivalent to aa∗, since the former always
returns tuples with multiplicity one (set semantics) and the latter can return tuples
with higher multiplicity due to the partial multiset semantics.

Finally, we feel that change (3) is a pity. We showed that property paths with
this feature can be evaluated efficiently in principle (see Theorem 5.3.2 and Corol-
lary 5.3.3). This holds, even though these expressions can be exponentially more
succinct than standard regular expressions. Since expressions with counting opera-
tors seem to be convenient for the user in practical applications (see, for example,
the regexlib regular expression library [Reg]) we feel that it would be a win-win
situation to include regular expressions with counting operators in the definition of
SPARQL property paths.

106

6
Enumerating Answers under
Updates

Efficient query evaluation is one of the most central problems in databases. In this
chapter we investigate the query evaluation problem in the case of queries that return
a set of answers instead of a boolean one. This set can be extremely large in general
and it may be infeasible to compute the set in its entirety. Therefore, algorithms
evolved that do not return all answers at the same time but enumerate the set of
answers sequentially to the user. The problems corresponding to such algorithms
are known as query enumeration problems which attracted some attention in the last
decade (see, e.g., [Bag06, Cou09, DS11, KS13a, KS13b, Seg13]). Another database
problem that recently got more important again is the view maintenance problem
for databases. That is, efficiently computing the answer to a fixed query over a
database that is subject to updates. In this chapter we construct algorithms that
are sensitive to both problems and examine their computational complexity. More
precisely, we want to investigate efficient enumeration algorithms for queries that
are defined over data that is likely to change.

We call this problem the incremental enumeration problem. To solve the prob-
lem we construct an algorithm that works as follows. First, the algorithm takes
a query M (i.e., an automaton on words or trees) and a data structure d (i.e., a
word or a tree) as input and computes an auxiliary data structure. We refer to
this computation as preprocessing. Second, the algorithm subsequently enumerates
all answers in the result M(d) of the query M on d. Here, we are interested in
the maximal delay that is needed between two answers. We refer to this delay as
the enumeration delay. When an update on d occurs (i.e., d is changed to a data
structure d′) then the algorithm stops in an instant, processes the update by pos-
sibly changing the auxiliary data structure, and starts enumerating the answers in
M(d′) again. For the update we are interested in the maximal time that is needed to
process the update such that the first answer in M(d′) can be computed afterwards.

107

6. Enumerating Answers under Updates

As far as we know, we are the first to examine incremental enumeration (for
k-ary) queries formally. Moreover, it is unclear to us how one can adapt existing
enumeration techniques that are related to our setting (see, e.g., [Bag06, Cou09]) to
provide algorithms that are sensitive to updates and still efficient. This also holds for
constant enumeration delay algorithms using deterministic factorization forests (see,
e.g., [KS13b, Seg13]). Colcombet’s deterministic factorization forests [Col07], which
are itself based on a result of Simon [Sim90], can be used to enumerate answers to
certain queries on words or trees with only a constant delay via a good divide-and-
conquer technique. However, we believe that the built structures have to be entirely
recomputed each time an update occurs. Bojanczyk and Figueira [BF11] consider
evolutions t1, . . . , tm of trees (which they call document evolutions) and evaluate
two-dimensional logics over such sequences. Such logics can express properties of
single trees and how such properties evolve over time. (For example, “eventually,
every a-node will have a b-child”.) They read the input as t1 followed by a sequence
of m− 1 local updates and give an O(m · log n) algorithm to decide if a formula is
satisfied over the entire evolution (assuming m > n). Therefore, in the temporal
dimension, the setting in [BF11] is more general than ours: we cannot compare
different versions of the tree. Since they are only concerned with satisfaction of a
property, they do not consider small delay algorithms for enumerating answers. In
dynamic complexity theory, previous research mainly focuses on lower bounds for
the incremental evaluation problem (see, e.g., [MSVT94]) or on parallel dynamic
computing (see, e.g., [PI97, DS93]).

In the following we examine the incremental enumeration problem for queries
that are defined by k-ary nondeterministic finite selecting (tree) automata [NPTT05]
and evaluated over words and trees, respectively. It is well-known that these au-
tomata can express MSO queries with free node variables [NPTT05]. We formally
define them in Section 6.1 and state the problems under consideration (including
the considered types of updates) in Section 6.2.

In Section 6.3, we construct an algorithm that solves the incremental enumeration
problem for a word of size n and a given query, uses O(n) time for preprocessing, and
enumerates all answers to the query with O(log n) time between two answers. In the
case that an update to the word occurs, the algorithm stops in an instant and starts
enumerating the answers to the query over the updated data after O(log n) time.
Afterwards, we show how to extend the word algorithm for trees. Therefore, we
heavily rely on a technique of Balmin et al. [BPV04] that shows how to decompose
a tree automaton and a tree into a set of NFAs and heavy paths such that one
can maintain membership of the tree and the tree automaton by evaluating the
NFAs over the induced words of the heavy paths. For a tree of size n the original
algorithm of Balmin et al. needs O(n) time for the preprocessing and computes
the new answer after an update occurred in O(log2 n) time. Using this result we
construct in Section 6.4 an algorithm that enumerates, for a tree of size n and a
query, all answers to the query with O(log2 n) enumeration delay and processes
updates in O(log2 n) time. We note that the complexity results in Sections 6.3
and 6.4 are presented in more detail, i.e., in terms of the size of the data, the arity k
of the query, and the number |Q| of states of the selecting automaton.

108

6.1. Tuple Selecting Automata

In Section 6.5 we briefly explain how our results can be extended to work for
more expressive semantics, i.e., multiset semantics. A recent application of our
result from information extraction is given in Section 6.6. Last but not least, we
discuss how our results relate to MSO logic as well as XPath query evaluation in
Section 6.7. In addition, we provide some interesting open questions for further
work on incremental enumeration.

6.1 Tuple Selecting Automata

We use (node- and tuple-) selecting finite automata (see [FGK03, Nev99]) to model
queries. In this section we provide formal definitions of these automata which will be
used in the remainder of the chapter. Before we define these automata, we need to
introduce the following notation. For readability, we often associate to a word w a set
of nodes Nodes(w) = {v1, . . . , vn} such that each node vi bears the label lab(vi) = ai.
Due to the structure of the word, the set of nodes is linearly ordered. Therefore, we
often assume that Nodes(w) = {1, . . . , n} to simplify notation. However, our results
do not require that Nodes(w) = {1, . . . , n}. For example, if we want to insert a new
node at the beginning of a word w then we do not require that all old nodes should
obtain a new label. For nodes vi, vj with 1 ≤ i ≤ j ≤ n we denote by w[vi..vj] the
subword ai · · · aj and by w[vi] the symbol ai. For a finite alphabet Σ and a word
w ∈ Σ∗ or tuple t = (a1, . . . , ak) ∈ Σk we regularly need the set of symbols (or labels)
occurring in it. We refer to this set as set(w) or set(t), respectively. It is defined as
set(w) := {a ∈ Σ | ∃v ∈ Nodes(w), lab(v) = a} and set(t) = {a1, . . . , ak}.

6.1.1 Definition. A (bottom-up) nondeterministic tree automaton (or NTA) N is
a tuple (Q,Σ, δ, F) where Q is a finite set of states, Σ is a finite alphabet, F ⊆ Q
is the set of accepting states, and δ is a set of transition rules that are either of the
form (q1, q2, a)→ q or a→ q for states q1, q2, q ∈ Q and a label a ∈ Σ.

A run of N on a labeled binary tree t is an assignment λ : Nodes(t) → Q such
that the following holds for every v ∈ Nodes(t):

– if v is a leaf then lab(v)→ λ(v) ∈ δ;

– if v has children v1 and v2 then (λ(v1), λ(v2), lab(v))→ λ(v) ∈ δ.

A run is accepting if λ(r) ∈ F for the root r of t. A run λ visits v in q if λ(v) = q. A
tree t is accepted if there exists an accepting run on t. The set of all accepted trees
is denoted by L(N) and is called a tree language. Next, we define node selecting
automata. We give the definition for word automata first. For the remainder of the
chapter, let N = (Q,Σ, δ, q0, F) be an NFA and w = a1 · · · an be a word.

6.1.2 Definition. For k ∈ N, a k-ary nondeterministic finite selecting automa-
ton (or k-NFSA) M is a pair (N,S) where N is an NFA over Σ with states Q and
S ⊆ Qk is a set of selecting tuples.

109

6. Enumerating Answers under Updates

q0

q1

q2

q3

a

a

c

b
b

c

d

d

Figure 6.1: 2-NFSA M with S = {(q1, q2), (q2, q1)}.

The size of a k-NFSA M = (N,S) is defined as |N | + |S|. When M reads a
word w of length n, it computes a set M(w) of tuples in Nodes(w)k. More precisely,
we define the result M(w) of M on w as follows:

M(w) = {(v1, . . . , vk) | there is an accepting run r of N on w and a tuple
(p1, . . . , pk) ∈ S such that r visits v` in p` for every ` ∈ {1, . . . , k}}.

Recall that, for a run r = q0 · · · qn of N such that qi ∈ δ(qi−1, ai), for every
i ∈ {1, . . . , n}, the run r visits node i in state qi, denoted r(i) = qi, for each i.
Moreover, it holds that if w /∈ L(N) then M(w) = ∅. The corresponding definitions
for a k-ary nondeterministic finite selecting tree automaton (k-NFSTA) are the same
as for k-NFSAs, except that N is an NTA instead of an NFA. We illustrate 2-NFSA
M in Figure 6.1. For the word w = abcd, we have that

M(w) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)}.

6.2 Problems of Interest

Let M be a node selecting automaton (i.e., a k-NFSA or k-NFSTA), d be the input
for M (i.e., a word or a binary tree), and M(d) be the result of M on d. We
are interested in efficiently maintaining M(d) under updates on d. More precisely,
if an update on d occurs then it yields a new data structure d′ and a new query
result M(d′). We want to be able to efficiently compute M(d′) after the update. In
this case the costs for computing M(d′) should be less than computing M(d′) from
scratch. We consider the following updates on trees (cfr. [BPV04]):

(i) replace the current label of a specified node by another label,

(ii) insert a new leaf node after a specified node,

(iii) insert a new leaf node as first child of a specified node, and

(iv) delete a specified leaf node.

For words we consider the updates (i), (ii), and (iv) where the word “leaf” is
omitted. If M is only an NTA or NFA (i.e., a 0-ary NFSA or NFSTA) then this
problem is known as incremental evaluation and was studied by, e.g., Balmin et
al. [BPV04].

110

6.3. Incremental Enumeration for Words

Problem (IncrementalEvaluation).
Given: An NTA or NFA M .
Compute whether M(d) 6= ∅.
If d is updated to d′ then efficiently compute whether M(d′) 6= ∅.

Here, we examine the incremental enumeration problem that extends the setting
of Balmin et al. from 0-ary queries to k-ary queries.

Problem (IncrementalEnumeration).
Given: A k-ary NFSA or NFSTA M .
Compute an auxiliary data structure A and enumerate M(d).
If d is updated to d′ then update A and enumerate M(d′).

We measure the complexity of our algorithms in terms of the following param-
eters: (i) size of the auxiliary data structure, (ii) time needed to compute the
auxiliary data structure, (iii) time needed to update the auxiliary data structure,
and (iv) time delay we can guarantee between answers of M(d′). We present our
complexity results in terms of the size |d| of the input data, the arity k of the query,
the number |S| of selecting tuples, and the number |Q| of states of the automaton.

Before we start investigating the IncrementalEnumeration problem, we re-
mark the following. Through Sections 6.3 to 6.4 we only illustrate how to han-
dle updates of the kind (i), i.e., relabeling updates. Basically, this is sufficient be-
cause it is argued in Balmin et al. [BPV04] that one can use self-balancing auxil-
iary tree structures to generalize the techniques for updates (i) to updates of the
kind (ii)–(iv). Moreover, we present all results for binary trees. The results can be
immediately generalized to unranked trees in which nodes can have arbitrarily many
children [FGK03] which is done by encoding unranked trees as binary trees [BPV04].
Unranked trees are particularly relevant in the context of XML where they serve as
an abstract model for XML documents.

6.3 Incremental Enumeration for Words

Now, we examine IncrementalEnumeration for a k-NSFA and a word. We
present a well-known algorithm for solving incremental evaluation for NFAs first.
For simplicity of notation, we assume that Nodes(w) = {1, . . . , n} and that n is a
power of 2 (i.e., n = 2m for some m ∈ N). However, the illustrated algorithm can
be adapted to words whose lengths are not a power of two.

6.3.1 An Algorithm for Incremental Evaluation

The following algorithm, first described by Patnaik and Immerman [PI97], solves
IncrementalEvaluation for an NFA N = (Q,Σ, δ, q0, F) and a word w =
a1 · · · an ∈ Σ∗. During preprocessing the algorithm builds the following auxiliary
data structure.

111

6. Enumerating Answers under Updates

6.3.1 Definition. For a word w with Nodes(w) = {1, . . . , n} the auxiliary tree Naux
w

is defined as follows:

– the root of Naux
w is v1n,

– each node vxy with y − x > 0 in Naux
w has a left child vxz and a right child

v(z+1)y where z = x− 1 + by−x+1
2
c, and

– the nodes vxx are leaves for all 1 ≤ x ≤ n.

We identify the nodes x ∈ {1, . . . , n} of w with the leaves vxx in Naux
w , i.e., the

nodes of w are leaves in Naux
w . Moreover, every node vxy in Naux

w is associated to
the subword w[x..y]. We know compute the information about how N ’s state can
change when reading w[x..y] and store this information at the associated node vxy.

6.3.2 Definition. For every node vxy in Naux
w the extended transition relation T(vxy)

is defined as follows:

– if x = y then T(vxx) := {(q1, q2) | q2 ∈ δ(q1, ax)},

– otherwise, the node vxy has a left child vxz, a right child v(z+1)y, and we define
T(vxy) := {(q1, q2) | ∃q ∈ Q such that (q1, q) ∈ T(vxz) and (q, q2) ∈ T(v(z+1)y)}.

By the definition of the relation T it holds that (q1, q2) ∈ T(vxy) if and only if
q2 ∈ δ∗(q1, w[x..y]). More precisely, (q1, q2) ∈ T(vxy) if and only if reading w[x..y]
can bring N from q1 to q2. We can compute T(vxy) from T(vxz) and T(v(z+1)y) in
time O(|Q|3) using the natural join (see, e.g., Definition 2.3.1). Since Naux

w has 2n−1
nodes and O(log n) depth, Naux

w and T can be computed in time O(|Q|3 ·n). Finally,
it holds that w ∈ L(N) if and only if (q0, qF) ∈ T(v1n) for some qF ∈ F .

Updates can be maintained as follows using the auxiliary tree Naux
w and the

extended transition relation T. Assume that we change label ax to b in the word w,
i.e., the new word is w = a1 · · · ax−1bax+1 · · · an. The relations T that are affected
by the update are those lying on the path from the leaf vxx to the root v1n. Since
Naux
w has O(log n) depth, these are O(log n) many. Each of these relations can be

updated in time O(|Q|3) in a bottom-up pass through Naux
w using the natural join,

yielding a total time of O(|Q|3 · log n) for one update.

6.3.3 Theorem ([BPV04, PI97]). IncrementalEvaluation for an NFA N
and a word w can be solved with preprocessing time O(|Q|3 · n), an auxiliary data
structure of size O(|Q|2 · n), and within time O(|Q|3 · log n) after each new update.

6.3.2 Preprocessing an Auxiliary Data Structure for Words

In the following we construct an algorithm that solves IncrementalEnumeration
for a k-NSFAM and a word w. We start by explaining the preprocessing and fix the
following notation for the remainder of the section. By M = ((Q,Σ, δ, q0, F), S) we
denote a k-NSFA and by w = a1 · · · an ∈ Σ∗ the input word. By QS we denote the set
of all states that appear in some selecting tuple, i.e., QS = ∪s∈S set(s). (Remember
that we defined set(s) as the set of symbols occurring in s.) Next, we define the

112

6.3. Incremental Enumeration for Words

auxiliary data structure that is stored in the enumeration algorithm during updates.
The auxiliary data structure can be constructed in time O(|Q|3 · |S|2 · 2k · n) and,
whenever w receives an update, it can be updated in time O(|Q|3 · |S|2 · 2k · log n)
and recommence a logarithmic-delay enumeration of the new answer set.

In the beginning, the algorithm builds the auxiliary tree Naux
w from Section 6.3.1.

For every node in Naux
w it stores an extended transition relation that is slightly

different from the relation T from Definition 6.3.2. In addition to the pair of states
in a tuple of T, the relation contains the set of selecting states that can be reached
by a run on the subword associated to the node. We denote this relation by T+.

6.3.4 Definition. For each vxy ∈ Naux
w we define T+(vxy) to be the set of tuples

(q1, q2, I) ∈ (Q2 × 2QS) for which there exist a selecting tuple s ∈ S and partial run
r = q1 · · · q2 on w[x..y] such that I = set(r) ∩ set(s).

Since the set I in a tuple (q1, q2, I) ∈ T+(vxy) is a subset of a set(s) for some
selecting tuple s ∈ S, there exist at most 2k candidate sets I for a fixed selecting
tuple s and states q1 and q2. Therefore, the relation T+(vxy) has size O(|Q2| · |S| ·2k)
for every node vxy ∈ Naux

w . To efficiently compute the relation T+ we use the
following join operation.

6.3.5 Definition. Let R1 and R2 be relations over (Q2 × 2QS). Then,

R1 ./
+R2 := {(q1, q2, I) | ∃p ∈ Q,∃I1, I2 ⊆ QS,∃s ∈ S

such that (q1, p, I1) ∈ R1, (p, q2, I2) ∈ R2, and I = (I1 ∪ I2) ∩ set(s)}.

6.3.6 Lemma. The relation T+ for Naux
w can be computed in time O(|Q|3·|S|2·2k·n).

Proof. We first show how the relation T+ is computed. Afterwards, we prove that it
is correct. Let Naux

w be the auxiliary tree from Definition 6.3.1. Then, the relation T+

for Naux
w can be computed bottom-up in Naux

w as follows:

– If x = y then T+(vxx) = {(q1, q2, I) | q2 ∈ δ(q1, ax) and I = {q2} ∩QS}.
(The condition on I states that I = {q2} if q2 appears in some selecting tuple s;
and I = ∅ otherwise.)

– Otherwise, let v1 and v2 be the left and right child of vxy in Naux
w , then

T+(vxy) = T+(v1) ./+ T+(v2).

We now prove that this computation is correct in terms of Definition 6.3.4. For
a node v of Naux

w the depth d(v) of v is the length of the path from the root of Naux
w

to v. The proof is by induction on decreasing values of the depth d(vxy) of nodes vxy
in the auxiliary tree Naux

w .
For the base case, a leaf node of Naux

w , we have that

T+(vxx) = {(q1, q2, I) | q2 ∈ δ(q1, ax) and I = {q2} ∩QS}.

Thus, the partial run r = q1q2 on w[x] proves the assumption.

113

6. Enumerating Answers under Updates

For the induction case, a node vxy with x 6= y, we have to show that the as-
sumption holds for T+(vxy) = T+(vxz) ./

+ T+(v(z+1)y) where z = x − 1 + by−x+1
2
c

and the relations T+(vxz) and T+(v(z+1)y) are already computed correctly. We show
“⇒” and “⇐” separately.

“⇒”: Let (q1, q2, I) be a tuple in T+(vxy). Then, we know that there exist tuples
(q1, p, I1) ∈ T+(vxz) and (p, q2, I2) ∈ T+(v(z+1)y) such that (I1 ∪ I2) ∩ set(s) = I for
some s ∈ S. By induction hypothesis we know that there exist

– a partial run r1 = q1 · · · p on w[x..z] such that I1 = set(r1) ∩ set(s), and

– a partial run r2 = p · · · q2 on w[z + 1..y] such that I2 = set(r2) ∩ set(s).

Since (I1 ∪ I2) ∩ set(s) = I we can join r1 and r2 to a partial run r = q1 · · · q2 on
w[x..y] such that I = set(r) ∩ set(s).

“⇐”: Let s be a selecting tuple and r = q1 · · · q2 be a partial run on w[x..y] such
that I = set(r) ∩ set(s). Then, we can decompose r in two partial runs r1 and r2

such that

– r1 = q1 · · · p on w[x..z] such that I1 = set(r1) ∩ set(s),

– r2 = p · · · q2 on w[z + 1..y] such that I2 = set(r2) ∩ set(s), and

– (I1 ∪ I2) ∩ set(s) = I.

By applying the induction hypothesis on the nodes vxz and v(z+1)y there exist tuples
(q1, p, I1) ∈ T+(vxz) and (p, q2, I2) ∈ T+(v(z+1)y). Therefore there exists a tuple
(q1, q2, I) ∈ T+(vxy) by definition of ./+.

The relation T+ can be computed by one bottom-up pass through Naux
w . For

leaf nodes, T+ can be calculated in time and space O(|Q|2). For all other nodes
the relation T+ is of size O(|Q|2 · |S| · 2k). Since the tree Naux

w has O(n) nodes by
construction, we need to compute n ./+-joins where each join can be computed in
time O(|Q|3 · |S|2 · 2k). Thus, the computation needs O(|Q|3 · |S|2 · 2k ·n) in total. �

The relation T+ can be maintained under updates analogously to the relation T
in Section 6.3.1 except that some extra time is needed for the ./+-operation.

6.3.7 Lemma. For a k-NSFA M and a word w of length n the tree Naux
w and T+

have size O(|Q|2 · |S| · 2k · n), can be computed in time O(|Q|3 · |S|2 · 2k · n), and
updated in time O(|Q|3 · |S|2 · 2k · log n).

Proof. The tree Naux
w has O(n) nodes by construction. For every node v ∈ Naux

w the
transition relation T+(v) is of size O(|Q|2 · |S| · 2k). Therefore, the auxiliary data
structure has size O(|Q|2 · |S| · 2k · n) in total. By Lemma 6.3.6 it can be built in
time O(|Q|3 · |S|2 · 2k · n).

Now, assume that an update occurs at node v. The algorithm updates every
relation on the path from v to the root of Naux

w (i.e., log n many relations). This can
be done by log n ./+-operations yielding a total time of O(|Q|3 · |S|2 · 2k · log n) for
one update. Analogously to the proof of Lemma 6.3.6 it follows that the relation T+

is correctly computed. �

This concludes the description of the preprocessing and the construction of the
auxiliary data structure Naux

w .

114

6.3. Incremental Enumeration for Words

Algorithm 2 Enumeration of M(w)

1: Enum(M,w) {
2: Input: k-NSFA M = ((Q,Σ, δ, F), S), word w
3: Output: Enumeration of all answers in M(w)
4: A = Complete({∅})
5: while A 6= ∅ do
6: output(A)
7: A = Next(A)

8: }
9: Next(A) {
10: Input: set A of annotated answers
11: Output: set of smallest annotated answers larger than A
12: while Nextnode(A) = ∅ do
13: A ← Back(A)
14: if A = ∅ then return ∅
15: return Complete(Nextnode(A))
16: }

6.3.3 Enumerating Query Answers for Words

We now discuss how to enumerate query answers. Therefore, we assume that Naux
w

and T+ are already computed. A high-level description of the enumeration algorithm
is outlined in Algorithm 2. This procedure is similar to enumerating words in a
dictionary in lexicographic order but the details are rather different. The strategy
of the algorithm is as follows. The procedure Enum takes a k-NSFA M and a
word w as input and invokes the procedure “Complete” to compute the first set of
answers A. (There can be several smallest answers.) Afterwards, the algorithm
starts the enumeration by repeatedly calling Next (which allows to go from one set
of answers to the next) until all answers are depleted.

In the following we describe the operations that are used in Algorithm 2 in detail.
First, we define some preliminary notions. We start with a definition of the output
ordering � in which the algorithm outputs the answers to the query.

6.3.8 Definition. For a tuple t = (i1, . . . , ik) ∈ Nk, the word sort(t) is defined
as iσ(1) · · · iσ(k) where σ is a permutation on {1, . . . , k} such that iσ(j) ≤ iσ(j+1) for
every j ∈ {1, . . . , k−1}. The total order � between integer tuples t is defined as the
lexicographical order on sort(t) (taking the empty word to be the lexicographically
smallest word).

In other words, sort(t) denotes the word obtained by sorting i1, . . . , ik in increas-
ing order and concatenating the result. For example, it holds that sort((4, 1, 7)) =
1 4 7, sort((3, 2, 9)) = 2 3 9, and sort((9, 2, 3)) = 2 3 9 such that (4, 1, 7) � (3, 2, 9),
(9, 2, 3) � (3, 2, 9), and (9, 2, 3) = (3, 2, 9) with respect to �.

Notice that we also use the order � to compare tuples of different size. For
example, it holds that (4, 1, 7) � (3, 2) (according to the lexicographic order on

115

6. Enumerating Answers under Updates

words). By ≺ we denote the strict variant of � and we analogously define � (and ≺)
over multisets instead of tuples.

During a computation the algorithm computes so-called annotated answers, which
are multisets of pairs in Nodes(w)×Q. Annotated answers contain, in addition to
nodes of w, the states that were responsible for selecting the nodes. If (i, q) occurs j
times in the annotated answer then there is a selecting tuple s ∈ S (with at least j
occurrences of q) and node i is associated to j occurrences of q in s for this anno-
tated answer. (Intuitively, this means that the algorithm will eventually produce an
answer that has j occurrences of node i.) Annotated answers are formally defined
as follows.

6.3.9 Definition. An annotated answer ofM = (N,S) on w is a multiset Afull over
Nodes(w)×Q of the form

{|(i1, q1), . . . , (ik, qk)|}

such that there is an accepting run r of N on w and a (q1, . . . , qk) ∈ S such that r
visits i` in q` for every ` ∈ {1, . . . , k}. An incomplete (annotated) answer is a (not
necessarily strict) subset A of some annotated answer Afull.

Notice that |Afull| = k and that every incomplete answer can be completed into
an answer. We sometimes also say that Afull is an annotated answer w.r.t. r if
we want to emphasize the connection between Afull and r. For a multiset A =
{|(i1, q1), . . . , (ik, qk)|} over Nodes(w) × Q we denote by Nodes(A) = {|i1, . . . , ik|} the
multiset of nodes in A.

Moreover, we extend the order � to multisets over Nodes(w) × Q to compare
(incomplete) annotated answers with respect to the output order. For two such
multisets A and B it holds that A � B if Nodes(A) � Nodes(B). We extend ≺
analogously. For a set A of (incomplete) annotated answers, the set of minima is
defined as

min(A) = {A ∈ A | ∀B ∈ A : A � B}.

Next, we define the semantics of the procedures in Algorithm 2.

6.3.10 Definition. Let A be a set of multisets over Nodes(w)×Q, then

Complete(A) := min{Afull | Afull is an annotated answer such that
∃A ∈ A : A ⊆ Afull and A � Afull}.

Intuitively, Complete(A) contains the smallest (with respect to �) annotated
answers of M obtained from extending elements A ∈ A on nodes of w that are
all larger or equal to the maximal node that is already used in A. (In this way,
Complete({∅}) is the set of smallest annotated answers.)

The procedure Next(A) computes, for a set of annotated answers, the set of im-
mediate successors with respect to the output order. For the definition of Next(A)
in Algorithm 2 we use the following subroutines. Let A = {|(i1, q1), . . . , (ij, qj)|} be
a multiset over Nodes(w) × Q where, for each i`, there is at most one q` such that
(i`, q`) ∈ A. Let ij be one of the maximal (rightmost) nodes in Nodes(A). Then, we
define Adel = {|(i1, q1), . . . , (ij−1, qj−1)|}.

116

6.3. Incremental Enumeration for Words

6.3.11 Definition. Let A be a set of multisets over Nodes(w)×Q, then

Back(A) := min{A | A is an incomplete answer such that
∃A′ ∈ A : Nodes(A) = Nodes(A′del)}.

Intuitively, Back(A) performs a kind of backtracking step. It returns all smallest
incomplete answers that, compared with an element A = {|(i1, q1), . . . , (ij, qj)|} ∈ A,
annotate exactly the nodes i1, . . . , ij−1 (if we assume ij to be maximal).

6.3.12 Definition. Let A be a set of multisets over Nodes(w)×Q, then

Nextnode(A) := min{A | A is an incomplete answer such that
∃A′ ∈ A : |A| = |A′| and A′ ≺ A and Adel ⊆ A′}.

For a set of incomplete answers A the procedure Nextnode(A) returns the set
of all incomplete answers that are of the same size as the incomplete answers in A
and for which only the maximal node of an answer in A has been incremented.

6.3.13 Lemma. Let A be a set of annotated answers. Then Next(A) in Algo-
rithm 2 returns

min{Afull | Afull is an annotated answer such that ∃A ∈ A : A ≺ Afull}.

Proof. By the definition of Complete (see Definition 6.3.10) we know that Next(A)
always returns a set of minima for a set of annotated answers. Therefore, it remains
to show that for every annotated answer Afull in Next(A) there exists an A ∈ A
such that A ≺ Afull.

In Algorithm 2 the procedure Next(A) returns the set Complete(B) where B =
Nextnode(Backb(A)) and b is the minimal number such that Nextnode(Backb(A))
is not empty. (The superscript b denotes that we apply the procedure b times on
its own output.) Let Afull = {|(i1, q1), . . . , (ik, qk)|} ∈ Next(A). Then, we know that
there exists an annotated answer A = {|(`1, p1), . . . , (`k, pk)|} ∈ A such that

{|(`1, p1), . . . , (`k−b, pk−b)|} = {|(i1, q1), . . . , (ik−b, qk−b)|} ∈ Backb(A).

By the definition of Nextnode (see Definition 6.3.12) we get that `k−b+1 < ik−b+1. It
follows that, for every j > k− b+ 1, node ij is larger or equal to the node ik−b+1 by
the definition of Complete. Therefore, A ≺ Afull which concludes the proof. �

The procedure output(A) gets a set of annotated answers A as input and writes
the following set to the output in arbitrary order:

{(i1, . . . , ik) | {|(i1, q1), . . . , (ik, qk)|} ∈ A and (q1, . . . , qk) ∈ S}.

Notice that this set can contain multiple tuples which are all equal with respect to �.
(For example, one tuple could be (1, 2, 2, 3, 4) and another could be (2, 4, 3, 2, 1).)
The output procedure can be designed such that the delay between these tuples in
the output is constant.

117

6. Enumerating Answers under Updates

The proof of the next lemma, which shows that the the procedure Enum(M,w)
works correctly, relies on the following observation about the sets A of annotated
answers that are computed in Algorithm 2.

6.3.14 Observation. All A in Algorithm 2 are such that, for all A,B ∈ A, we
have Nodes(A) = Nodes(B).

The observation is true because all operations in Algorithm 2 return a set of
minima of incomplete annotated answers.

6.3.15 Lemma. Enum(M,w) correctly enumerates all answers in M(w).

Proof. By the definition of annotated answers we know that there exists an anno-
tated answer for every answer in M(w). Therefore, it remains to show that the
procedure Enum(M,w) computes all annotated answers forM and w and does not
output an answer twice.

Let A1, . . . ,Am be the sequence of sets of annotated answers that are given
to output(A) during a run of the algorithm Enum(M,w). We know that A1 =
Complete({∅}). By the definition of Complete, A1 contains the set of smallest
annotated answers to M(w).

Next, we show that the set Ai with i > 1 is the set of all minimal annotated
answers that are strictly larger than the answers in Ai−1. To this end, observe
that every set Ai with i ∈ {1, . . . ,m} is a set Complete(B) for some set of anno-
tated answers B. By Observation 6.3.14 it holds that Nodes(A) = Nodes(B) for
all A,B ∈ Ai. By Lemma 6.3.31 we know that the answers in Ai are minimal and
larger (with respect to �) which means there is no annotated answer C ∈ M(w)
such that C /∈ Ai for all i ∈ {1, . . . ,m}. Since the procedure output(A) deletes
duplicate answers in the set Ai the algorithm never outputs an answer twice. �

In the following we explain how Complete(A), Back(A), and Nextnode(A) are
implemented in the algorithm.

6.3.4 Computing the First Answer to a Query

To compute Complete({∅}), the set of smallest answer(s) in M(w) with respect to
the output order, the algorithm first needs to find the leftmost piece of information
in Naux

w that is relevant to some answer. This piece of information is stored in a set
of so-called growing (annotated) answers, which contain the full information of some
answers in M(w) up to a node j. These growing answers evolve into the first set of
answers for M(w) during a computation of the algorithm. Therefore, the algorithm
navigates further to the right to search subsequently for the leftmost nodes in w
that can be used to add more and more information to the growing answers until at
least one growing answer is complete. In the end, a growing answer contains the full
information of some answer in M(w). Next, we formally define growing (annotated)
answers. For a multiset A over Nodes(w)×Q we denote by A((i, p)) the number of
occurrences of the tuple (i, p) in A.

118

6.3. Incremental Enumeration for Words

.
a1 ai1

ai2 · · · aik an

i1 ik

Aaux
w

Naux
w

Figure 6.2: Aaux
w is the part of Naux

w that is used to compute the first answers.

6.3.16 Definition. Let q ∈ Q be a state in the NFA N , A be a multiset over
Nodes(w) × Q, and j ∈ {1, . . . , n}. Then, (q, A) is a growing annotated answer up
to node j if there is an accepting run r of N on w such that

– r visits j in q, and

– there is an annotated answer Afull w.r.t. r such that, for every p ∈ Q and
i ∈ {1, . . . , n},

- if i < j then Afull((i, p)) = A((i, p)),

- if i = j then A((i, p)) ≤ Afull((i, p)), and

- if i > j then A((i, p)) = 0.

The second bullet point in the above definition states that A has the same
information as Afull concerning the nodes up to j and possibly partial information
about j itself. For brevity, we often refer to (q, A) as growing answer.

Growing answers can be computed as follows. Assume that (i1, . . . , ik) (see
Figure 6.2) is a smallest answer in M(w) with respect to the output order. (Notice
that we abbreviate vijij with ij and that some of the ij can be equal.) Let Aaux

w

be the tree induced by all ancestors of nodes ij in the auxiliary tree Naux
w (from

Definition 6.3.1). Hence, the tree Aaux
w has at most k leaves, its root is the root

of Naux
w , and each of its leaves corresponds to a node ij. To obtain (i1, . . . , ik)

we perform a depth-first left-to-right traversal of Aaux
w . Since the depth of Naux

w is
logarithmic in n such a traversal costs at most O(k log n) steps. In particular, one
can travel from one leaf in Aaux

w to the next within O(log n) steps. Our goal is to
show that we can compute this traversal when the right kind of information is stored
along the paths of Aaux

w .
We first explain how to compute and traverse the leftmost path of Aaux

w . There-
fore, we start at the root of Naux

w and need to decide which child to choose. To
this end, we compute relevant tuples, which store for every node in Naux

w the set of
(partial) runs that can be used for a run that produces some answer in M(w).

119

6. Enumerating Answers under Updates

6.3.17 Definition. For each v ∈ Naux
w the set of relevant tuples of v, denoted R(v),

is inductively defined as follows:

– R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S},

– otherwise, if (q1, q2, I) ∈ R(v) and v1 and v2 are left and right child of v then
we want to “split” I between v1 and v2. More precisely, let

Rv1,v2 = {(q1, q2, J1, q2, q3, J2) |
∃(q1, q3, I) ∈ R(v), (q1, q2, I1) ∈ T+(v1), (q2, q3, I2) ∈ T+(v2)

such that J1 ∪ J2 = I, J1 ⊆ I1, and J2 ⊆ I2}.

Then, R(v1) = {(q1, q2, J1) | (q1, q2, J1, q2, q3, J2) ∈ Rv1,v2}
and R(v2) = {(q2, q3, J2) | (q1, q2, J1, q2, q3, J2) ∈ Rv1,v2}.

For the root node v1n of Naux
w a tuple is relevant when it indicates that there is

a run from the initial state q0 to an accepting state qF on which every state in a
selecting tuple s can be visited. Thus, if there exists such a relevant tuple for v1n

thenM(w) contains at least one answer by the definition of T+ (see Definition 6.3.4).
Moreover, if (q1, q2, I) ∈ R(v) then we split I among the children v1 and v2 of v in
all possible ways. This is to ensure that, if we find a partial result for v1 then we
are certain that we can find sufficient information below v2 to annotate every state
in I. Therefore, the sets R contain exactly the information from T+ that is relevant
for producing answers, i.e., tuples in R can be associated to accepting runs that
produce at least one answer. This is captured in the following lemma.

For an annotated answer Afull = {|(i1, q1), . . . , (ik, qk)|} and nodes x, y in w the pro-
jection of Afull onto [x, y], denotedAfull

[x,y], is defined as the multiset {|(i, qi) | x ≤ i ≤ y|}.
For a run r we denote by r(x) the state q at the xth position in r.

6.3.18 Lemma. For every node vxy ∈ Naux
w the relation R(vxy) is the set of all

tuples (q1, q2, I) such that there is an annotated answer Afull w.r.t. some run r with
r(x) ∈ δ(q1, w[x]), r(y) = q2, and I = Nodes(Afull

[x,y]).

Proof. The proof is by induction on increasing values of the depth d(vxy) in the
auxiliary tree Naux

w . (The depth d(vxy) of a node in Naux
w is defined as the length of

the path from the root to vxy.)
For the base case, the root v1n ∈ Naux

w , we have that

R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S}.

The assumption holds by the definition of relation T+.
For the induction case we have to show that the assumption holds for a left-

child-node and for a right-child-node vxy. Since both cases are symmetric we only
show the case where vxy is a left child in the following. Let vxy be a left child of a
node vxz and let v(y+1)z be the right child of vxz. Recall that, by Definition 6.3.17,

R(vxy) = ∪(q1,q3,I)∈R(vxz){(q1, q2, J1) | ∃(q1, q2, I1) ∈ T+(vxy) such that J1 ⊆ I1,

∃(q2, q3, I2) ∈ T+(v(y+1)z) such that J2 ⊆ I2, and J1 ∪ J2 = I}.

120

6.3. Incremental Enumeration for Words

v14

v12

v11 v22

v34

v33 v44

(q0, q1, {q1})
(q0, q1, {})
(q0, q2, {q2})

(q1, q2, {q2})
(q2, q1, {q1})
(q2, q1, {})

(q1, q1, {q1})
(q1, q1, {})
(q2, q3, {})

(q1, q3, {})
(q3, q1, {q1})
(q3, q1, {})

(q0, q1, {q1, q2})
(q0, q3, {q1, q2})

(q0, q1, {q1, q2})
(q0, q1, {q2})
(q0, q2, {q1, q2})
(q0, q2, {q2})

(q1, q3, {q1})
(q1, q3, {})
(q2, q1, {q1})
(q2, q1, {})

Figure 6.3: The relation R for the 2-NSFA M from Figure 6.1 and w = abcd.

We show the assumption by proving “⇒” and “⇐” separately.
“⇒”: Let (q1, q2, J1) be a tuple in R(vxy). Then there are, according to Def-

inition 6.3.17, tuples (q1, q3, I) ∈ R(vxz), (q1, q2, I1) ∈ T+(vxy) and (q2, q3, I2) ∈
T+(v(y+1)z) such that J1 ⊆ I1 and there exists a set J2 ⊆ I2 where J1 ∪ J2 = I. By
the definition of T+ we know that there exist

– a partial run r1 = q1 · · · q2 on w[x..y] such that J1 ⊆ set(r1), and

– a partial run r2 = q2 · · · q3 on w[y + 1..z] such that J2 ⊆ set(r2).

By applying the induction hypothesis on the parent node vxz we know that for the
tuple (q1, q3, I) ∈ R(vxz) there is an annotated answer A w.r.t. some run r such that
r(x) ∈ δ(q1, w[x]), r(z) = q3, and I = Nodes(A[x+1,z]). Thus, r is a run r`rmrr such
that

– r` is a partial run q0 · · · q1 on w[1..x− 1], and

– rr is a partial run q3 · · · qF on w[z + 1..n].

Observe that set(r`) ∪ set(rr) ∪ I = set(s) for some s ∈ S. In total, the run
r`r1r2rr is an accepting run that produces an annotated answer Afull, which proves
the assumption for vxy.

“⇐”: Towards a contradiction, assume that (q1, q2, J1) /∈ R(vxy) and there is an
annotated answer Afull w.r.t. some run r with r(x) ∈ δ(q1, w[x]), r(y) = q2, and
J1 = Nodes(Afull

[x+1,y]). By applying the induction hypothesis on the parent node vxz
we know that there exists a tuple (q1, q3, I) ∈ R(vxz) that is compatible with Afull

and r. By the definition of T+ it follows that there are tuples (q1, q2, I1) ∈ T+(vxy)
with J1 ⊆ I1 and (q2, q3, I2) ∈ T+(v(y+1)z) such that there is a set J2 ⊆ I2 and
J1 ∪ J2 = I. This contradicts the assumption that (q1, q2, J1) /∈ R(vxy). �

For the 2-NSFA in Figure 6.1 the relation R is shown in Figure 6.3. The re-
lation R can be computed by straightforwardly implementing its definition in a
top-down way.

121

6. Enumerating Answers under Updates

6.3.19 Lemma. Given Naux
w and T+, we can compute R(v1n) in time O(|Q|2·|S|·2k)

and, for every other v ∈ Naux
w with parent vp, compute R(v) in time O(|Q|3 · |S|2 ·2k)

if R(vp) is known.

Proof. For the root node v1n we have that

R(v1n) = {(q0, qF , set(s)) ∈ T+(v1n) | qF ∈ F, s ∈ S}.

Thus, we only need to traverse the relation T+(v1n) which is of size O(|Q|2 · |S| · 2k).
For all other nodes we have to distinguish whether they are a left or a right child of
its parent vp. Let v1 be the left and v2 be the right child of vp. To calculate R(v1)
and R(v2) we traverse the relation R(vp). We check for every tuple (q1, q3, I) ∈ R(vp)
whether there exist tuples (q1, q2, I1) ∈ T+(v1) and (q2, q3, I2) ∈ T+(v2) such that
there are subsets J1 ⊆ I1 and J2 ⊆ I2 with J1 ∪ J2 = I. If J1 and J2 exist then we
add a tuple (q1, q2, J1) to R(v1) for every such set J1 and a tuple (q2, q3, J2) to R(v2)
for every such set J2. Since the relations R and T+ contain at most O(|Q|2 · |S| · 2k)
different tuples for every node, it needs time O(|Q|3 · |S|2 · 2k) to calculate R(v1)
and R(v2). �

We state Lemma 6.3.19 as it is because our algorithm for IncrementalEnu-
meration does not compute R(v) for every node v of Naux

w but only among the
paths of Aaux

w .

The First Part of the First Answer In order to find the leftmost path of Aaux
w

we start at the root of Naux
w and iteratively perform the following. Whenever we are

in a node v, we compute the sets of relevant tuples of its two children. We proceed to
the leftmost child for which the set of relevant tuples contains a tuple (q1, q2, I) with
I 6= ∅ and stop when we reach a leaf. We claim that this leaf is the leftmost node i1
in Naux

w that can be used in some smallest answer of M(w) (see Figure 6.2). Notice
that we only know that i1 is used in such a smallest answer but not necessarily as
the leftmost element of a tuple in M(w). (For example, M(w) can contain tuples of
the form (i2, i1, . . .) with i2 > i1.)

6.3.20 Lemma. Let u be the leftmost leaf node of Naux
w such that R(u) has a tuple

(q1, q2, I) with I 6= ∅. Then u is the node i1 in w.

Proof. Let u be as desired in the lemma. Towards a contradiction, assume that
i1 6= u, i.e., there exists a leaf node v < u such that there is an annotated answer Afull

with v ∈ Nodes(Afull). By Lemma 6.3.18 there exists a tuple (p, q, J) ∈ R(v)
with J 6= ∅. This contradicts the assumption. �

This allows us to define our first set G of growing answers, that is

G(i1) := {(q2, {|(i1, q2)|}) | (q1, q2, {q2}) ∈ R(i1)}.

By Lemmas 6.3.18 and 6.3.20 every element in G(i1) is a growing answer up to
node i1. We can compute i1 and the set G(i1) by traversing the path from the root
of Naux

w to i1.

122

6.3. Incremental Enumeration for Words

6.3.21 Lemma. The node i1 and the set G(i1) can be computed in time O(|Q|3 ·
|S|2 · 2k · log n).

Proof. The node i1 can be computed by one top-down pass of the path from the
root of Naux

w to i1. Therefore, we start at the root and, whenever we are in a node v,
we compute the sets of relevant tuples of its two children v1 and v2 (if these exist,
otherwise we are done). We proceed to the leftmost child for which the set of
relevant tuples contains a tuple (p, q, I) with I 6= ∅. We are done when we reach a
leaf. At every node on this path we have to calculate two sets of relevant tuples. By
Lemma 6.3.19 this can be done in time O(|Q|3 · |S|2 ·2k) for each node. Since a path
from the root to a leaf in Naux

w is of length log n this needs time O(|Q|3 ·|S|2 ·2k ·log n)
in total. �

For the running example in Figure 6.1 we have that

G(1) = {(q1, {|(1, q1)|}), (q2, {|(1, q2)|})}.

Growing Until the First Answer is Complete We assume that from now on
we know some j ∈ {1, . . . , k} such that the set G(ij) is defined and not empty. In
the following we will explain the semantics of a set G(ij) for j > 1 and how to
compute the set G(ij+1) for the node ij+1 when G(ij) is given. To this end, we first
have to find the node ij+1 itself (recall that, ij+1 = ij is possible) and, second, all
the information that is needed to compute the correct set of growing answers. We
therefore navigate from ij to the right and keep track of the relevant tuples that are
compatible with our growing answer(s). Intuitively, a relevant tuple is compatible
to a growing answer (q, A) if the tuple can be associated to a partial run that is
used when extending the incomplete answer A to a complete answer Afull. Next, we
formally define the notion of compatibility.

The projection of a multiset A = {|(i1, q1), . . . , (ik, qk)|} of tuples over N × Q
onto Q, denoted πQ(A), is defined as {|q1, . . . , qk|}.

6.3.22 Definition (Compatibility). Let vxy be a node in Naux
w . For an annotated

answer Afull w.r.t. a run r, a tuple

– (q1, q2, I) ∈ R(vxy) is compatible with Afull and r if r(x) ∈ δ(q1, w[x]), r(y) = q2,
and I = set(πQ(Afull

[x,y])). (Here, I = set(πQ(Afull
[x,y])) ensures that I is the set of

selecting states in Afull that are used between nodes x and y in w.)

Furthermore, for (q, A) a growing answer up to node i,

– (q, A) is compatible with Afull and r if r(i) = q, A[1,i−1] = Afull
[1,i−1] and

A[i,i] ⊆ Afull
[i,i].

Finally, (q1, q2, I) ∈ R(vxy) is compatible with (q, A) if there exists an annotated
answer Afull w.r.t. some run r such that both (q1, q2, I) and (q, A) are compatible
with Afull and r.

Now, we can define the node ij+1 in w in terms of compatibility.

123

6. Enumerating Answers under Updates

6.3.23 Proposition. The node ij+1 ≥ ij is the smallest node in w for which there
is a tuple (q1, q2, I) ∈ R(ij+1) with I 6= ∅ that is compatible with some (q, A) ∈ G(ij).

Once we have ij+1, we define

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) | there exists a tuple (q1, q2, {q2}) ∈ R(ij+1)

that is compatible with some (q, A) ∈ G(ij)}.

In this way, our algorithm will successively compute sets G(ij) for increasing values
of j. The next lemma states that the set G(ik) contains the desired answer(s).

6.3.24 Lemma. Let Afirst be the set of smallest annotated answers. Then, it holds
that G(ik) = {(q, A) | A ∈ Afirst and (q, A) is compatible with A}.

Proof. We prove that the lemma is true by showing Claim 6.3.25. The statement of
the lemma holds directly by applying the claim for j = k.

6.3.25 Claim. Let Afirst be the set of smallest annotated answers. Let Acand be the
set of annotated answers Ac for which there exists an Af ∈ Afirst with

Nodes(Ac[1,ij−1]) = Nodes(Af[1,ij−1]) and Nodes(Ac[ij ,ij]) ⊆ Nodes(Af[ij ,ij]).

Then, it holds that G(ij) = {(q, A) | |A| = j and ∃Ac ∈ Acand such that (q, A) is
compatible with Ac}.

Proof of Claim 6.3.25: The proof is by induction on increasing values j. For the
induction base case, j = 1, we know that

G(i1) := {(q, {|(i1, q)|}) | (p, q, {q}) ∈ R(i1)}.

Obviously, we have that | {|(i1, q)|} | = 1. By Definition of R and Lemma 6.3.18, there
is an annotated answer Afull w.r.t. some run r such that Afull

[i1,i1] = {|(i1, q), . . . , (i1, q)|}.
By Lemma 6.3.20 we know that i1 is the smallest position that can be assigned in
any annotated answer. Moreover, we have that Afull

[1,i1] = Afull
[i1,i1] which means that

(q, {|(i1, q)|}) is compatible with Afull. It remains to show that Afull ∈ Acand. There-
fore, let Af be an annotated answer in Afirst. By correctness of i1 (see Lemma 6.3.20)
it holds that

Nodes(Afull
[1,ij−1]) = ∅ = Nodes(Af[1,ij−1]) and Nodes(Afull

[ij ,ij]) ⊆ Nodes(Af[ij ,ij]).

Thus, Afull ∈ Acand which proves the assumption for i1.
Now, assume that the statement holds for j. Then, we have that

G(ij+1) = {(q, A ∪ {|(ij+1, q)|}) | there exists a tuple (p, q, {q}) ∈ R(ij+1)

that is compatible with some (q′, A) ∈ G(ij)}.

Since the statement holds for j we have that |A| = j and, hence, it follows that
|A ∪ {|(ij+1, q)|} | = j + 1. By the definition of compatibility (see Definition 6.3.22)

124

6.3. Incremental Enumeration for Words

there is an annotated answer Afull w.r.t some run r such that (p, q, {q}) and (q′, A)
are compatible with Afull and r. Thus, (q, A ∪ {|(ij+1, q)|}) is compatible with Afull

and r. It remains to show that Afull ∈ Acand. By applying the induction hypothesis
on (q′, A) ∈ G(ij) we know that there exists annotated answer Af ∈ Afirst with

Nodes(Afull
[1,ij−1]) = Nodes(Af[1,ij−1]) and Nodes(Afull

[ij ,ij]) ⊆ Nodes(Af[ij ,ij]).

By correctness of ij+1 (see Lemma 6.3.31) it follows that Afull and Af have the same
node ij+1, i.e., it also holds that

Nodes(Afull
[ij ,ij]) = Nodes(Af[ij ,ij]) and Nodes(Afull

[ij+1,ij+1]) ⊆ Nodes(Af[ij+1,ij+1]).

In total, we have Afull ∈ Acand which proves the assumption. �

For the running example from Figure 6.1 we have k = 2 and

G(2) = {(q1, {|(1, q2), (2, q1)|}), (q2, {|(1, q1), (2, q2)|})}.

It remains to show how ij+1 and G(ij+1) can be efficiently computed. Previously,
we have seen that we can compute G(i1) in time O(|Q|3 · |S|2 · 2k · log n). Next, we
prove that we can compute ij+1 in time O(|Q|3 · |S|2 · 2k · log n) when G(ij) is given.
Afterwards, we examine the computation of the set G(ij+1).

To this end, we extend the notion of relevant tuples to j-relevant tuples. In-
tuitively, j-relevant tuples contain all tuples from R that remain relevant for con-
structing the smallest possible answer, given the knowledge we have at node ij.

6.3.26 Definition. For vxy ∈ Naux
w and j ∈ {0, . . . , k}, the set of j-relevant tuples,

denoted Rj(vxy), is defined as follows:

– R0(vxy) := R(vxy), and

– for each j ≥ 1

- if y < ij then Rj(vxy) := Rj−1(vxy),

- otherwise, Rj(vxy) := {(q1, q2, I) ∈ R(vxy) | (q1, q2, I) is compatible
with a growing answer (q, A) ∈ G(ij)}.

For example, if i1 = 1 then every tuple from Figure 6.3 is in the relation R1

except the tuple (q0, q1, {}) ∈ R(v11). Since tuples in Rj are compatible with a
growing answer in G(ij) by definition, we can now reformulate Proposition 6.3.23 in
terms of j-relevant tuples such that

ij+1 is the smallest node in w for which there is a tuple (q1, q2, I) ∈
Rj(ij+1) with I 6= ∅.

Notice that if Rj(ij) itself contains such a tuple then ij+1 = ij. Otherwise, we
compute ij+1 by traversing the tree Naux

w using the following lemma.

125

6. Enumerating Answers under Updates

6.3.27 Lemma. For a node vxy ∈ Naux
w the relation Rj(vxy) can be computed in

time O(|Q|3 · |S|2 · 2k) in each of the following cases:

(1) vxy is a leaf, vxy = ij, and G(ij) and Rj−1(ij) are known,

(2) vxy has parent v, x > ij, and Rj(v) is known, and

(3) vxy has child v, y ≥ ij, and Rj(v) and Rj−1(vxy) are known.

Proof. We prove cases (1) to (3) separately. By Definition 6.3.26 we have to show
that Rj(vxy) for each case (1) to (3) is the set of all tuples (q1, q2, I) such that

– (q1, q2, I) ∈ R(vxy), and

– (q1, q2, I) is compatible with a growing answer (q, A) ∈ G(ij).

(1) We define Rj(ij) = {(p, q, {q}) ∈ Rj−1(ij) | ∃(q, A) ∈ G(ij)}, which can be
computed in time O(|Q|3 · |S|2 · 2k). Next, we show that Rj(ij) is computed
correctly. Let (p, q, {q}) be as specified above. The tuple (p, q, {q}) is compatible
with (q, A) ∈ G(ij) by definition and, therefore, also relevant. Now, assume that
there is a tuple (p, q, {q}) ∈ R(ij) that is compatible with a growing answer
(q, A) ∈ G(ij) but not in Rj−1(ij). Since every tuple (p, q, {q}) ∈ R(ij) that
is compatible with (q, A) ∈ G(ij) is also compatible with a growing answer
(q′, A′) ∈ G(ij−1), it follows that (p, q, {q}) ∈ Rj−1(ij).

(2) We distinguish two subcases (a) and (b) depending on whether vxy is a left or a
right child.

(a) If vxy is a left child and v is the parent of vxy then let v′ be the right child
of v. We define

Rj(vxy) = {(q1, p, J) | ∃(q1, p, I1) ∈ T+(vxy),∃(p, q2, I2) ∈ T+(v′),

∃(q1, q2, I) ∈ Rj(v), such that J ⊆ I1 and J ∪ I2 = I}.

(b) If vxy is a right child and v is the parent of vxy then let v′ be the left child
of v. We define

Rj(vxy) = {(p, q2, J) | ∃(p, q2, I2) ∈ T+(vxy),∃(q1, p, I1) ∈ T+(v′),

∃(q1, q2, I) ∈ Rj(v) such that J ⊆ I2 and J ∪ I1 = I}.

We prove that the above definition for Rj(vxy) is correct for the case (2)(a). The
proof of case (2)(b) is analogous.
Let (q1, p, J) be as specified above. We first prove that (q1, p, J) belongs to
Rj(vxy). Since (q1, q2, I) ∈ Rj(v) we know that (q1, q2, I) is compatible with a
growing answer (q, A) ∈ G(ij). Since x > ij it holds that Nodes(A[x,y]) = ∅.
Thus, (q1, p, J) is compatible with (q, A) and, therefore, relevant.
Towards a contradiction, assume that Rj(vxy) is not complete, i.e., there is
a tuple (q1, p, J) ∈ R(vxy) that is compatible with some (q, A) ∈ G(ij) but

126

6.3. Incremental Enumeration for Words

not captured by the right side in the above definition. However, we know
that (q1, p, J) ∈ R(vxy). By Definition 6.3.17 it follows that there is a tuple
(q1, p, I1) ∈ T+(vxy) with J ⊆ I1, and that there are tuples (p, q2, I2) ∈ T+(v′)
and (q1, q2, I) ∈ Rj(v) such that J∪I2 = I. Therefore, (q1, p, J) ∈ Rj(vxy) which
contradicts the assumption. We can compute Rj(vxy) in time O(|Q|3 · |S|2 · 2k).

(3) We distinguish two subcases (a) and (b) depending on whether vxy has a left or
a right child.

(a) If vxy has a left child v then let v′ be the right child of vxy. We define

Rj(vxy) = {(q1, q2, I) | ∃(q1, q2, I) ∈ Rj−1(vxy),∃(q1, p, I1) ∈ Rj(v),

∃(p, q2, I2) ∈ T+(v′) such that I1 ∪ I2 = I}.

(b) If vxy has a right child v then let v′ be the left child of vxy. We define

Rj(vxy) = {(q1, q2, I) | ∃(q1, q2, I) ∈ Rj−1(vxy),∃(q1, p, I1) ∈ T+(v′),

∃(p, q2, I2) ∈ Rj(v) such that I1 ∪ I2 = I}.

We prove that the above definition for Rj(vxy) is correct for the case (3)(a). The
proof of case (3)(b) is analogous.
Let (q1, q2, I) be as specified above. We first prove that (q1, q2, I) belongs to
Rj(vxy). Since (q1, q2, I) ∈ Rj−1(vxy) it holds that (q1, q2, I) ∈ R(vxy). It remains
to show that there is an annotated answer Afull w.r.t. some run rA such that
(q1, q2, I) and a growing answer (q, A) ∈ G(ij) are compatible with Afull and rA.
In the following, we construct such an annotated answerAfull and run rA from the
given information about (q1, q2, I). First, we know that (q1, q2, I) is compatible
with a growing answer (p,B) ∈ G(ij−1) because (q1, q2, I) ∈ Rj−1(vxy). That is,
there is an annotated answer Bfull w.r.t. some run rB such that (q1, q2, I) and
(p,B) are compatible with Bfull and rB. In particular, it holds that Nodes(B) =
Nodes(A[1,ij−1]). Moreover, we know that, by the definition of compatibility,
Nodes(Bfull

[x,y]) = I and rB = r1r2r3 such that r2 is a partial run q1 · · · q2 on
w[x..y] and I ⊆ set(r2). However, this is not sufficient to show that Bfull is
compatible with (q, A) ∈ G(ij) because Bfull does not have to agree with A on
the node ij. If this is the case then we can construct a new run rA from rB such
that rA produces the desired Afull. Therefore, we define rA = r1 ·rv ·rv′ ·r3 where

– rv = q1 · · · p is a partial run on w[x..z] such that I1 ⊆ set(rv) and r[ij] = q
for (ij, q) ∈ A, and

– rv′ = p′ · · · q2 with p′ ∈ δ(p, w[z + 1]) is a partial run on w[z + 2..y] where
I2 ⊆ set(rv′).

Using Definition 6.3.26 and that (q1, p, I1) ∈ Rj(v), we know that rv is well-
defined. Applying Lemma 6.3.6 on the tuple (p, q2, I2) ∈ T+(v′) it follows that rv′
is well-defined. Since I1∪ I2 = I the run rA produces the annotated answer Afull

which proves the assumption.

127

6. Enumerating Answers under Updates

Towards a contradiction, assume that Rj(vxy) is not complete, i.e., there is a tu-
ple (q1, q2, I) ∈ R(vxy) that is compatible with a growing answer (q, A) ∈ G(ij)
but not captured by the right side in the above definition. Let the anno-
tated answer Afull w.r.t. some run r be such, that (q1, q2, I) and (q, A) are
compatible with Afull and r. By the definition of compatibility we have that
Nodes(Afull

xy) = I. Thus, there exist I1 and I2 such that, for z = x− 1 + by−x+1
2
c,

it holds that Nodes(Afull
xz) = I1, Nodes(Afull

(z+1)y) = I2, and I = I1 ∪ I2. It fol-
lows that there exist a tuple (q1, p, I1) ∈ Rj(vxz) for the left child vxz of v,
and a tuple (p, q2, I2) ∈ T+(v(z+1)y) for the right child v(z+1)y of v. Therefore,
(q1, q2, I) ∈ Rj(vxy) which contradicts the assumption. We can compute Rj(vxy)
in time O(|Q|3 · |S|2 · 2k). �

In the following we argue that we need at most log n operations of the kind (1)
to (3) to compute ij+1 from ij. We start at node ij where G(ij) and Rj−1(ij) are
known. We compute Rj(ij) using (1) and test whether ij+1 = ij. If this is not the
case then we follow the path p from ij to the root of Naux

w and compute Rj on the
way. Since we compute Rj for every node on p, we can always apply case (3). In
total, this needs log n operations because p is of length log n. Afterwards, we do
a second bottom-up traversal of p where we compute, at each visited node, Rj for
the right child of the node (applying case (2)). We stop when we find such a right
child vr which is not on p and where Rj(vr) contains a tuple (q1, q2, I) with I 6= ∅.
Again, this can be done with at most log n operations. By the definition of Rj we
know that the subtree rooted at vr has at least one leaf node u such that Rj(u)
contains a tuple (q1, q2, I) with I 6= ∅. The leftmost of these nodes u is ij+1. To
arrive at ij+1 we go down from vr. On the way we always compute Rj for both
children (applying case (2)) and choose the leftmost child for which Rj has a tuple
(q1, q2, I) with I 6= ∅. We are done at the moment we reach a leaf. Altogether, we
navigated through O(log n) nodes in the tree.

The following characterization illustrates how G(ij+1) can be obtained from G(ij)
using j-relevant tuples:

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) | ∃(q1, q2, {q2}) ∈ Rj(ij+1)

∃(q, A) ∈ G(ij), and q1 ∈ δ∗(q, w[ij + 1..ij+1])}.

By maintaining reachable states in δ∗ when going from ij to ij+1, we can compute ij+1

from G(ij) in time O(|Q|3 · |S|2 · 2k · log n). Next, we show that all sets G(ij)
can be efficiently stored in one shared data structure that is maintained during a
computation of the algorithm.

6.3.28 Theorem. All sets G(ij) (for j ∈ {1, . . . , k}) can be stored in a data struc-
ture of size O(|S| · k!). This data structure, given j, can generate G(ij) within time
O(|S| · k!).

Proof. We first show that O(|S| · k!) records suffice for storing a single G(ij) and
then show how all of them can be stored in a data structure of size O(|S| · k!).

For a given j we defined G(ij) as a set of tuples (q, A) where A is a multiset
over Nodes(w) × Q. By the construction of G(ij) every annotated answer A with

128

6.3. Incremental Enumeration for Words

(q, A) ∈ G(ij) uses the same multiset {|i1, . . . , ij|} of nodes. Since k is an upper
bound for j, a naïve upper bound for the size of G(ij) is O(k + |Q| · |Q|k), i.e.,
size k for the tuple (i1, . . . , ij) and size |Q| · |Q|k for all possible (q, (q1, . . . , qj))
such that (q, {|(i1, q1), . . . , (ij, qj)|}) ∈ G(ij). Moreover, for every (q, A) ∈ G(ij) and
(ij, qj) ∈ A, it holds that qj = q by the construction of G(ij). Therefore, it is
sufficient to store (q1, . . . , qj) instead of all possible tuples (q, (q1, . . . , qj)).

This can be optimized even further. Observe that every growing answer in G(ij)
does not contain arbitrary states but rather states in a set(s) for a selecting tuple
s ∈ S. Thus, we can store, for every selecting tuple (q1, . . . , qk) ∈ S, all injections
σ : {1, . . . , j} → {1, . . . , k} such that

(qσ(j),
{∣∣(i1, qσ(1)), . . . , (ij, qσ(j))

∣∣}) ∈ G(ij).

Hence, for j = k, we store the tuple (i1, . . . , ik) once and, for every (q1, . . . , qk) ∈ S,
the set of permutations σ : {1, . . . , k} → {1, . . . , k} such that

(qσ(k),
{∣∣(i1, qσ(1)), . . . , (ik, qσ(k))

∣∣}) ∈ G(ik).

The total size of this data structure is O(k + k! · |S|), i.e., O(k! · |S|). (The repre-
sentation size for j < k is smaller.)

In fact, we can even store all G(ij) in a single data structure of size O(k! · |S|).
To see this, consider a tuple (q1, . . . , qk) and all injections that are specified above.
If σ : {1, . . . , j} → {1, . . . , k} is such, that (qσ(j),

{∣∣(i1, qσ(1)), . . . , (ij, qσ(j))
∣∣}) ∈ G(ij)

then there are two options for (qσ(j),
{∣∣(i1, qσ(1)), . . . , (ij, qσ(j))

∣∣}). Either we can ex-
tend it to a growing answer in G(ij+1) or not. In the former case, there is also a
non-empty set of injections of the form σ′ : {1, . . . , j + 1} → {1, . . . , k} such that

– σ′ extends σ, i.e., σ′(`) = σ(`) for every ` ∈ {1, . . . , j}, and

– (qσ′(j+1),
{∣∣(i1, qσ′(1)), . . . , (ij+1, qσ′(j+1))

∣∣}) ∈ G(ij+1).

In the latter case, there exists no such non-empty set of injections extending σ.
Notice that, in the former case, σ can be immediately inferred from σ′ such

that σ does not have to be stored separately. For every j we therefore only store
the injection σ : {1, . . . , j} → {1, . . . , k} that cannot be extended to an injection
σ′ : {1, . . . , j} → {1, . . . , k+ 1} for G(ij+1). In particular, we store all permutations
that encode answers for j = k.

We claim that the total number of injections that we store is O(k! · |S|), which
can be seen as follows: for every tuple s ∈ S, each injection σ that we store cannot
be extended to a permutation with the correct properties. That is, there exist
permutations that extend σ, but these do not have the property that they produce
the answer (i1, . . . , ik). Therefore, the total number of injections that we store is
O(k!). The size of a single such injection is not larger than the size of a tuple in S,
which means that O(|S| · k!) records are sufficient in total. Finally, we obtain G(ij)
for a given j by returning all growing answers (qσ(j),

{∣∣(i1, qσ(1)), . . . , (ij, qσ(j))
∣∣}) for

that we store an injection σ that is defined on j. �

Now, we have all the ingredients to show how long it takes to compute a set of
growing answers G(i`) for an arbitrary ` ∈ {1, . . . , k}.

129

6. Enumerating Answers under Updates

6.3.29 Lemma. Given Naux
w , T+, and ` ∈ {1, . . . , k}, the set G(i`) can be computed

in time O(|S| · k! + |Q|3 · |S|2 · 2k · ` log n).

Proof. First, we show how much time is needed to compute the node i`. Second, we
examine the time that was spend to compute the set G(i`) during the computation.

We know that i1 can be computed in time O(|Q|3·|S|2·2k ·log n) by Lemma 6.3.21.
Here, we show how to compute i`+1 in time O(|Q|3 · |S|2 · 2k · log n) when i` is given.
Therefore, we use that the following information is available. Besides the auxiliary
data structure Naux

w with T+ and all nodes in the multiset N = {|i1, . . . , i`|}, we
assume that we know

(a) G(i`) and R(ui`),

(b) the tree Aaux
w induced by all ancestors of nodes in N , and

(c) for every node vxy ∈ Aaux
w the relation Rj−1(vxy) or Rj(vxy) where ij ∈ N is the

highest position with x ≤ ij ≤ y.

After the computation of G(i1), the tree Aaux
w contains only the path from the

root of Naux
w to i1. Since R0(vxy) = R(vxy) we compute R0(vxy) for every node on

this path during the computation of i1. Therefore, information (a) to (c) is available
after we have computed G(i1).

Now, assume that all necessary information up to node i` has been computed.
By Proposition 6.3.23 we know that

– i`+1 ≥ i` is the leftmost node in w for that there exists a tuple (q1, q2, I) ∈
R(i`+1) with I 6= ∅ that is compatible with a growing answer (q, A) ∈ G(i`).

By Definition 6.3.26 this is equivalent to

– i`+1 ≥ i` is the leftmost node in w for that there exists a tuple (q1, q2, I) ∈
R`(i`+1) with I 6= ∅.

In the following, we show i`+1 can be computed in time O(|Q|3 · |S|2 · 2k · log n)
providing that information (a) to (c) is available afterwards. Therefore, we argue
that we need at most log n operations of the kind (1) to (3) from Lemma 6.3.27 to
find i`+1 from i`. We start at node i` where we assume that G(i`) and R`−1(i`) are
known. We compute R`(i`) by applying (1) from Lemma 6.3.27 and test whether
i`+1 = i`. If this is not the case we follow the path p from i` to the root of Naux

w

and compute R` on the way. (Notice that all necessary information (a) to (c) is still
available afterwards.) Since we always compute the relation R` for every node on p
we can always apply case (3) from Lemma 6.3.27. In total, this needs log n operations
because p has length log n. Afterwards, we do a second bottom-up traversal of p
and compute, at each node, the relation R` for every right child (applying case (2)
from Lemma 6.3.27). Again, all necessary information (a) to (c) is still available
afterwards. We stop at the moment we find such a right child vr that is not on p and
where R`(vr) contains a tuple (q1, q2, I) with I 6= ∅. Again, this can be done with at
most log n operations. By the definition of R` we know that the subtree rooted at vr

130

6.3. Incremental Enumeration for Words

has at least one leaf node u such that R`(u) contains a tuple (q1, q2, I) with I 6= ∅.
The leftmost of these nodes u is i`+1. To arrive at i`+1 we go down from vr. On the
way we always compute R` for both children (applying case (2) in Lemma 6.3.27)
and choose the leftmost child for which R` contains a tuple (q1, q2, I) with I 6= ∅. We
are done when we reach a leaf. Altogether, we navigated through O(log n) nodes
in the tree Naux

w using time O(|Q|3 · |S|2 · 2k · ` log n) in total. Furthermore, we
computed R` for every node on the path from the root of Naux

w to i`+1, thereby,
obtaining the necessary information for (b) and (c).

Finally, the following characterization shows how we can obtain G(i`+1) from
G(i`) using j-relevant tuples:

G(i`+1) = {(q2, A ∪ {|(i`+1, q2)|}) | ∃(q1, q2, {q2}) ∈ R`(ui`+1
)∃(q, A) ∈ G(i`),

and q1 ∈ δ∗(q, w[i` + 1..i`+1])}.

Afterwards, information (a) is available as well. When going from i` to i`+1, we can
maintain reachable states in δ∗ in time O(|Q|3 · |S|2 · 2k · log n). By Theorem 6.3.28
the computation of every set G(ij) for j ∈ {1, . . . , `} needs time O(|S| ·k!). In total,
we used time O(|S| · k! + |Q|3 · |S|2 · 2k · log n) to compute G(i`). �

Notice that the additional term |S|·k! comes from the size of the sets G(i`) which
is naïvely O(|Q|k) but can be shown to be O(|S| · k!). Combining Lemmas 6.3.24
and 6.3.29 we obtain the following result.

6.3.30 Theorem. Given Naux
w and T+, the first answer in M(w) can be computed

in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log n).

Proof. Let (v1, . . . , vk) be the smallest answer in M(w) (with respect to �) such
that there is an accepting run r of N on w, a tuple (p1, . . . , pk) ∈ S, and r visits v`
in p` for every ` ∈ {1, . . . , k}. By Lemma 6.3.24 the set G(ik) contains the set of
smallest annotated answers. Therefore, G(ik) contains an annotated answer Afull =
{|(v1, p1), . . . , (vk, pk)|}. The set G(ik) can be computed in time O(|S| ·k!+ |Q|3 · |S|2 ·
2k · k log n) by Lemma 6.3.29. �

In particular, we have that Complete({∅}) returns the set {A | (q, A) ∈ G(ik)}.

6.3.5 Computing the Next Answer to a Query

In the previous section we illustrated how to compute Complete({∅}), which is the
set of first answers to the queryM on w. In the following, we explain how to go from
one answer to the next, i.e., the details of the procedure Next(A) in Algorithm 2.

6.3.31 Lemma. Complete, Back, and Nextnode can be implemented such that Al-
gorithm 2 correctly computes Next(A). Moreover, Next(A) runs in O(|S| · k! + |Q|3 ·
|S|2 · 2k · k log n) time.

Proof. Recall from Section 6.3.3 that every A at each call of Complete, Back, or
Nextnode has the property that all A ∈ A use the same multiset of nodes {|i1, . . . , i`|}

131

6. Enumerating Answers under Updates

(see Observation 6.3.14). We denote this multiset by Nodes(A) and assume that the
following information is available at the time we call Complete, Back, Nextnode, or
Next(A): the tree Naux

w with T+ (entirely), the relations Rj, and sets G as described
in the invariants (I1) and (I2) below.

(I1) Let Aaux
w be the tree that is induced by all nodes in Nodes(A) and their an-

cestors in Naux
w . For every vxy ∈ Aaux

w the relation Rj−1(vxy) or Rj(vxy), where
ij ∈ Nodes(A) is the maximal node with x ≤ ij ≤ y, is known.

(I2) For every ij ∈ Nodes(A) the set G(ij) is known. Here, G(ij) = {(q, A) |
Nodes(A) ⊆ Nodes(A), |A| = j, and there is an annotated answer Afull such
that Nodes(A[1,ij−1]) = Nodes(Afull

[1,ij−1]), Nodes(A[ij ,ij]) ⊆ Nodes(Afull
[ij ,ij]), and

(q, A) is compatible with Afull}.

In the following we show that we can implement all the aforementioned procedures
correctly and such, that (I1) and (I2) hold afterwards.

Complete(A): Algorithm 2 always calls Complete({∅}) in the beginning. In Sec-
tion 6.3.4, we proved that Complete({∅}) returns the set of smallest annotated
answers in M(w) (if Complete({∅}) = ∅ then the algorithm stops). Furthermore,
we know that (I1) is satisfied by the computation done in the proof of Lemma 6.3.29
and that (I2) is satisfied by Claim 6.3.25 (which we proved for Lemma 6.3.24). We
now generalize the description from Section 6.3.4 to compute Complete(A) for an
arbitrary occurrence of A in Algorithm 2. To this end, we have to change the
definition of the tuple (i1, . . . , ik) in Section 6.3.4. In particular, we assume that
(i1, . . . , ik) is the smallest answer in M(w) such that {|i1, . . . , ij|} = Nodes(A) and
for every ` > j the position i` is greater or equal than the largest number ij in
Nodes(A). Moreover, we leave all sets G(i1), . . . , G(ij) untouched and recompute
only the sets G(i`) for ` > j. Since the relation Rj is available for every node that
is described by (I1), we can compute ij+1 and the new set G(ij+1) analogously to
the computation for Complete({∅}) by applying Lemma 6.3.27. Again, this com-
putation satisfies that (I1) holds for the set Nodes(Complete(A)). At the newly
computed node ij+1 we compute the set G(ij+1) in the same way as for the case
Complete({∅}), i.e.,

G(ij+1) = {(q2, A ∪ {|(ij+1, q2)|}) | ∃(q1, q2, {q2}) ∈ Rj(ij+1), (q, A) ∈ G(ij),

such that q1 ∈ δ∗(q, w[ij + 1..ij+1])}.

However, notice that the semantics of the sets G(ij) (see (I2)) differ from Sec-
tion 6.3.4. Finally, we define

Complete(A) = {A | (q, A) ∈ G(ik)}.

The computation of Complete(A) needs time O(|S| ·k!+ |Q|3 · |S|2 ·2k ·k log n) which
can be proved analogously to Lemma 6.3.29. It remains to show that (I2) is satisfied
after the computation. Observe that, when Complete(A) is finished, we have that
Nodes(Complete(A)) = {|i1, . . . , ij, ij+1, . . . , ik|} where ij+1, . . . , ik were recomputed

132

6.3. Incremental Enumeration for Words

by the procedure. Thus, for all sets G(i`) with ` ≤ j, (I2) is satisfied by assumption.
Next, we show that (I2) is satisfied for all all sets G(i`) where ` > j. Therefore, we
prove that, if G(ij) satisfies (I2) then G(ij+1) that is given by the above computation
satisfies (I2) as well. First, notice that Nodes(A) ⊆ Nodes(A) by definition. By
applying (I2) on G(ij) we know that |A| = j, i.e., |A∪{|(ij+1, q2)|} | = j+1. Using the
same argument we also know that there exists an annotated answer Afull

1 w.r.t. some
run r1 such that (q, A) ∈ G(ij) is compatible with Afull

1 and r2. Then, we know that,
by the definition of R, there is another annotated answer Afull

2 w.r.t. some run r2

such that (q1, q2, {q2}) ∈ Rj(ij+1) is compatible with Afull
2 and r2. Since we know

that q1 is reachable from q according to the right subword of w, it is straightforward
to obtain an annotated answer Afull w.r.t. some run r such that (q1, q2, {q2}) and
(q, A) are compatible with Afull and r. It follows that (I2) is satisfied for G(ij+1)
which concludes the description of Complete(A).

Back(A): The procedure Back(A) is implemented as follows:

Back(A) =

{
{(A | (q, A) ∈ G(ij−1)}, if j ≥ 2,

∅, otherwise.

If (I1) and (I2) are satisfied before calling Back(A) then they are satisfied afterwards
because we do not touch any relation R and G. Since G(ij−1) is already computed,
each call of Back(A) needs linear time in the size of G(ij−1), i.e., O(|S| · k!) by
Theorem 6.3.28. It remains to prove that our definition is correct. Therefore, observe
that every A ∈ Back(A) is an incomplete answer of size j − 1 (by (I2) for G(ij−1)).
Using the same argument, Back(A) contains all possible incomplete answers A in
M(w) with Nodes(A) = {|i1, . . . , ij−1|}. This concludes the description of Back(A).

Nextnode(A): Let ij be a maximal node in Nodes(A). Nextnode(A) checks whether
there is an annotated answer Afull with Nodes(Afull) = {|i1, . . . , ij−1, ij+1, . . . , ik|}
where ij+1, . . . , ik are nodes that are larger than ij. The procedure returns the
following set of incomplete answers:

Nextnode(A) =

{
{(A | (q, A) ∈ G(ij+1)}, if Afull exists,
∅, otherwise.

Notice that Nextnode(A) recomputes only the node ij+1 and the set G(ij+1). In
Section 6.3.4, we showed how to compute the node ij+1 for the case Complete(A).
In the case of Nextnode(A), the proof is analogous except from the following detail:
one has to ensure that ij+1 is strictly larger than ij (if the node exists). This can
be done by skipping the step where we check whether ij+1 = ij in the beginning of
the computation. The definition of G(ij+1) is equal to the aforementioned case of
Complete(A). Analogously to the case of Complete(A) the computation satisfies (I1)
and (I2) afterwards. In total, Nextnode(A) can be computed in time O(|S| · k! +
|Q|3 · |S|2 · 2k · log n).

Next(A): In Lemma 6.3.13, we proved that Next(A) is correct when Complete(A),
Back(A), and Nextnode(A) can be implemented correctly. Above, we proved that

133

6. Enumerating Answers under Updates

Nextnode(A) needs time O(|S|·k!+|Q|3·|S|2·2k ·log n), Back(A) can be implemented
in time O(|S| · k!), and Complete(A) runs in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log n).
During a call of Next(A) there are at most O(k) calls of Nextnode(A) and Back(A)
and there is only one call of Complete(A). Altogether, Next(A) needs time O(|S| ·
k! + |Q|3 · |S|2 · 2k · k log n) in total. Again, the term |S| · k! is due to the size of the
sets G of growing answers. �

Finally, we can obtain our main result.

6.3.32 Theorem. IncrementalEnumeration for a k-NSFA M and a word w
with |w| = n can be solved with an auxiliary data structure of size O(|Q|2 · |S| ·2k ·n)
which can be computed in time O(|Q|3 · |S|2 ·2k ·n), maintained in time O(|Q|3 · |S|2 ·
2k · log n) per update, and guarantees O(|S| · k! + |Q|3 · |S|2 · 2k · k log n) enumeration
delay between answers.

Proof. During preprocessing our algorithm builds an auxiliary data structure that
consists of the tree Naux

w and the relation T+. By Lemma 6.3.7 the auxiliary data
structure has size O(|Q|2 ·|S|·2k ·n) and can be computed in time O(|Q|3 ·|S|2 ·2k ·n).
By the same lemma it follows that updates can be maintained in time O(|Q|3 · |S|2 ·
2k · log n). By Lemma 6.3.15 we know that we can use Algorithm 2 to correctly
enumerate all answers in M(w) if Complete(A), Back(A), and Nextnode(A) can be
computed correctly within the required time. In Theorem 6.3.30 we showed that
Complete({∅}) can be implemented correctly such that it runs in time O(|S| · k! +
|Q|3·|S|2·2k·k log n). Next(A) (including Complete(A), Back(A), and Nextnode(A))
can be computed in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log n) by Lemma 6.3.31. �

6.4 Incremental Enumeration for Trees

We now extend the algorithm from Section 6.3 to trees. More precisely, we show
that, for a k-NSTA M (with states Q and selecting tuples S) and a tree t, we can
solve IncrementalEnumeration with O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|) delay,
using an auxiliary data structure of size O(|Q|2 · |S| · 2k · |t|) which can be updated
within time O(|Q|3 · |S|2 ·2k · log2 |t|). This generalizes the following result by Balmin
et al. [BPV04].

6.4.1 Theorem ([BPV04]). IncrementalEvaluation for an NTA N and a
tree t can be solved with an auxiliary data structure of size O(|Q|2 · |t|) which can be
updated within time O(|Q|3 · log2 ·|t|).

We generalize Theorem 6.4.1 in two directions. First, we examine k-ary queries
instead of boolean queries. Second, we show that the answer set of the query can be
enumerated within a small delay. The main observation in this section is that the
algorithm from Section 6.3 can be used together with the techniques in [BPV04].

In their paper, Balmin et al. presented an algorithm that simulates the evaluation
of an NTA N = (Q,Σ, δ, F) on a tree t by maintaining a set of NFAs over the set
of maximal heavy paths of t (see Definition 2.2.5). We briefly review the original
algorithm of Balmin et al. in the following.

134

6.4. Incremental Enumeration for Trees

Let tv be the subtree of t that is rooted at node v. In the preprocessing, the
algorithm computes, for every v ∈ t, a new label that contains the original label of v
and all states q of the NTA such that there exists a run λ on tv and λ visits v in q.
These new labels can be computed in time O(|Q| · |δ| · |t|) by one bottom-up pass
through the tree. Moreover, the algorithm maintains an NFA for every maximal
heavy path of t. Each of these NFAs operates on the new labels and simulates a
part of the tree automaton by allowing only transitions that are compatible with
the tree automaton. In addition, the algorithms builds for every NFA an auxiliary
data structure that is analogous to Naux

w from Section 6.3.1.
If an update occurs then the auxiliary data structure of the NFA that is respon-

sible for the maximal heavy path of v receives an update. The update is processed
analogously to Section 6.3.1. However, the change to this structure can trigger
changes in all auxiliary data structures of NFAs for heavy paths that are closer to
the root. Since the number of maximal heavy paths that are crossed on the way
is at most logarithmic in |t| by Lemma 2.2.6, processing an update for incremental
NTA evaluation boils down to processing log |t| updates on words for NFAs. (This
also explains the complexity upper bound in Theorem 6.4.1.)

We fix the following notation for the remainder of the section. We denote
by M = ((Q,Σ, δ, F), S) a k-NSTA, by t the binary input tree, and by QS the
set ∪s∈S set(s). In Section 6.4.1, we explain the preprocessing of our algorithm for
IncrementalEnumeration when given M and t as input. Moreover, we de-
fine the auxiliary data structure that is constructed during the preprocessing and
show how it is updated. Afterwards, we present the enumeration procedure for the
set M(t).

6.4.1 Preprocessing an Auxiliary Data Structure for Trees

Analogously to Balmin et al. our algorithm computes new labels for t, except that
it stores some additional information about selecting states.

6.4.2 Definition. For each v ∈ t the set Reach(v) ⊆ (Q × 2QS) is inductively
defined as follows:

– if v is a leaf then Reach(v) = {(q, I) | (lab(v)→ q) ∈ δ, I = {q} ∩QS},

– if v has a left child v1 and a right child v2 then
Reach(v) = {(q, I) | ((q1, q2, lab(v))→ q) ∈ δ,

(q1, I1) ∈ Reach(v1), (q2, I2) ∈ Reach(v2) and I = I1 ∪ I2 ∪
(
{q} ∩QS

)
}.

In other words, if we denote byM q the NTA (Q,Σ, δ, {q}) then Reach(v) contains
all pairs (q, I) such that tv ∈ L(M q), I ⊆ QS, and there exists a run of M q on tv
that uses all states in I. Using above definition one can compute the sets Reach(v)
for all v ∈ t in time O(|Q| log |Q| · |δ| · |S| · 2k · |t|).

Next, we define a new labeling function lab′(v) for every node v ∈ t. Recall that
we denote the maximal heavy path of t by hp(t) and the set of all maximal heavy
paths of nodes in t by HPaths(t) (see Definition 2.2.5).

135

6. Enumerating Answers under Updates

6.4.3 Definition. Let vn · · · v1 be a path in HPaths(t) such that v1 is a leaf and vn
is the node that is closest to the root. Then, lab′ is inductively defined as follows:

– for i = 1, lab′(v1) := lab(v1),

– for i > 1, let v′i−1 be the child of vi not on hp(vi),

- if v′i−1 is the right child of vi then lab′(vi) := (lab(vi),Reach(v′i−1)), and

- if v′i−1 is the left child of vi then lab′(vi) := (Reach(v′i−1), lab(vi)).

We now define an NFA Np for every path p ∈ HPaths(t) such that Np processes
the word lab′(v1) · · · lab′(vn) (where p = vn · · · v1). All NFAs Np are defined over a
common finite state set QN , a common finite alphabet ΣN , and a common transition
function δN .

6.4.4 Definition. Let M be a k-NSTA, t be a binary tree, and p be a path in
HPaths(t). Then, the NFA Np is defined as the tuple (QN ,ΣN , δN , q0, Fp) where
QN = Q] {q0} is the finite state set, q0 is a fresh initial state, ΣN is a finite
alphabet, and δN is the transition function which is defined as follows:

– δN(q0, a) := Q0 where Q0 = {q | (a→ q) ∈ δ},

– δN(q, (a,R)) := ∪(q′,I)∈Rδ(q, q
′, a) for all a ∈ Σ, and

– δN(q, (R, a)) := ∪(q′,I)∈Rδ(q
′, q, a) for all a ∈ Σ.

The set of accepting states Fp is equal to Q, if p 6= hp(t); and F , otherwise.

Intuitively, every NFA Np simulates the tree automaton on the path p by allowing
only transitions that are compatible with the tree automaton. We remark that our
definition of the automata Np (and of δN , respectively) is analogous to Balmin
et al., except that we consider a labeling function that contains some additional
information. The alphabet ΣN , which is defined by the new labeling function lab′,
is of size O(|Σ| · |Q| · 2|QS |). However, Balmin et al. showed that the alphabet and
the transition function of the NFAs do not have to be stored explicitly. Instead, our
algorithm stores only the sets Reach(v) for every node v ∈ t and computes δN from
the tree automaton on-the-fly.

Let hp(t) be the maximal heavy path of t. The NFA Nhp(t) accepts the word
lab′(v1) · · · lab′(vn) if and only if the k-NSTA M accepts t. For all other paths
p ∈ HPaths(t) the NFAsNp are needed to propagate the updates in t. This concludes
the description of the NFAs that are maintained during the algorithm.

The algorithm builds an auxiliary tree Naux
p for every NFA Np and maximal heavy

path p (analogously to Definition 6.3.1). Moreover, it computes the accompanying
relations T+

p (see Definition 6.3.4) using the ./+-operation (see Definition 6.3.5) as
before. The only difference to Section 6.3.2 is how it initializes the relations in the
leaves. Notice that the leaf nodes of Naux

p are now associated with nodes in t which

136

6.4. Incremental Enumeration for Trees

t

p1

p2

p3 p4

(a) An example tree t.

. . .

. . .

p1

p2p3

p4

Naux
p1

Naux
p3

Naux
p2

Naux
p4

(b) Part of the auxiliary data structure for t.

Figure 6.4: The algorithm traverses the auxiliary trees Naux
pi for all maximal heavy paths

pi ∈ HPaths(t) which are linked according to their alignment in t.

can be the root of a subtree tv. (Again, we use the convention that leaves vxx ∈ Naux
p

are also nodes in t). For nodes vxx ∈ Naux
p the relation T+

p is initialized as follows:

T+
p (vxx) = {(q1, q2, I) | q2 ∈ δN(q1, lab′(vxx)) and

I = (∪(a,J)∈lab′(vxx)J) ∪ ({q2} ∩QS)}.

For all other nodes vxy ∈ Naux
p the relation T+

p is defined exactly as in Sec-
tion 6.3.2. This finishes the description of the preprocessing. In total, the auxiliary
data structure includes t, the set HPaths(t), and the auxiliary trees Naux

p with rela-
tions T+

p for each NFA Np.

6.4.5 Example. In Figure 6.4(a) we illustrate a tree t with its maximal heavy paths
HPaths(t) = {p1, p2, p3, p4}. The auxiliary trees Naux

p for every p ∈ HPaths(t) are
depicted in Figure 6.4(b). Nodes of maximal heavy paths in the left tree correspond
to nodes of the same shape on the right. The set of auxiliary trees Naux

p can also
be seen as a “tree of trees” for that the root of Naux

p4
provides information for a leaf

node of Naux
p3

, the root of Naux
p3

provides information for a leaf node of Naux
p1

, et cetera.
The set of auxiliary trees can be maintained under updates by propagating updates
bottom-up in this “tree of trees”. For example, assume that the highest node of p4

is relabeled. Then, this corresponds to a relabeling of the rightmost leaf of Naux
p4

.
This change is then propagated on all nodes on the path to the root of Naux

p1
, going

through the auxiliary trees Naux
p3

and Naux
p1

.

In principle, this procedure is very similar to the incremental evaluation algo-
rithm of tree automata as described by Balmin et al. [BPV04]. The only difference

137

6. Enumerating Answers under Updates

is that we maintain more involved sets Reach(v) (which explains the extra 2k factor
in complexity). Moreover, notice that k = 0 in [BPV04].

6.4.6 Lemma. Given a k-NSTAM and a binary tree t, the auxiliary data structure
has size O(|Q|2 · |S| · 2k · |t|), can be computed in time O(|Q|3 · |S|2 · 2k · |t|), and
updated in time O(|Q|3 · |S|2 · 2k · log2 |t|).

Proof. Together all trees Naux
p with p ∈ HPaths(t) have |t| leaf nodes with at most

log |t| depth, i.e., O(|t|) nodes in total. For every node v in some Naux
p the transition

relation T+
p is of size O(|Q|2 · |S| · 2k). Therefore, the auxiliary data structure

has size O(|Q|2 · |S| · 2k · |t|). The transition relation T+
p is built bottom-up for

every tree Naux
p . For leaf nodes the relation T+

p can be computed in time and
space O(|Q|2). Afterwards, we need to compute |t| ./+-operations where each join
needs time O(|Q|3 · |S|2 · 2k). In total, the auxiliary data structure is built in time
O(|Q|3 · |S|2 · 2k · |t|).

Now, assume that an update occurs at a node v ∈ t. Let p ∈ HPaths(t) be the
maximal heavy path that contains v. Then, every relation on the path from v to the
root of Naux

p is updated, i.e., log |t| many relations. This needs log |t| ./+-operations
and yields time O(|Q|3·|S|2·2k ·log |t|) for the tree Naux

p . Afterwards, the computation
in the tree Naux

p triggers an update in every tree Naux
p′ with p′ ∈ HPaths(t) such that p′

is crossed by the path from v to the root of t. By Lemma 2.2.6 there exist at most
log |t| such paths p′. Therefore, we update at most log |t| trees Naux

p′ where each
update costs O(|Q|3 · |S|2 ·2k · log |t|). In total, it needs time O(|Q|3 · |S|2 ·2k · log2 |t|)
to update all trees Naux

p on the path from v to the root of t. �

6.4.2 Enumerating Query Answers for Trees

Let M = ((Q,Σ, δ, F), S) be a k-NSTA and t be the binary input tree with |t| = n.
To enumerate the set M(t) we use a procedure that is very similar to Algorithm 2
in Section 6.3. The main differences are that (1) we now have to maintain several
auxiliary trees Naux

p and relations T+
p (see Section 6.4.1), and (2) the enumeration

procedure has to check, for every leaf in some tree Naux
p , whether it has also reached

a leaf node in t or has to proceed to the next tree Naux
p′ . To this end, the algorithm

traverses the “tree of trees” (see, e.g., Figure 6.4(b)) that consists of all auxiliary
trees Naux

p with p ∈ HPaths(t). We formally define this structure as follows.

6.4.7 Definition. Let HPaths(t) be the set of maximal heavy paths for the tree t.
For every p ∈ HPaths(t) let Naux

p be the auxiliary tree for the NFA Np. The auxiliary
tree Naux

t consists of all Naux
p which are aligned and linked together as follows:

– the root of Naux
t is the root of Naux

hp(t), and

– for every maximal heavy path p and leaf node v ∈ Naux
p

- if v has a child in t that is root of another heavy path p′, then the child
of v in Naux

t is the root of the tree Naux
p′ ,

- otherwise, v is a leaf in Naux
t .

138

6.4. Incremental Enumeration for Trees

In other words, Naux
t can be seen as the union of all trees Naux

p with extra edges
between some Naux

p . Moreover, notice that a node in Naux
t is also a node in a tree Naux

p

and that a leaf node in Naux
p is also a node in t.

In the following, we illustrate how we have to change Algorithm 2 from Section 6.3
such that it runs on the tree Naux

t and enumerates the set M(t). We start by
redefining the relevant relation R for trees. The following definition differs from
Definition 6.3.17 only at the root nodes of the trees Naux

p .

6.4.8 Definition. Let p = vn · · · v1 ∈ HPaths(t) (where v1 is a leaf) and let r be
the root node of Naux

p :

– if p = hp(t) then R(r) = {(q0, qF , set(s)) ∈ T+
p (r) | qF ∈ F, s ∈ S},

– if p 6= hp(t) then consider the parent vp of vn in t,

- if vn is a left child then R(r) = {(q0, q1, I
′) | ∃(q0, q1, I) ∈ T+

p (r) with
I ′ ⊆ I,∃(q2, q, J) ∈ R(vp), q ∈ δ(q1, q2, lab(vp)), and J ⊆ I ′ ∪ {q}},

- if vn is a right child then R(r) = {(q0, q2, I
′) | ∃(q0, q2, I) ∈ T+

p (r) with
I ′ ⊆ I,∃(q1, q, J) ∈ R(vp), q ∈ δ(q1, q2, lab(vp)), and J ⊆ I ′ ∪ {q}}.

Intuitively, the tuples in the above relation are associated with partial runs of
the tree automaton that are relevant for constructing an answer to the query M(t).

We also adapt the output order of the algorithm for trees because nodes that can
be selected by the tree automaton no longer correspond to leaves of Naux

t . Instead,
also internal nodes of Naux

t (i.e., leaves of individual Naux
p) can be selected. We extend

the output order by comparing individual nodes in Naux
t in terms of their postfix

order, i.e., we define that u �t v if u = v or u comes before v in the (left-to-right)
post-order traversal of Naux

t . Again, we define ≺t as the strict version of �t and we
extend �t to tuples analogously. Since Naux

t contains all nodes of t, the order �t

(resp. ≺t) is also well-defined on the set of nodes in t.
In the remainder of this section, we prove that Algorithm 2 adapted with the

aforementioned changes correctly enumerates all answers in M(t). Therefore, we
adapt the definition of an (incomplete) annotated answer (see Section 6.3.3) for trees.
Formally, an annotated answer of a k-NSTAM = (N,S) on t is a multiset Afull over
Nodes(t)×Q of the form

{|(i1, q1), . . . , (ik, qk)|}
such that there is an accepting run λ of N on t and a tuple (q1, . . . , qk) ∈ S where λ
visits i` in q` for every ` ∈ {1, . . . , k}. For a node v ∈ Naux

t let tv be the subtree
of Naux

t that is rooted at v. For an annotated answer A = {|(i1, q1), . . . , (ik, qk)|}
and a set of nodes V ⊆ Nodes(Naux

t), the projection of A onto [V], denoted A[V], is
defined as the multiset {|(i, qi) | ∃v ∈ V : such that i ∈ tv|}. All remaining notions
for annotated answers are defined analogously to the word case.

The proof of the following lemma is analogous to the proof of Lemma 6.3.15
(when using the tree definitions for annotated answers).

6.4.9 Lemma. Let M be a k-NSTA and t be a binary tree. Then, Enum(M, t)
correctly enumerates all answers in M(t).

139

6. Enumerating Answers under Updates

The First Answer for Trees Next, we illustrate how the set of smallest answers
in M(t) can be computed, i.e., we show how to implement Complete({∅}) for trees.
To this end, we adapt the notion of a growing annotated answer up to position j
to trees. Again, we consider the definition for words (see Definition 6.3.16) but
interpret it over Nodes(t)×Q:

6.4.10 Definition. Let q ∈ Q be a state in Q, A be a multiset over Nodes(t)×Q,
and j ∈ {1, . . . , n}. Then, (q, A) is a growing annotated answer up to node j if there
is an accepting run λ of N on t such that

– λ visits j in q, and

– there is an annotated answer Afull w.r.t. λ such that, for every p ∈ Q and
i ∈ Nodes(t),

- if i ≺t j then Afull((i, p)) = A((i, p)),

- if i = j then A((i, p)) ≤ Afull((i, p)), and

- if i �t j then A((i, p)) = 0.

Now, we are able to prove that the definition of the relevant relation (see Defi-
nition 6.4.8) for trees is correct. That is, we prove a statement similar to the one in
Lemma 6.3.18 for trees.

For a node vxy ∈ Naux
p where p = vn · · · v1 (v1 is a leaf) we define the projected

path pp(vxy) as vx · · · vy. Notice that in pp(vxy) we reverse the order on nodes vi ∈ p
since we always have that x ≤ y. Therefore, the definition of projected paths fits
to the input words for the automata Np because they read the labels of the path p
bottom-up by definition.

6.4.11 Lemma. Let vxy ∈ Naux
p , pp(vxy) = vx · · · vy, and V = {vx, . . . , vy}. Then,

R(vxy) is the set of all tuples (q1, q2, I) such that there is an annotated answer Afull

w.r.t. some run λ with λ(vy) = q2, I = Nodes(Afull
[V]), and, for q1 6= q0, λ(vx) = q1.

Proof. Since for every tuple (q1, q2, I) ∈ R(vxy) there is a tuple (q1, q2, J) ∈ T+
p for

some sets I and J , it holds analogously to Balmin et al. [BPV04] that there is a
run λ on t such that λ(vy) = q2, and, for q1 6= q0, λ(vx) = q1. The proof that the
set I is correct is a straightforward induction on the position of a path in HPaths(t)
compared to t. �

Next, we adapt the definition of compatibility (see Definition 6.3.22) to trees.
The notion of compatibility for a tuple in R and an annotated answer is defined
accordingly to the semantics of R for words (see Lemma 6.4.11), otherwise the
definition is analogous to the word case.

140

6.4. Incremental Enumeration for Trees

6.4.12 Definition (Compatibility). Let vxy ∈ Naux
t , pp(vxy) = vx · · · vy, and

V = {vx, . . . , vy}. For an annotated answer Afull w.r.t. some run λ, a tuple

– (q1, q2, I) ∈ R(vxy) is compatible with Afull and λ if λ(vy) = q2, I = Nodes(Afull
[V]),

and, for q1 6= q0, λ(vx) = q1.

Furthermore, for (q, A) a growing answer up to position i,

– (q, A) is compatible with Afull and λ if λ(i) = q, A[1,i−1] = Afull
[1,i−1] and

A[i,i] ⊆ Afull
[i,i].

Finally, (q1, q2, I) ∈ R(vxy) is compatible with (q, A) if there exists an annotated
answer Afull w.r.t. some run λ such that both (q1, q2, I) and (q, A) are compatible
with Afull and λ.

Now, we are able to define the nodes i1 (see Lemma 6.3.20) and ij+1 (see Proposi-
tion 6.3.23) for trees. Let (i1, . . . , ik) be the smallest answer inM(t) in the following.

6.4.13 Lemma. Let u be the smallest node in t (w.r.t. �t) such that R(u) has a
tuple (q1, q2, I) with q2 ∈ I. Then, u is the node i1 in t.

The set of growing answers for i1 is defined as

G(i1) := {(q2, {|(i1, q2)|}) | (q1, q2, I) ∈ R(i1) and q2 ∈ I}.

6.4.14 Proposition. The node ij+1 �t ij is the smallest node in t for which there is
a tuple (q1, q2, I) ∈ R(ij+1) with q2 ∈ I that is compatible with some (q, A) ∈ G(ij).

Once we have ij+1, we define

G(ij+1) := {(q2, A ∪ {|(ij+1, q2)|}) | there is a tuple (q1, q2, I) ∈ R(ij+1)

with q2 ∈ I that is compatible with some (q, A) ∈ G(ij)}.

To compute the sets G(ij) we traverse the auxiliary data structure analogously
to the word case, except that we traverse the tree Naux

t . During this traversal the
notion of j-relevance (see Definition 6.3.26) was central for the word case. The
definition of j-relevance on trees is essentially the same as for words, except that it
uses the definition of the relation R and the notion of compatibility for trees.

6.4.15 Definition. For v ∈ Naux
t and j ∈ {0, . . . , k}, the set of j-relevant tuples,

denoted Rj(v), is defined as follows:

– R0(v) := R(v), and

– for each j ≥ 1

- if v ≺t ij then Rj(v) := Rj−1(v),

- otherwise, Rj(v) := {(q1, q2, I) ∈ R(v) | (q1, q2, I) is compatible
with a growing answer (q, A) ∈ G(ij)}.

141

6. Enumerating Answers under Updates

As already mentioned, we traverse the tree Naux
t in the same way as the tree Naux

w .
However, the tree Naux

t has depth O(log2 |t|) whereas Naux
w has depth O(log |w|).

Therefore, it needs time O(log2 |t|) to reach the node ij+1 from ij. Moreover, it
can happen that a node ij is not a leaf node in Naux

t . However, maintaining the
j-relevant relation along the path from ij to ij+1 can be done analogously as for
words. In the following, we provide a version of Lemma 6.3.27 for trees.

6.4.16 Lemma. For a node v ∈ Naux
t the relation Rj(v) can be computed in time

O(|Q|3 · |S|2 · 2k) in each of the following cases:

(1) v is a leaf in Naux
t , v = ij, and G(ij) and Rj−1(ij) are known,

(2) v has a parent vp, ij �t vp, and Rj(vp) is known, and

(3) v has a child vc, ij ≺t v, and Rj(vc) and Rj−1(v) are known.

Proof. We prove cases (1) to (3) separately. By Definition 6.4.15 we have to show
that Rj(v) for each case (1) to (3) is the set of all tuples (q1, q2, I) such that

– (q1, q2, I) ∈ R(v), and

– (q1, q2, I) is compatible with a growing answer (q, A) ∈ G(ij).

(1) The proof is analogous to the proof of case (1) in Lemma 6.3.27.

(2) To prove (2) we distinguish two subcases (a) and (b).

(a) If v and vp are nodes in the same tree Naux
p then the proof is analogous to

the proof of case (2) in Lemma 6.3.27.
(b) Otherwise, we know that v is the root of some Naux

p . (Notice that this
is where Definition 6.4.8 differs from Definition 6.3.17.) Let p be a path
vn · · · v1 such that v1 is a leaf in t. Then, we distinguish two subcases
whether vn is a left of a right child in t. Since both cases are analogous to
each other, we prove only the case where vn is a left child in the following.
In this case, we define

Rj(v) = {(q0, q1, I
′) | ∃(q0, q1, I) ∈ T+

p (v) with I ′ ⊆ I,

∃(q2, q, I) ∈ Rj(vp), q ∈ δ(q1, q2, lab(vp)) and I ′ ∪ {q} = J}.

Since (q2, q, I) ∈ R(vp) we know that (q2, q, I) is compatible with a growing
answer (q, A) ∈ G(ij). Since ij �t vp it holds that Nodes(A[{v}]) = ∅. It
follows that (q0, q1, I

′) is compatible with (q, A) and, therefore, that the tu-
ple is relevant. Now, assume that there is a tuple (q0, q, I

′) ∈ R(v) that is
compatible with a growing answer (q, A) ∈ G(ij) but that is not in Rj(v).
Since (q0, q, I

′) ∈ R(v) it holds that, by Definition 6.4.8, there is a tuple
(q0, q, I) ∈ T+

p (v) with I ′ ⊆ I. By the Definition of compatibility we know
that there also exists a tuple (q2, q, I) ∈ Rj(vp) that is compatible with
(q, A) ∈ G(ij) and that q ∈ δ(q1, q2, lab(vp)) such that I ′ ∪ {q} = J . Al-
together, this contradicts the assumption that (q0, q, I

′) /∈ Rj(v). We can
compute Rj(v) in time O(|Q|3 · |S|2 · 2k).

142

6.4. Incremental Enumeration for Trees

(3) To prove (3) we distinguish two subcases (a) and (b).

(a) If v and vc are nodes in the same tree Naux
p then the proof is analogous to

the proof of case (3) in Lemma 6.3.27.

(b) Otherwise, we know that v is a leaf of some Naux
p . (Notice that this is where

Definition 6.4.8 differs from Definition 6.3.17.) Let p be a path vn · · · v1 such
that v1 is a leaf in t. Then, we distinguish two subcases whether vn in t is
a left child or not. Since both cases are analogous to each other, we prove
only the case where vn is a left child in the following. In this case, we define

Rj(v) = {(q2, q, I) | (q2, q, I) ∈ Rj−1(v), (q0, q1, J) ∈ Rj(vc),

q ∈ δ(q1, q2, lab(v)) and I = ({q} ∪ J) ∩ set(s) for some s ∈ S}.

Since (q2, q, I) ∈ Rj−1(v) it follows that (q2, q, I) ∈ R(v). It remains to
show that (q2, q, I) is compatible with a growing answer (q, A) ∈ G(ij).
That is, we need to find an annotated answer Afull w.r.t. some run rA
such that (q2, q, I) and (q, A) ∈ G(ij) are compatible with Afull and rA. The
construction of such Afull and rA is analogous to case (3)(b) in Lemma 6.3.27.
We can compute Rj(v) in time O(|Q|3 · |S|2 · 2k). �

Now, the following results can be proved analogously to Lemma 6.3.29 and The-
orem 6.3.30.

6.4.17 Lemma. Given Naux
t , T+

p , and ` ∈ {1, . . . , k}, the set G(i`) can be computed
in time O(|S| · k! + |Q|3 · |S|2 · 2k · ` log2 |t|).

6.4.18 Theorem. Given Naux
t and T+

p , the first answer in M(t) can be computed
in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|).

From One Answer to the Next for Trees Once we are able to compute
Complete({∅}), which is the set of smallest answer(s) in M(t), we can compute
the next set of answers using the procedure Next(A) in Algorithm 2. The following
lemma shows that Next(A) works correctly for trees. The proof of the next lemma
is analogous to the proof of Lemma 6.3.31.

6.4.19 Lemma. Complete, Back, and Nextnode can be implemented such that Al-
gorithm 2 for trees correctly computes Next(A). Furthermore, Next(A) runs in
O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|) time.

Finally, we can obtain our main result for IncrementalEnumeration when
given a k-NSTA and a binary tree as input.

143

6. Enumerating Answers under Updates

6.4.20 Theorem. IncrementalEnumeration for a k-NSTAM and a tree t can
be solved with an auxiliary data structure of size O(|Q|2 · |S| · 2k · |t|) which can be
computed in time O(|Q|3 · |S|2 · 2k · |t|), maintained in time O(|Q|3 · |S|2 · 2k · log2 |t|)
per update, and guarantees O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|) enumeration delay
between answers.

Proof. During the preprocessing the algorithm builds the tree Naux
t and relation T+

p .
By Lemma 6.4.6 the auxiliary data structure has size O(|Q|2 · |S| ·2k · |t|) and can be
computed in time O(|Q|3·|S|2·2k ·|t|). By the same lemma it follows that updates can
be maintained in time O(|Q|3 ·|S|2 ·2k ·log2 |t|). By Lemma 6.4.9 we know that we can
use Algorithm 2 for trees to correctly enumerate all answers inM(t) if Complete(A),
Back(A), and Nextnode(A) can be computed correctly within the required time. In
Theorem 6.4.18 we showed that Complete({∅}) can be implemented correctly such
that it runs in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|). Next(A) can be computed
in time O(|S| · k! + |Q|3 · |S|2 · 2k · k log2 |t|) by Lemma 6.4.19. �

6.5 Incremental Enumeration under Multiset
Semantics

When carefully examining the sets G(ij), one can observe that they contain de-
tailed information on the states that are used to select positions in an annotated
answer. According to the semantics of node selecting automata (see Section 6.1)
our algorithm deletes this additional information for the output as well as duplicate
answers.

In the following, we use this information to solve the IncrementalEnumer-
ation problem for more expressive semantics, i.e., semantics that output every
answer as often as a tuple in a set G(ij) contains this answer. We denote these
semantics as multiset semantics and define them as follows: For a k-NSFA M =
((Q,Σ, δ, q0, F), S) and an input word w = a1 · · · an ∈ Σ∗, the result of M on w
under multiset semantics is denoted Mms(w) and is a function that maps tuples
(i1, . . . , ik) ∈ {1, . . . , n}k to N. Formally we define, for each (i1, . . . , ik) ∈ {1, . . . , n}k,

Mms(w)((i1, . . . , ik)) = |{(p1, . . . , pk) ∈ S | there is an accepting run r of N
on w such that r visits i` in p` for every ` ∈ {1, . . . , k}}|.

For selecting tree automata and trees, multiset semantics are defined analogously.
Intuitively, the output contains a tuple (i1, . . . , ik) as often as there are selecting
tuples and runs that select it. For example, for the 2-NSFA M in Figure 6.1 and
the word w = abcd we have that

Mms(w) = {|(1, 2), (1, 2), (2, 1), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)|} .

The difference between the algorithms under set semantics (see Sections 6.3 and 6.4)
and algorithms for IncrementalEnumeration (for word and tree automata) un-
der multiset semantics only lies in the procedure output(A).

144

6.6. Spanners in the Context of Information Extraction

6.6 Spanners in the Context of Information
Extraction

In Information Extraction (IE) one is interested in the automatic extraction of
structured information from large texts. IE was formally considered already in
1987 [GS96] (at that time with the focus on military applications). It regained
importance with the arising of big data in the new millennium. Our focus is on
a specific information extraction tool, called SystemT, which is being developed at
the IBM Almaden Research Center since 2005 and aims at providing an expres-
sive vocabulary to formalize extraction rules and being user-friendly at the same
time. At the present, SystemT is used for large scale text analytics [HKK+13], in
the context of cleaning inconsistencies in databases [FKRV14], and back-end ana-
lytics in an enterprise search system at IBM Research [BKL12, BKL12]. During
the development of SystemT, an SQL-like declarative language, which is denoted
Annotation Query Language (or AQL), was introduced to provide a formalism to
express information extraction rules that can be intuitively written by the human
user [RRK+08, KLR+08, CKL+10].

The theoretical foundations of AQL and SystemT were first studied in a paper
by Fagin et al. [FKRV13], where the authors introduced a formal framework for
AQL. The intention of this framework is to have a formal model to study the exact
computational complexity of AQL in the future. The core of this framework are
so-called spanners which are used to map an input string of length n to a set of in-
tervals between 1 and n+ 1. When defining spanners in the framework, the authors
distinguish between two kinds of representations: First, primitive spanner represen-
tations, i.e., regular-expression formulas, variable-stack automata, and variable-set
automata. Second, representations via spanner algebras where spanners are defined
by applying algebraic operations to primitive spanner representations.

In the following, our focus is on the primitive spanner representations that involve
automata. Therefore, we briefly review variable-stack and variable-set automata
using notions from [FKRV13] in Section 6.6.1. Afterwards, we show how to solve
the IncrementalEnumeration problem for these automata. For our solution
we use k-εNSFAs which are k-NFSAs that allow ε-transitions. We formally define
k-εNSFAs in Section 6.6.2 and show how to adapt the algorithm from Section 6.3
for these automata. In Section 6.6.3 we finally illustrate encodings for variable-stack
and variable-set automata into k-NSFAs with ε-transitions such that the algorithm
from Section 6.6.2 solves IncrementalEnumeration for the encoded automata.

6.6.1 Variable-Stack and Variable-Set Automata

Given a word w of length n, the output of a variable-stack or variable-set automaton
is a set of relations where each relation contains a set of intervals between 1 and
n+ 1. To formally define variable-stack or variable-set automata and their output,
we need the following notation from [FKRV13].

145

6. Enumerating Answers under Updates

6.6.1 Definition. Let Σ be an alphabet and w = a1 · · · an be a word over Σ. Then,

– a span on w is a tuple [i, j〉 where 1 ≤ i ≤ j ≤ n+ 1, which is associated with
the subword ai · · · aj−1,

– a span relation over w is a set of spans on w, and

– a spanner is an operator that transforms w into a set of span relations over w.

For example, let w = abcd then [1, 5〉 = w, [2, 3〉 = b, and [2, 2〉 = ε. The set
{[1, 5〉, [2, 3〉, [2, 2〉} is a span relation over w.

To represent spanners, span variables are used to identify the start and end of a
span. We informally illustrate span variables on the example of regular-expression
formulas [FKRV13], where expressions from the class RE are extended by an addi-
tional operator of the form x{r}. Here, x is a span variable and r is an arbitrary
regular-expression formula. The semantics of regular-expression formulas associates
to a word in the language of the formula the subword that is matched by r to
the span represented by x. For example, consider the regular-expression formula
rx = (aa)∗x{a}(aa)∗ and the word w = aaaaa. Observe that w ∈ L((aa)∗a(aa)∗)
and that x can be associated to the spans [1, 2〉, [3, 4〉, and [5, 6〉 depending on how
the word is matched to the regular expression. The output on w of the spanner
represented by rx is {{[1, 2〉}, {[3, 4〉}, {[5, 6〉}}.

Next, we review two formal definitions of primitive spanner representations that
involve automata and were introduced in [FKRV13]. In these automata, the span
variables are used together with a special push symbol ` and a special pop symbol a.

6.6.2 Definition. A variable-stack automaton V is a tuple (Q,Σ, X, δ, o, f) whereQ
is a finite set of states, Σ is a finite alphabet, X is a finite set of span variables, δ is
the transition function with signature

Q× (Σ ∪ {x` | x ∈ X} ∪ {ε,a})→ P(Q),

o ∈ Q is the initial state, and f ∈ Q is the accepting state.

The semantics of a variable-stack automaton V are defined as follows. For tran-
sitions of the form (q, a, q′) and (q, ε, q′), the automaton V behaves analogously to
nondeterministic finite automata (with ε-transitions). For the remaining transi-
tions V maintains a stack u. A span variable x is pushed on u when a transition
(q, x `, q′) is read and the topmost variable is popped from u when a transition
(q,a, q′) is read. In addition, it is not allowed to push a span variable twice during
the same computation of V . Therefore, V maintains a set Y ⊆ X of available span
variables, i.e., the set of variables that can still be pushed on the stack u. Thus,
the stack u contains only symbols from X and u contains no variable twice. In the
following, we represent u as a word over X and denote an arbitrary stack under
these constraints by u ↓ X. Notice that |u| ≤ |X| for every u ↓ X. A configuration
of V is a tuple (qi, ui, Yi, j) where qi ∈ Q is the current state, ui ↓ X is the current
stack, Yi ⊆ X is the set of available span variables, and j ∈ {0, . . . , n} indicates
that j symbols from the input word w = a1 · · · an were already processed. A run

146

6.6. Spanners in the Context of Information Extraction

q0

q1

q2 q3 q4

q5

a a

x ` a a

a a

Figure 6.5: An example variable-stack automaton Vr.

of V on a word w is a sequence of configurations c0 · · · cm where c0 is the initial
configuration (o, ε,X, 0) and, for all i ∈ {1, . . . ,m}, one of the following holds for
ci−1 = (qi−1, ui−1, Yi−1, j) and ci = (qi, ui, Yi, k):

– ui = ui−1, Yi = Yi−1, k = j + 1, and (qi−1, a, qi) ∈ δ,

– ui = ui−1, Yi = Yi−1, k = j, and (qi−1, ε, qi) ∈ δ,

– ui = ui−1 · x, Yi = Yi−1\{x}, k = j, and (qi−1, x`, qi) ∈ δ for some x ∈ X, or

– ui · x = ui−1, Yi = Yi−1, k = j, and (qi−1,a, qi) ∈ δ for some x ∈ X.

A run of V on w is accepting if and only if cm = (f, ε, ∅, n). For an accepting run r
of V on w we define, for every variable x ∈ X, the span ρ(x) = [i, j〉 such that
the variable x was pushed after ai−1 and before ai was processed and x was popped
after aj and before aj+1 was processed. Furthermore, we define µr = {ρ(x) | x ∈ X}.
Then, the automaton V computes the output

V (w) = {µr | r is an accepting run of V }.

In Figure 6.5 we illustrate a variable-stack automaton Vr, which is semantically
equivalent to the aforementioned regular-expression formula rx = (aa)∗x{a}(aa)∗.
Next, we review the definition of variable-set automata from [FKRV13]. These
automata behave very similar to variable-stack automata, except that they maintain
a set of active span variables instead of a stack. Therefore, the pop transitions in a
variable-set automaton indicate which variable is popped, i.e., they bear a label ax
for some span variable x.

6.6.3 Definition. A variable-set automaton V is a tuple (Q,Σ, X, δ, o, f) where Q
is a finite set of states, Σ is a finite alphabet, X is a finite set of span variables, δ is
the transition function with signature

Q× (Σ ∪ {ε} ∪ {x` | x ∈ X} ∪ {ax | x ∈ X})→ P(Q),

o ∈ Q is the initial state, and f ∈ Q is the accepting state.

147

6. Enumerating Answers under Updates

The semantics of a variable-set automaton V are defined as follows. A config-
uration of V is a tuple (qi, Ui, Yi, j) where qi ∈ Q is the current state, Ui ⊆ X is
the set of active span variables, Y ⊆ X is the set of available span variables, and
j ∈ {0, . . . , n} indicates that j symbols from the input word were already processed.
A run of V on a word w = a1 · · · an is defined as a sequence of configurations c0 · · · cm
where c0 is the initial configuration (o, ∅, X, 0) and, for all i ∈ {1, . . . ,m}, one of the
following holds for ci−1 = (qi−1, Ui−1, Yi−1, j) and ci = (qi, Ui, Yi, k):

– Ui = Ui−1, Yi = Yi−1, k = j + 1, and (qi−1, a, qi) ∈ δ,

– Ui = Ui−1, Yi = Yi−1, k = j, and (qi−1, ε, qi) ∈ δ,

– Ui = Ui−1 ∪ x, Yi = Yi−1\{x}, k = j, and (qi−1, x `, qi) ∈ δ for some x ∈ X, or

– Ui = Ui−1\{x}, Yi = Yi−1, k = j, and (qi−1,a x, qi) ∈ δ for some x ∈ X.

A run of V on w is accepting if and only if cm = (f, ∅, ∅, n). For an accepting run r
of V on w we define, for every variable x ∈ X, the span ρ(x) = [i, j〉 such that
the variable x was pushed after ai−1 and before ai was processed and x was popped
after aj and before aj+1 was processed. Furthermore, we define µr = {ρ(x) | x ∈ X}.
Then, the automaton V computes the output

V (w) = {µr | r is an accepting run of V }.

6.6.2 Incremental Enumeration for k-εNFSAs

To solve IncrementalEnumeration for variable-stack and variable-set automata,
we show first how to adapt the algorithm from Section 6.3.3 such that it can solve
IncrementalEnumeration for k-NFSAs with ε-transitions. Therefore, we briefly
review the definition of NFAs with ε-transitions in the following.

6.6.4 Definition. A (nondeterministic) finite automaton with ε-transitions (or
εNFA) N is a tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite
alphabet, δ is the transition function with signature Q× (Σ∪ {ε})→ P(Q), q0 ∈ Q
is the initial state, and F ⊆ Q is the set of accepting states.

The semantics of an εNFA N are defined as usual, i.e., whenever q2 ∈ δ(q1, ε)
we know that, if N is in state q1 then reading ε takes N to state q2. A run of N
on a word w = a1 · · · an is a sequence r = (q0, 1) · · · (qm, n + 1) such that, for every
i ∈ {1, . . . ,m},

– either (qi−1, j) and (qi, j + 1) occurs in r and qi ∈ δ(qi−1, aj),

– or (qi−1, j) and (qi, j) occurs in r and qi ∈ δ(qi−1, ε).

For such a run r we say that r visits position i in state qj for j ∈ {0, . . . ,m} if the
pair (qj, i) appears in r. Notice that, by this definition, r visits position i before
the symbol ai is processed, i.e., r visits positions 1 to n+ 1. Since variable-set and
variable-stack automata output spans between 1 and n + 1, the above definition is

148

6.6. Spanners in the Context of Information Extraction

accordant to these automata and will facilitate our encoding in the next section. If
qm ∈ F then the run is accepting. We say that a run r of N on w is partial if r
fulfills all conditions of a run except that r does not have to start with the initial
state.

6.6.5 Definition. For k ∈ N a k-ary nondeterministic finite selecting automaton
with ε-transitions (or k-εNFSA) M is a pair (N,S) where N is an εNFA over Σ
with states Q and S ⊆ Qk is a set of selecting tuples.

When M reads a word w of length n, it computes a set of tuples in Nodes(w)k.
More precisely, we define

M(w) = {(v1, . . . , vk) | there is an accepting run r of N on w and a tuple
(p1, . . . , pk) ∈ S such that r visits v` in p` for every ` ∈ {1, . . . , k}}.

We can solve the IncrementalEnumeration problem for k-εNFSAs by a
slight variation of the algorithm from Section 6.3. We fix the following notation for
the remainder of this section. By M = ((Q,Σ, δ, q0, F), S) we denote a k-εNFSA
and by w = a1 · · · an ∈ Σ∗ the input word. By QS we denote the set of all states
that appear in some selecting tuple, i.e., QS = ∪s∈S set(s). We make the following
two changes in the auxiliary data structure (see Section 6.3.2).

First, we build the auxiliary tree Naux
w over n+ 1 leaves because in a spanner we

can select the positions 1 to n+ 1. For simplicity, we assume that n+ 1 is a power
of two in the following.

Second, we adapt the initialization of the extended transition relation T+. In
particular, we compute the relation T+(vxx) for every x ∈ {1, . . . , n+ 1} as follows:

– if x 6= n + 1 then T+(vxx) = {(q1, qm, I) | there exists a partial run
(q1, x) · · · (qm−1, x)(qm, x+ 1) with m ≥ 2 and I = {q2, . . . , qm} ∩QS},

– otherwise, T+(vxx) = {(q1, qm, I) | there exists a partial run (q1, x) · · · (qm, x)
with m ≥ 2 and I = {q2, . . . , qm} ∩QS}.

We compute the relation T+(vxy) for each inner node vxy of Naux
w bottom-up exactly

as we compute T+(vxy) for k-NFSAs and words (using the operation ./+ from Def-
inition 6.3.5). After the relation T+ is computed for the k-εNFSA M , the following
holds for every vxy ∈ Naux

w :

– for y 6= n + 1 the relation T+(vxy) contains all tuples (q1, q2, I) ∈ (Q2 × 2QS)
for which there exist a selecting tuple s ∈ S and partial run
r = (q1, x) · · · (q, y)(q2, y + 1) on w[x..y] such that I = set(r) ∩ set(s),

– otherwise, the relation T+(vxy) contains all tuples (q1, q2, I) ∈ (Q2 × 2QS) for
which there exist a selecting tuple s ∈ S and partial run r = (q1, x) · · · (q2, y)
on w[x..y − 1] such that I = set(r) ∩ set(s).

149

6. Enumerating Answers under Updates

Thus, M(w) 6= ∅ if and only if (q0, qF , set(s)) ∈ T+(v1(n+1)) for qF ∈ F and some
s ∈ S. Moreover, the tree Naux

w is of size O(|Q|2 · |S| · 2k · n). The computation of
Naux
w needs time O(|Q|4 · |S|2 · 2k ·n) since we have to compute the transitive closure

over all ε-transitions in M to compute the relation T+ for the leaf nodes in Naux
w .

The algorithm for the enumeration of the result set M(w) is completely analogous
to the enumeration procedure for k-NFSAs without ε-transitions (see Sections 6.3.3
to 6.3.5), which leads to the following result.

6.6.6 Theorem. IncrementalEnumeration for a k-εNSFA M and a word w
with |w| = n can be solved with an auxiliary data structure of size O(|Q|2 · |S| ·2k ·n)
which can be computed in time O(|Q|4 · |S|2 ·2k ·n), maintained in time O(|Q|3 · |S|2 ·
2k · log n) per update, and guarantees O(|S| · k! + |Q|3 · |S|2 · 2k · k log n) enumeration
delay between answers.

6.6.3 Incremental Enumeration for Spanners

We now show how to apply the algorithm from Section 6.6.2 to solve Incremen-
talEnumeration for variable-stack and variable-set automata. To this end, we
define an encoding of variable-stack and variable-set automata with k span variables
into (2k)-εNFSAs. In the following, we illustrate the encoding for variable-stack au-
tomata and argue why it is correct. The encoding for variable-set automata is then
almost the same.

Let V = (QV ,Σ, X, δV , o, f) be a variable-stack automaton with a set of span
variables X = {x1, . . . , xk}. We simulate a run of the variable-stack automaton by
encoding the current content of the stack u and the current set of available span
variables Y in the states of a (2k)-εNFSA, i.e., the (2k)-εNFSA contains a state quY
for every q ∈ QV , u ↓ X, and Y ⊆ X. (Remember that u and Y have size at
most k.) More intuitively, the (2k)-εNFSA contains a copy of the state set of the
variable-stack automaton for every configuration of u and Y . This includes that,
for every state quY , the stack u contains no span variable twice and it always holds
that u ∩ Y = ∅.

According to the semantics of a variable-stack automaton, u and Y remain un-
changed in the next configuration when reading a Σ- or ε-labeled transition in V .
Thus, the (2k)-εNFSA contains a transition (quY , σ, puY) for every u ↓ X, Y ⊆ X,
and transition (q, σ, p) ∈ δV with σ ∈ Σ ∪ {ε}. We also encode x`- and a-labeled
transitions of V by ε-transitions in the (2k)-εNFSA. However, since a variable-stack
automaton defines the start (or end, respectively) of a span at the moment when
such a transition is read, we have to ensure that the (2k)-εNFSA reaches a selecting
state at the target state of an encoded x`- or a-labeled transition. Therefore, we
add states qx`uY and qauY for every state q ∈ QV , stack u ↓ X, set Y ⊆ X, and variable
x ∈ X. Moreover, we add a transition (quY , ε, p

x`
u·xY \{x}) to the (2k)-εNFSA for every

transition (q, x`, p) ∈ δV and we add a transition (qu·xY , ε, p
a
uY) for every transition

(q,a, p) ∈ δV . The set of qx`uY - and qauY -outgoing transitions are equal to the set of
quY -outgoing transitions.

150

6.7. Incremental Enumeration: Logic, XPath, and Future Work

Finally, the (2k)-εNFSA contains a selecting tuple (∗x1`u1Y1 , ∗
a
u1Y1

, . . . , ∗xk`ukYk
, ∗aukYk)

where ∗ are arbitrary (not necessary equal) states q ∈ Q, u1, . . . , uk ↓ X and
Y1, . . . , Yk ⊆ X. A formal definition of the encoding is given in the following.

6.6.7 Definition. Let V = (QV ,Σ, X, δV , o, f) be a variable-stack automaton where
X = {x1, . . . , xk}. The (2k)-εNFSA MV is defined as ((QM ,Σ, δM , oεX , FM), SM)
where

– QM contains states quY , qx`uY , and qauY for every state q ∈ QV , stack u ↓ X, set
Y ⊆ X with u ∩ Y = ∅, and variable x ∈ X,

– δM contains, for every x ∈ X, u ↓ X, Y ⊆ X, and σ ∈ Σ∪ {ε}, the transitions

- (quY , σ, puY), (qx`uY , σ, puY), and (qauY , σ, puY)
for every transition (q, σ, p) ∈ δV ,

- (quY , ε, p
y`
u·yY \{y}), (qx`uY , ε, p

y`
u·yY \{y}), and (qauY , ε, p

y`
u·yY \{y})

for every transition (q, y`, p) ∈ δV with y ∈ Y , and

- (qu·xY , ε, p
a
uY), (qx`u·xY , ε, p

a
uY), and (qau·xY , ε, p

a
uY)

for every transition (q,a, p) ∈ δV ,

– FM contains the state fε∅ and, for every x ∈ X, states fx`ε∅ and faε∅, and

– SM = {(∗x1`u1Y1 , ∗
a
u1Y1

, . . . , ∗xk`ukYk
, ∗aukYk)} where ∗ are arbitrary (not necessary

equal) states q ∈ Q, u1, . . . , uk ↓ X and Y1, . . . , Yk ⊆ X.

Using this encoding, we get the output for V by interpreting the selecting tuples
as a tuple of pairs, i.e., for a word w ∈ Σ∗,

V (w) = {{[i1, i2〉, . . . , [i2k−1, i2k〉} | (i1, i2, . . . , i2k−1, i2k) ∈MV (w)}.

In this way, we can solve IncrementalEnumeration for a variable-stack au-
tomaton and an input word of length n with preprocessing time O(n), enumeration
delay O(log n), and update time O(log n). However, the encoding of Definition 6.6.7
constructs a selecting automaton that can be exponential in k in the worst case.
The result for IncrementalEnumeration also holds for variable-set automata
via a slight but straightforward variation of the above encoding.

6.7 Incremental Enumeration: Logic, XPath,
and Future Work

It is well-known that there exists a direct connection between run-based node-
selecting automata and MSO-queries (see, e.g., [NPTT05, TW68]). As such we
study the incremental enumeration problem for MSO queries with free node vari-
ables, over words and trees. However, it should be kept in mind that MSO queries
can be non-elementary smaller than their equivalent nondeterministic node-selecting
finite (tree) automaton. Therefore, our enumeration algorithm is non-elementary in

151

6. Enumerating Answers under Updates

terms of the MSO formula, which cannot be avoided unless P = NP [FG04]. Al-
though, this seems not very practical in the first place, notice that the arity of the
query is usually very small in practical applications. For example, XPath queries
can be modeled using only binary queries (i.e., k = 2).

Moreover, the incremental evaluation problem was already investigated in the
context of XML [BML+04] and XPath queries [BGM10]. In [BGM10] Björklund
et al. presented an algorithm for maintaining whether updates preserve a property
specified by an XPath query. This algorithm also uses Patnaik and Immerman’s
divide-and-conquer approach. However, notice that the studied XPath dialects are
less expressive than tree automata, they may be exponentially more succinct, and
they only consider Boolean queries such that they are not concerned with efficiently
enumerating answers. Regarding core XPath queries or variants of regular XPath
(see, e.g., [BK09]) and the IncrementalEnumeration problem, the result from
Theorem 6.4.20 provides an O(|Q|2 · |t|) upper bound on the auxiliary data structure
and O(|Q|3 · log2 |t|) enumeration delay between answers.

Towards future work, it would be interesting to see if the techniques presented
in this chapter can be generalized towards graphs with bounded treewidth, using
tree decompositions and the generalization in Bagan [Bag06]. A straightforward
generalization of our algorithm would only be able to deal with relabelings since
node insertions and deletions can have drastic impact on tree decompositions. Fur-
thermore, a single node relabel in the graph can induce m > 1 relabels in the tree
decomposition which would influence complexity.

We also believe that our method is promising to efficiently compute the difference
between answers. In this case one wants to run an algorithm that computes, after
an update occurred on the word or the tree, which tuples no longer satisfy the query
and which ones are new in the answer set.

It could also be interesting to investigate whether we can efficiently maintain the
number of answers to a query (under set or multiset semantics). Notice that the
number of times that a tuple (i1, . . . , ik) is in the answer under multiset semantics is
simply the number of tuples in G(ik). Computing the number of answers efficiently is
important for deciding whether a constant-delay algorithm with linear time prepro-
cessing would be able to output the whole output faster than our logarithmic-delay
algorithm which would not require preprocessing after an update. Roughly, when
the output of a query contains at most O(n/ log n) outputs, the logarithmic-delay
algorithm will finish more quickly than a constant-delay procedure with linear pre-
processing. Moreover, the logarithmic-delay algorithm produces the first answers
more quickly. Estimating the number of answers to a query can therefore help to
decide which kind of procedure is desirable.

152

7
Conclusions

We examined the computational complexity of regular languages for data processing
on the Web. One of the most used concepts for this purpose are regular expres-
sions that are enhanced by additional operators or have to fulfill special semantical
constraints to make them fit for the distinct requirements in various practical ap-
plications. In particular, we were interested in the complexity of variants of regular
expressions that are used in the context of XML schema and RDF query languages.
For the considered variants of regular expressions we investigated whether it is rea-
sonable to use them in practice or whether they prevent an efficient implementation.

Regarding the examined semantical constraints on regular expressions our pic-
ture is rather negative. The first constraint that we examined was the determinism
constraint for regular expressions used in XML schema languages. Although deter-
minism is often used to make certain problems computationally easier, the use of
deterministic regular expressions has some severe drawbacks. For example, not ev-
ery regular language can be written as a DRE such that not every regular language
can be used in a schema that requires deterministic expressions.

In Chapter 4, we examined the computational complexity of the problem to
decide whether a regular language can be expressed by a deterministic regular ex-
pression. This problem is called the DRE-Definability problem. Our main re-
sult is a PSPACE algorithm that adapts an algorithm in [BKW98] and decides
whether the language of an NFA can be written as a deterministic regular ex-
pression. Using the known PSPACE lower bound for this problem from Bex et
al. [BGMN09], it followed that DRE-Definability(NFA) is PSPACE-complete.
We also examined the complexity of this problem for several variants depending
on the particular input. To this end, we proved that DRE-Definability(RE)
is PSPACE-complete, DRE-Definability(RE(#)) is EXPSPACE-complete, and
DRE-Definability(minDFA) is NLOGSPACE-hard.

Afterwards we studied the relative descriptional complexity of deterministic reg-
ular expressions. In summary our results show that, although DRE-definable lan-

153

7. Conclusions

guages are a proper subset of regular languages, the descriptional complexity of
DREs is not better than compared to minimal DFAs or arbitrary REs. More pre-
cisely, we proved that the representation of an arbitrary regular language as a deter-
ministic expression can be exponentially larger than the representation as a regular
expression and a minimal DFA in general. We remark that, this result was already
shown in the master thesis of the author [Los10, LMN12]. Compared to the re-
sult in [Los10, LMN12] we provided here a proof that is shorter, less complex, and
even holds for finite languages. In addition, we proved that by applying a boolean
operation on two deterministic regular expressions an exponential blow-up for the
resulting DRE cannot be avoided in general.

Second, we studied the complexity of two semantical constraints that were intro-
duced for regular expressions (i.e., property paths) in SPARQL queries: the simple
walk requirement and the path counting requirement. In Chapter 5, we proved
that, independently from each other, both constraints prevent an efficient imple-
mentation of SPARQL query evaluation. In more detail, the evaluation of SPARQL
queries is NP-complete even for very restricted regular expressions and also un-
der data complexity. Query evaluation under the path counting requirement is
#P-complete even for very restricted expressions and under regular path semantics
(which does not require the evaluation on simple walks).

Opposed to the studied semantical constraints, we also examined the evalua-
tion of regular expressions with additional operators (including counting operators).
Here, the studied problems were motivated by the set of allowed regular expressions
in SPARQL queries. We showed that the additional operators in these expres-
sions do not pose a critical problem for efficient query evaluation. More precisely,
we proved that regular expressions with counting operators can be evaluated over
graphs in polynomial time. We also observed that the restricted negation operator
is tractable in SPARQL queries, though this operator should not be relaxed since
query evaluation of expressions with full negation over graphs becomes intractable
immediately. A result that is not mainly motivated by SPARQL query evaluation
but might be interesting in another context, is that the membership problem for
regular expressions with counting operators and full negation is in P.

In Chapter 6, we investigated enumeration algorithms that are sensitive to
dynamic data. In more detail, we constructed algorithms for the evaluation of k-ary
nondeterministic finite selecting (tree) automata which are evaluated over words
and trees, respectively. For the IncrementalEnumeration problem for words of
size n, we presented an algorithm that needs O(n) preprocessing time, outputs all
answers with O(log n) enumeration delay between two answers, and processes data
updates in O(log n) time. The algorithm first builds an auxiliary tree over the input
word in the preprocessing. It traverses the auxiliary tree from left to right to compute
the answers in a kind of lexicographic order. For the IncrementalEnumeration
problem for trees of size n, we constructed an algorithm that solves the problem
with O(n) preprocessing time, O(log2 n) enumeration delay between answers, and
O(log2 n) time per update. The algorithm combines the algorithm for words and a
technique of Balmin et al. [BPV04] that shows how to maintain membership for a
tree in the language of a tree automaton under updates.

154

Finally, we illustrated how our algorithms can be used to solve Incremental-
Enumeration for queries under multiset semantics. We also applied our results
for an application from the field of information extraction that uses variable-stack
and variable-set automata.

Open problems and further questions in the future Regarding deterministic
regular expressions the following question might be the most interesting one that is
still open:

Is there a regular language L such that a minimal DRE for L is double-
exponentially larger than a minimal RE for L?

Although we still lack the techniques to answer this question, our results in Chap-
ter 4 give some new insights into the problem. More precisely, we are able to
specify certain properties of the structure of the minimal NFA and DFA for such a
DRE-definable language L, using the result of the polynomial upper bound on the
recursion depth of the BKW-Algorithm.

Another interesting open question regarding the class of DRE-definable lan-
guages is the following:

Is there a DRE-definable language L such that a minimal RE for L is
exponentially larger than the minimal DFA for L?

As far as we know all existing techniques for proving lower bounds on the relative
size of arbitrary regular expressions cannot be applied for DRE-definable languages.
More precisely, these techniques cannot be applied because the desired preconditions
for the used languages directly imply that the language is not DRE-definable (see,
e.g., the techniques used in [EZ76, GH08, GJ08]). Therefore, we believe that new
techniques have to be developed to answer this question.

A detailed discussion of open problems regarding SPARQL query evaluation can
be found at the end of Chapter 5. For the future of SPARQL the most challenging
problem to solve might be to find expressive and tractable semantics that can be
realized within the specification. Although we see it very positive that first changes
were introduced to the SPARQL specification, the withdrawal of counting operators
in property paths was not necessary. It would be interesting to see whether stronger
arguments on the efficiency of SPARQL query evaluation with regular expressions
(including counting operators) can reverse this change.

The presented results for IncrementalEnumeration were, as far as we know,
the first to formally study this problem for queries with arbitrary arity. We therefore
see our results as a proof of concept. Moreover, we believe that our results leave
some space for further research on this topic. Ideas for future work regarding the
IncrementalEnumeration problem were discussed in full details at the end of
Chapter 6. In the future it would be interesting as well as challenging to prove
lower bounds on these kind of algorithms or to extend the results to more general
structures (e.g., structures of bounded treewidth). We also explained why it would
be useful to compute the difference between two consecutive query results or to
calculate the number of answers to a query.

155

7. Conclusions

156

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

[ABE09] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending SPARQL
with regular expression patterns (for querying RDF). Journal of Web
Semantics: Science, Services and Agents on the World Wide Web,
7(2):57–73, 2009.

[ABLM14] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data
Exchange. Cambridge University Press, 2014.

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From
Relations to Semistructured Data and XML. Morgan Kaufmann, 1999.

[ACP12] M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or
how SPARQL 1.1 property paths will prevent adoption of the standard.
In Proceedings of the 21st World Wide Web Conference 2012 (WWW),
pages 629–638. ACM, 2012.

[AI00] N. Alechina and N. Immerman. Reachability logic: An efficient frag-
ment of transitive closure logic. Logic Journal of the Interest Group in
Pure and Applied Logics (IGPL), 8(3):325–337, 2000.

[AJ93] C. Álvarez and B. Jenner. A very hard log-space counting class. The-
oretical Computer Science (TCS), 107(1):3–30, 1993.

[AP11] M. Arenas and J. Pérez. Querying semantic web data with SPARQL. In
Proceedings of the 30th Symposium on Principles of Database Systems
(PODS), pages 305–316. ACM, 2011.

[Apa11] Apache Software Foundation. Jena semantic web framework.
http://jena.apache.org/, 2011.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The
Lorel query language for semistructured data. International Journal
on Digital Libraries, 1(1):68–88, 1997.

157

BIBLIOGRAPHY

[AV99] S. Abiteboul and V. Vianu. Regular path queries with constraints.
Journal of Computer and System Sciences (JCSS), 58(3):428–452,
1999.

[Bag06] G. Bagan. MSO queries on tree decomposable structures are com-
putable with linear delay. In Proceedings of the 15th Conference on
Computer Science Logic (CSL), pages 167–181. Springer, 2006.

[BBG13] G. Bagan, A. Bonifati, and B. Groz. A trichotomy for regular simple
path queries on graphs. In Proceedings of the 32nd Symposium on
Principles of Database Systems (PODS), pages 261–272. ACM, 2013.

[BDHS96] P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A query
language and optimization techniques for unstructured data. In Pro-
ceedings of the International Conference on Management of Data (SIG-
MOD), pages 505–516. ACM, 1996.

[BEGO71] R. Book, S. Even, S. Greibach, and G. Ott. Ambiguity in graphs and
expressions. IEEE Transactions on Computers, 20(2):149–153, 1971.

[Ber73] C. Berge. Graphs and Hypergraphs. North-Holland Publishing Com-
pany, 1973.

[BF11] M. Bojanczyk and D. Figueira. Efficient evaluation for a temporal logic
on changing XML documents. In Proceedings of the 30th Symposium on
Principles of Database Systems (PODS), pages 259–270. ACM, 2011.

[BGM10] H. Björklund, W. Gelade, and W. Martens. Incremental XPath eval-
uation. ACM Transactions on Database Systems (TODS), 35(4):29:1–
29:43, 2010.

[BGMN09] G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML
Schema: effortless handling of nondeterministic regular expressions. In
Proceedings of the International Conference on Management of Data
(SIGMOD), pages 731–744. ACM, 2009.

[BGNV10] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning de-
terministic regular expressions for the inference of schemas from XML
data. ACM Transactions on the Web, 4(4):14:1–14:32, 2010.

[BHBL09] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so
far. International Journal on Semantic Web and Information Systems,
5(3):1–22, 2009.

[BK93] A. Brüggemann-Klein. Regular expressions into finite automata. The-
oretical Computer Science (TCS), 120(2):197–213, 1993.

[BK09] M. Benedikt and C. Koch. XPath leashed. ACM Computing Surveys
(CSUR), 41(1):3:1–3:54, 2009.

158

BIBLIOGRAPHY

[BKL12] Z. Bao, B. Kimelfeld, and Y. Li. Automatic suggestion of query-rewrite
rules for enterprise search. In Proceedings of the 35th International
Conference on Research and Development in Information Retrieval (SI-
GIR), pages 591–600. ACM, 2012.

[BKW92] A. Brüggemann-Klein and D. Wood. Deterministic regular languages.
In Proceedings of the 9th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), pages 173–184. Springer, 1992.

[BKW98] A. Brüggemann-Klein and D. Wood. One-unambiguous regular lan-
guages. Information and Computation, 142(2):182–206, 1998.

[BL09] T. Berners-Lee. Linked Data.
http://www.w3.org/DesignIssues/LinkedData.html, June 2009.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Iden-
tifier (URI): Generic Syntax. Technical report, The Internet Society,
January 2005.

[BML+04] D. Barbosa, A.O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas.
Efficient incremental validation of XML documents. In Proceedings of
the 20th International Conference on Data Engineering (ICDE), pages
671–682, 2004.

[BNdB04] G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML
Schema: A practical study. In Proceedings of the 7th International
Workshop on the Web and Databases (WebDB), pages 79–84, 2004.

[BNSV10] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of
concise regular expressions and DTDs. ACM Transactions on Database
Systems (TODS), 35(2):11:1–11:47, 2010.

[BNV07] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema
Definitions from XML data. In Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB), pages 998–1009. ACM,
2007.

[BPSM+08] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language XML 1.0 (fifth edition). Technical re-
port, World Wide Web Consortium (W3C), November 2008. W3C
Recommendation at http://www.w3.org/TR/xml/.

[BPV04] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation
of XML documents. ACM Transactions on Database Systems (TODS),
29(4):710–751, 2004.

[Brz64] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM (JACM), 11(4):481–494, 1964.

159

BIBLIOGRAPHY

[CC08] H. Chen and L. Chen. Inclusion test algorithms for one-unambiguous
regular expressions. In Proceedings of the 5th International Colloquium
on Theoretical Aspects of Computing (ICTAC), pages 96–110. Springer,
2008.

[CCSY01] C. Câmpeanu, K. Culik, K. Salomaa, and S. Yu. State complexity of
basic operations on finite languages. In Proceedings of the 4th Inter-
national Workshop on Implementing Automata (WIA), pages 60–70.
Springer, 2001.

[CDLM13] W. Czerwinski, C. David, K. Losemann, and W. Martens. Deciding
definability by deterministic regular expressions. In Proceedings of the
16th International Conference on Foundations of Software Science and
Computation Structures (FOSSACS), pages 289–304. Springer, 2013.

[CGLV00a] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Contain-
ment of conjunctive regular path queries with inverse. In Principles of
Knowledge Representation and Reasoning (KR), pages 176–185. Mor-
gan Kaufmann, 2000.

[CGLV00b] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-
based query processing for regular path queries with inverse. In Proceed-
ings of the 19th Symposium on Principles of Database Systems (PODS),
pages 58–66. ACM, 2000.

[CGLV02] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewrit-
ing of regular expressions and regular path queries. Journal of Com-
puter and System Sciences (JCSS), 64(3):443–465, 2002.

[CGS09a] D. Colazzo, G. Ghelli, and C. Sartiani. Efficient asymmetric inclusion
between regular expression types. In Proceedings of the 12th Interna-
tional Conference on Database Theory (ICDT), pages 174–182. ACM,
2009.

[CGS09b] D. Colazzo, G. Ghelli, and C. Sartiani. Efficient inclusion for a class of
XML types with interleaving and counting. Information Systems (IS),
34(7):643–656, 2009.

[CHM11] P. Caron, Y. Han, and L. Mignot. Generalized one-unambiguity. In
Proceedings of the 15th International Conference on Developments in
Language Theory (DLT), pages 129–140. Springer, 2011.

[Cho02] B. Choi. What are real DTDs like? In Proceedings of the 5th Inter-
national Workshop on the Web and Databases (WebDB), pages 43–48,
2002.

[CKL+10] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and
S. Vaithyanathan. SystemT: An algebraic approach to declarative in-
formation extraction. In Proceedings of the 48th Annual Meeting of

160

BIBLIOGRAPHY

the Association for Computational Linguistics (ACL), pages 128–137.
ACL, 2010.

[CM90] M. P. Consens and A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. In Proceedings of the 9th Symposium on Principles
of Database Systems (PODS), pages 404–416. ACM, 1990.

[CM01] J. Clark and M. Murata. Relax NG specification. Technical re-
port, The Organization for the Advancement of Structured Information
Standards (OASIS), December 2001. http://www.relaxng.org/spec-
20011203.html.

[CMW87] I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query lan-
guage supporting recursion. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), pages 323–330. ACM, 1987.

[Col07] T. Colcombet. A combinatorial theorem for trees. In Proceedings of
the 34th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 901–912. Springer, 2007.

[Cor12] O. Corby. Corese 3.0. http://wimmics.inria.fr/corese, March 2012.

[Cou09] B. Courcelle. Linear delay enumeration and monadic second-order logic.
Discrete Applied Mathematics, 157(12):2675–2700, 2009.

[CS93] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm
for the alternation-free modal mu-calculus. Formal Methods in System
Design, 2(2):121–147, 1993.

[CWL14] R. Cyganiak, D. Wood, and M. Lanthaler. Resource Descrip-
tion Framework RDF 1.1. Technical report, World Wide Web
Consortium (W3C), February 2014. W3C Recommendation at
http://www.w3.org/TR/rdf11-concepts/.

[Die12] R. Diestel. Graph Theory (fourth edition). Springer, 2012.

[DS93] G. Dong and J. Su. First-order incremental evaluation of Datalog
queries. In Proceedings of the 4th International Workshop on Database
Programming Languages (DBPL), pages 295–308. Springer, 1993.

[DS05] M. Duerst and M. Suignard. Internationalized Resource Identifiers
(IRIs). Technical report, The Internet Society, January 2005.

[DS11] A. Durand and Y. Strozecki. Enumeration complexity of logical query
problems with second-order variables. In Proceedings of the 20th Con-
ference on Computer Science Logic (CSL), pages 189–202. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

161

BIBLIOGRAPHY

[DT01] A. Deutsch and V. Tannen. Optimization properties for classes of con-
junctive regular path queries. In Proceedings of the 8th International
Workshop on Database Programming Languages (DBPL), pages 21–39.
Springer, 2001.

[EKSW04] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions:
new results and open problems. Journal of Automata, Languages and
Combinatorics (JALC), 9(2-3):233–256, 2004.

[EZ76] A. Ehrenfeucht and H. Zeiger. Complexity measures for regular expres-
sions. Journal of Computer and System Sciences (JCSS), 12(2):134–
146, 1976.

[FFLS00] M. F. Fernández, D. Florescu, A. Y. Levy, and D. Suciu. Declarative
specification of web sites with STRUDEL. The VLDB Journal, 9(1):38–
55, 2000.

[FG04] M. Frick and M. Grohe. The complexity of first-order and monadic
second-order logic revisited. Annals of Pure and Applied Logic, 130(1–
3):3–31, 2004.

[FGK03] M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed
trees (extended abstract). In Proceedings of the 18th IEEE Sympo-
sium on Logic in Computer Science (LICS), page 188. IEEE Computer
Society, 2003.

[FKRV13] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Spanners: a
formal framework for information extraction. In Proceedings of the 32nd
Symposium on Principles of Database Systems (PODS), pages 37–48.
ACM, 2013.

[FKRV14] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Cleaning in-
consistencies in information extraction via prioritized repairs. In Pro-
ceedings of the 33nd Symposium on Principles of Database Systems
(PODS), pages 164–175. ACM, 2014.

[FLS98] D. Florescu, A. Y. Levy, and D. Suciu. Query containment for con-
junctive queries with regular expressions. In Proceedings of the 17th
Symposium on Principles of Database Systems (PODS), pages 139–148.
ACM, 1998.

[FR13] D. D. Freydenberger and D. Reidenbach. Inferring descriptive generali-
sations of formal languages. Journal of Computer and System Sciences
(JCSS), 79(5):622–639, 2013.

[FW04] D. Fallside and P. Walmsley. XML Schema Part 0: Primer (second edi-
tion). Technical report, World Wide Web Consortium (W3C), October
2004. W3C Recommendation at http://www.w3.org/TR/2004/REC-
xmlschema-0-20041028/.

162

BIBLIOGRAPHY

[Gel10] W. Gelade. Succinctness of regular expressions with interleaving, in-
tersection and counting. Theoretical Computer Science (TCS), 411(31–
33):2987–2998, 2010.

[GGM12] W. Gelade, M. Gyssens, and W. Martens. Regular expressions with
counting: weak versus strong determinism. SIAM Journal on Comput-
ing (SICOMP), 41(1):160–190, 2012.

[GH08] H. Gruber and M. Holzer. Finite automata, digraph connectivity, and
regular expression size. In Proceedings of the 35th International Col-
loquium on Automata, Languages and Programming (ICALP), pages
39–50. Springer, 2008.

[GH09] H. Gruber and M. Holzer. Tight bounds on the descriptional complexity
of regular expressions. In Proceedings of the 13th International Con-
ference on Developments in Language Theory (DLT), pages 276–287.
Springer, 2009.

[GIM+13] W. Gelade, T. Idziaszek, W. Martens, F. Neven, and J. Paredaens. Sim-
plifying XML schema: Single-type approximations of regular tree lan-
guages. Journal of Computer and System Sciences (JCSS), 79(6):910–
936, 2013.

[GJ08] H. Gruber and J. Johannsen. Optimal lower bounds on regular ex-
pression size using communication complexity. In Proceedings of the
11th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS), pages 273–286. Springer, 2008.

[Glu61] V. M. Glushkov. The abstract theory of automata. Russian Mathe-
matical Surveys, 16(5):1–53, 1961.

[GMN09] W. Gelade, W. Martens, and F. Neven. Optimizing schema languages
for XML: Numerical constraints and interleaving. SIAM Journal on
Computing (SICOMP), 38(5):2021–2043, 2009.

[GMS12] B. Groz, S. Maneth, and S. Staworko. Deterministic regular expressions
in linear time. In Proceedings of the 31st Symposium on Principles of
Database Systems (PODS), pages 49–60. ACM, 2012.

[GN08] W. Gelade and F. Neven. Succinctness of the complement and inter-
section of regular expressions. In Proceedings of the 25th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), pages
325–336. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2008.

[GN12] W. Gelade and F. Neven. Succinctness of the complement and inter-
section of regular expressions. ACM Transactions on Computational
Logic (TOCL), 13(1):4:1–4:19, 2012.

163

BIBLIOGRAPHY

[Gro12] B. Groz. XML Security Views: Queries, Updates and Schemas. PhD
thesis, Université Lille 1, 2012.

[GS96] R. Grishman and B. Sundheim. Message understanding conference- 6:
A brief history. In Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pages 466–471, 1996.

[GSMT+12] S. Gao, C. M. Sperberg-McQueen, H. S. Thompson, N. Mendel-
sohn, D. Beech, and M. Maloney. W3C XML Schema Definition
Language (XSD) 1.1 part 1: Structures. Technical report, World
Wide Web Consortium (W3C), April 2012. W3C Recommendation
at http://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.

[HKK+13] O. Hassanzadeh, A. Kementsietsidis, B. Kimelfeld, R. Krishnamurthy,
F. Ozcan, and I. Pandis. Next generation data analytics at IBM re-
search. Proceedings of the VLDB Endowment, 6(11):1174–1175, 2013.

[HMU13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Pearson Education,
2013.

[Hov09] D. Hovland. Regular expressions with numerical constraints and au-
tomata with counters. In Proceedings of the 6th International Collo-
quium on Theoretical Aspects of Computing (ICTAC), pages 231–245.
Springer, 2009.

[Hov12] D. Hovland. The inclusion problem for regular expressions. Journal of
Computer and System Sciences (JCSS), 78(6):1795–1813, 2012.

[HS12] S. Harris and A. Seaborne. SPARQL 1.1 query language. Technical
report, World Wide Web Consortium (W3C), January 2012. W3C
Working Draft at http://www.w3.org/TR/2012/WD-sparql11-query-
20120105/.

[HS13] S. Harris and A. Seaborne. SPARQL 1.1 query language. Technical
report, World Wide Web Consortium (W3C), March 2013. W3C Rec-
ommendation at http://www.w3.org/TR/2013/REC-sparql11-query-
20130321/.

[HT84] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing (SICOMP), 13(2):338–355,
1984.

[Imm88] N. Immerman. Nondeterministic space is closed under complementa-
tion. SIAM Journal on Computing (SICOMP), 17(5):935–938, 1988.

[Jir08] G. Jirásková. On the state complexity of complements, stars, and
reversals of regular languages. In Proceedings of the 12th International
Conference on Developments in Language Theory (DLT), pages 431–
442. Springer, 2008.

164

BIBLIOGRAPHY

[JJS05] J. Jirásek, G. Jirásková, and A. Szabari. State complexity of concate-
nation and complementation. International Journal of Foundations of
Computer Science, 16(3):511–529, 2005.

[Jon75] N. D. Jones. Space-bounded reducibility among combinatorial prob-
lems. Journal of Computer and System Sciences (JCSS), 11(1):68–85,
1975.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. Complexity of
Computer Computations (The IBM Research Symposia Series), pages
85–103, 1972.

[KFB08] A. Kampman, C. Fluit, and J. Broekstra. Sesame - java rdf framework.
http://rdf4j.org/, August 2008.

[Kle56] S. C. Kleene. Representations of events in nerve sets and finite au-
tomata. Automata Studies, pages 3–42, 1956.

[KLR+08] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan,
and H. Zhu. SystemT: a system for declarative information extraction.
SIGMOD Record, 37(4):7–13, 2008.

[KM13] C. Konrad and F. Magniez. Validating XML documents in the stream-
ing model with external memory. ACM Transactions on Database Sys-
tems (TODS), 38(4):27, 2013.

[KRV14] E. V. Kostylev, J. L. Reutter, and D. Vrgoč. Containment of data
graph queries. In Proceedings of the 17th International Conference on
Database Theory (ICDT), pages 131–142. OpenProceedings.org, 2014.

[KS13a] W. Kazana and L. Segoufin. Enumeration of first-order queries on
classes of structures with bounded expansion. In Proceedings of the
32nd Symposium on Principles of Database Systems (PODS), pages
297–308. ACM, 2013.

[KS13b] W. Kazana and L. Segoufin. Enumeration of monadic second-order
queries on trees. ACM Transactions on Computational Logic (TOCL),
14(4):25:1–25:12, 2013.

[KSM95] S. Kannan, Z. Sweedyk, and S. R. Mahaney. Counting and random
generation of strings in regular languages. In Proceedings of the 6th
Annual Symposium on Discrete Algorithms (SODA), pages 551–557.
ACM/SIAM, 1995.

[KT03] P. Kilpeläinen and R. Tuhkanen. Regular expressions with numerical
occurrence indicators — preliminary results. In Proceedings of the 8th
Symposium on Programming Languages and Software Tools (SPLST),
pages 163–173. University of Kuopio, 2003.

165

BIBLIOGRAPHY

[KT07] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expres-
sions with numeric occurrence indicators. Information and Computa-
tion (IC), 205(6):890–916, 2007.

[KW80] C. Kintala and D. Wotschke. Amounts of nondeterminism in finite
automata. Acta Informatica, 13:199–204, 1980.

[LBC14] P. Lu, J. Bremer, and H. Chen. Deciding determinism of regular lan-
guages. Theory of Computing Systems, pages 1–43, 2014.

[LM12] K. Losemann and W. Martens. The complexity of evaluating path
expressions in SPARQL. In Proceedings of the 31st Symposium on
Principles of Database Systems (PODS), pages 101–112. ACM, 2012.

[LM13] K. Losemann and W. Martens. The complexity of regular expressions
and property paths in SPARQL. ACM Transactions on Database Sys-
tems (TODS), 38(4):24:1–24:39, 2013.

[LM14] K. Losemann and W. Martens. MSO queries on trees: enumerating
answers under updates. In Proceedings of the Joint Meeting of the 23rd
Annual Conference on Computer Science Logic and the 29th Annual
Symposium on Logic in Computer Science (CSL-LICS), pages 67:1–
67:10. ACM, 2014.

[LMN12] K. Losemann, W. Martens, and M. Niewerth. Descriptional complexity
of deterministic regular expressions. In Proceedings of the 37th Interna-
tional Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 643–654. Springer, 2012.

[LMV13] L. Libkin, W. Martens, and D. Vrgoč. Querying graph databases
with XPath. In Proceedings of the 16th International Conference on
Database Theory (ICDT), pages 129–140. ACM, 2013.

[Los10] K. Losemann. Boolesche Operationen auf deterministischen regulären
Ausdrücken. Master’s thesis, TU Dortmund, October 2010.

[Los12] K. Losemann. Foundations of regular expressions in XML schema lan-
guages and SPARQL. In Proceedings of the ACM SIGMOD/PODS
PhD Symposium, pages 39–44. ACM, 2012.

[LP84] A. S. Lapaugh and C. Papadimitriou. The even path problem for graphs
and digraphs. Networks, 14(4):507–513, 1984.

[LRV13] L. Libkin, J. L. Reutter, and D. Vrgoč. Trial for RDF: adapting graph
query languages for RDF data. In Proceedings of the 32nd Sympo-
sium on Principles of Database Systems (PODS), pages 201–212. ACM,
2013.

166

BIBLIOGRAPHY

[LTV13] L. Libkin, T. Tan, and D. Vrgoč. Regular expressions with binding
over data words for querying graph databases. In Proceedings of the
17th International Conference on Developments in Language Theory
(DLT), pages 325–337. Springer, 2013.

[LV12] L. Libkin and D. Vrgoč. Regular path queries on graphs with data. In
Proceedings of the 15th International Conference on Database Theory
(ICDT), pages 74–85. ACM, 2012.

[LY02] Y. A. Liu and F. Yu. Solving regular path queries. In Proceedings of the
6th International Conference on Mathematics of Program Construction
(MPC), pages 195–208. Springer, 2002.

[Man73] R. Mandl. Precise bounds associated with the subset construction on
various classes of nondeterminism finite automata. In Proceedings of the
7th Annual Princeton Conference on Information Science and Systems,
pages 263–267. Princeton University Press, 1973.

[Mar06] W. Martens. Static analysis of XML transformation and schema lan-
guages. PhD thesis, Hasselt University, 2006.

[MBPS05] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking
with macro tree transducers. In Proceedings of the 24th Symposium on
Principles of Database Systems (PODS), pages 283–294. ACM, 2005.

[MN05] W. Martens and F. Neven. On the complexity of typechecking top-
down XML transformations. Theoretical Computer Science (TCS),
336(1):153–180, 2005.

[MN07] W. Martens and J. Niehren. On the minimization of XML Schemas and
tree automata for unranked trees. Journal of Computer and System
Sciences (JCSS), 73(4):550–583, 2007.

[MNS04] W. Martens, F. Neven, and T. Schwentick. Complexity of decision
problems for simple regular expressions. In Proceedings of the 29th
International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 889–900. Springer, 2004.

[MNS07] W. Martens, F. Neven, and T. Schwentick. Simple off the shelf abstrac-
tions of XML Schema. SIGMOD Record, 36(3):15–22, 2007.

[MNS09] W. Martens, F. Neven, and T. Schwentick. Complexity of decision
problems for XML schemas and chain regular expressions. SIAM Jour-
nal on Computing (SICOMP), 39(4):1486–1530, 2009.

[MNS10] W. Martens, M. Niewerth, and T. Schwentick. Schema design for XML
repositories: Complexity and tractability. In Proceedings of the 29th
Symposium on Principles of Database Systems (PODS), ACM, 2010.

167

BIBLIOGRAPHY

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings
of the 13th Annual Symposium on Switching and Automata Theory
(SWAT), pages 125–129. IEEE Computer Society, 1972.

[MS04] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. Journal of the ACM (JACM), 51(1):2–45, 2004.

[MSV03] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers.
Journal of Computer and System Sciences (JCSS), 66(1):66–97, 2003.

[MSVT94] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Com-
plexity models for incremental computation. Theoretical Computer Sci-
ence (TCS), 130(1):203–236, 1994.

[MW95] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in
graph databases. SIAM Journal on Computing (SICOMP), 24(6):1235–
1258, 1995.

[Nev99] F. Neven. Design and Analysis of Query Languages for Structured
Documents. PhD thesis, Limburgs Universitair Centrum, 1999.

[NPTT05] J. Niehren, L. Planque, J.-M. Talbot, and S. Tison. N-ary queries by
tree automata. In Proceedings of the 10th International Symposium on
Database Programming Languages (DBPL), pages 217–231. Springer,
2005.

[NS06] F. Neven and T. Schwentick. On the complexity of XPath containment
in the presence of disjunction, DTDs, and variables. Logical Methods
in Computer Science (LMCS), 2(3):1–30, 2006.

[PAG09] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complex-
ity of SPARQL. ACM Transactions on Database Systems (TODS),
34(3):16:1–16:45, 2009.

[PAG10] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational
language for RDF. Journal of Web Semantics (JWS), 8(4):255–270,
2010.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[PI97] S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity
class. Journal of Computer and System Sciences (JCSS), 55(2):199–
209, 1997.

[PS02] G. Pighizzini and J. Shallit. Unary language operations, state complex-
ity and Jacobsthal’s function. International Journal of Foundations of
Computer Science, 13(1):145–159, 2002.

168

BIBLIOGRAPHY

[Reg] Regular expression library. RegExLib.com.

[RG02] R. Ramakrishnan and J. Gehrke. Database Management Systems (third
edition). McGraw-Hill, 2002.

[RRK+08] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, and
S. Vaithyanathan. An algebraic approach to rule-based informa-
tion extraction. In Proceedings of the 24th International Conference
on Data Engineering (ICDE), pages 933–942. IEEE Computer Society,
2008.

[Sav70] W. J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. Journal of Computer and System Sciences
(JCSS), 4(2):177–192, 1970.

[Seg13] L. Segoufin. Enumerating with constant delay the answers to a query. In
Proceedings of the 16th International Conference on Database Theory
(ICDT), pages 10–20. ACM, 2013.

[Sim90] I. Simon. Factorization forests of finite height. Theoretical Computer
Science (TCS), 72(1):65–94, 1990.

[SML10] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query
optimization. In Proceedings of the 13th International Conference on
Database Theory (ICDT), pages 4–33. ACM, 2010.

[ST83] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences (JCSS), 26(3):362–391,
1983.

[Sto74] L. Stockmeyer. The complexity of decision problems in automata theory
and logic. PhD thesis, Massachusetts Institute of Technology, 1974.

[SV02] L. Segoufin and V. Vianu. Validating streaming XML documents. In
Proceedings of the 21th Symposium on Principles of Database Systems
(PODS), pages 53–64. ACM, 2002.

[SW11] R. Sedgewick and K. Wayne. Algorithms (fourth edition). Addison-
Wesley, 2011.

[SWY04] A. Salomaa, D. Wood, and S. Yu. On the state complexity of rever-
sals of regular languages. Theoretical Computer Science (TCS), 320(2-
3):315–329, 2004.

[SY97] K. Salomaa and S. Yu. NFA to DFA transformation for finite lan-
guages over arbitrary alphabets. Journal of Automata, Languages and
Combinatorics (JALC), 2(3):177–186, 1997.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondetermin-
istic automata. Acta Informatica, 26(3):279–284, 1988.

169

BIBLIOGRAPHY

[TW68] J. W. Thatcher and J. B. Wright. Generalized finite automata with an
application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, 1968.

[Val79a] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science (TCS), 8(2):189–201, 1979.

[Val79b] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing (SICOMP), 8(3):410–421, 1979.

[vEB97] P. van Emde Boas. The convenience of tilings. In Complexity, Logic
and Recursion Theory, volume 187 of Lecture Notes in Pure and Applied
Mathematics, pages 331–363. Marcel Dekker Inc., 1997.

[Wil] G. T. Williams. RDF::Query - a complete SPARQL 1.1
Query and Update implementation for the use with RDF::Trine.
http://search.cpan.org/dist/RDF-Query/lib/RDF/Query.pm.

[Woo03] P. T. Wood. Containment for XPath fragments under DTD constraints.
In Proceedings of the 9th International Conference on Database Theory
(ICDT), pages 297–311. Springer, 2003.

[Yan90] M. Yannakakis. Graph-theoretic methods in database theory. In
Proceedings of the 9th Symposium on Principles of Database Systems
(PODS), pages 230–242. ACM, 1990.

[Yu01] S. Yu. State complexity of regular languages. Journal of Automata,
Languages and Combinatorics (JALC), 6(2):221, 2001.

[YZS94] S. Yu, Q. Zhuang, and K. Salomaa. The state complexities of some
basic operations on regular languages. Theoretical Computer Science
(TCS), 125(2):315 – 328, 1994.

170

List of Notations

Σ alphabet, 9
·\ · · Brzozowski derivative, 12
shortcut for counting operators

in regular expressions, 24
[·] equivalence class, 11
∆ infinite set of symbols, 69
./ join of two relations, 15
{|· · · |} multiset, 9

! restricted negation operator, 24
| · | size (length) of ·, 11
δ transition function, 10
δε transition function with ε-

transitions, 148
• wildcard symbol, 24
〈·〉 nesting operator, 103

CHARE chain regular expression, 25
DFA deterministic finite automaton,

10
DFAw deterministic finite automaton

with wildcards, 70
DRE deterministic regular expression,

27
DTD Document Type Definition, 19
Gr Glushkov automaton, 31
Gω
r Glushkov automaton with wild-

cards, 71
hp(·) heavy path of ·, 14
HPaths(t) set of all maximal heavy

paths of nodes in t, 14

IRI Internationalized Resource Iden-
tifier, 21

k-NFSTA k-ary nondeterministic fi-
nite selecting tree automaton,
110

k-NFSA k-ary nondeterministic finite
selecting automaton, 109

lab(·) label of ·, 12
L(·) language defined by ·, 10
levk(D, q) level k automaton of D for

the state q, 36
[N] minimal DFA for an NFA N , 11
NFA nondeterministic finite automa-

ton, 10
εNFA nondeterministic finite automa-

ton with ε-transitions, 148
NFAw nondeterministic finite automa-

ton with wildcards, 70
Nodes(w) set of nodes for a word w,

109
NRE nested regular expression, 103
NTA (bottom-up) nondeterministic

tree automaton, 109
num(r) numbered regular expression,

31
P(N) power set automaton of N , 10
P(S) power set of a set S, 9
RDF Resource Description Frame-

work, 20
RE class of regular expressions, 11

171

BIBLIOGRAPHY

r(i) state reached by reading the first
i symbols from the input, 10

r# annotated expression of r, 26
r run of a word automaton, 10

set(·) set of symbols occurring in ·, 109
SGML Standard Generalized Markup

Language, 20
SPARQL SPARQL Protocol and RDF

Query Language (recursive
acronym), 22

tv subtree of the node v in t, 14
UFA unambiguous finite automaton,

10
UFAw unambiguous finite automaton

with wildcards, 70
UPA Unique Particle Attribution, 26
URI Uniform Resource Identifier, 20
XML Extensible Markup Language,

18
XSD XML Schema Definition, 19

172

Index

#DNF, 17
#SAT, 17
#SimplePaths, 17

alphabet, 9
unary, 9

annotated answer
for trees, 139
growing, 140
incomplete, 139

for words, 116
growing, 119
incomplete, 116

auxiliary tree, 112

base symbol, 25
BKW-Algorithm, 30
Brzozowski derivative, 12

compatibility
for trees, 141
for words, 123

complexity class
#P, 17
EXPSPACE, 16
EXPTIME, 16
FP, 17
LOGSPACE, 16
NP, 16
PSPACE, 16
P, 16

concatenation, 13
for word languages, 9
for words, 9

connectivity matrix, 12
consistent

symbol, 29
transition, 29

Counting, 66
counting operators, 24
cycle, 12

simple, 12

Document Type Definition, 19
DRE-Definability, 34

edges, 12
Evaluation, 66
EvenSimplePath, 18
extended transition relation, 112, 113
Extensible Markup Language, 18

fast squaring, 16
Finiteness, 66

gate, 28
graph, 12

acyclic, 12
directed, 12
labeled, 12
product, 87
source-target, 13

IncrementalEnumeration, 111
IncrementalEvaluation, 111
inter-orbit transition, 28
Internationalized Resource Identifier, 21

join (natural), 15

language, 9
DRE-definable, 27
orbit, 28
regular, 10

173

INDEX

tree, 109
universal, 9

length
path, 12
word, 9

linked data, 20

Membership, 18
multiset, 9
Myhill-Nerode classes, 11

negated label test, 24
negation, 24
nodes, 12

orbit, 28
orbit property, 28
output order, 115

path, 12
heavy, 14
maximal heavy, 14
simple, 12

path counting requirement, 85

RDF, 21
graph, 21
triples, 21

Reachability, 17
regular expression, 11

annotated, 26
atomic, 11
chain, 25
deterministic, 27, 32
generalized, 24
minimal, 11
nested, 103
numbered, 31
one-unambiguous, 26
over ∆, 69
SPARQL, 69
star-free, 24
unambiguous, 26, 32

relation, 15
k-ary, 15
binary, 15

relevant tuples, 120, 125

Resource Description Framework, 20
reversal, 10
run, 10, 109

partial, 10

schema language, 19
selecting tuple, 109
semantics

multiset, 144
regular path, 71
simple walk, 73

simple walk, 12
simple walk requirement, 72
size

k-NFSA, 110
DFA, 10
NFA, 10
regular expression, 11

SPARQL
property paths, 69

SPARQL Protocol and RDF Query Lan-
guage, 22

strongly connected component, 13

tree, 13
binary, 13
labeled, 13
syntax, 14
unranked, 14

tree automaton
k-ary nondeterministic selecting, 110
bottom-up nondeterministic, 109

Uniform Resource Identifier, 20
Unique Particle Attribution, 26
Universality, 18
updates, 110

violation
acceptance consistency, 41
orbit consistency, 41
out-consistency, 41

wildcard symbol, 24
word, 9
word automaton

k-ary nondeterministic selecting, 109

174

INDEX

cut, 29
deterministic finite, 10
Glushkov, 31
level, 36
nondeterministic finite, 10
nondeterministic finite with ε-transitions,

148
orbit , 28
power set, 10
unambiguous finite, 10
with wildcards, 70

XML Schema, 19

175

	Introduction
	Preliminaries
	Representations of Regular Languages
	Graphs and Trees
	Relations and Join Operations
	Basic Complexity Results
	Data, Schemas, and Queries
	XML and XML Schema Languages
	Linked Data, RDF, and SPARQL

	Regular Expressions in the Context of RDF and XML
	Regular Expressions with Additional Operators
	Chain Regular Expressions
	Deterministic Regular Expressions
	Recognizing DRE-definable Languages
	Closure Properties of DRE-definable languages
	Determinism for Variants of Regular Expressions

	Regular Expressions in XML Schema Languages
	The Complexity of the DRE-Definability Problem
	Level-Automata
	A Bound on the Recursion Depth of the BKW-Algorithm
	Consistency Violations
	DRE-Definability for REs and NFAs
	DRE-Definability for RE(#)s and minimal DFAs

	Descriptional Complexity of Deterministic Regular Expressions
	DREs for Finite Languages
	DREs for Infinite Languages

	Descriptional Complexity of Operations on DRE-Definable Languages
	Boolean Operations on DFAs
	Operations on DREs

	Querying RDF Data using SPARQL Property Path Expressions
	Modelling RDF data using IRIs
	Alternative Semantics for Property Paths
	The Complexity of the Evaluation Problem for Property Paths
	Evaluation under Regular Path Semantics
	Evaluation for Regular Expressions with Negation
	Evaluation under Simple Walk Semantics

	The Complexity of the Counting Problem for Property Paths
	Counting under Regular Path Semantics
	Counting under Simple Walk Semantics

	The Complexity of the Finiteness Problem for Property Paths
	SPARQL and Nested Regular Expressions
	Recent Developments in the SPARQL 1.1 Specification

	Enumerating Answers under Updates
	Tuple Selecting Automata
	Problems of Interest
	Incremental Enumeration for Words
	An Algorithm for Incremental Evaluation
	Preprocessing an Auxiliary Data Structure for Words
	Enumerating Query Answers for Words
	Computing the First Answer to a Query
	Computing the Next Answer to a Query

	Incremental Enumeration for Trees
	Preprocessing an Auxiliary Data Structure for Trees
	Enumerating Query Answers for Trees

	Incremental Enumeration under Multiset Semantics
	Spanners in the Context of Information Extraction
	Variable-Stack and Variable-Set Automata
	Incremental Enumeration for k-eNFSAs
	Incremental Enumeration for Spanners

	Incremental Enumeration: Logic, XPath, and Future Work

	Conclusions
	Bibliography
	List of Notations
	Index

