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Abstract

In this thesis, the problem of optimally placing and orienting multiple cameras by a suitable algorithm
is considered. The algorithm optimizes the positions and orientations of the cameras in a given three-
dimensional environment to approximate a target, such as a human, most accurately, or to maximally
cover the important regions of the environment. The more precise the approximation, the easier it is to
protect the human. In general, the better the environment is covered in the relevant regions, the easier an
approximation can be formed.

Such a method requires a visibility analysis, a simulation of the field of view of each camera. The
visibility analysis is time consuming, since it can only be done geometrically. Previous work severely
simplifies the optimization, e.g., by only considering a two-dimensional top view of the environment,
by defining the possible mounting spots of the cameras in a discretized way, or by neglecting visual
obstacles. In contrast to the existing work, the proposed algorithms place multiple cameras in a three-
dimensional environment on a continuous domain considering static and dynamic visual obstacles.

The three algorithms are globally convergent and establish a feasible solution at any time after a short
initialization phase. Several strategies are developed for decreasing the computation time of the methods:
Some of the strategies decrease the number of objective function calls, some accelerate the visibility
analysis, and some increase the convergence rate of the solver. In general, the number of function
evaluations of the solvers is as low as in case of a local solver although it is applied to functions without
gradient. It is practical for a variety of problems whose objective functions are non-convex, stair-cased,
expensive, or given only as a black-box.

Furthermore, the computation is accelerated by the following strategies: The optimization methods are
ready to incorporate prior information about good and bad placements, e.g., to prevent cameras from
facing a wall of the room right from the beginning. Additionally, they can use the symmetry of a function
and the fact that a function is substantially cheaper on subspaces of the domain for an acceleration. Lastly,
one of the solvers has been proved to converge even when some of the function calls are computed
in parallel. With the proposed architecture for camera placement, a system has been developed that
efficiently generates provably good positions and orientations of cameras in three dimensions that a
human might not think of. This is demonstrated on several synthetic and realistic examples.

In order to establish prior information about the objective function and its properties, the function is
analyzed in the beginning of the thesis. The analysis shows the regions which are covered by the cameras
or the regions that define the approximation of the target. Both regions have a polyhedral shape. Vertices,
faces, and the contact of faces with specified points of the environment are classified depending on the
camera parameters. This is particularly interesting to investigate the differentiability and stair-casing of
the objective function.





Zusammenfassung
In dieser Arbeit wird eine Methode zur optimalen Platzierung und Orientierung mehrerer Kameras er-
stellt. Der Algorithmus optimiert die Positionen und Orientierungen der Kameras in einer vorgegebenen
dreidimensionalen Umgebung, um ein Objekt, zum Beispiel eine Person, möglichst genau zu appro-
ximieren, oder die wichtigen Bereiche der Umgebung möglichst gut auszuleuchten. Denn je genauer
die Approximation der Person ist, desto einfacher ist es, sie zu beschützen. Außerdem ist eine Appro-
ximation einfacher zu erstellen, je mehr von der Umgebung, in der sich das Objekt befindet, von den
Kameras abgedeckt wird.

In einem solchen Programm wird eine Sichtbarkeitsanalyse benötigt, eine Analyse die zu einer gegebe-
nen Umgebung den Sichtbereich einer Kamera bestimmt. Diese Analyse muss automatisch geometrisch
berechnet werden und ist zeitaufwendig. In der existierenden Literatur wird die Sichtbarkeitsanalyse
deshalb stark vereinfacht, beispielsweise wird nur die zweidimensionale Draufsicht auf einen Raum als
Umgebung verwendet, Hindernisse, wie Mauern oder andere Menschen, werden nicht berücksichtigt
oder es gibt nur diskrete Montagepunkte für die Kameras. Im Gegensatz zu existierenden Arbeiten,
werden hier mehrere Kameras in einer dreidimensionalen Umgebung auf einem kontinuierlichen Defini-
tionsbereich, also beispielsweise im ganzen Raum, unter Berücksichtigung von Hindernissen betrachtet.

Die drei erstellten Algorithmen sind zuverlässig, global konvergent und gelangen nach einer kurzen
Initialisierungsphase zu einer zulässigen Lösung. Mehrere Strategien werden vorgestellt, um
deren Berechnungszeit zu verkürzen: Die Reduktion der Funktionsaufrufe, die Beschleunigung der
Sichtbarkeitsanalyse und die Beschleunigung der Konvergenz. Im Allgemeinen ist die Anzahl der Funk-
tionsaufrufe der Methoden bis zur Terminierung vergleichbar mit lokalen Methoden, obwohl sie keinen
analytischen Gradienten benötigen. Die Methoden sind für eine Vielzahl an Problemen interessant, deren
Zielfunktion quantisiert, zeitaufwendig, nicht konvex oder nur als “Blackbox” gegeben ist. Mit der
vorgestellten Architektur für Kameraplatzierung ist ein System entwickelt worden, das effizient gute Po-
sitionen und Orientierungen der Kameras in drei Dimensionen erstellt, an die der Mensch nicht unbedingt
gedacht hätte. Das ist an mehreren synthetischen und praktischen Beispielen getestet worden.

Außerdem wurde die Berechnung durch die folgenden Strategien beschleunigt: Die Optimierungsme-
thoden können vorher bekannte Informationen über gute und schlechte Platzierungen berücksichtigen,
beispielsweise um von vornherein auszuschließen, dass die Kameras an einer Wand zu dieser hinorien-
tiert werden. Zusätzlich können die Methoden die Symmetrie einer Funktion und die Tatsache, dass die
Funktion auf Unterräumen des Definitionsbereichs wesentlich einfacher zu berechnen ist, ausnutzen um
die gesamte Berechnung zu beschleunigen. Zuletzt ist sogar eine der Optimierungsmethoden bewiese-
nermaßen konvergent, wenn die Zielfunktionsaufrufe parallel berechnet werden.

Um vorher bekannte Informationen und Eigenschaften von der Zielfunktion unseres Problems abzuleiten,
wird die Funktion zu Beginn der Arbeit analysiert: Die Analyse beweist, dass die Gestalt der Berei-
che, die durch die Kameras abgedeckt werden, oder der Bereiche, die die Approximation des Objektes
definieren, ein entartetes Polyeder ist. Die Ecken, Flächen und das Aufeinandertreffen von Ecken und
Flächen werden in Abhängigkeit der Kameraparameter klassifiziert. Diese Klassifizierungen sind beson-
ders wichtig für die Untersuchung der Differenzierbarkeit und der Quantisierung der Zielfunktion.
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Chapter 1

Introduction to Camera Placement

Cameras are deployed in private as well as in public space, in malls, in museums, or in the military. The
purpose of the surveillance can vary between capturing a scene, documenting the course of an action,
reconstructing, and tracking objects such as people. In modern production facilities, the requirement of
a surveillance system goes beyond documenting the scene and has developed in direction of automation
and self controlling.

Take the following example: In [75,78,80] humans and robots are supposed to share a common working
area. Conventionally, humans use their visual sense in order to avoid collisions. However, in the context
of fast working, heavy, or harmful machines a human’s reaction speed can be insufficient. Such a scene
is illustrated in Figure 1.1 to the left. In order to protect the human collaborator from any harm, safety
strategies need to be developed: Potentially dangerous situations have to be detected early on and, as a
consequence, the movement of the machine needs to be decelerated, stopped, or even redesigned. Using
a camera as a sensor is attractive as it captures the human visually, in contrast to a contact sensor which
needs to establish contact to the object at hand. Thus, a dangerous situation can be detected in time with
enough space left between machine and human coworker.

Computer vision approaches are vital to automate surveillance tasks as the above and to plan locomotion.
This is shown by various publications in such diverse fields as sidewalk and transport safety [92, 98],
tracking [25], gesture recognition [28], or other surveillance tasks [49, 66], to name just a few. The
significance of surveillance systems in our community can be illustrated in the context of toy industry
quite vividly. Since very recently, several consumer electronic stores make sure that even the youngest
of us boost sales of drones and remote controlled cars with attached cameras, e.g., the sales of Parrot’s
quadcopter [114]. In fact, the sales in this area have enough substance to keep the research permanently
busy with new ideas. The significance of impressing others, e.g., by showing off with daring self portraits,
is reaching a new height with the development of self-portraiting drones that follow you and return to
you, [36, 76].

Nevertheless, the benefit of cameras in areas beyond toy industry is undeniable. If the physical integrity
of humans is primary task of a surveillance system, then the system essentially needs to be failure-
resistant. To this aim, usually more than one sensor is attached to walls or ceilings or, in case of dynamic
systems, to drones. The images of these sensors are sent to one common or several distributed computing

1



2 CHAPTER 1. INTRODUCTION TO CAMERA PLACEMENT

cores. The mounting, communication, cores, and sensors are called a sensor network. The sensor net-
work’s task is to capture objects with each sensor, to process, to communicate, and to merge the images
in order to reconstruct or track the objects, and to initiate responses based on the object’s behavior. In the
example of human-robot cooperation above, regions of the work cell where the human could be located
are identified by a camera. Merging these associated regions means intersecting them and thus producing
a silhouette of the human, illustrated in Figure 1.1 to the right. Generally, the more precise the silhouette
of the human, the more exact is the robot’s idea when to initiate a safety strategy, such as redesigning the
robot’s route.

Figure 1.1: Physical setup (left) and three-dimensional reconstruction of the human generated
by [79] (right) ensuring the safety of humans when coexisting or cooperating with a robot in the
same working area. The three-dimensional silhouette of the collaborator is constructed from the
video streams of eight cameras in real-time.

Even the best safety strategy is obsolete if the quality of the sensor network is insufficient, e.g., if the
surveillance area is poorly covered by the sensors in the relevant regions. This is why primarily the
following questions need to be answered: How many sensors need to be applied? What are the maximum
expenses that a sensor network may cost? Where, according to the surveillance area, do the sensors of a
network need to be located in order to maximize the quality of the sensor network? How do the sensors
need to be oriented or adjusted otherwise? Traditionally, heuristics are used to obtain a good placement
of sensors, manually. Among these is the attachment “preferably in the corners of the room” when
placing camera sensors – since they do not interfere with the action in the room, there, and a camera with
a limited field of view is not limited by the walls in its back any further.

One way to get a more precise prediction about the quality of a specific setup is analysing the sensor
coverage. Here, the coverage of a sensor is a particular region or set of objects in the room which can be
observed by the sensor “in a certain way”. If these regions are too small or the objects are not sufficiently
covered, the surveillance system may fail. When performed for camera sensors, analysing the coverage
is also called visibility analysis, c.f. [101]. The coverage as well as the visibility needs to be deduced
geometrically, taking into account the surveillance area, the placement of the sensors, and other obstacles
in the scene. Then, for a particular set of network parameters, e.g., places of sensors, the quality can be
estimated from the coverage by applying a suitable measure, as the volume of the regions in total, or a
counting measure for objects.

Such an objective quality indicator is varied by changing the sensor parameters or the scenery. For
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a chosen scene, the quality of a network allows to automatically optimize the sensor parameters and
locations. A suitable optimization method deduces the next set of parameters of the network based on
the quality of the current set of parameters. Section 1.1 describes parameters, challenges, and aims
of sensor network optimization. Section 1.2 specifies these general terms in the context of the above
motivation for camera networks. The related work is described in Section 1.3 and in Section 1.4 the
content of the thesis is summarized.

1.1 Camera Network Optimization

Sensor networks are used in museums, in the industry, in the military, for natural sciences such as mete-
orology, archeology and robotics, in architecture, in sports, in virtual reality, and the list of applications
goes on. In the industry, contact sensors help to establish the contact of workpiece and tool, but in the
military, any kind of contact may be undesirable. In sports, several cameras are used to document the
scene from several angles of the playing field. Conversely, in “eye in hand” applications in robotics,
a single camera is mounted on a robot arm to get the next best view, so several cameras may not be
preferable. Various types and aims of sensor networks exist but only few are designed equally. Thus, the
design space of an according optimization is varying. In this section, the similarities for sensor network
optimization are depicted in the context of the parameters of sensor optimization in general (Section
1.1.1), in the context of challenges of camera network optimization (Section 1.1.2), and in the context of
aims of sensor network optimization (Section 1.1.3).

1.1.1 Parameters

The design space of wireless sensor networks is the combination of various factors described by [4,
128]: The costs or resources, the ease of deployment, heterogeneity of sensors, mobility, communication
modality, network topology and transmission media, coverage, infrastructure, connectivity, network size,
and life time. The authors of [143] add local processing, real-time perfomance, time synchronization,
and data storage in their survey about visual sensor networks. However, the significant parameters for
sensor network optimization can be summarized as follows:

Variables The variables of sensor network optimization are the parameters of the sensors that have an
impact on the coverage in any kind. This includes the number and model/type of sensors in a
network. For example when using a contact sensor, the coverage is basically the boundary of the
sensor hardware. In contrast to this, a vision sensor covers the space between the sensor and the
next wall. The variables also include the decision whether it is a passive sensor, like infrared, or
an active sensor, such as radar. For active and passive vision sensors compare [1].

The intrinsic parameters of a sensor influence the coverage but not the outer hardware of the sen-
sor, like a sensor’s range, image types, opening angle, and distortion. The extrinsic parameters
of a sensor are parameters that influence the hardware as well, including position and orientation.
In order to enlarge the range of the sensor network, the network can be distributed. In distributed
network design, the sensors are grouped together and communicate with a group specific proces-
sor which further communicates with the nodes of other groups. Compare [119] for distributed
computer vision algorithms.
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The extrinsic and intrinsic parameters, the number and types of sensors, the positions and partitions
of other hardware are used as variables for the optimization. In sensor placement, only a set of
extrinsic parameters is optimized.

Input data The input data includes all relevant parameters that are not optimized, including the sensor
model. Additionally, the environment plays an important role to hardware and software: In indoor
environments, one is usually free to use whatever ceiling, walls, and floor he/she likes, and install
artificial light or radiation if not sufficiently illuminated. Outdoor environments are more unpre-
dictable due to weather changes like wind, clouds, rain, etc. In an optimization, the environment
is usually fully or partially given as a CAD model. Exceptions exist: Networks which explore the
environment build up a CAD model from the sensor images to find a collision free way for the
agents with mounted sensors. Instead of a CAD model an actual part of the real world is provided
for the optimization of these sensor networks.

When defining the environment, the targets of the sensor network, which are the objects that need
to be covered, should be specified as well. Obstacles, defined as the remaining objects, influence
the coverage of a sensor or the placement. Furthermore, the important regions that need to be
covered by the sensors need to be specified, i.e. the surveillance area. Additional data which needs
to be given in a sensor network optimization includes the possible sensor or hardware locations
and other boundary conditions to hardware and software.

Type of domain The domain of the variables determines the type of optimization: For example, the
parameters of the sensors can be chosen from a finite set, such as particular mounting spots for
sensor places. In contrast to this, they could be varied in a continuous domain, e.g., when placing
them alongside a complete ceiling. The optimization of these domains falls within the scope of
combinatorial or non-linear optimization, cf. [106, 138] for an introduction to these subjects.

Additionally, sensor parameters can be optimized and fixed before starting the task of the network
or, in contrast to this, dynamic sensors can be used whose parameters are adapted while covering
the scene. The optimization of dynamic parameters falls within the scope of optimal control.

Constraints Constraints to the variables are either given by the environment, or by additional informa-
tion. For example, there are places where no hardware, like sensors, processors, cables, etc., can
be placed, such as the inside of a wall. Furthermore, the positions of wired sensors are much more
restricted than the positions of wireless sensors. An example for additional information not given
by the environment is the type of communication between sensors of a sensor network.

Objective function The objective function of the optimization states the quality of the network with
respect to the task of the network. A network’s task could be the search for, recognition, tracking,
or reconstruction of objects, the exploration or modeling of areas, or the path planning and forma-
tion of robots, see the survey [24] for further examples. But faces could be recognized falsely, car
tracks can be lost, or the reconstruction can overestimated. For distributed network, the communi-
cation plays an important role for the quality of a network. One could desire to decrease latency,
reaction time, message loss, or to ease the deployment of sensors, cf. [87].

In general, however, research in sensor network optimization, and camera placement in particular,
can be grouped roughly into three sections: The first aim is to maximize the coverage for a given
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number of sensors and a given model of the environment, already mentioned in 1974 as Maximal
Covering Location Problem [26]. The second goal is to minimize the costs of a network with
respect to covering given regions of the surveillance area. In literature, this is commonly reduced
to minimizing the number of sensors, already mentioned in 1987 as Art Gallery Problem [113].
The third goal is to minimize the error that may occur when fulfilling the task, e.g. the error of
reconstruction or tracking. Note that only covered regions and objects can be reconstructed or
tracked.

In the above example in Figure 1.1, an objective function can be the maximization of the distance
between the robot and the human silhouette, as in [64], the minimization the error made in the
reconstruction of the silhouette [163], or the minimization of the number of cameras. In all three
cases, covering the important regions of a human’s working area is essential.

Optimization method Optimizing such an objective function can either be done by a fast heuristic
method or a provably convergent solver. In the first case, prior knowledge is used to adjust the
parameters of the sensors and an experts needs to approve of their quality. The second method is
an iteration in which the next set of parameters is automatically deduced from the quality of recent
network parameters. The type of solver depends on the type of domain, as already mentioned
above.

Clearly, the coverage of the sensor network plays an important role to all three types of objective function.
The solver of such a problem needs a programmed version of the coverage of the sensor network in order
to automate the placement, e.g., by simulation. This is where the following challenges arise.

1.1.2 Challenges

The practical implementation of sensor optimization is accompanied by a considerable amount of costs
and problems. E.g., in the recent publication [97], the author uses simulated annealing as an optimization
method to place cameras in a 2D environment and states that for “very high dimensional spaces (> 8),
although the algorithm provided reasonably good solutions very quickly, it sometimes took several hours
to jump to a better solution.” In order to get a feeling for the size of a problem in camera placement:
Placing and orienting one camera in 2D requires three variables (x-, y- position, one orientation angle).
Therefore, eight variables correspond to less than three cameras unless the orientation is not optimized.

But what are the specific challenges of camera placement? According to [107], the following computa-
tional problems of the coverage can be encountered:

• Firstly, the coverage of one camera, let alone a network of cameras, can only be derived geo-
metrically, meaning the visibility of every point, every object, or path needs to be checked for
each camera. The simulation takes time and computational costs, e.g., for inverse ray tracing, cf.
Section 2.2.

• Secondly, the coverages of several cameras sometimes overlap and their fusion resembles an in-
tersection or union of polyhedra. Set operations on polyhedra are known to be a non-robust
computation, i.e. when two polygons are tangentially contacted or are only intersected on one
of their boundary edges, numerical errors can lead to topological inconsistencies, see [157]. In
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order to cope with set operations, the most commonly used data structure for the coverage is the
following: The surveillance area is discretized into an orthogonal grid, composed of small cubes
of the room, called voxels. The coverage of one camera is then a collection of the voxels that are
covered. This is also called occupancy grid.

The volume of the coverage can be derived by adding up the volume of the covered voxels. This
results in a quantized objective function. Another frequently used quantized measure in camera
optimization is the counting of covered objects or paths.

So the most important calculation in camera placement, the deduction of the coverage, is costly and either
non-robust, in case of a polyhedral set operation, or quantized, in case of the occupancy grid or a finite
number of objects. These are challenging properties of the coverage of a camera network. Measuring
the quality of the coverage has additional challenges for camera network optimization, which are the
following:

• The volume of the two-dimensional coverage of a visual sensor regarding its position is proved to
be non-convex, non-linear and only piecewise differentiable, cf. [58, 97]. When allowing the
camera to be placed at an edge or corner of the room, the measure can also be discontinuous.

• However, given the geometrical nature of the problem, only few approaches exist that provide an
analytic formula of the measure of the coverage. The work [58] is an exception and provides the
volume of the (unlimited) field of view of a visual sensor in 2D, but not in 3D, not with limited field
of view, and for only a single camera. Useful properties, such as the convexity or differentiability
of a measure of the coverage, are hardly analysed in literature. In the context of optimization,
a function failing to provide specific details, such as a gradient, is henceforth called black-box
function.

• Last, when utilizing a quantized measure, its range only consists of a finite number of function
values, i.e. it is piecewise constant on the domain. This is henceforth called a stair-cased function.

Thus, in addition to costly function evaluations, the quality of a camera network may have one or more
of the properties stair-casing, black-boxing, non-convexity, non-linearity, and piecewise differentiability,
which need to be considered in an optimization.

To guarantee global optimality of camera placement, all local optima need to be found and checked. Two
strategies can be pursued to find these local optima. A convex function on a convex domain has only local
optima that are also global optima. So, the first strategy is identifying all convex parts of the function and
then use a local solver to find the local optimum, e.g., by the sequential quadratic program. To increase
the convergence rate, local solvers usually regard the gradient of the function. The second strategy
disregards gradients and convexity and simply searches the domain almost everywhere. It is based on
the fact that an arbitrary, continuous function needs to be sampled densely in the domain to find the
global optimum, c.f. [153]. This is a fact that stochastic solvers take advantage of. For optimization, the
piecewise constancy or differentiability, black-boxing, non-linearity, and expensiveness are challenging.
The consequences are listed below.



1.1. CAMERA NETWORK OPTIMIZATION 7

• The word “dense” already hints that the convergence speed of local solvers is higher. The costs
of the objective function are multiplied by the number of objective function calls. So normally,
with a costly function such as ours, the choice would fall to a local solver.

• Unfortunately, a gradient of the objective cannot be derived when optimizing a black-box func-
tion. The numerical approximation of the gradient by the difference quotient is an alternative, but
in an n-dimensional domain it needs n + 1 function evaluations. This multiplies the costs of the
deduction of the camera coverage. In any case, the numerical gradient only converges to the real
gradient of a function if this function is differentiable at this point, but the function at hand may be
non-differentiable or may even be stair-cased.

• Without being convex, an arbitrary objective function can have several local optima. Usually, one
would analyze the objective function for the parts of the domain on which the function is convex.
But with a black-box function, such an analysis is difficult, as has already been stated, and the
number of local optima cannot be identified.

Without gradient and convexity, the application of a local solver is hardly possible, but can we establish
efficient camera network optimization that converges to the global optimum, nevertheless? This is the
basic question we want to address in this work.

1.1.3 Aims

The aim of sensor network optimization is to adjust the intrinsic and extrinsic parameters of multiple
sensors in order to increase the quality of the sensor network.

Problem 1.1.1 Let P denote the multi-dimensional parameter space of a sensor. This set is kept
abstract intentionally, but it may define the position and orientation of sensors, the intrinsic parameters
of sensors, or similar properties. Then the quality q of a sensor network consisting of N ∈ N sensors is
defined as a function q : P1 × . . . × PN → R. For the following problem a suitable solver needs to be
found.

Find: argmax
x∈P1×...×PN

q(x) (1.1)

A suitable solver fulfills the following requirements:

Global convergence The objective function can have several local and global optima. Here, the global
optimum is searched for. The aim is to establish a convergence of the solver to the optimum despite
black-box, stair-cased objective functions.

Incorporation of prior information The Problem (1.1) suggests that some of the properties of the ob-
jective function can be deduced. For example, the positions of two equally built sensors can be
switched without changing the objective value. A solver of Problem (1.1) needs to be ready to
integrate such prior information.
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Distribution A sensor network that can be split into groups of sensors and nodes is called distributed
network, [142]. A group is called self-organized if a computing node within the group exists
where the parameters of the group’s sensors are controlled, as done in [145]. As an advantage for
distributed sensor networks, the optimization of self-organized groups can be computed in parallel
on the groups’ computing nodes. However, the parallel optimization is not necessarily convergent
to a local or global optimum. In this thesis, a solver needs to be found that can be computed in
parallel but nevertheless converges to the optimum.

Anytime system In case of an algorithm which physically moves the sensors, collisions with other
sensors, walls, or obstacles need to be prohibited, i.e. by defining a mounting area for the sensors.
However, an optimization strategy may not find such positions in each iteration step. An anytime
system is a system that returns a valid solution even if it is interrupted at any point in time between
a short initialization phase and its termination. The solutions are iteratively improved with time. A
valid solution is resembled by parameters of the sensor network that are feasible for sensor network
optimization, e.g., the positions are chosen from the desired mounting area. A solver designed in
this thesis should have this quality.

Efficiency The less time a solver needs, the more efficient it is. In order to reduce the time of sensor
optimization, the costs of the coverage calculation and the total number of times in which the
coverage is calculated need to be reduced.

After having introduced the parameters, aims, and challenges of sensor network optimization, the fol-
lowing section discusses the specific problem, which is the heart of the thesis.

1.2 Problem Definition

The quality of the sensor network can be defined by the costs of the sensor network, by the error that
is made by the task, or simply by the maximization of the coverage. Common to all types of objective
functions is the notion of coverage, as discussed in Section 1.1.1. Therefore, we will define the coverage
independently on the type of sensors, on the type of optimization, and on the type of task.

The following sets are kept abstract, again intentionally. Let E denote the environment where the sensor
network is used. The environment includes constraints to the network such as the geometrical arrange-
ment of objects, cables, textures, etc. in a scene. The environment E is in the set of all possible scenes
denoted by E. Let A be the set of surveillance parts, which are the items that are to be observed. This
can include the points, objects, paths, etc. that are not to be missed. The parts under surveillance can be
marked by different labels, for example, if the surveillance parts are voxels, one usually at least wants
to distinguish between “detectable” and “undetectable” voxels. Other examples are the labels “changed”
and “identical” in a change detection system. Let S be the set of sensor labels that surveillance parts can
be marked by.

Definition 1.2.1
Let P denote the parameter space of a sensor and let A,E,S be as above.
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1. A sensor σ is considered a function which maps a surveillance part y ∈ A with the parameters of
a ∈ P and the constraints of the environment E ∈ E onto the set of sensor labels:

σ :E × P × A→ S

(E, a, y) 7→ σ(E,a)(y) or σa(y) if E is fixed

2. Let E ∈ E be a fixed environment and let S ⊂ S be a set of sensor labels, then the preimage σ−1
a (S )

is called the coverage of the sensor with parameters a ∈ P and of the sensor labels in S .

3. Let us have N ∈ N sensors denoted by their various parameter vectors a1 ∈ P1, ..., aN ∈ PN , then
we call x := (a1, ..., aN) the variables of the sensor network optimization or simply the variable
vector.

4. Choose a common set of sensor labels S for all sensors. The sensors with the parameter vectors
a1 ∈ P1, ..., aN ∈ PN and variable vector x = (a1, ..., aN) have a fused coverage:

Cx(S ) :=


⋂

n=1,...,N
σ−1

an
(S ) if a part is meant to be covered by all sensors, and⋃

n=1,...,N
σ−1

an
(S ) if a part is meant to be covered by at least one.

There actually exist shades of the fused coverages “covered by all” and “covered by at least one
sensor”. Additionally, either fused coverage can be transferred into the other. The modification
including these shades is addressed in Section 2.1.4.

The sets A, P, and S have been kept abstract in order to be able to adapt the coverage to various applica-
tions for sensor network optimization. To concretize the abstractly defined sets, consider the following
examples. The first example states the parameter space of camera placement, the second one the set of
surveillance parts. The third example depicts two types of sensor label sets, one for distinguishing de-
tectable and undetectable regions of the environment, and the other one for distinguishing changed and
identical regions.

Example 1.2.2
Assuming that the cameras are to be placed in a 3D scenery, let L ⊂ E ⊂ R3 be the area of possible
sensor locations. Then the position of a camera is in L and its orientation can be denoted by (ψ, φ, ρ)
with the yaw ψ ∈ [−π, π), pitch φ ∈ [−π/2, π/2], and roll ρ ∈ [−π, π]. The notation is partly derived from
flight navigation. Furthermore, let us assume, that all cameras share the same opening angle in direction
of yaw and pitch of the cameras’ orientation, in order to simplify the notation. Now, we can specify the
sets P1 = · · · = PN := (L × [−π, π) × [−π/2, π/2] × [−π, π]).

Example 1.2.3
In the particular case where the regions of a three-dimensional environment need to be covered, the set
of surveillance parts is specified by A ⊂ R3. In such a continuous case, the set of surveillance parts is
then called surveillance area. Another example for a surveillance area are the regions of a simplified
two-dimensional environment, such as the top view of a room. This stands in contrast to a quantized set
of surveillance parts, such as the objects or paths in an environment.

Example 1.2.4
The set of sensor labels depicts what a sensor can and cannot observe. Cameras cannot see behind
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walls, so the region behind a wall is undetectable and the region in front of the wall is detectable as
long as no second wall is in front of it. Thus, in a camera network, the regions can be labeled by
S := {detectable, undetectable}. Let us assume that we have utilized a sensor which can distinguish
between a target that has changed since we have had a look at it, last time, and a target that has not
changed. Then, the set of sensor labels needs additional labels: S := {undetectable, changed, identical}.

The coverage of a sensor network defined in this thesis can be measured using the volume λ of a solid.
Depending on the labels in S the volume of the covered surveillance area is denoted by λ (Cx(S )). This
measure can be used in an optimization in different ways: E.g., when maximizing the regions of the
surveillance area that are detectable, the coverage is part of the objective function. When minimizing the
costs with respect to keeping important regions covered, it is part of the constraints.

In this thesis, the coverage is used to maximize detectable regions, and to minimize the error of a recon-
struction as in Figure 1.1: Therefore, let x ∈ P1 × . . . × PN be the extrinsic parameters of the cameras in
a network, i.e. the positions and orientations of cameras. The problem (1.1) is solved with the quality
function

q(x) = λ(Cx(S )) (1.2)

where S ∈ S is adaptable to the task.

In this thesis, the discussed sensors are cameras. The parameters of the cameras which are used as
variables in the optimization are the position and orientation of the cameras.

1.3 Related Work

This section presents publications related to the methods developed in this thesis. The motivation for
the survey is camera placement which is summarized in Section 1.3.1 for reconstruction purposes and in
general. The objective function needs to be examined further. It is closely related to the field of visibility
and computer graphics, the publications of which are covered in Section 1.3.2. The methods that solve a
camera placement problem are optimization methods related to the fields in Section 1.3.3.

1.3.1 Camera Placement

In robotics alone, over 2000 research papers about vision have been published between 1986 and 2010,
[24]. Thus, camera and general sensor planning is a vastly covered research area for multiple tasks.
Heterogenous sensors have been utilized for example for tracking and detection [81, 127]. There have
been surveys and classifications on heterogenous sensors and other hardware components, cf. [35, 145],
about the communication [87], e.g., wireless communication [3,23], and the environment, e.g., wide area
surveillance [1].
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Task specific camera placement

The optimization of cameras for a specific task is also vastly researched: The authors of [24] find that
camera planning has been done for tasks such as inspection [149] and surveillance [141], grasping [99],
tracking [8, 34], exploration and site modeling [120], object modeling [7] and reconstruction [104],
recoginition [33], path planning [9,10] and multirobot formation [74]. The best view regarding radiation
and illumination is depicted in [88]. Some publications regard dynamic sensors, that are adjusted while
performing the task. This is called visual servoing [89]. For example, an eye-in-hand system [2, 7, 9, 10,
99] is a camera mounted on a robot arm while the robot moves. More than one sensor is, for example,
adjusted on the fly in [8, 74], and in a distributed network in [142].

Following this thesis’ motivation, one task specific goal is the minimization of an error made when re-
constructing the position and measurements of the target’s corners, curves, surfaces, objects, etc. The
phrase Photogrammetric Network Design is often used for analysing the position of cameras by minimiz-
ing the reconstruction error of several (three-dimensional) points, for details cf. [67, 91, 108–111]. This
is further developed by [132, 133] for applications in unknown environments (a CAD model is missing
as well). The actual placement of several cameras to optimally localize an entire object which is not oc-
cluded is an assignment treated in [47]. One common simplification in this area is to reduce the domain
of the camera’s position and orientation, e.g., by the viewing sphere model given in [110] or the idea of
situating all cameras on a plane and aiming them horizontally, cf. [47].

In this thesis, cameras are placed in a network to determine a visual hull of an entire object. In order to
get the minimal error of the hull, [163] assumes that minimizing the occuring occlusions of solids also
reduces and thus specifies their possible locations. His simplifications: The orientation of the camera is
neglected as a variable since the camera is orientated towards the object, and obstacles are not regarded.
Often, the challenge of minimizing the reconstruction error lies in obscuring obstacles which are placed
in the environment, cf. [45,46] and [63,64]. These publications use a background subtraction method to
identify obstacles and targets. This method is called scan-line method if the subtracted image is further
simplified to a one-dimensional image [46]. But the methods regarding obstacles in [45, 46] only select
the cameras from a predefined set of cameras, and [63, 64] optimize the distance of the hull to another
object. Here, the visual hull is optimized in an efficient manner which allows a continuous domain and a
three-dimensional environment.

More general camera placement - Art gallery problem and maximal set covering location problem

The minimal reconstruction error depends on the type of reconstruction and can seldomly be transferred
to a different type of reconstruction. More general camera placements are the following:

Apart from minimizing such an error, for some camera networks the only information that is regarded
is whether a part of the environment has been detected. One common goal in this context is to be able
to observe all items of a given set (e.g., all surveillance parts) with a minimized number of cameras
[12, 48, 60, 71, 95–97, 161]. This issue is called Art Gallery Problem especially when speaking of two-
dimensional space, and has first been mentioned in 1987, cf. [113]. It has already been transferred to the
three-dimensional case, cf. [90].
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The reverse question is how to position and orientate a given number of cameras in order to maximize the
observed parts of the environment. This problem is also known as Maximal Covering Location Problem
since 1974, cf. [26]. Such parts can be surfaces, e.g., [70], and paths, as in [17, 50, 51], or the number of
objects [95–97]. Distributed wireless sensor networks have been covered as well, e.g., by [151].

The closest publication to this thesis is [101] addressing the Backup Coverage Location Problem, whose
surveillance parts of the environment are voxels and who considers overlaps of cameras. The author’s
simplification is discretizing the environment, as well as the parameter space of the sensor network, and
thus selecting the cameras out of a predefined subset of positions. In this thesis, the quality of the camera
network with a given number of cameras is optimized on a continuous rather than a discretized domain.

1.3.2 Coverage and Visibility

In order to incorporate prior information into the optimization, the objective function needs to be ana-
lyzed before discretizing the surveillance area into voxel. Such an analysis of coverage and its quality
can also be valuable for the maximization of continuous objectives as in [70, 101], for calculating the
visual hull used by [64, 163], or when deriving continuous constraints to the art gallery problem as
in [12, 48, 161]. Within their approach, these publications use an occupancy grid and disregard such
an analysis. This is an indication that an exact visibility analysis as approached in this thesis has not
been done, yet. Sutherland proposes to classify the algorithms for occlusion reasoning into list-priority
methods, image space methods, and object space methods, [147]. The first two types of methods regard
the discretization of the image plane in the output device (the pixel). Hence, a closer look on the object
space methods is required.

The first algorithm ever developing the shape of the coverage can be seen in [126]: Every polygon edge is
tested against every polyhedron whether it is occluded by solving a linear equation system. It works only
for convex polyhedra. The algorithms of [5, 57, 85] test edges against edges. Thereby, the “quantitative
invisibility” is an indicator of how many polygons occlude an edge from a given viewpoint. A subsequent
algorithm [6] has also been developed surrounding the line segment by a halo, the latter occludes lines
further away. More recent surveys of visibility and computer graphics are provided by [15, 31, 32, 40].

Many of the mentioned publications in [40] are not our concern, e.g., publications concerning curved
objects, discretized object space, ray-, beam-, and cone tracing, z-buffer methods, radiosity computations
etc. The works closest to the approach in this thesis are about clipping all polygons to the nearer polygons
successively [158], about shaddow regions [27], or umbra/penumbra [105], which are the boundary of
a shaddow on the wall. The authors of [164] make the latter algorithm less costly by walking along the
edges and vertices of the blocker and illuminator simultanously.

The classification of faces and vertices of the coverage can only be done if the coverage of a sensor has
been deduced by an object space method or shadow method. However, none of the discussed publications
has characterizing visual events, such as the non-existence of a face or a vertex. These visual events are
important in this thesis since they influence the continuity, differentiability, and stair-casing of the volume
of the fused coverage. However, in the context of shadows, the term discontinuity is used to express a
change of the radiance on a surface. The authors of [68, 69] consider C1-shadow discontinuities for
a single light source and [37, 38, 144, 150] extend their characterization to C2-discontinuities in 3D.
Integrating the events into efficiently constructing accurate shades of a room full of objects is known as
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discontinuity meshing. The authors of [41, 42] use a graph to store the events and [84] additionally use
discretized objects for this purpose.

The continuity and differentiability of the volume of a camera’s coverage has not been done until 2006.
[58] set an example for an analysis of the volume of the field of view in 2D with the examination of
the smoothness of the volume of an omni-directional camera in a polygonal environment. They prove
that the volume is almost everywhere locally Lipschitz and they characterize the non-smooth behavior in
order to optimize the position of the camera.

Being able to characterize non-smooth behavior in 3D in a similar way as [58] has done in 2D is addressed
in this thesis. As will be seen, the coverage of several cameras with limited field of view in 3D is
a more extensive case than the field of view of an omni-directional camera in 2D. In the context of
shadows, a characterization of the places and orientations of several lights where visual events take
place, corresponds to a characterization of network parameters, as is done in the first part of this thesis.
However, none has considered places and orientations with several light sources that have a limited
opening angle which is required for cameras with a limited field of view. Moreover, none has considered
the non-differentiabilities of the error of a human approximation, as is done in this thesis.

1.3.3 Optimization

A non-linear, non-convex black-box function is to be maximized, globally. Strategies to solve optimiza-
tion in general can be found in [106]. Methods optimizing a non-linear function have been developed
for the use with and without gradient, for example the Nelder-Mead-Simplex [18, 102], or the Interior
Point Filter Line Search [155]. Unfortunately, these methods have weaknesses when globally optimizing
a high dimensional domain, or a black-box function.

Global algorithms are called accurate methods or covering methods by [153]. These strategies are also
developed for non-linear programs without a gradient, e.g., the Differential Variation in addition to a
Mutation Rule [130, 131] or the Ant Colony Algorithm [135–137]. However, strategies neglecting the
gradient usually call the objective function more often, which can also be seen in the experiments in
Section 3.4. We propose a method that calls the objective function less and can be computed in parallel.

Optimization of Response Surface Models

In order to increase the convergence speed of an optimization strategy, local approximations of the ob-
jective function have been used for a few decades. As soon as a good solution of the approximation is
found, the real objective is evaluated at this point and the approximation is discarded. The Method of
Moving Assymptotes and the Sequential Quadratic Program, based on [148] and [29, 77, 134], respec-
tively, use such a local approximation. The approximation is convex and separable in the first case, and
quadratic in the second, which makes the search for a good solution easier. However, in order to get
such an approximation a gradient is needed. Additionally, the solutions for which the actual objective
function has been evaluated are not stored. A response surface model or surrogate is an approximation
of the whole objective function in which solutions can be updated and remembered. A taxonomy on
global optimization methods based on response surfaces can be found in [73].
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Let us assume that some samples have already been collected from the objective function by previous
iteration steps. The methods to interpolate samples can be grouped into global and local methods as well:
The local methods only utilize a subset of sample points to approximate a given function in the vicinity
of a point x ∈ D, e.g., B-Splines, Bézier curves, Hermite curves, or Catmull-Rom splines, cf. [52, 82]
and citations therein. Thus, the function value of a point is only evaluated by the information of the
neighboring samples. On scattered samples, i.e. samples that are not arranged on a grid, the Delaunay
triangulation can be used to determine the vicinity of a point, [43]. In this thesis, a radial basis function
interpolant from [115, 116] is used as a response surface model. Instead of a local method to interpolate
samples, the radial basis function interpolants belong to the global methods which use the information
of the whole sample set to approximate a function, such as polynomial interpolation or the natural cubic
splines [139]. Additionally, the radial basis function interpolants are smooth functions, which a gradient
is easily calculated of, that interpolate scattered samples of an n-dimensional domain without further
triangulation. Other piecewise and global, multivariate approximations can be investigated in [21].

Radial basis function already have been studied half a century ago, e.g., where [39] and [55, 65] re-
searched thin plate splines and multiquadric surfaces, respectively. The authors of [94] were the first
to prove that multiquadratic surface interpolation is always solvable. Around the turn of the millen-
nium, [116] developed a method to add samples subsequently to the function, like the Newton’s subse-
quent interpolation method, which he already used as a response surface in optimization. A survey of
radial basis functions can be found in [20, 21].

The authors of [16,93,121,122], and [62] have developed optimization methods on radial basis functions
as response surfaces. However, none has ever combined a surrogate solver with a Block Coordinate
Ascent (BCA) as described in the next section in order to parallelize the method. Also none has adopted
the symmetrical property of a function to the method. For publications which have combined a BCA and
a surrogate solver compare the next section.

The acceleration of symmetrical functions has been studied before: The survey [118] summarizes that the
strategies are adding symmetry breaking constraints or heuristics, modifying the search technique so that
interchangeable values are removed, or discarding subsets of a discrete domain which is symmetrical
to another subset. But adding symmetry breaking to a local search technique can also cause worse
performance, cf. [117]. We are proposing to change the search technique so that already evaluated
samples are added to the response surface model on all symmetrical parts of the domain. Thus, no
symmetry breaking constraints need to be added and no solutions need to be discarded.

Block Coordinate Ascent

The parameters of one single camera are a subset of all parameters of the network. This subset is called
block of parameters or variables. The optimization on such a block is an optimization on an affine
subspace of the domain, just as a variant [129] of the Nelder-Mead-Simplex. The alternation between
optimizations on different affine subspaces of the domain is generally called variable decomposition
method, but more definite names for this method exist:

It is called coordinate search method when speaking of a one-dimensional subspace of the domain [106].
When speaking of an n-dimensional subspace, the following distinction can be made: The method is ei-
ther named block coordinate descent/ascent if the subspace is parallel to the coordinate axes of one block,
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or named block-nonlinear Gauss-Seidel method if the search direction is not parallel to the axes [61]. If
the number of blocks is two, the method is called alternating minimization/direction method [11]. In
the field of image analysis, the block coordinate ascent is also considered a domain decomposition.
Such methods exists for sequential and parallel overlapping subspaces [53] and non-overlapping sub-
spaces [54].

The convergence of these methods has been studied under various assumptions, e.g., [14] develops such
methods for strictly convex, quadratic or separable functions. The authors of [13, 61] state the problem
with block-coordinate descent/ascent methods: The next subspace does not necessarily lie in direction
of the gradient. This can be changed by the gradient rule [86] in the differentiable case, and by the rules
from [154] in non-differentiable but certain separable cases. The method in [103], which selects the
block on which the gradient projection step is performed by a randomized rule, is developed further and
parallelized by [125] for large data.

In this thesis, a block coordinate ascent (BCA) in combination with a radial basis function (RBF) as a
response surface model is developed. A connection between BCA and RBF is found in the following
publications: The authors of [61] use a block coordinate descent to fit a neuronal network based on a
radial basis function to an actual function. However, they have not used the radial basis function of [115]
with a polynomial term. Moreover, their aim is to fit the model, not to optimize the actual function.

The publications [100, 123] have combined a surrogate solver with a Block Coordinate Ascent under
the assumption that not all the variables are equally relevant. They perturb the best point to generate a
new sample point. The authors of [123] use a heuristic to choose the blocks, in which the variables are
distorted by a Gaussian distribution. The authors of [100] combine the optimization on a cubic RBF with
local search. Their global search method dynamically adjusts the number of decision variables being
perturbed in each iteration, for large problems. In this thesis, the blocks that correspond to each camera
are equally relevant and usually contain a similar number of variables. The global convergence of the
method is shown.

1.4 Overview

Section 1.3.1 makes clear that there is a need for an approach that does not simplify the problem of
camera placement, such as restricting the domain to a predefined finite set of camera positions. The
continuous domain is to be searched for the best set of parameters for the whole camera network.

The aim of camera placement derived from Section 1.1.3 is to create a flexible algorithm that converges
globally in an efficient way and improves the solution, subsequently, as an anytime system. For acceler-
ating the whole iteration, additional demands on the optimization method are stated in the same section:
The method has to be ready to be computed in parallel. Furthermore, prior information needs to be added
easily.

Section 1.3.3 provides an overview on optimization methods suitable for one aim or the other, but never
for all these aims. Furthermore, hardly any prior information is available for the volume of the recon-
struction error or the coverage, cf. Section 1.3.2. These facts are the main motivation for the following
contributions to camera network optimization:



16 CHAPTER 1. INTRODUCTION TO CAMERA PLACEMENT

• Establishing prior information about the geometry of the fused coverage in Sections 2.1 and 2.3.
The detectable regions of the surveillance area, as well as the error of the visual hull reconstructed
from a human target, as in Figure 1.1, can be expressed in terms of the fused coverage.

• Investigating an efficient way of computing the volume of the fused coverage as an objective
function in Section 2.2;

• Establishing prior information about the volume of the fused coverage in Section 2.4;

• Incorporating prior information into an efficient, global solver for a stair-cased, black-box function
in Chapter 3.1;

• Developing an efficient, global solver for a function that is less expensive when calling it on sub-
spaces of the domain, and which is distributable, for optimizing a stair-cased, black-box function
in Chapter 3.2;

• Demonstrating the efficiency of the proposed approaches on several synthetic functions in Sections
3.3 and 3.4 and on two practical examples in Chapter 4.

In the end, in Section 5.1, the thesis is summarized. The achievement of the aims and the contributions
are addressed in Section 5.2 and in Section 5.3 open questions are presented.



Chapter 2

Deduction and Properties of an Objective
Function for Camera Placement

The aim of the camera network of Figure 1.1 is to approximate the human collaborator in a scene to
protect him or her. The camera network needs to be optimized in order to decrease the error of the
approximation. In general, the wider the important regions of the room are covered by the cameras of
the network, the more exact an approximation can be formed. But in order to improve the coverage or
the approximation, an objective function needs to be specified, that measures the quality of the camera
network. Moreover, its properties need to be investigated, such as continuity, differentiability, convexity,
symmetry, and stair-casing. These properties will be used in Chapter 3 to develop a suitable optimization
solver tailored to the objective function.

In this chapter, the fused coverage C of Definition 1.2.1 will play the key role since it can be modified
to resemble both, the field of view of several cameras and the approximation error (Section 2.1). The
optimization of the camera network usually calls the objective for various sensor network parameters
x ∈ P1 × . . . × PN until an optimum is found. The objective function chosen in this thesis is the volume
of the fused coverage q(x) = λ(Cx) from Equation (1.2). Its construction is illustrated in Figure 2.1.

a1

aN

σ−1
a1

(S )

σ−1
aN

(S )

Coverage 1

x = (a1, ..., aN) · · · Fused Coverage Volume

Coverage N

Figure 2.1: Illustration of a single objective function call λ(Cx(S )): Depending on the choice of
the sensor labels S ⊂ S, the coverage of each camera σ−1

an
(S ), n = 1, . . . ,N needs to be simulated

and fused (intersected or united). The fused coverage is measured by the volume.
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First, we develop an accelerated simulation of the fused coverage. A possible implementation of σ−1
an

(S )
discretizes the environment into voxels and the image space of the cameras into pixels (Section 2.2.1). In
this chapter, we discuss three acceleration methods:

• In Section 2.2.2, the computation of the coverage σ−1
an

(S ) of one camera is accelerated by suitable
data structures and parallel computing.

• Subsequent objective function calls λ(Cx(S )) turn out to be less expensive for partly constant cam-
era positions and orientations, in Section 2.2.3.

• Interchanging two cameras does neither alter the coverage nor the volume of the coverage of the
camera network. This property is called symmetry and is stated in Section 2.4.3. A solver can use
this property when caching recent function calls.

Second, in order to choose a suitable solver for such an objective function, this chapter investigates the
mathematical properties of the quality q(x) of the sensor network in a three-dimensional environment.
The course of this investigation starts off disregarding the discretization into voxels and pixels. The
contribution of this thesis to the field of research can be read in the context of a summary of the whole
thesis in Section 5.2 and is the following:

• In Section 2.3.1, we will prove that the shape of the fused coverage is a polyhedral area, a polyhe-
dron that can be disconnected and may be flat at some points. Its faces and vertices are necessary
to analytically calculate the volume of the coverage (Section 2.3.2).

• We classify the vertices and faces of the fused coverage in Section 2.3.3 with respect to cameras’
position and orientation as variables.

• The set of sensor network parameters where a face of the fused coverage meets a chosen point of
the environment is classified as incidence surface. (Section 2.3.4) In contrast to a two-dimensional
environment discussed in [58], the set is not a linear segment but a more general, non-planar
surface in the network’s parameter space.

There are two reasons for investigating these incidence surfaces with respect to the network parameters:
The events where a face meets a vertex of the fused coverage are relevant for the deduction of continuity
and differentiability of the coverage’s volume (Section 2.4.1). The second reason is the stair-casing effect
of the volume: The incidence surfaces of voxels partition the domain of the function into sets on which
the objective function is piecewise constant (Section 2.4.4).

In order to formulate the objective function q(x) and derive polyhedral and mathematical properties, we
will need the notation of the set operations in Appendix B. It defines the symbols for a segment, ray,
pyramid, open ε-ball, ε-sphere, and the closure, boundary, exterior, distance, and volume of a set.

2.1 Coverage of Multiple Cameras

An overview on how to formally define and refine the fused coverage C of Definition 1.2.1 is given in
this section. By the choice of a suitable sensor label set S ⊂ S, the fused coverage can be modified to
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resemble both the field of view of several cameras and the approximation error of a human silhouette.
The volume of this coverage λ(Cx) is used as an objective function in Chapter 3.

In the course of this section, two examples for the fused coverage are given: The fused coverage is
first used to resemble the field of view of several cameras (Section 2.1.1). Hereby, the variables of the
objective function are also specified. In the second example, we modify the fused coverage to resemble
a human approximation using only the sensor data of cameras, in Section 2.1.2. The section introduces a
method to detect the human in the image space of a camera. This method can be modified to approximate
the three-dimensional human in the environment instead of the image spaces of the cameras (Section
2.1.3).

After giving the examples, a general refinement of the fused coverage is discussed: In Definition 1.2.1,
the fused coverage has been introduced as a region which is covered “by all cameras” or “by at least one
camera”. On the one hand, the images of a single camera could be inaccurate, e.g., if the target is similar
to the background, on the other hand, the term “covered by all cameras” allows the coverage to be failure
safe, but is very restrictive. In Section 2.1.4, we incorporate shades of “covered by all cameras” and
“covered by at least one” when introducing a reliability threshold k ∈ N for the number of cameras to the
notion of the fused coverage. The refinement of the fused coverage does not only hold for visual sensors
such as cameras, but also for non-visual sensors.

2.1.1 Detectable Coverage

In this section, the fused coverage exemplarily resembles the combined field of view of several cameras.
The fused coverage is defined in Definition 1.2.1 as the union or intersection of the camera coverages.
The coverage of a single camera is a preimage of the sensor map σ : E × P × A → S. First, each of
the following sets is specified: the set of the environments E, the set of sensor network parameters P that
are utilized as variables in an optimization, the set of surveillance parts A which contains the points that
need to be monitored, and the set of sensor labels S. In the end, we show how to assign a sensor label to
each point in the surveillance area.

Environment and Parameter Space of a Single Camera

An environment E ∈ E with E ⊂ P(R3) is the space where the camera will be placed, it contains the
parts that need to be monitored and models visible restrictions like walls and furniture. In this thesis, the
environment resembles the closed empty space of a room, which is not occupied by furniture or walls
but only by transparent, non-solid matter. The model may seem contra-intuitive, however, there are two
reasons for it: Firstly, a camera can just be placed in an empty space of a room. Secondly, the boundary
between empty space and non-empty space of a room, i.e. informally the surfaces of furniture and walls,
defines whether a point in the environment is visible from camera point of view.

At first, the empty space is modeled as a polyhedral area. Polyhedral Terrain Models (PTM) are often
used to represent a terrain or topographic surface in a visibility analysis, [31, 101]. In [44] an informal
definition of a polyhedron is given: A convex polyhedron is an intersection of finitely many closed half
spaces. A polyhedron is the union of finitely many convex polyhedra. In this thesis, such a polyhedron
is considered in the context of vertices, edges, and faces:
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Definition 2.1.1
Let n,m ∈ N be integers with n ≥ m ≥ 1. Let H(q,p) ⊂ R

n, q = 1, . . . ,Q1, p = 1, . . . ,Q2 be half-spaces.

1. A finite concatenation P :=
⋃

p=1,...,Q1

⋂
q=1,...,Q2

H(q,p) is called

(a) mD-polyhedral area in nD if an m-dimensional affine subspace A ⊂ Rn exists with P ⊂ A.

(b) mD-polyhedron in nD if P is an mD-polyhedral area and an m-manifold with boundary ∂P.

2. Let Fi ⊂
∂P, i ∈ {1, ..., I}, I ∈ N be

points in case m = 1

(m − 1)D-polyhedra in case m > 1

If ∂P =
⋃

i∈{1,...,I} Fi and if for all the pairs (Fi,F j), i, j = 1, . . . , I the intersection Fi ∩ F j ⊂ A is
maximally a (m − 2)D polyhedron then the Fi are called faces of the mD-polyhedral area.

3. A 2D-polyhedron is called polygon, its faces are called edges. The face of an edge is called vertex.

4. The set of all 3D-polyhedral areas in 3D is defined as E.

A polyhedron is a m-manifold, which means each point has a neighborhood that is homeomorphic to the
Euclidean space of dimension m or a half-space of dimension m, again this means that it is nowhere flat
or pinched [44] and neither is one of its faces. In contrast to the polyhedron, an mD-polyhedral area is
not necessarily a manifold. A polyhedral area is not necessarily convex, it can have holes of dimension
m and it can be distributed to several regions. The “mD” stands for its dimension in the space Rn, which
will only be needed for polyhedra with a lower dimension m ≤ n, e.g., a polygon in a 3D space. The
environment in which the cameras of the network are placed is 3D-polyhedral:

Notation 2.1.2
In this thesis, the environment E where the camera network is placed constitutes a 3D-polyhedral area:
E ∈ E.

In other words, an environment is a not necessarily convex polyhedron potentially containing three-
dimensional holes, in fact not necessarily being connected, at all. Be aware that the boundary of the
environment does not contain two-dimensional holes, it is a two-dimensional manifold without boundary.
The cameras are placed in such an environment.

Definition 2.1.3
Let E ∈ E be an environment and let p ∈ E. Let o, u ∈ ∂B3

1(0) be orthonormal unit vectors. The camera
parameters in the environment E are defined as a 5-tupel (p, o, u, θu, θo×u) ∈ (E × ∂B3

1(0) × ∂B3
1(0) ×

[0, π] × [0, π]) consisting of the following:

• The point p is called camera position, sometimes also viewpoint.

• The vector o is called camera orientation.

• The vector u is orthonormal to o. If u is a linear combination of o and ez = (0 0 1)T it is called
view-up vector.



2.1. COVERAGE OF MULTIPLE CAMERAS 21

• The scalars θu, θo×u ∈ [0, π] are called the opening angles in direction o with opening vector u and
the vector orthogonal to o and u which is (o × u).

• The tuple (λo, λu, λo×u) with λo, λu, λo×u ∈ R is called camera coordinates of the point x = p +

λoo + λuu + λo×u(o × u).

Figure 2.2 (left) illustrates the camera coordinate system with the parameter vectors p, u and o of the
camera. In this thesis, the position p ∈ E and orientation o, u ∈ ∂B3

1(0) of each camera are considered
as variables to the objective function in an optimization. The opening angles θo×u ∈ [0, π] and θu ∈

[0, π] are fixed. In case of u being the view-up vector, u points to the ceiling and can be derived by
u = 1

o1+o2

(
o1o3 o2o3 (o1 + o2)2

)
with (o1 + o2) , 0 from the orientation o = (o1, o2, o3)T . Otherwise,

the rotation between the view-up vector and u defines the rotation of the image plane of the camera about
the orientation and can be determined by a single angle. The rotation angle of the image plane is called
roll. In our investigations, however, we assume the roll to be fixed at 0 in favor of a clearer notation.

p

o

θuθo×u

uo × u

d
θ

v ρ

Td(θ, v)

Figure 2.2: Left: Illustration of parameters of a camera in 3D: Position p, orientation o, and
opening angles θu, θo×u for the opening vector u and o × u; The camera frustum is an intersection
of θ-spaces. Right: Td(θ, v) is the θ-space with angle θ < π, direction d, and opening v.

Thus, the investigated space of parameters of a single camera that serve as variables for an objective
function is

P ⊂ E × ∂B3
1(0). (2.1)

The camera parameters are now used to define the visibility as already promised in the last paragraph.
Thereby, we use the term θ-space as a halfspace with an angle smaller than π illustrated in Figure 2.2
(right), to define the camera frustum in 3D.

Definition 2.1.4
Let E ∈ E be an environment. Let a = (p, o) ∈ P be camera parameters as in Inclusion (2.1).

1. A point y ∈ R3 is called visible in E from point p ∈ E if the line of sight [p, y] holds [p, y] ⊂ E.

2. V(p, E) := {y ∈ E | y visible in E from p} ⊂ E is called the set of all visible points from p ∈ E.
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3. Let θ ∈ [0, π] be an angle. Furthermore, let d, v ∈ ∂B1(0) be orthogonal to each other. And let
ρ(d,v) be the projection onto the v-d-hyperplane. Then a θ-space is defined as

Td(θ, v) := {x ∈ R3 | |](ρ(d,v)(x), d)| ≤
θ

2
}

d is called the direction and v the opening of the θ-space.

4. Let θu, θo×u ∈ [0, π] opening angles of the camera. The frustum of the camera with parameters a is
the set

Fa := {y ∈ R3 | (y − p) ∈ (To(θu, u) ∩ To(θo×u, (o × u))}

5. Va(E) := V(p, E) ∩ Fa is called the field of view of the camera with parameters a.

In literature, the set Va(E) has several names, e.g., it is called “field of view” (FoV) by [2] or “viewshed”
by [101]. Also further names like “camera beam” are thinkable. Nevertheless, it is not to be mistaken for
the “depth of field”, giving the distance between the furthest and nearest objects that appear in acceptable
sharp focus, [48]. For the set Fa the name “camera cone” [70] exists next to the name “viewing frustum”
[48]. The opening angles of a camera frustum are not limited to values smaller than π. However, if
opening angles larger than π are used then Fa is not an intersection but a union of θ-spaces.

Set of Sensor Labels and Surveillance Parts

Usually, not all the points in an environment need to be monitored by the sensor network. Additionally,
the environment is sometimes rasterized into small cubes, called voxels. By using voxels the set of points
that need to be covered can be discretized, e.g. the set encompasses the center or corners of each voxel.
Let A ⊂ E denote the surveillance area of the environment, i.e. the points that need to be covered.

With a given position and orientation of the camera (p, o) ∈ P we are able to partition the environment as
well as the surveillance area into detectable and undetectable regions. This is done by assigning a label
of S to each point in E by the mapping σ. The following definition shows which labels in S need to be
used.

Definition 2.1.5
Let E ∈ E be an environment and A ⊂ E be the surveillance area. Let a = (p, o) ∈ P be camera
parameters as in Inclusion (2.1).

1. A point y ∈ A is called out of range of a camera with parameters a if y < Fa.

2. A point y ∈ A is called detectable by a camera with parameters a if y ∈ Va(E). Otherwise it is
undetectable by the camera with parameter vector a.

3. A point y ∈ A is called occluded if y < V(p, E) and y ∈ Fa.

Let the set of sensor labels be S := {detectable, occluded, out o f range}. With the given environment E
and given camera parameters a ∈ P including the position of the camera p, we can classify whether a part
y ∈ A is detectable, occluded, and out of range by the map σ : E × P ×A→ S. This map is illustrated in
Figure 2.3.
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Inside frustum?

In front of all faces of the environment?

detectable

yes

occluded

no

yes

out of range

no

︸                                              ︷︷                                              ︸
undetectable

Figure 2.3: Tree of surveillance area division: The gray nodes categorize a point in the surveillance
area according to the camera position an orientation. The colored nodes correspond to the labels
in S ⊂ S. Blue corresponds to a label which a point outside of the viewing frustum Fa is marked
with. A red labeled point is in Fa but not in the set of visible points V(p, E). A point labeled in
white is in the field of view of the camera.

Let N ∈ N be the number of cameras in the network and let x = (a1, . . . , aN) ∈ P1 × . . . × PN be the
variable vector of the camera network. In an optimization, the detectable regions of the surveillance
area can be maximized in order to increase the efficiency of a camera network. One example of sensor
network optimization which can be derived from Equation (1.1) and Definition 1.2.1 can be denoted by

max
x∈P1×...×PN

λ(Cx(S )) with S = {detectable}.

where the fused coverage C is defined by the preimage σ−1(S ) of the sensor map as in Definition 1.2.1
and λ(·) denotes the volume of a set. The set Cx({detectable}) is called the detectable coverage, further
on. In addition to the detectable coverage, in the next section, the notion of the fused coverage is used to
express the silhouette of a human.

2.1.2 3D Background-Subtraction Method

In this section, the fused coverage exemplarily resembles a human silhouette. For constructing a sil-
houette of a human by one camera, the Background Subtraction Method (BG subtraction) can be used.
This is a method to detect changes in an environment. The method distinguishes between regions of the
environment which have changed since the moment a reference image has been taken and regions that
remained unchanged. Additionally, regions are considered which are out of range or occluded behind
objects, like walls, doors, tables, and racks. Therefore, let the set of sensor labels of Definition 1.2.1
become

S := {identical, changed, occluded, out o f range}.

In order to explain the method further, it is necessary to distinguish the objects in an environment, [64]:

Definition 2.1.6
Let E ∈ E be an environment.

• A set of faces of E is called object if it is the boundary of a polyhedral area.
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• Faces of E that do not change in time are called static, all other faces are called dynamic. The set
of static faces will be denoted by Es ⊂

∂E and the set of dynamic faces by Ed ⊂
∂E.

In the following investigation, assume that Es and Ed are static and dynamic objects. With this defi-
nition, the changes of an environment are directly depending on the dynamic objects. The method of
background subtraction detects these dynamic objects in the following way: The camera takes an image
of the environment in absence of any dynamic objects in the environment, this image is called reference
image at time t0 ∈ R, say. Such an image is illustrated in Figure 2.4 (left). The image is rasterized
into small squares called pixel. The boundary of the environment at this time is just consisting of static
objects Es. The pixel value of an image that is taken at any moment of time t > t0 after t0 is subtracted
from the value of the pixel in the reference image at the same spot. The result of each pixel can be saved
in an additional image, called silhouette image in [107]. In Figure 2.4, an image showing the additional
dynamic objects (middle) and a silhouette image (right) are illustrated.

If a pixel value of the silhouette image is zero, the part of environment boundary which is mapped onto
the pixel has not changed, otherwise a dynamic object has appeared. The pixel is called background
pixel if it has the value zero, and foreground if it has not. The constant assumption is made that dynamic
objects in the second picture differ from the static objects in the first picture (e.g., in color).

Figure 2.4: Illustration of the reference image (left) showing the static objects of an environment
at time t0 and an image showing the additional dynamic objects (middle) after t0 ∈ R at time t > t0.
The pixel value of the image at time t > t0 is subtracted from the value of the pixel in the reference
image at the same spot. This results in the silhouette image (right) with pixel values larger (red)
and equal zero (white).

− =

In the context of BG subtraction, each point of the surveillance area can be marked as either one of the
labels identical, changed, occluded, and out of range. Thereby, the camera sensor in the original sense
becomes a sensor for classifying identical, changed, occluded and out of range regions of the surveillance
area. Given the cameras position, a point y ∈ A can be classified as one of the labels occluded or out
of range just as in Section 2.1.1 with one exception: The second choice, whether or not the point is
occluded, only regards the static objects and not the dynamic objects.

Points that are inside the viewing frustum of the camera and in front of all static objects are detectable
points. A detectable point is mapped onto a specific pixel by projecting it onto the image plane and
assigning a specific pixel, e.g., by rounding. It is labeled the following way:

Definition 2.1.7
Let I ≡ I(p, o) ⊂ E be the image plane of the camera and ρ : I → N2 denote the rasterization of the
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image plane into pixels. Let the function π : Va(E)→ I denote the projection of a detectable point onto
the image plane.

• A point y ∈ Va(E) is called identical if ρ(π(y)) is a background pixel.

• Otherwise it is called changed.

The proposed three-dimensional background-subtraction method (3DBGS) uses the image space to de-
termine regions with the labels changed and identical in the surveillance area. The procedure is illustrated
in the Figures 2.5 (left).

Inside frustum?

In front of all static objects?

Behind background pixels?

identical

yes

changed

no

yes

occluded

no

yes

out of range

no

E
A

Figure 2.5: By the 3DBGS, the surveillance area is subdivided into identical (yellow), changed
(orange), out of range (blue), and occluded (red) regions. This is illustrated by a tree (left) and a
2D environment including a pinhole camera model (right) with corresponding colors.
Left: The colors correspond to Figure 2.3. An orange marked point may have changed during
surveillance at time t > t0 and yellow labeled points definitely have not changed.
Right: Illustration of an environment E with static (gray) and dynamic (red) objects with a pinhole
camera model (green). The surveillance area (contoured, dotted) is part of the environment A ⊂ E.

Assuming the camera is a pinhole camera, the 3DBGS labels the detectable points of the surveillance
area as illustrated in Figure 2.5 (right). The identical parts (yellow) definitely do not include any dynamic
objects: Let p ∈ E be the position of the camera’s pinhole. Let x ⊂ I be a point on a background pixel
in the image plane I. The ray [p, x) will not intersect any objects, dynamic objects in particular. Thus,
the region projected by a background pixel will always be identical to the region at the moment t0. The
remaining points are marked as changed.

The 3DBGS has been discussed for a single camera. It will be generalized for other types of sensors and
more than one sensor in the next section.

2.1.3 Conservative Approximation

In the motivation of this thesis, the 3DBGS is used to approximate a human silhouette of multiple views.
Previously, authors, such as [78] and [162], have proposed a 3DBGS for approximating an object in dif-
ferent applications, i.e. to protect humans and to count objects, respectively. Both approximations need
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to be quite accurate in order not to invoke a false alarm or to miss an object when counting. The authors
utilize several cameras to increase the accuracy of the approximation. The method is demonstrated in
this section independently to the type of sensors.

In an optimization, the network parameters can be adjusted such that the human silhouette is approxi-
mated most accurately. In order to increase the accuracy of an approximation in this section a special
type of approximation is used:

Definition 2.1.8
Let E be an environment and let A ⊂ E be a surveillance area.

• One of the objects T ⊂ ∂E of the environment is designated to be a target and should be approxi-
mated. For this aim, T ⊂ A should hold.

• An object which is not a target is called obstacle.

• A setA ⊂ E is called conservative approximation for target T if T ⊂ A.

A conservative approximationA of a given target T is ideal for an optimization in which the approxima-
tion is to be made more accurate: If the approximation is minimized while keeping the approximation
conservative, then the shape ofA assimilates the target’s shape and never underestimates the target. Such
a conservative approximation is now going to be derived by the 3DBGS which can only approximate dy-
namic targets. The objects of Table 2.1 occur in the environment:

target obstacle

static X

dynamic X X

Table 2.1: The target in this thesis is moving with time, thus, is a dynamic target.

Therefore, let the target be a dynamic object. Let a sensor be given by the parameter vector a ∈ P and
the sensor map σ as in Definition 1.2.1. As the distinction in Figure 2.5 suggests, a chosen environment
E ∈ E including static and dynamic objects can be divided into the following regions:

A(a)
id := σ−1

a (identical), A(a)
ch := σ−1

a (changed), A(a)
or := σ−1

a (out of range), A(a)
oc := σ−1

a (occluded).

Since the target is a dynamic object, the important regions are the identical regions: The following lemma
shows where dynamic objects can be found.

Lemma 2.1.9
Let T ⊂ A be a target of sensor σ with parameter vector a ∈ P. Then A \ A(a)

id = A(a)
ch ∪ A

(a)
or ∪ A

(a)
oc is a

conservative approximation of T .

Proof. After being preimages, the coverages of different sensor labels define a pairwise disjoint conjunc-
tion of A, i.e.

A = A(a)
id ∪ A

(a)
ch ∪ A

(a)
or ∪ A

(a)
oc , with ∅ = A(a)

id ∩ A
(a)
ch = . . . = A(a)

or ∩ A
(a)
oc
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Let Es be the static objects of E and let y ∈ σ−1
(E,a)({identical}) = A(a)

id . So, with Definition 2.1.7 the point
ρ(π(y)) is in a background pixel which shows a part of the static objects Es. Thus, either y is part of a
static object y ∈ Es or it is not part of an object but only part of the empty space y ∈ iE. However, if
y ∈ T neither is possible since T ⊂ ∂E \ Es, which leads to the conclusion that T ⊂ A \ A(a)

id . �

Therefore, as long as the target is approximated by both the coverages of changed and undetectable
labels, such an approximation is conservative. Since this inclusion holds for one sensor with parameter
vector a ∈ P, the following inclusion holds for any target T if we consider a sensor network consisting of
N sensors with camera parameter vectors an, n = 1, . . . ,N. The set on the right side is already expressed
by the fused coverage C from Definition 1.2.1 where a part of the surveillance area A is covered by at
least one camera.

Lemma 2.1.10
Let T ⊂ A ⊂ E be a target of N ∈ N sensors σ with parameter vector (a1, . . . , aN) ∈ P1 × . . . × PN .

T ⊂
(
A \ A(a1)

id ∩ . . . ∩ A \ A(aN )
id

)
≡ A \ C(a1,...,aN )({identical})

This means the term on the right hand side is a conservative approximation of the target.

Such an approximation is more descriptive than the term in Lemma 2.1.9, since all the sensors are used.
In Figure 2.6 (left), the 3DBGS is demonstrated with the pinhole camera model from Figure 2.5. The
identical parts (yellow) definitely do not include any dynamic objects. This is also true for two cameras
(middle), the more cameras the more parts of the surveillance area can be left out of the approximation
of a target. The approximation (right, blue) is constructed of these points in the surveillance area that are
marked as “not identical” from the point of view of all cameras.

E
A

A(a)
id

A(a)
ch

A(a)
or

A(a)
oc

Figure 2.6: Left: Illustration of an environment E as in Figure 2.5. Middle: Two cameras instead
of one decrease the size of the region where dynamic objects (red human and robot) can be located.
Right: The conservative approximation (blue area) of the target (human) by two cameras is smaller
than the approximation by one (not illustrated).

All the images show that the approximation is conservative even if obstacles are in the scene. E.g., if
the human icon resembles the target then a dynamic obstacle (robot) and a static obstacle (gray wall)
obscure the cameras. Nevertheless the approximation (blue) includes the target. Thus, with a 3DBGS
discussed in this section A \ C(a1,...,aN )({identical}) is a conservative approximation of the target. The set
C(a1,...,aN )({identical}) is called the identical coverage, further on.

Lemma 2.1.10 is ideal for an optimization in which a conservative approximation A of a given target
T is to be made more accurate: For a conservative approximation holds T ⊂ A. If the approximation
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is minimized with respect to conservativity, then A approximates the target’s shape more and more
accurately and never underestimates the target. The quality of the approximation can be optimized by
this fused coverage

min
x∈P1×...×PN

λ(A \ C(a1,...,aN )(S )) with S = {identical}.

Note that this does not mean that the approximation converges to the target. In particular, this is not the
case when dynamic obstacles are in the environment: The approximation encompasses points of dynamic
obstacles which do not belong to the target. These points will not be excluded from the approximation
during the above optimization. Nevertheless, the objective function is suitable for sensor network opti-
mization: Given a moment in time, the volume of the dynamic obstacles does not depend on the sensor
network parameters. An addend of the objective function that is constant in the variable vector does
not change the optimization. The objective function has been used for camera network optimization for
one-dimensional images of the cameras and a two-dimensional environment already, [47].

2.1.4 Increased Reliability

In the last section, the approximation is formed by the parts of the surveillance area which are marked
as identical at least once. But the labels of one sensor could be inaccurate, e.g., if a target is similar to
the static objects. Since this is a safety measurement, it would be better to form the approximation by a
region which is marked by at least two or three sensors instead of one. We will discuss a version of the
fused coverage, now, which is refined by the number of trusted sensors k ∈ N, k ≤ N with a general set
of sensor labels S ⊂ S. Its properties will help to show that the maximization of identical regions yields
the same result as the minimization of the approximation error.

For an environment E, a camera parameter vector a ∈ P, and the surveillance area A ⊂ E the following
notation is used:

A(a)
S := σ−1

(E,a)(S ) ≡ {p ∈ A | σ(E,a)(p) ∈ S }

In Definition 1.2.1, we have distinguished two types of fused coverages of N sensors, considering
whether part is meant to be covered by all or at least one sensor. Now, we will establish a generally
valid fused coverage C for the case that at least k ∈ N sensors need to cover a part.

Definition 2.1.11
Let A be a fixed surveillance area in a fixed environment E and let x = (a1, ..., aN) ∈ P1 × . . . × PN be
the parameters of a network. Let σ be the map of surveillance parts to labels, as in Definition 1.2.1.
Let k ∈ N with k ≤ N be a given integer. Let CN(k) ⊂ S N be the set of k-combinations of the N-tuple
(1, . . . ,N) and order N!

k!(N−k)! . The elements of the set are determined by choosing k sensors out of N total
without replacement disregarding the sequence of the tuple.

• The k-reliable coverage of the sensor network is defined by

C(x,E)(k, S ) ≡ Cx(k, S ) =
⋃

π∈CN (k)

k⋂
n=1

A
(aπ(n))
S ⊂ A (2.2)

In the following sections, we will consider E chosen as constant, thus, it can be dropped in the
notation. To ease on the notation we drop the parameter vector of the network x, too.



2.1. COVERAGE OF MULTIPLE CAMERAS 29

• The number k is called reliability threshold.

• Define the threshold region C= of exact k ≤ N sensors as

C=(k, S ) :=

C(k, S ) \ C(k + 1, S ) if k < N

C(k, S ) if k = N.
.

The bigger the reliability threshold k, the more sensor coverages A(aπ(n))
S are intersected, and the more

restrictive is the k-reliable coverage. In the case of the most restrictive solution k = N, this means that
there is N!

N!(N−N)! = 1 possibility to choose N sensors out of N total. C(N, S ) then resembles the fused
coverage of Definition 1.2.1 given that a part of the surveillance area needs to be covered by all sensors:

C(N, S ) := A(a1)
S ∩ · · · ∩ A(aN )

S (2.3)

Next, consider N = 3 sensors with a reliability threshold k = 2. A point of the surveillance area is in the
2-reliable coverage if it is marked by at least two sensors with any label of S . If two random sensors a1

and a2 are chosen only their overlapping coverage A(a1)
S ∩A(a2)

S is part of the 2-reliable coverage. C(2, S )
encompasses all three possibilities to choose two sensors out of three, (a1, a2), (a2, a3), and (a3, a1):

C(2, S ) =
(
A(a1)

S ∩ A(a2)
S

)
∪

(
A(a2)

S ∩ A(a3)
S

)
∪

(
A(a3)

S ∩ A(a1)
S

)
.

In the case of k = 1, the 1-reliable coverage consists of the united sensor coverages A(aπ(n))
S . Thus, the k-

reliable coverage contains all the points in A which are marked by one of the labels in S at least k times.
This is illustrated in Figure 2.7 for a network utilizing three cameras and the sensor labels detectable
and undetectable. In the left image, three cameras and their detectable coverage of the environment are
depicted. The yellow region resembles the 1-reliable coverage C(1, S ). In the middle, the 2-reliable
coverage is illustrated as an additional blue area.

In contrast to the points that are marked with a label of S at least k times, the points which are marked
exactly k times are contained in the threshold region C=(k, S ). These regions are introduced in this
section for the proof of the upcoming theorem. The threshold regions constitute pairwise disjoint sets
that completely cover the whole surveillance area. In Figure 2.7 to the right the threshold regions C= are
illustrated that a surveillance area can be decomposed into.

A

C(1, S ) C(2, S )

A A

C=(2, S )

C=(1, S )

C=(0, S )

Figure 2.7: Illustration of three cameras (green) including their detectable coverage (left, yellow),
the 2-reliable coverage (middle), and their threshold regions regarding the set of sensor labels
S = {detectable} (right) in the surveillance area A.
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Furthermore, (N − k) threshold regions can be combined to a k-reliable coverage.

Lemma 2.1.12
Let the assumptions of Definition 2.1.11 hold. The coverage C(k, S ) can be constructed of N − k + 1
threshold regions:

N⋃
κ=k

C=(κ, S ) = C(k, S )

Proo f .
N⋃
κ=k

C=(κ, S ) =

N−1⋃
κ=k

C=(κ, S )︸   ︷︷   ︸
C(κ,S )\C(κ+1,S )

∪C=(N, S ) = C(k, S ) \ C(N, S ) ∪ C(N, S ) = C(k, S )

With help of this observation, the coherence between the set of sensor labels S ⊂ S and its compliment
and the coherence between the k-reliable coverage and its complement can be examined. If a part of the
surveillance area is marked with one of the labels in S by at least k > 0 sensors, the remaining part is
marked with the remaining labels S \ S at least N − (k − 1) times:

Theorem 2.1.13
Let the assumptions of Definition 2.1.11 hold.

C(k, S ) = A \ C(N − (k − 1),S \ S ).

Proo f . C(k, S ) =

N⋃
κ=k

C=(κ, S ) =

N⋃
κ=0

C=(κ, S ) \
k−1⋃
κ=0

C=(κ, S ) C= pairwise disjoint

= A \
k−1⋃
κ=0

C=(κ, S ) = A \
N⋃

κ=N−(k−1)

C=(κ,S \ S ) �

The target can be conservatively approximated by successively excluding the cameras’ identical coverage
from the surveillance area with A \ C(1, {identical}) of Lemma 2.1.10 (in our recent notation). The
reliability threshold 1 in A \ C(1, {identical}) means that each identical coverage is going to be excluded.
This is advisable if all sensors can be trusted to label the parts of the surveillance area without error, i.e.
no objects blend in with the background from any point of view. With Theorem 2.1.13 we know that the
approximation is equivalent to:

A \ C(1, {identical}) = C(N,S \ {identical}) = C(N, {changed, out o f range, occluded})

Excluding each camera’s identical coverage amounts to the parts of the surveillance area that are com-
monly considered as changed, out of range, or occluded by all the cameras. Less obvious coherences are
also established by the theorem above for reliability thresholds larger than 1. Additionally, the theorem
can be used in an optimization of the volume of the k-reliable coverage: Instead of decreasing the volume
of C(k, S ) in an optimization of the network, we could as well increase the volume of C((N−(k−1),S\S )
and vice versa.

Corollary 2.1.14
Let T ⊂ A be a dynamical target of a camera network with parameters x ∈ P1× . . .×PN using a 3DBGS.
Let k ∈ N, k ≤ N be a reliability threshold. Then the following is true:

• Cx(k, {changed, out o f range, occluded}) is a conservative approximation of T .
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• Let λ denote the volume of a set. The approximation error can be minimized by

max
x∈P1×...×PN

λ(Cx(N − (k − 1), {identical})).

Proof. It holds

T ⊂︸︷︷︸
Lemma 2.1.10

A \ C(1, {identical}) =︸︷︷︸
Theorem 2.1.13

C(N, {changed, out o f range, occluded})

⊂︸︷︷︸
Lemma 2.1.12

C(k, {changed, out o f range, occluded}).

Thus, the latter is a conservative approximation. When minimizing a conservative approximation, the
target is never underestimated and constitutes a lower bound to the volume of an approximation: With
Theorem 2.1.13 it holds

λ(T ) ≤ λ (C(k, {changed, out o f range, occluded})) = λ (A \ C(N − (k − 1){identical}))

= λ(A) − λ (C(N − (k − 1), {identical}))

Since λ(A) ≥ λ (C(N − (k − 1), {identical})) minimizing λ (C(k, {changed, out o f range, occluded})) is
the same as maximizing λ (C(N − (k − 1), {identical})). �

In order to decrease the error of the approximation, instead of minimizing the volume of the ap-
proximation C(N, {changed, out o f range, undetectable}) we can as well maximize the volume of
C(1, {identical}). Summarized, in this section a refined version of the fused coverage of Definition 1.2.1
regarding the number of trusted sensors has been developed with a general set of sensor labels S ⊂ S. It
has been transferred to a 3DBGS, a method which is used in a camera network to approximate a target
conservatively. The important result for sensor network optimization: There is no difference in maxi-
mizing the volume of the identical coverage and minimizing the volume of the approximation of a target
when abiding the threshold rule of Theorem 2.1.13.

In the upcoming chapters, the volume of the above k-reliable coverage λ(Cx(k, S )) is used as an objective
function of problem (1.1). If the quality of the approximation needs to be improved then S = {identical}
is used, and otherwise if the detectable regions of the surveillance area need to be enlarged we set
S = {detectable}.

2.2 Implementation of the Coverage of Multiple Cameras

The function λ(Cx(k, S )) is used as an objective function to camera network optimization in this thesis.
It resembles the volume λ of the fused coverage C of N ∈ N cameras in a network with parameters
x ∈ P1 × . . . × PN . C can be modified to resemble both, the total field of view of the cameras if S =

{detectable} and the approximation error of a human silhouette if S = {identical}. The number k ≤ N
stands for the minimum number of cameras which cover a point in the coverage with a label of S .

The function Cx(k, S ) is not given as an analytic formula. For the optimization, the points inside a
camera frustum that are not occluded by obstacles such as racks, walls, and doors need to be deduced
geometrically. Such a deduction has to be done for all cameras taking into account the environment with
obstacles, the surveillance area, the placement of the cameras, the sensor labels S ⊂ S, and the reliability
threshold k. The deduction of the k-reliable coverage of several cameras will be called visibility analysis,
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as in case of the deduction of the detectable coverage in [101]. After the visibility analysis, for a particular
state of network parameters, e.g., for particular positions and orientations of the cameras, the quality of
the network can be estimated from the k-reliable coverage by applying a suitable measure, e.g., the
volume of the covered regions in total.

In this section, some details are given how to implement the visibility analysis and the measurement of
the volume as an objective function. In Section 2.2.1, the basic implementation of the k-reliable coverage
together with an upper bound for the complexity of the implementation is stated. Then, in Section 2.2.2,
we discuss some general ideas to accelerate the generation of the coverage. In Section 2.2.3, we develop
two methods to accelerate the objective function when being evaluated several times in a row, such as
done in an optimization.

2.2.1 Basic Implementation

The k-reliable coverage of several cameras is an intersection or union of all camera coverages. Thus, the
visibility analysis requires to fuse several polyhedral areas. Set operations on polyhedra are known to
be a non-robust computation: I.e. when two polygons are tangentially contacted or they intersect in only
one edge, numerical errors can lead to topology inconsistencies, see [157].

In order to cope with set operations, the most commonly used data structure for the coverage is the
following: The surveillance area is discretized into an orthogonal grid, composed of small cubes of the
room, called voxels. The coverage of one camera is then a collection of the voxels that are covered. The
data structure is also called binary occupancy grid, referring to occupied regions in robotic applications
[152]. In order to derive the fused coverage of the whole camera network, a set operation such as the
union or intersection needs to be applied over all camera specific occupancy grids. After the set operation,
the quantized volume of the coverage is derived by adding up the volume of the covered voxels.

Therefore, we assume that the environment of the camera network is a collection of solid, static and
dynamic objects. These solid objects are represented by a boundary representation, i.e. their boundary
is made out of polygons called faces. Let the environment include fs, fd ∈ N static and dynamic faces
with a constant number of faces f = fs + fd in each frame during the surveillance time. Let the dynamic
objects move on a trajectory which is discretized into t − 1 time intervals or rather t ∈ N time steps. Let
the occupancy grid of each camera have v ∈ N voxels. Let each voxel be treated as a point in space, in
particular a voxel check is defined as an operation applied to the voxel cube’s center in the surveillance
area. One could as well use the voxel’s vertices or the edges, but to show the following procedure the
center suffices. Let there be N ∈ N cameras in the network. Also, let O denote an upper bound of
calculation steps within the simulation.

Consider an occupancy grid of a single camera’s coverage. The question is how to mark each voxel
with the right sensor label in S in an efficient manner. The voxel check for out of range is merely a
localization of the voxel according to the boundary planes of the camera frustum. Additionally, one
variant of marking the voxels of the detectable coverage, i.e. the voxels which are not out of range, is an
inverse ray tracing: The half line starting at the focal point of a camera and a point in the image plane
is called ray. Usually, the value of the image at such a point is determined by intersecting the ray and
the faces of the environment. Conversely here, the sensor label of the voxel and not the value of the
pixel is determined. This is accomplished by intersecting the segment between camera position and the
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voxel with all the faces of the environment. In case of a non-empty intersection, the voxel is occluded.
This test needs to be done for each camera, each voxel and each face in each timestep, so the complexity
of the simulation has an asymptotic behavior of O (N · v · t · f ). If dynamic and static faces are stored
in separate data structures this can be reduced to the following upper bound to the asymptotic behavior
since static faces only have to be checked once over all timesteps:

O (N · v · ( fs + t · fd))

We will now give a visibility analysis that synthesizes camera images, which is cheaper and can be used
to derive the identical coverage as well as the detectable coverage. It is illustrated in Figure 2.8.

Cam 1:

Cam N:

x

a1

aN

σ−1
a1

(S )

σ−1
aN

(S )

Images 1 Silhouette images 1 Coverage 1

· · · Cx(k, S ) Volume

Images N Silhouette images N Coverage N

Figure 2.8: Illustration of a single function call λ(Cx(k, S )) with the method of image synthesis.
Each camera synthesizes one (in case of the detectable coverage) or more images (in case of the
identical coverage). These images are converted to silhouette images in 2D (in case of the identical
coverage, Sections 2.1.2) and projected to each camera’s coverage in 3D. The fused coverage
Cx(k, S ) is measured by the volume. The calculations corresponding to each sensor (gray) are
independent on another sensor’s parameters.

Instead of tracing the ray between the camera position and each voxel, the idea is producing a depth
image of the faces: The depth image is discretized into a number of p ∈ N little squares which are called
pixels. The only difference to color images is that these images do not store a color value in each pixel,
the pixels contain the distance between the camera position and the next face. The following procedure
distinguishes whether or not a voxel is detectable: Project the voxel into the image plane and thereby
determine the pixel it should be seen in, as by ρ(π(·)) in Definition 2.1.7. If there is no pixel, the voxel
is outside the viewing frustum and thus out of range. Otherwise, if there is a pixel, compare the distance
that is stored in this pixel to the distance between voxel and camera. If the latter is larger then the voxel
is occluded.

To derive the identical coverage, we produce more than one depth image. This is a way how to obtain
the labels identical and changed: The first image is a background depth image showing only the static
faces. An additional depth image per timestep including all the faces (static and dynamic) is produced.
A background subtraction on the depth images yields a silhouette image per time step, as described in
Section 2.1.2. If a voxel is detectable and is projected onto a background pixel then the voxel is labeled
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by identical otherwise changed. An upper bound for the complexity of this approach is:

O
(

N · p · ( fs + t · f )︸               ︷︷               ︸
Depth image

+ t · N · (p + v)︸          ︷︷          ︸
BG subtr. and coverage

)
(2.4)

as can be seen in detail in Table 2.2. The latter method is cheaper when using a large amount of voxels
or a denser occupancy grid. For a sufficiently large amount of voxels the inverse ray tracing is more
expensive than the pixel based visibility analysis.

N (p · ( fs + t · f ) + t · (p + v) − v · ( fs + t · fd)) ≤ 0 ⇔p ·
fs + t · f + t
fs + t · fd − t

≤ v

Thus, the coverage of a sensor can be constructed cheaper by synthesizing images than by inverse ray
tracing. The fused coverage can now be derived by intersecting and uniting these camera coverages.

Description Complexity
Faces to depth image Straight forward approach to produce

one reference depth image with pixels p
including fs static faces, and a few depth
images with all faces for each camera.

O (N · p · ( fs + t · f ))

BG subtraction A silhouette image is produced by sub-
tracting each depth image from the refer-
ence depth image.

O (t · N · p)

Deriving the Coverage The following will be done for each
voxel in each timestep:

O (t · v) · . . .

Project the voxel into the image plane of
each camera. The corresponding pixel
can be derived by scaling and rounding.

·O (N)

If a pixel including the projected voxel
does not exists in the image plane then
the voxel is out of range, otherwise the
distance between the camera and the
voxel is evaluated

·O (N)

If the distance is larger than the depth
value of the reference image the voxel is
occluded

·O (N)

If the voxel is neither out of range nor oc-
cluded it can be labeled as follows: If the
pixel of the silhouette image is zero then
the voxel is identical, otherwise changed

·O (N)

Table 2.2: Table of upper bounds of the calculation steps when deriving the coverage of one single
camera. An occupancy grid is used as a data structure for the coverage. The occupancy grid is
filled by synthesizing images of the environment.

The construction of the k-reliable coverage has been discussed in this section. Instead of an inverse
ray tracing method, we will synthesize depth images and use an occupancy grid as data structure. This
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method is improved in the upcoming sections.

2.2.2 Acceleration of the Evaluation

The complexity (2.4) has two parts, the complexity for synthesizing the images and the complexity for
using a 3D-background subtraction method in order to obtain the camera coverage. There are several
ways to accelerate this simulation.

The first part, the synthesis of the image, can be accelerated by utilizing a tree structure instead of an
occupancy grid. An octree is a data structure that saves the faces in a hierarchical order: The faces that
share one of the eight octants of a cell of the room are in the same subtree of the octree. Only the faces of
suitable octree branches are checked for an intersection of the pixel ray. Thereby the average asymptotic
behavior of taking the image improves.

Another way to accelerate the computation of the depth images is to parallelize the computations. In
order to give a brief idea on the amplitude of an acceleration of the runtime, Figure 2.9 presents the
results of a project [124] in which the depth image computation has been parallelized in different ways.

OpenMP OpenMP is a simple C/C++/Fortran compiler extension which allows to compute loop calls
in parallel on several cores of the CPU without significantly having to rewrite existing source code,
cf [112]. The OpenMP has existed since the 1980s [22]. In the project [124], the generation of
each depth image by each camera has been parallelized with OpenMP.

OpenGL Since the pixels of an image in each camera can be computed independently and the number
of cores of a CPU is rarely sufficient for the number of pixel, a parallelization on a GPU is wanted.
Since our aim is indeed a graphical application, we can also use a language more suitable to the
original purpose of a graphics card: The Open Graphics Library (OpenGL) Application Program-
ming Interface (API) “began as an initiative by SGI to create a single, vendor-independent API
for the development of 2D and 3D graphics applications”, cf. [140], but is now maintained by
the Khronos Group, as well as OpenCL. In the project [124], the primitives are not rendered for
displaying their color on a screen, instead the stored values in the pixels are depth values.

In Figure 2.9 the runtime of taking an image is illustrated broken down to these two types of parallel
computation. Be aware that the runtime is depicted in milliseconds on a logarithmic scale. The figure
shows that if a graphics card is available, one should definitely use it to parallelize the computations. The
OpenGL-parallelized synthesis only takes 0.021s.
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Runtime in log(ms)
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Figure 2.9: Bar plot of the runtime of synthesizing a depth image averaged over five cameras plot-
ted on a logarithmic scale in milliseconds. The environment is rendered in an image of 320x240
pixel and had 304 static faces with 572 vertices and 104634 dynamic faces with 34878 vertices.
Hardware: AMD FX-6100 (6 cores) processor, NVIDIA Geforce GTX 570 graphics card.

The runtime of synthesizing the image for the deduction of the coverage can be decreased by paralleliza-
tion. This acceleration addresses only the first part of the complexity in (2.4). Acceleration approaches
fall under the scope of Computer Graphics. The second part can be accelerated by multi-camera approx-
imation approaches which fall under the scope of Computer Vision. The authors of [159], e.g., utilizes
spatial and temporal coherency in order to decrease the average asymptotic behavior for the 3D back-
ground subtraction subtraction method (second term in the complexity (2.4)). The coherency states that
neighboring voxels in space and time do not change their sensor label “a lot”.

An optimization consists of a solver calling the objective function several times. Each function call
launches one visibility analysis. In our case the visibility analysis consists of the synthesis of depth
images, the construction of each camera’s coverage, and construction of the fused coverage. The above
approaches accelerate one single simulation of the k-reliable coverage. Accelerated subsequent calls of
this simulation can be achieved by the following section.

2.2.3 Sequential Evaluations

In order to accelerate the optimization of camera network parameters we have decreased the runtime
of a single objective function call. This was done by accelerating the construction of the coverage of a
single sensor in the last two sections, Section 2.2.1 and 2.2.2. In an optimization, the objective function
is called several times. In our application subsequent function calls can be accelerated by caching the
camera coverage σ−1

an
(S ) for all cameras n ∈ {1, ...,N}.

Caching the camera coverages is advantageous for the following reason: Consider the structure of a single
function call λ(Cx(k, S )) when utilizing the depth image synthesis approach, cf. Figure 2.8. The coverage
of each camera is independent on another camera’s position and orientation, which is illustrated in the
figure as parallel gray boxes. When caching each camera’s coverage, we utilize their independence for
accelerating two (or more) subsequent function calls. In order to show the acceleration, let i and (i + 1)
be two subsequent function calls. There are two ways of using the caching for the objective function
developed in this thesis:

Recalculation Consider the coverages σ−1
an

(S ), n = 1, . . . ,N. If only a single camera n ∈ {1, . . . ,N}
changed its position or orientation a(i)

n → a(i+1)
n , then only the coverage σ−1

a(i+1)
n

(S ) and not the
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coverage of the remaining sensors n , n needs to be recalculated. Figure 2.10 shows an example
of saving calculation time when repositioning a subset of cameras.

a(i)
1 a(i)

2

L

T

σ−1
a(i)

1

(S )
σ−1

a(i)
2

(S )
L

L

(a(i)
1 , a

(i)
2 ) (a(i+1)

1 , a(i+1)
2 )

Figure 2.10: Example for the reduction of evaluation time when recalculating the coverages of
two cameras. Left: The cameras are placed in L (gray line) and oriented towards T . Thus,
the domain of the objective function is D = L2. Right: Illustration of repositioning the cam-
eras from an initial state (green) to an end state (red) in the domain D = L2. With a(·)

1 being
constant, the coverage σ−1

a(i)
1

(S ) can be cached. Thus, the recalculation of the objective function

λ(C(a(i)
1 ,a

(i)
2 )(1, S )) = λ

(
σ−1

a(i)
1

(S ) ∪ σ−1
a(i)

2

(S )
)

is less expensive.

Multiplication For all the cameras n = 1, ...,N, consider the camera coverages σ−1
acn

n
(S ) cached in both

the objective function evaluations cn ∈ {i, (i + 1)}. Then, the known objective values can be mul-
tiplied in the following way: The objective function λ(Cx(k, S )) can be evaluated at all N-tuples
x = (ac1 , ..., acN ) without constructing an additional camera coverage. For these 2N possibilities,
the objective function can be evaluated by applying set operations and measuring the volume, only.
When multiplying the known objective values like this, the costly function is evaluated at a grid of
solution points. Figure 2.11 shows an illustration of the multiplied variable vectors for which the
objective value is known with this method.

L

L(a(i)
1 , a

(i)
2 )

(a(i+1)
1 , a(i+1)

2 )

L

L

L

(a(i)
1 , a

(i)
2 )

(a(i+1)
1 , a(i+1)

2 )

Figure 2.11: Illustration of the multiplied objective function values in the domainD = L2 (left) and
D = L3 (right); The camera coverages of the initial state (i, green) and the end state ((i + 1), red)
need to be evaluated and cached. The objective function value λ(Cx(k, S )) of the remaining states
(blue) can be calculated by applying the set operation C to the camera coverages and measuring
the volume λ.
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These methods come into play when calling the objective function more often. The first method ac-
celerates the visibility analysis when having changed only one camera’s position or orientation. If the
parameters of several cameras are changed the second method can be used. The latter method only
affects the number of already evaluated objective function values. This is why the latter method can
only be used if the function values are stored. The number of function values which are gained in one
of these methods is depicted in the following lemma together with the amount of cost reduction in an
optimization:

Lemma 2.2.1
Let the calculations of the coverage of one camera cost cc (this indeed corresponds to the costs of
Equation (2.4)). Let I be the number of times that the function λ(Cx) is evaluated by the method of

Recalculation: Let σ−1
a (S ) be cached for the parameters a = a(0)

1 , . . . , a(0)
N at the initial function evalu-

ation (0). By the method of recalculation, the total number of known function values is I. These
function values can be gained with a cost reduction of (IN − N + 1 + I) · cc.

Multiplication: Let σ−1
a (S ) be cached for the parameters a = a(i)

1 , . . . , a
(i)
N at all the evaluations i =

1, . . . , I. By the method of multiplication, the total number of known function values is IN . These
function values can be gained with a cost reduction of (IN − I) · N · cc.

Proof. Let a set operation cost cu and measuring the volume cost cv. One evaluation of the fused coverage
of the cameras has a complexity of N · cc + cu + cv.

With the method of recalculation parameters we gain I function evaluations at the cost of of N · cc + cu +

cv + (I − 1)(cc + cu + cv). The same amount of iterations without this method would lead to the costs
I(N · cc + cu + cv). The cost reduction is therefore (IN − N + 1 + I) · cc.

The cost reduction of the second method can be deduced as follows: 2N function evaluations normally
can be gained with the costs 2N · (N · cc + cu + cv). With the method of multiplication we gain the same
amount of evaluations with the complexity of 2 · N · cc + 2N · (cu + cv). Thus, we save the expenses of
(2N − 2)Ncc.

If we stored the sensor coverages of I iterations, the number of function evaluations would increase to
IN with the storage of I · N, respectively. The saved costs account for (IN − I)Ncc. �

Summarized, an optimization consists of a solver calling the objective function several times. In camera
placement, each function call launches an expensive visibility analysis. The above methods accelerate
the optimization in the following way: The first method saves costs by caching the sensor coverages
and only recalculating a part of the visibility analysis. The second method generates multiple objective
function values out of two actual visibility analysis’.

In the last sections, the visibility analysis has been constructed by synthesizing depth images. The
objective function has been accelerated by accelerating the both the image synthesis and by accelerating
subsequent function calls. Optimization solvers that can use these methods will be discussed later on, in
Section 3.2.2.
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2.3 Geometry of the Coverage of Multiple Cameras

We take a step back away from implementation details and have a look at the k-reliable coverage as it is
defined in Section 2.1. In this section, the geometry of the detectable and identical coverage is addressed
without being concerned with a voxel implementation. The shape of the k-reliable coverage and its
properties will be used in Section 2.4 in order to investigate staircasing and continuity of the function we
want to utilize as objective function for optimization.

The shape of the k-reliable coverage depends on the type of sensors that are used in the network. In
contrast to the last section, let us assume non-distorted pinhole camera images for the next sections. For
the shape of the identical coverage let us assume that a sensor label is assigned by a 3DBGS to a point
in the surveillance area. Thus, the used sensor labels are “occluded”, “out of range”, “changed”, and
“identical”, as in Section 2.1.4. In the course of this section, let the surveillance area A ⊂ E be a 3D-
polyhedral area in the environment E ∈ E, a polyhedron that can be disconnected and flat at some points.
This is always true if A = E. Additionally, assume that all the cameras have the same opening angles
θu, θo×u ∈ (0, π] to ease the notation. Since the environment is three-dimensional, it is implied that by the
term polyhedral area a 3D-polyhedral area is meant, and by polyhedron a 3D-polyhedron is meant. In
order to distinguish the faces of the environment and the faces of the k-reliable coverage, the faces of the
environment are called polygons henceforth.

In Section 2.3.1, we will prove that the shape of the k-reliable coverage is a polyhedral area. The faces and
vertices of a polyhedral area are necessary to calculate its volume (Section 2.3.2). This is why the faces
and vertices of the k-reliable coverage are all classified in Section 2.3.3. For deriving some properties
of the objective function, such as stair-casing and differentiability (Section 2.4), the parameters of the
camera network are relevant at which a face of the k-reliable coverage meets a vertex of the coverage or,
in general, a point in the environment. These incidences are characterized in Section 2.3.4.

2.3.1 Shape

We will realize in this section that the k-reliable coverage C(k, S ) of several cameras with labels S =

{detectable} (field of view of several cameras) or S = {identical} (error of approximation) is a polyhedral
area of some sort if the surveillance area is a polyhedral area. In the course of the proof within this
section, we also motivate the types of faces that can occur in the boundary of the k-reliable coverage.
This is relevant for classifying the faces in the next section.

In order to deduce the shape of C(k, S ), the following Lemma is necessary which is a direct result of
Definition 2.1.1.

Lemma 2.3.1
An intersection or union of polyhedral areas is again a polyhedral area.

Let us first tend to one camera N = 1 and only consider the separation into detectable and undetectable
parts of the surveillance area. Later we will add the distinction between changed and identical regions
and add several cameras. The coverage of one camera with parameters a = (p, o) ∈ P holds

σ−1
(E,a)({detectable}) = V(p, E) ∩ Fa ∩ A.
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The coverage of one camera can only be a polyhedral area if the frustum Fa and the set of all visible
points V(p, E) are polyhedral areas. Figure 2.12 (left) illustrates the field of view of one single camera
as a polyhedral area. For illustration purposes, the figure is limited to two dimensions although we are
investigating the field of view of a camera in three dimensions.

A

σ−1
(E,a)({detectable})

σ−1
(E,a)({out o f range})

σ−1
(E,a)({occluded}) A

σ−1
(E,a)({detectable})

Figure 2.12: Comparison between different fields of view (yellow) of one single camera (green);
Illustrated is the 2D case although the investigation considers the 3D case. Left: The field of view
is a polygon since it includes only 2-manifold points. Right: The field of view is not a polygon
due to the yellow ray in the bottom right corner, it is a polyhedral area.

Lemma 2.3.2 shows that the frustum Fa is a polyhedron, but this cannot be said for the visible set V(p, E)
with respect to all the camera parameters. The definition of a polyhedral area corresponds to a weakened
polyhedron: The polyhedral area can be pinched and disconnected. Lemma 2.3.3 shows that the visible
set is a polyhedral area. A field of view which is not manifold can be seen in Figure 2.12 (right).

Lemma 2.3.2
Let a = (p, o) ∈ P with p ∈ E \ ∂E. The shape of Fa is a 3D-polyhedron.

Proof. The frustum Fa is a 3D-polyhedron: A θ-space is an intersection of halfspaces. Since the opening
angles are larger than 0, the frustum is a 3-manifold with boundary and thereby in R3. Its boundary is
illustrated in Figure 2.2. �

The exact definition of the faces of one single camera’s coverage follows in the next section. As antici-
pation: The boundary of the frustum is made out of four faces that are unbounded. We call these faces
opening faces and two of them are illustrated in Figure 2.15 (left, purple lines). The faces are illustrated
in 2D but they are relevant to this work in 3D. The next lemma addresses the shape of the visible set.

Lemma 2.3.3
Let E be an environment, A ⊂ E a surveillance area, and let p ∈ E be the position of a camera. The
shape of V(p, E) is a simply-connected 3D-polyhedral area.

Proof. For each segment [p, y] from position p to a point y ∈ V(p, E) including y = p holds [p, y] ⊂ E.
Thus, the set V(p, E) is star-shaped and thereby simply connected. The visible set can be decomposed:

V(p, E) = E ∩ {{y ∈ R3 | y not visible in E from p} (2.5)
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Based on this Equation and the reasoning illustrated in Figure 2.13, V(p, E) is closed.

p

y′

E

y

[p, y]

p

y′

E

y

[p, y]

B3
ε′ (y

′)

B3
ε (y)

Figure 2.13: Reason for V(p, E) being closed. Let y ∈ ∂V(p, E). With Equation (2.5) holds: If
y < V(p, E), then either y < E and/or (as illustrated to the left) a point y′ ∈ [p, y] exists with y′ < E
(Definition 2.1.4). But E is closed, so y ∈ E.
Furthermore, {E is open, which leads to the fact that an open ball B3

ε′(y
′) ⊂ {E exists, as shown to

the right (red). All points y′′ ∈ E with [p, y′′]∩B3
ε′(y
′) , ∅, lie on a cone behind the ball (blue) and

hold y′′ < V(p, E). y is at the center of the cone, just as y′ is. Thus, an open ball B3
ε (y) ⊂ {V(p, E)

exists (green), which means y < ∂V(p, E). This is a contradiction.

V(p, E) ⊂ E ⊂ R3, but V(p, E) can be non-manifold (Counter example in Figure 2.12). However, a
3D-polyhedron which infringes the manifold property is a 3D-polyhedral area, thus the only property
to be shown is that V(p, E) is a union of intersections of half spaces. The boundary of E is made of
hyperplanes, the remaining boundary points y ∈ ∂V(p, E) are in ∂{y ∈ R3 | y not visible in E from p}.
Their line of sight always touches an edge y′′ of the environment as Figure 2.14 exemplarily shows in 2D.
In 3D: In case p is not in the same one-dimensional subspace as y′′, y′′ and p define a hyperplane, which
is the boundary of one half-space. Otherwise, the one-dimensional subspace of y′′ is the intersection of
two half-spaces.

p

yyε

y′ε

y′′y′′ε

E
[p, y]

B3
ε (y)

Figure 2.14: The line of sight of y ∈ ∂V(p, E) \ ∂E intersects an edge of the environment: The
point holds y ∈ iE and for all ε > 0 a point yε ∈ B3

ε (y) exist with yε < V(p, E). yε is not visible
and, following this, a point y′ε ∈ [p, yε] exists with y′ε ∈

{E. Since p ∈ E, a point y′′ε ∈ [p, y′ε]
exists with y′′ε ∈

∂E. The sequence y′′ε lies on a plane and converges to a point y′′ ∈ [p, y] due
to the theorem of intersecting lines. However, y is visible, and thus [p, y] ⊂ E. Thus, y′ is at the
boundary of a face of E. �
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What we have seen in this proof is that V(p, E) is a 3D-polyhedral area. A 3D-polyhedral area can be
pinched, meaning it is not necessarily a 3-manifold. However, V(p, E) is at least simply connected. Fur-
thermore, the polyhedral area has two types of faces: Firstly, faces that are defined by the polygons of the
environment or surveillance area, and secondly, faces which separate occluded points of the environment
from visible points. The influence on the faces of the identical coverage are again stated in the next
section. There, the first type will be called environmental face and the latter projection face. Both are
illustrated in Figure 2.15 (middle, blue and green lines). Again, the faces are illustrated in 2D but they
are relevant to this work in 3D.

With Fa and V(p, E) being polyhedral areas, the shape of the detectable region of a camera
σ−1

(E,a)({detectable}) is a polyhedral area. Next, we will address the approximation of a target in the
context of a single camera. What is the shape of the approximation error σ−1

(E,a)({identical})? With the

Notation { from Appendix B, the latter set can again be decomposed into

σ−1
(E,a)({identical}) = σ−1

(E,a)({detectable}) ∩ {σ−1
(E,a)({changed})

If σ−1
(E,a)({changed}) is a polyhedral area, the closed coverage cσ−1

(E,a)({identical}) (Notation in Appendix
B) is a polyhedral area as well. This is ensured in the following lemma:

Lemma 2.3.4
Let E be an environment, and let a ∈ P. Let Ed ⊂

∂E be a dynamic object. Then, the shape of
σ−1

(E,a)({changed}) is a polyhedral area.

Proof. Let I and π be defined as in Definition 2.1.7. As described, all background pixels define a
projected region that is identical to the environment at time t0 and it holds:

y ∈ σ−1
(E,a)({identical}) ⇔ y ∈ σ−1

(E,a)({detectable}) and x := π(y) is a background point

Being a pinhole camera, the inclusion [p, x)∩σ−1
(E,a)({detectable}) ⊂ σ−1

(E,a)({identical}) holds for all back-
ground points x ∈ I. Consequently, [p, x) ∩ σ−1

(E,a)({detectable}) ⊂ σ−1
(E,a)({changed}) for all foreground

points x ∈ I.

The foreground points are projections of the dynamic objects into the image plane. The dynamic faces
form a polyhedral area Ed ⊂

∂E, cf. Definition 2.1.6. Thus, the foreground points of the dynamic
objects form a 2D-polyhedral area in silhouette image, as it is called in 2.1.2. The set R := {[p, x) ⊂
E | x ∈ I is foreground point} is therefore a 3D-polyhedral area, and the set R ∩ σ−1

(E,a)({detectable}) ≡
σ−1

(E,a)({changed}) as well. �

What we have seen in this proof is that σ−1
(E,a)({changed}) is a 3D-polyhedral area. It can be pinched, it is

not necessarily a 3-manifold. The faces of the coverage σ−1
(E,a)({identical}) that separate the changed and

identical regions are called silhouette faces, further on. This type of face is illustrated in Figure 2.15 in
2D (right, orange lines), again with relevancy to the 3D case.
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A A A

Figure 2.15: Example of Figure 2.6: Two-dimensional illustration of the four types of faces of the
coverage σ−1

(E,a)({identical}) consisting of three types which are also faces of the field of view of
the camera (first two pictures) and one additional type.
Left: The opening faces (purple lines) are faces of the boundary of the frustum of the field of view
(yellow area). Middle: The environmental faces are parts of the polygons of the environment or
surveillance area (blue lines). Projection faces separate occluded points of the environment and
visible points (green lines). Right: Silhouette faces are faces of the coverage σ−1

(E,a)({identical})
that separate the changed and identical regions.

With this consideration we have gained the fact that the shape of the identical coverage
cσ−1

(E,a)({identical}) and the shape of the field of view is a polyhedral area. Next, we will consider a
camera network with several cameras.

Theorem 2.3.5
Let E be an environment and let Es, Ed ⊂ E be polyhedral areas. Let N, k ∈ N and k ≤ N. Let us
utilize a camera network with N cameras and a 3DBGS as in Section 2.1.2, 2.1.3, and 2.1.4. And let
x := (a1, . . . , aN) ∈ P1 × . . . × PN .

The identical cCx(k, {identical}) and the detectable coverage Cx(k, {detectable}) are both polyhedral
areas.

Proof. By Definition 2.1.11 it holds Cx(k, S ) =
⋃
π∈CN (k)

⋂k
n=1 σ

−1
aπ(n)

(S ) for a set S ⊂ S such as S =

{detectable} or S = {identical}. This is a concatenation in the sense of the polyhedral area of Definition
2.1.1 of polyhedral areas (Lemmas 2.3.2– 2.3.4). �

With the above result the objective function of camera placement in this thesis is the volume of a poly-
hedral area. This is true for the objective function when maximizing the field of view of several cameras
as well as minimizing the error of a human silhouette. The measurement of the volume of a polyhedral
area will be discussed in the next section.

2.3.2 Volume

In order to investigate the properties (Section 2.4) of the objective function of sensor network optimiza-
tion a measure of the k-reliable coverage must be chosen. In the last section, we have found that the
shape of the k-reliable coverage is a polyhedral area. The volume of a polyhedral area is suitable for
measuring both the identical and detectable coverage. In this section, vertices of a polyhedral area are
used to obtain a formula for the volume of the k-reliable coverage.
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There are several suitable representations for a polyhedral area: A computationally more convenient
representation to check whether a point is inside a non-convex polyhedron is developed by [44], but
for the moment we are more interested in a formula of the volume to examine the objective function’s
properties such as continuity or stair-casing.

In [160] a formula is given calculating the volume λ of a tetrahedron [0,T ] which spans from 0 ∈ R3 to
a triangle T of the verticesV1,Vr, andVr+1 in 3D:

λ([0,T ]) =
1
6
·
(
(V1 − 0) × (Vr − 0)

)
· (Vr+1 − 0) (2.6)

In [83] it was shown that any convex or non-convex polygon F with R ∈ N vertices V1, . . . ,VR can be
separated into (R− 2) triangles Tr = (V1,Vr,V(r+1)), r , 1, (r + 1) , 1 if the segment [Vr,Vr+1] forms
a directed edge of the polygon. The spanning tetrahedron [0,Tr] of such a triangle can be calculated as
above in 3D. As suggested in [160], the sum of the volumes of all these spanning tetrahedra is the volume
of a pyramid [0,F ] spanning between 0 and F .

Furthermore, [160] states that the volume of a polyhedron P with I ∈ N faces Fi can be calculated by the
volumes of the spanning pyramids of all faces. In particular, the volumes of the spanning triangles with
R(i) ∈ N vertices (V(i)

1 ,V
(i)
r ,V

(i)
(r+1)) of face Fi are all added to a single volume:

λ(P) =

I∑
i=1

λ([0,Fi]) =
1
6
·

I∑
i=1

R(i)−1∑
r=2

(
(V(i)

1 − 0) × (V(i)
r − 0)

)
· (V(i)

r+1 − 0) (2.7)

This procedure also comes to a valid result if the origin of the coordinate system does not lie inside the
polyhedron: The volume of a tetrahedron spanned by a triangle in space in Equation (2.6) is signed: it is
positive if the normal of the triangle points away from the origin 0. The normal of a triangle is directed
away from the origin if the vertices are numbered clockwise when viewed from the origin. The normal
of a triangle is the normal of the face. By such a signing the volume of a pyramid λ(0,F ) spanned by
a face F is added if the normal of this face points away from the origin and subtracted if the normal
points towards the origin. Since the normal of a face usually points to the exterior of a polyhedron, this
procedure is valid for all kind of polyhedra.

By using the divergence theorem, [83] proves a similar formula in nD for a non-convex polyhedron given
by a boundary representation. His idea is introducing a sign function sgn(F ) of a face that tells whether
the volume of this particular tetrahedron λ([0,F ]) is added to or subtracted from the overall volume of
the polyhedron λ(P). Since his proof is based on the divergence theorem (also Gauß’s theorem) it is clear
that the formula holds for bounded polyhedral areas, as we have introduced them in Definition 2.1.1, as
well, if the complete boundary is given without two-dimensional holes. In particular, this means that a
polyhedral area as in Figure 2.12 (right) has at least two faces in non-manifold points directed in opposite
directions.

With Formula (2.7) the volume of the coverage, our objective function, can be expressed by the vertices
and faces of the coverage. We will consider the types of vertices and faces next.

2.3.3 Faces and Vertices

As proved in the Theorem 2.3.5, the shape of the fused coverage is a polyhedral area. A polyhedral area
is bounded by faces and its volume can be computed by its faces and vertices. In order to investigate
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the properties of the volume of the fused coverage, we will therefore investigate the types of faces and
vertices in this section. Within this section, remember the notation ∂ for the boundary, c for the closure,
and { for the complement of a set (Appendix B).

The faces of the fused coverage Cx(k, S ) for a given set S ⊂ S depend on the faces of the coverage of one
camera, since:

∂Cx(k, S ) = ∂

 O⋃
o=1

k⋂
n=1

σ−1
(E,πo(an))(S )

 ⊂

O⋃
o=1

k⋂
n=1

∂
(
σ−1

(E,πo(an))(S )
)

(2.8)

With this information the faces of the fused coverage can be reduced to the faces of the coverage of one
camera. Our interest lies in the faces of the identical and detectable coverage, cσ−1

(E,a)({identical}) and
σ−1

(E,a)({detectable}) of one single camera, illustrated in Figure 2.15 for the 2D case. These faces in 2D or
3D are classified in Definition 2.3.6.

Definition 2.3.6
Let E be an environment, let A ⊂ E be a polyhedral area, let a ∈ P, and let F ⊂ E be a face of the
polyhedral area σ−1

(E,a)({identical}) or σ−1
(E,a)({detectable}). It is called:

(FE) Environmental face if it is part of the boundary of the environment or surveillance area: F ⊂
∂E ∪ ∂A

(FP) Projection face if it is part of the boundary of the set of visible points and not part of the boundary
of the environment: F ⊂ ∂V(p, E) ∩ { ∂E.

(FO) Opening face if it is part of the boundary of the camera frustum F ⊂ ∂Fa

(FS ) Silhouette face if it is part of the boundary between changed and identical parts F ⊂
∂σ−1

(E,a)({changed})∩ ∂σ−1
(E,a)({identical}). This type of face does not occur in the detectable cover-

age ∂σ−1
(E,a)({detectable}).

These are the faces of the identical and the detectable coverage of one camera. Hereby, the affine sub-
space of a face FE is camera independent whereas the affine subspaces of the faces FP, FO, and FS are
camera specific, they change with the camera parameters. The following lemma states that the plane of
projection, silhouette, and opening faces directly depends on the position of the camera, and the first two
additionally on the environment:

Lemma 2.3.7
Let E be an environment, let a = (p, o) ∈ P, and let F ⊂ E be a face of the polyhedral area
cσ−1

(E,a)({identical}). Let A ⊂ R3 be a 2-dimensional affine subspace with F ⊂ A.

Then, the position of the camera holds p ∈ A if F is a projection face, opening face, or silhouette face.

If F is a projection face: An edge E ⊂ ∂E of the static objects exists with E ∩ F , Ø.

If F is a silhouette face: An edge E ∈ ∂E in the dynamic objects exists with E ∩ F , Ø.

We will call E an anchor.
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Proof. Opening faces: The frustum of the camera is defined by two θ-spaces in Definition 2.1.4. Fa :=
{y ∈ E | (y − p) ∈ (To(θu, u) ∩ To(θo×u, (o × u))} of the opening angles θu, θo×u ∈ [0, π] and the view-up
vector u ∈ ∂B3

1(0). By definition the position is element of the faces: p ∈ ∂F.

Projection faces: The boundary of the polyhedral area V(p, E) separates the visible and not visible points
which are included in the environment E. Visible points lie in front of all polygons of the static objects
of environment from camera point of view. And points that are not visible are occluded by at least one
polygon. Thus, a boundary point y ∈ ∂{z ∈ E | z visible from p} ∩ ∂{z ∈ E | z not visible from p} is on
a ray defined by the position of the camera p and the boundary of such an obscuring polygon. The face
of V(p, E) is then defined by the points that lie on this ray behind the polygon from the camera’s point
of view. Thereby, the position of the camera is part of this ray which is again part of the plane where the
face is on.

Silhouette faces correspond to the projection faces on dynamic objects: The boundary of the silhouette
of a dynamic object in the image plane I ⊂ E is made of edges. These edges are projections from the
edges of dynamic objects into the image plane. Therefore, the faces of the coverage σ−1

(E,a)({identical})
that separate the changed and identical regions are on planes defined by an edge of the dynamic object
and the position of the camera p. �

The name anchor is taken from the publication [58] which considers the visibility in the two-dimensional
case (the environment is a polygon) with some differences: The authors do not classify vertex and face
types since only two of each exist in the 2D case. An anchor in their sense is a vertex Va of the
environment projected from the camera position p onto a face of the environment. This projection
results in a vertex V f of the field of view. When moving p the vertex V f encounters a second vertex
of the environment Ve. The anchor of [58] is defined by this incidence. In the three-dimensional case,
however, we do not use the incidence in the definition of the anchor. Here, an anchor is an edge E of
the environment (an edge in 3D corresponds to a vertexVa in 2D) projected from the camera position p
onto a face of the environment. The incidence between the projected anchor and an additional vertex is
described in the following paragraphs.

The authors of [58] make another interesting observation: The anchor needs to be reflex, which means
that the angle inside the environment between the vertex’ edges is strictly greater than π. In the three-
dimensional case, the anchor of a projection or silhouette face (which is an edge) needs to be reflex in
some points, as well. But in the upcoming sections, this property is merely additional information and
not relevant for further investigations.

From Inclusion (2.8) we know that the type of faces of the k-reliable coverage corresponds to the above
types of faces of the coverage of one camera. Say, the k-reliable coverage is a concatenation of the
coverages of N ∈ N cameras. Then, its boundary consists of the environmental faces FE

(n), projection
faces FP

(n), opening faces FO
(n), and silhouette faces F (n)

S of the camera coverages σ−1
(E,an)({identical})

for the camera parameters an belonging to one of the cameras n = 1, ...,N. The affine subspaces of the
faces FP

(n), FO
(n), and F (n)

S change with the camera parameters an ∈ Pn. The affine subspace of FE
(n) is

purely given by the environment and surveillance area and is constant for all the cameras.

The k-reliable coverage is a polyhedral area. A vertex of the coverage of cameras utilizing a background
subtraction method as above is an intersection of at least three faces of the polyhedral area, independently
on how many cameras are utilized in the network. A vertex can be an intersection of more than three
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faces, but there are at least three faces. Thus, a vertex can be classified by a 3-tuple consisting of the
faces FE

(n), FP
(n), FO

(n), and F (n)
S . At the same time, the plane of a face FE

(n) is camera independent and
the planes of the faces FP

(n), FO
(n), and F (n)

S depend on the camera parameters an.

We list the vertex types (3-tuples) in Figure 2.16 regarding the type of the faces and the number of
cameras a vertex is defined by. The 3-tuple consists of three faces of the coverages of N cameras, but we
have only distinguished between three cameras, since three faces can only be taken from three separate
cameras. The total number of 3-tuples is therefore (4 · N)3 but most of the 3-tuples can be neglected for
one of the following reasons:

Rule 1 The faces FP, FO, and FS of the same camera have a common point, the position of the camera
p, cf. Lemma 2.3.7. Thus, an intersection of only these faces of the same camera does not result
in another vertex of the field of view except p. In the below figure, the positions of the cameras
have not been illustrated as vertices.

Rule 2 Two 3-tuples are the same if they include permutated nodes.

Rule 3 Two 3-tuples are the same if all faces of one camera in the first tuple can be mapped upon faces of
the same type but different camera in the second tuple, as long as the diversity of cameras remains
the same. This is due to the fact that all cameras have the same parameters.

The resulting 3-tuples can be viewed in the tree of Figure 2.16. The dependency of FS ,FO and FP on the
first camera is illustrated as green circle, on the second camera as red, and on the third camera as blue.
The tree has already been pruned by the above rules in depth (from bottom to top): Branches made of
one color except gray have already been left out (Rule 1). Also if we assume the first subtree (FE , ?, ?)
built and have a look at the choices for the subtree (FP,FE , ?), you will notice that all the tuples have
already been covered by (FE ,FP, ?) in the first subtree (Rule 2). Notice further, if branch (FE ,FE ,FP)
has already been built with FP in green then the same branch does not need to be included with FP in
red or blue (Rule 3).
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Figure 2.16: Classification of vertices of the k-reliable coverage of a sensor network with (at least)
three cameras; Each vertex is an intersection of three faces of the polyhedral area of the coverage.
Each node illustrates a face, each branch illustrates a vertex of the field of view of several cameras.
The polyhedral area of the coverage consists of camera independent faces FE and camera specific
faces FP, FO, and FS . Since a vertex is an intersection of at least three faces, three cameras are
considered, the first (green), second (red), and third camera (blue). The tree has already been
pruned by the three rules above (denoted as 1, 2, and 3). The positions of the cameras are the only
vertices of the k-reliable coverage which have been disregarded in this tree.
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2.3.4 Incidences due to Variable Camera Parameters

In Section 2.3.1 we have seen that the k-reliable coverage is a polyhedral area, the volume of which can be
calculated by the coordinates of its vertices as seen in Section 2.3.2. In the context of camera placement,
the volume depends on variable camera parameters. Therefore, the faces and vertices of the k-reliable
coverage are discussed as functions of the camera parameters, in this section. The incidence when a face
of the k-reliable coverage meets a vertex or voxel is particularly interesting for the differentiability or
staircasing of the volume of the coverage. Again, we first classify these incidences for the parameters of
a single camera and then turn to the parameters of a camera network. Let us start with a particular subset
of the vertices and faces that have been classified in Section 2.3.3:

CCC

CCP CPP intersecting CPP skew

CCO COO COP p

Figure 2.17: Vertex types (yellow dot) when moving the camera position (red dot) in three dimen-
sions: Silhouette faces and projection faces (P), that adopt a similar behavior, are illustrated in
green, including their anchor (blue wedge). Opening faces (O) are purple, and constant faces (C)
blue. Only the combinations CCC, CCP, CPP, CCO, COO, and CPO are possible as vertex types
next to the position of the camera p. The two anchors of a CPP can be skew or intersecting.

Let us assume that all cameras are fixed except one, w.l.o.g. the first one with parameter vector a1 in
(a1, . . . , aN) = x ∈ P1 × . . .× PN . Thus, some faces exist whose planes (or affine subspaces in which they
are situated) are constant (C): all environmental faces and the faces of the coverage of a camera with a
parameter vector an with n , 1, n ≤ N. Since only projection, silhouette, and opening faces of the cover-
age of camera 1 are changed, the changed faces’ subspace must include the position p of the parameter
vector a1 = (p, o), cf. Lemma 2.3.7. All moving vertices except p must therefore be an intersection of at
least one constant face(C) and two (??) other faces, denoted by (C??). The behavior of silhouette faces
corresponds to the behavior of projection faces (P) when changing the camera’s parameters. Thus, only
the combinations CCC, CCP, CPP, CCO, COO, and CPO are possible with (O) denoting an opening face
of the moving camera a1. In case of the vertex type CPP, two projection/silhouette faces and one constant
face are intersected. Their anchors can be skew or intersecting.
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When considering the gray nodes of Figure 2.16 as constant faces instead of just environmental faces,
then the vertices of one moving camera correspond to the green and gray leaves in the first (lower)
subtree. For a better understanding, Figure 2.17 illustrates the types of vertices in three dimensions.
Therefore, only the combinations with constant faces (blue), projection/silhouette faces (green), and
opening faces (purple) are provided.

In Section 2.4.1 and 2.4.4, the incidence of a vertex or voxel with a face of the coverage will prove to
be a key event when moving the camera in 3D. Therefore, let us consider the parameters of a camera by
which the vertexV meets the face F .

Definition 2.3.8
Let E be an environment, k ∈ N, S ⊂ S and let F ⊂ ∂Cx(k, S ) be a face of the coverage.

• The set I(V,F ) := {x ∈ P1 × . . . × PN | V ∈ F } is called incidence surface of a pointV ∈ E.

• It is called vertex incidence surface if V ∈ ∂Cx(k, S ) is a vertex with V < F for some x ∈
P1 × . . . × PN .

• The set I = {I(V,F ) | V vertex and F face of Cx(k, S ) and ∃x ∈ P1 × . . . × PN : V < F } is called
the set of all vertex incidences.

The authors of [58] call a vertex incidence surface in two-dimensions an inflection segment, but only one
type of segment exists in 2D. In three-dimensional space the incidence surface is rarely only a segment.
In order to illustrate the variety of these surfaces, have a look at the positions p of the camera where a
vertex V of Figure 2.17 meets an additional face F of the k-reliable coverage with constant orientation
and constant opening angles. A vertexV meets a ...

C Constant face, if it meets the edge E between F and the original constant face.

P Projection or silhouette face, if the line of sight [p,V] meets the anchor E of the (additional) projec-
tion/silhouette face, as defined in Definition 2.3.7.

O Opening face, if the line of sight is subset of the (additional) opening face F .

The following Tables 2.3, 2.4, and 2.5 show the positions p of the camera where a vertex V meets
such a F with constant orientation and opening angles. In all tables, the vertex types are depicted in
the first column. In the second column, the set I(V,F ) is characterized which includes all positions p
where an incidence between V and F happens. The third column illustrates the vertex (red) together
with the movement of p to a point whereV will definitely meet the additional face (red arrow), and the
characterized vertex incidence surface (orange). The position p of the dynamic camera is listed in neither
of the above mentioned tables as a vertex type. The reason to leave out the position as a vertex, is that
the incidence surface where this vertex meets an additional face F simply equals the face F .



Type With the movement of p,V meets an additional constant face F if Illustration of the surface

CCP
... it meets one of the two vertices V of the edge at which it is
situated. All the camera positions p where V has encountered V
form a plane segment including p and the anchor.

CPP
in-
ter-
sect.

... it meets the edge E between the original and the new constant
face. This is true if p trespasses a plane formed by the intersection
point of both the anchors and E.

CPP
skew

... the line of sight [p,V] intersects both anchors and the edge E
between the original and new constant face. If E is parallel to one
of the anchors, then the surface including p is a plane including
these edges. If the direction of E is linearly dependent on the di-
rections of the anchors, then the three lines lie on parallel planes.
Thus, the surface is a hyperbolic paraboloid, cf. [30]. If this is
not the case, then the surface is a hyperboloid of one sheet since
the lines are skew [30].

CCO

... it meets the starting or endpoint V of the edge it is situated
at. Additionally the line of sight [p,V] is at the opening face FO.
Thus, all the viewpoints p where V = p are at a plane parallel to
FO including p.

COO

... the line of sight [p,V] intersects the edge E between the con-
stant faces (old and new). The line of sight is subset of both the
opening faces FO1 and FO2. Thus, the surface of positions where
V meets E is a plane parallel to the line of sight [p,V] including
E.

CPO

... the line of sight [p,V] intersects the anchor and the edge E
between old and new constant face. The line of sight [p,V] is
included in the opening face FO. Varying the p such that the line
of sight meets the above criteria induces three varying line of sights
[p1,V1],[p2,V2],[p3,V3]. These can either all be skew, or all be
parallel. In case of all parallel, then the surface that all pr, r =

1, 2, 3 are on is a plane. In case skew line of sights, consider that
all these lines are situated at parallel planes, thus the surface is a
hyperbolic paraboloid, cf. [30].

Table 2.3: Characterization of vertex incidence surfaces I(V,F ) between aV and an additional constant
face F . Left: Vertex type; Middle: Characterization (bold) and proof; Right: Illustration of vertex
(yellow dot), line of sight (red dashed), and vertex incidence surface (orange).



Type With the movement of p,V meets an additional projection face F if Illustration of surface

CCC Compare the vertex type CCP in Table 2.3.

CCP Compare the vertex type CPP (skew or intersecting) in Table 2.3.

CPP

... the line of sight [p,V] intersects an anchor E in addition to the anchors E
and E of the previous projection faces. If the anchors E and E are intersecting
then the intersection point E ∩ E and the additional anchor E define the vertex
incidence surface, it is a plane.
If the previous anchors are skew then the vertex incidence surface can be con-
structed as follows: If E is parallel to E or E, then the surface is a plane in-
cluding E and the parallel edge. If the direction of E is linearly dependent on
the directions of E and E, then the edges lie on parallel planes, so the surface
is a hyperbolic paraboloid [30]. If this is not the case, then the surface is a
hyperboloid of one sheet since the edges are skew [30].

CCO Compare the vertex type CPO in Table 2.3.

COO

... the line of sight [p,V] intersects an anchor E and is subset of two opening
faces. The normals of the opening faces will not change, thus [p1,V] is parallel
to [p2,V] for all viewpoints p1 , p2 ∈ E. The swept vertex incidence surface
is a plane parallel to the line of sight, including the anchor E.

CPO

... the line of sight [p,V] intersects a previous anchor E, an additional anchor
E and is subset of an opening face FO. Varying the intersection z := E∩ [p,V]
induces three points z1, z2, z3. At each point the orientation and opening angles
of the camera are fixed, so the three points induce three positions of the opening
face: zr ∈ FOr, r = 1, 2, 3. E cannot be parallel to or subset of FO since E is
the anchor of the previous projection face. The additional anchor E is therefore
intersected in three points by the three opening faces: zr ∈ FOr ∩E. The line of
sight [p,V] always includes both points of the tuple (zr, zr). In case of parallel
line of sights the surface is a plane including the line of sights. In case of skew
line of sights the surface is a hyperbolic paraboloid.

Table 2.4: Characterization of vertex incidence surfaces I(V,F ) between a vertex V and an additional
projection face F . Left: Vertex type; Middle: Characterization (bold) and proof; Right: Illustration of
vertex (yellow dot), line of sight (red dashed), and vertex incidence surface (orange).



Type With the movement of p,V meets an additional opening face F if Illustration of surface

CCC Compare the vertex type CCO (skew or intersecting) in Table 2.3.

CCP

... the line of sight [p,V] is subset of F and intersects the anchor E
of the original projection face. Compare the vertex type CPO (skew
or intersecting) in Table 2.3:
Three positions pr, r = 1, 2, 3, with varying V(pr) ∈ E where E is
the edge between the constant faces, induce three varying opening
faces F (pr) (unless E parallel to F ) and thus three varying line of
sights [pr,V(pr)]. In case of the lines of sight being parallel, the
surface is a plane including the line of sights. Otherwise, consider
that all line of sights are situated at parallel planes F (pr), thus the
surface is a hyperbolic paraboloid, [30].

CPP

... the line of sight [p,V] is subset of F and intersects both anchors
E and E. In the case of intersecting anchors, they intersect in a com-
mon point. Upon contact of face and vertex, the postion p is on a
plane parallel to F including the point E ∩ E.
In case of skew anchors the line of sight intersects E and E in two
nonidentical points. The surface is either a plane or a hyperbolic
paraboloid, compare the vertex type CPO in Table 2.4.

CCO

... the line of sight [p,V] is subset of both the opening faces, the
previous one FO and the additional one FO, and intersects the edge
E between the constant faces. Thus p is included in the plane parallel
to FO ∩ FO including the edge E upon contact.

CPO

... the line of sight [p,V] is subset of both the opening faces, the
previous one FO and the additional one FO, and intersects the anchor
E of the projection face. As for the vertex type COO in Table 2.4,
the position p of the camera is in a plane parallel to the intersection
FO ∩ FO and including E upon contact.

Table 2.5: Characterization of vertex incidence surfaces I(V,F ) between a vertex V and an additional
opening face F . Left: Vertex type; Middle: Characterization (bold) and proof; Right: Illustration of
vertex (yellow dot), line of sight (red dashed), and vertex incidence surface (orange).
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Table 2.3 shows the positions p of the camera where a vertex V encounters a constant face F ≡ C.
Notice that the vertex type CCC and an additional constant face do not collide; this case is therefore
neglected. Table 2.4 and 2.5 show positions p where a vertexV meets an (additional) projection face or
opening face, respectively. In Table 2.5, the vertex type COO is discarded since the vertex is already an
intersection of two opening faces and will not meet another opening face of the same camera.

The above tables show the vertex incidence surfaces considering only the position of one camera as a
variable to the k-reliable coverage. Next, consider the orientation of one single camera as a variable.
When leaving p constant, the silhouette and projection faces of all cameras are constant. The only
dynamic vertex types are CCO and COO. It can be shown that the incidence surfaces of these types are
hypersurfaces in P, as well. When using the volume of the k-reliable coverage as an objective function,
however, not only the position and orientation of one single camera but the positions and orientations of
several cameras are changed. Let us consider the general case of a vertex V = F1 ∩ F2 ∩ F3 meeting a
fourth face F independently on how many camera positions and orientations are varied:

Theorem 2.3.9
Let E be an environment, let N, k ∈ N with k ≤ N, x , x ∈ P1× . . .×PN , S ⊂ S, and let Fx ⊂

∂Cx(k, S ) be
a face of the k-reliable coverage. LetV ∈ ∂Cx(k, S ) be a vertex withV ∈ Fx butV < Fx. Let I(V,Fx)
be a vertex incidence surface.

The set I(V,Fx) is a (Lebesgue)-null set in P1 × . . . × PN .

Proof. In general, the faces F1,F2,F3 defining a vertex have linearly independent normals. Let I(V,Fx)
be the set of sensor network parameters withV = F1 ∩F2 ∩F3 ∩Fx. This set is a parameterized surface
in P1 × . . . × PN with a dimension lower than dim(P1 × . . . × PN).

In case of the position of one camera V = p, the vertex is dependent on the camera parameters, which
leads to a parameterized set, so let V , p. When adjusting the network parameters two cases exist for
Fx’s affine subspace: The subspace...

• ... is constant (e.g., in case of an environmental face). In this case at least one of the other faces’
subspaces F1, ...,F3 needs to be non-constant, since otherwiseV ∈ Fx. WithV in Fx’s subspace,
one component of V can be linearly combined by the other components. But the components of
V are completely determined by F1, ...,F3 and at least one of the faces F1, ...,F3 is determined by
camera parameters (not environmental). Thus, some components of the parameter vectors of the
cameras are determined by the other components of the parameter vectors.

• ... includes the position of one of the cameras p ∈ E. Fx can be one of the two face types:

Opening face WithV being in Fx’s subspace, the line of sight [V, p] is included in this subspace,
as well. When fixingV then F is determined by o and u of the same camera that p is taken
from. So p depends on o and u.

Projection/Silhouette face When fixingV, then Fx is determined byV and an anchor E (Lemma
2.3.7). Then a point y ∈ E exists with y ∈ [V, p]. Thus the position p is determined
completely.

So, I(V,Fx) is a parameterized set. The dependence of the variables makes I(V,Fx) a null set in P1 ×

. . . × PN . �
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The proofs in the Tables 2.5, 2.4, and 2.3, and the subsequent consideration show that the set I(V,Fx)
is a surface in E if P = E. A surface is a is a null set in E. In order to incorporate the orientation and
the parameters of several cameras as variables, the vertex incidence surfaces need to be considered for
vertices listed in Figure 2.16 and the position of each camera. The incidence surface where the position
of a camera as a vertex meets an additional face Fx equals the surface Fx ×

∂B3
1(0) which is also a null

set in P = E× ∂B3
1(0). The sets P = E and Fx×

∂B3
1(0) are two examples for the general case in Theorem

2.3.9.

With Theorem 2.3.9, we have shown that the vertex incidence surfaces are null sets in the space of
network parameters. The theorem is the climax of a series of considerations about the shape of the
coverage and its change when adjusting the camera network’s parameters. This is particularly interesting
for the next section, in which we depict the mathematical properties of the volume of the k-reliable
coverage.

2.4 Properties of the Volume of the Coverage of Multiple Cameras

For most optimization methods, the properties of the objective function are crucial for convergence. As
an objective function we want to utilize the volume of the identical or detectable coverage as discussed
in Section 2.1. We have seen in Section 2.3 that the coverage we are interested in is a polyhedral area
whose volume can be computed by its vertices and faces (Section 2.3.2). We have classified all the
vertices and faces of the coverage of identical sensor labels and detectable sensor labels (Section 2.3.3)
and showed where (at which sensor network parameters) the faces meet other vertices of the coverage
and points of the environment (Section 2.3.4). The network parameters of these incidences are very rare
in the network’s parameter space: They form null sets in the network’s parameter space which are called
incidence surfaces, here.

The properties of the k-reliable coverage we have derived so far are of geometrical nature and will be
helpful to deduce the properties of the volume of the coverage. In Section 2.4.1 the incidence surfaces
of voxels are used to prove differentiability µ-almost everywhere. The objective function is non-convex
which is shown in an example in Section 2.4.2. In Section 2.4.3 the fact is stated that the k-reliable
coverage of a sensor network as well as the volume of the coverage is invariant with permuting the
cameras. This property is called symmetry. And finally, the incidence surfaces of voxels are used to
prove the stair-casing effect of the objective function in Section 2.4.4.

2.4.1 Continuity and Differentiability

In two dimensions, the authors of [58] prove that the volume of the field of view of one camera with
unlimited opening angle in a (two-dimensional) polygonal environment is locally Lipschitz. Further-
more, the authors prove that the non-differentiable points of the volume lie on a set of lines in the
polygon. When changing the camera position, a point within these lines is a camera position where
two vertices of the field of view coincide. Neither a limited opening angle, nor several cameras, nor the
three-dimensional case, nor a 3DBGS method have been considered in their publication, which will be
covered in the following paragraphs.
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With Equation (2.7), the volume is a polynomial of the components of the vertices. So, as long as these
components are continuous or differentiable, the property is inherited by the volume. But the components
of the vertices are neither always differentiable nor continuous. In this section, the continuity of vertices
and faces is investigated. A visual event is a point of network parameters at which a vertex or face is
either not differentiable or not continuous.

Let V ∈ Cx(k, S ) be such a vertex of the coverage with a fixed S ⊂ S, threshold k ∈ N, and sensor
network parameters x = (a1, . . . , aN) ∈ P1 × . . .× PN . It is an intersection of at least three faces classified
in Section 2.3.3. A face is defined by a plane (two-dimensional affine subspace) and by its boundary
(half-spaces), cf. Definition 2.1.1. When adjusting the parameters of a network the vertex moves and the
planes and boundaries could change. Thus, visual events can be caused by the following issues:

Visual event 1 The dimension of the m-dimensional affine subspace assigned to the face (or the bound-
ary) is reduced or increased or the subspace undefined.

Visual event 2 The intersection of the faces is outside the boundaries of one/several face(s).

Furthermore, the two-dimensional affine subspace of a face is determined by a normal ni ∈
∂B3

1(0) as
well as the distance to the origin di ∈ R of the face i = 1, 2, 3. SinceV is an intersection of these planes
the matrix

N =


nT

1
nT

2
nT

3

 (2.9)

of the normals of the three planes is regular and with d =
(
d1 d2 d3

)T
the equation system N · V = d

holds. With the rule of Cramer the components of the vertex V are rational functions of ni, i = 1, 2, 3
and the distances di. The numerator is a polynomial of the parameters and the denominator is detN .
Thus, the components of the vertex are in C∞ as long as the above matrix N remains regular and the
components of N and d are in C∞. The components of the normal of the faces are not in C∞ if and only
if Visual event 1 occurs. The additional visual event is the following:

Visual event 3 The normals of the faces are linearly dependent.

The repositioning of a camera is illustrated in Figure 2.18. The images depict examples for the Visual
events 1–3: The top, left pictogram shows a projection face which vanishes after the movement of the
camera. The image to the right in the same row displays the rotation of the camera to a point where the
normal of an opening face and the normal of an environmental face are linearly dependent. Both pictures
below depict a vertex which meets the boundary of an environmental face FE . In the left image the
boundary is a vertex defined by a projection face FP and FE . In the right image the boundary is defined
by an opening face FO and FE .

In the following paragraphs, it is shown that Visual event 1 only occurs if one of the vertices meets
another face of the coverage or if one of the positions of the cameras are in a subspace assigned to an
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anchor defined in Definition 2.1.1. In order to show this, assume (2.1) for all cameras and define the
following set:

K :=
{(

A × ∂B3
1(0)

)
× Pπ(2) × · · · × Pπ(N) | A ⊂ Rn subspace assigned to an anchor E ⊂ ∂E, π ∈ S N

}
(2.10)

Its elements are the subsets of network parameters where at least one camera position is in a 1-
dimensional affine subspace of an anchor of the environment.

A σ−1
(E,a)({detectable}) A σ−1

(E,a)({detectable})

A σ−1
(E,a)({detectable})

FP FE

A

σ −1(E,a) ({detectable})

FE

FO

Figure 2.18: Illustration of Visual events 1–3 with the field of view (yellow) of one single camera
(green) in 2D; The movement (green arrow) of the camera changes the faces (magenta arrows or
crosses) of the camera coverage σ−1

(E,a)({detectable}) (yellow) and thereby changes a vertex (red
dot/arrow, blue cross). The orange line and dot illustrate the critical position or orientation of the
camera where the visual events arise. Top left: Event 1; Top, right: Event 3; Bottom: Event 2 with
an environmental face FE and differing boundaries to FE . The boundary is a vertex defined by
a projection face FP and FE (bottom, left), and defined by an opening face FO and FE (bottom,
right).

The sets K of Equation (2.10) and I of Definition 2.3.8 are used in both the next lemmas. The latter
addresses Visual event 3.

Lemma 2.4.1
Let E be an environment. Let N, k ∈ N with k ≤ N and S ⊂ S. Let I be as in Definition 2.3.8 and K as in
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Equation (2.10). Let the following set be connected:

D ⊂ P1 × . . . × PN \

⋃
I∈I

I ∪
⋃
V∈K

V


Let x ∈ D. Let Cx(k, S ) be the k-reliable coverage (Section 2.1). LetV be a vertex of Cx(k, S ). Let F be
a face of Cx(k, S ) withV ∈ F .

Then, F exists for all x ∈ D and its normal and distance to the origin are in C∞.

Proof. F can either be subset a projection face (FP), silhouette face (FS ), or opening face (FO) of the
coverage of one camera (Equation (2.8)), w.l.o.g. camera with parameters (p, o) ∈ E× ∂B3

1(0), or it could
be a constant face (Fa).

The affine subspace of constant faces and opening faces always exists, thus, only the existence of the
following faces of the coverage is critical:

(FP): The two-dimensional affine subspace assigned to F is completely defined by p and an anchor
E ⊂ ∂E of the environment, cf. Lemma 2.3.7, unless the position is in the subspace A of the edge.
This case is excluded, however, since A × ∂B3

1(0) ∈ K.

(FS ): The affine subspace is defined by p and an anchor E ⊂ ∂E of the dynamic objects of the environ-
ment, cf. Lemma 2.3.7. This is the same case as (FP), however: The face is replaced by another
silhouette face if the position is in the subspace of either one of the polygons adjacent to the E,
which are the vertex incidence surfaces of Table 2.3 type CPP.

The normal and distance to the origin must be in C∞:

(FP) and (FS ): The normal of a plane can be calculated by three points in the affine subspace: Let the
linearly independent points z1, z2, z3 ∈ F be ordered counterclockwise when viewed from a point
inside the environment from which z1, z2, z3 are visible. The normal n of a hyperplane satisfies

ZT · n = d · 1 with Z =
(
z1 z2 z3

)
and 1T =

(
1 1 1

)
We choose the position of the camera p and two points of the anchor as the points zr, r = 1, 2, 3.
With the rule of Cramer, the components of the normals are in C∞ unless det ZT = 0, which are
the above two cases.

(FO): The frustum of a camera is defined as an intersection of two theta-spaces, again defined by the
position p, direction d, opening v, and opening angle θ. Its boundary is {x ∈ R3 | ](ρ(d,v)(x), d) =

± θ2 }. The normal n ∈ ∂B3
1(0) of F lies in the subspace of d and v with n = λdd + λvv and its angle

to d is known. Unless θ = π in which case the normal holds n := d, it can be constructed with the
ratio tan(π−θ2 ) = ±

λv
λd

.

In the first case, the components of the normals are in C∞ unless a vertex meets an affine subspace of an
anchor or a vertex incidence surface. In the second case the normals are in C∞. Additionally, the distance
to the origin d holds d = zT · n for any point z ∈ F , w.l.o.g. this can be the position of the camera p, cf.
Lemma 2.3.7. This settles the proof. �
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We have seen that the normals of the faces are continuously differentiable and the affine subspaces of the
faces will keep their dimensionality unless a vertex incidence surface or an affine subspace of an anchor
is met. In the following lemma, the normals of the faces are proven to be linearly independent under
similar conditions:

Lemma 2.4.2
Let E be a bounded environment. Let the variables be declared as in Lemma 2.4.1. Let x ∈ D. Let
Cx(k, S ) be the k-reliable coverage of Section 2.1. Let V be a vertex of Cx(k, S ). Let N be as in of
Equation (2.9) for the normals of the vertexV.

Then, N is regular for all x ∈ D.

Proof. Network parameters x ∈ D exists where V is a vertex of Cx(k, S ). At this point, N = N(x) is
regular and constitutes the case c.ii) in Figure 2.19. The matrix of any three normals n1, n2, n3 is singular
if the normals can be linear combined, which is true if the planes are arranged like the illustrations a), b),
c.i), or c.iii). We will give an intuitive reason why the latter cases cannot emerge from case c.ii) with the
continuity of the normals (Lemma 2.4.1) in D:

First, we motivate that V meets an additional face before the cases c.i) and c.iii) emerge, since the
polyhedral area is bounded by E: In general, all edges of a bounded polyhedral area have two vertices as
boundary points,V andV. Since the normals are continuous with the network parameters, c.i) emerges
from c.ii) if the edge [V,V] between two planes (intersection of two planes) levels up with the third
plane. When leveling up, the V meets another face of the coverage which can only happen if x is in a
vertex incidence surface. These have been excluded from D.

The three edges E1, ...,E3 in c.iii) as well as the two edges in b) are parallel with a distance bigger than
0. The three planes in a) are also distanced by a scalar bigger than 0. Before a),b), and c.iii) can emerge
from c.ii) the edges/planes need to open up. Thereby, the vertexV = E1∩ · · ·∩E3 slides to the boundary
of the edges since these are bounded (since the environment is bounded). The vertex therefore meets
another vertex defined by some of the original faces and at least one additional face (or else it would
be the same vertex). But again the parameter vector of the network is in a vertex incidence surface and
holds x < D.

a) b) c.i) c.ii) c.iii)

Figure 2.19: Illustration of the arrangement of the non-coinciding affine subspaces of three faces
that define a vertex. They can be distinguished by how many planes are parallel, first: a) All planes
are parallel (first picture); b) Two planes are parallel (second picture), the third intersects both (if it
intersects one it intersects a parallel one too); and c) No two planes are parallel, instead all planes
intersect. We know that two planes intersect in a line. The intersection lines of three planes can
then c.i) be identical, c.ii) meet in one point or c.iii) be parallel (the intersecting lines cannot be
skew since they are situated at the same three hyperplanes). Picture from [146]. �
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With these lemmas, the way is cleared for the final result of the observations of polyhedral areas and
their vertices. The volume of the fused coverage is continuously differentiable except for a small set of
network parameters, since the vertices are continuously differentiable µ-almost everywhere:

Theorem 2.4.3
Let the variables be declared as in Lemma 2.4.2. The components of the vertex are in C∞ µ-almost
everywhere. In particular, they are in C∞ for all x ∈ D.

Proof. The components of the vertex are in C∞ for x ∈ D since: Lemma 2.4.2 and 2.4.1 show the non-
existence of the Visual events 1 and 3 if x ∈ D. As a last condition, the vertex must not pass through the
boundaries of the face, an edge of the fused coverage. This edge is an intersection of two faces of the
coverage. When a vertex meets such an edge, it also meets an additional face, which can only happen if
x < D. A set in K can be denoted as

(
A × ∂B3

1(0)
)
× Pπ(2) × · · · × Pπ(N) with a suitable affine subspace of

an anchor A ⊂ Rn and permutation π ∈ S N , which is a null set in Pπ(1)×Pπ(2)× · · ·×Pπ(N). With Theorem
2.3.9 it is known that the vertex incidence surfaces are null sets. �

Thus, the volume of the coverage is continuously differentiable µ-almost everywhere. The continuity
is relevant for the solver that is proposed in the next chapter. The solver also has to be chosen by the
number of local optima of the objective function. More than one local optimum of the volume of the
fused coverage is shown in the next section.

2.4.2 Non-Convexity

In optimization, convexity or concavity of a function is often used to prove that only one local maximum
or minimum exists. In this paragraph we show with a simple example that the volume of the coverage
of a single camera is not necessarily convex nor concave. Thus, the volume of the k-reliable coverage is
not necessarily convex or concave.

A room illustrated in Figure 2.20 is used as an environment. Only one single camera is setup in a
downward angle. The environment includes a second floor whose edge is a regular, rectangular zigzag-
line along the diagonal of the room. The camera is moved along the diagonal of the room so that the
corners of the additional floor are hit in a regular distance. The volume of the field of view of the camera
is to be measured.

Figure 2.20: Illustration of a camera (green) with its detectable coverage (yellow) placed in
an environment (gray) with an additional floor (turquoise checked). The room has the volume
(8×9.2×2.7) m3. The second floor is at a height of 2 m. The linear trajectory of the camera’s
position starts at (-0.7, -1, 2.65) and ends at (1.3, 1, 2.65) with the origin at (0, 0, 0). The camera
is oriented towards a point 1.4m below the position, 1 cm to the right and 10 cm to the front.
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The volume of the field of view is measured by counting the detectable voxels of the surveillance area.
The camera is moved along a linear trajectory starting and ending at a point where the field of view only
reaches the second floor and where its volume adopts a minimal value. The trajectory of the position
is chosen such that only two ledges and a single notch of the edge is touched. The diagram in Figure
2.21 depicts the number of voxels versus the position of the camera. The function is neither convex nor
concave. Furthermore, when enlarging the trajectory such that more notches are reached, the function is
extended by the same graph and has several maxima and minima.

Volume of field of view along a trajectory of the camera position in mm

N
u
m
b
e
r
o
f
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o
x
e
l

Figure 2.21: Diagram of the number of voxels which are marked as detectable when moving the
camera position along the trajectory in Figure 2.20 discretized into steps of

√
2 cm. The voxelspace

is discretized into voxels of the size (5 × 5 × 5) cm3.

Thus, even when just considering the detectable coverage of a single camera as an objective function, it
can yield more than one optimum. The same applies to the identical coverage. Some of these optima can
be summarized with the following section about symmetry of a function.

2.4.3 Symmetry

When evaluating an expensive function f , meaning the function evaluations take an unfeasible amount
of time or computing resources, it is useful to identify regions of the domain of the function where the
function value has already been evaluated. This could be due to boundary conditions or other properties
of the function, such as the knowledge of regions of equal function values. All the more efficient it is
if each additional evaluated point increases the region of known function values many times over. One
such property is the symmetry of a function:

Definition 2.4.4 1. Let D ⊂ Rn, n ∈ N. Let Vm be orthogonal subspaces of D for all m = 1, ...,M,
M ∈ N, in which Vm has dimension nm ∈ N. Then, the tuple (V1, ...,VM) is called a decomposition
ofD if the domain has a product structure

D = V1 × ... × VM with n = n1 + ... + nM.

2. Let the corresponding partition of the identity matrix 1n be as in [103]:

1n =: (U1, ...,UM) ∈ Rn×n,Um ∈ R
n×nm ,m = 1, ...,M. (2.11)

And let x ∈ D and xm ∈ Vm be such that x =
∑M

m=1 Umxm. Then the tuple [x1, ..., xM]T is called
subspace coordinates of x.
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3. Let D be such that an orthogonal decomposition D = V1 × ... × VM with Vm1 ∼ Vm2 being two
isomorph subspaces m1,m2 ∈ {1, ...,M}. Additionally, let f : D → R be a real function. Then, f
is called symmetric in the pair (Vm1 ,Vm2), if

f (x) = f

Um1 xm2 + Um2 xm1 +

M∑
m=1

m,m1 ,m2

Umxm

 for all subspace coordinates [x1, ..., xM] of x ∈ D

4. f is symmetric in the subspaces Vm1 , ...,VmB , B ∈ {1, ...,M} if f is symmetric in all the pairs.

In sensor network optimization the space of parameters is made of the parameter spaces of each sensor
P1 × . . . × PN . Additionally, the parameter space of each sensor can be decomposed into sensor specific,
smaller parts. A camera, e.g., can be adjusted by the position p ∈ E and orientation o ∈ B3

1(0), as in
Equation (2.1): The parameter space of the network of several cameras with these parameters is:

P1 × . . . × PN =
(
E × B3

1(0)
)N

Both the decompositions (P1, . . . ,PN) and
(
EN ,B3

1(0)N
)

out of a variety of subspace combinations are
important for sensor network optimization: When optimizing the volume of the k-reliable coverage
on subspaces alternately, the optimization on the first tuple will place each camera separately. The
optimization on the second tuple will place all cameras together, then orient them together. The first
tuple is even more relevant since the k-reliable coverage of a sensor network is symmetric in two or more
equally built sensors. This fact is discussed in the following lemma:

Lemma 2.4.5
Let E be an environment. Let N, k ∈ N and k ≤ N. Let us utilize a sensor network with N sensors and
sensor labels S ⊂ S as in Section 2.1.3 and 2.1.4. Let the sensor n1 ∈ {1, ...,N} and sensor n2 ∈ {1, ...,N}
be equally built: Pn1 ∼ Pn2 . Then the function of the coverage

C :P1 × . . . × PN → P(Rn)

x 7→ Cx(k, S )

is symmetric in the pair (Pn1 ,Pn2).

Proof. Let x := [a1, . . . , aN] ∈ P1 × . . . × PN be the parameter vector of the network consisting of the
parameter vectors an ∈ Pn, n = 1, ...,N. Let CN(k) ⊂ S N be the set of k-combinations of the N-tuple
(1, . . . ,N) with order N!

k!(N−k)! . The k-reliable coverage of the sensor network defined in Definition 2.1.11
holds

C(a1,...,an1 ,...,an2 ,...,aN )(k, S ) =
⋃

π∈CN (k)

k⋂
n=1

σ−1
(E,aπ(n))(S )

The combinations π are determined by choosing k sensors out of N total without replacement disre-
garding the sequence of the tuple. When considering C(a1,...,an2 ,...,an1 ,...,aN )(k, S ) the above union is just
rearranged. �
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The intuitive meaning of the lemma is as follows: With the use of several equally built cameras in a
network, the k-reliable coverage is invariant under a permutation of the cameras. This lemma is especially
helpful in a later chapter, Section 3.1.3, where we will incorporate such symmetry into one of our solvers
in order to accelerate the optimization of the coverage.

2.4.4 Stair-casing

Section 2.4.1 contains the continuity of the exact volume of the k-reliable coverage of a network in-
troduced in Section 2.3.2. For exactly calculating the volume, however, the vertices and faces of the
polyhedral coverage must be deduced by intersection. A more robust but approximate calculation of the
volume uses an occupancy grid as introduced in Section 2.2.1. In due course, the surveillance area is
discretized into an orthogonal grid, composed of small cubes of the room, called voxels. The volume is
measured by summing the volume of the covered voxels. When moving a camera marginally, the covered
voxels may not change, thus the volume remains constant.

A piecewise constant function on a finite number of intervals is called a stair-cased function in the one-
dimensional case, [19]. Similarly to the 1D case, we call a function on an nD domain a stair-cased
function if it is constant on a finite number of sets that form a partition of the domain. In literature, such
a function is also called step function, simple function, or discrete function. It occurs in imaging, for
example.

Definition 2.4.6
Let D ∈ Rn, n ∈ N be a domain. A function f : D → R is called a stair-cased function if for a number
B ∈ N

• disjunct, connected sets Bb ⊂ D, b = 1, ..., B, exist withD =
⋃B

b=1
cBb and

• constant scalars βb ∈ R, b = 1, ..., B exist

with the function value being expressed by indicator functions as

f (x) =

B∑
b

βb · 1Bb(x) with 1Bb(x) =

1 if x ∈ Bb

0 otherwise
for all b = 1, . . . , B.

When implemented as suggested in Section 2.2.1, the function x 7→ λ(Cx(k, S )) is a stair-cased function
since only a finite number of voxels exist in the occupancy grid. The scalars βb are known, they represent
all sums of the volumes of the individual voxels. The missing facts are the size and shape of the connected
sets Bb. We will give an intuitive overview on how the visibility analysis of Section 2.2 affects these sets.

The coverage or visibility of a voxel is deduced by two methods in Section 2.2.1. One variant is an inverse
ray tracing where the ray between camera position and each voxel is checked whether it is interrupted
by any face. The image plane I ⊂ E is not discretized into pixels. As before, let a voxel check be defined
as an operation on the voxel cube’s center y ∈ A in the surveillance area. The sensor label σ(E,a)(y) of
a voxel changes for the camera with parameters a = (p, o) if the ray [p, y) encounters a face of the k-
reliable coverage. Thereby the decision whether the volume of this voxel is added to the overall volume
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may change, as well. Recall the definition of an incidence surface (Definition 2.3.8) of a face F and the
voxel center y: I(y,F ) := {x ∈ P1 × . . . × PN | y ∈ F }. Let

J := {I(y,F ) | y ∈ A is voxel center,F is face of C(k, S )} (2.12)

be the set of all voxel incidence surfaces. Trespassing exactly one incidence surface decreases or in-
creases the volume of the k-reliable coverage by exactly one voxel volume. In Figure 2.22, the voxel
incidence surfaces are illustrated in two dimensions for one single camera’s coverage and its projection
face (left) or opening face (right).

A Cx(k, S )

F

y

A

C
x (k, S )

y

F

Figure 2.22: Illustration of incidence surfaces (orange) of a voxel y ∈ A and a projection or
silhouette face (dotted black, left image) or opening face (dotted black, right image) F of the k-
reliable coverage Cx(k, S ) (yellow area). The camera movement (green arrow) induces the change
of the face F (magenta arrows). The volume of the k-reliable coverage is the sum of voxel volumes
and changes if F meets y.

The set of all voxel incidence surfaces defines the partition ofD = P1 × . . . × PN :

Lemma 2.4.7
Let k ∈ N and S = {detectable} or S = {identical}. Let the variables be declared as in Theorem 2.4.3.
Let us utilize the inverse ray tracing method in Section 2.2.1 as a visibility analysis.

• Let the following set be connected

B ⊂ P1 × . . . × PN \

⋃
I∈I

I ∪
⋃
I∈J

I ∪
⋃
I∈K

I

 =: P(I,J,K).

The function x ∈ P1 × . . . × PN 7→ λ(Cx(k, S )) is constant on B.

• Let Bb ⊂ P(I,J,K), b = 1, ..., B, be all the maximal and connected sets in the domainD = P1 × . . . ×

PN . Then,D =
⋃B

b
cBb holds.

Proof. The volume λ(Cx(k, S )) only changes if the volume of a voxel is added or left out. W.l.o.g. let
y ∈ A be the center of this voxel. The decision of whether the volume of y is added to the overall volume
only changes if the map σ : (E, a, y) 7→ s ∈ S of one of the cameras with parameter vector a ∈ P is
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changed in the environment E. As long as the vertex components of the k-reliable coverage Cx(k, S )
are continuous, the label σ(E,a)(y) of a voxel only changes if y encounters a face F of C. Per definition
this incident is only possible if a ∈ I(y,F ). Since B is connected the coverage of one single camera is
therefore constant on B. When using more than one camera the function λ(Cx(k, S )) is constant on B
since the volume of all camera coverages are constant on B.

We still need to show that each point z ∈ D \
⋃B

b Bb is in the boundary ∂Bb of any b = 1, ..., B.
The center of such a voxel is constant with a, therefore the voxel incidence surface corresponds to the
vertex incidence surface of type CCC when meeting a projection/silhouette face in Table 2.4 or when
meeting an opening face in Table 2.5, a plane. Theorem 2.3.9 proves that the vertex incidence surfaces
are null sets in P1 × . . . × PN . A similar statement can be made for voxel incidence surfaces. Thus,
D \

⋃B
b Bb is a null set in D. An excluded null set of D is in D’s boundary, which leads to the fact that

z ∈
(
D \

⋃B
b Bb

)
⊂ ∂

(⋃B
b Bb

)
⊂

(⋃B
b

∂Bb
)
. �

With this lemma, we know that the boundary of the partition ofD is defined by voxel incidence surfaces
when utilizing the inverse ray tracing method.

Conversely, in the second method of Section 2.2.1, the image plane I is discretized into pixels to syn-
thesize images. As in Definition 2.1.7, a point of the environment is mapped onto a specific pixel by
projecting it onto the image plane, by a projection π : Va(E) → I, and afterwards by rasterizing the
image plane and thereby assigning a specific pixel with ρ : I → N2, e.g., by rounding. The value of this
pixel is the depth to the next face of the environment. The next face is determined, e.g., by intersecting
the ray [p, x) with the faces of the environment (static or dynamic depending on whether or not synthe-
sizing the reference image) where p ∈ E denotes the position of the camera and x ∈ I denotes the pixel
center. Another method to determine the value of the pixel is the z-Buffer method in which all faces are
projected and rasterized by π and ρ. The steps of the method of image synthesis are the following:

1. The center of the voxel y is assigned a pixel with the pixel center x := ρ(π(y)).

2. The pixel center x is assigned a point z ≡ z(p, x) on the nearest face, e.g. by z ∈ ∂E ∩ [p, x).

3. Finally, the sensor label of the voxel center y is determined by the decisions whether or not the
voxel is inside the frustum and whether or not the difference d(p, z)− d(p, y) with z ≡ z(p, ρ(π(y)))
is larger than 0.

The sensor label of y changes if one of the decisions in Step 3 are changed. We have already covered
the frustum and its opening faces in the incidence surfaces in Lemma 2.4.7. The sensor label of y also
changes if the second decision in Step 3 is changed: The decision concerns the projection faces and
silhouette faces and is more tricky: The voxel y and faces of the environment are invariant under the
change of camera parameters. The decision changes either if the voxel is assigned a different pixel (in
ρ(π(y))) or if the pixel value d(p, z) changes. These two changes to incidence surfaces of projection and
silhouette faces of the set J are described in the following paragraphs.

Firstly, the sensor label of a voxel y may vary if the voxel is assigned a different pixel: Imagine each pixel
as a separate camera with four opening faces as illustrated in Figure 2.23 (left). If such a pixel opening
face trespasses a voxel center y when changing the camera parameters, then the voxel center is assigned
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to a neighboring pixel with ρ(π(y)) possibly containing a different depth value. The change in the depth
values may result in a change of the sensor label of the voxel.

The projection of y to a different pixel does not necessarily result in a variation of the sign of d(p, z) −
d(p, y). While inverse ray-tracing with a non-discretized image plane, the difference changes its sign if
one of the faces of the coverage (projection or silhouette faces since opening faces have already been
discussed) hit the voxel. Before image space discretization, the anchor E of a projection or silhouette
face projected into the image space π(E) was a segment S (or point). The neighboring polygons, F1,F2

of this edge are now rasterized in the image plane, as illustrated in Figure 2.23 (right). Thereby, the
segment becomes a polygonal chain S in the image space, defined by the boundaries of the rasterized
polygons

S := ρ(π(F1)) ∩ ρ(π(F2)). (2.13)

One projection or silhouette face therefore becomes a set of projection and silhouette faces, each defined
by a segment of the polygonal chain S and the position of the camera. We will call the set pixel projection
face or pixel silhouette face in the next paragraphs. The pixel projection or silhouette faces are a subset
of the pixel opening faces above.

I I

π(E)

π(F1) π(F2)

S

ρ

Figure 2.23: Illustration of pixel opening faces (left) and pixel projection faces or pixel silhouette
faces (right) in the context of a discretization of the image plane I ⊂ E (yellow). The projection of
the anchor π(E) (blue) of a pixel projection/silhouette face in the image plane becomes a polygonal
chain S ⊂ I by the discretization ρ (right image).

The voxel is assigned a different pixel if the sensor network parameters are part of an incidence surfaces
of these pixel opening faces and the voxel center y as illustrated in Figure 2.24 (left). In the set of
incidence surfaces J the projection and silhouette incidence surfaces need to be adapted.

The second adaption to pixel projection and pixel silhouette faces is not caused by a voxel y being
assigned to a different pixel x by x = ρ(π(y)). The sign of d(p, z) − d(p, y) may also vary if the point of
the nearest face z ≡ z(p, x) changes whose depth value is stored in the pixel. Again, while inverse ray-
tracing with a non-discretized image plane, the sign will only change if the voxel status switched from
visible to occluded by one of the polygons of the environment. Then, one of the pixel projection faces
trespasses the z. The pixel projection faces are defined by the position of the camera and a polygonal
chain S. The polygonal chain is defined by the rasterized faces F1 and F2. A voxel can be suddenly
occluded if the point z changes from F1 to F2. The pixel silhouette faces adopt similar behavior like the
pixel projection faces.

The variation of the pixel value is illustrated in Figure 2.24 (right) including incidence surface in which
such a change occurs. Without image discretization, the polygonal chain S and thereby the parameters of
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a projection or silhouette face are continuous with the parameters of the camera. With the discretization
of the image space, when trespassing such an incidence surface, a rasterized face shows up in the pixel
which the considered voxel is assigned to and occludes the voxel. The segment S has changed non-
continuously.

In the course of this section, we have developed the boundaries of the connected sets on which the volume
of the coverage of a camera is constant. The function λ(Cx(k, S )) as discussed in the Sections 2.1 and 2.2
is therefore stair-cased on the same connected sets, separated by the surfaces and curves in I, J, and K.
The set J as defined in (2.12) includes the incidence surfaces when using the inverse ray-tracing method.
The additional incidence sufaces for the image synthesis method encompass the camera positions and
orientations where voxels are assigned different pixels or the pixel value varies. The incidence surfaces
can be constructed by pixel opening faces including pixel projection faces and pixel silhouette faces. The
stair-casing behavior of the objective function will be an important fact to consider when developing a
solver.
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Figure 2.24: Illustration of incidence surfaces (orange) of a voxel y ∈ A and a pixel projection/sil-
houette face (blue line) of the k-reliable coverage Cx(k, S ) (yellow area). The camera movement
(green arrow) induces the change of the face F and pixel ray [p, x) (magenta arrows). The sensor
label s ∈ S will change if the parameters of the network lie on these incidence surfaces. The sensor
label changes if y is assigned to a different pixel center x ∈ I of the image space (left) and if the
value of the pixel with pixel center x changes (right). The value changes if a rasterized polygon of
the environment shows up in the pixel and changes z ∈ ∂E abruptly.

The investigation about the stair-cases of this function is the last property of the objective function
λ(Cx(k, S )) that is discussed in this section. We have also considered the continuity, convexity, and
symmetry of the function, which further on will be important facts to consider when developing a solver
for camera network optimization.

2.5 Summary

We have introduced a method to detect changes in an environment in order to reconstruct a human
silhouette. This is done by finding the difference between a reference image and a subsequent image of
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a single camera in Section 2.1.2. The method is called background subtraction method. This purely 2D
method considering only one single camera can be extended into the 3D environment to approximate a
target conservatively by multiple cameras, in Section 2.1.3. The approximation is only as good as the
change detection system. We come to the conclusion that the identical or detectable coverage needs to
be maximized in order to approximate the target more accurately in Section 2.1.4. In the final result, the
permitted number of failing cameras is considered for constructing a failure-resistant system.

The implementation of the visibility analysis is addressed in the second section of this chapter. In order
to accelerate the optimization of camera network parameters we have accelerated the construction of
the approximation of one sensor (Sections 2.2.1 and 2.2.2), and decreased the runtime of subsequent
constructions by the variation of only a selected number of sensors in two methods (Section 2.2.3).
In Section 2.4.3 the fact is stated that switching two sensors does neither change the coverage nor the
volume of the coverage of the sensor network. This allows us to exploit symmetry. All four methods can
be used in an optimization of camera network by the solvers developed in Chapter 3.

The key to objective function is the k-reliable coverage, it can be used to express both an approximation
of the target or the detectable regions of a room. This is why we address the shape of the coverage
disregarding the discretization. In Section 2.3.1, we have proven that the shape is a polyhedral area,
a polyhedron that can be disconnected and/or “flat”. Its faces and vertices are necessary to calculate
the volume of the polyhedral area (Section 2.3.2). We have classified all the vertices and faces of the
coverage (Section 2.3.3) in order to show where the faces meet other points of the environment (Section
2.3.4). These points are in non-planar surfaces in the network’s parameter space and are called incidence
surfaces.

There are two good reasons to consider these surfaces: Firstly, an incidence surface where a face of
the coverage meets a vertex of the coverage causes non-differentiable or non-continuous points in the
parameter space of the camera network (Section 2.4.1). The second reason to consider incidence surfaces
is the stair-casing effect of the volume of the coverage. A function is a stair-cased function if is piecewise
constant on a partition of the domain. The subsets defining the partition are separated by the incidence
surfaces of voxels (Section 2.4.4). The number of these sets is influenced by the discretization of the
image plane (pixel) and of the surveillance area (voxel).

The new achievements in this chapter can be sorted into two groups: The purely analytic part has ad-
dressed the shape of the k-reliable coverage with the classification of incidence surfaces and vertices
and has derived the properties of its volume, i.e. staircasing, continuity, differentiability, symmetry, and
convexity. These properties help to choose the solver of the optimization. In the computational part, an
acceleration of the construction of the coverage has been addressed, which also accelerates the optimiza-
tion.



Chapter 3

Global Optimization of Costly,
Non-differentiable, or Stair-cased
Black-box Functions

The objective function (1.2) is usually not given analytically, but rather by a black box from simulation.
Evaluating the objective is costly due to the costs of the simulation. Simulating the objective with voxels,
as done in Section 2.2, causes the function to be stair-cased, meaning it is piecewise constant on a finite
number of sets that form a non-uniform distribution of the domain. Furthermore, black-box, stair-cased
functions have the disadvantage that a gradient can only be evaluated by numerical approximation, in
case a useful gradient exists in the mathematical sense. Even in absence of numerical complications,
the volume of the fused coverage of several cameras is still non-continuous and non-differentiable on a
Lebesgue-null set and has an undefined number of local optima, as we have seen in Section 2.4.

These are the difficulties that we need to overcome in this chapter when designing suitable solvers for
the problem at hand. Local solvers typically utilize a gradient of the objective function to establish fast
convergence. An alternative class of solvers are randomized global solvers, but a general continuous
function needs to be sampled dense in order to establish convergence, c.f. [153]. Thus, randomized
solvers usually require more objective function evaluations than solvers that utilize a gradient. But the
goal is to design a solver which calls the costly objective function less.

In this chapter we develop strategies how to globally solve a maximization problem such as the following,
in an efficient manner.

Problem 3.0.1

Find a global: argmax
x∈D

f (x) (3.1)

in which f : D → R is a function on the domain D ⊂ Rn whose evaluations are costly. Additionally, it
may have one or more of, but is not limited to the following properties:

• f is stair-cased.

69
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• f is given only as a black box, i.e. any operations other than function evaluations are hardly
possible.

• A gradient ∇ f is not known.

• f is non-differentiable.

• f is non-convex.

How to approach such a complicated problem? The thesis has started by collecting some specific prop-
erties of f that our solvers take advantage of in this chapter: On the one hand, when utilizing equally
designed sensors, the objective function is symmetric, cf. Definition 2.4.4. The incorporation of this
prior information about the objective will prove useful in this chapter. Also, the costs of recomputing
the fused coverage of multiple cameras will decrease if only one camera is readjusted. Therefore, an
optimization on a subspace of the domain seems promising, as this means restricting the parameter space
to the parameters of one single camera rather than optimizing on the space of the whole camera network
at once. Summarizing, the objective function may also have, but (again) is not limited to the following
properties:

• Particular prior information about f exists, such as symmetry.

• The calls of f are substantially cheaper on subspaces of the parameter space.

The rest of this chapter is organized as follows: In Section 3.1, we will discuss a strategy how to solve
problems with costly function calls. The lack of a gradient and the stair-casing can be compensated in
this section, by approximating the costly objective by a simpler function model. My contribution to this
field of research follows thereafter and can be read in the context of a summary of the whole thesis in
Section 5.2.

In Section 3.1 we incorporate prior information into the function model. In Section 3.2, the cheap
function calls on subspaces of the domain will be used as motivation for designing two subspace maxi-
mization methods on such a function model. One of the methods can be computed in parallel, plus the
convergence of the procedure on a subspace is faster, which is shown in the experimental results of Sec-
tion 3.4. The newly designed methods are proved to converge. The symmetry of the problem increases
the convergence speed which is shown in the experiments. Additionally, both methods are anytime al-
gorithms, meaning after an initializing phase they return a valid solution even if they are interrupted at
any point in time before they end (the algorithms compute a solution that is inside the domain, although
it might not be optimal at the interruption) and the solutions are iteratively improved with time.

3.1 Optimization Procedure utilizing a Radial Basis Function as a Re-
sponse Surface Model

We start this section with the introduction of some terminology needed to phrase the optimization pro-
cedure we discuss. By the term candidate we denote a feasible point of the domain for which the costly
objective function has already been or is going to be evaluated. Let the term sample pair denote a tuple of
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a candidate together with its objective value. The issue of costly function calls can be overcome by stor-
ing the previous candidates and their objective function values. The only difficulty is that the values from
candidates that lie in between previous candidates are not known precisely and have to be approximated.

In Optimization, a response surface model or surrogate of an objective function f : D → R is an easily
evaluated function f̄ : D → R that interpolates previous sample pairs. This response surface model is
called instead of the costly objective in order to reduce the number of objective function calls. When a
good solution on the response surface is found, the actual (costly) objective function is evaluated and the
response surface is updated by the new sample pair. In our case we are looking for a response surface
model with an easily evaluated gradient so that some of the arising problems, like stair-casing and the
lack of a gradient, can be overcome by such a strategy, as well.

In Figure 3.1 (left), a stair-cased function with several local optima is depicted. The global optimum
is illustrated by a blue star. The right plot illustrates a response surface model (colored surface) that
interpolates 21 sample pairs of the stair-cased function to the left, shown by red crosses. The global
optimum of the objective function (blue star in the left picture) and the optimum of the response surface
model (within the yellow area) are already very similar. The next best candidate for a function evaluation
will be chosen out of the yellow region of the response surface model, since an optimum is likely to lie
there.

Figure 3.1: Illustration of actual costly and stair-cased objective function (red, left) and response
surface model (colored, right) after an interpolation using 8 sample pairs (red crosses); The next
candidate for a function evaluation will be chosen out of the yellow region of the response surface
model.

In the following sections, a method to search for the next candidate is investigated, for which the objective
function will be evaluated (Section 3.1.1). Then, a suitable response surface is introduced (Section 3.1.2).
The fact that our objective function might be symmetric is incorporated in the investigated strategy
(Section 3.1.3) and in the end the convergence of the solver incorporating symmetry and the error of the
response surface model is discussed (Section 3.1.4).

3.1.1 Exclusion Area Method with a Response Surface Model

In this section, we investigate a strategy to search for the next candidate, which the costly objective
function will be evaluated for. We are utilizing a randomized solver on a response surface model, here.
The convergence of a randomized solver depends on the density of the sampled candidates. Additionally,
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the speed of the solver utilizing a response surface model depends on the convergence of the model
f̄ : D → R to the actual objective function f : D → R.

In this section, the convergence of solver is established by choosing the candidate for the next costly
function evaluation in each iteration step outside of an exclusion area around the candidates which were
evaluated in the previous iteration steps. This ensures that regions of the room are sampled which have
not been evaluated before and is adopted from [122]. The same strategy will prove the convergence of
the model of Section 3.1.2 to the actual objective function. This procedure is illustrated in Figure 3.2.

Figure 3.2: Illustration of the procedure to choose the candidate for the costly function evaluation
in each iteration step: The previous sample pairs are represented by green dots. The exclusion
areas around the sample pairs’ candidates are depicted by the hatched areas. The next sample pair
is illustrated by the blue dot and blue line. Its candidate is chosen outside of the exclusion areas.

The size of the exclusion area depends on the ratio β ∈ [0, 1), the bigger β the larger the area where
no candidate should be chosen. After evaluating the objective function for this candidate the response
surface model is updated with the newly found sample pair. In order to cover the areas close to and far
away from previous candidates the iteration is held in cycles of fixed ratios 1 ≥ β1 > β2 > ... > βL ≥ 0.
The tuple (β1, β2, ..., βL) is called search pattern. The resulting iteration can be sketched as follows:

Iteration 3.1.1 The Kth iteration step is given by L ∈ N updates to the response surface model:

K → K + L : f̄K+1 := search for candidate( f , f̄K , β1)

f̄K+2 := search for candidate( f , f̄K+1, β2)
...

f̄K+L := search for candidate( f , f̄K+L−1, βL)

Observe that the response surface model subsequently changes with each line of the above iteration,
since each time a candidate is added to the samples that are used for interpolation of the model.

In order to better understand the search for the candidate and the ratio β, consider the following: Let
∆ ∈ R be the solution of Equation (3.2) that is the largest distance between any previously chosen
candidate sk, k = 1, ...,K and the furthest point in the domain D. We are looking for a candidate sK+1
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with a (slightly smaller) maximum distance β ·∆ to the previous candidates, in order to cover areas close
to and far away from previous candidates. Under these constraints, the new candidate should maximize
the response surface model f̄ , see (3.3). So, ∆ is a measure of how large the previously mentioned
exclusion area can be. After the maximization, the response surface model is updated with the sample
pair (sK+1, f (sK+1)), depicted in (3.4).

search for candidate( f , f̄ , β) : ∆ := max
y∈D

min
1≤k≤K

||y − sk|| (3.2)

sK+1 := argmax
x∈D

f̄ (x) subj. to (3.3)

||x − sk|| ≥ β∆, k = 1, ...,K

f̄ := Update f̄ with sample pair (sK+1, f (sK+1)) (3.4)

The complete iteration is summarized in Algorithm 1.

Algorithm 1 Response Surface Model-Based Solver
Require: Finite set of initial points C := {s1, ..., sK} ⊂ D

Require: Costly function f (.)
1: Evaluate costly function fk ← f (sk), ∀sk ∈ S
2: Update response surface model f̄ with sample pairs S := {(s, f (s)) | s ∈ S }
3: while termination condition is not satisfied do
4: for all β in the search pattern < β1, ..., βL > do
5: ∆← max

y∈D
min1≤k≤K ||y − sk|| . Furthest distance between samples and rest ofD

6: Maximize f̄ (x) . Selection of candidate sK+1 ∈ D for the next costly evaluation
7: Subject to
8: ||x − sk|| ≥ β∆, k = 1, ...,K
9: x ∈ D

10:

11: Evaluate costly function fK+1 ← f (xK+1)
12: Update C ← C ∪ {sK+1}, S ← S ∪ {(sK+1, f (sK+1))}
13: Update response surface model f̄ with sample pairs S
14: if fK+1 > fk for all k = 1, ...,K then
15: fo ← fK+1

16: xo ← sK+1

17: end if
18: Reset K ← K + 1.
19: end for
20: end while
21: return (xo, fo)

Two modifications to its original form in [122] have been applied: First, the problem (3.3) is called
auxiliary problem in [122]. As can be seen above we have applied a maximization to the auxiliary
problem instead of the minimization. The second alteration is merely a formalization: The authors
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of [122] describe that the parameters β are chosen such that the iteration performs cycles of length L of
usually decreasing β, which is why we inserted the for-loop in Line 4.

Note that in Algorithm 1 the term f̄ denotes the surrogate whose function value and gradient can be
evaluated cheaply, and f denotes the costly objective function. The evaluation of the surrogate will be
discussed in the next section. This is the basic strategy that we will refine in the rest of the chapter.

3.1.2 Radial Basis Functions as a Response Surface Model

For the response surface model f̄ of the actual objective function f we use a radial basis function in-
terpolant (RBF) [116]. Colloquially speaking an RBF is a polynomial which is modified to interpolate
scattered sample pairs by allowing “hills” and “valleys”. The latter are radially symmetric, hence the
name. The adjective scattered means that the candidates of the sample pairs do not need to lie on a
regular grid. An RBF has the advantage that every sample pair is interpolated, that the model is unique
for a set of sample pairs, and that it is particularly smooth, as long as the candidates are unique.

The RBF defined in the next definition has been studied by [39,116]. This model was used as a surrogate
for optimization purposes [62, 100, 121] a few years later.

Definition 3.1.2
Let φ : R+

o → R be a continuously differentiable function with φ(0) = 0. Let f : D → R be a real
function with domain D ⊂ Rn, n ∈ N. Let Πn

m be the linear space of polynomials of degree less than or
equal to m with n variables, and let (s1, f (s1)), . . . , (sK , f (sK)) ∈ D × R be a set of sample pairs.

1. A real function f̄ : D → R is called a radial basis function interpolant (RBF) of s1, . . . , sK if
weights ω1, . . . , ωK ∈ R and a polynomial p ∈ Πn

m exist with

f̄ (x) :=
K∑

k=1

ωkφ(||x − sk||) + p(x), x ∈ D (3.5)

0 =

K∑
k=1

ωkq(sk) ∀q ∈ Πn
m (3.6)

and if the interpolation condition f̄ (sk) = f (sk) for all candidates k = 1, . . . ,K is met. Here, ||.||
denotes the Euclidean norm.

2. The function φ : R+
o → R with φ(0) = 0 is called the kernel of the RBF.

3. CK := {s1, ..., sK} is called the set of candidates.

4. S K := {(s, f (s)) | s ∈ CK} is called the set of sample pairs.

The first Equation (3.5) is an interpolant of the sample pairs, cf. Corollary 3.1.4. The conditions (3.6)
enforce uniqueness of the interpolant (3.5). The kernel of the interpolant is usually bijective in R+

o .
Notice that the argument of the kernel of the RBF is the distance of x to a candidate sk. This argument is
radially symmetric. In this case, the kernel can be considered as a function that maps each point around
sk onto a “hill” at sk (its value is exactly 0). So, colloquially speaking the RBF is a collection of “hills”
and “valleys” on a polynomial.
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In Table 3.1, several possible shapes of the kernel φ(r) are depicted in terms of the distance r ∈ R+
o and,

in some cases, a kernel parameter γ ∈ R+. The kernel types and shapes are shown in the first and second
columns, respectively. It is known from [62] that the vector space of polynomials, where p is taken from,
must be chosen according to the shape of the kernel φ, otherwise an RBF of Equation (3.5) with the
constraints (3.6) may not exist. In particular, the polynomial’s degree must exceed a minimal bound. An
example which shows that the thin plate spline at least must be combined with a linear polynomial and
the reason for the existence of the interpolant can be found in the next section (Corollary 3.1.8). The
third column of Table 3.1 shows the minimal degree of the polynomial. In the last column, the graph of
the kernel is illustrated in terms of the distance r.

Kernel type φ(r) Minimal degree m Graph

Linear r 0 r

φ(r)

Cubic r3 1 r

φ(r)

Thin plate spline r2 log(γ · r) (not injective) 1 r

φ(r)

Table 3.1: Possible shapes of the kernel φ(r) depending on the distance r ∈ R+
o and a kernel

parameter γ ∈ R+. The degree m of the polynomial p must be chosen according to the shape of the
kernel φ, c.f. [116].

We will use a thin plate spline as a kernel, later. In the last table, it can be observed that the polynomial
needs to be of a minimal degree m = 1:

Example 3.1.3
In case of a thin plate spline as a kernel, a basis of the vector space of polynomials p ∈ Πn

m must be at
least incorporating the linear polynomials m = 1, cf. [62]. Thus, with x(i) denoting the variable associated
with the ith dimension, i = 1, ..., n, one particular basis of the polynomial could be {1, x(1), ..., x(n)} , which
is a hyperplane in Rn.

In the following paragraphs, the form and properties of the interpolant of Definition 3.1.2 are discussed.

Interpolation of Sample Pairs, Uniqueness, and Differentiability for the Thin Plate Spline Kernel

It has not been explained, yet, how to construct a radial basis function, that interpolates given sample pairs
S K . Briefly, its construction entails defining a kernel φ, determining the polynomial p, and determining
the weights of the kernel ω. First, we determine the weights and the polynomial abstractly without
specifying on a kernel type. Then, we answer the following questions by specifying on a thin plate
spline (TPS) as a kernel: Are the sample pairs interpolated by f̄ ? Why are the polynomial term and the
constraints (3.6) required, at all? Is the radial basis function interpolant differentiable?
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For the determination of the weights, the kernel matrix of all distances between candidate pairs is defined
as:

(Φ) jk := φ(||s j − sk||), with (s j, sk) ∈ (CK)2.

With p1, ..., pm̄ being a basis of the linear space Πn
m (m̄ ∈ N such that the former is a basis of Πn

m), we
define a matrix P by

P =


p1(s1) ... pm̄(s1)
...

p1(sK) ... pm̄(sK)

 .
With the function values F = ( f1, ..., fK)T from the sample pairs (s1, f1), ..., (sK , fK), with the weights of
the kernel ω = (ω1, ..., ωK)T , and the coefficients of the polynomial ν = (ν1, ..., νm̄), the solution to the
equation system  Φ P

PT 0

 ω
ν

 =

F
0

 (3.7)

gives us the parameters ω and ν of a RBF f̄ that interpolates the sample pairs:

Proposition 3.1.4
Let ν and ω solve the equation system (3.7). Then, the RBF (3.5) with the weights ω and the polynomial
coefficients ν interpolates the sample pairs of Definition 3.1.2.

Proof. We consider the j-th row of equation system (3.7)

f j =

K∑
k=1

ωkφ(||s j − sk||) +

m̄∑
k=1

νk pk(s j)︸        ︷︷        ︸
p(s j)

The left hand side is the function value of the objective function, while the right hand side, by definition,
is the function value of the radial basis function f̄ (s j). �

This proposition is true for all the mentioned kernel types. Now, we will consider a thin plate spline with
kernel parameter γ ∈ R+ and a basis of linear polynomials, and prove some of the RBF’s properties. So,
let m̄ := n + 1,

φ(r) := r2 log(γ · r) and p1(x) := 1, p2(x) := x(1), ..., pm̄(x) := x(n). (3.8)

With these assumptions, the following lemma clarifies that the RBF is continuously differentiable:

Lemma 3.1.5
The radial basis function interpolant (3.5) with assumption (3.8) is continuously differentiable: f̄ ∈ C1.

Proof. The radial basis function of (3.5) is continuously differentiable if the basis function φ(||x − sk||)
is continuously differentiable for all candidates sk, since p is∞-differentiable. For a particular candidate
sk, the function u = r(x) = ||x − sk||

2 = (x(1) − s(1)
k )2 + · · · + (x(n) − s(n)

k )2 is the argument of our thin plate
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spline kernel φ(√.) from Table 3.1 of the radial basis function (3.5). Then the first derivative of the two
functions are:

d
du
φ(
√

u) =
d
du

u
(
log(γ) +

1
2

log(u)
)

= log(γ) +
1
2

log(u) +
1
2
,

∂r(x)
∂x(i) =

∂(x(i) − s(i)
k )2

∂x(i) = 2(x(i) − s(i)
k ),

The composition of these functions is therefore:

∂(φ ◦ r)
∂x(i) (c) =

(
∂φ

∂u
◦ r

)
(c) ·

∂r
∂x(i) (c) =

(
log(γ) +

1
2

log(||x − sk||
2) +

1
2

)
· 2

(
x(i) − s(i)

k

)
It is obvious for every point except x = sk that the first derivative exists and is continuous. By l’Hospital
it is gained

(
x(i) − s(i)

k

)
· log ||x − sk||

2 =
log ||x − sk||

2

1(
x(i)−s(i)

k

) →

2
(
x(i)−s(i)

k

)
||x−sk ||

2

− 1(
x(i)−s(i)

k

)2

= −
2
(
x(i) − s(i)

k

)3

||x − sk||
2 → 0 (x(i) → s(i)

k )

which ensures that the derivative is 0 at x = sk and is continuous.

�

Two questions arise: Why do we need the polynomial term at all? And why does it need to be added as
a term PTω = 0 to the equation system? The answer to the first question is, that the matrix Φ might be
singular, as can be seen in the following example by [62]:

Example 3.1.6
Set φ(r) := r2 log(γ · r), K := n + 1, γ := 1, and let the candidates in CK form a simplex where all the
edges have length 1. It holds:

||s j − sk|| =

0 if j = k

1 otherwise
, with (s j, sk) ∈ (CK)2

which means that the matrix (Φ) jk := φ(||s j − sk||) := ||s j − sk||
2 log(γ · ||s j − sk||) has only the entries 0.

The singularity indicates that the interpolant is not unique. But in the space Rn an interpolant of (n + 1)
sample pairs definitely exists if ω = 0: It is a hyperplane in Rn.

The example shows that even with distinct candidates the radial basis function interpolant with a thin
plate spline as kernel is not unique without linear polynomial. Tending to the second question, why
does the condition PTω = 0 have to be added to the equation system when the kernel is a thin plate
spline? It makes sense to add some constraints to the equation system (3.7) since otherwise it would be
underdetermined. An intuitive idea is using a polynomial whose function value is more determined by
those candidates sk whose “hills” φ(||s j − sk||) are less weighted. It is known from linear Algebra that
the kernel of a matrix PT is orthogonal to the image of P. The image can be any polynomial with the
function values Pν and the kernel is defined by PTω = 0.

It is possible to establish the uniqueness with these constraints [21, Proposition 5.2], given by the fol-
lowing definition and corollary. If a suitable set of sample pairs is provided, then the polynomial term
makes sure that the RBF is unique, and moreover, it is a minimum norm interpolant.
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Definition 3.1.7
Let f : D → R be a real valued function on the domain with dimension n ∈ N, i.e. D ∈ Rn. Let C ⊂ D
be a set of K > n distinct candidates.

1. The set of sample pairs S = {(s, f (s)) | s ∈ C} is called suitable if (n+1) candidates s1, ..., s(n+1) ∈ C
exist with the following matrix being regular, i.e. not singular:

M :=
 1

s1

 · · ·

 1
s(n+1)


2. Let f̄ : D → R be a function of the form (3.5) interpolating the given sample pairs in S . f̄ is called

a minimum norm interpolant of f if for all functions g : D → R of the form (3.5) that interpolate
all sample pairs in S , we have

( f̄ , f̄ )∗ ≤ (g, g)∗.

Thereby, (·, ·)∗ denotes a polynomial extension of the semi-norm

( f1, f2)∗ =
∑

s1∈C1

∑
s2∈C2

λs1λs2φ(||s1 − s2||)

on the Hilbert space completion of the space of all functions of the form f1/2 =
∑

s∈C1/2 λsφ(|| ·−s||).
Compare [21, Equation (5.8)] and thereafter.

The following corollary is a special case of [21, Proposition 5.2]. If a suitable sample pair set is provided,
then the polynomial condition (3.6) makes sure that the RBF is unique and minimizing the semi-norm
above.

Corollary 3.1.8
Let the kernel φ of the RBF in Definition 3.1.2 be a thin plate spline. Also, let the domain D ⊂ Rn

of the function f of the same definition be compact, have a Lipschitz-continuous boundary ∂D and a
non-empty interior. Let the polynomial be of degree 1: p ∈ Πn

1.

If S K as defined in Definition 3.1.2 is suitable, then the RBF that satisfies (3.5) and (3.6) exists, is unique
and is a minimum norm interpolant.

Proof. If the matrix Φ in (3.7) was positive definite, all eigenvalues would be positive, thus the matrix
would be regular. [21] has shown before Theorem 2.2. that for a completely monotonic, non-constant
φ(
√
·) and distinct candidates the matrix Φ is indeed positive definite. But in the Example 3.1.6 this is

not the case. The thin plate spline as a kernel is not strictly monotonical. Thus, the matrix Φ is not
necessarily positive definite. The following two definitions help to show the corollary:

1. The conditional positive definiteness [21, Definition 5.1] of the kernel φ(
√
·) only demands that

Φ is positive definite on our constraints (the subspace defined by the constraints): A function
φ : Rn → R is strictly conditionally positive definite of order 2 on Rn if for all finite subsets
S ⊂ Rn with K ∈ N candidates the quadratic form∑

s1∈C

∑
s2∈C

ωs1ωs2φ(||s1 − s2||)
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is positive for all tuples ω ∈ RK which satisfy ωT PT = 0 for the matrix P of the polynomial
basis’ in Πn

1. Instead of the monotony of the function φ(
√

u) only the monotony of a derivative of
this function is demanded: From the first derivative in the proof of Lemma 3.1.5 you can derive

d2

(du)2φ(
√

u) = 1
2u with (3.8) as a kernel φ. It is completely monotonic for u > 0. Thus, from [21,

Theorem 5.1] follows that φ is strictly conditionally positive definite of order 2.

2. The unisolvency is a property that makes sure that the only polynomial that vanishes on C is 0:
Unisolvent for Πn

1 means that for all q ∈ Πn
1 the condition q|C = 0 implies q ≡ 0. Why does S K

contain a unisolvent subset of candidates C? Now, consider an arbitrary polynomial q . 0 in Πn
1:

One basis of this space is {p0(x) = 1, pi(x) = xi, i = 1, ..., n}. Therefore, q can be expressed by
q(x) =

∑
νi · pi(x) with the weights νi, i = 0, ..., n, uniquely. The matrixM is regular, which means

the linear equation system b =MT ·νwith weights ν =
(
ν0 . . . νn

)
and an arbitrary (n+1)-vector

b is uniquely solvable, and in particular for q|C = b = 0. The fact that the trivial solution ν = 0
always exists leads to the conclusion that the trivial solution is the only solution. The polynomial
is q ≡ 0. Which means that C is unisolvent for Πn

m=1.

For the uniqueness of the solution to the Equation System (3.7), we will show (ω, ν) , 0⇒ F , 0: On
the one hand, φ is strictly conditionally positive definite (1) on the constraints PTω = 0, so

< Φω + Pν︸    ︷︷    ︸
=F

, ω >=< Φω,ω > + < ν, PTω︸︷︷︸
=0

>= ωT Φω > 0

holds. Thus, if ω , 0 ⇒ F , 0. Thus, the only possibility to have a non-zero argument is ν , 0. On
the other hand, the unisolvency (2) means that the only polynomial vanishing on C is the 0 polynomial.
However, from 0 = F = Φω︸︷︷︸

=0

+Pν and the unisolvency follows ν = 0, which is a contradiction.

Proposition 5.2 of [21] states that if the set of candidates CK of S K contains an unisolvent subset C ⊂ CK

for Πn
1 and if the kernel φ(

√
·) is strictly conditionally positive definite of order 2 then the RBF that

satisfies (3.5) and (3.6) is the minimum norm interpolant.

�

The response surface model we introduced in this section has particularly interesting properties: It inter-
polates scattered sample pairs in a smooth (continuously differentiable) way and minimizes a semi norm
thereby. Additionally, it is the only RBF that minimizes this norm.

3.1.3 Update Rules and the Incorporation of Prior Information

Without an optimization procedure, it is reasonable to place one camera on a wall of the environment
facing the interior of the room (not the wall) in order to maximize its coverage. Firstly, this holds since
the camera can only see in one direction, and secondly, orienting the camera to the wall would lead to
no coverage at all. In fact, most of the sensors have properties that can be exploited when maximizing
coverage. Cameras and depth sensors cannot penetrate walls, contact sensors need to establish contact
with an object, some sensors might have a limited range or depth of field, some a limited field of view,
etc.
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Instead of utilizing an imprecise heuristic for optimizing the network, this knowledge can be incorporated
in the response surface model. For Algorithm 1, two categories of incorporating knowledge have been
investigated in this thesis: One concerning the provision of prior information when starting the algorithm
(Line 2, Algorithm 1), and one considering advanced information (Line 13 and Equation (3.4)). These
two categories are addressed in the following definition.

Definition 3.1.9
Let D := Rn be a set and let P(.) denote the power set. Let f : D → R be a real-valued function and
G f := {(s, f (s)) | s ∈ D} the graph of f .

1. A function χ : P(G f ) → P(G f ) is called update rule for f if χ(S ) is a suitable set of sample pairs
for all S ⊂ G f .

2. Then χ(S ) is called advanced if S is suitable and basic if S is not suitable.

3. The update is called additive if for every S ⊂ G f a set S ⊂ G f exists with χ(S ) = S ∪ S .

4. The effect of an update rule χ is defined as the function eχ(S ) = |χ(S ) \ S |

5. The function α f : P(G f )→ P(G f ) is called prior information about f if

α f (S ) =
{
(x, f (x)) ∈ G f \ S | f (x) is known from the tuple (S , f ) without evaluation of f

}
6. Let α be the prior information. Let χ be an update rule. The function χ : P(G f )→ P(G f ) with the

following property is called the combined update χ with χ and α

χ(S ) = χ(S ) ∪ α(χ(S )), ∀S ⊂ G f .

An RBF can be constructed with the given sample pairs if the initial sample pairs are suitable, as shown
in Corollary 3.1.8. An update rule ensures that the resulting sample pairs are suitable. The following
trick is useful to generate n suitable candidates of dimension n from a single initial candidate of the
interior of the domainD ⊂ Rn if the domain is bounded by box constraints only.

Example 3.1.10
Let D ⊂ Rn be bounded by box constraints: Let s0 ∈ D. For the ith candidate si duplicate the initial
candidate and add a scalar γ(s(i)

0 ) to the ith coordinate s(i)
0 . The addend γ(s(i)

0 ) is positive if the initial
candidate is nearer to the lower domain boundary than the upper boundary and otherwise negative. γ(s(i)

0 )
is set to a quarter of the distance between upper and lower domain boundary in the same coordinate. Let

s0 :=


s(1)

0
...

s(n)
0

 , s1 :=


s(1)

0 + γ(s(1)
0 )

...

s(n)
0

 , . . . , sn :=


s(1)

0
...

s(n)
0 + γ(s(n)

0 )

 .
The resulting set of sample pairs is S (s0) := {(sk, f (sk)) | k ∈ {0, . . . , n}}. With this rule, the matrix of
Definition 3.1.7 (4) is regular and by construction every candidate is in the domain. Thus, the sample
pairs are suitable. These are the conditions of Corollary 3.1.8 for the RBF to be unique and to exist. The
function χ : P(G f )→ P(G f ) with

χ(S ) =
⋃

(s, f (s))∈S

S (s),
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for all S ⊂ G f is an update rule. You can use χ with suitable sets S , although you would usually
use it with sets of |S | = 1. In the latter case, the update rule is basic, since S is not suitable. The
latter update rule is additive since the original sample pair (s0, f (s0)) is included in S (·). Its effect is
eχ({(s0, f (s0))}) = n.

This is a basic update rule. However, there is no evidence that it leads to a converging algorithm if used
as an advanced update. Revisiting Algorithm 1 the basic additive update rule can be found in Line 2,
while the advanced additive updates are in Line 12. The formulation for the latter update rule is

χ : S 7→ S ∪
{

(s, f (s) | s ∈ argmax
x∈D

{
f̄ (x), ||x − s|| ≥ β∆,∀s ∈ C

}(∗)
, with C such that S = C × f (C)

}
.

(3.9)

In case several maxima of the update rule (3.9) exist, only one is chosen (*). Thus, the effect is 1.

In the context of a costly objective function f , the evaluation of the f should be avoided in points of
the domain where the function value is already known. This is why we have introduced the notion of
prior information. Prior information are sample pairs that are gained without evaluating the objective
function f , again. We have established an update rule that specifically incorporates prior information
into an update rule.

Lemma 3.1.11
Let α be the prior information. Let χ be an additive update rule. The combined update χ of χ and α is
an additive update rule. Moreover, if α(χ(S )) 1 χ(S ) for a particular S , χ has a higher effect than χ.

Proof. χ is an update rule since all sample pairs are distinct, and a suitable subset of sample pairs can
already be found in χ(S ). The additivity is inherited from χ. Why does it have a higher effect? It holds

eχ(S ) = |(χ(S ) ∪ α(χ(S ))) \ S | = |χ(S ) \ S | + |α(χ(S )) \ S | − | (χ(S ) ∩ α(χ(S ))) \ S︸                    ︷︷                    ︸
(α(χ(S ))\S

|

︸                                            ︷︷                                            ︸
>0

> |χ(S ) \ S |

�

The effect of a combined update rule χ is higher than the effect of its base update rule χ. The effect
measures the number of gained sample pairs independent on the number of times the objective function
has to be evaluated. It remains to be said that the sample pairs of prior information do not increase the
number of objective function evaluations, compare Definition 3.1.9 (5.-6.). The type of prior information
can be distinguished by the number of iterations in which the effect is larger than 0. If the effect is larger
than 0 once, the pieces of prior information are constant with the set of sample pairs S , such as in the
following example in camera placement.

Example 3.1.12
Let us consider the problem (1.2) of N = 1 camera with limited field of view and a viewing angle smaller
than π, in a closed box constrained surveillance zone, w.l.o.g. the unit cube with walls at x1 ∈ {−1, 1}, ...,
x3 ∈ {−1, 1}. The objective function is denoted by the volume of the coverage λ. Assume that the set of
network parameters are such that orientation is given as a vector in direction of the camera plane normal,
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and the position is in [−1, 1] × [−1, 1] × [−1, 1]. Let the sensor label that is used to define the coverage
simply be “detectable”, which means we want to maximize the area λ that is detectable by this camera.
Then the following can be considered prior information to any additive update rule:

αλ(S ) :=
{
(s, 0) | s =

(
1, 0, 0, 1, 0, 0

)T
,
(
0, 1, 0, 0, 1, 0

)T
,
(
0, 0, 1, 0, 0, 1

)T
}
, ∀S ⊂ Gλ

The assumption αλ ⊂ Gλ holds since the camera at position (1, 0, 0)T is situated at a wall and is oriented
with (0, 0, 1)T towards the wall.

This can also be transferred to N ∈ N cameras when assuming that a region is meant to be covered by all
cameras as in Definition 1.2.1: The coverage σ−1

s ({detectable}) of a candidate of any of the above sample
pairs (s, 0) ∈ αλ is the empty set, which means the intersection C of any of these coverages is empty
again, the objective is therefore known to be zero, as well.

These pieces of information can be helpful only once. The effect of this Example is 3 in the beginning
of the Algorithm, but as soon as the sample pairs have been incorporated to the response surface model,
the effect is 0 in the following iterations. In order to gain prior information that increases with the set
of samples S , some properties of the function must be exploited. This can be symmetry of the function,
boundary conditions, or other properties that depend on the already evaluated set of candidates.

The question of how to exploit symmetry in objective functions has been an active research topic in the
past decade. One strategy is to include symmetry breaking constraints, cf. [118], which limit the domain
to a non-symmetric part of the search space. However, recently a “negative effect of symmetry breaking
constraints on the local search performance” has been reported, cf. [117]. Using the prior information
by exploiting the symmetry of a function as in Algorithm 1 avoids these drawbacks, since no symmetry
breaking constraints need to be implemented. In the following, an update rule exploiting symmetry of
the objective function is defined and its effect is calculated.

Definition 3.1.13
Let D be such that there exist a decomposition D = V1 × ... × VM into M ∈ N subspaces with two
subspaces m,m ∈ {1, . . . ,M} being isomorph: Vm ∼ Vm. Additionally, let f : D → R be a real function,
symmetric in these two subspaces as in Definition 2.4.4 of Section 2.4.3. Let [.] denote the subspace
coordinates as in the same definition and let S ⊂ G f be a set of sample pairs from the graph G f be its
graph. Then the following is called symmetric prior information:

α f (S ) :=
{(

[x1, . . . , xm−1, xm, xm+1, . . . , xm−1, xm, xm+1, ..., xM], f (x)
)
⊂ G f |

[x1, ..., xM] = x ∈ S
}

Figure 3.3 shows that the incorporation of prior information, such as symmetry, can be rewarding.
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Incorporating no symmetry information Incorporating symmetry information

Figure 3.3: Illustration of an update rule incorporating symmetry as prior information (right) and
not incorporating symmetry (left) when optimizing the original objective function (middle) of
Figure 3.12; The rows show the response surface models of both strategies after five and six costly
function evaluations. With the incorporation of symmetric information the response surface model
is closer to the original.

Lemma 3.1.11 shows that the effect of a symmetric update rule is usually higher than without incorpora-
tion of symmetry.

Lemma 3.1.14
LetD be such that there exist a decompositionD = V1 × ...×VM into M ∈ N subspaces with V1 ∼ V2 ∼

· · · ∼ VM. And let χ be an additive update rule.

If no sample pair is updated twice, then a combined update rule χ in Lemma 3.1.11 with symmetric prior
information is M! times more effective.

Proof. = The effect |(χ(S ) ∪ α f (χ(S ))) \ S | of a symmetric pair of subspaces is 2 if none of the two
samples in χ(S ) and in α f (χ(S )) have already been updated. Since f is symmetric on M subspaces, the
a priori information includes all M! − 1 permutations from the solution x excluding the identity. Then,
for all sets S ⊂ G the effect of the update rule in Lemma 3.1.11 with the above piece of prior information
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is

eχ(S ) = |χ(S )| = |(χ(S ) \ S ) ∪ (α f (χ(S )) \ S )︸            ︷︷            ︸
=α f (χ(S ))(∗∗)

|

= |(χ(S ) \ S )|︸       ︷︷       ︸
eχ(S )

+ |α f (χ(S ))|︸      ︷︷      ︸
(M!−1)·eχ(S )(∗)

−| (χ(S ) ∩ α f (χ(S ))︸                ︷︷                ︸
=ø

\S )| = M! · eχ(S )

Relation (*) holds because the update rule χ is additive. Thus, any sample pairs symmetric to the sample
pairs in S are included in S already. Relation (**) holds since χ additive and is not included in α f . �

The symmetry is also important for camera placement. When optimizing the positions of N ∈ N identical
cameras, each with a set of parameters in the same space P the objective function of problem (1.2) is
symmetric in all the subspaces P of the whole domain of the camera networkD := PN . This is shown in
Section 2.4.3. The result of Lemma 3.1.14 shows that updating with symmetric prior information is N!
times more effective than the standard update (3.9).

3.1.4 Convergence

In this section, the convergence of the Algorithm 1 to the global maximum is proved. The proof is
inspired by [122] but is adapted to the more effective updates as in Lemma 3.1.11 and using the prior
information of Lemma 3.1.14. Also, a brief summary of an error estimate between an RBF as a response
surface model and the actual costly objective is provided. Details can be found in [21]. Furthermore, we
will discuss whether the convergence of the response surface model to the objective function plays an
important role for the convergence to the global optimum. Both convergences depend on the following
fact: Over time, the regions without candidates are all decreasing due to the constraints of Line 8 in
Algorithm 1. This useful fact is proved by the following lemma:

Lemma 3.1.15
Let D be bounded. The sequence ∆K of Algorithm 1 is monotonically decreasing and converges to 0
if the update rule of Lemma 3.1.11 is utilized with the standard update rule (3.9) with or without prior
information.

Proof. First, the monotony is proved for the standard update rule. Let f̄K be the RBF that interpolates K
candidates in CK . A new candidate for the next costly function evaluation is searched in the set DK,β :=
{x ∈ D | ||x − s|| ≥ β∆K , ∀s ∈ CK}, whereas the ratio β is a ratio from the search pattern < β1, ..., βL >

with β1 > 0. The next candidate sK+1 is taken from argmaxx∈DK,β
f̄ (x) and therefore satisfies

||sK+1 − s|| ≥ β∆K = β ·max
x∈D

min
s∈CK
||x − s||︸              ︷︷              ︸

(∗)

for all s ∈ CK .

The next candidate set is CK+1 = CK ∪ {sK+1}. What is the difference between ∆K+1 and ∆K?

∆K+1 = max
x∈D

min
s∈CK+1

||x − s|| = max
x∈D

min
{

min
s∈CK
||x − s||, ||x − sK+1||

}
=


∆K , min

s∈CK
||x − s|| < ||x − sK+1||,

max
x∈D
||x − sK+1||, otherwise.

(3.10)
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First of all, this means that the inequality ∆K+1 ≤ ∆K holds for the standard update rule. The update rule
of Lemma 3.1.11 is additive, thus additional candidates can only be added and none is removed. The
exclusion area ∆K+1 is even smaller, if not equal.

In the context of Theorem 2 of [122], a proof is given for a sequence (sK)K∈N with the following property
to be dense: For some fixed 0 < β, a strictly increasing sequence {Kt}t∈N of positive integers exists such
that the sub-sequence (sKt )t satisfies

min
k=1,...,Kt−1

||sKt − sk|| ≥ βmax
x∈D

min
k=1,...,Kt−1

||x − sk||.

The idea of the proof is to assume that (st) is not dense, i.e., there exists a point with an open δβ-
neighborhood that does not contain any elements of the sequence. The bounding box of the domain
with the side length rδβ/(2

√
n) of some positive integer r ∈ N+ is then divided into sub-hypercubes

of side length strictly smaller than δβ/
√

n, e.g. δβ/(2
√

n). The sub-sequence (sK) is infinitely long.
Together with the above property of the sub-sequence it is implied that each sub-hypercube (only a finite
number exists) is occupied by at least one member of the sequence. One sub-hypercube has a diameter

of less than
√

n · (δβ/
√

n)2 = δβ by construction. Thus, no such δ-neighborhood can be found. With the
sequence of candidates being dense, the sequence ∆K must then converge to 0.

Adding any sample pairs can only densify the samples and thereby improve the convergence. Thus, the
additive update rule of Lemma 3.1.11 with the standard update (3.9) and other prior information will
equally force the sequence ∆K to converge, either. Additionally, if this is an update based on symmetry,
the sequence will generally converge faster, since the non-symmetric domain is smaller. �

Knowing that the candidate-free space is decreasing monotonically in Algorithm 1, two conclusions
can be drawn: On a compact domain, the convergence of the algorithm to the global optimum of any
continuous function is established. Additionally, the RBF as a response surface model converges to the
costly objective, given a few assumptions on the objective, as can be seen after the following theorem.

Theorem 3.1.16
Let D be bounded. Let f be a bounded, continuous function on D. Then the sequence ( f (sK))K∈N of
Algorithm 1 converges to the global maximum value. Additionally, Algorithm 1 is an anytime algorithm.

Proof. As the proof of Lemma 3.1.15 shows, the sequence of candidates (sK)K∈N is constructed dense
in D. Thus, for every point x ∈ D a sub-sequence (sKt )t∈N exists with sKt → x, in particular also for
the point of the maximum x0 := argmaxx∈D f (x). With the objective being continuous on D for all
convergent sequences t the values of the objective function hold f (sKt )→ f (x0), which is the maximum
value of the function.

An algorithm is an anytime system if 1st it returns a valid solution even if interrupted at any point in
time before it ends and if 2nd the solutions are iteratively improved. The first requirement is true since
the initializing candidates are in the domain. So, a valid candidate can be stated any time. The second
requirement holds because of Lines 14 to 16 of Algorithm 1: If a candidate is better than the last, the
best candidate is updated. Now this update could take infinitely long if no better candidate is found, but
in this Algorithm it does not since the iterates are generated dense, see Lemma 3.1.15. �
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In fact, on a compact domainD the inverse is true, as well. The sequence is dense inD if the Algorithm
converges. This was provided by [153, Theorem 1.3]. Here, only the above-mentioned direction is
needed.

As can be seen from the above theorem, the convergence of the response surface model to the costly
objective is actually not required for the algorithm to converge to the global maximum function value.
However, the response surface indicates the importance of a region for a candidate search. In contrast
to a converging response surface, a function could be used that is constant on the whole domain and not
changing during Algorithm 1. Then, the algorithm just picks a random candidate outside the exclusion
area since they all seem equally important. Let us mention that the importance of a region could be
revealed by other means than a converging response surface model. If prior information about the loca-
tion of the maxima is known one could establish a function with higher values at these locations. This
procedure would save the computation of the RBF. The adaption of the response surface to the objective
function, on the other hand, yields the advantage that unconsidered regions are added if they prove more
important than the already considered ones. In this way, the convergence of the response surface model
to the costly objective function accelerates the algorithm.

The convergence of RBFs on scattered candidates, i.e., candidates not necessarily arranged in a grid,
is extensively investigated in the book [21, Chapter 5.2]. First, some definitions need to be made to
be able to understand the theory: As a requirement to the convergence the domain of the function that
is approximated (here the costly objective) needs to have a particular shape: it must satisfy an interior
cone condition, which means in colloquial terms that the corners of D are always wide enough. The
second requirement is that the costly objective needs to be square-integrable. Furthermore, the difference
between the objective and the model depends on the shape of the objective function and its derivatives,
which is given as a semi-norm. More precisely:

Definition 3.1.17
Let (D,A, µ) be the measure-space of D ⊂ Rn, n ∈ N, with the Borel-σ-algebra A, and the Lebesque-
measure µ. Also let k, p ∈ N with 0 < p < ∞.

1. D is said to satisfy an interior cone condition if for each x ∈ D a fixed vector ξ(x) ∈ Rn of unit
length exists such that for a positive r and θ the following inclusion holds:

{
x + λ · η | η ∈ Rn, ||η|| = r, η · ξ(x) ≥ cos θ, 0 ≤ λ ≤ 1

}
⊂ D.

2. Lp(D) :=
{
f : D → R | f measurable,

∫
D
| f (x)|pdµ(x) < ∞

}
/

{(∫
D
| f (x)|pdµ(x)

) 1
p = 0

}
is the

space of p-integrable functions. The quotient space denoted by / resembles that two functions
are identified if they have the same function values µ-almost everywhere.

3. A n-multi-index α is a tuple α = (α1, ..., αn) ∈ Nn with α1, · · · , αn ∈ N. Its total degree is defined
as |α| := α1 + ... + αn, and its factorial by α! := α1! · . . . · αn!.

4. Dα defines the operator of the partial derivative Dα :=
(
∂α1

(∂x)α1 · · · ∂αn

(∂x)αn

)
with the multi-index α.

The derivative has a total degree of |α| distributed over all dimensions.
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5. Let the real valued function f : D → R be such that Dα exists on D. The semi-norm of the
derivatives of a function is defined by

| f |2k,D :=
∫
D

∑
|α|=k,α∈Nn

k!
α!
|Dα f (x)|2dx

6. The space D−kL2(D) :=
{
f : D → R | Dα f ∈ L2(D), ∀ multi-index α with |α| = k

}
denotes the

linear space of all functions whose k-th total degree distributional partial derivatives are in L2(D).
(this also means D−kL2(Rn) ⊂ C(Rn) for k ≥ 1, cf. [21]).

With these definitions the following theorem estimates the approximation error between the costly ob-
jective f and an RBF as response surface model. The error decreases as the set of candidates becomes
denser, expressed by the distance h, and as the norm of derivatives | f | 2+n

2 ,D of f decreases. In our appli-
cation, the objective f and its derivatives are fixed by the geometry of the environment and the intrinsic
parameters of the cameras. Thus, we cannot influence the magnitude | f | 2+n

2 ,D of f when applying Corol-
lary 3.1.18. Conveniently, we have already proved that the candidates are densifying, a fact that is used
in the proof of the following theorem, a specified version of [21, Chapter 5.2].

Corollary 3.1.18
Let D be bounded and open with a Lipschitz-continuous boundary, and let it satisfy the interior cone
condition. Let s1, ..., sK ∈ CK ,K ∈ N be candidates, and let ∆K be constructed as ∆ in Eq. (3.2) for
the candidates in CK . Consider an RBF with a thin plate spline and a linear polynomial as the response
surface model f̄ .

Then, the response surface model holds f̄ ∈ D−
2+n

2 L2(Rn) and for all integrable functions with square
integrable derivatives f ∈ D−

2+n
2 L2(D) ∩ Lp(D) the error estimate

|| f − f̄ ||p,D ≤ c · ∆
1+ n

p
K | f | 2+n

2 ,D

holds for any p ≥ 2, where c ∈ R depends on n, and p, and neither on ∆K nor f .

Proof. The book chapter 5.2 in [21] prepares for the proof of [21, Theorem 5.5], which is a more general
form of this Corollary. The proof is rather technical and uses non-trivial results from functional analysis
and the theory of reproducing kernel-hilbert-spaces. The changed notation is stated here:

Theorem [21, Theorem 5.5] has been specialized to the kernel of (4.4) in [21]. Be aware that the param-
eter k, which is used in the theorem, also corresponds to the parameter in (4.4) of [21, page 61] which
satisfies 2 = 2k − n in this corollary. This parameter does not correspond to the k which gives the order
of conditional positive definiteness in the definition of the radial basis function interpolant in the same
book.

The candidate set CK has a candidate free region measured by ∆K , where ∆K is converging to 0 and is
monotonically decreasing (Lemma 3.1.15). Thus, there exists a K0 with ∆K < 1 for all K ≥ K0. Define
h1 := ∆K0 and let h := ∆K for all additional candidates K > K0, then

sup
x∈D

inf
s∈CK
||x − s|| ≤ h. (3.11)

The parameter h corresponds to the same parameter in Theorem 5.5. of [21]. �
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In the last section, we have introduced a provably convergent method to optimize an objective function
which is given as a black-box without gradient. The method can cope with stair-cased, non-differentiable,
non-convex functions. Additionally, prior information like symmetry can be incorporated. The method
stores the already evaluated sample pairs in a response surface model as not to evaluate these again and
provides a gradient for the objective function. Although it is not necessary for the convergence of the
solver, the response surface converges to the objective function if the latter and its first derivatives are
squared integrable. The objective function for camera network optimization is substantially cheaper if
only one camera is changed. In order to use the acceleration of the objective function, we alter the
method above in the next section.

3.2 Optimization Procedure utilizing a Block Coordinate Ascent

We take a step back to the application of the optimization method, the placement of several cameras
depicted in Problem (1.2). Manually, it is reasonable to place the cameras in turns. For one, because
a single person can only attach a single camera to the wall at a time, but also for efficiency reasons:
Firstly, our imagination can rather cope with estimating and optimizing the coverage of one camera
than several ones, and secondly, there are fewer placement possibilities for a single camera than for
several. After having placed each camera we would have to check whether the placement of the cameras
is acceptable regarding each other. If not, or if an improvement is obvious, the cameras should be
readjusted. Of course, this procedure might not be very efficient in real life, since a readjustment of a
camera means physically detaching it from the wall and placing it somewhere else. But in the simulation
of an optimization algorithm, such a strategy is promising.

Transferring the inspiration from real life to optimization, the placement options of a single camera
represent a subspace of the domain. Thus, the hope emerges to be able to accelerate Algorithm 1 in the
following way:

1. Decompose the domain of the objective function into orthogonal subspaces,

2. Optimize the objective function on a subspace of the domain and, following this,

3. Communicate the result to the optimization process of the next subspace.

Here, only subspaces parallel to the coordinate axes are considered, which means a group of variables
of the domain is optimized en bloc, the other variables are constant. This procedure is called block
coordinate ascent/descent (BCA/BCD), or domain decomposition, and here it is utilized for nonlinear
optimization on the domain D ∈ Rn, as in [54]. Just as in real life, the acceleration is expected from a
faster evaluation of the objective – the coverage of only one single camera can be simulated faster than
the coverage of two or more – and, secondly, from a faster optimization due to the smaller subspaces. In
the experimental Section 3.4 it will be shown whether this strategy is successful without parallelization.

This section is organized as follows: Section 3.2.1 discusses two general update rules for a BCA. Section
3.2.2 concretizes the BCA for camera placement. The challenges of a BCA in general and specified
for camera placement are the main reason for Section 3.2.3. In the last Section, these challenges are
overcome by marrying the BCA and the RBF solver of Section 3.1.
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3.2.1 Block Coordinate Ascent

We consider the Maximization Problem (3.1). This problem is called the global problem further on. As
in Definition 2.4.4, we apply the decompositionD = V1 × ... × VM, M ∈ N to the solution spaceD with
the dimension n1, ..., nM, respectively, and n = n1 + ... + nM. The corresponding partition of the identity
matrix is denoted by

1n := (U1, ...,UM) ∈ Rn×n,Um ∈ R
n×nm ,m = 1, ...,M. (3.12)

Instead of solving the global problem (3.1) a sequence of smaller problems is considered iteratively.
Choose an initial solution x(0) := U1x(0)

1 + ... + UM x(0)
M ∈ V1 × ... × VM, e.g. x(0) = 0. Then iterate:

Sequential iteration 3.2.1 (i→ i + 1)

u1 := argmax
v1∈V1

f (U1v1 + x(i))

u2 := argmax
v2∈V2

f (U2v2 + U1u1 + x(i))

...

uM := argmax
vM∈VM

f (UMvM +

M−1∑
m=1

Umum + x(i))

x(i+1) := U1u1 + ... + UMuM + x(i)

Each line of the above iteration corresponds to an optimization on a subspace. Starting from the previous
solution vector x(i) in the first row the subspace V1 is searched for the best solution according to the
objective function f . Thereby, the vector u1 ∈ V1 in subspace coordinates (defined in Definition 2.4.4)
resembles an offset between the previous solution vector x(i) and the best in this subspace. In the next
row, the subspace V2 is searched for the best solution starting at U2u2 + x(i). This procedures is continued
to the subspace VM, in the last row, where the search begins at

∑M
m=1 Umum + x(i). In the last step, the

communication between the subspaces is made: A new solution is produced by adding the offsets of the
last iteration step.

Please note that for the subscript v1 ∈ V1 in the first line the point U1v1 + x(i) might not be in D even if
x(i) ∈ D. Thus, the correct notation of the subscript should actually be U1v1 ∈ U1V1 − x(i) but we prefer
the shorter version for easier readability. This applies to the subscripts of all the subspace optimizations
in the whole thesis.

The iteration 3.2.1 can also be turned into a parallel algorithm: The first subspace maximization stays
the same. However, the following maximizations are equally started at the previous solution vector
x(i) instead of the updated point

∑M
m=1 Umum + x(i). The omission of the term

∑M
m=1 Umum ensures that

each subspace iteration has the same starting point, namely the previous solution vector x(i), instead of
depending on other subspace iterations. This is the basis for a parallel computation.
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Parallel iteration 3.2.2 (i→ i + 1)

u1 := argmax
v1∈V1

f (U1v1 + x(i))

u2 := argmax
v2∈V2

f (U2v2 + x(i))

...

uM := argmax
vM∈VM

f (UMvM + x(i))

x(i+1) := U1u1 + ... + UMuM + x(i)

The Figure 3.4 shows evidence that a function type exists on which both the iterations converge to the
same x(i+1) when starting at the same x(i). One iteration step i→ i + 1 of the Iteration 3.2.1 is illustrated
to the left. The image to the right illustrates the Iteration 3.2.2. In the second method, each maximization
on one subspace can be launched in a separate thread, all starting at the same solution vector, namely x(i).

V1 V2

x(i)

x(i+1) U1u1

x(i)

x(i+1)

Figure 3.4: Illustration of Iterations 3.2.1 (left) and 3.2.2; The red surface is to be maximized,
starting from the previous solution x(i). To the left, the maximization of the first subspace V1

(dotted line) starting at the previous solution x(i) is illustrated by the dashed line. The maximum
is the solution vector x(i) translated by the offset U1u1. Starting at the new point, the subspace is
switched and a new maximum is found. In the parallel method (right), each subspace maximization
starts at x(i). After all subspaces have been processed, in both methods, the solution vector needs
to be updated.

This is the basic strategy of a BCA. As we will see in the next section, the call of the objective function
in Equation (1.2) is cheaper when utilizing a BCA. However, the section thereafter shows that the objec-
tive function is not necessarily a function on which the Iterations 3.2.1 and 3.2.2 converge to the same
solution.

3.2.2 Cost Reduction in Camera Placement

In camera placement, the block coordinate ascent on a subspace decomposition can be applied in various
ways, two of which are illustrated in the following examples.
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Example 3.2.3
For the first example consider the construction of the space of camera parameters of Equation (2.1)D :=
PN =

(
E × ∂B3

1(0)
)N

. One possible choice is M := 2 subspaces with V1 := EN and V2 :=
(
∂B3

1(0)
)N

. In
this case, all of the cameras are first positioned and then, in a second step, oriented. The new positions
and orientations are applied to all cameras and the next iteration step starts.

However, the blocks of subspaces can also be reformed, which results in the following BCA:

Example 3.2.4
Consider the general problem of camera placement with different camerasD := P1× . . .×PN of Equation
(2.1). If we choose M := N and Vm := Pm for m ∈ {1, . . . ,M} then the Algorithm 3.2.1 first places the
first camera based on where all cameras have been placed in the previous iteration step. Then, the second
camera is placed based on the first camera’s update, the third on the second cameras update, etc. After
the last camera, the method continues with the first camera, again. Algorithm 3.2.2 places each camera
separately, not including the information of any updates in this iteration step. In the communication step,
all the places of the cameras are updated.

The last example yields some advantages for both the sequential and the parallel version: Consider f := λ

as in Problem 1.2, and x ∈ P1 × . . . × PN . In each iteration step (i + 1) of Iteration 3.2.2 the problem for
the subspace Vm looks like

argmax
vm∈Vm

f (Umvm + x(i)) = argmax
vm∈Vm

λ(CUmvm+x(i)(S )︸          ︷︷          ︸
fused coverage

of Def. 1.2.1

) = argmax
vm∈Vm

λ
( N⋃

n=1
n,m

σ−1
UT

n x(i)(S )

︸          ︷︷          ︸
const

∪σ−1
vm+UT

m x(i)(S )
)

with S ⊂ S being the chosen set of camera labels. As only the variable vm is optimized, the camera
coverages σ−1

UT
n x(i)(S ) are constant for all cameras n , m. Consequently, if the other coverages σ−1

UT
m x(i)(S ),

n , m are adequately stored, the cost of the evaluation is reduced. In Figure 2.8 just one of the parallel
rows and the subsequent union and volume needs to be calculated.

As in the cost notation of Section 2.2.3, let us assume that calculating the coverage of one camera costs
cc, calculating the union or intersection of the camera’s coverages costs cu, and measuring a volume costs
cv. One evaluation of the fused coverage of the cameras previously had a complexity of N · cc + cu + cv.
Now, within one iteration step of the Block Coordinate Ascent (BCA) the complexity becomes cc+cu+cv.
This is a motivation for continuing with designing the solver. The next section deals with the challenges
that we have to overcome in camera placement.

3.2.3 Challenges Concerning the Convergence

Both the Iterations 3.2.2 and 3.2.1 demand very restrictive requirements in order to guarantee conver-
gence. A solution vector x∗ which is an optimum in one subspace is not necessarily an optimum in
an affine translated subspace, let alone on the global problem. In the context of camera placement, the
optimum of the volume of the first camera’s coverage is not necessarily an optimum anymore if a sec-
ond camera has moved, nor does it have to be an optimum of the volume of the fused coverage. These
requirements and their challenges in camera network optimization are discussed in this section.
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In order to see the difference of these optima, consider that for a maximizer x∗ of an objective function f
of the global problem (3.1) the following holds:

0 ∈ argmax
x∈D

f (x + x∗)

In local optimization this corresponds to the gradient being zero at x = 0. An optimization procedure
should terminate if we can assure this condition. Again, x+ x∗ might not be inD even if x∗ ∈ D, however
again, we prefer to write the simplified subscript x ∈ D instead of x ∈ D − x∗. Similarly, one is able to
define the termination of the subspace maximizations with the following definition.

Definition 3.2.5
Let f : D → R be a real-valued function and let V1 × · · · × VM be a decomposition of D. Additionally
let the solution x∗ ∈ D be given.

1. x∗ is called Vm-subspace maximum of the subspace Vm, m ∈ {1, . . . ,M} , if

0 ∈ argmax
vm∈Vm

f (Umvm + x∗) (3.13)

2. x∗ is called stationary point if it is a Vm-subspace maximum for all the subspaces m = 1, ...,M.

3. In contrast to the stationary point, we call x∗ a global maximum if 0 ∈ argmax
x∈D

f (x + x∗).

In the upcoming paragraph, only one iteration step of 3.2.1 or 3.2.2 is discussed: We will see that there
are functions for which a Vm-subspace maximum x∗ stays a Vm-subspace maximum even if a coordinate
of x∗ is changed which does not belong to the same subspace. This is necessary for the convergence of
the BCA to a stationary point in one iteration step. However, stationary points are not necessarily global
maxima. This is shown in the paragraphs thereafter. Since the objective function discussed in this thesis
is particularly difficult for a BCA, these challenges have to be dealt with in the rest of this chapter.

Additive Separability

Figure 3.4 suggests that the achievement of the new solution x(i+1) is the same for the parallel as well as
the sequential version. But this is only true for objective functions that are separable, which means f
can be decomposed into M functions φm that each depend on a single subspace coordinate:

Definition 3.2.6
A function f : D → R is called additively separable on the decomposition (as in Definition 2.4.4)
V1 × · · · × VM if M functions φm : Vm → R,m = 1, ...,M, exist with

f (x) =

M∑
m=1

φm(xm), where the subspace coordinates are given by x = [x1, . . . , xM] ∈ D.

The following corollary connects the notation of a separable function and a subspace maximum:
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Corollary 3.2.7
For an additively separable function f the following holds: If x∗ is a Vm-subspace maximum, the solution
vector y = [x1, . . . , xm−1, x∗m, xm+1, . . . , xM]T is a Vm-subspace maximum for all subspace coordinates
xm ∈ Vm with m = 1, . . . ,m − 1,m + 1, . . . ,M, since

argmax
vm∈Vm

f (Umvm + y) = argmax
vm∈Vm


M∑

m=1
m,m

φm(xm) + φm(vm + x∗m)

 = argmax
vm∈Vm

(
φm(vm + x∗m)

)
= argmax

vm∈Vm

f (Umvm + x∗) = 0

With the property of additively separability the maximum of a function on a subspace Vm stays a maxi-
mum when adjusting one of the other subspace coordinates of the other subspaces m = 1, . . . ,m− 1,m +

1, . . . ,M. With this information, the Algorithm 3.2.1 converges within one iteration step to a stationary
point if the subspace maximizations converge. Also, the procedures of Algorithm 3.2.1 and 3.2.2 come
to the same result if the objective function is additively separable.

Lemma 3.2.8
Let f be an additively separable function with a single global maximum. Let x(i) ∈ D.

1. The result x(i+1) of an iteration step in both iterations 3.2.1 and 3.2.2 starting at the initial solution
x(i) is the same. 2. x(i+1) is a stationary point. 3. x(i+1) is a global maximum.

Proof. 1. Let the solution vector x(i+1) be the result of an iteration step of Iteration 3.2.2:

x(i+1) =

M∑
m=1

Um argmax
vm∈Vm

f (Umvm + x(i)) + x(i)

Corollary 3.2.7 states that an addition of a term
∑m

m=1 Umum to the argument of the objective
function f in argmaxvm∈Vm

f (Umvm + x(i)) does not change the subspace optimum, since m < m.
This is the solution of one iteration step of Iteration 3.2.1.

2. Furthermore, the solution from Iteration 3.2.2 of a separable function of the form f (x) =∑M
m=1 φm(xm) is the following since (Umvm)m = 0 for m , m:

x(i+1) =

M∑
m=1

Um argmax
vm∈Vm

M∑
m=1

φm((Umvm)m + x(i)
m ) + x(i) =



argmax
v1∈V1

[φ1(v1 + x(i)
1 ) +

︷       ︸︸       ︷
M∑

m=1
m,1

φ1(x(i)
1 )]

...

argmax
vM∈VM

[φM(vM + x(i)
M) +

M∑
m=1
m,M

φM(x(i)
M)

︸        ︷︷        ︸
irrelevant

]


+ x(i)

The following is true:

argmax
y∈Vm

f (Umy + x(i+1)) = argmax
y∈Vm

φm(y + x(i+1)
m ) = argmax

y∈Vm

φm(y + argmax
vm∈Vm

φm(vm + x(i)
m ) + x(i)

m ) 3 0

So, y = 0 maximizes φm for all m = 1, . . . ,M, which makes x(i+1) a stationary point.

3. Now, let y ∈ D in f (y + x(i+1)) =
∑M

m=1 φm(ym + x(i+1)
m ). Since x(i+1)

m maximizes φm it follows that
y = 0 maximizes f (y+x(i+1)). Thus, x(i+1) not only is a stationary point but also a global maximum.

�
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The previous lemma shows that both Iterations come to the same result for additively separable functions.
This result is a global maximum. Unfortunately, in camera placement the objective is not necessarily
additively separable:

Example 3.2.4 (again):
After having found the best place for camera one, an equally designed second camera would indepen-
dently be placed at the same spot. But this is not the best place for the second camera taking the placement
of the first camera into account, as their fused coverage is larger if they are further apart. Here, the addi-
tive separability depends on the possible positions of the cameras P and the geometry of the surveillance
zone A: The fused coverage of two cameras placed in two separate rooms is indeed separable in the
above sense.

With this example we have seen that the volume of the k-reliable coverage may be separable, but in
important cases is not. Thus, the BCA will possibly not converge to a maximum in one iteration step.
Nevertheless, we have seen in Section 3.2.2 that a BCA yields some advantages for camera placement,
so, the BCA needs to be further investigated as an iteration with more than one iteration step.

Stationary Points are not necessarily Global Maxima

Using additively separable functions, an obtained stationary point is always a global maximum. The
objective function of camera placement is not necessarily additively separable. In this section, we reveal
the issue of obtaining a stationary point in the interior of the domain D that is not a global maximum.
Let us motivate the problem at hand, first.

Example 3.2.9
In order to illustrate the problem of Iteration 3.2.1 consider two functions that are slowly linearly ascend-
ing on the diagonal from (−10,−10) to (10, 10). One has a parabolic shape in the orthogonal direction
and one is piecewise linear, as can be seen in the first plots of Figure 3.5 and 3.6.

Figure 3.5: Left: A differentiable function that is slowly, linearly ascending from (−10,−10) to
(10, 10) (left, red). The maximum is illustrated by a blue star. Right: Optimizing this function with
Algorithm 3.2.1. Note that the graph is rotated by 90 degrees. The intermediate solution vectors
(red crosses) are slowly oscillating all the way up to the maximum (blue star)
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In the second pictures of these figures the intermediate and result solution vectors of the BCA are il-
lustrated. While the BCA is slowly oscillating its way up to the top of the objective function in the
differentiable case, the BCA in the second case is stuck in the same orthogonal subspaces over and over
again. The reason: In the second example, the procedure has found a stationary point in the intersection
of these subspaces, but this one obviously differs from the global maximum.

Figure 3.6: Left: A non-differentiable function that is slowly, linearly ascending from (−10,−10)
to (10, 10) (left, red). The maximum is illustrated by a blue star. Right: Optimizing this function
with Algorithm 3.2.1. The intermediate solution vectors (red crosses) stay in the same subspaces
after the BCA has found a stationary point which is not a global maximum (blue star).

The question is now whether there are any differentiable, stationary points which are not global maxima.
The optimality of a solution at a differentiable point of the objective function f is indicated by a vanishing
gradient of the function. Generally, the gradient of a differentiable function at an interior point of the
domain is zero if and only if the point is a local optimum of the function or a saddle point. We would
like to be able to have a corresponding statement for the subspace Vm with a suitable gradient:

Definition 3.2.10
Let (V1, . . . ,VM) be a decomposition ofD for a function f which is differentiable at a point x∗ ∈ D.

1. The Vm-subspace gradient of f is defined as ∇m f (x∗) := UT
m∇ f (x∗).

2. In contrast to the subspace gradient we call ∇ f the global gradient of f .

The problem illustrated in the Figures 3.6 and 3.5 is a result of the non-differentiabilities: If f was
differentiable at the point of interest then either all the subspace gradients are 0 or no local optimum of
the global problem has been found. This result is proven with the following lemma.

Lemma 3.2.11
Let f be a function which is differentiable at point x∗ ∈ iD, idenoting the interior ofD. Then

∇m f (x∗) = 0 for all subspaces m = 1, . . . ,M ⇔ ∇ f (x∗) = 0
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Proof. With the partition of the identity-matrix 1n := (U1, ...,UM) ∈ Rn×n from Equation (3.12), the
gradient holds

0 = ∇ f (x∗) = 1
T
n∇ f (x∗) =


UT

1
...

UT
M

∇ f (x∗) =


∇1 f (x∗)

...

∇M f (x∗)



which shows the claimed equivalence at differentiable points of the domain. �

Therefore, if a function is differentiable at a solution vector x the stationary point corresponds to a
local optimum or a saddle point. If a direction exists in which the solution can be improved, the sta-
tionary point is not a saddle point. Thus, the issue of Figure 3.6 in Example 3.2.9 results from the
non-differentiabilities, since the direction (1, 1) improves the solution.

Now, one could argue that the non-differentiabilities of the objective f are so rare that this problem will
not cause harm. However, in the concrete case of the placement of several cameras this issue does occur,
as the following example shows. Thus, we need to figure out a way to smoothen the objective function
when dealing with non-differentiable functions.

Example 3.2.4 (again):
Let us consider the space D = L2 where L is the set of possible locations for one camera, in Figure 3.7
depicted by the grey line. Also, let the orientation of a camera always be such that the camera always
faces the middle of the environment directly, as illustrated by the black cross. Thus, the domain is two
dimensional.

Objective function Maximize the volume λ(·) of the intersection of the field of view of both the cam-
eras. A global maximum of λ is roughly such that both the cameras are situated where the left
camera is right now:

argmax
a1,a2∈L

λ(a1, a2) = (x1, x1).

Let us place the cameras by the Iteration 3.2.1 starting with the placement of the left camera in the sub-
space L. The camera moves over to the right camera, since the intersection is at a maximum there, thereby
reaching the point (x2, x2). In a second step the right camera should be readjusted but the intersection of
both cameras is already at a subspace maximum.

The algorithm has reached a stationary point but it has not reached the global maximum. In fact, from
point (x2, x2), there exists a direction in the domain on which the solution can be improved, namely
(1, 1). Thus, the stationary point cannot be anywhere near a local maximum. Placing the cameras in the
subspace of (1, 1) means moving them simultaneously.
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x1 x2 L

Figure 3.7: Illustrating a stationary point, not a global maximum: The domain is built by two
spaces of camera locations D = L2 (grey line). Each camera always faces the cross in the middle
of the environment, thus the domain is two dimensional. Placing the cameras such that the inter-
section of the field of view of both the cameras is maximized by Iteration 3.2.1 starting with the
left camera reaches a stationary point (x1, x1) which is not a global maximum.

If a regular BCA converges, it reaches a particular type of maximum. This type of maximum is called
stationary point in this thesis. On a particular type of function, the additively separable functions, a BCA
reaches the stationary point in one iteration step. On this function type, a stationary point corresponds
to a global maximum. If a function is differentiable, a stationary point on an inner point of the domain
corresponds to a local maximum or a saddle point of the domain. If the objective function is not dif-
ferentiable, stationary points can additionally be caused by non-differentiable points. Unfortunately, the
objective function in Equation (1.2) is neither separable nor differentiable everywhere. In the following
sections, a BCA is introduced that converges nevertheless.

3.2.4 Block Coordinate Ascent for Non-differentiable, Non-separable Functions

Due to the non-differentiability and non-separability of the objective (1.2), a sequential or parallel BCA
as in Iteration 3.2.1 or 3.2.2 is not reasonable. The non-separability hinders the algorithm to find good
positions in one step, and due to the non-differentiability the algorithm may not even converge to a local
optimum or saddle point. Thus, we first need to smoothen the objective function to ensure convergence.

One possibility is to use a Radial Basis Function solver as depicted in Section 3.1. Two ideas seem
promising: Utilizing an RBF solver in order to optimize the subspace maximizations of the BCA Algo-
rithm 3.2.2, or utilizing a BCA in order to optimize the candidate search of the RBF solver. We would
like to be able to distribute the computation of the costly objective function to several cores. Therefore, it
is tempting to use an RBF solver in order to solve the subspace maximizations of the iteration, as shown
in Algorithm 2 from Line 7 to 15.
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Algorithm 2 A block coordinate ascent method using an RBF solver in order to solve the subspace
maximizations
Require: As in Algorithm 1

1: Update RBF as in Algorithm 1, Line 1 and 2
2:

3: while BCA termination condition do
4: for all subspaces Vm,m = 1, ...,M do
5:

6: while RBF-solver termination condition do
7: for all β in the search pattern < β1, ..., βL > do
8: ∆← max

x∈Vm
min1≤k≤K ||x − sk||

9: Maximize the surrogate f̄ (x)
10: Subject to
11: ||x − sk|| ≥ β∆, k = 1, ...,K
12: x ∈ Vm

13:

14: Costly function evaluation and updates as in Algorithm 1, from Line 11 to 18
15: end for
16: end while
17:

18: end for
19: end while

For this method, two types of response surfaces were envisaged: A separate RBF for each subspace, or
a single global RBF. Unfortunately, the constraints of the candidate search of the RBF solver (Lines 8, 9
of Algorithm 1) neither ensure that the procedure nor that the radial basis function as a response surface
model converges. The problem for the Algorithm 2 is that a new candidate is chosen only out of the
current subspace not from the global domain. Therefore, the convergence of neither the method, nor the
RBF is guaranteed. This is true no matter whether a global RBF or separate subspace RBFs are used.

What happens if we use Algorithm 2 with a global RBF is illustrated in Figure 3.8. As an objective
function (left upper corner) the roof top function known from Figure 3.6 is chosen. The RBF at the
moment of the termination of the procedure is illustrated as a colored hypersurface from blue to yellow,
where yellow indicates the largest function value. The intermediate solutions (red crosses) correspond
to candidates of the RBF. At the moment of termination the RBF features a maximum (5, 0) (at the blue
star) in the interior of the domain, but the global maximum of the objective function is at the boundary
(10, 10).
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Figure 3.8: Illustration of Algorithm 2; The objective function (left upper corner, Figure 3.6) is
non-differentiable and linearly ascending from (-10,-10) to (10,10). The RBF at the moment of the
termination is shown as colored surface, where yellow corresponds to the largest function value.
The intermediate solutions (red crosses) correspond to candidates of the RBF and were chosen
along the subspaces. The maximum of the RBF does not converge to the global maximum of the
objective function.

The issues can be resolved by exchanging the order of the BCA iteration and RBF solver iteration.
Instead of utilizing the RBF solver to solve the subspace maximization in the BCA, the BCA will then
be used for the candidate search in the RBF-solver (BCA-R).

x(i) + Umvm

x(i)
x(i+1)

x(i) + Umvm

x(i)
x(i+1)

Figure 3.9: Illustration of three update methods in Algorithm 3: BCAIR (left) iterates the BCA
on an Invariant RBF until a subspace maximum (green dot) is found. This point and the initial
candidate are updated to the RBF. BCAUR (right) Updates the RBF at the beginning and after
each subspace maximization (green/blue dots); The blue updates can be Distributed (BCADR).

Three instances of the method BCA-R are discussed in this section, as illustrated in Figure 3.9: A version
that iterates the BCA on an Invariant response surface model until a stationary point is found which is
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updated to the RBF (BCAIR); a version that Updates the response surface model after each subspace
maximization (additional updates grayed, BCAUR); and a Distributed version of the last (BCADR).

The methods BCAIR and BCAUR are depicted in Algorithm 3. The lines shaded in gray represent mod-
ifications between BCAIR and BCAUR due to the following circumstance: The BCAIR is exclusively
calling the response surface model (not the costly objective) when changing the subspace. Two function
evaluations are appended, before and after the BCA iteration, which yields the following disadvantages.
Firstly, it is very rare that two successive costly function evaluations are evaluated in a common sub-
space. These subspace optimizations correspond to the placement of one camera in the Example 3.2.4.
Therefore, the method for decreasing the complexity of the costly objective function later on in Section
3.2.2 can not be utilized. On a second matter, computing the BCA iteration in parallel is not necessary,
anymore, since the function evaluations inside the iteration are very cheap.

Algorithm 3 BCAIR, BCAUR, and BCADR when distributing the costly function evaluations in Line
18

1: Update RBF as in Algorithm 1, Line 1 and 2
2:

3: while RBF-solver termination condition do
4: for all β in the search pattern < β1, ..., βL > do

5: ∆← max
x∈D

min1≤k≤K ||x − sk||

6: x← argmax
x∈D

min1≤k≤K ||x − sk||

7: sK+1 ← x
8: Costly function evaluation and updates as in Algorithm 1, from Line 11 to 18
9:

10: while BCA termination condition do
11: for all subspaces Vm,m = 1, ...,M do

12: ∆m ←

||x
(m) − x(m)

||

max
x∈Vm

min1≤k≤K ||x − sk||

13: Maximize f̄ (x)
14: Subject to
15: ||x − sk|| ≥ β∆m, k = 1, ...,K
16: x ∈ Vm

17:

18: Costly function evaluation and updates as in Algorithm 1, from Line 11 to 18
19: end for
20: end while
21: Costly function evaluation and updates as in Algorithm 1, from Line 11 to 18
22: end for
23: end while

For a distribution of the costly function evaluations, let us make the following alterations to Algorithm
3, shaded in gray: The costly function evaluations of Line 18 can be parallelized. The sequentially
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executed function evaluations of Line 8 and 18 can be calculated by the cheap function evaluations of
Section 3.2.2. Changing the calculations of Line 12 transforms the inner iteration into a second RBF-
solver on only one subspace. These two alterations lead to the fact that we can utilize the parallel method
with the cheap function evaluations of Section 3.2.2.

It can be seen in the following theorem that Algorithm 3 converges with all three types of updates.

Theorem 3.2.12
Let D be bounded. The BCA-R in Algorithm 3 converges to the global maximum objective value of any
bounded, continuous objective function f onD. Additionally, it is an anytime algorithm.

Proof. For the BCAUR/BCADR the candidates constructed until Line 8 constitute a sequence of iterates
that are densifying in D as in Lemma 3.1.15. With the same reason as in Theorem 3.1.16 the proof can
be closed.

�

In this subsection, two globally convergent optimization methods have been developed, the BCAIR and
BCAUR of Algorithm 3. The last procedure can be computed in parallel, this version will be called
BCADR. The computation in parallel threads can be achieved by using a global RBF as a response sur-
face model for the first update in Line 8. For the updates 18 of each parallel thread (or each subspace
for that matter) an exact copy of this model needs to be used. The same model is also used for the max-
imization of Line 13 till 16. After distributing the iteration into subspaces optimizations, the subspace
models need to be merged by updating the newly found sample pairs into the global one. The update of
Line 21 again affects the global model.

The distributed version has the following advantage:

Lemma 3.2.13
Consider the BCAUR with M ∈ N being the number of subspaces and I0 being the number of steps of the
inner iteration (Lines 10– 20). Let T ∈ N be the number of parallel threads of the BCADR with the same
number of subspaces and iteration steps.

Then the total number of subsequent function calls of one outer iteration step (Lines 3– 23) is

• I0 · M + 1 in case of the BCAUR and

• I0 ·
⌈

M
T

⌉
+ 2 in case of the BCADR.

Proof. Let us suppose the number of parallel threads T is large enough, I will comment on this later in
the proof. The costly objective function calls (Line 8, 18) in the non-distributed version of Algorithm 3
subdivide into two groups: The first call in Line 8 needs to be done before the other calls in the same
RBF-solver iteration step are done. The following calls in Line 18 are calls in M subspaces. The calls
within each subspace need to be done subsequently, all the subspaces can be computed in parallel. When
limiting the BCA iteration to a number of iteration steps I0 for a problem with M subspaces then the
number of all calls in one RBF-solver iteration step is I0 · M + 1.

When distributing the Algorithm, the call in Line 22 has to be done after the parallelization, additionally.
A number of M calls can be computed parallel. I0 + 1 + 1 need to be done sequentially. Now, consider
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that the number of parallel threads T is limited. If M ≤ T the maximum number of parallel computable
function calls stays the same, this is considered “large enough”. If this is not the case, then, out of the
former M parallel function calls, a number of

⌈
M
T

⌉
calls need to be done subsequently. The minimum

total number of subsequent costly function calls is I0 ·
⌈

M
T

⌉
+ 2. �

The advantage of BCADR compared to BCAUR is the decreased number of sequentially computed
costly function calls, which is shown in the last lemma. Furthermore, both as well as the BCAIR can
be equipped with symmetric prior information as in 3.1.14. In the following sections, we will explain
the experimental setup that is needed to investigate whether this advantage helps the BCA-R versions to
play in a better league than the plain RBF-solver.

3.3 Experimental Setup

The aim of the experiments is to test the proposed optimization methods, namely the BCAIR, BCAUR,
and BCADR, for flaws and errors. Of particular interest are the efficiency and accuracy of these methods,
and the question whether these criteria depend on the objective function. In this section, the following
questions are answered:

How do you quantify the notions of efficiency and accuracy of a solver in our context? And what types of
tests have been done? (Section 3.3.3) What types of functions need to be tested in order to get significant
test results? (Section 3.3.1) We also briefly comment on the hardware setup and argue on the details of
the implementation. (Section 3.3.4 and 3.3.2)

3.3.1 Test Problems

The problem (1.2) is non-convex, stair-cased or differentiable µ-almost everywhere, and sometimes sym-
metric. From these criteria several objective functions f : Rn → R have been chosen to test the solvers
in the domain of D = [−10, 10]n, where n is the dimension of the function, or in other words the size of
the problem.

First, illustrated in Figure 3.10, there are two objective functions of dimension two that are both as-
cending from (−10,−10) to (10, 10) linearly with equal slope and attain their maximum of 10 at the
boundary point (10, 10). The function to the left has a shape like a sloping hill and is differentiable at
every point. The function to the right attains a sloping roof shape and is only differentiable outside of the
set {(x1, x2) ∈ R2 | x1 = x2}. We have tested both functions as depicted, and additionally, we have varied
the slopes on either side of the diagonal by multiplying the function by a constant factor. The maximum
function value of both functions is the same when using the same factor.
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fS H = −(x1 − x2)(x1 − x2) +
(x1+x2)

2 fS R = 10 −

2 · x1 − x2 x1 < x2

2 · x2 − x1 else

Figure 3.10: Differentiable (sloping-hill-shaped, left) and non-differentiable (sloping-roof-shaped,
right) objective function, ascending from (−10,−10) to (10, 10) linearly and obtaining their maxi-
mum at the boundary point (10, 10);

In Figure 3.11, two objective functions of dimension two can be seen which obtain their unique local
and global maximum at an interior point (−2,−2). The function to the left has a parabolic shape and is
differentiable at every point. The function to the right obtains a roof top shape and is not differentiable
at the maximum. Again, we have also tested both functions with various slopes on either side of the
maximum. The maximum function value of both functions is the same when using the same factor.

fHT = (10.0 − (( 1
2 + x1)2 + ( 1

2 + x2)2)) fRT =


if x2 > x1

10 + 6(x1 + 5) if (x2 + 5) < −(x1 + 5)

10 − 6(x2 + 5) else

else

10 + 6(x2 + 5) if (x2 + 5) < −(x1 + 5)

10 − 6(x1 + 5) else

Figure 3.11: Differentiable (hill-top-shaped, left) and non-differentiable (roof-top-shaped, right)
objective function, both attaining their single local maximum at the interior point (−2,−2);

Another objective function that is used to test the solver is the additively separable function fn : Rn → R

of adjustable size n ∈ N:

fn(x1, ..., xn) = 10 +

n∑
i


−

(xi+2)2

4 xi < −2

−1.4xi − 2.8 xi < 3, xi ≥ −2

0.5xi − 8.5 xi < 5, xi ≥ 3

−xi − 1 otherwise.

The left image of Figure 3.12 illustrates fn with n = 1, the right image shows n = 2. Note that in this
work the function is experimentally tested up to n = 5. The function has several local maxima, is neither
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convex nor concave, and is only piecewise differentiable. The local maxima of this function are interior
points depicted in the set {(x1, ..., xn) | xi ∈ {−2, 5},∀i ∈ 1, ..., n}, but the only global maximum of this
function is at (−2, ...,−2). The non-differentiable points lie on hyperplanes with xi ∈ {−2, 3, 5}. The
function is not differentiable at the maximum.

Figure 3.12: Additively separable objective function fn with adjustable size, n = 1 (left) and n = 2
(right); this function is tested up to n = 5. The function has several local maxima, is neither convex
nor concave, and is only piecewise differentiable. The only global maximum of this function is
(−2, ...,−2).

Additively separable means f can be written as a sum of functions φi whereas φi only depends on the
variable xi, i = 1, ..., n. In our case these subspace functions are piecewise defined by the conditions also
depending on the same single variable:

f (x1, ..., xn) =

n∑
i

∑
c

fc,i(xi) · δConditionc(xi)

Last but not least, a stair-cased functions need to be tested, as well. Here, we test the function f sc
n (x) :=

fn(dxe), again of adjustable dimension n ∈ N. The left image of Figure 3.13 illustrates f sc
n with n = 1,

the right image shows n = 2, but again we tested up to n = 5. The function is stair-cased on the
intervals between [−10.5,−9.5], ..., [9.5, 10.5] of one dimension. It has several local maxima, is neither
convex nor concave. The local maxima of this function are interior points that are contained in the set
{(x1, ..., xn) | xi ∈ {−2, 5},∀i ∈ 1, ..., n} (as well as the interval around it), but the only set of global
maximizer is at the plateau of (−2, ...,−2).

The functions that are introduced as test objective functions in this section are piecewise differentiable,
stair-cased, and additively separable. They are used in various dimensions and with various slopes in
Section 3.4 to test the solvers developed in the Sections 3.1 and 3.2.
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Figure 3.13: Stair-cased objective function f sc
n with adjustable size, n = 1 (left) and n = 2 (right);

this function is tested up to n = 5. The function has several local maxima, is neither convex nor
concave, and is only piecewise differentiable.

3.3.2 Implementation Details

For a fair comparison, all the algorithms share some common components: The candidates for an initial-
ization of the algorithms, the optimization method searching for the size of the exclusion area ∆ (solving
the max min-term), an optimization method searching for the next candidate outside the exclusion area,
and the update of the RBF using newly generated candidates. The requirements and implementation
details of these components are summarized, here:

Type of RBF The requirements to the initial candidates and their update to the RBF depend on the kernel
type and the polynomial that is used in the RBF. The implementation uses a thin plate spline as
kernel φ(r) = r2 log(γ · r) and a linear polynomial p ∈ Πn

m with the basis {1, x(1), ..., x(n)}. The
polynomial describes a hyperplane in Rn.

Optimization methods Searching for the size of the exclusion area ∆ and afterwards searching for a
candidate requires nonlinear solvers coping with constraints.

In order to solve the maximization of the distance between all the candidates and the furthest point
of the domain (in Line 5 of Algorithm 3) the method of moving asymptotes implemented by [72]
is used. It utilizes a local approximation to search for a good solution and was originally proposed
by [148]. The convergence of this solver depends on the ability to establish a gradient, but the
function ||x− sk|| is not differentiable at sk. To pick a differentiable initial point a point is randomly
chosen in the domain excluding the candidates sk, k = 1, ...,K.

The constraints of the candidate search (in Line 13) need to be modified before each optimiza-
tion, this can be done by an interior point method implemented in the library [156], originally
proposed by [155]. Both methods are designed for large scale, inequality-constrained nonlinear
programming problems.

Initial candidates The solvers proceed stochastically due to the randomly chosen starting point of the
method of moving assymptotes (in Line 5). The outcome of a solver call could therefore differ from
the outcome of another solver call of the same initial solver configurations. Thus, the optimization
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methods are called with the same solver parameters but different initial candidates, to get a better
understanding of the average performance. For the synthetic functions, the optimum lies either
at (−2, ...,−2) or (10, 10). Thereby, the first initial candidate is taken randomly from the interval
[4, 9), which by construction is free of optima. The rest of the candidates are generated as proposed
in Example 3.1.10.

RBF update When adding a candidate to the RBF the equation system (3.7) needs to be solved. The
distances between candidates inside this equation system do not change when adding a candidate,
so these can be reused from the previous iteration step. To solve the system a LU-decomposition
by [56] is used. This has the advantage that the determinant of the matrix can be calculated,
easily. The determinant is zero if the equation system is singular, which is the case if a redundant
candidate is added, a candidate that has already been updated. Since two similar candidates are
not needed in the response surface, the determinant test is useful to avoid this situation.

A good reason to use an LU-decomposition is also that the update of a candidate to the RBF results
in only a single additional row and column in the equation system (3.7). Adding single rows and
columns to an LU-decomposed matrix has already been researched several decades ago, and using
a method such as [59] can be achieved in o(n2) instead of o(n3). As an alternative one could also
utilize the update method of [116] who adds candidates to the above equation system just as the
Newton’s subsequent interpolation method.

The methods BCAIR, BCAUR, and BCADR, as well as the original RBF-solver are initialized as above.

3.3.3 Focus of the Experiments and Test Parameter

The solvers above proceed stochastically to find one of these global optima. Even if the same initial
candidates and the same test parameters are used to start the solver, the solutions could differ due to the
stochastical component. In order to show that the solver’s performance does not depend on the choice
of the random component, the tests are grouped into a given number H ∈ N of test runs using the same
solver parameter but different initial points. In the following chapter, the term test run is used to express
one solver call, the term test group indicates the given number of solver calls with the same parameters,
and the term investigation emphasizes the number of test groups in which only one parameter is varied.

The focus of this chapter is on examining the efficiency and accuracy of an optimization procedure for
various termination conditions of the algorithms. The methods we want to examine are BCAIR, BCAUR,
BCADR, and RBF-solver. They are compared to the RBF-solver, a globally convergent algorithm and
several locally convergent algorithms, both utilizing derivatives and derivative-free.

Efficiency Several efficiency measures are thinkable, e.g. time or memory consumption, for realtime
systems or mobile devices, but we assume a powerful CPU with several cores. The time will mostly
be consumed by the calls of the costly objective function. When optimizing such a function, the
number of function calls is the critical criterium for measuring the efficiency of the solver.

Accuracy The accuracy of a solver is measured by the deviation from the optimal value, i.e. the dif-
ference between the optimal value of the objective function and the value of the solution that



3.3. EXPERIMENTAL SETUP 107

was produced by the method. The difference can be measured as an absolute value or a relative
percentage.

The efficiency and accuracy need to be condensed from all test runs of one test group. The mode of
the investigation defines whether the maximum, average, or minimum of the measure of efficiency and
accuracy is used.

The crucial parameters in the algorithms are the termination conditions of their iterations. A straight
forward termination condition is to limit the number of objective function calls by a number F0 ∈ N. We
have used a maximum number of 1000 function calls if not declared otherwise. But in order to compare
which method is converging faster, the costly objective function calls need to be counted. In Algorithm
3 there are two iterations an outer iteration and an inner iteration. The outer iteration corresponds to the
RBF-solver iteration from Algorithm 1, the inner iteration to the BCA. The termination of both should
be considered adequately, here, beginning with the BCA.

BCA iteration If the subsequent subspace maximizations results in the same solution that the iteration
has started with, then the iteration has arrived at a stationary point. The solution will not change
when going through the subspaces again. So, the BCA termination condition that was used here is
an minimum bound δ0 for the absolute distance of two subsequent candidates sK and sK+1: If the
inequality

δ0 ≥ ||sK − sK+1||.

holds, then the iteration is terminated. This yields the problem that a very slow progress of the
solver is prohibited. In order to allow some small progress the BCA iteration is stopped if this
bound is undercut twice in a row. Additionally, the number of BCA iteration steps I0 can be
limited.

RBF-solver iteration The RBF-solver is a globally convergent solver that generates the candidates
dense in D. One would want to terminate the RBF-Sover iteration if a minimum bound ∆0 for
this density is obtained. The degree of density is measured by the measure ∆ of the exclusion area.

The investigations for the synthetic examples are depicted in the rows of Table 3.2. An investigation is
only valuable if just one single parameter is varied in an investigation. If in a row two parameters 1,2 are
varied then the investigation consists of all combinations of parameter 1 and 2, the same goes for more
parameters. The symbol→ denotes the variable parameter, this parameter is further depicted in column
“Investigation”.
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Focus H Mode F0 I0 δ0 ∆0 f Investigation Section
Accuracy 20 Av.,

Max
Min

2000 (1) 0.15 5 → Comparison to other solvers
of [72]: f = fn, n = 2, 3, 4, 5

3.4.1

Efficiency 20 Av. 2000 (1) 0.15 5 → Comparison to other solvers
of [72]: f = fn, n = 2, 3, 4, 5

3.4.1

Accuracy 20 Av. 2000 (1) 0.15 5 → Comparison to other solvers
[72]: Stair-casing of f = f sc

n ,
n = 2, 3, 4, 5

3.4.1

Efficiency 20 Max 1000 (1) 0.15 → → Comparison of new methods:
∆0 = 2, 3, 4, 5, 6;
f = fn, n = 2, 3, 4

3.4.2

Efficiency,
Accuracy

20 Av. 2000 (1) 0.15 5 → Comparison of new methods:
f = fn, n = 2, 3, 4, 5

3.4.2

Efficiency,
Accuracy

20 Av. 500 (1) 0.15 2 → Slope of function: f = c· fS H ,
c · fS R, c · fRT , c · fHT , c =

1, 2, 3, 4

3.4.3

Efficiency 20 Av. 500 (1) 0.15 2 → Type of function:
f = f2, fS H , fS R, fRT , fHT

3.4.3

Efficiency 20 Av. 2000 (1) 0.15 5 → Symmetry: fn, n = 2, 3, 4 3.4.4
Efficiency
Accuracy

10 Av.
Max
Min

500 → → → → Termination criteria:
f = c · fS H , c · fS R, c · fRT ,
c · fHT , c = 1, 2
I0 = 1, 2, ..., 9;
δ0 = 0.05, 0.15, ..., 1.45;
∆0 = 1.0, 1.4, ..., 3.8

3.4.5

Efficiency
Accuracy

10 Av.
Max
Min

500 → 0.15 2.6 fS R Increasing the number of in-
ner iteration steps: I0 =

1, 2, ..., 6;

3.4.5

Efficiency
Accuracy

10 Av.
Max
Min

1000 3 → 2.6 fS R Increasing the termination
criterium of the inner itera-
tion: δ0 = 0.05, 0.15, ..., 1.45

3.4.5

Efficiency
Accuracy

10 Av.
Max
Min

500 1 0.15 → fS R Increasing the termination
criterium of the outer itera-
tion: ∆0 = 1.0, 1.4, ..., 5.8

3.4.5

(1) 10 in case of BCAIR and one in case of both BCADR and BCAUR

Table 3.2: Table of investigations: Groups of H test runs are started with the same solver configu-
rations but different initial candidates. The focus is then averaged or maximized (according to the
mode) over the test runs in one group. The bounds for the maximum function calls F0, minimum
distance between candidates δ0, minimum density ∆0, and number of BCA iteration steps, as well
as the objective function f are varied as test parameters, denoted by the symbol→.
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3.3.4 Hardware Configuration

The experiments have been performed in a virtual machine “VMware Fusion 6” with “Hardware version
10” on an Apple “MacBook Pro Retina 15 inch, late 2013” on a four-core 2.6 GHz Intel Core i7 com-
puting unit. The virtual machine has the 64-bit operating system “openSUSE 13.1 (x86 64)” installed.
Two cores and 5948 MB RAM are forwarded to the virtual machine. The used compiler is “gcc (SUSE
Linux) 4.8.1 20130909 [gcc-4 8-branch revision 202388]”. The following Table 3.3 shows an excerpt
from the terminal command $: cat /proc/cpuinfo.

model name : Intel(R) Core(TM) i7-4960HQ CPU @ 2.60GHz
cpu MHz : 2592.697
cache size : 6144 KB
bogomips : 5185.39
clflush size : 64
cache alignment : 64
address sizes : 40 bits physical, 48 bits virtual

Table 3.3: System configuration of the test machine.

In the last section, the modalities for the investigations in the next section have been discussed. The
test problems are chosen in a variety of different slopes and function types, such as non-differerentiable
functions and separable functions. They have local optima at differentiable and non-differentiable points.
The initialization of the algorithms has been discussed in the context of a fair comparison. In the end,
the tests were introduced and the hardware setting was specified. With this hardware we have tested
Algorithm 1 and Algorithm 3 in its three versions.

3.4 Experimental Results

The aim of the investigations is to answer the following questions:

• Which here proposed optimization method is more efficient and more accurate, the BCAIR,
BCAUR, or BCADR?

• To which extend do the efficiency and accuracy depend on the objective function?

• How do the parameters of the algorithms need to be adjusted?

• To which extend may an exploitation of symmetry as prior information increase the efficiency?

• How are the solvers performing on a stair-cased function?

The parameters are tested on various test problems that differ in size, slope, differentiability, and whether
their optimum is a boundary point or an interior. Additionally, the results are compared to other solvers
like the original RBF solver, several local solvers that use a subspace decomposition and/or an approxi-
mation of the objective function, and a global solver.
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3.4.1 Comparison to State of the Art

The derivatives of an objective function are utilized by local solvers, such as the sequential quadratic
programming methods, to establish local optimality. In contrast to the local solvers, the stochastic solvers
take advantage of the following fact: It has been proven that an optimization algorithm needs dense
iterates to converge to the global optimum of an arbitrary continuous function, c.f. [153]. The word
“dense” already hints that the convergence speed of local solvers is higher, but a global optimum might
not be found. We will see now that for costly objective functions who cannot establish a gradient on their
own, a third way exists, that is efficient and proven globally convergent. In this investigation the globally
convergent optimization procedures from Algorithm 3, and the RBF solver, as discussed in Algorithm 1
are compared to already existing solvers.

The parameters that changed between test groups in this investigation were the size of the problem, it
was varied between n ∈ {2, 3, 4, 5} by using the separable function fn. The function is only piecewise
differentiable, non-convex and has several local optima, just as the function of problem (1.2). The min-
imum bound for the termination condition of the RBF solver iteration was set to ∆0 = 5, the bound for
the BCA iteration to δ0 = 0.15. Again we averaged the deviation over a group of H = 20 test runs with
the same solver parameters and the same objective function.

Figure 3.14 depicts the deviation from the optimal value for each solver, problem, and problem size. One
column of the chart shows a line from the minimum to the maximum of the group of 20 test runs, the
mark in the middle emphasizes the average of the group. Each color corresponds to a different number of
dimensions. The methods proposed in this thesis are to the left. The original RBF solver is to the right.
These solvers were tested versus several local convergent methods implemented in [72], the method of
moving assymptotes (LD MMA), a Nelder-Mead-Simplex Algorithm (LN NELDERMEAD), a ver-
sion of Subplex (LD SBPLX), and a sequential quadratic program (LD SLQP), as well as a globally
convergent algorithm an Improved Stochastic Ranking Evolution Strategy (GN ISRES) taken from [72].
The first letter of the short names indicates the global (G) or local (L) character. The second letter shows
whether the method needs the gradient of the function (D) or works without (N).

Regarding the accuracy, the figure shows that the developed methods play in the same league as
this global convergent solver. The evolution strategy includes a stochastical mutation rule described
in [130,131] which helps the solver to converge to the global optimum. The local solvers lack a globally
convergent rule as the mutation of the evolution strategy. The programs developed in this work feature
such a global convergent rule.

But a globally convergent rule such as the mutation rule also increases the number of function calls. Thus,
the question arises whether the newly developed methods offer any advantage in terms of the number of
function calls in practice. Figure 3.15 shows that this is in fact the case. As in the last figure, the same
test parameters were used. The figure illustrates the average number of function calls of a group of test
runs as one bar of the diagram.

It can be observed that the new methods are almost as efficient as the local solvers, and even more:
The method of moving assymptotes and the sequential quadratic program, based on [148] and [77],
respectively, utilize a local approximation of the objective function (in contrast to a global response
surface used here) to search for the next candidate. The approximation is convex and separable in the
first case, and quadratic in the second, which makes the search for a new candidate very easy, but in order
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to get such an approximation a gradient is needed. Only the versions of Nelder-Mead-Simplex [18, 102]
as well as the further developed Subplex [129] do not need the objective function to provide a derivative,
just as the methods developed here. The Subplex-version even applies the Nelder-Mead-Simplex method
on a sequence of subspaces of the domain, just as our algorithms. All four of these methods show a very
high inaccuracy in the figure above.

Comparison with various local and global solvers
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Figure 3.14: Line diagram: The deviation to the optimal value for problems in 2, 3, 4, and 5
dimensions; The line stretches from the minimum to the maximum observed deviation, and the
average taken over 20 test runs is resembled by the mark in the middle. Several solvers are tested
against the developed methods BCAIR, BCAUR/BCADR. The global GN ISRES and additionally
our methods have a significantly higher accuracy in all dimensions (2,3,4,5).

Comparison with various local and global solvers
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Figure 3.15: Bar chart: Average number of objective function calls for the tested solvers. All local
solvers, namely LD MMA, LN NELDERMEAD, LN SBPLX, and LD SLSQP, and additionally
our methods have a significantly higher efficiency in all tested dimensions (2,3,4,5) than the global
one.

On this data set the new solvers outperform any of the other solvers, either in accuracy or efficiency.
But is this also the case for objective functions which are stair-cased? Therefore, all solvers that can
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be utilized without a gradient of the objective function, namely LN NELDERMEAD, LN SBPLX, and
GN ISRES, are used as comparison to our methods. The parameters that changed between test groups
in this investigation were the size of the problem, it was varied between n ∈ {2, 3, 4, 5} using the function
f sc
n . The function is stair-cased, non-convex and has several local optima, just as the function of problem

(1.2). The minimum bound for the termination condition of the RBF solver iteration was set to ∆0 = 5,
the bound for the BCA iteration to δ0 = 0.15. Again we averaged the deviation over a group of H = 20
test runs with the same solver parameters and the same size of the problem.

The first observation is that the global optimizer GN ISRES could never establish convergence to one
point. Therefore, its maximum number of function calls was limited to 50,000. This allowed the solver
to always find the correct maximum, this can be seen in Figure 3.16. The other solvers that are used as
comparison did converge satisfactorily. They were very inaccurate back in the tests in Figure 3.14 and it
can be seen in the recent image that the inaccuracy increases while our methods stay as accurate.

Comparison of the gradient neglecting solvers with various local and global solvers
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Figure 3.16: Maximum, minimum, and average inaccuracy illustrated for the stair-cased objec-
tive on a logarithmic scale. Several solvers are tested against the proposed methods BCAIR,
BCADR. The local solvers, that can be utilized without a gradient of the objective function, namely
LN NELDERMEAD, LN SBPLX are significantly more inaccurate than our methods in all tested
dimensions (2,3,4,5). The deviation of GN ISRES is 0 in all dimensions and the BCADR in two
dimensions which cannot be shown on a logarithmic scale.

The examinations showed that the newly developed methods are as efficient as fast converging local
solvers, and as accurate in finding the global maximum as stochastic solvers, even despite not using
derivatives. While some of the other solvers had convergence issues or became more inaccurate when
optimizing a stair-cased function, our solvers kept their performance.

3.4.2 Efficiency and Accuracy

In this section, we aim to characterize and differentiate the newly developed methods. In this investi-
gation, the globally convergent optimization programs from Algorithm 3, namely the BCAIR, BCAUR,
and BCADR, are compared to the original RBF-solver, as discussed in Algorithm 1.

Again, each test group consists of 20 test runs with the same parameters. The parameters that are varied
between test groups in this investigation were the size of the problem, and the termination condition of the
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RBF-solver iteration. The size of the problem is changed between n ∈ {2, 3, 4} for the separable function
fn. The termination condition of the RBF-solver iteration is a minimum bound ∆0 ∈ {2, 3, 4, 5, 6}.

In Figure 3.17 the number of objective calls of each test group were maximized over 20 test runs and
plotted as one bar of the diagram. Each color corresponds to one of the solvers. The abscissa shows
the 15 test groups for each solver, on the left the ones with n = 2, in the middle the ones with n = 3,
and to the right the ones with n = 4. As expected in all dimensions and with all termination conditions
the maximum objective function calls decrease when using a higher bound for the termination condition.
With increasing the dimension, the number of function calls increases as well. In can also be observed
that the BCAIR is head-to-head with the RBF-solver. The maximum number of function evaluations of
the BCAUR and BCADR are much higher but this is due to the fact that the objective function calls that
can be computed in parallel are counted individually.

Increasing the size n of the problem and the minimum bound ∆0
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Figure 3.17: Bar chart of maximum number of objective function calls; each color corresponds to
one of the solvers. The bars correspond to the maximum number of function calls in a group of 20
test runs which were started with the exact same parameters. The size of the problem was varied
in n ∈ {2, 3, 4}, the minimum bound of the termination condition was varied between 2 and 6. In
the test groups with ∆0 = 5 and 6 the RBF-solver and BCADR never exceeded the maximum of
1000 function calls in any dimensions.

The intriguing question is whether the RBF-solver will overtake the BCADR in the number of function
calls when increasing the dimension. We will investigate, now, what happens to the average number of
function calls in 2, 3, 4, and 5 dimensions. For this investigation, notice that the BCADR, BCAIR and
the RBF-solver never exceeded the maximum number of 1000 function calls when using a termination
condition of ∆0 ∈ {5, 6} for all tested dimensions in Figure 3.17. For averaging the number of function
calls, it is crucial to never reach the maximum number of function calls. Therefore, let us use the
termination condition of ∆0 = 5 and increase the maximum number from 1000 to 2000.
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Lemma 3.2.13 states the BCADR’s minimum number of subsequent function calls when distributing the
computation. Here, we used one BCA iteration step, so the function was maximized on each subspace
exactly once before continuing with the communication (Line 22 of Algorithm 3). By the Lemma, when
each dimension of the problem is computed in one subspace and the number of threads is larger than the
dimension of the problem n, then just three out of (n + 2) calls have to be computed subsequently.

How many subspaces are needed for the BCADR to be more efficient than the RBF-solver? The answer
to the question is addressed in Figure 3.18. Each bar represents the number of function calls averaged
over 20 test runs, depicted in 2, 3, 4, and 5 dimensions for the three solvers BCADR (blue) and RBF-
solver (purple), and the BCAIR (turquoise). The average numbers of function calls show that the BCAIR
develops a slight advantage against the plain RBF-solver. The numbers of BCADR are steadily higher
than the numbers of the other solvers, but this is due to the fact that the objective function calls that can
be computed in parallel are counted individually, here. The red rectangles resemble the solver calls that
need to be computed sequentially according to Lemma 3.2.13. The rest of a BCADR bar resembles the
function calls which can be computed parallel. The sequentially computed function calls start at a higher
level than the ones of the remaining solvers in lower dimensions. But from dimension 5 on they show a
clear advantage. The maximum number of function calls in five dimensions was 770, 1794, and 1020, in
case of the BCAIR, the BCADR, and RBF-solver, respectively. So, the average number of solver calls is
actually significant.

Increasing the size n of the problem
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Figure 3.18: Bar chart: Each bar represents the number of function calls averaged over 20 test runs,
depicted in 2, 3, 4, and 5 dimensions for the three solvers BCADR (red outline) and RBF-solver
(purple), and the BCAIR (turquoise). The average numbers of function calls for the BCAUR are
higher due to the summation of parallel function calls. The red rectangles show the number of
objective function calls that actually need to be computed sequentially. Both methods develop
an advantage against the original RBF-solver. For higher dimensions the BCADR looks most
promising

The advantage of less number of function calls also comes with a disadvantage: For the same investiga-
tion the average deviation from the optimal objective function value is depicted in Figure 3.19. Starting
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off with about the same deviation from the optimal objective value, the RBF-solver and the BCAIR
advance slightly when coming to higher dimesions.

On the one hand, we have managed to increase the efficiency by decreasing the number of costly function
calls that one core has to deal with. In comparison to the original RBF-solver, all developed methods
show their advantage in larger problems. On the other hand, the accuracy is suffering marginally but
much less so than for the local solvers.

Increasing the size n of the problem
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Figure 3.19: Bar chart: Deviation from the optimal objective value averaged over 20 test runs
versus the dimensions 2, 3, 4, and 5 three solvers: BCADR (blue) and RBF-solver (purple), and
the BCAIR (turquoise). Starting off with about the same deviation from the optimal objective value
in lower dimensions, the RBF-solver and the BCA inside the RBF-solver advance slightly when
coming to higher dimesions.

3.4.3 Dependency on Type and Slope of the Objective Function

In order to investigate the deviation of the optimal objective value a little bit further, several objective
functions, namely fS H , fS R, fHT , fRT , were used. The slopes of these functions are easily changed by
the multiplication with a factor c ∈ R. We used c = 1, 2, 3, 4. The minimum bound for the termination
condition of the RBF-solver-iteration was set to ∆0 = 2, the bound for the BCA iteration to δ0 = 0.15. A
total number of 500 objective function calls were allowed. Again we averaged the deviation over a group
of H = 20 test runs with the same solver parameters and the same objective function.

In Figure 3.20 to the left the range of deviation over all functions, regarding a particular solver and slope
is depicted as one column of the chart. Each column is a vertical line from the minimum deviation to
the maximum deviation over all test runs in one group and over all functions. The mark in the middle of
the line represents the average. The BCAIR has one outlier for the slope 4 in one of the tests with the
roof-top-function, which was excluded to show the average tendency. Other than that it can be observed
that the slope plays an important role for the difference between the function value of the result and the
actual optimal value for both functions. The higher the slope, the larger the range of the function values,
of course, the more inaccurate the objective value of the result. It can also be observed that the deviation
of the BCADR increases more strongly with higher slopes.

In a similar investigation, the function calls were measured and averaged over the group. This is illus-
trated in Figure 3.20 to the right. Again, each column is a vertical line from the minimum number to the
maximum number of function calls of all types of functions and all test runs in one group. The mark in
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the middle of the line represents the average. Surprisingly, both solvers show a slight reduction in the
number of function calls when increasing the slope.

Increasing the slope of a function
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Figure 3.20: Left: Maximum, minimum, and average deviation over all functions regarding a
particular solver (BCAIR, BCADR) and slope (1, 2, 3, 4) is depicted as one column of the chart.
Right: Maximum, minimum, and average number of function calls over all functions and test runs
in one group, for each solver (BCAIR, BCADR) and slope (1, 2, 3, 4) ;

An interesting question is also whether any of the solvers had a particular problem with either an optimum
at the boundary or the interior of the domain, or with non-differentiabilities. We compared a differentiable
function fS H with a boundary optimum, a non-differentiable function fS R with a boundary optimum,
a differentiable function fHT with an interior optimum, and a non-differentiable function fRT with an
interior optimum. The same parameters as in the last investigation were used, which are ∆0 = 2, δ0 =

0.15, F0 = 500, and H = 20.

The first picture in Figure 3.21 shows the average number of function calls of the BCADR as an example,
the relative numbers of all other solvers with the other slopes c = 2, 3, 4 were similar. The numbers of
the non-differentiable functions (Hill top, roof top, and separable function) were slightly higher than the
numbers of the differentiable ones. The function that has an optimum in the interior of the domain at
a non-differentiable point (roof top) turned out to be more difficult for the BCAUR and BCADR, the
average deviation of the objective value was higher. This can be observed in the second picture of the
same figure.

Having a look at what produced the increased deviation yields that one of the solutions was (−5.3,−4.9).
This is not particularly far from the optimal solution, but for a better outcome a smaller bound than ∆0 = 2
might be nescessary. Both solvers, on the other hand, have a marginal advantage when optimizing the
differentiable function with a boundary optimum (sloping hill).

Many global solvers proceed stochastically, they produce dense iterates instead of concerning a gradient.
The slope and type of a function does not matter so much. What we have found in the last section is that
the slope of a function does matter to the accuracy and efficiency of the here developed solvers, despite
their global property.
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The difference between function types
N
u
m
b
e
r
o
f
fu
n
c
t
io
n
c
a
ll
s

A
c
c
u
r
a
c
y

Figure 3.21: Bar chart: Average number of function calls (top) over all test runs of a particular
function with slope c = 1 when optimizing with BCADR; Average deviation (bottom) from the
optimal value regarding all four, the BCAIR, BCADR, BCAUR, and RBF-solver.

3.4.4 Incorporation of Symmetry as Prior Information

In the Sections 3.1.3 and 3.1.4, we have proved that the proposed solvers converge when incorporating
prior information. We have also seen how much effect the incorporation of symmetry has, in Lemma
3.1.14. We examine now, how the efficiency of the developed solvers is correlated with the effect of the
prior information.

In particular, we investigate how the number of function evaluation changes when incorporating the
update for the symmetric solutions in a 2, 3, and 4-dimensional problem. The minimum bound for the
termination condition of the RBF-solver-iteration is set to H = 5. Again we computed the average,
maximum, and minimum the number of function calls for each group of H = 20 test runs with the same
solver parameters and the same objective function. The allowed maximum number function calls is set
to F0 = 2000, the bound for the BCA iteration to δ0 = 0.15. The symmetric separable function fn, with
n = 2 is utilized as an objective function.

Figure 3.22 shows the average number of function calls when varying the dimension for both the solvers
BCAUR (to the left) and BCAIR. Each solver is tested with and without symmetry as prior information,
in blue and turquoise, respectively. The abscissa depicts the two solvers. You can see that the incorpora-
tion of symmetry as prior information increases the average efficiency for each solver significantly. The
symmetry incorporating update rule for the BCAUR in four dimensions is not illustrated because we had
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to stop the evaluation: In four dimensions, four subspaces were used, thus the RBF is updated with 6
sample pairs of distinct objective value each step. Each sample pair has 4! symmetric sample pairs with
the same objective value, resulting in 6 · 4! = 144 updates of the RBF in each iteration step. Having a
look at the diagram again, the expected number of function calls for a problem of the size 4 is about 200
or more. Thus, in the end, the equation system (3.7) has over K + n + 1 = 200 · 144 + 4 + 1 = 28805 rows
and columns.

Incorporating Symmetry
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Figure 3.22: Bar chart: Average number of function calls of the recently developed solvers,
BCAUR (left) and BCAIR (right) with (blue) and without symmetry (turquoise). Incorporating
symmetry as prior information increases the efficiency for each solver significantly.

In general, the incorporation of prior information is advantageous for all the proposed methods. When
considering higher dimensionally symmetric problems the updates of the RBF can exceed the capability
of the solver for the equation system (3.7), though. Here, it is necessary to find a suitable rule for
discarding irrelevant sample pairs.

3.4.5 Inner and Outer Termination Criteria

The newly developed methods are two nested iterations, the iteration of the BCA and the iteration of the
RBF-solver. A naturally imposed question is when to terminate these iterations so that the number of
function calls is minimized.

In order to investigate this for the BCAIR, the objective functions fS H , fS R, fHT , fRT with slopes c ∈
{1, 2}. The minimum bound for the termination condition of the RBF-solver-iteration is varied between
∆0 = 1 and 3.8 with a step size of 0.4. The bound of the BCA iteration is tested from δ0 = 0.05 to 1.45
with a step size of 0.1. The maximally allowed inner iterations (BCA iterations) were chosen between
I0 = 1 and 9 with a stepsize of 1. A total number of 500 objective function calls were allowed. Each
parameter combination (∆0, δ0, I0) was tested H = 10 times for each of the above objective functions.
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The results are averaged over the whole lot of test runs corresponding to one function type. The ob-
servations are now illustrated on the example of fS H with slope 1, the results of the other functions are
transferable to this one. The first observation is that the efficiency and accuracy of the solvers does
not depend much on the bound of the termination condition for the BCA iteration δ0. Thus, it is not
illustrated, here.

Let us have a look at the efficiency and the average objective value when increasing ∆0 in Figure 3.23.
In the first image, each column is a vertical line from the minimum to the maximum number of function
calls over all test runs for one function type, here fS H . Again, the mark in the middle of the line represents
the average. Below the average number of objective values is depicted in the same interval. Both the
number of function calls and their variance decrease nonlinearly when increasing the minimum bound.
Importantly, the variance of the optimal value (which is again 10) increases as well. One can make out a
slight linear dependence between the average optimal value and the minimum bound.

Increasing the minimum bound for the termination condition of the RBF-solver-iteration ∆0
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Figure 3.23: Function calls and average function values vs. the termination condition for the RBF-
solver-iteration: The first image shows the number of function calls decreasing with higher bound,
but the second image shows that the average function value at termination is also decreasing,
making it more inaccurate.

While the efficiency, measured by the number of function calls, stayed almost constant for increasing the
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number of allowed inner iterations I0 (not illustrated, here), the objective value approaches the optimal
value the higher the number of iterations is. Figure 3.24 depicts the dependency of the objective value
on the maximum number of inner iteration steps, averaged over all tuples (∆0, δ0).

Increasing the maximum number of inner iteration steps I0
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Figure 3.24: Plot about the dependency of the average objective value on the maximum number
of inner iteration steps. The average objective value increases with the number of inner iteration
steps.

The increase of the accuracy when increasing the number of inner iterations in case of the BCAIR is
actually quite curious, because we can observe a different phenomena in case of the BCAUR/BCADR:
In order to show this the function fRT without factor is used, again. The maximally allowed inner
iterations (BCA iterations) are tested between I0 = 1 and 6 with a stepsize of 1. The minimum bound
for the termination condition of the RBF-solver-iteration is ∆0 = 2.6, the bound of the BCA iteration
δ0 = 0.15. A total number of 500 objective function calls is allowed. The number of function calls of a
group of H = 20 test runs is averaged, maximized, and minimized.

The results in Figure 3.25 show that the number of function calls is linearly increasing with the number
of allowed inner iteration steps from I0 =1 till 4. After that the maximum number of function calls is
exceeded regularly, thus no linear dependency. However the minimum, maximum, and average accuracy
have not changed significantly. This is quite an opposite observation than the observation when increas-
ing the maximum number of inner iteration steps for the BCAIR. There the accuracy increased, but the
number of function evaluations stayed constant.

A natural question is whether these function calls can be parallelized or need to be computed sequentially.
Lemma 3.2.13 states the BCAUR’s minimum number of subsequent function calls when distributing
the computation. We have applied the solver with a problem of size n = 2 and number of subspaces
M = 2. Let us assume we have two threads, as well. I0+2 out of I0 · 2 + 2 function calls need to be
done subsequently. The resulting numbers are plotted as blue bars in the same chart. The number of
subsequent function calls is still increasing when increasing the number of iteration steps (except for
I0 = 5, 6). Practically, this means that the maximum number of inner iteration steps should be chosen as
1 unless additional information decreases the costs of a solver call in one subspace.
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Increasing the maximum number of inner iteration steps I0
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Figure 3.25: Plot about the dependency of the average objective value on the maximum number of
inner iteration steps. The average objective value increases with more inner iteration steps.

We found that increasing the bound δ0 and bound ∆0 has a similar effect in terms of efficiency for the
BCAUR/BCADR (not illustrated). This is why the investigations are not illustrated, here, either. In
the first investigation I0 = 1 is used and in the second I0 = 3. The efficiency is decreasing when
testing a higher ∆0 = 1.0, 1.4, ..., 3.8, but staying approximately constant in the investigation range δ0 =

0.05, ..., 1.45. The accuracy is very high (better than 0.05) in almost all groups. Only a marginal decrease
is observed when increasing the bound ∆0, if any at all.

To conclude, choosing the minimum bound ∆0 involves a trade off between accuracy and efficiency
of both the tested solvers. The choice of the minimum bound δ0 turned out to be non-critical in the
investigated range. But increasing the maximum number of inner iteration steps the accuracy when
utilizing an BCAIR, and decreases the efficiency in case of a BCAUR/BCADR.

3.5 Summary

Before listing the advantages and disadvantages of the proposed methods in Table 3.4, significant criteria
are needed to evaluate the solvers. The criteria are arranged in four groups, a group related to the radial
basis function (RBF) as a response surface model, related to the computation in parallel that comes
with the block coordinate ascent (BCA), solver-specific properties such as convergence, and the types of
objective functions which are suitable for these solvers.

Global radial basis function (RBF) The first three criteria are due to a global/subspace RBF: If the
RBF is global then every candidate is updated to the same unique RBF and is cachhe ed in each
subspace and the iteration further on. Furthermore, a global gradient will be provided by the RBF
which means the problem of a stationary point at a non-differentiable point can be overcome.
Additionally, the equation system of the RBF has the size (K + n + 1) where K is the number of
candidates, and n the dimension of the domain.
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These three properties change if the samples of each subspace are only updated to a separate,
subspace specific RBF. The size of the equation system, for example, is smaller since the number
of candidates in one subspace is smaller, as well as the dimension of the subspace nm. If the size
of the equation system is tagged by (+) then it is comparably small. If it is marked by (–) it has the
full size (K + n + 1).

Solver The following two criteria are properties of the solver which are not related to the RBF as a
response surface model. E.g., the solver is guaranteed to converge if the related row is tagged by
(+).

When referring to the maxmin (Line 5 and 12 in Algorithm 3, or Line 5 in Algorithm 1) or the
candidate search (Line 13–16 in Algorithm 3, or Line 6–9 in Algorithm 1), these steps are related
to the optimization based on a response surface model. The size of the problems corresponds to
the dimension of the subspace or domain. The size of the maxmin problem is as large as the whole
domain n if the corresponding row in the table is marked with (–) and is as small as the subspace
if it is marked by (+). The same goes for the size of the search for a candidate. In case of the
BCA in the last column the criterium “size of candidate search” refers to the size of the subspace
problems, which is nm for subspace Vm, so it is tagged with (+).

Parallelization Our goal was to speed up on the optimization by decreasing the number of costly ob-
jective function calls and by decreasing the costs of one function call. The number of function
calls is decreased for one core if the solver can be computed in parallel ((+) at “parallelization is
possible”). But the computation in parallel might stand in the way of the reduction of the function
call costs. If the cost reduction of the method of Recalculation of the Sections 3.2.2 and 2.2.3
works with the parallel version, the line is marked with (+). The same holds for the cost reduction
of the method of Multiplication in Section 2.2.3.

Objective function Since the original objective function (1.2) may be costly, symmetric, stair-cased,
and likely to be a black box function, these are the properties that we want to distinguish the
solvers by.

We have discussed the following combinations of the Radial Basis Function Solver and the Block Coor-
dinate Ascent:

RBF-solver inside BCA The RBF-solver is used to optimize each subspace maximization of Iteration
3.2.1 or 3.2.2. Even when using a global RBF for all the subspaces, the convergence of neither the
method nor the model is guaranteed.

BCAIR The BCA is used as a solver to search for the next candidate while staying away from already
evaluated candidates in Line 6 till 9 of the RBF-solver from Algorithm 1; The BCA calls a global
RBF as a response surface model. Once a maximum is found on all the subspaces the iteration is
continued with exactly one costly function evaluation and the updates. So, distributing the BCA
iteration does not decrease the costly function evaluations for one core. On the other hand, the
candidates are updated to the global RBF and are therefore remembered.
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BCAUR/BCADR These are further developed versions of BCAIR where costly function evaluations
are added within the subspace maximizations. The following versions are possible sequential
(BCAUR) and parallel computation (BCADR)

Here are advantages (+) and disadvantages (–) of the methods due to the mentioned criteria. The tag (×)
means that the criterion does not apply to the particular solver.

Method
Criteria

BCAUR
BCADR

BCAIR RBF-solver
inside BCA

RBF-
solver

BCA

Global RBF
Candidates remembered + + – + –
Global gradient provided + + – + –
Size of RBF equation system – – + – ×

Solver
Size of maxmin +(2) – + – ×

Size of candidate search + + + – +

Global Convergence + + – + –

Parallelization
Is possible +(3) + + – +

Works with Section 3.2.2 + +(1) + – +

Works with Section 2.2.3 + + + + –

Property of Objective
Symmetric + + – + –
Stair-cased + + – + –
Costly + + – + –
Black box + + – + –

Table 3.4: The advantages (+) and disadvantages (–) due to the criteria as explained in the text.
The symbol (×) means that the criterion does not apply to the solver.
(1) We cannot reduce the costs by the method in Section 3.2.2, however this is no disadvantage
since the evaluations of an RBF are cheap, anyway.
(2) There are two maxmin computations at the full dimension n of the domainD. In each subspace
(or parallel thread) the size of the maxmin problem computation is only as large as the dimension
of the subspace.
(3) The parallel and sequential function calls are determined by Lemma 3.2.13.

The experiments show that the newly developed methods BCAIR, BCAUR, and BCADR, which are
guaranteed to converge, are as efficient as local solvers, and as accurate in the choice of the global
maximum as global, stochastic solvers, and this even despite the lack of a gradient. All the methods have
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an increased efficiency in comparison to the original RBF-solver on the tested functions. The accuracy
is marginally reduced in case of BCAUR/BCADR, if at all. This is true because the new solvers depend
on the type of the function and its slope, although they are global solvers.

The incorporating of symmetry as prior information has a huge impact on the number of function calls
from three subspaces upwards. Particular care should be taken when choosing functions that are symmet-
ric in a high number of subspaces since the number of rows and columns of the RBF’s equation system is
very large there (>20000), in the end. Thus, further research should go into rules that discard irrelevant
sample pairs.

Last but not least, when choosing a minimum bound for the termination condition in the RBF-solver-
iteration a trade-off between accuracy and efficiency needs to be made. When increasing the maximum
number of inner iteration steps the BCAIR and BCAUR show a different character: In case of the BCAUR
the efficiency decreases when increasing the number of maximum iteration steps, but the accuracy stays
the same, so it is best to utilize only one inner iteration step. This is not true for the BCAIR for which
the accuracy increases until reaching a saturation value. The efficiency does not seem to suffer from an
increase of the number of inner iteration steps here.

The experiments show that the BCAIR takes the lead of all tested solvers when incorporating symmetry
as prior information, which is the case when identically built cameras are used, and when computing
on one core. The BCAUR/BCADR develops an advantage when the number of symmetric subspaces is
lower and the number of parallel threads is higher, this is the case when more than four subspaces were
used in our example.



Chapter 4

Application Examples

A motivation of this thesis is to protect the human, which can only be done if an approximation of
the human is available. In order to approximate the human, a camera network is installed with multiple
cameras. In order to reconstruct the human target more accurately and to better cover the relevant regions
of the room, the camera network is optimized.

The procedure that approximates the human is a 3DBGS. Two images of the same camera, one before
and one after a human comes into play are compared. The difference between the images shows where a
human can be located in the scene. In order to decrease the approximation error of the target, the coverage
C(1, {identical}) is maximized, as suggested in Corollary 2.1.14 of Section 2.1.3. The 1-reliable coverage
C(1, {identical}) is the region of the room which has not changed according to the view of at least one
camera.

In this chapter, we will test the proposed optimization methods of Chapter 3 with the objective function of
Chapter 2, in order to approximate a human more closely and to increase the coverage of the important
regions of a three-dimensional room. As an input to the optimization method, the CAD model of an
environment is required which distinguishes between static and dynamic objects, the latter move on a
trajectory in time. Two three-dimensional test environments including obstacles are used: The motivating
robot cell of Figure 1.1, in the first chapter, is used in Section 4.2 to address the issue of dynamic
obstacles. A generic room is used in Section 4.3 to show a way to incorporate the movement of dynamic
targets into an optimization. Our methods are compared to:

• A random placement in the domain for the comparison to a method without costs,

• A heuristic placement in the corners of the room (and between) for the comparison to a placement
that a human could choose,

• The Sbplx for the comparison to a local solver that proved to be the most suitable alternative to
our methods in Section 3.4.1,

• The original RBF solver of Algorithm 1 in Section 3.1 for the comparison to the state of the art.

The chapter is organized as follows: First, the hardware and software configurations are discussed in
Section 4.1. Two test environments and the qualitative results are depicted in the Sections 4.2 and 4.3.
In the end, the quantitative results are compared in Section 4.4.
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4.1 Hardware and Software Configuration

In this section, the parameters of the solvers, the visibility analysis, and the hardware configuration are
discussed in this order. We begin with the choice of the parameters in the four solvers.

The local solver, RBF solver, BCAIR/BCADR are stopped after F0 = 50 function calls. The heuristic
method and the random placement do not call the objective function at all. The BCAIR and BCADR
both incorporate the a priori information of a symmetrical objective function. The parameters of the
BCAIR/BCADR are selected as follows: The search pattern < β1, ..., βL >=< 0.98, 0.6, 0.75, 0.2, 0.01 >
is used with I0 = 1 inner iteration step, a maximum bound of the outer iteration ∆0 = 0.7, and a
maximum bound of the inner iteration δ0 = 0.0525. For the RBF solver the same maximum bound of
the outer iteration ∆0 = 0.7 and the same search pattern is used.

The visibility analysis and coverage is simulated with a pixel based method on an occupancy grid, as de-
scribed in Section 2.2.1 and parallelized by OpenGL. The sequential calls are accelerated by the method
of Recalculation in Section 2.2.3 in all our proposed methods.

A particular voxel can be marked with the following sensor labels by each camera: “identical”,
“changed”, “out of range”, “occluded”, whereas “out of range” and “occluded” are summarized into
“undetectable”. A voxel can be marked with distinct labels by each camera. The larger the number of
cameras N ∈ N the larger the number of label combinations. For example three cameras could mark a
voxel by (changed, changed, changed), (identical, changed, changed), (undetectable, changed, changed),
etc. For illustration purposes, we will distinguish between voxels that are marked as

• Undetectable by all cameras C(N, {out o f range, occluded}) (the set is defined in in Section 2.1.4),

• Identical by at least one camera C(1, {identical}),

• And the rest.

As an objective function, a weighted sum over the volumes of each of these sets is used. In the following
tests, we have used uniform weights. For other applications, non-uniform weights are thinkable, e.g., to
stress that the reduction of undetectable regions are more important than the reduction of occlusions due
to background subtraction. In order to enforce in an optimization that the cameras pay more attention to
a particular region of the room or an important pose of the human, one could also assign weights to a
voxel depending on its position. Thus, the voxels next to a dangerous object, or inside a passage way of
the human can be weighted higher. In these tests, the voxels are again uniformly weighted.

model name : Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz
cpu MHz : 1999.000
cache size : 6144 KB
address sizes : 36 bits physical, 48 bits virtual

Table 4.1: System configuration of the test machine.

The experiments have been performed on a computer using the 64-bit operating system “openSUSE 13.1
(x86 64)” and 2GB RAM. The OpenGL version 2.2.0 and the graphics card driver NVIDIA 340.46 is
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installed on the test machine. The used compiler is “gcc (SUSE Linux) 4.8.1 20130909 [gcc-4 8-branch
revision 202388]”. In Table 4.1, an excerpt of the system information tool $: cat /proc/cpuinfo shows the
configuration of one of the two cores. With this hardware we have tested the four solvers, the BCAIR,
BCADR, RBF solver, and Sbplx. The following sections show the test environments and results.

4.2 Robot Cell

The motivation of this thesis is to prevent damage to a human coexisting and cooperating with a robot
in a common working environment, such as the robot work cell of Figure 4.1 (right). The protection
system approximates the human by a camera network despite the existence of visible obstacles in the
environment.

The visible obstacles include static obstacles, such as tables and racks, and dynamic obstacles, such
as the robot. The detectable coverage of a camera is influenced by the static obstacles as described in
Section 2.1.1. When maximizing the detectable or undetectable coverage, as often done in literature, the
dynamic obstacles are not payed attention to. However, the dynamic obstacles are one of the reasons
why the approximation of the human may be inaccurate: In the 3DBGS method of Section 2.1.2, a target
and dynamic obstacle are both dynamic objects and determine the changed coverage of a single camera.
Thus, when approximating a target by the method in the Sections 2.1.3 and 2.1.4, the volume of the
dynamic obstacles resembles an offset to the volume of the target.

In contrast to optimizing the detectable or undetectable coverage, in this thesis the whole procedure of the
3DBGS is simulated in every iteration step of the optimization. Thus, both the identical and undetectable
coverage of the cameras are optimized, in order to improve the camera network despite any type of
obstacle.

This test focuses on the incorporation of static and dynamic obstacles in the optimization of the scene
regarding only one moment in time. The incorporation of a whole trajectory of a dynamic obstacle is
depicted in Section 4.3. First, the setup of the test is addressed in the next section and then we turn to the
qualitative results of the test. The quantitative results are compared in Section 4.4.

4.2.1 Setup

Figure 4.1 illustrates the first test environment. For this test the real robot cell (right) has been rebuilt as
a CAD model (left). A few static and dynamic objects of one moment in time are included in the CAD
model.

In this environment N = 6 cameras are placed and oriented at the ceiling of the robot cell with four
parameters each: Two variables of each camera determine where the camera is located in the plane
p ∈ [−1.9, 1.9]×[−2.15, 2.15]×{2.7}. The orientation o of the camera is determined by the point e = p+o
which the camera eyes directly. Here, the robot at (0,0,0) and the human at (0,2,0) are important, so the
domain of e is selected accordingly: e ∈ {0} × [0, 2] × [0, 2.85]. The initial positions for the BCAIR,
BCAUR, RBF solver, and Sbplx are (±0.5,±0.5), (0.2, 0.5), and (−0.2,−0.5). The initial orientation
of all cameras is (0, 0.68). As a suitable heuristic the four corners of the room, a position above the
robot and a position above the human is used. All cameras except the last are facing the human, the
robot is faced by the last camera. In these tests, three symmetrical subspaces instead of six are used for
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the BCAIR/BCADR, since the investigation in Section 3.4.4 showed that a rule neglecting samples is
necessary for more than or equal to four subspaces for the BCADR.

Figure 4.1: CAD model (left) of the robot cell (right): The static (left, grey) objects are two tables,
a rack, and the robot cell (4m × 4.5m × 2.85m). N = 6 cameras (green) are placed with initial
parameters for the solvers. Initially, the cameras are oriented towards the human. The static objects
encompass 200 vertices and 300 faces. The human has 56k vertices and 58k faces, and the robot
94k vertices and 35k faces. The environment is rendered in images of 320×240 pixels and the
occupancy grids have 80×90×57 voxels.

4.2.2 Qualitative Results

We aim for a reconstruction of the human that minimizes the error caused by the static and dynamic
obstacles. In Figure 4.2 the qualitative results of these tests are illustrated. The results are discussed re-
garding the separation of the voxel cluster around the human from the cluster around the robot, regarding
the volume of the identical coverage and regarding the originality of the camera positions.

Let us consider the separation of the cluster of voxels around the human, and the cluster of voxels around
the robot. Surprisingly, the results of all the methods showed the two mentioned clusters with a gap in
between the human shape and the table, the result of the random placement as well; This result can be
led back to the good choice of the domain: In particular, the orientation of the cameras was set to face the
vertical hyperplane defined by the human’s and robot’s position. Furthermore, the random, heuristical
placement, and the placement of the local solver improve the coverage next to the human but in the back
or at the ceiling, right next to the robot, huge undetectable regions have occurred. In an application, both
the changed and the undetectable voxels may include the human and it is not obvious which of the two
the human belongs to. In all three placements, the robot needs to stop right away, not to risk hurting the
human. In order to increase the separation of human and robot voxel clusters in an optimization, higher
weights should be assigned to the voxels next to the human and the robot.

Additionally, when considering the goal of maximizing identical coverage, the methods utilizing a radial
basis function interpolant as a surrogate, which includes the methods developed in this thesis, prove to
be more suitable than the other methods. In general, the more identical coverage (voxel free space), the
less changed and undetectable coverage (white and blue voxels), the better is the result. From the angle
of view that is used to create the plots, the original RBF solver indeed seems to have the largest identical
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coverage, but in the quantitative results of Section 4.4 we will see that the view is deceptive and that our
methods improve the coverage even more.
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Figure 4.2: Left two columns: Screen shots of the CAD robot cell (grey) with dynamic objects
(red) and final positions of the cameras (green) with voxels that are marked as undetectable by
all cameras (blue) and voxels that are marked as changed by at least one camera (white). The
white and blue voxels represent the fused coverage C(N, {changed, out o f range, occluded}), the
empty space represents C(1, {identical}). Each screen shot shows the result of one method: BCAIR
(left, top), BCADR (middle, top), heuristical placement (left, middle), random placement (middle,
middle), Sbplx (left, bottom), and the original RBF solver (middle, bottom).
Right column: Plot of the positions of the cameras as top view. The open front of the robot cell
corresponds to the bottom horizontal line. The method which is illustrated in the same row on
the left side is represented by red circles, the method in the middle by blue squares, the initial
positions by green crosses. The numbers next to the marks represent the number of cameras larger
than 1 which are mounted on the same spot. The optimized orientations (not illustrated) in such a
case differ completely. The result suggests that a camera with a wider opening angle is to be used
instead, an uncommon placement of which a human may not have thought, right away.
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The corners, edges, ceiling, floor, or walls of a room are usually used as guidelines to place the cameras
heuristically. Not surprisingly, the random placement has generated camera positions which are not re-
lated to any guideline. The tested optimization solvers, including the solvers developed in this thesis, the
original RBF solver, and the Sbplx, have found both guided positions and camera positions in the middle
of the ceiling not aligned to any edge or corner of the ceiling. The final positions of the Sbplx, however,
are either aligned to an edge or the initial positions of the cameras before the optimization. In contrast to
this, our methods have also found innovative, non-intuitive positions and orientations which are neither
related to the initial points nor aligned to the edges of the ceiling which may have been neglected in a
human chosen heuristic or the Sbplx. Moreover, our solvers are able to suggest an enlarged opening
angle of a camera, even though the opening angle does not belong to the variables of the optimization. If
a camera with a wider opening angle has a higher priority than several cameras with a narrower opening
angle, the solvers place more than one camera at the same spot with varying orientation. Again, this
placement may have been neglected in a non-automated heuristic.

4.3 Generic Room with a Human Walk

In a robot cell as well as other public areas, humans and robots move in time. In the last section,
we have discussed that objects, such as targets and static as well as dynamic obstacles, have already
been incorporated within the objective function. Furthermore, we have investigated the behavior and
performance of the proposed methods with such an objective function.

In contrast to the incorporation of objects of one moment in time, we have a closer look upon several
differing places and poses of the target, in this section. In this test, a three-dimensional placement of
cameras is addressed regarding the movement of the target. Therefore, we assume that the target moves
on a trajectory in time. We assume that this trajectory is discretized and the important poses of the target
are known. When optimizing for only one of the poses, such as in the last test, the coverage of a second
pose might not be good enough for the later application. This is why the incorporation of these trajectory
poses is relevant in an optimization. First, the setup of the test is addressed and then the qualitative results
are discussed. The quantitative results are compared in Section 4.4.

4.3.1 Setup

For this test, we have generated a generic room with several obstacles: Four pillars, a wall with a door,
and a box that hovers above the ground. Doors, in general, are the most frequented nodes of a house,
which is why a human walking through the door is utilized as a target, here. The movement has not been
incorporated in the last test since the illustration of both human and robot movement is confusing in one
image. The basic setup is depicted in Figure 4.3 (left).

The CAD model includes a representation for the movement of the human. However, in Section 2.2, only
the visibility analysis and coverage generation of one single pose in this movement has been addressed.
This issue has not been covered much in literature, but one approach of incorporating the movement in
one scene is sweeping the object along its trajectory, [2]. Unfortunately, when utilizing a background
subtraction method to separate targets from obstacles, the incorporation of a swept volume is not advan-
tageous: The swept objects might intersect although the pose of the object at each time does not. Thus,
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the fused coverage of the swept volume does not resemble the swept volume of the coverages at each
pose.

Instead of the swept volume, here, we use a trajectory that is discretized into time steps, in other words
the movement is discretized into several poses of the human. Each time step, the three-dimensional back-
ground subtraction method needs to be used to generate the fused coverages. As an objective function of
the network optimization, the volumes of these time dependable coverages are averaged. In Figure 4.3
(right) the five time steps are illustrated in one image. Nevertheless, there are five visibility analysis’,
each of which only incorporates one human pose at a time.

In this environment N = 4 cameras are placed all over the generic 3D room with three parameters each,
determining where the camera position p is located: p ∈ [−3.5, 3.5]× [−4, 4]× [0, 2.65]. The orientation
o of the camera is determined by the point e = p + o which the camera eyes directly. Here, the door
at (0,0,1.0) is important, so each camera’s orientation is set to o = (0, 0, 1.0) − p. The initial positions
for the BCAIR, BCADR, original RBF solver and Sbplx are (±0.5,±0.5, 2.0). As a suitable heuristic the
four corners of the room are used as positions for the four cameras.

The Sbplx, BCAIR, BCADR, and RBF solver are terminated after F0 = 50 function evaluations. The
heuristic method and the random placement do not evaluate the objective function. For the BCAIR and
RBF solver, four symmetrical subspaces are used, one for each camera. For the BCADR two symmetrical
subspaces are used.

Figure 4.3: Left image: Illustration of the setup; the static (grey) obstacles of the environment
include the room (8m × 9m × 2.7m), four pillars, a wall with a door, and a box that hovers 0.85m
above the ground. The target (red human) walks from (0,−1, 0) to (0, 1, 0) through the door.
Initially, the N = 4 cameras (green) are grouped around the door facing it.
Right image: For the optimization, the movement of the dynamic target is discretized into five
poses. A visibility analysis has to be done for each pose in order to average the volume of the
coverages. The static obstacles encompass 328 vertices and 608 faces and the target has 56k
vertices and 58k faces in each time step. The environment is rendered in images of 320×240
pixels and the occupancy grids have 120×135×40 voxels.

4.3.2 Qualitative Results

In the Figures 4.4 and 4.5, the qualitative result of the solvers and of the random and heuristical placement
is illustrated for three of the five poses of the human. The additional two poses were also optimized but
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not illustrated, here. In the following section, the qualitative results are discussed regarding the volume
of the identical coverage in total, the coverage at the important regions of the room, and the originality
of the camera positions.

Additionally, we aim to stress important regions of the room, i.e. an entrance or exit through the door.
The result of the three solvers utilizing an RBF as a surrogate cover the important regions around the
door along the movement of the human well. The local solver and the random placement have produced
an occlusion right in front of the door. The human chosen heuristic produces a large changed part (white
voxels) around every human pose. The original RBF solver seems to stress the important poses with the
trade off of large undetectable space occurring all around the walls of the room. The consequences that
we draw from this test is that the important poses of the room can be stressed even more by an objective
function, such as ours, if weights are assigned to the important voxels next to the human position.

Let us consider the maximization of the identical regions (illustrated as empty space), next. In general,
the less changed and undetectable coverage (white and blue voxels) are shown in an image, the more
identical coverage (voxel free space), and the better is the result. Despite the orientation of the cameras
towards the door, the coverage of the random placement is unacceptable for the last two poses of the
human. This result shows that a suitable placement can enlarge the visible area by a huge factor. The
methods proposed in this thesis display the most voxel-free space in the figures.

Figure 4.4: Screen shots of the generic room (grey) with a dynamic target (red) and final positions of
the cameras (green) with voxels that are marked as undetectable by all cameras (blue) and voxels that are
marked as changed by at least one camera (white). All the visible voxels represent the fused coverage
C(N, {changed, out o f range, occluded}), the non-visible voxels represent C(1, {identical}). Columns: Time
step one, three, and five (left to right); Rows: Heuristic (top), and random placement (bottom).
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Figure 4.5: Screen shots of the generic room (grey) with a dynamic target (red) and positions of the
cameras (green) with voxels that are marked as undetectable by all cameras (blue) and voxels that are
marked as changed by at least one camera (white). All the visible voxels represent the fused coverage
C(N, {changed, out o f range, occluded}), the non-visible voxels represent C(1, {identical}).
Columns: Time step one, three, and five (left to right); Rows: The result of each solver (top to bottom),
BCADR, BCAIR, RBF solver, and Sbplx.
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In the four solver tests, none of the cameras were placed exactly at the same spot, in contrast to the
placement inside the robot cell. One reason could be that the cameras were allowed to be placed in the
whole room, the positions were not limited to the ceiling. Thus, the domain for the positions is larger.
Another reason may be that a smaller number of cameras (four instead of six) is optimized in a relatively
large room (the robot cell has about a quarter of the volume) with a large occluding obstacle (the wall).
The four solvers have found innovative positions:
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It is remarkable, that all the cameras in each result, except one camera from BCAIR, are placed at the
boundary of the room. In particular, all cameras except one are placed at one of the walls, at least. Two
of the cameras in the result of the BCADR and two in the RBF solver are even positioned in corners of
the room. In total, six cameras are placed on the floor and three on the ceiling. The reason for the walls
being more attractive than the ceiling or floor can be due to the model of the room. It is a relatively flat
room (2.65 m) in comparison to the large sides (8m and 9m). The opening in the wall, the door, is the
reason for the floor being more attractive than the ceiling: It is not open all the way to the ceiling.

The qualitative results, which leave out the exact detail of the objective value and the computation time
spent on an iteration, are now discussed in comparison to the quantitative results.

4.4 Quantitative Results

We have seen in the qualitative results of the Sections 4.3.2 and 4.2.2 that the solvers utilizing an RBF as
a surrogate take the lead when considering the identical coverage of the environments, the robot cell in
particular. The RBF solver seems to fulfill the goal best, but we will now see that the quantitative results
tell otherwise.

In general, the maximum objective value of an environment consists of the weighted number of voxels
in an occupancy grid multiplied by the number of the time steps of the target’s trajectories. In Table
4.2, the solvers, the heuristic, and the random placement are opposed in order to compare the objective
value after 50 objective function calls (second and third column) in each test environment. The coverage
of neither method has reached the maximum number of voxels, which is due to the fact that the voxels
included in an object cannot be covered by any camera. The optimization procedure is not affected by
excluding these voxels, just the maximum objective value is.

In the third and fourth column, of the same table the percentage of the objective value in relation to
the maximum objective value is depicted. The table shows that the random placement achieves about
half the objective value than the other methods regarding both environments, despite the seemingly good
result regarding the robot cell in Figure 4.2. Also the original RBF solver seemed to be better than
our methods at a first glance at the images in the same figure. To the contrary, the percentage of the
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maximum objective value of the RBF solver regarding the robot cell is worse than the percentage of both
our proposed solvers, BCAIR and BCADR. Additionally, the percentage regarding the generic room is
worse than the BCAIR.

Objective value Percentage of maximum Computation time
Robot cell Generic room Robot cell Generic room Robot cell Generic room

BCAIR 179002 912114 87.23% 56.30% 2.5min 8min
BCADR 175002 876934 85.28% 54.13% 1.5min 6min
RBF solver 173668.5 896770 84.63% 55.36% 2min 8min
Sbplx 163918.5 892262 79.88% 55.08% 1.5min 7min
Heuristic 167699.5 880734 81.72% 54.37% – –
Random 96519 437370 47.04% 27.0% – –
Maximum: 205200 1620000 100% 100% – –

Table 4.2: Table of the objective function value f (x) after 50 function calls, the percentage of
the objective value in relation to the maximum number of voxels, and the computation time of
the iteration versus the four solvers, the heuristic and the random placement. The objective value
and computation time is depicted for each test environment, the robot cell of Section 4.2 and the
generic room of Section 4.3. The spent time does not only include the iteration of the solver, but
also the initial costs, such as the faces being sorted into an octree and the generation of the initial
candidates for the first built of the RBF.

The BCAIR has achieved the highest objective value in both tests, the BCADR is second best in case
of the robot cell. The reason why the BCADR is not at the top of the list regarding the accuracy may
be a result of the termination criterion: Both solvers are stopped after 50 objective function evaluations.
However, the BCADR evaluates the objective function several times in parallelizable subspaces during
one iteration step, which the BCAIR does not. In the case of the generic room, e.g., there are two
additional evaluations in each iteration step. The BCADR has not been parallelized in this test and the
additional function evaluations have not been considered in the termination criterion. Thus, the BCADR
does not outperform the other methods, as the BCAIR does. However, to be fair, the test results of all the
solvers, except for the random placement, in the generic room lie very close to each other (less than two
percentage points).

The fact that a solver has not achieved the highest value means that the solver can only have found a local
maximum at termination. E.g., in the case of the robot cell, the coverage of all the other solvers and the
heuristical placement is better than the Sbplx, which is quite surprising since this solver has performed
quite well with the synthetic examples of Section 3.4. In order to prevent such a behavior in the proposed
methods, the following three methods can help: Either the initial parameter vector of the network needs
to be chosen more carefully for the initialization of the solver, the domain of the variables needs to be
narrowed down, or the solver needs more time/function calls.

For placing the cameras in simple environments, it is relatively easy to make up a good heuristic place-
ment. The manual placement in buildings with several rooms and complex obstacles, however, becomes
less intuitive and takes consideration time. With the proposed architecture for optimal camera placement
the thinking process can be forwarded to the computer which successively generates good placements.
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In such a short amount of computing time (1.5min-8min), a human can only make up a rudimentary
heuristic for a complex environment let alone consider a series of good placements as the solver does.

The computation time of the methods, depicted in the sixth and seventh column of the Table 4.2, consists
of the initial costs and iteration costs. The initial costs account for about 26 seconds in the case of the
robot cell and 1.8 minutes in the case of the generic room and consist of loading the CAD model of
room, obstacles, and targets into the RAM, sorting the faces into an octree, and voxelizing the interior of
objects. The time consumption of the iteration has the costs of 50 function calls.

It can be seen that the computation times of the solvers in case of the robot cell are about a quarter of
the computation times in case of the generic room. This is due to the fact that five scenes with different
poses of the human have to be processed in the initial costs as well as in each function call. The time
consumption of the BCAIR and the RBF solver is higher than the consumption of the BCADR for the
same amount of function calls. The reason most likely is the following: Both BCADR and BCAIR
incorporate the method of Recalculation in subsequent function calls (Section 2.2.3). However, only the
BCADR calls the objective function on orthogonal subspaces in subsequent function calls. This is why
the BCADR leads the table considering the computation times, although it has not even been computed
in parallel, yet.

The time consumption depicted here is the total amount of time used by all the subspaces of the BCADR.
The distinct subspaces of the BCADR can be computed in parallel. Here, we have used three subspaces
in the case of the robot cell and two in the case of the generic room. This means only 3

5 of the number
of function calls of the BCADR in case of the robot cell and 3

4 of the number of function calls need to be
computed sequentially, cf. Lemma 3.2.13. We have not distributed the method here since we have used
an OpenGL parallelized version for generating the coverage of each camera. In a distributed version,
the GPU either needs to be shared between threads or several GPUs need to be adressed. In order to
parallelize the BCADR for this particular objective function, further research should go into a way how
to incorporate several k-reliable coverages on the same GPU or distribute them onto several GPUs. This
consideration shows that there is much potential when further researching this topic.

4.5 Summary

The aim of camera network optimization discussed in this chapter is to approximate the human in dif-
ferent kinds of poses despite obstacles and to cover the important areas of the room. The volume of the
1-reliable identical coverage of the room, which is the area that is labeled with “identical” by at least
one camera, is used as an objective function. In this chapter, we have compared the solvers BCADR,
BCAIR, Sbplx, and the original RBF solver with a human chosen heuristic placement of the cameras
and a random placement regarding these three goals. The qualitative results of two test environments are
depicted in the Sections 4.2.2 and 4.3.2 and a quantitative comparison can be observed in Section 4.4.

The solvers placed the cameras at the boundary of the domain in most cases: In case of the placement at
the ceiling of the robot cell in Section 4.2, all except two cameras were placed in the edges of the ceiling.
In case of the three-dimensional placement in Section 4.3 all except one were placed at a wall, ceiling,
or floor. Qualitatively, the approximation of the human poses could be improved by assigning higher
weights to the voxels in the neighborhood of the human.
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The quantitative results tell that the BCAIR outperformed all the other methods in accuracy of both test
environments. The BCADR leads the table of computation times. To speed up the latter optimization
method even further, the objective function calls can be computed in parallel. In general, the chosen
heuristics have been good choices. The consideration of a heuristic placement, however, takes consid-
eration time for the human and cannot be automated. Furthermore, an optimization method for optimal
camera placement presents positions and orientations of the cameras that a human may not think of,
e.g., two or three coinciding positions of cameras that enlarge the viewing angle in one corner, cf. Sec-
tion 4.2.2.





Chapter 5

Conclusion

In contrast to existing work (Section 1.3.1), the problem of camera placement is considered in this thesis
on a continuous domain in a three-dimensional environment regarding static and dynamic obstacles. In
Section 1.1.3 some general goals have been specified: Global convergence, efficiency, flexibility, and the
production of a solution in anytime. For accelerating the whole iteration, the optimization method should
be ready to incorporate prior information of the objective function and be ready for parallel computation.

In this chapter, we provide an overview on the proposed methods and summarize the thesis (Section 5.1).
Then, the contribution of this thesis is addressed in context of the predefined goals (Section 5.2). Last,
in Section 5.3, open questions are presented.

5.1 Summary

Figure 5.1 shows an overview of the proposed architecture for camera placement. The number of cameras
of the network is N ∈ N. As the diagram shows, the thesis includes two parts, the components for
analyzing and implementing the objective function (top), and the solver components (bottom).

In Chapter 2, we analyze the objective function and develop strategies for an accelerated implementation.
The key to objective function is the k-reliable coverage of Section 2.1. It can be used to express both an
approximation of a target or the detectable regions of a room. The chapter contains the following facts
about the coverage:

• An acceleration of the construction of the k-reliable coverage (Section 2.2)

• An analysis of the shape of the k-reliable coverage (Section 2.3),

• An analysis and derivation of the properties of the volume of the k-reliable coverage (Section 2.4).

These properties greatly influence the choice of the solver. In particular, as we have investigated, the
evaluations of the objective function are expensive. Additionally, the function can be stair-cased, non-
differentiable or non-continuous, non-convex, and may only be given as a black-box, so no gradient can
be derived analytically.
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In contrast to the issues of the objective function, there are also some good news: If the cameras are
identically built, the function is symmetric, i.e. invariant under permutation of the cameras. Also, the
recalculation of the objective function is substantially cheaper on subspaces of the domain:

In Chapter 3, suitable solvers are developed that make use of these properties in order to cope with
the issues of the objective function. The issues of lacking a gradient, of the stair-casing, and of the
expensive function calls have been compensated by optimizing on an approximation of the objective
function, instead of the actual objective. Such a function approximation is called surrogate or response
surface model in terms of optimization. Furthermore, the solvers are developed to only call the function
on subspaces of the domain. This development was achieved in the following way:

• In Section 3.1, an optimization method on a surrogate has been adapted to incorporate prior infor-
mation, such as symmetry.

• In Section 3.2, a Block Coordinate Ascent (BCA, Iterations 3.2.1 and 3.2.2) has been developed
that works with such a surrogate. The method optimizes on a series of subspaces of the domain, in
particular each subspace includes the parameters of one single camera instead of all the parameters
of all cameras.

• This combination of BCA and a surrogate was then adapted for parallel computing (Section 3.2).

In Figure 5.1, the general method of the three developed solvers is demonstrated (bottom grey box).
Starting at an initial point (red point) the solvers search for the best solution in one subspace (shaded
in blue) on the surrogate (red graph). After having found the maximum, the subspace is changed and
the iteration is continued on the next subspace of the domain. After the last subspace, the optimization
restarts the iteration with the first subspace, again.

The objective function is only evaluated at such a changing point. The sample pair consisting of point
and function value is updated to the surrogate, meaning the future surrogate interpolates all the previous
sample pairs. This results in the following three versions of Algorithm 3: An original version of a Block
Coordinate Ascent (BCAIR) that solves all the subspace optimizations on an Invariant Response surface
model, a version that Updates the response surface model at each changing point (BCAUR), and a version
of the last Distributing the function calls (BCADR). The efficiency of the proposed approaches has been
demonstrated on several synthetic (Sections 3.3 and 3.4) functions and realistic examples (Chapter 4).
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Figure 5.1: Diagram of the implemented architecture for camera placement in a network separated
into two parts, the objective function (top grey box) and the solver (bottom grey box); The solver
suggests the positions and orientations of the cameras (1) and the objective function provides the
quality of the placement (2) from which the solver generates the next placement.
The objective value of a camera placement is calculated by synthesizing several images of the
environment (1a) from which the coverage of the camera in the scene is established (1b). Their
intersection or union yields the k-reliable coverage (1c), whose volume is used as the quality. The
function call is substantially cheaper if only the placement of one camera n ∈ {1, ...,N} changes
(top blue shaded area instead of top grey box). Additionally, the function is invariant under the
permutation of the cameras (parallel rows).
The parameters of one single camera define a subspace of the whole domain. Beginning at initial
parameters (red point), the solver searches the surrogate (red graph) for the best solution in one
subspace of the domain (2a). After having found the maximum in the subspace, the subspace is
changed (2b). The expensive objective function is only evaluated at such a change (orange or green
point). The pair of candidate (2c) and function value (2d) is then incorporated into the surrogate.
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5.2 Contributions

The proposed architecture of the program, summarized in the last section, is now discussed in the context
of the goals that we wanted to achieve: The positions and orientations of the sensors of a camera network
utilized in a three-dimensional room must be optimized on a continuous domain. The optimization must
be global convergent and an anytime system after an initialization phase. It needs to be efficient, ready for
the incorporation of prior information, parallelizable in order to increase the efficiency in further projects,
and flexible to the type of objective function. In the following, my contribution to camera placement is
stated. It can be grouped into two sections, the analysis of the objective function and the achievement of
the computational goals.

Analysis

The key to the flexibility of the objective function is the k-reliable coverage, it can be used to express both
an approximation of the target or the detectable regions of a room. Moreover, the k-reliable coverage
approximates the target conservatively (Lemmas 2.1.9 and 2.1.10) and can be extended to a more failure
resistant version (Lemma 2.1.12, Theorem 2.1.13, and Corollary 2.1.14). The shape of the coverage has
been investigated neglecting any kind of discretization, at first. In Lemmas 2.3.2, 2.3.3, 2.3.4, and Theo-
rem 2.3.5, we have proved that the shape of the k-reliable coverage for multiple cameras is a polyhedral
area.

Its vertices (classified in Figure 2.16) and faces (Lemma 2.3.7) can be used to calculate the volume of the
shape. Thereby, the vertices and faces are also relevant to the non-differentiable and stair-casing behavior
of the volume of the k-reliable coverage. In particular, a critical event is the contact of a face of the k-
reliable coverage and a given point of the environment, e.g., a vertex of the coverage. The parameters
of the network where such an event takes place can be divided into null sets in the network’s parameter
space which are called incidence surfaces (classified in Theorem 2.3.9 and the Tables 2.3, 2.4, and 2.5).
In a two-dimensional environment the classification of the incidence surfaces is less complicated since
there is only one kind which is a line segment, cf. [58], while in three dimensions there are several types
which have a more general, non-planar shape. There are two good reasons to study these surfaces:

• We showed in Lemmas 2.4.1, 2.4.2, and Theorem 2.4.3 that the volume of the k-reliable coverage is
in C∞ unless the parameters of the network are in an incidence surface where a face of the coverage
meets another vertex of the coverage, and unless the camera position is in an affine subspace
defined by the edges of the environment. Thus, the volume is in C∞ µ-almost everywhere.

• In the fully discretized problem, the stair-casing of the objective function has been analyzed. The
steps of the “stair-cases” are separated by the incidence surfaces where a face meets an individual
voxel (Lemma 2.4.7).

These characterizations conclude the purely analytic part of the thesis.
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Achievement of Computational Goals

In case of a convergence, a regular BCA reaches a stationary point. On a particular type of function,
an additively separable function, a stationary point is found in one iteration step, cf. Corollary 3.2.7
and Lemma 3.2.8. But stationary points are not necessarily actual maxima, see Example 3.2.9, Lemma
3.2.11, and the paragraphs thereafter. Unfortunately the objective function is neither additively separable
nor differentiable everywhere. In fact, Figure 3.7 shows a stationary point that is not a global maximum in
the context of camera placement. However, we have achieved the five goals set forth in the introduction:

1. The global convergence of the solvers BCAIR, BCAUR, and BCADR is established by the choice
of the next initial candidate for the subspace iteration. A strategy of [122], that is provably conver-
gent to the optimal value of a continuous function, has been adopted, where the next initial point
is chosen outside of an exclusion area around the previous evaluation points.

2. The convergence of the algorithms with additionally incorporated prior information such as sym-
metry is proved in Lemma 3.1.15, Theorem 3.1.16, and Theorem 3.2.12.

3. The same theorems prove that the demands of an anytime system are satisfied as well.

4. The BCADR is proved to converge when calling the objective function in parallel.

5. The efficiency of solving the problem of camera network optimization (1.1) is discussed in the
following paragraphs.

Three different strategies for increasing the efficiency were proposed: Increasing the density of candi-
dates, accelerating the objective function, and accelerating the iteration. Firstly, the objective function is
quite costly. By strategies like computing the image of a single camera on the GPU as described in Sec-
tion 2.2.2, the computation time has decreased, which also accelerates the optimization. A key strategy
for our program to accelerate the objective function is to make use of the following fact. The evaluation
of the objective function is substantially accelerated by the following methods:

• The objective function is called on subspaces of the domain, cf. the first strategy of Lemma 2.2.1.
The BCAUR or BCADR do subsequently call the objective function on a subspace.

• A less expensive approximation of the objective function is called instead. All methods utilize
a surrogate of the objective function that interpolates the previous function evaluations (Proposi-
tion 3.1.4).

Secondly, the convergence speed of the solvers depends on the density of the candidates: Thus, the more
candidates with a known function value can be generated from a single function evaluation, the fewer
function evaluations are required. The efficiency of generating candidates with a known function value is
subsumed under the term effect of prior information, Lemma 3.1.11, and was increased in the following
three ways:

• A strategy as in Example 3.1.12 for increasing the number of candidates once at the beginning of
the iteration.



144 CHAPTER 5. CONCLUSION

• As the problem is symmetric in the subspaces of the cameras, shown in Lemma 2.4.5, a permuta-
tion of the parameter vectors of different cameras does not change the objective value. Thus, after
every objective function evaluation the objective values of the symmetric candidates are available.
The incorporation of these in the BCAIR, BCAUR, and BCADR has been addressed in Lemma
3.1.14 and increases the convergence speed in practice (Section 3.4.4).

• Instead of generating candidates with a known objective value, we can also generate candidates
with a partly known objective value. In one single objective function evaluation, the coverage of
each camera needs to be calculated. Two subsequent evaluations contain the coverages of each
single camera from two different positions or orientations. The second part of Lemma 2.2.1 shows
the number of cheap function evaluations that can be generated from these two subsequent function
calls for the developed solver.

Thirdly, the whole iteration is also accelerated by the following strategies:

• The BCADR was designed to facilitate a parallel evaluation of the objective function. The number
of parallel function calls of the BCADR can be calculated by Lemma 3.2.13.

• The surrogate of the objective function is continuously differentiable (Lemma 3.1.5). Thus, the
optimization on the surrogate of the objective function can be performed by a solver that uses a
gradient for higher convergence rate

The experiments on the synthetic functions show that the developed methods BCAIR, BCAUR, and
BCADR, are as efficient as local solvers despite the lack of a gradient, as accurate in the choice of
the global maximum as stochastic solvers (Section 3.4.1), and outperform the original RBF solver in
efficiency (Section 3.4.2). BCAIR evaluates the objective function the least of all tested solvers when
incorporating symmetry as prior information when computing on one core. The BCAUR/BCADR devel-
opes an advantage when the number of parallel threads is higher and the number of symmetric subspaces
is lower: This has been the case if more than four subspaces with less than four symmetric subspaces
(cameras) were used in our example.

In terms of accuracy, BCAIR has outperformed all the other methods in both of the realistic examples
(Section 4.4). The accuracy of BCAUR/BCADR was marginally lower than the accuracy of BCAIR for
the same limited maximum number of function calls. This is most likely due to the fact that with the
same maximum number of function calls the number of iterations within the BCAUR/BCADR is lower.

An optimized placement in contrast to a random placement can double the covered area, this can be
observed in both realistic test environments. Even compared to a manual heuristic placement better
results can be achieved. For placing cameras in relatively simple environments it is easy to fall back
on a heuristical placement but the placement in buildings with several rooms and complex obstacles
becomes much less intuitive and takes time for a human as well. With the proposed architecture for
camera placement, a system has been developed that generates provably good positions and orientations
of cameras in three dimensions that a human might not think of in a reasonable amount of computing
time (less than 10 min, Sections 4.2.2, 4.3.2, and 4.4).
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5.3 Future Work

The placement of the cameras in a network depends on the model of the environment which the cameras
ought to observe. The following question arises: Is it possible to derive provably good positions and
orientations of the cameras right from this model? This is a fact that should be researched in further
investigations.

The search for an answer to this question can be started with the results that we have achieved: In both test
environments the solver has placed more than the three quarters of cameras at the boundary of the room
or domain. Another idea to achieve such a derivation is subdividing the environment into primitives and
deriving the coverage for the primitives. For example, take the second realistic test environment which
is composed of two rooms separated by a wall with a door. In this example, the network configurations
achieved better results when incorporating cameras at the floor of the room since the door is not open all
the way to the ceiling. One could now decompose the environment into two primitives, a room without a
door and an environment consisting only of the wall with a door, derive the coverage for both primitives,
and compare the results.

Another good reason for a subdivision into primitives is the following: When two cameras are placed in
two separate rooms, the function is additively separable. This is particularly interesting for the BCA used
on the surrogate, since it converges to a local maximum in the differentiable case. Without additively
separability, we have used the exclusion area strategy in order to prove convergence. Such a strategy is
not necessary anymore if the BCA converges on its own. Thus, a subdivision into primitives should be
investigated that causes additively separable behavior of the volume of subdivided coverages.

Last but not least, the convergence speed of the solver is as high as a local solver which makes it practical
for a variety of “real world problems” which are non-convex, stair-cased, expensive, or given only as a
black-box. Additionally, the architecture of the program can be applied to the placement of sensors other
than cameras, as well. Their coverage is not necessarily a polyhedral area and its volume might be less
differentiable or less continuous, which needs to be integrated in the system in that case. As soon as this
is established, the methods will work for the sensors the same way as in case of the cameras as sensors.
They have found several high quality but non-intuitive positions and orientations for the cameras, such
as a position on the floor of the room.
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[10] M.A. Baumann, D.C. Dupuis, S. Léonard, E.A. Croft, and J.J. Little. Occlusion-free path planning
with a probabilistic roadmap. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 2151–2156. IEEE, 2008.

[11] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM
Journal on Optimization, 23(4):2037–2060, 2013.

147



148 APPENDIX A. BIBLIOGRAPHY

[12] E. Becker, G. Guerra-Filho, and F. Makedon. Automatic sensor placement in a 3D volume. In
Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive
Environments, page 36. ACM, 2009.

[13] D.P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[14] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and distributed computation: Numerical methods.
Athena Scientific, 1997.

[15] J. Bittner and P. Wonka. Visibility in computer graphics. Environment and Planning B: Planning
and Design, 30:729–755, 2003.

[16] M. Björkman and K. Holmström. Global optimization of costly nonconvex functions using radial
basis functions. Optimization and Engineering, 1(4):373–397, 2000.

[17] R. Bodor, A. Drenner, P. Schrater, and N. Papanikolopoulos. Optimal camera placement for
automated surveillance tasks. Journal of Intelligent and Robotic Systems, 50(3):257–295, 2007.

[18] M.J. Box. A new method of constrained optimization and a comparison with other methods. The
Computer Journal, 8(1):42–52, 1965.

[19] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Mühling. Taschenbuch der Mathematik.
Verlag Harri Deutsch, 2001.

[20] M.D. Buhmann. Radial basis functions. Acta numerica, 9(1):1–38, 2000.

[21] M.D. Buhmann. Radial basis functions: Theory and implementations, volume 5. Cambridge
university press Cambridge, 2003.

[22] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: Portable shared memory parallel
programming, volume 10. MIT press, 2008.

[23] Y. Charfi, N. Wakamiya, and M. Murata. Challenging issues in visual sensor networks. Wireless
Communications, IEEE, 16(2):44–49, 2009.

[24] S. Chen, Y. Li, and N.M. Kwok. Active vision in robotic systems: A survey of recent develop-
ments. The International Journal of Robotics Research, 30(11):1343–1377, 2011.

[25] D.M. Chu and A.W.M. Smeulders. Thirteen hard cases in visual tracking. In Advanced Video
and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on, pages
103–110. IEEE, 2010.

[26] R. Church and C.R. Velle. The maximal covering location problem. Papers in regional science,
32(1):101–118, 1974.

[27] F.C. Crow. Shadow algorithms for computer graphics. In ACM SIGGRAPH Computer Graphics,
volume 11, pages 242–248. ACM, 1977.

[28] R. Cutler and M. Turk. View-based interpretation of real-time optical flow for gesture recognition.
In Proceedings of the Third IEEE Conference on Face and Gesture Recognition, 1998.



149

[29] Y. Dai and K. Schittkowski. A sequential quadratic programming algorithm with non-monotone
line search. Pacific Journal of Optimization, 4:335–351, 2008.

[30] X. Dan. Geometry and the imagination. An academic exercise in partial fulfillment for the degree
of bachelor of science with honours in applied mathematics, National University of Singapore,
2004.

[31] L. De Floriani and P. Magillo. Visibility algorithms on triangulated digital terrain models. Journal
of Geographical Information Systems, 8:13–41, 1994.

[32] L. De Floriani and P. Magillo. Algorithms for visibility computation on terrains: A survey. Envi-
ronment and Planning B, 30(5):709–728, 2003.

[33] H. De Ruiter, M. Mackay, and B. Benhabib. Autonomous three-dimensional tracking for recon-
figurable active-vision-based object recognition. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 224(3):343–360, 2010.

[34] X. Desurmont, C. Carincotte, and F. Bremond. Intelligent video systems: A review of performance
evaluation metrics that use mapping procedures. In 2010 7th IEEE International Conference on
Advanced Video and Signal Based Surveillance, 2010.

[35] A. Discant, A. Rogozan, C. Rusu, and A. Bensrhair. Sensors for obstacle detection-a survey. In
Electronics Technology, 30th International Spring Seminar on, pages 100–105. IEEE, 2007.

[36] DreamQii. Plexidrone, 10. 2014. http://plexidrone.com/.

[37] G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources using backprojection.
In Proceedings of the 21st annual conference on Computer graphics and interactive techniques,
pages 223–230. ACM, 1994.

[38] G. Drettakis and F. Sillion. Accurate visibility and meshing calculations for hierarchical radiosity.
In Rendering Techniques’ 96, pages 269–278. Springer, 1996.

[39] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In Constructive
theory of functions of several variables, pages 85–100. Springer, 1977.

[40] F. Durand. A multidisciplinary survey of visibility. ACM SIGGRAPH course notes: Visibility,
Problems, Techniques, and Applications. ACM, 2000.

[41] F. Durand. 3D visibility: Analytical study and applications. PhD thesis, Université Joseph Fourier,
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Symbols and Definitions

Spaces, sets, and groups

Nn Space of n-tuples of natural numbers

Qn Space of n-tuples of rational numbers

Zn Space of n-tuples of integer numbers

Rn Space of n-tuples of real numbers

Πn
m Space of polynomials of degree less than or equal to m with n variables

Cn Space of n-times continuous differentiable functions

Lp(D) Space of p-integrable functions defined on the domain D as in Definition
3.1.17

D−kL2(D) Space of functions whose k-th total degree distributional partial derivatives
are in L2(D) as in Definition 3.1.17

P(S ) Power set of a set S : The set of all subsets of S

S N Symmetric group of degree N

CN(k) ⊂ S N The set of k-combinations of the N-tuple (1, . . . ,N). The set has the order
N!

k!(N−k)!

Set Operations

[x, b] Line segment between x ∈ R3 and b ∈ R3 defined by [x, b] := {c ∈ Rn | c =

x + ε · (b − x), ε ∈ [0, 1]}

[x,C] Pyramid between x ∈ R3 and a planar C ⊂ R3 defined by [x,C] :=
⋃

c∈C[x, c]

[x, b) Half line (also ray) starting at x ∈ R3 in direction of b ∈ R3 defined by [x, b) :=
{y = x + ε(b − x) | ε ≥ 0}

∂A Set of boundary points of A ⊂ Rn
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cA Closure of A ⊂ Rn

{A Complement of A ⊂ S ⊂ Rn is S \ A

Bn
ε (b) Open ε-ball about b ∈ R3 defined by Bn

ε (b) := {y ∈ Rn | d(y, b) < ε}
∂Bn

ε (b) ε-sphere about b ∈ R3 with ∂Bn
ε (b) := {y ∈ Rn | d(y, b) = ε}

d(x, b) Distance between x ∈ R3 and b ∈ R3 defined by d(x, b) := ||x − b||2

λ(C) Volume of C ⊂ R3

Function Operations

Jx( f ) Jacobian matrix of a function f with input x

Dα Operator of the partial derivative Dα :=
(

∂α1

(∂x)α1 · · ·
∂αn

(∂x)αn

)
with the multi-index

α = (α1, ..., αn) ∈ Nn of Definition 3.1.7

| f |2k,D Semi-norm of the derivatives of a function f : D → R as in Definition 3.1.7

Linear Algebra

1n n-dimensional unit matrix

(U1, ...,UM) = 1n Partition of the n-dimensional unit matrix into M matrices

1 Matrix or vector of ones

0 Matrix or vector of zeros

Sets of the Camera Network Application

E Set of all environments which need to be monitored and where the sensors can
be placed, first mentioned in Section 1.2

A Surveillance area of the camera network application, first mentioned in Sec-
tion 1.2 and further specified in Section 2.1.2; In this thesis, the surveillance
area is a polyhedral area. The points in this area are usually denoted by y ∈ A

P Space of parameters of one single camera, first mentioned in Section 1.2 and
further specified in Equation (2.1): The points in this space are tuples of pa-
rameters and are denoted by a ∈ P

S Set of sensor labels, first mentioned in Section 1.2 and further specified in
Section 2.1.2; A subset of this set is usually denoted by S ⊂ S
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E ∈ E Particular environment which needs to be monitored, which models the furni-
ture, walls, and the places of the cameras. In this thesis, the environment is
the empty space of a room, modeled by a polyhedral area as defined in Defini-
tion 2.1.1 and Notation 2.1.2. The boundary of the environment is composed
of static Es ⊂ E and dynamic objects Ed ⊂ E, both surrounding polyhedral
areas, as in Definition 2.1.6. Objects can be targets T , i.e. objects that are to
be approximated as in Definition 2.1.8, and obstacles, otherwise.

L ⊂ E Space of camera positions first mentioned in the Example 1.2.2

Camera Parameters

N ∈ N Number of sensors/cameras

p ∈ E Position of a camera defined in Definition 2.1.3

o ∈ B3
1(0) Orientation of a camera defined in Definition 2.1.3

u ∈ B3
1(0) Vector defining the two openings of a camera frustum and the orientation of

the camera coordinate system (Definition 2.1.3)

θu, θo×u ∈ [0, π] Opening angles of one camera with direction o and opeing vector u and o× u,
respectively (Definition 2.1.3)

Td(θ, v) θ-space with direction d and opening vector vas defined in Definition 2.1.4: A
θ-space is the intersection of two half-spaces with an angle of θ ∈ [0, π) whose
boundary normals add up to d and can be linearly combined to d.

V(p, S ) Set of all visible points from point p ∈ S inside the set S disregarding the
opening angle of a camera (Definition 2.1.4)

Fa Frustum of the camera with parameters a = (p, o, u, θu, θo×u) ∈ P (Definition
2.1.4)

Va(S ) Field of view of a camera with parameters a = (p, o, u, θu, θo×u) ∈ P inside a
set S defined by Va(S ) := V(p, S ) ∩ Fa in Definition 2.1.4

Notation in the Context of the Coverage of a Camera Network

σ : E × P × A→ S Function defined in Definition 1.2.1 which maps a surveillance part y ∈ A
with the camera parameters of a ∈ P and the constraints of the environment
E ∈ E onto the set of sensor labels. Thus, a camera or general sensor becomes
a device to classify regions or parts of the surveillance area, e.g. by the labels
“detectable” and “undetectable”, or by the labels “changed” and “identical”.

σ−1
a (S ) Coverage of one single camera defined in Definition 1.2.1: The set is the

preimage of the sensor function σ in a chosen environment with camera pa-
rameters a ∈ P and with the sensor labels S ⊂ S
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P1 × . . . × PN Space of parameters of the whole camera network first mentioned in Defini-
tion 1.2.1. The elements of this set are denoted by x = (a1, ..., aN).

A Conservative approximation of a given target defined in Definition 2.1.8

C(k, S ) Coverage of a network of N sensors with reliability k ∈ N and the sensor labels
S ⊂ S first mentioned in Definition 1.2.1 and refined in Definition 2.1.11: The
coverage includes all parts of the surveillance area that are marked as one of
the labels in S by at least k cameras.

π ∈ CN(k) k-Combination of the N-tuple (a1, . . . , aN); The set is used to denote the cov-
erage in Definition 2.1.11. The elements are determined by choosing k sensors
out of N total without replacement disregarding the sequence of the tuple.

q : P1× . . .×PN → R Quality of the network measured as the volume of the coverage as defined in
Equation (1.2)

P A not necessarily convex nor manifold polyhedral area as defined in Definition
2.1.1

V ∈ ∂P Vertex of the polyhedron or polyhedral area P defined in Definition 2.1.1

E ⊂ ∂P Edge of the polyhedron or polyhedral area P defined in Definition 2.1.1; In
the context of projection and silhouette faces an edge of the environment is
also called anchor as in Lemma 2.3.7

F ⊂ ∂P Face of the polyhedron or polyhedral area P defined in Definition 2.1.1

σ−1
(E,a)({ident.}) Identical coverage of one camera with parameters a = (p, o, u, θu, θo×u) ∈ P

inside the environment E ∈ E. If E is a polyhedral area, the coverage is a
polyhedral area, as well, and has the faces defined in Definition 2.3.6: Envi-
ronmental faces (FE), projection faces (FP), opening faces (FO), and silhou-
ette faces (FS ). Projection and silhouette faces are defined by the position of
the camera and an edge of the environment (anchor) as in Lemma 2.3.7.

σ−1
(E,a)({detectable}) Detectable coverage of one camera (also field of view of the camera) with

parameters a = (p, o, u, θu, θo×u) ∈ P inside the environment E ∈ E. If E is a
polyhedral area, the coverage is a polyhedral area, as well, and has the faces
defined in Definition 2.3.6: Environmental faces (FE), projection faces (FP),
and opening faces (FO). Projection faces are defined by the position of the
camera and an edge of the environment (anchor) as in Lemma 2.3.7.

Notation in the Context of the Volume of the Coverage

N =

(
n1 n2 n3

)T
Matrix of the normals of three faces which share a common vertex of the
k-reliable coverage of Equation (2.9)

K Set of network parameter subsets where at least one camera position is in a
1-dimensional affine subspace of an anchor defined in Equation (2.10)
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I Set of all vertex incidence surfaces as defined in Definition 2.3.8. The ele-
ments of this set are defined by a face of the camera coverage F and a vertex
V and are usually denoted by I(V,F )

J Set of all voxel incidence surfaces as defined in Equation (2.12)

D A connected set of network parameters where the volume of the k-reliable
coverage is continuously differentiable as in Theorem 2.4.3

Bb ⊂ D One of B ∈ N simply connected sets of the domain b = 1, ..., B on which a
stair-cased function is constant as defined in Definition 2.4.6

βb ∈ R One of the quantized function values of a stair-cased function as used in Def-
inition 2.4.6

I ⊂ E Image plane of a camera used in Lemma 2.3.4. The points of the image plane
are usually called x and the rays through such a point R.

π : E → I Projection from the environment E ∈ E into the image plane I ⊂ E

ρ : I → N2 Rasterization of the image plane I ⊂ E into pixel

S Image of an anchor of a projection or silhouette face in the rasterized image
plane S := ρ(π(F1)) ∩ ρ(π(F2)) as defined in Equation (2.13)

Notation in the Context of Evaluation Costs

cv ∈ R Costs of measuring the volume of a collection of voxel in an occupancy grid
used in the Sections 3.2.2 and sec:objective:implementation:SequentialCalls

cc ∈ R Costs of creating an occupancy grid of the coverage of one single camera used
in the Sections 3.2.2 and sec:objective:implementation:SequentialCalls

cu ∈ R Costs of applying a set operation as the union or intersec-
tion of two occupancy grids used in the Sections 3.2.2 and
sec:objective:implementation:SequentialCalls

I0 ∈ N Number of steps of the inner iteration (Lines 10– 20) of the BCAUR/BCADR
in Algorithm 3 used in Lemma 3.2.13

T ∈ N Number of threads used in Lemma 3.2.13

t ∈ N Number of moments in time that define the state of the dynamic objects and
thus the state of their faces used in Section 2.2.1

fs ∈ N Number of faces of static objects used in Section 2.2.1

fd ∈ N Number of faces of dynamic objects used in Section 2.2.1

f ∈ N Number of faces in total used in Section 2.2.1

v ∈ N Number of voxels in an occupancy grid used in Section 2.2.1
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p ∈ N Number of pixels on an image plane of a camera used in Section 2.2.1

Notation in the Context of General Optimization

n ∈ N Dimension of the domain of the objective function of Problem (3.1)

D ⊂ Rn Domain of the objective function of Problem (3.1) of a size n ∈ N; Points in
this space are usually denoted by x and y

f : D → R Objective function of Problem (3.1)

G f Graph of f : G f := {(x, f (x)) | x ∈ D}

Exclusion Area Strategy

f̄ : D → R Surrogate of the objective function as first described in section 3.1, also called
response surface model. Later in the same Section, the surrogate is specified
as a radial basis function interpolant in Definition 3.1.2

L ∈ N Number of elements in one search pattern described in Section 3.1.1

K ∈ N Number of candidates which have already been evaluated by the actual objec-
tive function f and are updated to the surrogate f̄

CK ⊂ D Set of K candidates (Definition 3.1.2) which have already been evaluated by
the actual objective function f and are updated to the surrogate f̄ ; Points in
this set are usually denoted by s ∈ CK

S K ⊂ (D× R) Set of K sample pairs (Definition 3.1.2): A sample pair is a 2-tuple of a can-
didate s ∈ CK and its function value (s, f (s))

β∆ ∈ R Measure of the exclusion area for the next candidate described in Section 3.1.1

Notation in the Context of Radial Basis Functions Interpolants (RBF)

m̄ ∈ N Number of polynomials in the basis of the polynomial space Πn
m

φ : R+
o → R Kernel of the RBF of Definition 3.1.2; It defines the shape of the “peaks” and

“troughs” that ensure the interpolation of the given K ∈ N sample pairs. The
height of the “peaks” and “troughs” are defined by the weights ω ∈ RK . The
width of the “peaks” and “troughs” is defined by γ ∈ R+

p : Rn → R Polynomial of the RBF of Definition 3.1.2, which is a linear combination of
the m̄ ∈ N basis polynomials of Πn

m of degree less than or equal to m ∈ N with
n ∈ N variables and their weights ν ∈ Rm̄

Φ ∈ RK × RK Matrix of the kernel evaluations of the distances between all candidates φ(||s1−

s2||), (s1, s2) ∈ C2
K for the equation system (3.7)
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P ∈ RK·m̄ Matrix of the m̄ ∈ N basis polynomials p ∈ Πn
m of degree less than or equal to

m with n variables, evaluated for all the candidates p(s), s ∈ CK ⊂ D for the
equation system (3.7)

F ∈ RK Vector of function values of the K ∈ N candidates important for the equation
system of (3.7)

χ : P(G f )→ P(G f ) Update of the sample pairs that are interpolated by the RBF depending on the
function f : D → R as in Definition 3.1.9

α : P(G f )→ P(G f ) Prior information of Definition 3.1.9 that can be generated by a set of sample
pairs without calling the function f : D → R again, and can be updated to the
RBF by the combined update rule.

cχ(S ) Costs of an update rule χ for the previous set of sample pairs S (Definition
3.1.9): The number of objective function evaluations

eχ(S ) Effect of an update rule χ for the previous set of sample pairs S (Definition
3.1.9): The number of gained sample pairs

M ∈ R(n+1)·(n+1) Matrix of candidates s1, . . . , s(n+1) ∈ D ⊂ Rn in the form of M :=
 1

s1

 · · ·

 1

s(n+1)


 as in Definition 3.1.7

Notation in the Context of Block Coordinate Ascent (BCA) incorporating an RBF

M ∈ N Number of subspaces

V1 × ... × VM = D Orthogonal decomposition of the domain D ⊂ Rn into subspaces with the di-
mensions n1, . . . , nM ∈ N and n1+...+nM = n, defined in Definition 2.4.4; The
elements of a subspace Vm are usually named um or vm and can be transformed
by the corresponding part of the unit matrix Um into the domain.

[x1, . . . , xM] Subspace coordinates of x ∈ D defined in Definition 2.4.4

x∗ ∈ D Subspace maximum: A point at which either argmaxv∈V f (Uv + x∗) = 0 holds
for one or all subspaces V and their corresponding part of the unit matrix U
as defined in Definition 3.2.5

δ0 ∈ R Minimum bound for the absolute distance of two subsequent candidates used
as a termination criterium as described in Section 3.3.3

∆0 ∈ R Minimum bound for density of candidates used as a termination criterium as
described in Section 3.3.3

F0 ∈ N Maximum limit of the number of objective function calls used as a termination
criterium as described in Section 3.3.3
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