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Introduction

1 Problem statement and research motivation

Humans rely on nature for various benefits to enhance their well-being (Pearce and Moran, 1994;

Daily, 1997; Hooper et al., 2005; MA, 2005; Lehmann et al., 2009). These benefits were termed

as nature’s services (Westman, 1977) which are now commonly referred to as ecosystem services

(ES) (Fisher et al., 2009). The contribution of ES to human well-being is widely documented,

ranging from provisioning services to regulating, supporting, and cultural services (de Groot,

1987; Costanza et al., 1997; MA, 2005; TEEB, 2010). However, the gains in human well-being

and economic development derived from nature have been achieved at the losses in many ES as

the consequences of human actions taken to increase the supply of only a certain number of ES

(Foley et al., 2005; Bennett et al., 2009). During the recent decades, anthropogenic impacts on

ecosystems have increased to an alarming level (MA, 2003; Halpern et al., 2008). Over the past

50 years, humans have changed ecosystems more rapidly and extensively than in any comparable

period of time in human history (MA, 2005; Rodrigues et al., 2006; Koellner and Geyer, 2013).

For example, agriculture has been intensified with chemical fertilizer overuse to increase food

supply. This has contributed to a deterioration of water systems in many parts of the world

(Tilman et al., 2002; Nguyen et al., 2014a). In addition, ES are often neglected in management

and planning (de Groot, 2006). In many cases, the combined effect of inadequate management

and altered natural regimes has degraded the capacity of ecosystems to supply ES (Folke et

al., 2004; Petz et al., 2012). Moreover, climate change due to increasing atmospheric carbon

dioxide concentration is altering the radiation input, temperature and precipitation regimes of

ecosystems, and thus, shifts both water balances and production (Kabat et al., 2004; Canadell

et al., 2007). Atmospheric deposition (Schulze, 1989) and intensive land use (Vitousek et al.,

1997; Würtenberger et al., 2006; Vignola et al., 2010; de Baan et al., 2013) have modified plant

growth, nutritional balances of ecosystems, nutrient losses to aquatic systems, susceptibility of

organisms to disease, composition of communities, and ecosystem resistance to stresses. These

modifications in ecosystem functions affect derived ES (de Groot et al., 2010; Egoh et al.,

2012; Ayanu et al., 2015). These problems, unless addressed, will substantially diminish the

benefits that future generations obtain from ecosystems and are a barrier to achieving further

development (MA, 2005; Baumgärtner and Quaas, 2010a).

One of the key challenges of ES science is determining how to manage multiple ES in an

efficient, equitable, and sustainable manner. Attempts to enhance a single ES often lead to gains
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(synergies) or losses (trade-offs) in other ES (Elmqvist et al., 2011), as ES are not independent of

each other (Pereira et al., 2005), and the relationship between them may be highly nonlinear (van

Jaarsveld et al., 2005). Individual ES can be thought of as different elements of an interrelated

whole or bundle (Cumming and Peterson, 2005) and is under different direct and indirect

drivers of changes (MA, 2005; Tenhunen et al., 2015). The general increase in provisioning

services over the past century has been achieved at the expense of decreases in regulating and

cultural services, and biodiversity (Bennett and Balvanera, 2007; Carpenter et al., 2012). For

example in agriculture, a typical trade-off is between provisioning services such as food, fibre

or bioenergy and regulating services such as water purification, soil conservation, or carbon

sequestration (MA, 2005; Nguyen and Tenhunen, 2013). In some cases, a trade-off may be an

explicit choice; but in others, trade-offs arise without premeditation or even awareness that

they are taking place (Rodriguez et al., 2006). Therefore, trade-offs in ES should be managed

to either reduce their associated costs to society or enhance ecosystem functionality and net

human well-being (Raudsepp-Hearne et al., 2010). Identification of trade-offs allows policy

makers to better understand the hidden consequences of preferring one ES to another (Haase

et al., 2012). However, ES trade-offs are temporally and spatially dependent (Tenhunen et al.,

2015) and, thus, examining ES trade-offs at different time and spatial scales would contribute

to an improved understanding for a sustainable acquisition of ES. This was the first motivation

for the thesis.

Another challenge of ES science is the need to integrate different academic disciplines and

research approaches to provide more robust information for decision making. ES science includes

at least ecology (ecosystems) and economics (services) (Koellner, 2010). The notion of ES in

general and of ES trade-offs in particular has deserved much scientific attention (see Fisher

et al., 2009; Abson et al., 2014) as a way to communicate societal dependence on ecological

life support systems (Gómez-Baggethun et al., 2010). Progress in this fast-moving field is

also revealing the fact that there are still challenges to assess and manage ES in relations to

changes in human well-being; and many of these challenges might not be able to be solved with

conventionally disciplinary research approaches. This is because the ecological underpinning

of economic studies is often limited (Brookshire et al., 2007); and ecological models often lack

appropriate economic considerations (Brouwer and Hofkes, 2008). This disciplinary focus, thus,

limits our ability to draw general conclusions and derive policy implications. New research is

needed that considers the full ensemble of processes and feedbacks, for a range of biophysical

and socio-economic factors, to better understand and manage the dynamics of the relationship

between humans and the ecosystems on which they rely (Carpenter et al., 2012). Therefore,

integrating economics and ecological sciences to provide useful information for policy making

(Pagiola and Platais, 2007; Engel et al., 2008) is a key step required for global conservation

and sustainability (MA, 2005; Wei et al., 2009). This consideration has led to an increasing

demand for interdisciplinary research approach in ES studies (Costanza et al., 1993; Holling,
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2001; Brouwer and van Ek, 2004; Wätzold et al., 2006; Drechsler and Wätzold, 2007; Häyhä

and Franzese, 2014; La Notte et al., 2015). This was the second motivation for the thesis.

At the same time, work at the interface of ecology and economics has inspired a major transfor-

mation in the way people think about the environment (Turner and Daily, 2008). Increasingly,

ecosystems are seen as capital assets, with the potential to generate a stream of ES of vital

importance to human well-being (de Groot et al., 2010). In this regard, ES are considered as

a return on natural capital, e.g., the return for investing in building or conserving this natural

capital (Heal, 2007). This leads to the questions of sustainability (WCED, 1987; Norton and

Toman, 1997; Hartwick, 2000; Howarth, 2007; Baumgärtner and Quaas, 2010b) and efficiency

(Neumayer, 2003; Coelli et al., 2007; Baumgärtner and Quaas, 2009; Hein, 2010) in ES science.

In fact, efficiency and sustainability are among the basic notions in economics. Although ES are

becoming a popular topic of inquiry, few studies have applied such basic economic notions to

ES studies (Farley et al., 2012). Whereas sustainability economics has been conceptualized and

developed (Baumgärtner and Quaas, 2010a, b), economic efficiency studies in ES has received

much less attention. This was the third motivation for the thesis. To my understanding, ap-

plication of the economic efficiency notion to examining ES trade-offs is considered supplement

to the conventional ES trade-off analysis approach, as it contributes to the identification of op-

portunity costs of preferring a specific resource (e.g., land) use option, thus, indicates different

alternatives of ecosystem use and management for decision makers.

The last motivation for the thesis was on the implications of these interdisciplinary and efficiency

ES trade-off studies. From an economic perspective, ES can be considered positive externalities;

but many ES are of public goods character and have no market prices. Policy instruments are,

thus, required to internalize these positive externalities (Coase, 1960; Costanza et al., 1997;

Drechsler and Wätzold, 2009; Garćıa-Amado et al., 2011). Those instruments include payments

for ES (PES). However, most of the current PES systems are input-based, meaning that they

compensate landowners for “inputs” such as trees planted, rather than for true “outputs” of

ES such as, for example, increased water regulation capacity. This is because such outputs are

difficult and expensive to assess and quantify (Engel et al., 2008; Nguyen et al., 2013). The

input based approach of PES might not be consistent with the requirement that PES should be

contingent on the actual provision of ES (Wunder et al., 2005), indicating the need to develop

an output-based approach of PES. In addition, sustainable acquisition of ES and successful

implementation of PES programs must be under a good governance system, especially effective

institutions (Scarlett and Boyd, 2013) that requires transparency, fairness, accountability, and

effectiveness (NRC, 2013). One of the most important institutional factors which are relevant

for ES and PES is a clearly defined and effectively enforced property right system (Lambini and

Nguyen, 2014). Thus, such a system must be considered in ES studies.

With these motivations and the aim at contributing to an improved understanding of ES sci-

ence, this habilitation thesis was organized into three closely related sections: (i) trade-offs and
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drivers of changes in ES (Part A), (ii) efficiency and improvement of ES (Part B), and (iii) policy

and research implications for ES (Part C). In Part A, classical trade-offs in ES were investigated

at field, sub-landscape, and regional levels. In Part B, the notion of economic efficiency was used

to implicitly determine economic-environmental trade-offs, which are relevant to ES science. In

Part C, an output-based PES and an effective institutional property right system for ecosystem

management were discussed. Then the integration of ecological studies with economic analyses

for a decision making support system was suggested. Finally, a general framework for eval-

uating trade-offs in ES at a regional level was synthesized, providing implications for further

research in this field. Therefore, the thesis contributes to the current literature in several ways:

(i) conventional trade-offs between regulating and provisioning services are examined both the-

oretically and empirically in much more details, with the combination of ecological models and

economic analyses, and at different spatial levels; (ii) provisioning and regulating services are

quantified in physical and monetary terms which are more convenient and useful for land users

and policy makers; (iii) synergies and trade-offs in ES can be identified using the economic ef-

ficiency notion; and (iv) payments for ecosystem services are determined with an output-based

instead of a traditionally common input-based approach and non-market valuation methods,

and effective property right systems for ecosystem management are discussed.

The next sections of the introduction section to this thesis include (i) a theoretical section

which reviews the concepts of ES, scarcity and trade-off, and efficiency that leads to the overall

research design; and (ii) a summary of the research contributions which fill in the research gaps

identified from a detailed review of the current literature. After the introduction section, the

papers for the thesis are organized in three sections described above. Finally, a short outlook

for future research is presented. Other relevant information is provided in the annex section at

the end of this thesis.

2 Theoretical considerations

2.1 Understanding ES

The concept of ES represents a new view on the relationship between humans and nature

(Alcamo et al., 2005). It is now commonly accepted that people and institutions appreciate

natural systems as vital assets, recognize the central roles these assets play in supporting human

well-being, and routinely incorporate their material and intangible values into decision making

(Daily et al., 2009; Fisher and Brown, 2014). However, it has been difficult to reach a widely

accepted definition of ES, partly due to the disciplinary separation where ES are viewed from

different perspectives. Clearly defining and organizing the concept of ES is not just a semantic

decision, but it is integral to operationalizing something that can clearly illuminate trade-offs

in natural resource management (Wallace, 2007; Johst et al., 2011; Kirchner et al., 2015). The
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debate mainly involves the distinction between ecosystem functions and services, and how to

classify the services in order to make them consistently quantifiable (Boyd and Banzhaf, 2007;

Ninan and Inoue, 2013).

Along the history of conceptualization, ES are defined as the conditions and processes as well

as the actual life support functions (Daily, 1997), or as the goods and services derived from

the functions and utilized by humanity (Costanza et al., 1997), or as the goods and services

generated by ecosystem functions which in turn are underpinned by biophysical structures

and processes. Ecosystem functions are thus intermediate between ecosystem processes and

services and can be defined as the capacity of ecosystems to provide goods and services that

satisfy human needs, directly or indirectly (de Groot et al., 2010; Stapleton et al., 2014).

The Millennium Ecosystem Assessment (MA, 2005) defines ES as functions of ecosystems with

values for human well-being and categorizes ES into different groups, namely, provisioning,

regulating, supporting, and cultural services. Even though this definition has been criticized

for mixing processes for achieving services with services themselves (Wallace, 2007; Olschewski

and Klein, 2011), it provides an operational framework to link the functioning of ecosystems to

human welfare (Fisher et al., 2009), supports the development of policies and instruments that

integrate social, ecological, and economic perspectives (Volk, 2013), and promote new funding

sources for biological and environmental conservation (Tallis and Kareiva, 2005).

Nevertheless, the following commonly accepted attributes of ES are relevant for ecosystem

management: (i) ecosystems provide not only a single ES but a bundle of different ES. In this

regard, the conventional product of agriculture or forestry (e.g., food or timber) is only one part

of ES. This understanding can basically change ecosystem management decision making since

our demand now includes a set of various ES rather than a single one (Lehmann et al., 2009);

(ii) ES are not independent of each other (Pereira et al., 2005), and the relationship between

them may be highly nonlinear (van Jaarsveld et al., 2005). Individual ES can be thought of

as different elements of an interrelated whole or bundle (Cumming and Peterson, 2005). This

requires a careful consideration when making land use decisions since trade-offs and synergies

between and among ES may exist. This is because interactions among ES are complicated

and often uncertain because different drivers of change may have different levels of impact on

individual ES. There are also interactions among the ES themselves, causing changes to alter

the provision of another (Bennett et al., 2009); and (iii) many ES are non-marketed and have a

“public-good” character, which implies non-rivality and non-excludability, especially those from

regulation services (Daily et al., 2009; Zander and Garnett, 2011). This leads to underestimation

of service value, free-riding, undersupply, and finally, exploitation and environmental damage

(TEEB, 2010). The fact that only a few numbers of ES have clearly established monetary values

makes the valuation of ES difficult, considering that many decisions about resource use are made

by comparing benefits and costs (Gómez-Baggethun et al., 2010). Any ES that do not have

market prices are generally not accounted for in the decision calculus. Neither is the fact that
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the benefits of many resource use decisions are usually enjoyed by small, fairly cohesive groups

of people or the current generation, while the costs of foregone ES are borne by larger, more

dispersed groups or future generations (Krieger, 2001; Wegner and Pascual, 2011; Cardinale et

al., 2012; Loos et al., 2014).

This new view on ES posits a connection between an ecological and an economic aspect as

it cuts across both ecology (ecosystems) and economy (services) (Koellner, 2010; Olschewski

and Klein, 2011). It is well recognized that ES are not generated by ecosystems alone, but

by social-ecological systems (Berkes and Folke, 1998; Tuvendal and Elmqvist, 2011) or human-

environment systems (Scholz and Binder, 2003; Koellner, 2010). In other words, people are

integral parts of ecosystems, and that a dynamic interaction exists between them and other

parts of ecosystems. The changes in human conditions can drive, both directly and indirectly,

changes in ecosystems and thereby cause changes in human well-being. At the same time, so-

cial, economic, and cultural factors unrelated to ecosystems alter the human conditions, and

many natural forces influence ecosystems (MA, 2005; Klain et al., 2014). The transformation of

natural resources into ES is not only governed by natural ecosystem processes, but also strongly

by concerns most often addressed today as social science themes, namely environmental percep-

tion, knowledge and available technology, existing political framework, existing environmental

policies, and economic interests (Turner and Daily, 2008; Jax et al., 2013). The theory of

human-environment systems which is rooted in descriptive and normative decision theory re-

veals that human and environmental systems are coupled systems (Koellner, 2010; Albertiet

al., 2011). The theory of social-ecological systems indicates that the society is a subsystem of

the ecosystem, which is different to the theory of human-environment systems, where these two

are complementary. Nevertheless, these two system theories can be considered supplementary

in investigating the concept of ES because by definition ES include the two components which

are interacted. However, both social-ecological systems and human-environment systems are

complex and possess critical thresholds, multiple drivers of change and reciprocal feedbacks

between the two components (Turner and Daily, 2008; Tenhunen et al., 2015). It means that

ES studies must be capable of assessing biophysical aspects, service producers and users, and

the policy (Brauman et al., 2007). Therefore, all bio-ecological and economic values of ES must

be accounted for in ES assessments (de Groot et al., 2002; Hein et al., 2007; Koellner et al.,

2010; Singh et al., 2013).

2.2 Ecosystem service scarcity, trade-off, and efficiency

The concept of scarcity is well-known in economics (Becker et al., 2005); and in fact economics

is considered as a study of how scarce resources can best be used to fulfil human wants and

desires (Mankiw, 2012). Whereas the wants or desires of human beings are unlimited, the means

or resources available for meeting these wants or desires are not unlimited and thus need to be
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managed in the best possible efficient way. When the word resource is used, one might think of

natural resources. However, this term has a much broader meaning and includes a broad array

of other items, such as labor and capital. An individual person, a society, a country, or the

whole world usually faces constraints and limitations of available resources (Debertin, 2012).

A traditional understanding on the concept of scarcity in economics is usually limited to relative

scarcity, which is referred to as the notion of relative scarcity (Baumgärtner et al., 2006). One

good or service is said to be scarce if it carries opportunity costs (Debreu, 1959; Eatwell et al.,

1987). In order to obtain one additional unit of the good, one must give up something of another

good. In this regard, scarcity is defined in a relative way because a good is scarce in relation to

other scarce good (Faber et al., 1994; Faber and Manstetten, 1998; Baumgärtner et al., 2006).

Another notion of scarcity is absolute scarcity when scarcity concerns a non-substitutable means

for the satisfaction of an elementary need and cannot be levied by additional production. This

extension of the concept of scarcity allows both economists and ecologists to incorporate the

insights of the natural sciences into the study of the relationship between humans and nature

(Baumgärtner et al., 2006).

Due to the fact that resources are scarce, a trade-off arises when a decision on resource use

is made. To obtain more of one scarce good, an individual or society collectively must give

up some amount of another scarce good (Ayanu et al., 2011). In other words, scarcity implies

that not all of society’s goal can be pursued at the same time; a trade-off is made of one good

against others. More colloquially, a trade-off is a situation where if one thing increases, some

other thing must decrease. This concept of trade-off is popular not only in economics but also

in ecology or biology. In economics a trade-off, then, involves a sacrifice that must be made

to obtain a certain product, service or experience, rather than others that could be made or

obtained using the same required resources. In biology, for example, a trade-off occurs when a

beneficial change in one trait is linked to a detrimental change in another trait (Keen, 2014).

Taking these concepts into consideration, it is realized that ES, by definition, are also scarce

resources and are even becoming scarcer. In some cases, a trade-off may be an explicit choice;

but in others, trade-offs arise without premeditation or even awareness that they are taking

place (Rodŕıguez et al., 2006). This can happen when the interactions among ES are ignored

(Ricketts et al., 2004), when our knowledge of how they work is incorrect or incomplete (Walker

et al., 2002; Kragt and Robertson, 2014), or when the ES involved have no explicit markets

(Winthrop, 2014). But even when a decision is the result of an explicit, informed choice, the

decision may have negative implications (Rodŕıguez et al., 2006). As human societies continue

to transform ecosystems to obtain greater provision of specific services, we will undoubtedly

diminish some to increase others (Foley et al., 2005).

Since our management actions can impact more than one ES and the knowledge of ES interac-

tions is far incomplete, different spatial and temporal scales should be considered in ES studies
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to provide useful information for ecosystem management decision making. ES trade-offs can

happen at field plot level where the land user clears woody vegetation and replaces it with crops

(Ayanu et al., 2011), at watershed level when upstream farmers intensify their crop production

with an excessive use of chemical fertilizers, leading to the deterioration of the water quality

for downstream communities (Nguyen et al., 2014a), or even at regional or international level

where deforestation and crop intensification in the south have effects on global climate change

(Koellner et al., 2010; Rosenzweig et al., 2014). Similarly, management decisions often focus on

the immediate provision of an ES, at the expense of this same ES or other services in the future

(Rodŕıguez et al., 2006). A typical example of ES trade-offs in ES is between provisioning and

regulating ES, where the gain in a provisioning service (e.g., food or fiber) is associated with

the loss in a regulating service (e.g., water regulation).

Given the scarcity of and trade-offs in ES, efficient use and sustainable acquisition of ES become

apparent issues. In the most basic form, efficiency means that the society is getting the most

it can from its scarce resources. Due to the advances of economics, efficiency is, in the current

literature, can be understood from two notions, the narrow and the wide ones with different

implications for policy making. The difference is similar to the one between two branches

of economics, namely positive and normative economics. The former is rather descriptive,

exploring how the world is, while the latter is prescriptive, judging how the world ought to

be. A key difference between positive and normative economics is how their validity is judged.

Deciding what is good or bad is not merely a matter of science. It also involves our view on

ethics, religion, and political philosophy (Baumgärtner and Quaas, 2010a; Mankiw, 2012).

The wide notion of economic efficiency originates from the welfare economics where satisfaction

of the needs and wants of individuals is considered as the normative goal. In this sense, efficiency

means non-wastefulness in the use of scarce resources to achieve this goal (Baumgärtner and

Quaas, 2010b). There are two points which require attention: (i) scarce resources can be

used in alternative ways (Robins, 1932). It means that using them in a particular way carries

opportunity costs, and (ii) there might be substitutes and complements for particular scarce

resources. It means that we need to explore to what extent those substitutes and complements

are possible and impact economic behavior with regard to the use of the scarce resources. As

there may be trade-offs and opportunity costs, efficiency means that no scarce resources should

be wasted in these respects.

Operationally, different criteria have been identified along the history of economic thoughts for

the ultimate goal of satisfaction of individual human wants and needs. One of these criteria

is Pareto’s efficiency which is defined as the economic situation when the circumstances of one

individual cannot be made better without making the situation worse for another individual.

Pareto’s efficiency takes place when the resources are most optimally used. It is the final

optimum solution beyond which any change would directly lead to loss in the allocation of

resources. Pareto’s efficiency is, thus, the complete solution in itself. An allocation is either
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Pareto efficient or it is not. The operationalization of those criteria from a policy perspective

is, therefore, based on a social welfare function where the gains and losses in welfare of all

individuals are considered. A policy that makes a net gain in welfare is a Pareto’s improvement.

It is noted that there is no connection between Pareto’s efficiency and equity. Therefore, a

Pareto efficient outcome may be very inequitable. Considering the ethical issues of equity

(fair distribution over individuals at the same time) and sustainability (fair distribution over

generations over time), such an outcome is a source of disputes and debates, leading to discussion

on trade-offs between efficiency and equity/sustainability. In other words, policy implications

from the wide notion of efficiency are valid as this notion is rooted from the ultimate goal of

satisfaction of individual wants and needs; yet they are also sources of debates as this notion

is from the normative view. Similar to the notion of sustainability, the notion of efficiency also

comprises temporal aspects, resulting in the maximization of utility over time. This is usually

achieved by discounting, which means giving less weight or importance to events that occur in

the future (Olschewski and Klein, 2011). Discounting is justified (i) by considering a positive

time preference of the present generation regarding future utility, or (ii) by expecting future

generations to be wealthier than the present one (Neumayer, 2007).

The narrow notion of efficiency is also rooted in the non-wastefulness of scarce resources but

concerns mainly with the transformation of inputs into outputs of production. In this regard,

efficiency is defined technically as the maximum attained output level from a given input level, or

as a certain output level from the minimum input level. In other words, a producer is supposed

to be inefficient if he/she is still able either to increase the level of outputs from a given level

of inputs or to decrease the level of inputs for a given level of outputs. The inclusion of input

and output prices leads to another efficiency measure, namely allocative efficiency where the

producer chooses the cheapest combination of inputs (cost) or the highest revenue of outputs.

The combination of these two efficiency measures creates an overall efficiency measure, the

economic efficiency. This is similar in case of consumption. That is, the maximization of utility

derived from a certain level of goods/services consumed or the minimization of goods/services

consumed for a certain level of utility. As described, such efficiency measures deal solely with

“facts” and thus are of the positive perspective. They are mainly undisputable as they are

descriptive. However, the main limitation of this notion is, as it is not based on the ultimate

goal of satisfying human wants and needs, their implications for policy making are, therefore,

narrow.

Due to the facts such as (i) ecosystems have external effects, and (ii) many ES are public

goods, policy interventions are required to overcome such market failures. Such interventions

include, for example, environmental taxes (Baumol and Oates, 1993; Pagiola and Platais, 2007),

command and control regulations, or integrated conservation and development programs (Kiss,

2004). Obviously, such interventions are aimed at increasing the efficiency and sustainability of

ES provision, even though the levels of success are apparently different. Since ES are scarce,
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their trade-off analysis plays an important role in determining which ES are preferred at each

spatial and temporal scale. Among those policy instruments, payments for ES (PES) have been

promoted as a policy mix (Landell-Mills and Porras, 2002; Pagiola et al., 2005; Engel et al.,

2008; Drechsler et al., 2010) to increase ES provision. PES systems must be both voluntary and

contingent on the actual provision of ecosystem services (Wunder, 2005; Pagiola, 2008). In order

for PES to be implemented, ES must be identified and evaluated, and payment mechanisms must

be established to encourage the provision of these services (Elmqvist et al., 2010). Payments

are normally given to the land user who implements or maintains desired land uses, which are

thought to provide the ecosystem services of interest (Nguyen et al., 2013). In principle, PES

should be higher than the forgone benefits of the land user (Figure 1). PES thus seeks to

internalize what would otherwise be an externality (Pagiola and Platais, 2007).

Figure 1: Logic of payments for ES (PES) (source: Pagiola and Platais, 2007)

In addition, even if we are able to identify a PES system, the institutional system (Ostrom,

1990; Hagedorn, 2008) on which the PES system is operating must be supportive. At least

it must be transparent, fair, accountable, and effective. This might be often the case in the

developed world, but yet popular in developing countries. An effective and robust institutional

property right system, for example, is increasingly becoming an important part on the allocation

of scarce resources (Demsetz, 1967; Ostrom, 2005; Delacote, 2012). Some institutional property

rights have failed to work effectively in developing countries (Humphreys, 2011). Thus, there are

several institutional problems concerning the provision of ES in developing countries (Bose et

al., 2012). Therefore, the examination of whether the existing institutional systems are in fact

useful in enhancing the provision of ES and at the same time promoting economic development

is needed (Dimitrov, 2005; Lambini and Nguyen, 2014).
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2.3 Research design

These above concepts are the backbone of this thesis in which the main concerns are on the

gains and losses in ES in relation to human impacts. The starting point of the consideration on

the research design is with a production process that humans undertake to earn their livelihoods

(Chambers and Conway, 1992; Turton, 2000; Carney, 2002; Brown et al., 2006; Nielsen et al.,

2013), for example, agricultural production or forest activities. These sectors are considered

because they are directly related to nature (Debertin, 2012). This production process trans-

forms inputs (e.g., land and fertilizers) into outputs. Outputs can include both wanted (e.g.,

grain) and unwanted ones (e.g., nutrient surplus due to overuse of manure and/or chemical

fertilizers). This is referred to as joint production (Baumgärtner et al., 2001) that follows the

laws of thermodynamics, including the material balance principle (Coelli et al, 2007; Nguyen

et al., 2012). From an ecological point of view, this production process can be modelled using

ecologically process-based models (Nguyen and Tenhunen, 2013; Ruidisch et al., 2014) in which

all factors that have a direct influence on the production process can be included, for example,

soil fertility and climatic variations. In this way it is of course possible to examine the effects

of these direct factors on the production process (Tenhunen et al., 2015).

From an economic point of view, the concept of economic efficiency (the narrow notion as

discussed above to avoid normative disputes) can be applied to examine the input-to-output

transformation process. As some outputs are not desirable, they might have (negative) external

effects to other parties that are not involved in the production or consumption of the wanted

outputs. There are of course by-products that have positive external effects. These effects are

termed in economics as externalities which bring costs (negative) or benefits (positive) to both

individuals and the society. For example, agricultural intensification in an upstream region of

a watershed brings negative effects to downstream communities. Such negative effects lead to

local (private) short-term and regional (social) long-term environmental costs. If the up- and

downstream communities cannot negotiate or there are no clearly defined property rights as in

the Coase theorem, then government’s interventions are required. Such interventions can be,

for example, a command and control regulation with regard to fertilizer use, an environmental

tax (Engel et al., 2008), pollution tradable permits (Wissel and Wätzold, 2010), or a policy mix

such as PES requiring either the downstream community to pay their upstream partners not to

pollute or vice versa. As described, these interventions aim to internalize the external effects

and have indirect interventions on the production process. If the downstream community has

to pay, then the flows of ES and their payments can be seen. Those policy interventions are, in

fact, enhance the efficiency of the production from a social point of view.

These considerations led to the overall research design of this thesis (Figure 2), which indicates

the relationship among different stakeholders (e.g., producers, consumers, and society as a

whole). It is noted that the producers (of the provisioning services) and ES providers can be
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Figure 2: Overall research framework

the same. It means that during their production process, they not only produce the provisioning

services but also (probably) provide other ES. Similarly, consumers of the provisioning services

and other parties which are not directly involved in the production and consumption of the

provisioning services are ES users. This simple framework of course cannot capture all issues

with regard to gains and losses in ES due to human activities. Nevertheless, it provides a

systematic conceptualization of how we can investigate these issues and give a lot of insights on

drivers of and interactions among different land use alternatives that lead to ES trade-offs, for

example, between provisioning (e.g., food) and regulating services (e.g., water purification).

The framework also indicates the potential of applying the narrow notion of the efficiency con-

cept to investigate ES trade-offs by examining which production process (e.g., a certain land

use type or land management practice) can be able to provide more provisioning or regulating

services, ceteris paribus, and consequently help identify the trade-offs between these services.

For example, given the same level of input use (e.g., land and chemical fertilizers), a specific land

use type is preferred if it provides more food (provisioning service) but less chemical pollutants

which negatively affects the water purifying capacity of the ecosystem (regulation service). In

this regards, even though there are differences between the conventional ES trade-off analysis

and efficiency application (Table 1), the latter is considered complementary to the former. In ad-
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Table 1: Comparison between conventional trade-off and efficiency perspectives

Conventional trade-off perspec-
tive

Efficiency perspective

Goal To identify gains and losses To evaluate performance
Research
question

How much? (e.g., how much would
farm income and soil erosion change
if this forested parcel is converted to
annual crop cultivation?)

How? (e.g., how is the economic
performance of farmers, sectors, or
the nation as a whole?)

Example Tradeoff between farm income and
leached nitrate

Economic efficiency of rice farms

Relevance Different actors Different decision making units
Requirement More than one ES involved At least one input and output (and

prices)
Result ES trade-offs are described Efficiency measures are identified

dition, efficiency applications can identify the opportunity cost of preferring (private) economic

consideration to (socially) environmental considerations or vice versa. The main difference is,

whereas a conventional trade-off analysis is a direct exercise, an efficiency application includes

a procedure of at least two-steps. In each step, the efficiency evaluation is undertaken with

regard to a specific consideration, for example, first in terms of provisioning service (farm in-

come), and then in terms of regulating services (water purification). The comparison of the

efficiency measures in these cases can show potential trade-offs or synergies.

The research presented in this thesis is designed within this framework. First, the conven-

tional trade-offs and drivers of changes in ES are investigated (the upper and left part of the

framework). This part is ecological and economic integrated. Then the efficiency notion is

applied to implicitly examine the trade-offs between economic and environmental performance

of land users (the right and lower part of the framework), which can provide useful information

to ecosystem management for ES. In the last part, the implications for ES from both policy

and research perspectives are discussed. The policy implications include payments for ES and

institutional system analysis. Finally, these above and other aspects relevant for ES science

are synthesized in the two last papers. In the next section, the current literature is reviewed

to identify the research gaps and describe the contribution of the research within the above

framework to fill in the gaps.

3 Literature review and research contribution

3.1 Trade-offs and drivers of changes in ES

Various scientific efforts have been spent to conceptualize ES within social-ecological or human-

environment systems (see Koellner et al., 2010 for a review; Carpenter et al., 2012) and ES
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trade-offs (MA, 2005; Johst et al., 2011), from both ecological and economic perspectives,

especially after the release of MA in 2005. These include theoretical considerations (Rodŕıguez

et al., 2006; Bennett et al., 2009) and empirical evidence (Tallis et al., 2008; Carreno et al.,

2012; Lester et al., 2013), deal with a couple of ES at different scales (Nelson et al., 2009;

Ayanu et al., 2011), and cover a specific or multiple sector(s) (Power, 2010; Polasky et al., 2011;

White et al., 2012). Such efforts have, thus, clearly contributed to an improved understanding

of ES trade-offs. The analytical models and tools have also been reviewed and evaluated (see

Seppelt et al., 2011 for a detailed review), indicating a general trend of integrating ecological

and economic considerations (Drechsler and Wätzold, 2007), even though there are differences

in terms of structure and coverage of ecological and economic models (Drechsler et al., 2007).

For example, at landscape level, Rodŕıguez et al., (2006) classify ES trade-offs along three axes:

spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the

trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects

take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed

ES may return to its original state if the perturbation ceases. They also indicate that trade-off

decisions show a preference for provisioning, regulating, or cultural services (in that order); and

request that managers should complement their actions with monitoring programs that, in ad-

dition to monitoring the short-term provisions of services, also monitor the long-term evolution

of slowly changing variables. Policies can then be developed to take into account ES trade-offs

at multiple spatial and temporal scales. Successful strategies will recognize the inherent com-

plexities of ecosystem management and will work to develop policies that minimize the effects of

ES trade-offs. Empirically, Raudsepp-Hearne et al., (2010) develop a framework for analyzing

the provision of multiple ES across landscapes and present an empirical demonstration of ES

bundles as sets of services that appear together repeatedly in Quebec, Canada. Their results

show landscape-scale trade-offs between provisioning and almost all regulating and cultural ser-

vices, and that a greater diversity of ES is positively correlated with the provision of regulating

services. The landscape level research has been recently promoted with the application of var-

ious landscape models such as the Integrated Valuation of Ecosystem Services and Tradeoffs

(InVest), the Soil and Water Assessment Tool (SWAT), and many other models (Viglizzo and

Frank, 2006; Nelson et al., 2009; Seppelt et al., 2009; Johst et al., 2011; Johnston et al., 2011;

Mueller et al., 2014; Polasky et al., 2014; Verutes and Rosenthal, 2014).

At sectoral level, some authors analyze ES trade-offs in agriculture (Mimouni et al., 2000; Power,

2010; Kremen and Miles, 2012; Tancoigne et al., 2014), in livestock sector (Bernués et al., 2011),

in forestry (Steffan-Dewenter et al., 2007; Seidl et al., 2007; McKechnie et al., 2011; Wang and

Fu, 2013), in bioenergy (Bryan et al., 2010), in fishery/marine (Swallow et al., 2009; Lester et

at., 2013). Others also determine ES trade-offs between and among sectors. For example, some

deal with trade-offs between agriculture and forestry (Illukpitiya and Yanagida, 2010; Paterson

and Bryan, 2012), some deal with trade-offs among agriculture, bioenergy, water quality and
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quantity (Lautenbach et al., 2012; Poppenborg and Koellner, 2014). The progress in this field

includes the application of increasingly complicated and integrated models taking into account

both ecological and economic aspects (Seppeltand Richter, 2005; Kareiva et al., 2007; Haase et

al., 2012; Lautenbach et al., 2012). These also include efforts devoted to spatial configuration of

landscapes or watersheds for multiple ES (Seppelt and Voinov, 2003; Holzkämper and Seppelt,

2007; Mitsch et al., 2008; Ulbrich et al., 2008; Daily et al., 2009; Ausseil et al., 2012; Herzig

et al., 2013; Lautenbachet al., 2013). In addition, many studies try to incorporate economic

aspects explicitly into ES trade-off analysis (Steffan-Dewenter et al., 2007; Chisholm, 2010;

Polasky et al., 2011; Carreno et al., 2012). The economic background of such studies have also

been improved by a number of other studies (Farber et al., 2002; Heal et al., 2005; Fisher et

al., 2007; Norgaard, 2010; Gómez-Baggethun et al., 2010; Bateman et al., 2013; Baveye et al.,

2013; Kumar et al., 2013).

While these studies provide a lot of insights regarding ES trade-offs, it is certain that our

knowledge on possible ES trade-offs is still far incomplete. This is because the sustainable

acquisition of ES requires an thorough understanding of the trade-offs in ES and the influences

of variables acting at different time and spatial scales, as well as the complex interactions among

social and biophysical system components (Carpenter et al., 2012, Galat and Berkley, 2014).

The spatial and temporal characteristics are also of course specific, making the generalization

of relevant findings difficult. Empirical information on the quantitative relationship between

land use and ecosystem management and the provision of ES at the local and regional scale

is, therefore, still scarce (ICSU et al, 2008; de Groot et al., 2010), especially at field or sub-

landscape scale where crop choices, farming techniques, or nutrient management practices are

often under the control of a single land user. Thus, the following papers described in Part A

(trade-offs and drivers of changes in ES) contribute to filling these research gaps.

In Paper 1, the effects of nutrient best management practices (NBMP) on leached nitrate

and farm income in Heaen catchment, South Korea were determined. In this area, intensive

highland crop cultivation with a high level of N and P surplus has degraded freshwater quality.

Soil erosion has also contributed to water quality degradation and lowering the longevity of

the Soyang Dam in addition to the feedback effect of reducing crop yield (provisioning service)

due to decreasing fertility of soil surface. Such negative effects in complex terrains are more

severe and difficult to manage under the monsoon climatic conditions. Obviously, increased soil

erosion or leached nitrate from agrochemicals used in agriculture can lead to welfare losses of

land users due to decreased soil productive capacity in addition to the increased water pollution

abatement cost. This is local private costs (feed-back costs) which might force farmers to

change their management practices. For example, they might adopt soil conservation measures

or nutrient best management practices (NBMP). Such increased soil erosion or leached nitrate

from agrochemicals used in agriculture can lead to social welfare losses as well. Therefore,

it is needed to identify which NBMP can reduce both private and social welfare losses. To
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examine economic costs and benefits of various NBMP, farm interviews and plot experiments

were undertaken in 2010. Famers were cultivating several crops such as rice, radish, cabbage,

beans, and maize, of which radish (Raphanussativus L.) is the most important highland cop in

terms of cultivated land area. The usual cultivation method for highland crops such as radish

is by ridge cultivation with plastic mulch using black impermeable polyethylene (PE) film. The

growing season of radish starts in June and ends in August. This is also the time with the highest

rain intensity and frequency. Therefore, the adoption of NBMP is particularly important for

achieving sustainable agriculture. The synergies and trade-offs between nitrate leaching and

net farm income of radish cultivation with different NBMP were examined. The simulations

of nitrate leaching were performed using the numerical code HydroGeoSphere (Therrien et al.,

2010). The results show that the use of plastic mulch, fertilizer placement only in ridges,

split fertilization and combination of these NBMP reduced nitrate that percolates into the

groundwater system. The plastic mulching and fertilizer placement only in ridges were also

shown to be economically profitable, demonstrating synergies between net farm income and

nitrate leaching. However, there are trade-offs in the cases of split fertilization and combination

of NBMP as they lower both leached nitrate and net farm income. Thus, there are opportunities

for policy makers to motivate farmers to adopt split fertilization and combine NBMP. This can

be done by compensating farmers for the losses of their net farm income (Nguyen et al., 2014a).

In Paper 2, the trade-offs between a provisioning service (marketable part of biomass accumula-

tion) and a regulating service (water runoff prevention) were investigated at sub-landscape scale

covering different land use types in a developing country context (Vietnam), where traditional

slash and burn cultivation method is still existing. For this purpose, the quantification of the

provisioning and regulating services using a biophysical simulation model - LUCIA (Marohn,

2009) - was first conducted. These services were then spatially and temporally stimulated with

different land use scenarios. The temporal dimension includes both annually and over a plan-

ning period of 20 years. Of course the planning period can be different; the selection of 20

years was due to the fact that the agricultural land in Vietnam was granted to land users for a

maximum of 20 years (Nguyen, 2008; Nguyen et al., 2010; Nguyen et al., 2012). In addition, this

time period would be sufficient for rubber or forest trees considered to reach a marketable size.

An economic analysis was undertaken to identify all local private costs and benefits of different

land use scenarios. Finally, the gains and losses in these ES were compared in order to identify

the synergies and trade-offs. The results show that among the alternative land-use scenarios

(business as usual, maize monocropping, and rubber plantations) tested in this study, with re-

gard to the provisioning (agricultural commodity production for markets) and water regulation

services, rubber plantations appear as a better alternative than maize monocropping. However,

the introduction of rubber plantations should consider through investigation of the risks and

uncertainties involved in terms of both impact on the environment and benefits to the farmers.

The implementation of rubber plantation projects should thus take into account the interests
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of the stakeholders in the area. Since the traditional composite swidden agriculture (CSA)

cannot continue due to the increasing population and economic growth, further investigation of

other promising land-use alternatives is necessary to ensure sustainable management of natural

resources and supply of ecosystem services. Moreover, research in combining the traditional

CSA systems with other land-use options is useful to ensure sustainable land use (Ayanu et al.,

2011).

In Paper 3, the effects of an important driver of ecosystem changes - climate variations - on

ES, namely biomass accumulation in agricultural crops and forest trees were examined. The

context that motivated the study includes both climate change (Stern, 2007; IPCC, 2007; An-

thoff et al., 2009; Nordhaus, 2010; Tol, 2010) due to anthropogenic greenhouse emissions, and

energy security (IFAD, 2007; IPCC, 2012), along with the environmental damages and losses

in ES (IEA, 2008) and indirect land use changes (Lapola et al., 2010; Bowyer, 2010; Plevin

et al., 2010) due to maize monoculture for bioenergy production. It is well-known that sim-

ulating regional variations in gross primary production (GPP) and yields of major land cover

types is complex because of differences in plant physiological properties, landscape topogra-

phy, and climate gradients. In this study, the inter-annual and inter-regional variation, as well

as the effect of summer drought, on gross primary production and crop yields of nine major

land uses within the state-funded Bioenergy Region Bayreuth in Germany were analyzed. A

simulation framework using a process based model which accounts for variations in both CO2

gas exchange, and in the case of crops, growth processes was developed. The results indicate

a severe impact of summer drought on GPP, particularly of forests and grasslands. Yields of

winter crops, early planted summer grain crops as well as the perennial 2nd generation biofuel

crop Silphium perfoliatum, on the other hand, are buffered despite drought by comparatively

mild winter and spring temperatures, suggesting a comparative advantage for these crops in the

cooler and upland part of the region. In contrast, grasslands and annual summer crops such

as maize and potato do not exhibit any apparent regional pattern in the simulations. The 2nd

generation bioenergy crop exhibits significantly higher GPP and yields compared to the conven-

tional bioenergy crop maize, suggesting that cultivation of S. perfoliatum should be increased

for economic and environmental reasons (Ruidisch et al., 2014).

In Paper 4, the conservation potential of different farming techniques at field plot level in

a watershed region in South Korea was compared. It is well-known that the cultivation of

row crops on mountainous farmland can generate severe soil erosion due to low ground cover,

especially in the early growth stages. Organic farming, due to the absence of herbicides, can

support the development of weeds and increase the ground cover compared to conventional

farming. However, the benefits towards soil erosion, and the conservation potential of organic

farming systems, in terms of herbicide application and weed growth, have not been investigated.

The aim of the study was to identify how conventional and organic farming influence the erosion

rate of soil, due to row crops cultivated on mountainous farmland in the presence or absence of
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agricultural chemicals. Multiple vegetation parameters of crops and weeds of conventional and

organic farms cultivated with bean, potato, radish, and cabbage in a mountainous watershed in

South Korea were measured. The long-term soil erosion rates were stimulated with the Revised

Universal Soil Loss Equation (RUSLE) by using 13 years of recorded rainfall data in order to

account for the temporal variability of monsoonal rainfall. The average annual erosion rates

for the study area were determined to be between 30.6 tons ha−1 yr−1 and 54.8 tons ha−1

yr−1, with maximum values when radish was grown, due to the shorter growing period, higher

soil disturbance at harvest, and low amounts of crop residue. Organic farming reduces soil

loss for radish by 18% as a result of a high weed biomass density and cover at the end of the

growing season. For potato, organic farming increases soil loss by 25% due to a reduced crop

coverage, which is suspected to have been a consequence of crop–weed competition or increased

herbivory associated with the absence of agricultural chemicals. The results demonstrate that

organic farming can potentially decrease the soil erosion risk for row crops because it supports

weed development in the furrows, but it can also produce higher erosion rates when crop yields

are reduced as a consequence, outweighing the protective effect of the weeds. However, the

simulated erosion rates under both farming systems exceeded by far any tolerable soil loss. The

study concludes that organic farming alone cannot be used to effectively control erosion, and

that both farming systems require additional conservation measures, such as winter cover crops

and residue mulching, to sufficiently prevent soil loss for row crop cultivation (Arnhold et al.,

2014).

3.2 Efficiency and improvement of ES

During the past few decades, increasing attention has been paid to environmental externali-

ties (e.g., pollution) caused by economic activities (Coelli et al., 2007; Nguyen et al., 2012).

Economists have recognized the need to adjust traditional methods to integrate environmen-

tal concerns into standard economic efficiency measures (Hoang and Nguyen, 2013). In other

words, the external effects of economic activities must be taken into considerations; and this

of course includes the effects on ecosystems and derived ES. Such an environment-adjusted

economic efficiency concept is termed as environmental efficiency. Due to such adjustments,

there might be trade-offs between environmental and economic efficiency. Analyses of envi-

ronmental and economic efficiency trade-offs can lead to several important management and

policy implications. For example, first, it is possible to calculate how much it costs to adjust a

production process from the economic efficient to the environmentally efficient status. This cost

could be interpreted as the shadow cost of becoming more environmentally friendly. Second,

one can measure how much more harms to the environment if the production process is adjusted

to move from the environmentally efficient to the economic efficient status. Such a trade-off

analysis provides useful implications for policy making and indicates the opportunity cost of

preferring economic efficiency to environmental efficiency or vice versa. It is thus important to
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measure both environmental and economic efficiency as well as their drivers in order to eval-

uate existing environmental policies and design new policies (Oude Lansink and Wall, 2014).

The need to reduce negative environmental impacts of economic activities leads to the idea of

more efficient use of resources, including ES. In this regard, efficiency (frontier) analysis (in the

narrow sense) has a valuable role to play (Fried et al., 2008, Polasky et al., 2008). Early efforts

in this direction include, for example, Tyteca (1999), Färe et al. (1996), Reinhard et al. (2002).

Even though such environmnetally oriented efficiency studies do not directly examine trade-offs

in ES, their findings are important as they contribute to conserve nature and thus enhance the

provision of ES. For example, less nutrient surplus released to water systems can make those

systems more healthy. In other words, ES are dealt in an implicit way.

There are currently different approaches for measuring environmental efficiency (see Lauwers,

2009; Oude Lansink and Wall, 2014 for detailed reviews). The first approach considers pol-

lutants as either an additional input (Reinhard et al., 2000; Hailu and Veeman, 2001), or an

undesirable output variable (Färe et al., 1989). While desirable outputs are assumed to be

strongly disposable, bad or undesirable outputs are treated as weakly disposable, implying that

their production could only be reduced by reducing desirable outputs or increasing inputs and is,

therefore, costly. Several applications of this approach use input and output distance functions

and directional distance functions (Reinhard et al., 1999; Shaik et al. 2002; Oude Lansink and

Silva, 2003; Asmild and Hougaard, 2006; Piot-Lepetit and Le Moing, 2007; Zhou et al., 2008;

and Skevas et al., 2012). The second approach is referred to as the frontier efficiency models

where they use the frontier framework to model relationships between economic and ecological

outcomes to derive eco-efficiency measures (Callens and Tyteca, 1999; Tyteca, 1999). The eco-

efficiency measures relate the economic value of outputs to the environmental pressures involved

in production processes (Picazo-Tadeo et al., 2012). Several empirical studies have applied this

approach (Kuosmanen and Kortelainen, 2005; Kortelainen, 2008; Picazo-Tadeo et al., 2011).

These applications can be seen as the frontier operationalization of the eco-efficiency concept

in the analysis of multidimensional sustainability (Lauwers, 2009).

While these two approaches have been widely applied, their theoretical grounds have some

limitations. In particular, the applications involving the inclusion of a pollution variable as an

input variable or (bad) output variable into a production technology - are inconsistent with

the materials balance principle (see proofs in Coelli et al., 2007) which is regulated by the law

of mass conservation that the materials in a production system are not lost and that material

inputs end up in either stock accumulation or material outputs. Therefore, a new approach has

been promoted, which is referred to as the materials balance approach (Van Meensel et al., 2010;

Nguyen et al., 2012; Hoang and Nguyen, 2013). This approach recognizes that nutrients not

contained in bad outputs go back into the environment as potential pollutants. Thus, nutrient

surplus should be minimized to reduce potential environmental impacts. As noted by Oude

Lansink and Wall (2014), environmental efficiency analyses incorporating the materials balance
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principle are relatively recent, with the consequence that studies involving its determinants in

this framework are scarce. Our work summarized below is considered pioneer of this approach.

In Paper 5, the cost and nutrient use efficiency of farms were determined using the Data En-

velopment Analysis (DEA) approach with a dataset of 96 rice farms in Gangwon province of

South Korea from 2003-2007. The findings show that improvements in technical efficiency would

result in both lower production costs and better environmental performance. It is, however,

not costless for farms to move from their current operation to the environmentally efficient

operation. On average, this movement would increase production costs by 119% but benefit the

water system through an approximately 69% reduction in eutrofying power (EP). It is estimated

that the average cost of each EP kg of aggregate nutrient reduction is approximately 1.2 USD.

For technically efficient farms, there is a trade-off between cost and environmental efficiency.

It is suggested that agri-environmental policies should be (re)designed to improve both cost

and environmental performance of rice farms. This is because farmers would normally like to

be as economically efficient as possible and the society tries to minimize the negative external

costs and thus to be environmentally efficient. This can be done by adjusting fertilizer prices

according to their nutrient content, making the iso-cost and iso-nutrient lines similar (Nguyen

et al., 2012).

In Paper 6, it is argued that environmental efficiency which is built upon the materials bal-

ance (MB) principle is more suitable than other environmental efficiency measures in situations

where the law of mass conversation regulates production processes. In addition, the MB-based

environmental efficiency method is particularly useful in analyzing possible trade-offs between

cost and environmental performance. Identifying determinants of MB-based environmental ef-

ficiency can provide useful information to decision makers but there are very few empirical

investigations into this issue. The DEA and stochastic frontier analysis techniques were applied

to determine variations in MB-based environmental efficiency. The size of land, fertilizer con-

sumption intensity, cost allocative efficiency, and the share of owned land out of total land are

found to be correlated with MB-based environmental efficiency. The results confirm the pres-

ence of a trade-off between MB-based environmental efficiency and cost allocative efficiency,

suggesting that policies could be (re)designed to help farmers to simultaneously achieve cost

efficiency and MP-based environmental efficiency (Hoang and Nguyen, 2013).

In Paper 7, the financial return, technical efficiency, and factors determining the intensity and

success of reforestation with a native tree species (Canarium album) were investigated in Viet-

nam, where the area of degraded forests is substantial, currently about 3.1 million ha of which

about 1.7 million ha (55%) were granted to individual farms for reforestation. However, the

result of farmers’ reforestation efforts is limited. The research was undertaken because tropical

forests continue to degrade globally, with negative consequences for environmental sustainability

and forest-dependent human communities (Nagendra, 2007). Despite signs of forest recovery

in a few countries (Meyfroidt and Lambin, 2011), the rate of tropical deforestation remains
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alarmingly high (FAO, 2010). Furthermore, the area of degraded tropical forests is large and

thus reforestation is important to support people and reduce pressures for additional deforesta-

tion. Large reforestation programs have been implemented in a number of countries to deal

with the challenges of energy shortage, biodiversity loss, and global climate change. However,

little attention has been given to the crucial problem of sustaining economic activity of people

who participate in such programs (Chazdon, 2008; Frondel et al., 2012) and finding out the

determinants of successful reforestation. It is believed that reforestation provides one of the so-

lutions to the current problem of forest loss and its consequences (Angelsen, 2010). The results

show that reforestation with C. album is less financially profitable than that with an exotic tree

species (Acacia mangium) as the alternative land use option. The subsidy from the government

is found insufficient to compensate for the income losses of farmers participating in reforestation

with this native tree species. Reforestation with C. album could be more successful if participat-

ing farmers were equipped to be more technically efficient. Finally, the findings show that the

security of forest land property rights and the provision of forest extension services are among

the determinants of participation in, and the subsequent success of reforestation with C. album

(Nguyen et al., 2014b).

3.3 Policy and research implications for ES

Over the past few decades, progress has been made in understanding how ecosystems provide

services and how service provision translates into economic value (Daily, 1997; MA, 2005; TEEB,

2010). Yet, it has proven difficult to move from general pronouncements about the tremendous

benefits that nature provides to people to credible, quantitative estimates of ecosystem service

values (Nelson et al., 2009). The value of ES has been estimated in various ways. In general, the

framework has three main parts: (i) measuring the provision of ES as in Part A; (ii) determining

the monetary value of ES; and (iii) designing policy tools for managing ES (Polasky et al., 2008).

While ecologists and other natural scientists have been engaged in enhancing our understanding

of how ecosystem services are produced (Power, 2010), determination of the monetary value of

ES is difficult and not straightforward. This is because (i) the concept of value is normative,

and (ii) many ES are non-marketed goods or services without any prevailing prices. For those

services, various approaches, including travel cost method, contingent valuation, or hedonic price

approach have been applied (Losey and Vaughan, 2006; Swinton et al., 2007; Mendelsohn and

Olmstead, 2009). The overarching goal of measuring and valuing ES is to use that information

to shape policies and incentives for better management of ecosystems and natural resources

(Nelson et al., 2009) and thus enhance the provision of ES for human well-being.

This sub-section is devoted to the policy and research implications for ES. In terms of policy

implications the focus is on payments for ES (PES) and institutions. As discussed in the

theoretical section, while economic justification for PES is clear (Coase, 1960; Costanza et al.,
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1997; Gómez-Baggethun et al., 2010; Garcis-Amado et al., 2011) the operationalization of PES

programs is much more challenging. In theory, monetary value assigned to PES can range

from the opportunity costs to landowners to the true value of all ecosystem services provided,

minus transaction costs. In practice, most PES systems are “input-based”, meaning that they

compensate landowners for “inputs” such as trees planted, rather than for true “outputs” of

ecosystem services such as, for example, increased water regulation capacity. This is because

such outputs are difficult and expensive to assess and quantify (Engel et al., 2008). It is also

quite often the case that, rather than evaluate, quantify, and monetarize actual ecosystem

services provided, PES systems simply compensate landowners for provision cost (Ohl et al.,

2008). In this case, payments can be based on environmental targets and the cost to farmers for

providing the desired land use (Pagiola et al., 2002). Obviously, this cost-covering compensation

approach has several shortcomings. For example, it restricts the scope to those who bear some

costs. Those who bear no costs do not need to be compensated. This is more problematic when

service providers who suffer costs look not only for recompense, but also for a “provider surplus”

- gains from the transaction that exceed their costs and make them better-off (Wunder, 2007).

This requires a more robust approach to identify PES that is contingent on the actual provision

of ES as this can provide an incentive for the land user to enhance the provision of ES, for

example afforestation instead of crop farming (Nguyen et al., 2010; Nguyen et al., 2014b).

In Paper 8, a framework to calculate the economic value of forest hydrological services was

established. The importance and advantage of forests in providing hydrological services are well-

known, and have been extensively documented (Hewlet, 1982; Börkey et al., 2005; Chang, 2006).

Forest hydrological services are beneficial for hydroelectric production, where forests contribute

to lower soil sedimentation and store water, and thus, maintain the capacity and prolong the

longevity of hydroelectric production plants (Rojas and Aylward, 2002; Nguyen et al., 2013).

These services must be paid for. However, the basis for identifying the proper level of payments is

under much discussion and substantially different from case to case (Kosoy et al., 2007; Wunder

et al., 2008), creating difficulties for policy decision-making and practical application. Progress

in the assessment of ES has been impeded by the lack of a standardized classification of which

services to evaluate and how (Fisher et al., 2009; Boyd and Banzhaf, 2007). This is because it

is often difficult to measure the output of ES. Thus, the quantification and valuation of those

services must be carried out in order to establish a basis for the required payment. This paper

focused on the most important forest hydrological services, namely for hydroelectric production

via water storage and release (water provision), and in the prevention of soil loss with subsequent

sedimentation of the reservoir (sediment prevention). Lower sedimentation plays an important

feedback role in the economic system, since the longevity of the hydroelectric plant is prolonged.

The established framework was applied to the HoaBinh Reservoir in the north of Vietnam, since

the HoaBinh Hydroelectric Plant and forest owners recently reached an agreement that the

plant would pay the forest owners a certain proportion of the increased revenue for forest water
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provision and sediment prevention services. The study is, thus, of practical significance for the

implementation of this agreement. By extending the analysis to different land use change and

electricity price scenarios, the findings contribute useful information with respect to sustainable

land use and formulation of forest management policy. The valuation is based on measurements

over a six-year period from 2001 to 2006 in 240 permanent sample plots in different vegetation

types distributed throughout the watershed. The findings indicate that the payments for forest

hydrological services for electricity production ranges from 26.3 million USD to 85.5 million

USD per year; and that the longevity of the hydroelectric plant can be prolonged by about

35–80 years, depending on the state of forest cover in the watershed, the prices of electricity,

and the payment arrangements.

In Paper 9, the forest property right system as an important institutional factor for ecosystem

management and provision of ES was discussed. The paper employs property rights based

framework coupled with some New Institutional Economics (NIE) (Williamson, 1975; Coase,

1998; Ostrom, 2005) debates as a diagnostic framework for understanding forest property rights.

This is because property rights, institutions and public choice are key concepts in the allocation

and use of natural resources, including ES. A property right is a bundle of entitlements defining

and stipulating the owner’s rights, privileges and limitations for the use of resources. Effective

institutional property rights are increasingly becoming an important part in the allocation

of scarce forest resources and to combat the “tragedy of the commons” thesis. The paper

outlines conceptual, analytical, and theoretical aspects of forest institutional property rights

and an empirical synthesis of main findings from institutional property rights effectiveness

in a cross-country comparative context (Vietnam and Ghana). The Sustainable Livelihoods

Framework (SLF) provides empirically insights into how “forest institutional property rights”

impact on forest communities’ livelihoods and management. The analysis provides support for

the argument that forest institutional property rights play important role in the livelihoods of

forest dependent communities and in forest management, but that can be context specific as

showcased in our findings. Finally, the paper makes some recommendations in institutional

analysis of forest property rights, such as strong and clearly defined property rights, integration

of formal and informal rights and suggests strong linkage between institutional property rights

and sustainable livelihoods as a “panacea” for sustainable forest livelihoods and management

in developing countries.

In addition to these two empirical papers, the other two papers in this sub-section are con-

ceptual and synthesis articles. In Paper 10, the current literature on integrated assessments

of climate change that combines ecological process based models with economic analyses was

reviewed and a framework for such assessments with regard to bioenergy productions at local

scale was constructed. The paper is based on the understanding that that bioenergy can signif-

icantly contribute to mitigate the negative effects of climate change, enhance energy security,

and promote rural development (Henniges and Zeddies, 2006; GTZ, 2009). Thus, public pol-
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icy and private investment around the globe are directed toward increasing local capacity to

produce bioenergy (Khanna, 2008). Nevertheless, the potentials for using new plant varieties

for biomass as an alternative energy source or as feedstock in an environmentally sustainable

fashion remains to be demonstrated, since disturbing influences on land use decisions, on food

prices, as well as on natural habitats due to use of bioenergy plants have been experienced

(Scholz and Ellerbrock, 2002; Bechberger and Reiche, 2004; Hill et al., 2006; von Lampe, 2007;

IFAD, 2008; Popp et al., 2011). Climate change is a global phenomenon but the effects are

spatially and temporally different. The vulnerability to climate change varies from case to

case and, thus, requires specific local mitigation and adaptation strategies. Given the broad

uncertainties of climate change effects, assessing local economic impacts of climate change will

enhance our understanding about how local communities can respond to climate change, and

will highlight public policies or private choices that address or limit impacts. Therefore, the

link between climate change and bioenergy potentials was conceptualized; key literature in this

field was reviewed; and the challenges that the scientific communities are facing to build such a

framework were discussed. The paper provides an opinion on the state-of-the-art of integrated

ecological-economic assessments of climate change, as well as the challenges along with their

implications faced in planning adaptation at local scale. It suggests that a much stronger effort

must be made to meld natural science crop modeling approaches with economic analyses, to

include spatially explicit consideration of conventional crop production along with 1st and 2nd

generation bioenergy crops, and the evaluation not only of “best guess” scenarios of change, but

also potential system impacts of extreme scenarios. To our understanding, there has been a very

limited effort to perform integrated ecological-economic assessments of climate change linked

with bioenergy potentials via a combined framework of crop growth simulation and economic

evaluation in general and at local scale in particular.

From the literature review and our work presented so far, it is realized that our efforts are still

limited in the sense that they are partial and consider only a few factors driving ecosystem

changes and land use decision making. There are still a number of research gaps that need to

be filled in, for example, as stated by Baumgärtner et al., (2006), it is not sufficient to just

consider these two ecological and economic perspectives. Even taken together, the economic

and ecological perspectives do not give a full and comprehensive picture of the interrelation

between humans and nature. There are additional dimensions of the human being and its

relation to nature (Becker and Manstetten, 2004; Becker, 2006). This includes, for example,

slow changes that have occurred in regional social-ecological or human-environment systems,

because such systems have a specific history (both social and biophysical) which has set the

current scene, and critical thresholds may have occurred or may still occur that strongly in-

fluence regional ecosystem service outputs. Sustainable management should avoid net losses

in ES and, therefore, requires detailed understanding of long-term changes in both social and

biophysical drivers, their complex interactions in terms of impacts on ecosystem performance,
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and their potential restriction of future trajectories of change, e.g., restrictions in relation to

the implementation of management policies. Unraveling the long-term impacts of slowly chang-

ing drivers is key to understanding existing and potential communication among stakeholders

across scales and social groups. Analytical traditions in the social sciences, in economics, and in

ecosystem science provide us with partial frameworks within which to describe social/human –

ecological/environment systems only. While even within these partial frameworks critical sim-

plifications are required, the major problem facing us today is how to profitably link together

these differently constructed frameworks and relate them to potential global change impacts and

long-term natural resource management (Tenhunen et al., 2015). Therefore, to make better de-

cisions regarding ES trade-offs, a systematic account of the relationships between ecosystem

management and the ES and values that it generates, is needed. This leads to the need to

develop, based on various experimental efforts in a complex terrain in South Korea, a frame-

work to study a classical trade-off in ES (provisioning of agricultural and forest products versus

high quality water for public and industrial consumption). The basic question is on time de-

pendent changes in spatial patterns of social-ecological systems that affect ES provision. The

framework includes 10 adapted principles grouped in four themes, namely (i) long-term evolu-

tion of social-ecological systems, (ii) response of natural system, (iii) economic efficiencies and

trade-offs in social-ecological systems, and (iv) sustainable management of key provisioning ser-

vices. The historical and future trajectories in regional change, ecosystem processes, especially

in farming areas that are hotspots of non-point water pollution, watershed level carbon, water

and nutrient balances, economic gains and losses due to environmental impacts, environmental

efficiencies, regional management efforts, and the educational approaches that would support a

new paradigm in adaptive resource management were discussed. This framework develops and

thus covers much more dimensions than that described above in Figure 2 and is summarized in

Paper 11, which indicates that there are still many challenges due to the analytical complexity

that require further integrated research to better support policy making for problem solving.

3.4 Summary of research contribution

Sustaining the supply and delivery of ES requires a deep understanding of the functioning

of social/human-ecological/environment systems, the interactions of system components, and

their responses to drivers of system changes in terms of gains and losses in ES. Therefore, the

main analytical framework of this thesis is to use trade-off analyses in ES to provide useful

implications. Given the commonly accepted notion that ecosystem services are products of

social/human-ecological/environment systems, research in gains and losses of ecosystem services

must be able to deal with both ecological and socio-economic systems, and thus demands an

interdisciplinary approach. This is what the thesis has been tried to undertake in Part A. These

analyses of trade-offs and drivers of changes in ES indicate that (i) private choices of land use

alternatives, including crop selection, nutrient management practices, and farming techniques
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at field, sub-watershed or local level can lead to synergies and trade-offs in ES, and (ii) the

effects of climate variations and other drivers, both spatially and temporally, are still varied,

even at a local scale. Therefore, the external effects of those choices must be taken into account

to increase the social welfare. The challenge with regard to this point is that there are many

effects and thus it is needed to find a way to represent them, instead of considering a specific

effect separately. This is done in Part B.

Part B has extended the conventional ES trade-off framework in Part A with application of the

economic efficiency concept to determine opportunity costs of resource use alternatives. It is not

directly or explicitly related to a specific ES. Rather, it deals with the ecosystems (agricultural

or forest ecosystems) as a whole; and thus facilitates a careful consideration in resource use

decision making which is directly related to ES. The analyses in Part B show that agricultural

intensification has led to a number of environmental externalities that need to be regulated as

economic benefits are the main factors determining farmers’ choice of land use and management

practices; and there are economic and environmental trade-offs that need to be considered

for sustainable development. These findings help identify the gainers and losers in welfare of

different future development pathways. The understanding is that trade-off assessment is an

operational tool for a quantitative approach to agricultural and environmental policy analysis

and an essential ingredient in setting and designing relevant policies for sustainable agriculture.

As land use processes are not static but dynamic and their external effects are thus also dynamic,

depending on land use activities and their direct and indirect drivers of change, and there are

critical threshold levels of such drivers at which the ecosystems can conserve their productive

capacity and resilience. In this regard, environmental and economic efficiency analyses can

provide a set of important information useful to relevant stakeholders (land users, policy makers,

environmentalists, economists, etc.). In other words, the efficiency analysis can contribute a

layer of required information to our current understanding on the dynamics of the regional

social-ecological systems and improve the decision making processes towards more sustainable

regional development. Part C of the thesis deals with implications for policy making and

research, from payments for ES to institutions for ecosystem management, from an ecological

– economic integration to a more comprehensive regional sustainable development perspective

for sustainable acquisition of ES.

More specifically, from an empirical perspective, gains and losses in ES have been identified

by (i) simulating nitrate leaching and private costs and benefits of management scenarios (Pa-

per 1), and (ii) simulating water runoff regulation and private costs and benefits of land use

scenarios (Paper 2); (iii) investigated the effects of climate variations on biomass accumula-

tion (Paper 3), and farming techniques on soil erosion prevention (Paper 4); (iv) determining

production efficiency measures and trade-offs between an economic and an environmental per-

spective (Papers 5 and 7) and drivers of environmental performance (Paper 6) and reforestation

with a native tree species (Paper 7); (v) establishing a framework of output-based payments
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for forest hydrological services (Paper 8) and discussing an effective property right system for

forest ecosystem management (Paper 9). From a theoretical perspective, frameworks for ES

assessments in relation to human well-being were constructed (Papers 10 and 11).
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Baumgärtner, S., Dyckhoff, H., Faber, M., Proops, J., Schiller, J., 2001. The concept of joint production

and ecological economics. Ecological Economics 36, 365–372.
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Costanza, R., Wainger, R., Folke, C., Mäler, K-G., 1993. Modeling complex ecological economic systems:

toward an evolutionary, dynamic understanding of people and nature. BioScience 43, 545-555.

Cumming, G., Peterson, G., 2005. Ecology in global scenarios. In: Carpenter, S.R., Pingali, P.L.,

Bennett, E.M., Zurek, M.B. (eds.): Ecosystems and human well-being: Scenarios, Volume 2. Findings

of the Scenarios Working Group, Millennium Ecosystem Assessment. Island Press, Washington, D.C.

pp. 45-70.

Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H.,

Salzman, J., Shallenberger, R., 2009. Ecosystem services in decision making: Time to deliver. Frontiers

in Ecology and the Environment 7, 21–28. Daily, G.C., 1997. Nature’s services: Societal dependence on

natural ecosystems. Island Press, Washington, D.C.

de Baan, L., Alkemade, R., Koellner, T., 2013. Land use impacts on biodiversity in LCA: A global

approach. International Journal of Life Cycle Assessment 18, 1216-1230.

de Groot, R.S., 1987. Environmental functions as a unifying concept for ecology and economics. The

31



Introduction

Environmentalist 7, 105–109.

de Groot, R.S., 2006. Function-analysis and valuation as a tool to assess land use conflicts in planning

for sustainable, multi-functional landscapes. Landscape and Urban Planning 75, 175-186.

de Groot, R.S., Alkemade, R., Braat, L., Hein, L., Willemen, L., 2010. Challenges in integrating the

concept of ecosystem services and values in landscape planning, management and decision making.

Ecological Complexity 7, 260-272.

de Groot, R.S., Wilson, M.A., Boumans, R.M.J., 2002.A typology for the classification, description and

valuation of ecosystem function, goods and services. Ecological Economics 41, 393 - 408.

Debertin, D.L., 2012. Applied microeconomics: Consumption, production and markets. University of

Kentucky.

Debreu, G., 1959. Theory of value: An axiomatic analysis of economic equilibrium. Wiley, New York.

Delacote, P., 2012. Forests and development: Local, national and global issues. PhD thesis, the European

University Institute.

Demsetz, H., 1967. Towards a theory of property rights. American Economic Review 57, 347–59.

Dimitrov, R., S., 2005. Hostage to norms: States, institutions and global forest politics. Global Envi-

ronmental Politics 5, 1-24.

Drechsler, M., Grimm, V., Mysiak, J., Wätzold, F., 2007. Differences and similarities between economic

and ecological models for biodiversity conservation. Ecological Economics 62, 232-241.

Drechsler, M., Johst, K., Wätzold, F., Shogren, J. F., 2010. An agglomeration payment for cost-effective

biodiversity conservation in spatially structured landscapes. Resource and Energy Economics 32, 261-

275.

Drechsler, M., Wätzold F., 2007. Ecological-economic modelling for the sustainable use and conservation

of biodiversity. Ecological Economics 62, 203-206.

Drechsler, M., Wätzold, F., 2009. Applying tradable permits to biodiversity conservation: Effects of

space-dependent ecological benefits and cost heterogeneity on habitat allocation. Ecological Economics

68, 1083-1092.

Eatwell, J., Milgate, M., Newman, R., 1987. A dictionary of economics, 4 vols. Macmillan, London.

Egoh, B.N., O’Farrell, P.J., Koellner, T., Charef, A., Gurney, L.J., Abi, H.N., Egoh, M., Willemen, L.,

2012. An African account of ecosystem service provision: use, threats and policy options for sustainable

livelihoods. Ecosystem Services 2, 71-81.

Elmqvist, T., Tuvendal, M., Krishnaswamy, J., Hylander, K., 2011. Managing trade-offs in ecosystem

services. Ecosystem Services Economics Working Paper Series No. 4. The United Nations Environment

Programme.

32



Introduction

Elmqvist, T., Tuvendal, M., Krishnaswamy, J., Hylander, K., 2010. Ecosystem services: managing

trade-offs between provisioning and regulating services. In: P. Kumar (eds.): Valuation of regulating

services: from theory to practice. Routledge UK.

Engel, S., Pagiola, S., Wunder, S., 2008. Designing payments for environmental services in theory and

practice: An overview of the issue. Economics 65, 663–674.

Faber, M., Manstetten, R., 1998. Philosophische Grundlagen von Ökonomie und Ökologie, Lecture notes,
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S., Leuschner, C., Maertens, M., Marggraf, R., Migge-Kleian, S., Mogea, J., Pitopang, R., Schaefer, M.,

Schwarze, S., Sporn, S.G., Steingrebe, A., Tjitrosoemito, S., Twele, A., Weber, R., Woltmann, L., Zeller,

M., Tscharntke, T., 2007. Tradeoffs between income, biodiversity, and ecosystem functioning during

tropical rainforest conversion and agroforestry intensification. PNAS 104, 4973–4978.

43



Introduction

Stern, N., 2007. Stern Review: The economics of climate change. Cambridge University Press, Cam-

bridge.

Swallow, B.M., Sang, J.K., Nyabenge, M., Bundotich, D.K., Duraiappah, A.K., Yatich, T.B., 2009.

Tradeoffs, synergies and traps among ecosystem services in the Lake Victoria Basin of East Africa.

Environmental Science & Policy 12, 504–519.

Swinton, S.M., Lupi, F., Robertson, G.P., Hamilton, S., K., 2007. Ecosystem services and agriculture:

Cultivating agricultural ecosystems for diverse benefits. Ecological Economics 64, 245-252.

Tallis, H., Kareiva, P., 2005. Ecosystem services. Current Biology 15, 746-748.

Tallis, H., Kareiva, P., Marvier, M., Chang, A. 2008. An ecosystem services framework to support both

practical conservation and economic development. PNAS 105, 9457-9646.

Tancoigne, E., Barbier, M., Cointet, J-P., Richard, G., 2014.The place of agricultural sciences in the

literature on ecosystem services. Ecosystem Services 10, 35–48.

TEEB, 2010. The ecological and economic foundation. Available at http://www.teebweb.org

Tenhunen, J., Nguyen, T.T., Choi, I.C., Park, J.Y., Kim, S.J., Shin, H.J. 2015. Analyzing time depen-

dent change in ecosystem service provision in a regional social-ecological-system: a watershed-oriented

approach.Unpublished, University of Bayreuth.

Therrien, R., McLaren, R., Sudicky, E., Panday, S., 2010. HydroGeoSphere: a three dimensional numer-

ical model describing fully integrated subsurface and surface flow and solute transport (draft). Ground-

water Simulations Group. Waterloo.

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural sustainability and

intensive production practices. Nature 418, 671-677.

Tol, R.S.J., 2010. Economics of Climate Change. Perspektiven der Wirtschaftspolitik 11, 13-17.

Turner, R.K., Daily, G.C., 2008. The ecosystem services framework and natural capital conservation.

Environmental and Resource Economics 39, pp. 25-35.

Turton, C., 2000. The sustainable livelihoods approach and programme development in Cambodia.

Working Paper 130. Overseas Development Institute. London.

Tuvendal, M., Elmqvist, T., 2011. Ecosystem services linking social and ecological systems: river brown-

ification and the response of downstream stakeholders. Ecology and Society 16, 21.

Tyteca, D., 1999. Sustainability indicators at the firm level. Journal of Industrial Ecology 2, 61-77.

Ulbrich, K., Drechsler, M., Wätzold, F., Johst, K., Settele, J., 2008. A software tool for designing cost-

effective compensation payments for conservation measures. Environmental Modelling & Software 23,

122-123

Van Jaarsveld, A.S., Biggs, R., Scholes, R.J., Bohensky, E., Reyers, B., Lynam, T., Musvoto, C., Fabri-

44



Introduction

cius, C., 2005. Measuring conditions and trends in ecosystem services at multiple scales: The Southern

African Millennium Ecosystem Assessment (SAfMA) experience. Philosophical Transactions of the Royal

Society B: Biological Sciences 360, 425-441.

Van Meensel, J., Lauwers, L., Van Huylenbroeck, G., Van Passel, S., 2010. Comparing frontier methods

for economic-environmental trade-off analysis. European Journal of Operational Research 207, 1027-

1040.

Verutes, G.M., Rosenthal, A., 2014. Using simulation games to teach ecosystem service synergies and

trade-offs. Environmental Practice 16, 194-204.

Viglizzo, E.F., Frank, F.C., 2006. Ecological interactions, feedbacks, thresholds and collapses in the

Argentine Pampas in response to climate and farming during the last century. Quaternary International

158, 122–126.

Vignola, R., Koellner, T., Scholz, R., McDaniels, T., 2010. Decision making by farmers regarding

ecosystem services: factors affecting soil conservation efforts in Costa Rica. Land Use Policy 27, 1132-

1142.

Vitousek, P. M., Aber, J. D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger,

W.H., Tilman, D.G., 1997. Human alteration of the global nitrogen cycle: sources and consequences.

Ecological Applications 7, 737-750.

Volk, M., 2013. Modelling ecosystem services: Challenges and promising future directions. Sustainability

of Water Quality and Ecology 1, 3-9.

von Lampe, M., 2007. Economics and agricultural market impacts of growing biofuel production. Agrar-

wirtschaft 56, 232-237.

Walker, B., Carpenter, S., Anderies, J., Abel, N., Cumming, G.S., Janssen, M., Lebel, L., Norberg,

J., Peterson, G.D., Pritchard, R. 2002. Resilience management in social-ecological systems: a working

hypothesis for a participatory approach. Conservation Ecology 6, 14.

Wallace, K.J., 2007. Classification of ecosystem services: Problems and solutions. Biological Conserva-

tion 139, 235-246.

Wang, S., Fu, B., 2013. Trade-offs between forest ecosystem services. Forest Policy and Economics 26,

145-146.

Wätzold, F., Drechsler, M., Armstrong, C.W., Baumgärtner, S., Grimm, V., Huth, A., Perrings, C.,
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