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Summary 

Most of the agricultural landscapes are a mosaic of cultivated fields, semi-natural habitats, human 

infrastructures and occasional natural habitats. Within such landscapes, linear semi-natural habitats often 

define the edges of agricultural fields, called “field margins”. Field margins are an important component of 

the agricultural landscapes as they are contributing positively to ecosystem functions by supporting 

biodiversity, preventing soil erosion, contributing in nutrient cycling and improving soil stability. 

This thesis is aiming to further our understanding of the processes governing plant community 

structure and resulting functioning in agricultural field margins by focusing on describing naturally occurring 

plant communities of the field margins in the agricultural landscape of Haean-myun catchment in South 

Korea and how it can affect the ecosystem functioning (e.g. soil stability, soil erosion control), which 

consequently will help us to understand the functional role of the field margins as an important component of 

the agro-ecosystem. Our first study investigates how the local-scale management and the landscape-scale 

land-use influence the composition of plant communities of agricultural field margins, to understand how to 

improve the diversity of the field margins in agricultural landscapes. In the second study, we aimed to 

integrate vegetation characteristics and plant functional traits (PFTs) into a statistical model of abiotic soil 

characteristic effects on soil stability, towards an improved understanding of ecosystem functioning in 

agricultural landscapes. Finally, in the third study, we investigated how field margins in the agriculture 

landscapes can limit the soil erosion during the monsoon season, which will help us to better understand the 

function of an important ecosystem component like field margins within the agriculture landscapes, via 

testing the effect of its different management schemes at different slope degrees on sediment trapping. 

To test how the local management “managed and unmanaged” and the landscape-scale land-use 

“percentage of non-farmed habitat” influence plant communities of agricultural field margins, we studied 

multi-facet plant community structure which includes alpha, beta and gamma diversities and species level 

characteristics such as rareness, growth forms, and dispersal types in hundred field margins in Haean-myun 

catchment, South Korea. We found that abandonment of local management in field margins positively 

influenced alpha diversity and especially the abundance of species that are rare and/or are characterized by 

abiotic dispersal and perennial growth forms. In contrast, local management of field margins resulted in lower 

alpha diversity and contributed to high beta diversity. The availability of landscape-scale non-farmed habitats 

influenced especially the diversity of managed field margins by increasing alpha diversity especially when 

focusing on more frequent species. The positive effect was highest for annual species independent of their 

dispersal mode.  

For our second study, we used path model analysis to quantify the effect of plant functional traits 

(PFTs), abiotic soil characteristics (soil texture) and vegetation characteristics (vegetation cover and species 
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richness) on three soil stability measures (soil aggregate stability, soil penetration resistance and soil shear 

vane strength) in 30 field margins in Haean-myun catchment, South Korea, in these models we studied also 

the importance of intraspecific trait variability (ITV) by comparing models that account or ignore for ITV. 

We found that, variance in soil stability was explained to varying degrees (from 81% for soil aggregate 

stability to 35% for soil shear vane strength). The three soil stability measures were mainly affected directly 

by root density, while PFTs and soil texture exerted indirect effects through root density and vegetation 

parameters, respectively. Including ITV improved model explained variance and goodness-of-fit in all cases. 

In the third study on the effect of field margin’s management and slope degree on sediment trapping, 

prior to the beginning of monsoon season, a total of 12 sites within Haean-myun catchment, South Korea, 

were equipped with Astroturf mats (n = 15 / site) which were placed before, within and after four different 

types of field margins: “managed flat”, “managed steep”, “natural flat” and “natural steep. Sediment was 

collected from the 12 sites after each rain event continuously until the end of the monsoon season. Using the 

linear mixed effect model allowed us to test the effect of management and slope degree on sediment trapping 

for the sediment collected within the field margin and the sediment difference between these collected after 

and before the four field margins’ types. We found that in all cases, there is a positive relation between 

rainfall and sediment collected. Natural field margins showed high efficiency in reducing soil erosion in 

comparison to the managed ones. For the field margin slope, it showed effectiveness in combination with 

vegetation cover, as natural margins that have steep slopes had more sediment trapped in comparison to the 

managed margins. These findings allowed us to develop a functional framework of placement and designing 

of field margins within agriculture landscape to reduce soil erosion. 

In this thesis, we developed several recommendations for improving the ecosystem functions in 

agricultural landscapes using the field margins as a functional component of the agroecosystem. We showed 

how important the local-management of the field margins and the surrounding landscape-scale land-use in 

maintaining the diversity in the agricultural landscapes. For areas like South Korea, new laws and strategies 

should be developed to control the field margin’s local management, which will help in conserving the 

biodiversity by providing the suitable habitats for flora and fauna and consequently, will affect the soil 

quality and stability which will help in controlling the soil erosion happens during the monsoon time in South 

Korea. Furthermore, we demonstrated how essential is the field margin’s plant functional community 

composition on soil stability as an important ecosystem function in the agricultural landscapes. Finally, we 

modified a pre-existing future decision support system (DSS) framework for the effective design and 

placement of the vegetated field margins within the agricultural field system to help in protecting soil erosion 

via field margins in agricultural landscapes that face monsoonal climate.  
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Zusammenfassung 

Die Mehrheit der Agrarlandschaften bestehen aus einem Mosaik von bewirtschafteten Feldern, semi-

natürlichen Habitaten, künstliche Infrastrukturen und zeitweise natürlichen Habitaten. Innerhalb dieser 

Landschaften werden Feldränder oft als lineare semi-natürliche Habitate charkterisiert. Die Feldränder stellen 

eine wichtige Komponente der Agrarlandschaften dar, da sie wichtige Ökosystemfunktionen wie z.B. die 

Förderung der Biodiversität und der Nährstoffkreisläufe, den Schutz vor Bodenerosion sowie die Erhöhung 

der Bodenstabilität übernehmen.   

Die vorliegende Arbeit verfolgt das Ziel, ein besseres Verständnis über die Prozesse der Struktur der 

vorherrschenden Pflanzengemeinschaften und der daraus resultierenden Funktion der Feldränder zu erlangen, 

indem die natürlich vorkommenden Pflanzengemeinschaften der Feldränder in der Agrarlandschaft des 

Haean-myun Einzugsgebiets in Südkorea beschrieben werden. Desweiteren soll untersucht werden, in 

welchem Maße die Feldränder die Ökosystemfunktionen beeinflussen (z.B. Bodenstabilität, 

Bodenerosionskontrolle). Dies soll zu einem tieferem Verständnis der funktionalen Rolle der Feldränder als 

wichtige Komponente der Agrarökosysteme führen. Die erste Studie der vorliegenden Arbeit untersucht, wie 

sich das Management auf lokaler Ebene und die Landnutzung auf Landschaftebene auf die Komposition der 

Pflanzengemeinschaften der Feldrändern auswirkt, um ein besseres Verständnis darüber zu erlangen, wie die 

Diversität der Feldränder in Agrarlandschaften erhöht werden kann. Die zweite Studie dieser Arbeit zielt 

darauf ab, Vegetationscharakteristika und funktionale Pflanzeneigenschaften zusätzlich zu abiotischen 

Bodeneigenschaften in ein statistisches Modell der Bodenstabilität zu integrieren, um ein besseres 

Verständnis über die Ökosystemfunktionen in Agrarlandschaften zu erlangen. In dritten und letzten Teil der 

vorliegenden Arbeit wird untersucht, in welchem Ausmaß die Feldränder die Bodenerosion in 

Agrarlandschaften während der Mosunzeit vermindern. Dies soll zu einem verbesserten Verständnis über die 

Rolle der Feldränder als wichtige Komponente des Ökosystems innerhalb der Agrarlandschaften führen. In 

dieser Studie wird der Effekt verschiedener Management-Systeme und unterschiedlichen Hangneigungen auf 

den Sedimentrückhalt untersucht.                    

Um zu testen, wie sich das lokale Management “bewirtschaftet  und nicht-bewirtschaftet“ und die 

Landnutzung auf Landschaftsebene im Sinne des Prozentanteils des nicht-bewirtschafteten Habitats auf die 

Pflanzengemeinschaften in den Feldrändern auswirkt, wurde die facettenreiche Struktur der 

Pflanzengemeinschaft in Hinblick auf die Alpha-, Beta-, und Gamma-Diversität und der Artniveau-

Charakteristik wie Seltenheit, Wuchsform und Dispersionstypen in hundert Feldrändern im Haean-myun 

Einzugsgebiet untersucht. Die Studie ergab, dass der Verzicht auf lokales Management in Feldrändern die 

Alpha-Diversität und insbesondere das Artenreichtum der seltenen Arten und/oder die abiotische Verbreitung 

und perennierende Wuchsformen positiv beeinflussten. Im Gegensatz dazu führte ein lokales Management 
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der Feldränder zu einer niedrigeren Alpha-Diversität und einer höheren Beta-Diversität. Die Verfügbarkeit 

von nicht-bewirtschafteten Habitaten auf Landschaftsebene beeinflusste die Diversität der gemanagten 

Feldränder, insbesondere die Alpha-Diversität mit Fokus auf die häufiger vorkommenden Arten. Der stärkste 

positive Effekt auf die Alpha-Diversität wurde bei den einjährigen Arten unabhängig von deren 

Dispersionsgrad gefunden.            

In der zweiten Studie nutzten wir die Pfad-Modell-Analyse um den Effekt der funktionalen 

Pflanzenmerkmale (PTFs), der abiotischen Bodeneigenschaften (Bodentextur) und der 

Vegetationseigenschaften (Grad der Vegetationsbedeckung und Artenreichtum) auf drei 

Bodenstabilitätskriterien (Bodenaggregatstabilität, Bodeneindringwiderstand und Bodenscherfestigkeit) in 30 

Feldrändern im Haean-Einzugsgebiet  in Südkorea zu untersuchen. Außerdem untersuchten wir die 

Bedeutung der intraspezifischen Merkmalsvariabilität (ITV) indem die Modelle, die ITV entweder 

berücksichtigten oder nicht berücksichtigten, verglichen wurden. Die Studie ergab, dass die Varianz der 

Bodenstabilität im unterschiedlichen Ausmaß erklärt wurde (zu 81% mit der Bodenaggregatstabilität und zu 

35% mit der Bodenscherfestigkeit). Die drei Bodenstabilitätskriterien wurden hauptsächlich direkt durch die 

Wurzeldichte beeinflusst, während hingegen die PTFs durch die Wurzeldichte und die Bodentextur durch 

andere Vegetationsparameter eher indirekt beeinflusst wurden. Das Modell, welches die ITV berücksichtigte, 

erklärte die Varianz und die Anpassungsgüte in allen Fällen.       

In der dritten Studie wurde der Effekt des Feldränder-Managements und der Hangneigung auf den 

Sedimentrückhalt untersucht, indem vor der Monsunzeit an 12 Standorten im Einzugsgebiet Haean Atroturf-

Matten (n=15/Standort) installiert wurden und zwar vor, mittig und hinter vier verschiedenen Feldrand-Typen 

(bewirtschaftet+flach, bewirtschaftet+steil, nicht-bewirtschaftet+flach, nicht-bewirtschaftet+steil). Die 

Sedimentmenge wurde an den 12 Standorten nach jedem Regenereignis durchgehend bis zum Ende der 

Monsunzeit bestimmt. Mithilfe des linearen Mixed-Effect-Modells wurde getestet, in welchem Ausmaß sich 

das Management der Feldränder und dessen Hangneigung auf den Sedimentrückhalt auswirkt und wie sich 

die Sedimentmenge vor und hinter den vier Feldrandtypen unterscheidet. Die Studie ergab eine positive 

Korrelation zwischen Niederschlagsmenge und Sedimentmenge in allen untersuchten Fällen. Im Vergleich zu 

den bewirtschafteten Feldrändern zeigten die  nicht-bewirtschafteten Feldränder eine erhöhte Effizienz bei 

der Verminderung der Bodenerosion. Im Falle der Hangneigung zeigte sich, dass auch hier die nicht-

bewirtschafteten natürlichen Feldränder im Vergleich zu den bewirtschafteten Feldrändern in Kombination 

mit der Vegetationsbedeckung und bei starker Hangneigung am meisten Sediment zurückhielten. Die 

Ergebnisse erlaubten, ein Konzept zur Anordnung und Gestaltung von Feldrändern in Agrarlandschaften zur 

Reduktion der Bodenerosion zu entwickeln.        

In der vorliegenden Arbeit haben wir mehrere Empfehlungen für eine Verbesserung der 

Ökosystemfunktionen in Agrarlandschaften in Bezug auf die Feldränder als funktionale Komponente des 
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Agrarökosystems entwickelt. Wir konnten zeigen, wie wichtig das lokale Management der Feldränder und 

die umgebene Landnutzung auf Landschaftsebene für den Erhalt der Diversität in Agrarlandschaften ist. Für 

Länder wie Südkorea sollten neue Gesetze und Strategien in Bezug auf die Kontrolle des lokalen 

Feldränderbewirtschaftung entwickelt werden, welche den Erhalt der Biodiversität durch die Bereitstellung 

von geeigneten Habitaten für Flora und Fauna unterstützen. Somit kann auch die Bodenqualität und 

Bodenstabilität beeinflusst und die Bodenerosion während der Monsunzeit in Südkorea kontrolliert werden. 

Darüber hinaus konnten wir zeigen, wie essentiell sich die Komposition der funktionellen 

Pflanzengemeinschaften der Feldränder auf die Bodenstabilität als wichtige Komponente der 

Ökosystemfunktion in Agrarlandschaften auswirkt. Schließlich konnten wir ein zuvor existierendes 

Entscheidungsunterstützungssystem modifizieren, welches eine effektivere Platzierung und ein effektiveres 

Design der Feldränder innerhalb der Agrarlandschaft erlaubt und als Bodenerosionsschutz insbesondere in 

vom Monsun beeinflussten Gebieten dient. 
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Chapter 1: General introduction 

 

1.1. Background and motivation 

 

1.1.1 Field margins and their importance to agricultural landscapes 

Agricultural landscapes cover approximately 50% of the earth’s land surface, where one-third is 

planted with crops, while the other two-thirds dedicated to grazing land (Durán Zuazo & Rodríguez 

Pleguezuelo, 2008; USDA, 2013). One of the functional components of the agricultural landscapes is field 

margin, which is the vegetated strips of land lying between crop and field boundary, and extending to a 

limited distance into the crop (Greaves & Marshall, 1987; Hickey & Doran, 2004). Field margins are a 

key feature of agricultural landscapes, present in some forms at the edges of all agricultural fields 

(Marshall, 1988).  

A series of extremely important roles for field margins have been identified, reflecting 

agricultural, environmental, conservational, recreational, and cultural or historical interests (Marshall, 

1993; Marshall, 1995). New approaches to creating and managing field margins have shown the 

importance of these functions. Udo de Haes (1995) and de Snoo (1995) summarized four major concerns 

involved in field margin management as shown in Table 1.1. The effectiveness of field margins in 

contributing positively to landscape functions by reducing environmental impacts of human activities and 

providing the services (Table 1.1) depends on biological community composition, i.e., the establishment, 

presence and resilience of organisms occupying these niches. Although many researches on field margins 

have been conducted in Europe (Tarmi et al., 2009; Ma et al., 2013), a role of field margins in other 

ecosystems, like South Korean agricultural landscapes characterized by monsoon-rainfalls, is 

comparatively less studied.  

In modern times, agriculture has seen major changes, with intensification of production, 

developments in machinery, crop protection and a need for larger field sizes. Land re-allotment 

programmes, in which ownership has been rationalized, have also been implemented in many countries. 

These developments have been accompanied by changes in field margins, often with the removal of 

features illustrated in Fig. 1.1.  
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Table 1.1. Major functions of field margins in agricultural landscapes. 

Function Role 

Agronomy and animal husbandry Define land ownership, provide stock fencing and shelter, provide 

windbreak for crops, enhance pollination, provide wood and wild game 

Environmental Control transport of pesticides, herbicides and nutrients; prevent erosion and 

siltation, influence snow and water distribution 

Nature conservation Provide species refugia, complement biodiversity by providing habitat, 

feeding and breeding locations, and movement corridors 

Recreation and rural development Provide field access, and areas for walking, driving, hunting; promote 

tourism via aesthetics, maintain culture and heritage 

 

 

 

 

Fig. 1.1. Principal elements of a field margin in the agricultural landscapes (after Greaves and Marshall 

(1987)). 
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1.1.2 Diversity of the field margins 

Field margin diversity is of great importance to the ecosystem in different ways: firstly, by 

increasing its productivity, as the more species found will lead to complementary patterns for using the 

ecosystem resources and also due to the mutual interactions between species (Tilman et al., 1996; Loreau 

et al., 2001; Hooper et al., 2005; Cardinale et al., 2006). Secondly, increasing the ecosystem stability, as 

larger number of species is essential to maintain the stability of ecosystem processes in changing 

environments (Chapin et al., 2000). As from a functional point of view, species diversity is important as 

their individual traits and interactions contribute to maintain the functioning and stability of ecosystems 

and biogeochemical cycles (Lehman & Tilman, 2000; Naeem et al., 2012). Thirdly, high diversity 

provides a buffer against environmental fluctuations, as the different responses of different species to 

these fluctuations will lead to more predictable ecosystem properties (Yachi & Loreau, 1999; Loreau et 

al., 2001). Due to this relation between diversity and ecosystem functioning, problems will appear as a 

result of species losses, which is mainly due to human activities as it will consequently alter some of the 

key ecosystem processes, e.g. productivity and nutrient cycling, affecting the whole ecosystem services, 

which means, arguments for biodiversity conservation are mainly based on ecosystem services (Isbell et 

al., 2011; Cardinale et al., 2012). 

One of the major threats to the biodiversity in the agriculture landscapes is the agriculture 

intensification which leads to a severe decline in the species diversity and as discussed earlier will affect 

the ecosystem functioning. Even with this agriculture intensification the field margins can play a 

conservation role, as it provides species refugia and complementing biodiversity by providing habitat, 

feeding and breeding locations (Ma et al., 2013). So, in order to ensure an efficient conservation plane in 

agricultural landscapes, it is important to estimate the land-use and human impacts on biodiversity, 

especially on a landscape scale (Jost et al., 2010; Hackman, 2015), species maintenance, functional and 

evolutionary processes at different spatial scales (Gering et al., 2003; Brooks et al., 2006; Lee & Jetz, 

2008). To achieve this, all of the diversity components should be provided at the local (α-diversity), 

regional (γ-diversity) and among localities (β-diversity) scales (Buckley & Jetz, 2008; Jankowski et al., 

2009), which will help in conservation of biodiversity in order to reduce the unnaturally rapid extinction 

rates caused by human activities (Chapin et al., 2000).  

Currently, it became well known that the plant species growing in field margins are affected by 

the surrounding landscape via effects on the regional species pool and dispersal limitations (Pärtel et al., 

1996; Marshall et al., 2006) and the management practices (Jobin et al., 1997), so grasping how plant 

species growing in the field margins respond to different types of disturbances will help enriching their 

functions and roles within the agroecosystem.  
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1.1.3 Plant functional traits (PFTs) and ecosystem functioning 

The high diversity of species makes a functional analysis of the importance of individual species 

challenging. The concept of plant functional traits (PFTs) promises to be a powerful approach in this 

context (Wellstein et al., 2011). PFTs is a currently widely used expression in plant ecology (Dı́az & 

Cabido, 2001; Hooper et al., 2005; Lavorel et al., 2007; Albert et al., 2012), but its actual meaning still 

varies among authors. A plant functional trait is generally defined as any morphological, physiological or 

phenological feature measured at the individual level that impacts fitness (Violle et al., 2007). It may be 

understood as a surrogate of a function (e.g. specific leaf area) or as this function itself (e.g. 

photosynthesis), with the difficulty to agree on the actual meaning of function (Calow, 1987; Jax, 2005). It 

is also considered as a trait that strongly influences organismal performance (McGill et al., 2006) and/or 

individual fitness (Geber & Griffen, 2003; Reich et al., 2003). Finally, it may be defined with respect to 

ecosystem functioning (McIntyre et al., 1999) this is the case of functional effect traits, defined as those 

traits that have an impact on ecosystem functioning (Dı́az & Cabido, 2001; Lavorel et al., 2007). PFTs 

promise to allow for a process-based understanding plant community patterns at a manageable level of 

complexity. They provide a link between organism-centred and matter-flux-oriented perspectives on 

ecosystem ecology (Lavorel & Grigulis, 2012). 

Understanding the processes that drive the degradation of ecosystem functions in agricultural 

landscapes is of pivotal interest given ongoing land-use and climate change (Cardinale et al., 2012). 

Although ecosystem functions are strongly affected by the direct impact of abiotic drivers (e.g. soil 

moisture), it is also modulated by biotic factors (Loreau et al., 2001). A number of studies has aimed at 

identifying the most important biotic drivers and it has been suggested that the functional composition of 

ecological communities is often more important for the maintenance of ecosystem functioning than 

species richness per se (Diaz et al., 2006; Laughlin, 2014).  

Different metrics of functional community composition can be measured in different ways. Recent 

studies suggest that community weighted means of functional traits (CWM), obtained by taking the mean 

trait value of a species weighted by its relative abundance in the focal community and then summed over 

all species (Garnier et al., 2004). This relates better to ecosystem functioning than functional diversity 

metrics (Fortunel et al., 2009; Laughlin, 2011). Even though CWM is commonly applied (Garnier et al., 

2004; Díaz et al., 2007) this metric has the problem that it ignores intraspecific trait variability. However, 

intraspecific variability can be large and is often not random but a result of adaptation or phenotypic 

plasticity of traits either along environmental  gradients (Sandquist & Ehleringer, 1997) or a response to 

biotic interactions (Gross et al., 2009; Albert et al., 2011). Intraspecific trait variability, thus, can strongly 

influence the estimates of community trait composition (Jung et al., 2014). Consequently, it has been 

strongly advocated to account for intraspecific variability when calculating CWM (Albert et al., 2010).  
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1.1.4 Soil erosion in agricultural landscapes 

Soil erosion is one of the common problems affecting agricultural landscapes, especially in areas 

subjected to intensive rainfall events. Soil erosion has been intensifying in recent years (Pimentel et al., 

1995), and causes reductions in productivity, reaching 50% in some lands (Eswaran et al., 2001). One of 

the most serious types of soil erosion is the water erosion, which can be distinguished into two forms; (1) 

loss of topsoil, which is the displacement of soil materials by water, that causes land degradation by 

removing the top fertile soil layer which affects the crop production by increasing compaction, which 

decreases the infiltration rates and limits the rooting depth and (2) terrain deformation, that causes the 

whole area to be affected by rills and gullies (Reganold et al., 1987; Oldeman, 1994; Xu et al., 2013). 

During the summer monsoon, the East Asian countries, including South Korea receive a huge 

amount of rainfall, which impacts both the agriculture and economy (Chen et al., 1988). These rains along 

with the human activities cause water erosion that produces severe problems in the agricultural 

landscapes, e.g. land degradation in fields’ and downstream sedimentation, flood plains and water bodies, 

which worsens water quality (Van Oost et al., 2007; Xu et al., 2013). It has been shown that water erosion 

is responsible for degradation of a total 441 M ha or 59% of the total degraded soil in Asia (Oldeman, 

1994). 

Preventing and controlling soil erosion can be achieved by reducing the erosive impact of rainfall 

and maintaining soil infiltration rates, which consequently will prevent surface flow. This can be done 

using several methods; (1) vegetation restoration, which effectively strengthens soil erosion control, and 

can be done effectively using vegetated field margins (Zheng, 2006; Wei et al., 2014); (2) field 

management via crop rotation and tillage practices which can effectively minimize soil erosion, improve 

water use efficiency and soil carbon sequestration (Raclot & Albergel, 2006; Wang et al., 2010); and (3) 

by improving the soil stability which will help in soil erosion control in the longer term (Barthès & Roose, 

2002). 

Field margins can assist in sediment retention by trapping 70-90% of the inflowing sediment, 

consequently reducing sediment loads to rivers and streams (Duzant et al., 2010). Owens et al. (2007), in 

their study on field margins in agriculture landscape in southwest England, found that the field margins 

were effective in trapping the coarse sediment fractions, and the amount of sediment was influenced by 

soil type, slope, land-use and management. Another study done by Heede (1990) on natural vegetated 

buffer strips in pine forests in Arizona, showed that the vegetated buffer strips trapped 61 times more 

sediment as compared to sites where buffer strips were missing. Cooper et al. (1987), in a study on the 

efficiency of riparian buffers in controlling soil erosion in two watersheds characterized by >50% forest 

cover, revealed that the riparian buffers were a sediment sink over 20-year period they studied. 
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The vegetation of the field margin efficiently traps large heavy particles (Hickey & Doran, 2004). 

The effectiveness of vegetation cover on sediment trapping and protecting soil against erosion is produced 

mainly by reducing runoff and by increasing infiltration rate into soil. Moreover, plants protect soil using 

their roots, which bend the soil particles via the root excretions (Traore et al., 2000; Gyssels et al., 2005; 

de Baets et al., 2007), by reducing the raindrops' effect on the soil with their canopy (Gray & Sortir, 1996; 

Durán Zuazo et al., 2008), acting as a physical barrier to change sediment flow at the soil surface (Van 

Dijk et al., 1996; Lee et al., 2000; Martínez et al., 2006). The spatial distribution of vegetation along the 

slope is, therefore, an important factor for reducing the sediment runoff (Lavee et al., 1998; Calvo-Cases 

et al., 2003; Francia Martínez et al., 2006). 

One of the factors that influence soil erosion and runoff is slope steepness. Although Abrahams et 

al. (1996) showed that the effect of slope steepness on soil loss is complex, most of the studies didn’t 

show how the slope can affect the soil erosion in detail. These studies, investigated the relation between 

slope steepness and soil erosion, have been shown that erosion was expected to increase as a function of 

slope steepness (Zheng, 2006; Fu et al., 2011), as a result of the increase in velocity and volume of surface 

runoff (Ziadat & Taimeh, 2013). This effect is also affected by other factors like soil properties (Singer & 

Blackard, 1982), surface conditions (Martínez et al., 2006) and vegetation cover (Singer & Blackard, 

1982; Hancock et al., 2015). 

 

1.2. Objectives  

The main objective of this thesis is to understand further on the processes governing plant 

community structure and resulting functioning in agricultural field margins by focusing on describing 

naturally occurring plant communities of the field margins in the agricultural landscape of Haean-myun 

catchment in South Korea and how it can affect the ecosystem functioning (e.g. soil stability, soil erosion 

control), which consequently will help us to understand the functional role of the field margins as an 

important component of the agro-ecosystem (Fig. 1.2). To achieve this goal, the study addressed three 

main questions which are: 

1. How do local site conditions (margin width, margin management “managed and unmanaged”) 

and landscape-scale land-use (e.g. percentage of non-farmed habitats within several buffer 

distances) affect field margin’s multi-scale plant community structure? (Chapter 2) 

2. How do plant functional traits of the species growing on the field margins affect soil stability 

as a key ecosystem function provided by agricultural landscapes? (Chapter 3) 

3. How do the local management and slope degree of the field margins affect ecosystem services 

in agricultural landscapes (e.g. reduction of local soil erosion)? (Chapter 4) 
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Fig. 1.2. Schematic diagram showing the objectives of the thesis and connections of different parts. The left part of 

the diagram shows the effect of field margin’s local management and the landscape-scale land-use on a 

multi-scale plant community structure (Chapter 2), the middle part of the diagram shows the effect of soil 

characteristics, vegetation and plant functional traits (PFTs) on soil stability of the field margins (Chapter 3) 

and the right part shows the effect of the field margin’s management and slope on soil erosion control 

(Chapter 4). 

 

1.3. Study area 

All the fieldwork for this thesis has been conducted in the Haean-myun catchment in South Korea, 

which is located in the watershed of Soyang Lake close to the Demilitarized Zone (DMZ; 128°05’ to 

128°11’ E, 38°13’ to 38°20’ N; Fig. 1.3 A). Elevation in the study site varies from 500 to 750 m a.s.l. The 

mean annual air temperature is 10.5 oC with minimum monthly temperature of -10 oC in January and 

maximum monthly temperature of 27 oC in August (1999 - 2013). The average precipitation is 1,500 mm, 

with 70% of the rain falling during the summer monsoon from June to August (Berger et al., 2013). 

The total catchment area is 64 km² with 58% of the catchment classified as forested mountains 

and 30% as agricultural areas (22% dryland fields and 8% rice paddy fields), while the remaining 12%  

are  residential  and  semi-natural  areas  including  grassland,  field  margins,  riparian  areas, channels, 
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and farm roads (Seo et al., 2014). The topography of the research area is characterized by flat areas and 

moderately steep slopes in the  center  of  the  catchment  and  steep  slopes  at  the  catchment edges that 

are mostly covered by forest. The terrain is highly complex with a variety of different hillslopes and flow 

directions.  

In the Haean-myun catchment, soils are strongly affected by human activities; especially dry 

fields are modified by the addition of the excavated materials from nearby mountain slopes in order to 

offset annual erosion losses (Park et al., 2010). Average annual soil erosion rate ranges from 30 to 54 (t 

ha-1yr-1) (Arnhold et al., 2014).  

In order to investigate how the local-management and landscape-scale land-use influence the plant 

communities growing on the field margins (Chapter 2) we surveyed 100 plots well-distributed in the 

catchment (Fig. 1.3 B). Among 100 plots we chose 30 plots (Fig. 1.3 C) in order to test the effect of the 

plant functional traits on soil stability (Chapter 3). Finally, for the study about an effect of field margin’s 

local-management and slope degree on soil erosion control (Chapter 4), 12 plots were selected 

additionally (Fig. 1.3 D). 
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Fig. 1.3. Location of the study area, Haean-myun catchment on the Korean peninsula (A), with the locations of the 

plots selected for the three studies of this thesis (B, C and D). (B) The 100 sampling plots for the studying 

the field margins’ plant communities (Chapter 2), (C) the 30 sampling plots for the effect of plant functional 

traits on soil stability (Chapter 3) and (D) the 12 sampling sites for the sediment trapping study (Chapter 4). 
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1.4. Thesis outline 

To answer the research questions formulated in section 1.2, the work was divided into three main 

parts, outlined as follows: 

 

1.4.1 Diversity of field margins 

In this study, we tested how the local-scale management and the landscape-scale land-use 

influence plant communities of agricultural field margins, by studying multi-facet plant community 

structure which includes alpha, beta and gamma diversities and species level characteristics such as 

rareness, growth forms and dispersal types. We addressed two main questions: (1) how does local-scale 

management vs. landscape-scale land-use influence meta-community, community and species level 

diversity? and (2) to what extent can species-specific characteristics, such as growth form and dispersal 

traits, help in explaining this influence? 

 

1.4.2 Effect of plant functional traits on soil stability 

In this study, we aimed to integrate vegetation characteristics and functional traits into a model of 

abiotic soil characteristic effects on soil stability, towards an improved understanding of ecosystem 

functioning. For this purpose we measured soil stability via soil aggregate stability, soil penetration 

resistance and soil shear vane strength. First, we tested how well our conceptual model fits data from field 

margins and how important intraspecific variability is for this fit. Second, we investigated the importance 

of PFTs in comparison to the influence of abiotic soil characteristics and biotic vegetation characteristics 

on soil stability. Finally, we asked whether the identified functional effect traits are at the same time 

important functional response traits. In other words, are the traits that determine the effect on ecosystem 

functioning the same as those that determine the response of organisms to abiotic conditions? 

 

1.4.3 Effect of field margins on erosion control 

The aim of this paper is therefore to investigate how the local management of field margins 

affects their potential to mitigate the negative effects of soil erosion in a monsoon area. In particular, we 

compare the amount of sediment trapped between intensively managed field margins (i.e. by cutting) and 

extensively managed field margins (no management for at least one year). First, we analyze the effects of 

the two field margin management intensities, on both shallow and steep slopes, on the sediment 

differences collected after and before the field margins, which is related to the net uptake or release of 

sediment of the field margin. Second, we analyze the amount of sediment collected within the different 
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field margins, which will give us a wider picture on the amount of sediment that will be trapped by the 

different types of the field margins. 

All the three studies were conducted within the framework of the International Research Training 

Group TERRECO (Complex TERRain and ECOlogical Heterogeneity) (Kang & Tenhunen, 2010), which 

aims to assess ecosystem services derived from mountainous landscapes that play an essential role in 

providing freshwater for large parts of the human population. The TERRECO project consists of a large 

group of scientists from different fields, who investigate processes related to soils, hydrology, water yield 

and water quality, agricultural and forest production, biodiversity, and the associated economic gains and 

losses obtained from those landscapes. The general goal of the research group is the development of an 

assessment framework that allows the quantitative evaluation of shifts in ecosystem services due to future 

changes in climate, land use and human population. 

This thesis describes how the vegetation of field margins in agricultural landscapes of South 

Korea can affect important ecosystem services like soil stability and soil erosion control, which simply 

can illustrate the functional role of the field margins within the landscape. The results of our work provide 

information that can be used for the parameterization of erosion models like Morgan-Morgan-Finney 

model (MMF), with respect to erosion prediction in agricultural landscapes. Our findings have also 

important implications for managing field margins in order to improve the species diversity and 

consequently several key ecosystem functions which mainly related to soil stability, soil erosion control 

and water quality in agricultural landscapes. Furthermore, our results can be helpful for future socio-

economic studies on the costs and benefits of field margins within agricultural landscapes, which will help 

in getting the maximum benefits out of it.   
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1.5. Record of contributions to this thesis 
 

The three studies described in this thesis refer to three different manuscripts. The first manuscript 

(Chapter 2) is in preparation to be submitted to Landscape Ecology, the second manuscript (Chapter 3) got 

invitation for resubmission at Plant and Soil, and the third manuscript (Chapter 4) is submitted to Journal 

of Environmental Management and needs minor revision. The following list specifies the contributions of 

the individual authors to each manuscript. 

 

Manuscript 1 (Chapter 2):  

Authors:  Hamada E. Ali, Björn Reineking and Tamara Münkemüller  

Title: Drivers of multi-scale plant community structure in agricultural field margins of 

South Korea 

Status:  In preparation 

Contributions:   

H. E. Ali: 75% (concepts, field work, interpretation, discussion and presentation of 

results, manuscript preparation) 

B. Reineking: 10% (concepts, discussion of results, contribution to manuscript 

preparation) 

T. Münkemüller: 15% (concepts, discussion of results, contribution to manuscript 

preparation) 
 

Manuscript 2 (Chapter 3): 

Authors:  Hamada E. Ali, Björn Reineking and Tamara Münkemüller  

Title: Effects of plant functional traits on soil stability: intraspecific variability matters 

Status:  Invitation for resubmission 

Journal: Plant and Soil 

Contributions:   

H. E. Ali: 70% (concepts, field and lab work, interpretation, discussion and 

presentation of results, manuscript preparation) 

B. Reineking: 10% (concepts, discussion of results, contribution to manuscript 

preparation) 

T. Münkemüller: 20% (concepts, discussion of results, contribution to manuscript 

preparation)  
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Manuscript 3 (Chapter 4): 

Authors:  Hamada E. Ali and Björn Reineking  

Title: Extensive management of field margins enhances their potential to mitigate soil 

erosion 

Status:  Submitted with minor revision needed. 

Journal: Journal of Environmental Management 

Contributions: 

H. E. Ali: 85% (concepts, field work, interpretation, discussion and presentation of 

results, manuscript preparation) 

B. Reineking: 15% (concepts, discussion of results, contribution to manuscript 

preparation) 

 

  



Chapter 1: General Introduction 

 

14 

 

1.6. References 

 
Abrahams AD, Li G, Parsons AJ. 1996. Rill hydraulics on a semiarid hillslope, southern Arizona. Earth 

Surface Processes and Landforms 21(1): 35-47. 

Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W. 2012. On the importance of 

intraspecific variability for the quantification of functional diversity. Oikos 121(1): 116-126. 

Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C. 2011. When and how should intraspecific 

variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution 

and Systematics 13(3): 217-225. 

Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. 2010. Intraspecific 

functional variability: extent, structure and sources of variation. Journal of Ecology 98(3): 604-

613. 

Arnhold S, Lindner S, Lee B, Martin E, Kettering J, Nguyen TT, Koellner T, Ok YS, Huwe B. 2014. 
Conventional and organic farming: Soil erosion and conservation potential for row crop 

cultivation. Geoderma 219–220(0): 89-105. 

Barthès B, Roose E. 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; 

validation at several levels. CATENA 47(2): 133-149. 

Berger S, Jang I, Seo J, Kang H, Gebauer G. 2013. A record of N2O and CH4 emissions and 

underlying soil processes of Korean rice paddies as affected by different water management 

practices. Biogeochemistry 115(1-3): 317-332. 

Brooks TM, Mittermeier RA, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF, 

Mittermeier CG, Pilgrim JD, Rodrigues ASL. 2006. Global biodiversity conservation priorities. 

Science 313(5783): 58-61. 

Buckley LB, Jetz W. 2008. Linking global turnover of species and environments. Proceedings of the 

National Academy of Sciences 105(46): 17836-17841. 

Calow P. 1987. Towards a definition of functional ecology. Functional Ecology 1(1): 57-61. 

Calvo-Cases A, Boix-Fayos C, Imeson AC. 2003. Runoff generation, sediment movement and soil water 

behaviour on calcareous (limestone) slopes of some Mediterranean environments in southeast 

Spain. Geomorphology 50(1–3): 269-291. 

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, 

Tilman D, Wardle DA, et al. 2012. Biodiversity loss and its impact on humanity. Nature 

486(7401): 59-67. 

Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL, Sankaran M, Jouseau C. 

2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 

443(7114): 989-992. 

Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel 

S, Sala OE, Hobbie SE, et al. 2000. Consequences of changing biodiversity. Nature 405(6783): 

234-242. 

Chen T-C, Yen M-C, Murakami M. 1988. The Water Vapor Transport Associated with the 30–50 Day 

Oscillation over the Asian Monsoon Regions during 1979 Summer. Monthly Weather Review 

116(10): 1983-2002. 

Cooper JR, Gilliam JW, Daniels RB, Robarge WP. 1987. Riparian Areas as Filters for Agricultural 

Sediment. Soil Sci. Soc. Am. J. 51(2): 416-420. 

de Baets S, Poesen J, Knapen A, Galindo P. 2007. Impact of root architecture on the erosion-reducing 

potential of roots during concentrated flow. Earth Surface Processes and Landforms 32(9): 1323-

1345. 

de Snoo GR. 1995. Unsprayed field margins: implications for environment, biodiversity and agricultural 

practice. The Dutch Field Margin Project in the Haarlemmermeerpolder. Ph.D Thesis, 

Universiteit Leiden Leiden. 

Dı́az S, Cabido M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. 

Trends in Ecology & Evolution 16(11): 646-655. 



Chapter 1: General Introduction 

 

15 

 

Diaz S, Fargione J, Chapin FS, Tilman D. 2006. Biodiversity loss threatens human well-being. PLoS 

Biology 4(8): 1300-1305. 

Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. 2007. Incorporating plant functional 

diversity effects in ecosystem service assessments. Proceedings of the National Academy of 

Sciences 104(52): 20684-20689. 

Durán Zuazo V, Rodríguez Pleguezuelo C. 2008. Soil-erosion and runoff prevention by plant covers. A 

review. Agronomy for sustainable development 28(1): 65-86. 

Durán Zuazo VH, Rodríguez Pleguezuelo CR, Francia Martínez JR, Cárceles Rodríguez B, 

Martínez Raya A, Pérez Galindo P. 2008. Harvest intensity of aromatic shrubs vs. soil erosion: 

An equilibrium for sustainable agriculture (SE Spain). CATENA 73(1): 107-116. 

Duzant JH, Morgan RPC, Wood GA, Deeks LK 2010. Modelling the Role of Vegetated Buffer Strips 

in Reducing Transfer of Sediment from Land to Watercourses. Handbook of Erosion Modelling: 

John Wiley & Sons, Ltd, 249-262. 

Eswaran H, Lal R, Reich P 2001. Land degradation: an overview. In: Bridges E, Hannam I, Oldeman L, 

Pening de Vries F, Scherr S, Sompatpanit S eds. Responses to Land degradation: Oxford Press, 

New Delhi, India, 20-35. 

Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro 

H, Cruz P, et al. 2009. Leaf traits capture the effects of land use changes and climate on litter 

decomposability of grasslands across Europe. Ecology 90(3): 598-611. 

Francia Martínez JR, Durán Zuazo VH, Martínez Raya A. 2006. Environmental impact from 

mountainous olive orchards under different soil-management systems (SE Spain). Science of The 

Total Environment 358(1–3): 46-60. 

Fu B, Liu Y, Lü Y, He C, Zeng Y, Wu B. 2011. Assessing the soil erosion control service of ecosystems 

change in the Loess Plateau of China. Ecological Complexity 8(4): 284-293. 

Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, 

Aubry D, Bellmann A, et al. 2004. Plant functional markers capture ecosystem properties during 

secondary succession. Ecology 85(9): 2630-2637. 

Geber MA, Griffen LR. 2003. Inheritance and natural selection on functional traits. Chicago, IL, 

ETATS-UNIS: University of Chicago Press. 

Gering JC, Crist TO, Veech JA. 2003. Additive Partitioning of Species Diversity across Multiple Spatial 

Scales: Implications for Regional Conservation of Biodiversity. Conservation Biology 17(2): 488-

499. 

Gray DH, Sortir RB. 1996. Biotechnical and soil bioengineering slope stabilization: a practical guide 

for erosion control: John Wiley & Sons. 

Greaves MP, Marshall EJP 1987. Field margins: definitions and statistics. In: Way JM, Greig-Smith, 

P.J. ed. Field Margins. Monograph: British Crop Protection Council, Thornton Heath, Surrey, 3-

10. 

Gross N, Kunstler G, Liancourt P, De Bello F, Suding KN, Lavorel S. 2009. Linking individual 

response to biotic interactions with community structure: a trait-based framework. Functional 

Ecology 23(6): 1167-1178. 

Gyssels G, Poesen J, Bochet E, Li Y. 2005. Impact of plant roots on the resistance of soils to erosion by 

water: a review. Progress in Physical Geography 29(2): 189-217. 

Hackman KO. 2015. A method for assessing land-use impacts on biodiversity in a landscape. Global 

Ecology and Conservation 3(0): 83-89. 

Hancock GR, Wells T, Martinez C, Dever C. 2015. Soil erosion and tolerable soil loss: Insights into 

erosion rates for a well-managed grassland catchment. Geoderma 237–238(0): 256-265. 

Heede BH. 1990. Vegetation strips control erosion in watersheds: USDA Forest Service, Rocky 

Mountain Forest and Range Experiment Station. 

Hickey MBC, Doran B. 2004. A review of the efficiency of buffer strips for the maintenance and 

enhancement of riparian ecosystems. Water Quality Research Journal of Canada 39(3): 311-317. 



Chapter 1: General Introduction 

 

16 

 

Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau 

M, Naeem S, et al. 2005. Effects of Biodiversity on Ecosystem Functioning: A Consensus of 

Current Knowledge. Ecological Monographs 75(1): 3-35. 

Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid 

B, Tilman D, van Ruijven J, et al. 2011. High plant diversity is needed to maintain ecosystem 

services. Nature 477(7363): 199-202. 

Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN. 2009. Beta diversity along environmental 

gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal 

Ecology 78(2): 315-327. 

Jax K. 2005. Function and “functioning” in ecology: what does it mean? Oikos 111(3): 641-648. 

Jobin B, Boutin C, DesGranges J-L. 1997. Effects of agricultural practices on the flora of hedgerows 

and woodland edges in southern Quebec. Canadian Journal of Plant Science 77(2): 293-299. 

Jost L, DeVries P, Walla T, Greeney H, Chao A, Ricotta C. 2010. Partitioning diversity for 

conservation analyses. Diversity and Distributions 16(1): 65-76. 

Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T. 2014. Intraspecific trait 

variability mediates the response of subalpine grassland communities to extreme drought events. 

Journal of Ecology 102(1): 45-53. 

Kang S-K, Tenhunen J. 2010. Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating 

Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes. 

Korean Journal of Agricultural and Forest Meteorology 12(4): 307-316. 

Laughlin DC. 2011. Nitrification is linked to dominant leaf traits rather than functional diversity. Journal 

of Ecology 99(5): 1091-1099. 

Laughlin DC. 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. 

Journal of Ecology 102(1): 186-193. 

Lavee H, Imeson AC, Sarah P. 1998. The impact of climate change on geomorphology and 

desertification along a mediterranean-arid transect. Land Degradation & Development 9(5): 407-

422. 

Lavorel S, Díaz S, Cornelissen J, Garnier E, Harrison S, McIntyre S, Pausas J, Pérez-Harguindeguy 

N, Roumet C, Urcelay C 2007. Plant Functional Types: Are We Getting Any Closer to the Holy 

Grail?, 149-164. 

Lavorel S, Grigulis K. 2012. How fundamental plant functional trait relationships scale-up to trade-offs 

and synergies in ecosystem services. Journal of Ecology 100(1): 128-140. 

Lee K-H, Isenhart TM, Schultz RC, Mickelson SK. 2000. Multispecies Riparian Buffers Trap Sediment 

and Nutrients during Rainfall Simulations. J. Environ. Qual. 29(4): 1200-1205. 

Lee TM, Jetz W. 2008. Future battlegrounds for conservation under global change. Proceedings of the 

Royal Society B-Biological Sciences 275(1640): 1261-1270. 

Lehman C, Tilman D. 2000. Biodiversity, Stability, and Productivity in Competitive Communities. 

American naturalist 156(5): 534-552. 

Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, 

Raffaelli D, Schmid B, et al. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge 

and Future Challenges. Science 294(5543): 804-808. 

Ma M, Hietala R, Kuussaari M, Helenius J. 2013. Impacts of edge density of field patches on plant 

species richness and community turnover among margin habitats in agricultural landscapes. 

Ecological Indicators 31(0): 25-34. 

Marshall E. 1988. The ecology and management of field margin floras in England. Outlook on 

Agriculture 17(4): 178-182. 

Marshall EJP 1993. Exploiting semi-natural habitats as part of good agricultural practice. In: Jordan, 

V.W.L. (Ed.), Scientific Basis for Codes of Good Agricultural Practice: Commission for the 

European Communities, Luxembourg 95-100. 



Chapter 1: General Introduction 

 

17 

 

Marshall EJP 1995. Research on field margin boundary strips: identifying goals and developing 

appropriate techniques. In: Jorg, E. (Ed.), Field Margin-strip Programmes. Proceedings of a 

Technical Seminar. Landesanstalt für Pflanzenbau und Pflanzenschutz, Mainz, Germany. 16-26. 

Marshall EJP, West TM, Kleijn D. 2006. Impacts of an agri-environment field margin prescription on 

the flora and fauna of arable farmland in different landscapes. Agriculture, Ecosystems & 

Environment 113(1–4): 36-44. 

Martínez AR, Zuazo VHD, Martínez JRF. 2006. Soil erosion and runoff response to plant-cover strips 

on semiarid slopes (SE Spain). Land Degradation & Development 17(1): 1-11. 

McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional 

traits. Trends in Ecology & Evolution 21(4): 178-185. 

McIntyre S, Lavorel S, Landsberg J, Forbes TDA. 1999. Disturbance response in vegetation – towards 

a global perspective on functional traits. Journal of Vegetation Science 10(5): 621-630. 

Naeem S, Duffy JE, Zavaleta E. 2012. The Functions of Biological Diversity in an Age of Extinction. 

Science 336(6087): 1401-1406. 

Oldeman L 1994. The global extent of soil degradation. In: D.J. Greenland D, Szabolcs I eds. Land 

Resilience and Sustainable Land Use: Wallingford: CABI, 99-118. 

Owens PN, Duzant JH, Deeks LK, Wood GA, Morgan RPC, Collins AJ. 2007. Evaluation of 

contrasting buffer features within an agricultural landscape for reducing sediment and sediment-

associated phosphorus delivery to surface waters. Soil Use and Management 23: 165-175. 

Park J-H, Duan L, Kim B, Mitchell MJ, Shibata H. 2010. Potential effects of climate change and 

variability on watershed biogeochemical processes and water quality in Northeast Asia. 

Environment International 36(2): 212-225. 

Pärtel M, Zobel M, Zobel K, van der Maarel E. 1996. The species pool and its relation to species 

richness: evidence from Estonian plant communities. Oikos: 111-117. 

Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, 

Saffouri R, et al. 1995. Environmental and Economic Costs of Soil Erosion and Conservation 

Benefits. Science 267(5201): 1117-1123. 

Raclot D, Albergel J. 2006. Runoff and water erosion modelling using WEPP on a Mediterranean 

cultivated catchment. Physics and Chemistry of the Earth 31(17): 1038-1047. 

Reganold JP, Elliott LF, Unger YL. 1987. Long-term effects of organic and conventional farming on 

soil erosion. Nature 330(6146): 370-372. 

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby KM, Walters MB. 2003. 
The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 

164(3 Suppl.): 143-163. 

Sandquist DR, Ehleringer JR. 1997. Intraspecific variation of leaf pubescence and drought response in 

Encelia farinosa associated with contrasting desert environments. New Phytologist 135(4): 635-

644. 

Seo B, Bogner C, Poppenborg P, Martin E, Hoffmeister M, Jun M, Koellner T, Reineking B, Shope 

CL, Tenhunen J. 2014. Deriving a per-field land use and land cover map in an agricultural 

mosaic catchment. Earth Syst. Sci. Data 6(2): 339-352. 

Singer MJ, Blackard J. 1982. Slope Angle-Interrill Soil Loss Relationships for Slopes up to 50%1. Soil 

Sci. Soc. Am. J. 46(6): 1270-1273. 

Tarmi S, Helenius J, Hyvönen T. 2009. Importance of edaphic, spatial and management factors for plant 

communities of field boundaries. Agriculture, Ecosystems & Environment 131(3–4): 201-206. 

Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in 

grassland ecosystems. Nature 379(6567): 718-720. 

Traore O, Groleau-Renaud V, Plantureux S, Tubeileh A, Boeuf-Tremblay V. 2000. Effect of root 

mucilage and modelled root exudates on soil structure. European Journal of Soil Science 51(4): 

575-581. 

Udo de Haes HA 1995. Akkerranden in perspectief. In: de Snoo GR, Rottevee, A.J.W., Heemsbergen, H. 

ed. Akkerranden in Nederland: Plantenziektenkundige Dienst, Wageningen, 7-14. 



Chapter 1: General Introduction 

 

18 

 

USDA. 2013. Agricultural Statistics Annual. Washington. DC, USDA. 

Van Dijk PM, Kwaad FJPM, Klapwijk M. 1996. Retention of water and sediment by grass strips. 

Hydrological Processes 10(8): 1069-1080. 

Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, 

Heckrath G, Kosmas C, et al. 2007. The Impact of Agricultural Soil Erosion on the Global 

Carbon Cycle. Science 318(5850): 626-629. 

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of 

trait be functional! Oikos 116(5): 882-892. 

Wang P, Stieglitz T, Zhou DW, Cahill Jr JF. 2010. Are competitive effect and response two sides of the 

same coin, or fundamentally different? Functional Ecology 24(1): 196-207. 

Wei W, Chen L, Zhang H, Yang L, Yu Y, Chen J. 2014. Effects of crop rotation and rainfall on water 

erosion on a gentle slope in the hilly loess area, China. CATENA 123(0): 205-214. 

Wellstein C, Schröder B, Reineking B, Zimmermann NE. 2011. Understanding species and community 

response to environmental change – A functional trait perspective. Agriculture, Ecosystems & 

Environment 145(1): 1-4. 

Xu Y, Qiao J, Hou X, Pan S. 2013. Plutonium in Soils from Northeast China and Its Potential 

Application for Evaluation of Soil Erosion. Sci. Rep. 3. 

Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The 

insurance hypothesis. Proceedings of the National Academy of Sciences 96(4): 1463-1468. 

Zheng F-L. 2006. Effect of Vegetation Changes on Soil Erosion on the Loess Plateau. Pedosphere 16(4): 

420-427. 

Ziadat FM, Taimeh AY. 2013. Effect of rainfall intensity, slope, land use and antecedent soil moisture 

on soil erosion in an arid environment. Land Degradation & Development 24(6): 582-590. 

 



Chapter 2: Diversity of field margins 

 
 

19 

 

Chapter 2: Drivers of multi-scale plant 

community structure in 

agricultural field margins of South 

Korea 

 
Hamada E. Ali *1,2, Björn Reineking 1,3,4, and Tamara Münkemüller 5,6 

 

1 Biogeographical modelling, Bayreuth Center of Ecology and Environmental Research 

BayCEER, University of Bayreuth, Universitaetsstr. 30, D-95440 Bayreuth, Germany. 

2 Botany Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt. 

3 Irstea, UR EMGR, 2 rue de la Papeterie-BP 76, F-38402 St-Martin-d’Hères, France 

4 Univ. Grenoble Alpes, F-38402 Grenoble, France 

5 Univ. Grenoble Alpes, Laboratoire d’Écologie Alpine (LECA), F-38000 Grenoble, France. 

6 CNRS, Laboratoire d’Écologie Alpine (LECA), F-38000 Grenoble, France 

 

* Correspondence author: Hamada E. Ali, Biogeographical modelling, University of Bayreuth, 

Universitaetsstr. 30, D-95440 Bayreuth, Germany; e-mail: helsayedali@gmail.com Phone: 

+49(0)921552064 

 

In preparation to Landscape Ecology 

 

  



Chapter 2: Diversity of field margins 

 
 

20 

 

Abstract 

Field margins are an important component of agricultural landscapes as they support biodiversity and 

maintain ecosystem functions. Here we use a multi-scale approach to better understand which scales of land 

management affect which components of plant biodiversity in field margins. In particular, we aim to quantify 

the effect of local-scale management (distinguishing recently managed and unmanaged field margins) and 

landscape-scale land-use (measured as percentage of non-farmed habitats) on multi-scale plant community 

structure at the meta-community level (beta and gamma diversities), community level (alpha diversity), and 

species level (species rarity, growth form and dispersal). We collected data from one-hundred plots; each 

divided into three 1 m2 subplots, from field margins in the Haean-myun catchment, South Korea.  

We found that recent local management of field margins resulted in lower alpha diversity but 

contributed to increased beta and gamma diversity. Abandonment of local management especially increased the 

diversity of rare species and benefitted the abundance of species characterized by perennial growth forms or 

abiotic dispersal. At the landscape scale, higher percentages of non-farmed habitats increased the alpha 

diversity of managed field margins. The positive landscape-scale effect on abundance was highest for annual 

species, independent of their dispersal mode. We conclude that a multi-scale approach supports an enriched and 

coherent portrayal of biodiversity responses to land management. 

 

Keywords: Alpha diversity, beta diversity, field margin management, field margin vegetation, landscape 

context, land-use, non-farmed habitat, plant response. 
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2.1 Introduction 

Changes in land-use practices within agricultural landscapes, such as agriculture intensification and 

widespread removal of natural vegetation, have led to a decline in biodiversity (Fritch et al., 2011). Diversity in 

agricultural landscapes is important for the conservation of typical cultural landscapes (Berkes & Davidson-

Hunt, 2006; Gao et al., 2013) and their species (Myers et al., 2000; Pimm et al., 2014) but also for ecosystem 

services such as pest control (Naeem et al., 2012; Reich et al., 2012). However, although a decline of 

biodiversity in response to land-use changes is well documented (Chapin et al., 2000; Sala et al., 2000) it often 

remains unclear which types of land management affect which components of biodiversity.  

We study field margins in an agricultural landscape in South Korea. The area is subjected to rapid 

change in land-use, as it has been shifting over the last 40 years towards intensive agriculture, which led to an 

expansion in farm fields and a reduction in natural areas (Kettering et al., 2012). Within these agricultural 

landscapes, field margins have an important function for conservation (Marshall, 1988; Moonen & Marshall, 

2001), as they provide species refuges as well as feeding and breeding habitats (Ma et al., 2013). Field margins 

and their diversity also play an important function within the agroecosystem as they promote, for example, soil 

stability (Pohl et al., 2009; Pérès et al., 2013). In order to reduce species loss and the loss of important 

ecosystem functions, it is important to understand the effects of different aspects of land management, e.g. local 

field margin management and landscape structure, on the species growing within the field margins. In the 

studied field margins we contrast two main types of management. First, local management, which includes 

cutting, spraying herbicides to remove field margin vegetation, and deciding on field margin width. Second, the 

landscape-scale land-use management, which can affect the regional species pool and provides opportunities 

for species dispersal, is here measured as the percentage of non-farmed habitat. 

In order to capture key ecological processes in this mosaic landscape—composed of habitable field 

margins surrounded by uninhabitable agricultural fields—ranging from the meta-community level such as mass 

and rescue effects to species specific responses (Leibold et al., 2004; Janišová et al., 2014) we study diversity 

at different scales (e.g. meta-community, community and species levels).  

First, at a meta-community scale, it is important to consider the overall diversity (gamma diversity) and 

the between-plot diversity (beta diversity) because it can explain the influence of the local and landscape 

managements on the plant community composition, structure and functioning as it reflects different degrees of 

species composition (Zhang et al., 2014). The importance of the landuse management, e.g. percentage of the 

non-farmed habitats, to the meta-communities is due to the landuse effect on the regional species pool (Pärtel et 

al., 1996; Zobel, 1997) in a way that the surrounding habitats represent sources of species that can survive 

under unfavorable condition (satellite species), which can migrate and increase the diversity of meta-

communities’ “so called spatial mass effect” (Shmida & Wilson, 1985; Pärtel et al., 2001; Öster et al., 2007). 
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Second, it is important to look at the community scale (i.e. alpha diversity) which reflects the local diversity of 

field margins, because alpha diversity is controlled by niche assembly, saturation of local communities, local 

conditions and biotic interactions (Wright, 1983; Tilman, 2004). Moreover, landuse management is often 

considered important to alpha diversity, due to environmental species sorting as more heterogeneous areas 

provide larger niche space, consequently promoting local species coexistence (Svenning, 2001; Phillips et al., 

2003). 

Finally, the species level, which includes species characteristics, e.g. rarity, growth form and method of 

seed dispersal, is pivotal in ecological research while studying biodiversity patterns in agricultural landscapes 

as they can show different responses to both local and landscape managements. The concept of rarity can help 

in evaluating species interactions within a community, detecting species response to environmental conditions 

and formulating conservation strategies (Kunin & Gaston, 1997). Prior research showed that common species 

are mostly responsible for spatial patterns in overall species richness (Lennon et al., 2004). Alahuhta et al. 

(2014), related variations of common and rare species to species sorting, with rare species probably showing 

pronounced habitat specialization at the species level. While Poos and Jackson (2012) showed that rare species 

may be more sensitive to environmental conditions, Cao et al. (2001) showed that rare species are better than 

common species in revealing local and land use managements, because common species have wider ranges of 

tolerance to many environmental conditions, thus making them less suitable as indicators.  

We studied also species dispersal, because it is affected by ecological heterogeneity in two different 

ways; first, it may increase local population sizes, which allows maintaining the distribution and abundance of 

species within patches by mass or rescue effects (Gonzalez et al., 1998); secondly, in highly heterogeneous 

meta-communities without asymmetric dispersal, it may decrease diversity by enhancing regional competition 

(Matthiessen et al., 2010). For studying effect of local and landscape managements on species abundance, it is 

valuable to group plant species into a limited number of functional groups based on growth form. Growth form 

are often used to detect species responses to environmental factors such as landscape management (Chapin et 

al., 1980; Cornelissen et al., 2007), as it can allow to indicate future shifts in community composition, and thus 

facilitate the prediction of potential loss of certain species due to both local and landscape managements 

(Dorrepaal, 2007). A series of studies showed that some growth forms such as annuals normally benefit from 

the management activities (e.g. cutting) but there are other growth forms, e.g. perennials, that occur only at 

areas with little or no management activities (Noy-Meir & Oron, 2001; Todd & Hoffman, 2009; Papanikolaou 

et al., 2011).  

In this paper, we investigate how local management and landscape-scale land-use influence plant 

communities of agricultural field margins, by studying multi-facet plant community structure represented by 

alpha, beta and gamma diversities as well as species level characteristics such as rarity, growth form, and 
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dispersal type. We use data collected from field margins in an agriculture landscape in South Korea. We 

address two main questions: 

(1) How does local-scale management vs. landscape-scale land-use influence meta-community, 

community and species level diversity?  

(2) To what extent can species-specific characteristics, such as growth form and dispersal traits, help in 

explaining this influence? 

 

2.2 Materials and methods 

2.2.1 Study site 

The study was conducted in the Haean-myun catchment in South Korea, which is located in the 

watershed of Soyang Lake close to the Demilitarized Zone (DMZ; 128°05’ to 128°11’ E, 38°13’ to 38°20’ N; 

Fig. 2.1). Elevation in the study site varies from 500 to 750 m a.s.l. The mean annual air temperature is 10.5 oC, 

mean monthly temperature varies between -10 oC in January and 27 oC in August (1999 - 2013). The average 

precipitation is 1,500 mm, with 70% of the rain falling during the summer monsoon from June to August 

(Berger et al., 2013). 

The total catchment area is 64 km² with 58% of the catchment classified as forested mountains and 

30% as agricultural areas (22% dryland fields and 8% rice paddy fields), while the remaining 12%  are  

residential  and  seminatural  areas  including  grassland,  field  margins,  riparian  areas, channels, and farm 

roads (Seo et al., 2014). The topography of the research area is characterized by flat areas and moderately steep 

slopes in the  center  of  the  catchment  and  steep  slopes  at  the  catchment edges that are mostly covered by 

forest.  

 

2.2.2 Data 
 

Plot scale 

Our survey of the field margins was conducted between July and August 2011 in 100 sampling plots, 

covering the whole catchment (Fig. 2.1). In each plot we measured four environmental variables: exposure, 

slope, width of the field margin, and management type (i.e. “managed” for field margins that had signs of 

management activities from the ongoing season such as cutting or spraying herbicides and “unmanaged” for 

field margins that had been left untouched in the season). 

For the botanical survey each plot was sampled using three subplots of one square meter per subplot; 

subplots were 4 m apart from each other (Fig. 2.1). In each subplot, we estimated three different vegetation 



Chapter 2: Diversity of field margins 

 
 

24 

 

characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the 

number of observed species) and species abundance (i.e. the number of observed individuals / species). The 

managed field margins were sampled after one month of the management activities. 

In our species list all species were classified into dispersal groups of either abiotic (wind- or unassisted 

dispersal) or biotic dispersal (e.g., by insects, birds, and mammals) and according to their growth form into 

annual and perennial according to  Kim, M et al. (2000).  

 

 

Fig. 2.1. The sampling sites and the sampling design for plant communities in Haean-myun catchment, South Korea. In 

total, 100 plots (white dots on the map) and 300 subplots were sampled. The lower rectangle shows the sampling 

design for each plot, with three subplots per plot. 
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Landscape scale: 

To obtain landscape level information on land-use we created buffer zones of 100, 200, 300, 400 and 

500 m radii around each plot. Within each of these buffer zones we calculated the percentage of the non-farmed 

habitats. Non-farmed habitats included field margins, fallows, forest, riparian areas, pasture and grassland in 

the land-use maps for 2010 provided by Seo et al. (2014). 

 

2.2.3 Statistical Analyses 

We performed our analyses in three steps: First, we calculated alpha (α) diversity of the 300 subplots, 

pairwise beta (β) diversity of the 100 plots, each represented by the mean species abundance in the three 

subplots, and, separately for the managed and unmanaged plots, gamma (γ) diversity. Second, we analyzed the 

effects of local management and landscape-scale land-use on alpha diversity using linear mixed effects models 

and on pairwise beta diversity by calculating local contribution to beta diversity (LCBD). Finally, we analyzed 

the species abundance response to local management and landscape-scale land-use using generalized linear 

mixed models. 

 

Diversity indices: 

We calculated α-diversity for a given subplot using Rényi diversities (Rényi, 1961), defined as: 

𝑅∝ =  (−𝑙𝑛 ∑ 𝑝𝑖
𝑞

𝑆

𝑖=1

) /(𝑞 − 1) 

where 𝑝𝑖  is the proportion of species i in the subplot, calculated as the fraction of the total number of 

individuals in the subplot that belong to species i, S is the number of species in the subplot, and q is the 

diversity order which determines the sensitivity of 𝑅∝ to the effect of species rarity on the diversity estimation. 

𝑅∝ was calculated for q ranging from 0 to 5. With increasing q, 𝑅∝ is more strongly influenced by dominant 

species and less by rare species. We calculated α-diversity per plot as the mean α-diversity in its three subplots. 

We calculated γ-diversity as the total species richness, separately for the managed and unmanaged 

plots. To account for the different sample sizes in the managed and unmanaged plots, we used species 

rarefaction curves. 

We followed the approach of Chalmandrier et al. (2015) to calculate pairwise β-diversity between each 

pair of plots as the ratio of γ-diversity of the two plots, and the generalized mean of degree 1- q of the α-

diversities of the two plots (Jost, 2007; Chiu et al., 2014). The γ-diversity of the two plots was the exponential 

of the Rényi diversity, calculated from the vector of mean relative species abundance over the two plots. The α-



Chapter 2: Diversity of field margins 

 
 

26 

 

diversity of a given plot was the exponential of the Rényi diversity, calculated from the vector of mean relative 

species abundance over its three subplots.  

 

Influence of landscape and management on alpha diversity 

We tested the effect of local man-made activities, including local management (managed or 

unmanaged) and field margin width, and landscape-scale land-use (% of non-farmed land in the differently 

sized buffers) on the α-diversity at different diversity order q using linear mixed-effect models (LME). The plot 

ID was included as random effects. To select the best spatial scale at which the α-diversity is best explained, we 

used the Akaike information criterion (AIC) Akaike (1974) on models fitted with maximum likelihood (ML), 

choosing as best model the one with lowest AIC; models were then refitted using the restricted maximum 

likelihood estimation (REML) (Zuur, 2009). To test how the effect sizes of the different fixed effects changed 

with the diversity order q, we extracted the parameter estimates for the variables that significantly affect the α-

diversity at different diversity order q along with their standard error, then we plotted these estimates for each 

variable based on the diversity order q values, following Crawley (2007). 

 

Influence of landscape and management on beta diversity 

To visualize the effect of the local management and landscape-scale land-use on the pairwise β-

diversity as a meta-community level, we plotted the pairwise β-diversity of each pair of plots based on the 

management activities against the percentage of the non-farmed habitats in 300 m radius for each of the 

diversity order q. Moreover, we plotted the β-diversity based on the different field margin management to know 

how the β-diversity differs according to the field margin’s management. 

To investigate how exceptional the managed plots were in comparison to unmanaged ones in terms of 

the abundance differences, we calculated the local contribution to beta diversity (LCBD) which is a 

comparative indicator to test the ecological uniqueness of the plots for their contributions to total β-diversity 

(Legendre & De Cáceres, 2013). In this method, the relative contribution of sampling plot i to total β-diversity 

(𝐿𝐶𝐷𝐵𝑖) calculated as follows: 

 

𝐿𝐶𝐵𝐷𝑖 =  𝑆𝑆𝑖/𝑆𝑆𝑇𝑜𝑡𝑎𝑙 

 

where 𝑆𝑆𝑖 represent a genuine partitioning of β-diversity among the plots, which is the squared distance of 

sampling plot i to the centroid of the distribution of plots in species space and 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 is the total sum of 

squares of the species abundance data. Species abundance per plot was calculated as the mean abundance in the 

3 subplots. Then we mapped the LCBD values using different colors for the managed and unmanaged plots to 

facilitate the interpretation. 
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Influence of landscape and management on species abundance: 

We analyzed species abundance in response to local management and landscape-scale land-use using 

Poisson generalized linear mixed models (GLMM) with management, % of non-farmed habitats, growth form, 

dispersal and the interactions between management and growth form, management and % of non-farmed 

habitats, growth form and % of non-farmed habitats, management and dispersal and % of non-farmed habitats 

and dispersal as fixed effects. The subplot ID, nested within plot ID, and species ID were included as random 

effects. The Akaike’s Information Criterion (AIC) (Akaike, 1974) was used to select the best spatial scale at 

which the species abundance is best explained, which is the model with the lowest AIC. 

We calculated the effect of the individual variables and the interactions by including the specified 

variables and their lower order effects and keeping the other variables to representative values (e.g. their 

means), which allows us to compute the expected values of the response variable.  

All analyses were done using the software R, version  3.1.2 (R Development Core Team, 2014), for the 

landscape analyses we used the packages: raster, rgdal, rgeos. For running the LME and GLMM, we used the 

package lme4 (Bates et al., 2014). The calculations of the alpha, gamma diversities and the species rarefaction 

curve were done using the package vegan (Oksanen et al., 2014) and we used the effect package (Fox, 2003) to 

calculate the display effects of the GLMM models. 

 

2.3 Results 

2.3.1 Meta-community scale 

In our 300 subplots over the Haean-myun catchment, we identified a total of 90 plant species (Table 

2.S1) that covered between 50 to 100% of the subplot area. The 44 unmanged field margins were occupied by 

68 species, while 81 species were found in the 56 managed field margins. Furthermore, 9 species were 

restricted only to the natural field margins and 22 species were restricted to the managed field margins (Table 

2.S1). The same trend was obtained using the rarefaction curves of the species richness in both the managed 

and unmanaged plots, as it showed that the managed plots have a higher species richness at the γ-diversity level 

compared to the unmanaged ones (Fig. 2.2). 

The contribution of single plots to β-diversity (LCBD) was spatially not structured (Fig. 2.3a). But it 

was affected by species richness and local management (Fig. 2.3b). Managed plots with low species richness 

contributed most to β-diversity (Fig. 2.3a and b). Landscape-level landuse and diversity order q had no 

significant influence on beta diversity (Figs. 2.S1 and 2.S2). 
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Fig. 2.2. Rarefaction curves of species richness in managed and unmanaged plots. 

 

 

Fig. 2.3. Schematic maps of the 100 study plots showing (a) abundance difference local contribution to beta diversity 

(LCBD) of each plot and (b) species richness of each plot based on the plot management. Circle sizes are 

proportional to (a) LCBD and (b) species richness value.  
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2.3.2 Community scale 

At the community scale, α-diversity of the subplots was higher in unmanaged than in managed sites 

(Fig. 2.4a), thus showing a contrasting pattern to the meta-community scale. The land-use of the surrounding 

landscape had the strongest effect in a radius of 200 m (Table 2.S2). Interestingly, this landscape-scale land-use 

only influenced α-diversity of managed local sites. For these sites, α-diversity was increasing with an 

increasing percentage of non-farmed area in a 200m radius around the plots (Fig. 2.4b). In contrast, α-diversity 

of unmanaged subplots was not affected by the land-use in the surrounding landscape (Fig. 2.4b).    

 

 

Fig. 2.4. Effect display for (a) management and (b) non-farming % in 200 m radius on alpha diversity. 

 

2.3.3 Species abundances 

Based on the lowest AIC values, we chose a radius of 300 m as the best spatial scale to describe the 

effects on the species abundance (Table 2.S3). Species abundances depended on the interaction of management 

and land-use with species’ dispersal type and growth form (Fig. 2.5, Table 2.S3). Species with abiotic dispersal 
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were generally more abundant than those with biotic dispersal, especially if plots were locally unmanaged (Fig. 

2.5a). In contrast, local management had no significant influence on the abundance of species with biotic 

dispersal (Fig. 2.5a). The non-farmed habitat increased abundances of species independent of their dispersal 

type (Fig. 2.5b, Table 2.S3). 

Annual species were generally more abundant than perennial species. The abundance of annual species 

was not significantly affected by local management (Fig. 2.5c), but annual species benefitted from landscape-

scale non-farmed habitat (Fig. 2.5d). In contrast, perennial species were significantly more abundant in 

unmanaged plots (Fig. 2.5c) but did not respond to landscape-scale land-use (Fig. 2.5d).  

 

 

Fig. 2.5. Differences in species abundance based on (a) management and seed dispersal, (b) percentage of non-farmed 

habitat in 300 m radius and seed dispersal, (c) management and growth form, (d) percentage of non-farmed 

habitat in 300 m radius and growth form. 
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Fig. 2.5 (cont.). Differences in species abundance based on (a) management and seed dispersal, (b) percentage of non-

farmed habitat in 300 m radius and seed dispersal, (c) management and growth form, (d) percentage of non-

farmed habitat in 300 m radius and growth form. 

 

The order parameter q of the diversity index affects how strongly rare species contribute to the 

diversity index; for q = 0, all species contribute the same, irrespective of their abundance; for higher values of 

q, more abundant species increasingly dominate the value of the diversity. The effect of unmanaged field 

margin on the α-diversity in the field margins was decreasing with larger values for q, suggesting that in 

particular rare species benefit from unmanaged field margins (Fig. 2.6a). In contrast, the effect of the 

percentage of non-farmed habitat in 200 m radius did not vary significantly with the order parameter q (Fig. 

2.6b). 
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Overall, we found that abandonment of local management in field margins positively influenced α- 

diversity and especially the diversity of species that are rare and the abundance of species that are characterized 

by abiotic dispersal and perennial growth forms. In contrast, local management of field margins resulted in 

lower alpha diversity and contributed to high β-diversity. The availability of landscape-scale non-farmed 

habitats influenced especially the diversity of managed field margins by increasing alpha diversity.  

 

 

 

Fig. 2.6. Effect size of (a) Unmanaged management and (b) Percentage of non-farmed habitat in 200 m radius on alpha 

diversity at different diversity order q. 
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2.4 Discussion 

Local-scale management and landscape-scale land-use are important factors driving diversity of plant 

communities in agricultural landscapes. Here, we apply a multi-scale approach to disentangle these effects at 

the meta-community scale (β and γ-diversities), the community scale (α- diversity) and the species level for 

field margins in South Korea. Our results highlight the differential effects of local-scale management and 

landscape-scale land-use on plant diversity at different scales depending on species characteristics such as 

rarity, growth form and dispersal.  

Our results showed that the local management and landscape-scale land-use have differential effects, as 

local management influences mostly the rare species (Fig. 2.6a), those with abiotic dispersal (Fig. 2.5a) and 

with perennial growth form (Fig. 2.5c). In contrast, landscape-scale land-use influences more the diversity of 

species in the managed plots (Fig. 2.4b) and the abundance of annual species (Fig. 2.5d). We interpret these 

results such that the plant communities of the field margins respond to a gradient of degradation, in which 

increasing degradation causes a decrease in perennial and rare species and an increase in annual and dominant 

species. Our study support the idea that annual species increase with disturbance (Wilson & Tilman, 1991), as 

due to the local management activities, more gaps will be produced allowing the annuals species which can 

rapidly use the resources to colonize and establish in the managed plots (Grime, 1974). Moreover, these 

different responses can be due to the different functional response of certain species traits as it can be 

associated to both environmental filtering and biotic interactions (Gross et al., 2009; de Bello et al., 2012). The 

high contribution of the managed plots to total β-diversity (Fig. 2.3a), reveals that these plots are degraded and 

species poor in compare to the unmanaged ones (Legendre, 2014), which we can easily notice in the species 

richness map (Fig. 2.3b) as the managed sites that has high LCBD, showed to have lower species richness. 

Managed field margins were found to have a lower α-diversity (Fig. 2.4a) and have a positive relation 

to landscape-scale land-use (Fig. 2.4b), suggesting that if field margins are managed they should at least have 

access to non-farmed habitats in the surroundings to provide seed sources. These results go in line with other 

studies that showed the pivotal role of the complexity of the surrounding land-use in maintaining the plant 

diversity in agricultural landscapes (Weibull & Östman, 2003; Liira et al., 2008; Poggio et al., 2010; Ma et al., 

2013), as the increasing in the landscape heterogeneity act as a source for species dispersal into the field 

margins (Weibull & Östman, 2003). In their study on the field margins of South Korea, Kang et al. (2013) 

showed that the species of field margins were mostly affected by habitat connectivity, which goes in line with 

our results but in contrast to our findings the local management were not affecting the species richness, which 

may partly be due to their lower sample size, as they collected data from only 12 field margins using three 

transects at each field margin. 
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Finally, managed field margins with little surrounding habitats are most degraded with low α-diversity 

(Fig. 2.4b). These results agree with the intermediate landscape complexity hypothesis, which predicts that 

local management in agricultural landscapes have an effect on species diversity in simple but not complex 

landscapes (Batáry et al., 2011). In simple landscapes, the lack of habitat heterogeneity surrounding plots 

provides a limited pool of species that may be able to withstand or counterbalance, species loss from the 

managed plots (MacArthur & Wilson, 1967; Pärtel et al., 1996; Janišová et al., 2014). In contrast, in complex 

landscapes, the agricultural landscapes are characterized by a high level of immigration of organisms from the 

surrounding habitats (e.g. non-farmed land) (Bianchi et al., 2006; Ricketts et al., 2008; Tscharntke et al., 2008) 

which can overcome the effects of local management practices (Kremen et al., 2004; Tscharntke et al., 2005). 

At the meta-community scale, the results of γ-diversity (overall diversity) showed that the species 

richness in managed field margins was higher than in the unmanaged ones (Fig. 2.2). This pattern may be due 

to a meta-community overall richer in annual species that benefit from the creation of early succesional stages 

with open soil as a consequence of the local management.  

 

Conclusion 

As agricultural landscapes occupy around 50% of the earth’s land surface (USDA, 2013), it is pivotal 

to sustain and maintain the biodiversity in these system to improve the ecosystem functioning. In the current 

study, we showed how important the local-management of the field margins and the surrounding landscape-

scale land-use are in maintaining the diversity in the agricultural landscapes by studying the response of the 

plant communities at multi-scales. In conclusion, we emphasize the importance of the multi-scale approach as it 

supports an enriched and coherent portrayal of biodiversity responses to local and landscape-scale 

managements. As the local management is mainly affecting the plots that have no surrounding habitats, it is 

important that if the field margins are managed they should at least have access to non-farmed habitats in the 

surroundings to help increasing the plant diversity via species dispersal. 
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2.7 Supplementary materials 

 

Fig. 2.S1. Effect of management on beta diversity at different diversity order q. 

 

 

Fig. 2.S2. Effect of percentage of non-farmed habitat in 300 m radius on beta diversity at different diversity order q.  
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Table 2.S1. List of the 90 species recorded during the field margin survey along with species growth form, mean of seed 

dispersal and species relative abundance. 

Species Latin Name 

Korean 

Common 

Name 

Family 
Growth 

form 
Dispersal 

Relative 

Abundance 

(%) 

Comments 

Acalypha australis L.   깨풀 Euphorbiaceae Annual Abiotic 0.21 Restricted to managed margins 

Ambrosia artemisiifolia L.   Asteraceae Annual Abiotic 0.62   

Artemisia apiacea Hance ex Walp.   개사철쑥 Asteraceae Perennial Abiotic 1.08   

Artemisia feddei H.Lev. & Vaniot  뺑쑥 Asteraceae Perennial Abiotic 0.1 Restricted to managed margins 

Artemisia princeps Pamp. 쑥 Asteraceae Perennial Abiotic 0.62   

Artemisia sp 쑥 Asteraceae Perennial Abiotic 11.23   

Arundinella hirta (Thunb.) Koidz. 새 Poaceae Perennial Abiotic 0.1   

Aster pilosus Willd.  미국쑥부쟁이 Asteraceae Perennial Biotic 0.1   

Aster tataricus L.f. 개미취 Asteraceae Perennial Abiotic 0.21 Restricted to unmanaged margins 

Astilbe rubra Hook.f. & Thomson var. rubra  노루오줌 Saxifragaceae Perennial Abiotic 0.1 Restricted to managed margins 

Bidens frondosa L.  미국가막사리 Asteraceae Annual Biotic 2.63   

Calystegia sepium var. japonicum (Choisy) 
Makino  

메꽃 Convolvulaceae Perennial Abiotic 2.99   

Chamaecrista nomame (Siebold) H.Ohashi  차풀 Fabaceae Perennial Abiotic 0.62   

Chelidonium majus var. asiaticum (Hara) 
Ohwi  

애기똥풀 Papaveraceae Perennial Abiotic 0.26   

Chenopodium ficifolium Smith  좀명아주 Chenopodiaceae Annual Abiotic 0.98   

Clinopodium chinense var. parviflorum 

(Kudo) Hara  
층층이꽃 Lamiaceae Perennial Biotic 0.05 Restricted to managed margins 

Commelina communis L.  닭의장풀 Commelinaceae  Annual Abiotic 7.99   

Conyza canadensis (L.) Cronquist  망초 Asteraceae Annual Abiotic 2.83   

Crepidiastrum sonchifolium (Bunge) Pak & 
Kawano 

고들빼기 Asteraceae Annual Biotic 0.05 Restricted to unmanaged margins 

Cyperus microiria Steud. 금방동사니 Cyperaceae Annual Abiotic 1.03   

Dendranthema boreale (Makino) Ling ex 
Kitam.   

산국 Asteraceae Perennial Abiotic 0.1 Restricted to unmanaged margins 

Dendranthema zawadskii var. latilobum 

(Maxim.) Kitam.   
구절초 Asteraceae Perennial Abiotic 0.05 Restricted to managed margins 

Digitaria ciliaris (Retz.) Koel.  바랭이 Poaceae Annual Biotic 2.37   

Echinochloa crusgalli (L.) P.Beauv.  돌피 Poaceae Annual Abiotic 2.32   

Equisetum arvense L.   쇠뜨기 Equisetaceae Perennial Abiotic 3.5   

Erigeron strigosus Muhl.  주걱개망초 Asteraceae Perennial Abiotic 4.02   

Eupatorium japonicum Thunb.  등골나물 Asteraceae Perennial Abiotic 0.77   

Eupatorium sp 등골나물 sp. Asteraceae Perennial Abiotic 0.72   

Fallopia dumetorum (L.) Holub   닭의덩굴 Polygonaceae Annual Abiotic 0.15 Restricted to managed margins 

Festuca arundinacea Schreb.   큰김의털 Poaceae Perennial Biotic 1.13   

Galinsoga ciliata (Raf.) S.F.Blake   털별꽃아재비 Asteraceae Annual Biotic 0.1 Restricted to managed margins 

Geranium sibiricum L.  쥐손이풀 Geraniaceae Perennial Abiotic 1.75   

Glycine soja Siebold & Zucc.  돌콩 Fabaceae Annual Abiotic 3.5   

Humulus japonicus Sieboid & Zucc. 환삼덩굴 Cannabaceae Annual Abiotic 6.44   

Hypericum ascyron L.   물레나물 Clusiaceae Perennial Abiotic 0.05 Restricted to managed margins 
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Species Latin Name 

Korean 

Common 

Name 

Family 
Growth 

form 
Dispersal 

Relative 

Abundance 

(%) 

Comments 

Hypericum sp 고추나물 sp. Clusiaceae Perennial Abiotic 0.15 Restricted to managed margins 

Impatiens nolitangere L. var. nolitangere  노랑물봉선 Balsaminaceae Annual Abiotic 0.1 Restricted to unmanaged margins 

Impatiens textori var. koreana Nakai  흰물봉선 Balsaminaceae Annual Abiotic 0.05 Restricted to managed margins 

Impatiens textori var. textori  물봉선 Balsaminaceae Annual Abiotic 1.03   

Isodon japonicus (Burm.) Hara   방아풀 Lamiaceae  Perennial Abiotic 0.05 Restricted to managed margins 

Lactuca indica L.  왕고들빼기 Asteraceae Perennial Abiotic 1.03   

Leonurus japonicus Houtt. 익모초 Lamiaceae  Annual Abiotic 1.29   

Lespedeza bicolor Turcz.   싸리 Fabaceae Perennial Abiotic 0.93   

Lysimachia clethroides Duby   큰까치수염 Primulaceae Perennial Abiotic 0.05 Restricted to unmanaged margins 

Lysimachia vulgaris var. davurica (Ledeb.) 

R.Kunth  
좁쌀풀 Primulaceae Perennial Abiotic 0.15   

Mazus pumilus (Burm.f.) Steenis   주름잎 Scrophulariaceae Annual Abiotic 0.05 Restricted to managed margins 

Mentha piperascens (Malinv.) Holmes 박하 Lamiaceae  Perennial Abiotic 0.26   

Metaplexis japonica (Thunb.) Makino  박주가리 Asclepiadaceae Annual Abiotic 2.83   

Oenanthe javanica (Blume) DC.  미나리 Apiaceae Perennial Biotic 0.1   

Oenothera biennis L. 달맞이꽃 Onagraceae Perennial Abiotic 3.25   

Onoclea sensibilis var. interrupta Maxim.  야산고비 Onocleaceae Perennial Biotic 0.1 Restricted to managed margins 

Oxalis corniculata L.   괭이밥 Oxalidaceae Annual Abiotic 0.21   

Oxalis stricta L. 선괭이밥 Oxalidaceae Annual Abiotic 0.1   

Panicum dichotomiflorum Michx.   미국개기장 Poaceae Annual Biotic 0.31   

Patrinia scabiosaefolia Fisch. ex Trevir. 마타리 Valerianaceae Perennial Abiotic 0.21   

Persicaria longiseta (Bruijn) Kitag.   개여뀌 Polygonaceae Annual Abiotic 0.31 Restricted to managed margins 

Persicaria nepalensis (Meisn.) H.Gross  산여뀌 Polygonaceae Annual Abiotic 2.11   

Persicaria perfoliata (L.) H.Gross  며느리배꼽 Polygonaceae Annual Abiotic 1.96   

Persicaria sagittata (L.) H.Gross ex Nakai 미꾸리낚시 Polygonaceae Annual Abiotic 0.15 Restricted to managed margins 

Persicaria senticosa (Meisn.) H.Gross ex 
Nakai var. senticosa  

며느리밑씻개 Polygonaceae Annual Biotic 0.05 Restricted to managed margins 

Persicaria thunbergii (Siebold & Zucc.) 

H.Gross ex Nakai  
고마리 Polygonaceae Annual Abiotic 0.93   

Persicaria vulgaris Webb & Moq.   봄여뀌 Polygonaceae Annual Abiotic 3.92   

Petasites japonicus (Siebold & Zucc.) Maxim.  머위 Asteraceae Annual Abiotic 0.1   

Phleum pratense L.   큰조아재비 Poaceae Perennial Biotic 0.05 Restricted to managed margins 

Phragmites japonica Steud. 달뿌리풀 Poaceae Perennial Abiotic 1.18   

Picris hieracioides var. koreana Kitam.   쇠서나물 Asteraceae Perennial Biotic 0.15   

Plantago asiatica L.  질경이 Plantaginaceae Perennial Abiotic 2.01   

Pteridium aquilinum var. latiusculum (Desv.) 

Underw. ex Hell.  
고사리 Polypodiaceae Perennial Abiotic 0.15 Restricted to unmanaged margins 

Pueraria lobata (Willd.) Ohwi  칡 Fabaceae Perennial Biotic 0.72   

Robinia pseudoacacia L.  아까시나무 Fabaceae Perennial Abiotic 0.26   

Rorippa palustris (Leyss.) Besser   속속이풀 Brassicaceae Annual Abiotic 0.31   

Rubus crataegifolius Bunge   산딸기 Rosaceae Perennial Biotic 2.83   
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Species Latin Name 

Korean 

Common 

Name 

Family 
Growth 

form 
Dispersal 

Relative 

Abundance 

(%) 

Comments 

Rubus oldhamii Miq.   모시물통이 Rosaceae Perennial Biotic 0.21   

Rubus phoenicolasius Maxim. 곰딸기 Rosaceae Perennial Biotic 0.1   

Rudbeckia laciniata var. hortensis Bailey  겹삼잎국화 Asteraceae Perennial Abiotic 0.05 Restricted to unmanaged margins 

Rumex crispus L.   소리쟁이 Polygonaceae  Perennial Abiotic 0.05 Restricted to unmanaged margins 

Sanguisorba officinalis L.  오이풀 Rosaceae  Perennial Abiotic 0.15   

Setaria faberii Herrm.  가을강아지풀 Poaceae Perennial Abiotic 3.14   

Setaria sp 강아지풀 sp. Poaceae Annual Abiotic 1.03   

Setaria viridis (L.) P.Beauv. var. viridis   강아지풀 Poaceae Annual Abiotic 0.26 Restricted to managed margins 

Solanum nigrum L. var. nigrum   까마중 Solanaceae Annual Biotic 0.05 Restricted to managed margins 

Sonchus brachyotus DC.   사데풀 Asteraceae Perennial Abiotic 0.21 Restricted to managed margins 

Spiraea salicifolia L. 꼬리조팝나무 Rosaceae  Perennial Biotic 0.05   

Spodiopogon sibiricus Trin.  큰기름새 Poaceae Perennial Abiotic 0.26   

Stachys japonica Miq.  석잠풀 Lamiaceae  Perennial Biotic 1.75   

Stellaria media (L.) Vill.   별꽃 Caryophyllaceae Annual Abiotic 0.52   

Trifolium sp 토끼풀 sp. Fabaceae Annual Abiotic 0.31   

Vicia japonica A.Gray   넓은잎갈퀴 Fabaceae Perennial Biotic 1.08   

Zizania latifolia (Griseb.) Turcz. ex Stapf  줄 Poaceae Perennial Abiotic 0.41 Restricted to unmanaged margins 

Zoysia japonica Steud.   잔디 Poaceae Perennial Biotic 0.1 Restricted to managed margins 
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Table 2.S2. The linear mixed-effect models (LME) for different alpha diversity order q values at non-crop % in 200 m 

radius (N = 100). Significant variables are in bold. 

 
Model AIC Fixed Effect Value SE t P 

q = 0 793.10 

Intercept -0.383 0.069 -5.546 <0.001*** 

Unmanaged plots 0.925 0.106 8.765 <0.001*** 

Width 0.016 0.053 0.300 0.765 

Non-farmed % at 200 m 0.252 0.078 3.248 <0.001*** 

Unmanaged : Non-farmed -0.292 0.103 -2.822 0.005** 

q = 1 808.56 

Intercept -0.353 0.071 -4.976 <0.001*** 

Unmanaged plots 0.838 0.108 7.737 <0.001*** 

Width -0.033 0.054 -0.605 0.546 

Non-farmed % at 200 m 0.255 0.080 3.204 0.002** 

Unmanaged : Non-farmed -0.196 0.106 -1.849 0.066 

q = 2 829.80 

Intercept -0.286 0.073 295.000 <0.001*** 

Unmanaged plots 0.684 0.112 295.000 <0.001*** 

Width -0.055 0.056 295.000 0.329 

Non-farmed % at 200 m 0.262 0.083 295.000 0.002** 

Unmanaged : Non-farmed  -0.182 0.110 295.000 0.098 

q = 3 839.4 

Intercept -0.246 0.075 295.000 <0.001*** 

Unmanaged plots 0.597 0.114 295.000 <0.001*** 

Width -0.060 0.057 295.000 0.290 

Non-farmed % at 200 m 0.270 0.084 295.000 0.001** 

Unmanaged : Non-farmed  -0.198 0.112 295.000 0.078 

q = 4 843.91 

Intercept -0.226 0.075 -2.998 0.003** 

Unmanaged plots 0.552 0.115 4.800 <0.001*** 

Width -0.063 0.057 -1.101 0.272 

Non-farmed % at 200 m 0.274 0.085 3.235 0.001** 

Unmanaged : Non-farmed  -0.210 0.113 -1.859 0.064 

q = 5 846.27 

Intercept -0.214 0.076 -2.838 0.005** 

Unmanaged plots 0.528 0.116 4.569 <0.001*** 

Width -0.065 0.058 -1.127 0.261 

Non-farmed % at 200 m 0.274 0.085 3.233 <0.001*** 

Unmanaged : Non-farmed  -0.215 0.113 -1.903 0.058 

Significance codes:  *** P < 0.001, ** P <0.01, * P <0.05. Statistically significant variables are indicated in bold 
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Table 3.S3. The generalized linear mixed-effect model (GLMM) for the species abundance response at non-crop % in 200 

m radius (N = 27000). Significant variables are in bold. The best model according to the lowest AIC value is 

highlighted in grey. 

Model AIC Fixed Effect Value SE z P 

100 m 66246 

(Intercept) -1.339 0.309 -4.336 <0.001*** 

Unmanaged plots -0.049 0.052 -0.945 0.344 

Perennial species -0.958 0.387 -2.477 0.013* 

Non-farmed % at 100 m radius 0.018 0.031 0.596 0.551 

Biotic species -0.594 0.442 -1.345 0.179 

Unmanaged : Perennial 0.411 0.033 12.265 <0.001*** 

Unmanaged : Non-farmed % at 100 m radius 0.096 0.052 1.840 0.066 

Perennial : Non-farmed % at 100 m radius -0.073 0.017 -4.240 <0.001*** 

Unmanaged : Biotic -0.127 0.047 -2.675 0.007** 

Non-farmed % at 100 m radius : Biotic 0.041 0.024 1.726 0.084 

200 m 66208 

(Intercept) -1.346 0.306 -4.405 <0.001*** 

Unmanaged -0.045 0.051 -0.879 0.379 

Perennial -0.949 0.382 -2.487 0.013* 

Non-farmed % at 200 m radius 0.091 0.032 2.846 0.004** 

Biotic -0.596 0.439 -1.356 0.175 

Unmanaged : Perennial 0.404 0.034 12.032 <0.001*** 

Unmanaged : Non-farmed % at 200 m radius 0.040 0.050 0.801 0.423 

Perennial : Non-farmed % at 200 m radius -0.127 0.017 -7.384 <0.001*** 

Unmanaged : Biotic -0.126 0.047 -2.665 0.008** 

Non-farmed % at 200 m radius : Biotic 0.041 0.024 1.710 0.087 

300 m 66183 

(Intercept) -1.351 0.307 -4.396 <0.001*** 

Unmanaged -0.039 0.051 -0.752 0.452 

Perennial -0.943 0.384 -2.455 0.014* 

Non-farmed % at 300 m radius 0.121 0.033 3.642 <0.001*** 

Biotic -0.596 0.440 -1.355 0.175 

Unmanaged : Perennial 0.396 0.034 11.795 <0.001*** 

Unmanaged : Non-farmed % at 300 m radius 0.032 0.049 0.642 0.521 

Perennial : Non-farmed % at 300 m radius -0.151 0.017 -8.788 <0.001*** 

Unmanaged : Biotic -0.125 0.047 -2.644 0.008** 

Non-farmed % at 300 m radius : Biotic 0.040 0.024 1.648 0.099 

400 m 66188 

(Intercept) -1.350 0.308 -4.379 <0.001*** 

Unmanaged -0.042 0.051 -0.813 0.416 

Perennial -0.945 0.386 -2.450 0.014* 

Non-farmed % at 400 m radius 0.120 0.033 3.618 <0.001*** 

Biotic -0.598 0.443 -1.351 0.177 

Unmanaged : Perennial 0.401 0.034 11.936 <0.001*** 

Unmanaged : Non-farmed % at 400 m radius 0.029 0.049 0.594 0.553 

Perennial : Non-farmed % at 400 m radius -0.143 0.017 -8.279 <0.001*** 

Unmanaged : Biotic -0.124 0.047 -2.618 0.009** 

Non-farmed % at 400 m radius : Biotic 0.058 0.024 2.370 0.018* 

500 m 66216 

(Intercept) -1.345 0.307 -4.374 <0.001*** 

Unmanaged -0.048 0.051 -0.943 0.345 

Perennial -0.952 0.384 -2.479 0.013* 

Non-farmed % at 500 m radius 0.096 0.033 2.878 0.004** 

Biotic -0.598 0.442 -1.352 0.176 

Unmanaged : Perennial 0.408 0.034 12.177 <0.001*** 

Unmanaged : Non-farmed % at 500 m radius 0.023 0.049 0.462 0.644 

Perennial : Non-farmed % at 500 m radius -0.111 0.017 -6.412 <0.001*** 

Unmanaged : Biotic -0.125 0.047 -2.642 0.008** 

Non-farmed % at 500 m radius : Biotic 0.067 0.024 2.738 0.006** 

 Significance codes:  *** P < 0.001, ** P <0.01, * P <0.05. Statistically significant variables are indicated in bold 
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Abstract 

Background and Aims: Soil stability is a key ecosystem function provided by agricultural landscapes. A 

multitude of influential factors such as soil texture and plant community structure have been suggested, 

but few studies compare the relative importance of these factors for soil stability in the field. In addition, 

studies on effects of plant traits on soil stability have ignored intraspecific trait variability (ITV) despite 

growing evidence of its importance for ecosystem functioning.  

Methods: Using path model analysis, we quantified the effect of plant functional traits (PFTs), abiotic soil 

characteristics (soil texture) and vegetation characteristics on three soil stability measures in 30 field 

margins of an agriculture landscape of Korea, comparing models with and without ITV. 

Results: Variance in soil stability was explained to varying degrees (from 81% for soil aggregate stability 

to 35% for soil shear vane strength). The three soil stability measures were mainly affected directly by 

root density, while PFTs and soil texture exerted indirect effects through root density and vegetation 

parameters, respectively. Including ITV improved model explained variance and goodness-of-fit in all 

cases. 

Conclusion: The current study demonstrates that considering ITV is essential for uncovering the 

substantial effect of plant functional community composition on a key ecosystem function, soil stability.  

 

Keywords: agricultural landscapes, community-weighted mean traits, intraspecific trait variability, plant 

functional traits, response and effect traits, root density, soil stability. 
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3.1 Introduction 

Understanding the processes that drive the degradation of ecosystem functions in agricultural 

landscapes is of pivotal interest given ongoing land-use and climate change (Cardinale et al., 2012). 

Although ecosystem functions are strongly affected by the direct impact of these abiotic drivers, it is also 

modulated by biotic factors (Loreau et al., 2001). A number of studies has aimed at identifying the most 

important biotic drivers and it has been suggested that often the functional composition of ecological 

communities is more important for the maintenance of ecosystem functioning than species richness per se 

(Diaz et al., 2006; Laughlin, 2014).  

Different metrics of functional community composition can be measured in different ways. Recent 

studies suggest that community weighted means of functional traits (CWM), obtained by taking the mean 

trait value of a species weighted by its relative abundance in the focal community and then summed over 

all species (Garnier et al., 2004), relate better to ecosystem functioning than functional diversity metrics 

(Fortunel et al., 2009; Laughlin, 2011). Even though commonly applied (Garnier et al., 2004; Díaz et al., 

2007) this metric has the problem that it ignores intraspecific trait variability. However, intraspecific 

variability can be large and is often not random but  a result of adaptation or phenotypic plasticity of traits 

either along environmental  gradients  (Sandquist & Ehleringer, 1997), or a response to biotic interactions 

(Gross et al., 2009; Albert et al., 2011). Intraspecific trait variability, thus, can strongly influence the 

estimates of community trait composition (Jung et al., 2014). Consequently, it has been strongly 

advocated to account for intraspecific variability when calculating CWMs (Albert et al., 2010).  

Here, we suggest studying community weighted means accounting for intraspecific trait 

variability, in order to better understand how different abiotic variables, vegetation characteristics and 

plant functional traits interact to influence an important ecosystem function: soil stability. Soil stability 

refers to the ecosystem function of resistance to disintegration when disturbed. Soil stability is critical for 

water infiltration, root growth, and resistance to water and wind erosion (Bronick & Lal, 2005; Gyssels et 

al., 2005) and thus is a crucial soil property affecting soil sustainability and crop production (Letey, 1985). 

Soil stability can be measured in the field by several methods. The most common are: (1) Soil aggregate 

stability, which reflects how the soil aggregates react to precipitation, as the unstable aggregates tend to 

produce a slaked soil layer when it gets wet, which causes limitation in the infiltration rate, increasing the 

surface runoff and limiting the plant growth (Tisdall & Oades, 1982). (2) Soil penetration resistance, a 

composite soil property that is governed by more basic properties, including soil cohesion, soil 

compressibility and soil/metal friction (Dexter et al., 2007). Penetration resistance correlates with several 

other important variables, such as root elongation rate (Taylor & Ratliff, 1969). (3) Soil shear vane 

strength, which measures the soil cohesiveness and resistance to shearing forces exerted by gravity, 
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moving fluids and mechanical loads (Morgan, 2009). It reflects how the soil-root matrix produces a type 

of reinforced earth, which is much stronger than the soil or the roots separately and how this matrix can 

resist the environmental factors and human activities (Simon & Collison, 2001). 

There are many factors that control soil stability via direct and indirect pathways. Particularly 

important are abiotic soil characteristics such as soil texture and clay content (Denef & Six, 2005; Chenu 

et al., 2011), biotic vegetation characteristics such as species richness, vegetation cover and plant diversity 

(Pohl et al., 2009; Pérès et al., 2013), and biotic functional characteristics such as plant roots, soil fauna, 

and microorganisms (Gyssels et al., 2005). In the following, we will shortly review the available literature 

on the interdependencies of these different factors and will summarize them in a conceptual path model 

reflecting a hypothesis on how abiotic and biotic factors interact and affect soil stability directly or 

indirectly (Fig. 3.1): Abiotic soil characteristics (e.g. soil texture with clay and silt percentages) influence 

soil stability directly. For example, fine soil particles (clay and silt) tend to increase, while coarse particles 

(sand and gravel) decrease soil stability (Tisdall & Oades, 1982; Nearing et al., 1991). They also influence 

vegetation characteristics (e.g. vegetation cover, species richness and root density) and functional 

characteristics of plant communities, i.e. plant functional traits (PFTs) such as root/shoot ratio, root length 

and root horizontal width (Lane et al., 1998). Biotic vegetation characteristics also directly influence soil 

stability: Both above ground vegetation characteristics such as higher species richness, plant cover, and 

species diversity (Pohl et al., 2012; Pérès et al., 2013), as well as below ground vegetation characteristics, 

such as higher root length, root density, and root length density (Pohl et al., 2009; Hu et al., 2013) 

increase soil stability. The effect of vegetation characteristics on soil stability is due to multiple processes. 

First, plant roots forming a dense root network bind soil particles via root excretions (Traore et al., 2000; 

Gyssels et al., 2005). Secondly, a dense above ground vegetation protects the soil surface from wind and 

rain drops (Gray & Sortir, 1996). Thirdly, a dense vegetation and root network enhances infiltration rates 

and reduces runoff (Tisdall & Oades, 1982).  Plant cover and species diversity impact not only soil 

stability but also species assembly in communities and thus the functional composition of communities 

(Petchey & Gaston, 2002). In return, it has been shown that vegetation characteristics and root density 

depend strongly on the functional composition of communities (Reich et al., 2012). Finally, as argued 

before, species functional traits do not only respond to local abiotic and biotic characteristics but they also 

play an important role in ecosystem functions. For soil stability it has been shown that root length, root 

diameter and root horizontal width are important determinants (Gyssels et al., 2005; Pohl et al., 2012).  

The aim of this paper is to integrate vegetation characteristics and functional traits into a model of 

abiotic soil characteristic effects on soil stability, towards an improved understanding of ecosystem 

functioning. For this purpose we measured soil stability via soil aggregate stability, soil penetration 

resistance and soil shear vane strength. First, we test how well our conceptual model (outlined above and 
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visualized in Fig. 3.1) fits data from field margins in an agriculture landscape in Korea and how important 

intraspecific variability is for this fit. Second, we investigate the importance of PFTs in comparison to the 

influence of abiotic soil characteristics and biotic vegetation characteristics for soil stability. Finally, we 

ask whether the identified functional effect traits are at the same time important functional response traits. 

In other words, are the traits that determine the effect on ecosystem functioning the same as those that 

determine the response of organisms to abiotic conditions (Lavorel & Garnier, 2002)? 

 

 

Fig. 3.1. A conceptual path model for effects of the abiotic soil characteristics (soil texture “silt % and clay %”), 

vegetation characteristics (vegetation cover, species richness and root density) and PFTs (RSR = root/shoot 

ratio, RL = root length and RW = root horizontal width) on three soil stability measures (Soil aggregate 

stability, soil penetration resistance and soil shear vane strength). Numbers on arrows indicate previous 

studies that support the path. 1. Lane et al. (1998), 2. Denef and Six (2005), 3. Petchey and Gaston (2002), 

4. Pohl et al. (2009), 5. Reich et al. (2012), 6. Pérès et al. (2013)and 7. Gyssels et al. (2005). 

 

3.2 Materials and methods 

3.2.1 Study site and experimental design 

The study was conducted in the Haean-myun catchment in South Korea, which is located in the 

watershed of Soyang Lake close to the Demilitarized Zone (DMZ; 128°05’ to 128°11’ E, 38°13’ to 38°20’ 

N; Fig. 3.2). Elevation in the study site varies from 500 to 750 m a.s.l. The mean annual air temperature is 

10.5 oC, mean monthly temperature varies between -10 oC in January and 27 oC in August (1999 - 2012). 
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The average precipitation is 1,500 mm, with 70% of the rain falling during the summer monsoon from 

June to August (Berger et al., 2013). The area is subjected to very heavy rains during the monsoon season, 

which causes severe damages to the soil, and thus soil stability is a very important ecosystem function. 

Over the whole catchment, 30 plots of 1 m2 were randomly chosen. In each plot, we estimated (1) 

vegetation characteristics, (2) plant functional traits of 10 selected species, (3) soil characteristics 

(excluding soil stability) and (4) measures of soil stability. 

 

 

 

Fig. 3.2.The 30 sampling plots for the plant functional traits in Haean-myun catchment. 
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(1) Vegetation characteristics 

In each plot, we estimated three different variables describing the vegetation characteristics: 

vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of 

observed species) and root density (estimated as percentage using a 30 cm x 30 cm metallic frame placed 

on the soil profile, following (Eckelmann, 2006). 

 

(2) Plant functional trait measurement and analyses  

We measured above- and belowground plant functional traits (PFTs) for 15 individuals of the 10 

most representative species in the study site (Table 3.1). The 10 most representative species were chosen 

based on their abundance in an earlier intensive botanical survey we conducted at the study site (Chapter 

2). To account for the community-level intraspecific variability of traits, we collected individuals in the 

plots, with a maximum of 3 individuals per species per plot. Depending on the distribution of the species, 

between 0 and 3 individuals of each species were collected in each plot. Following this sampling design 

we finally had trait information for an average of 51 % of the vegetation cover in the plots (min = 30% 

and max = 75%).   

We collected the above- and belowground biomass of the 150 studied individuals. We measured 

plant height (Cornelissen et al., 2003) and leaf size (Cornelissen et al., 2003) for the aboveground 

compartment of each individual. We washed, dried, weighted and scanned the roots of each individual in 

order to measure root horizontal width (Cornelissen et al., 2003; Lobet et al., 2011), root length and 

diameter (Lobet et al., 2011), root dry mass (Cornelissen et al., 2003), specific root length (SRL), which is 

the root length divided by the root dry mass (Cornelissen et al., 2003), and root/shoot ratio (Monk, 1966). 

We then up-scaled functional properties to the community level using community weighted means 

for each of the PFTs (Garnier et al., 2007; Violle et al., 2007; Lavorel et al., 2008). In order to investigate 

the importance of intraspecific trait variability we used two different CWM estimates, one that neglects 

intraspecific variability (CWMspecies) and one that integrates it at the level of each local community 

(CWMj). To account for intraspecific variability, we calculated the CWMj within each plot based on the 

locally observed mean species trait value and the species’ relative cover: 

 

CWM j= ∑ p
ij

n

i=1

* traitij 

 

where pij is the relative cover % of species (i) in the community plot (j) and traitij is the mean trait value of 

species (i) in the community plot (j). To calculate CWMspecies we used the overall species mean trait value 

instead of the locally observed mean species trait value. 
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Table 3.1. Above and below ground characteristics of the ten plant species studied in Haean-myun catchment.  

Name Family 
Height 

(cm) 

Root / 

shoot 

ratio 

Root 

length 

(cm) 

Root 

diameter 

(cm) 

Root 

horizontal 

width 

(cm) 

Specific 

root 

length 

(cm/g) 

Leaf 

size 

(cm2) 

Artemisia princeps Pamp. Asteraceae 88.03  

(11.80) 

0.24 

(0.07) 

20.55 

(5.41) 

0.24   

(0.03) 

18.25   

(1.98) 

14.03   

(7.70) 

75.28  

(28.72) 

Chelidonium majus var. 

asiaticum (Hara) Ohwi 

Papaveraceae 83.07  

(15.97) 

0.12 

(0.03) 

19.41   

(5.90) 

0.23  

(0.05) 

10.77   

(4.96) 

13.38  

(12.31) 

99.83  

(37.56) 

Conyza canadensis (L.) 

Cronquist  

Asteraceae 69.07  

(11.25) 

0.22 

(0.05) 

18.46   

(3.60) 

0.15   

(0.03) 

14.79 

(5.72) 

8.19   

(4.99) 

22.22   

(4.65) 

Equisetum arvense L. Equisetaceae 30.27  

(9.45) 

0.38 

(0.13) 

22.12  

(7.33) 

0.17  

(0.03) 

3.44  

(3.39) 

89.07  

(61.27) 

2.28 

(0.69) 

Erigeron strigosus Muhl. Asteraceae 82.53  

(14.52) 

0.26 

(0.11) 

15.11  

(4.77) 

0.04   

(0.03) 

13.87 

(4.20) 

15.73  

(12.54) 

24.68  

(14.81) 

Humulus japonicus Sieboid 

& Zucc. 

Cannabaceae 88.00  

(9.77) 

0.07 

(0.03) 

18.57  

(7.29) 

0.04   

(0.01) 

4.19 

(2.56) 

120.52 

(87.10) 

108.40 

(49.98) 

Oenothera biennis L. Onagraceae 81.07  

(17.51) 

0.19 

(0.0) 

28.55   

(9.31) 

0.33   

(0.11) 

18.25 

(8.36) 

6.85   

(5.60) 

39.24  

(11.87) 

Persicaria vulgaris Webb & 

Moq.   

Polygonaceae 38.60  

(18.02) 

0.14 

(0.06) 

13.00  

(4.12) 

0.14  

(0.19) 

7.39 

(4.51) 

49.33  

(31.65) 

27.98  

(12.99) 

Phragmites japonica Steud. Poaceae 77.8  

(25.61) 

0.48 

(0.25) 

24.25 

(10.43) 

0.11  

(0.04) 

13.06 

(4.56) 

19.12 

(13.51) 

52.11  

(26.88) 

Rorippa palustris (Leyss.) 

Besser   

Brassicaceae 50.47  

(13.8) 

0.16 

(0.08) 

15.55 

(5.32) 

0.08  

(0.02) 

7.89 

(4.29) 

24.63 

(13.57) 

25.91 

(17.12) 

Values are means with standard deviation in parentheses. 

 

(3) Soil characteristic measurements and analyses (excluding stability): 

In each plot, we estimated five different soil variables: Bulk density, water content, wettability, 

clay % (i.e. percentage of clay), and silt % (i.e. percentage of silt). We randomly sampled 30 cm deep soil 

profiles (from 0 to 30 cm) at each plot. For the bulk density, we took three samples from the soil profile 

using soil rings with 2.8 cm diameter and 1 cm height. Soil rings were weighted, oven-dried for 24 hours 

at 105°C and finally weighed again (Avnimelech et al., 2001). Bulk density was calculated using the 

following equation: 

 

Bulk density (g/cm3) = dry sample mass / total sample volume 

 

The soil water content was calculated as the difference between the ring mass before and after 

drying. 

Soil wettability was assessed via the “water drop penetration time” (WDPT) (Letey, 1969). 

Droplets of distilled water were placed onto the surface of the soil sample and the time for their complete 

infiltration was recorded. Measurements were replicated 10 times for each sample, and then the mean 

value was used for our analysis. 
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Soil texture was expressed as clay % and silt %, following the standard sieve-pipette method 

procedures as described by Gee and Bauder (1986); soil samples were first dispersed into individual 

primary particles using hydrogen peroxide (H2O2) and sodium hexametaphosphate 4%, then the soil slurry 

was sieved through 0.63 mm, 0.2 mm and 0.063 mm sieves to separate coarse, medium and fine sand 

fractions. The remaining suspension, containing coarse, medium and fine silt and clay, was then 

transferred to a 1 liter cylinder and after stirring a sample was taken using a 50 ml pipet at different time 

intervals depending on the temperature, to sample the fine, medium and coarse silt and clay. After drying 

and weighting the samples, % pipetted fraction was calculated as: 

 

% pipetted fraction = (mass of the oven dry fraction / mass of the original sample) x 100 

 

In addition, we used the soil profiles to estimate root density (a variable describing vegetation 

characteristics, see above).  

 

(4) Soil stability measurements 

The plot specific soil cores were also used to estimate variables of soil stability. We considered 

three different and commonly used variables: soil aggregate stability, penetration resistance and soil shear 

vane strength. We used the modified wet sieving method by (Haynes, 1993) to measure soil aggregate 

stability, based on one surface soil sample per plot. In this method 100g of the air-dried 24mm soil 

aggregates were transferred to the uppermost of a set of five sieves with apertures ranging from 0.05 to 2 

mm. Then the sieves’ set were transferred to a water-path where the oscillation rate was 2.5 cycles per 

minute and the amplitude of the sieving action was 3.5 cm for 15 min. Then the sieves were oven dried at 

105oC for 24 hours and the remaining aggregates at each sieve were weighted and the mean weight 

diameter (MWD) was calculated as follows: 

 

MWD = ∑wi* xi 

 

where i corresponds to each fraction collected, wi is the dry mass of the fraction collected relative to the 

total soil used and xi is the mean diameter of the fraction collected. 

In each of the 30 plots, we measured soil penetration resistance (kg/cm2) using a EW-99039-00 

pocket penetrometer (Cole-Parmer Cole-Parmer Instrument Company, Vernon Hills, IL., USA). 

Measurements of penetration resistance were replicated three times for each plot and the average value of 

them was included in the models. 
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For measuring soil shear vane strength (kPa), we used a shear vane with a height of 80 mm and a 

diameter of 40 mm with three measures per plot. Shear strength was calculated using the following 

equation: 

τf = 
T

2π rv
2( (

2
3

) rv+h)

 

 

where τf is the shear strength of the soil, T is the maximum torque at failure, h is the height of the vane 

and 𝑟𝑣 is the diameter of the vane (Richards, 1988). Three replicate measurements were made at each plot 

and the average value was used in the models. 

 

3.2.2 Statistical Analyses 

The aim of our study was to evaluate our conceptual path model on the influence of vegetation 

characteristics, soil characteristics and PFTs on soil stability that we developed in the introduction (Fig. 

3.1) with our data. Towards this aim path analyses were performed independently for the three measures 

of soil stability.   

In a first step, owing to the demanding field protocol of measuring intraspecific trait variability, 

which resulted in a limited sample size, we reduced the number of variables measured to describe 

vegetation characteristics, soil characteristics and PFTs. As suggested by Wilson and Nussey (2010), 

variable selection was based on a redundancy analysis (RDA), which allowed us to choose those variables 

and traits that showed a significant relation to soil stability. We performed this independent pre-variable 

selection in order to obtain a common set of variables for all three soil stability measures and thus for all 

three independent path analyses.   

In a second step, we fitted the conceptual path model with all remaining variables based on a 

Partial Least Squares Path Modeling (PLS-PM) approach. Model evaluation of PLS-PMs was based on the 

R2 coefficient for the soil stability measure and the overall model goodness-of-fit (GoF) index. All 

statistical analyses were done using R, version  3.1.0 (R Development Core Team, 2014), with package 

PLSPM (Sanchez et al., 2013) for the path analysis, the RDA was done using R package vegan (Oksanen 

et al., 2014). 
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3.3 Results 

We found large intraspecific trait variability within the measured traits (Fig. 3.S1). Species mean 

values ranged from 0.06 to 0.47 for root/shoot ratio (Fig. 3.S1a), from 13.00 to 28.55 cm for root length 

(Fig. 3.S1b), and from 3.44 to 18.25 cm for root horizontal width (Fig. 3.S1c).  

According to the RDA (Table 3.2), the vegetation variables that best describe soil stability were 

“vegetation cover percentage, species richness and root density”. For the soil characteristics, the soil 

texture variables “silt and clay percentages” were most important and for the PFTs “root/shoot ratio, root 

horizontal width and root length”. We kept these variables in the following PLS-PM approaches, which 

we describe independently for the three variables of soil stability. 

We fitted of our conceptual path model to data either by ignoring intraspecific trait variability (using 

CWMspecies as metrics for the PFTs) or by accounting for it at the scale of the communities (using CWMj 

as metrics for the PFTs). 

Ignoring intraspecific trait variability resulted in lower quality performance of our path models; 

the explained variance was 79%, 49% and 35% for aggregate stability, penetration resistance and shear 

vane strength, respectively, and goodness-of-fit was 0.45, 0.41 and 0.38 (see Table 3.S1; Figs. 3.S2, 3.S3). 

Direct and indirect effects of PFTs on soil stability were negligible (with standardized path coefficients, 

spc, 0.16, 0.09 and -.03 for the three stability measures). We therefore decided only to present the results 

of the models accounting for intraspecific variability in more detail. 

 

3.3.1 Soil aggregate stability (models accounting for intraspecific variability) 

Our conceptual path model explained 81% of the variance of soil aggregate stability with a 

goodness-of-fit index of 0.58 (Fig. 3.3a). Root density and vegetation cover were the most important 

factors that directly affected soil aggregate stability (with standardized path coefficients, spc, of 0.55 and 

0.26 respectively), while the indirect effects of soil texture and the PFTs on soil aggregate stability 

resulted in the highest total effects (with spc equal to 0.66 and 0.50 respectively, Table 3.S2; Fig. 3.4a). 

The high total effects of soil texture resulted from the strong direct effects of soil texture on PFTs and 

vegetation cover (and partly on species richness, which had a moderate effect on soil aggregate stability), 

while the high total effects of PFTs resulted from their strong link to root density which itself had a strong 

influence on soil aggregate stability. Moreover, PFTs were significantly affected by soil texture and 

species richness. 

The crossloading effects that allow differentiating between the different PFTs (i.e. root/shoot 

ratio, root length and root horizontal width) (Fig. 3.5a) showed that the root/shoot ratio has the strongest 

effect on soil aggregated stability (spc = 0.72) followed by root length (spc = 0.54) and root horizontal 
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width (spc=0.52, Fig. 3.5a). The silt and clay percentages had similar effects on soil aggregated stability 

(with spc equal to 0.65 and 0.60 respectively). 

 

Table 3.2. Redundancy analysis (RDA) results between the three stability measures and the vegetation, soil 

parameters and plant functional traits (PFTs). 

Vegetation parameters RDA 1 (46.2%) RDA 2 (1.2%) 

Vegetation Cover -0.453 -0.802 

Species richness -0.680 -0.243 

Root density -0.960 0.278 

Soil parameters RDA 1 (42.9%) RDA 2 (1.4%) 

Bulk density -0.399 -0.322 

Water content -0.225 -0.691 

Wettability -0.332 -0.595 

Clay % -0.794 0.427 

Silt % -0.857 0.295 

Plant functional traits RDA 1 (49.5%) RDA 2 (3.9%) 

Plant height -0.540 0.180 

Root/shoot ratio -0.790 -0.463 

Root length -0.544 0.265 

Root diameter 0.225 -0.598 

Root horizontal width -0.372 -0.656 

Specific root length -0.087 0.575 

Leaf size 0.110 0.452 
 

3.3.2 Penetration resistance (models accounting for intraspecific variability) 

For the soil penetration resistance, our conceptual path model explained 50% of the variance with 

a goodness-of-fit index of 0.54 (Fig. 3.3b). Root density and soil texture were the most important factors 

that directly affected soil aggregate stability (with standardized path coefficients, spc, of 0.58 and 0.44 

respectively), while PFTs showed the strongest indirect effect on penetration resistance (with spc equal to 

0.30, Table 3.S2; Fig. 3.4b). These strong indirect effects of PFTs resulted from their strong link to root 

density which itself had a strong influence on soil penetration resistance. As in the soil aggregate stability 

model, PFTs were significantly affected by soil texture and species richness. 

The crossloading effects showed a slightly different order of relative importance of the different 

PFTs (Fig. 3.5b) than in the soil aggregate stability model: For soil penetration resistance, root length (and 

not root/shoot ration) was most important (spc = 0.51) followed by root/shoot ration (spc = 0.48) and root 

horizontal width (spc = 0.20, Fig. 3.5b). The silt and clay percentages showed the same trends as in the 

soil aggregate stability model (spc = 0.54 and 0.53 respectively). 
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3.3.3 Soil shear vane strength (models accounting for intraspecific variability) 

In the soil shear vane strength model, 35% of the variance was explained, with a goodness-of-fit 

index of 0.52 (Fig. 3.3c). Root density was the most important factor that directly affected soil shear vane 

strength (spc =  0.54), while the indirect effects of soil texture and PFTs on shear vane strength had the 

highest total indirect effects (spc = 0.52 and spc = 0.22, respectively, Table 3.S2; Fig. 3.4c). Soil texture 

had a strong direct effect on PFTs and species richness. PFTs showed a strong relation to root density 

which itself had a strong influence on shear vane strength. As before, PFTs were significantly affected by 

soil texture and species richness. 

The crossloading effects were comparable to those in the penetration resistance path model (Fig. 

5c), as both the root/shoot ratio and root length were most important (spc = 0.43 and 0.40 respectively), 

while the root horizontal was much less important (spc = 0.10). As before, silt and clay percentages were 

equally important (spc = 0.47 and 0.40 respectively). 

Overall, we found that ignoring intraspecific trait variability resulted in lower fit for our 

conceptual model to the data. Accounting for intraspecific variability, the three components of soil 

stability were either moderately (soil shear vane strength, soil penetration resistance) or well (soil 

aggregate stability) explained by our conceptual path model. In all three analyses, root density had the 

strongest direct effect on soil stability. Accounting in addition for indirect effects, we could show that 

PFTs had a similarly strong influence, which was mostly mediated by root density. The most important 

PFTs were root length and the root/shoot ratio. PFTs themselves were strongly affected by species 

richness and soil texture. 
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Fig. 3.3. The path models outputs for the effects of the soil texture “silt % and clay %”, vegetation cover, species 

richness, root density and PFTs “root/shoot ratio, root length and root horizontal width” with accounting for 

the intraspecific trait variability, on three soil stability measures. (a) soil aggregate stability (b) penetration 

resistance and (c) soil shear vane strength. Numbers on arrows are standardized path coefficients. Solid 

arrows are positive and dashed are negative, bold arrows indicate significant standardized paths (P < 0.05); 

thin arrows indicate non-significant path coefficient (P > 0.05). Percentages close to the boxes indicate the 

variance explained by the model (R2). The goodness-of-fit indices for the models are 0.58 for (a), 0.54 for 

(b) and 0.52 for (c).  

Aggregate Stability 

Vegetation Cover 

Root Density 

PFT 

Soil Texture 

Species Richness 

0.36 

0.47 

0.38 

-0.04 

0.07 

0.22 

0.72 

0.28 

0.05 

-0.03 

0.24 

0.55 

0.25 

0.13 

0.26 

13% 

24% 

32% 

72% 

81% 

a 

Penetration 

Vegetation Cover 

Root Density 

PFT 

Soil Texture 

Species Richness 

0.46 

-0.05 

0.36 

0.39 

0.07 

0.44 

0.72 

0.29 

0.05 

-0.03 

-0.12 

0.58 

0.25 

-0.10 

-0.07 

13% 

24% 

72% 

50% 

33% 

b 



Chapter 3: Effect of plant functional traits on soil stability 

 
 

59 

 

 

Fig. 3.3 (cont.). The path models outputs for the effects of the soil texture “silt % and clay %”, vegetation cover, 

species richness, root density and PFTs “root/shoot ratio, root length and root horizontal width” with 

accounting for the intraspecific trait variability, on three soil stability measures. (a) soil aggregate stability 

(b) penetration resistance and (c) soil shear vane strength. Numbers on arrows are standardized path 

coefficients. Solid arrows are positive and dashed are negative, bold arrows indicate significant standardized 

paths (P < 0.05); thin arrows indicate non-significant path coefficient (P > 0.05). Percentages close to the 

boxes indicate the variance explained by the model (R2). The goodness-of-fit indices for the models are 0.58 

for (a), 0.54 for (b) and 0.52 for (c).   
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Fig. 3.4. The standardized path coefficient for direct and indirect effects of PFTs “root/shoot ratio, root length and 

root horizontal width”, root density, soil texture “silt % and clay %”, species richness and vegetation cover 

on (a) soil aggregate stability, (b) soil penetration resistance and (c) soil shear strength.  
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Fig. 3.5. The path model crossloadings effect of the soil texture “silt and clay contents” and PFTs “root/shoot ratio, 

root length and root horizontal width” on (a) soil aggregate stability, (b) soil penetration resistance and (c) 

soil shear strength.  
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3.4 Discussion: 

Our study is one of the few to investigate the combined influence of plant functional traits (PFTs), 

vegetation characteristics and abiotic soil characteristics on ecosystem functioning in the field. We built a 

conceptual path model to disentangle the different abiotic and biotic drivers of soil stability as one of the 

important ecosystem functions impacting erosion control and nutrient supply in agriculture landscapes. 

We confronted this model with data collected in field margins in South Korea. Results highlight the 

important effect of the functional composition of communities on soil stability. Notably, this effect could 

only be seen when considering intraspecific variability in PFTs.   

 

3.4.1 Explained variation in soil stability 

Our conceptual model hypothesizes that soil stability is not only strongly influenced by abiotic 

variables (e.g. soil structure) and vegetation structure (e.g. cover, species richness) but also by the 

functional composition of plant communities. Overall, our data from South Korean field margins support 

this hypothesis. 

When intraspecific trait variability was considered, the conceptual model explained moderate to 

large parts of the variation in the three considered measures of soil stability. Aggregated stability was best 

explained (81%) followed by penetration (50%) and shear strength (35%). In comparison, goodness-of-fit 

values were not very high (0.52-0.58), a result that is due to the relative low sample size resulting from the 

considerable practical challenge posed by the indispensability of accounting for intraspecific variability in 

trait compositions.  

The three measures of soil stability quantify different facets of soil stability: Aggregate stability 

has a strong influence on infiltration rate and surface runoff (Gyssels et al., 2005); penetration resistance 

strongly influences root elongation rates (Dexter et al., 2007), and is further related to retention, erosion, 

crusting and nutrient cycling (Bronick & Lal, 2005; Chapman et al., 2012); finally, soil shear strength 

influences the resistance of the soil-root matrix to disturbances (Simon & Collison, 2001), erosion 

(Morgan 1996), and crushing (Gyssels et al., 2005). While the amount of variation explained by our 

models differed across these three facets of soil stability, the models were largely congruent in the 

attribution of relative importance to soil texture, root density, and, notably, the role of intraspecific 

variability in PFTs, emphasizing the robustness of our results. 

 

3.4.2 Importance of plant functional traits and intraspecific variability  

One of our most striking results is that fitting the conceptual model with average trait data (i.e. 

ignoring intraspecific trait variability) led to poor model performance. Especially, the effect of functional 
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plant community composition on the different components of soil stability was strongly underestimated 

when ignoring intraspecific variability. In addition we found that even though species significantly differ 

in their mean trait values, intraspecific trait variation is large and trait distributions of different species 

overlap (see supplementary material, Fig. 3.S1). Together these results imply that soil stability is 

significantly influenced by functional plasticity of plants. 

The abiotic variable soil texture was the most important variable in our model. The fine particles 

of the soil texture (clay and silt) improve soil stability (Tisdall & Oades, 1982; Nearing et al., 1991; 

Chenu et al., 2011). It has been currently suggested that this positive effect is rather due to the electrostatic 

bonds or physical forces (Denef & Six, 2005; Arvidsson & Keller, 2011), than due to organic cementing 

agents (Six et al., 2000). Functional community composition and root density had very strong impacts as 

well. Root/shoot ratio, root length and root horizontal width influenced all components of soil stability 

strongly and mostly via their impacts on root density. The effect of root/shoot ratio, root length or root 

horizontal width is mediated via root density due to its role in (1) microbial community compositions in 

the rhizosphere which in turn supports soil stability (Gyssels & Poesen, 2003), (2) in reducing soil 

porosity (Pohl et al., 2009; Graf & Frei, 2013; Pérès et al., 2013), and (3) binding soil particles together 

via root exudates and mucilage (Pojasok & Kay, 1990; Traore et al., 2000; Eisenhauer et al., 2010).  

Interestingly, the effect of PFTs on soil stability via root density is much more important than the effects 

of species richness and partly vegetation cover, a result that is in concordance with recent literature (Graf 

& Frei, 2013; Pérès et al., 2013). Species richness did not directly affect soil stability at all but affected 

root density and PFTs. The impact of vegetation cover was overall small. Our results highlight, the 

importance of not only abiotic but also biotic variables for soil stability. The most important biotic 

variables are strongly related to ecosystem functioning.  

To our knowledge, this is the first field study to demonstrate the key role of plant functional traits 

in soil stability, while accounting for intraspecific trait variability. Soil stability of field margins is of 

particular relevance for agricultural landscapes subjected to extreme heavy rains during the monsoon 

season, as it contributes to the control of soil erosion and nutrient cycling. Our results further corroborate 

the notion that ecosystem functions (e.g. soil stability) are related to the functional composition of the 

community rather than species diversity per se (Dı́az & Cabido, 2001).  

 

3.4.3 Effect vs. response traits 

In our analyses we first selected effect traits that related well to soil stability. The integration of 

these effect traits into our conceptual model allowed us then to evaluate if the same traits well described 

responses to abiotic conditions. Results showed a strong influence of soil texture on PFTs. Consequently 
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we can conclude that root/shoot ratio, root length and root horizontal width, are at the same time important 

response and effect traits.  

Our results suggest that understanding the response of plant communities to abiotic conditions 

benefits from accounting for plant phenotypic plasticity. High plant phenotypic plasticity in response and 

effect traits renders the challenge of managing field margins more difficult and simpler; more difficult, 

because management is difficult to optimize when targeting species based on their mean traits is not likely 

to work, and simpler, because management will be robust when several target species can provide the 

same required effect traits.  

 

3.4.4 Conclusion 

Our study demonstrates the important role of intraspecific trait variability not only in responses of 

plant communities to changing conditions but also in their effect on key ecosystem functions. Results 

corroborate for an important specific example (soil stability in agricultural landscapes) earlier findings 

suggesting that the functional trait composition of communities can be much more important for 

ecosystem functioning than vegetation cover or species richness. These findings have important 

implications for managing field margins in order to improve soil stability as communities should not only 

be enriched by species with favorable root traits but it should also be considered that species show 

important plasticity in their root traits. 
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3.7 Supplementary Materials 

 

 

 

Fig. 3.S1. Boxplots showing the intraspecific functional variability for (a) root/shoot ratio, (b) root length and (c) root 

horizontal width across the ten studied species. It represents (i) the first and third quartile (extent of the boxes), (ii) the 

median value (bold black dash), (iii) the maximum and minimum values of the traits (black whiskers) and (iv) the 

standard deviation of the mean (dotted whiskers). For each trait, results are presented by species ordered by increasing 

mean trait values.   
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Fig. 3.S2. The path model outputs for the effects of soil texture “silt % and clay%”, vegetation cover, species richness, root 

density and PFTs “root/shoot ratio, root length and root horizontal width” without accounting for intraspecific trait 

variability, on three soil stability measures. (a) soil aggregate stability (b) penetration resistance and (c) soil shear vane 

strength. Numbers on arrows are standardized path coefficients. Solid arrows indicate positive and dashed ones 

negative coefficients, bold arrows indicate significant standardized paths (P < 0.05); thin arrows indicate non-

significant path coefficients (P > 0.05). Percentages close to the boxes indicate the variance explained by the model 

(R2). The goodness-of-fit indices for the models are 0.45 for (a), 0.41 for (b) and 0.38 for (c).    

Aggregate Stability 

Vegetation Cover 

Root Density 

PFT 

Soil Texture 

Species Richness 

0.36 

0.47 

0.11 

0.21 

0.07 

0.26 

0.16 

0.28 

0.06 

-0.25 

0.08 

0.53 

0.40 

0.10 

0.26 

13% 

24% 

13% 

39% 

79% 

a 

Penetration 

Vegetation Cover 

Root Density 

PFT 

Soil Texture 

Species Richness 

0.46 

0.21 

0.36 

0.07 

0.07 

0.42 

0.20 

0.27 

0.08 

-0.26 

-0.01 

0.49 

0.39 

-0.10 

-0.07 

13% 

24% 

41% 

49% 

12% 

b 



Chapter 3: Effects of plant functional traits on soil stability 

 
 

70 

 

 

 

Fig. 3.S2 (cont.). The path model outputs for the effects of soil texture “silt % and clay%”, vegetation cover, species 

richness, root density and PFTs “root/shoot ratio, root length and root horizontal width” without accounting for 

intraspecific trait variability, on three soil stability measures. (a) soil aggregate stability (b) penetration resistance and 

(c) soil shear vane strength. Numbers on arrows are standardized path coefficients. Solid arrows indicate positive and 

dashed ones negative coefficents, bold arrows indicate significant standardized paths (P < 0.05); thin arrows indicate 

non-significant path coefficients (P > 0.05). Percentages close to the boxes indicate the variance explained by the 

model (R2). The goodness-of-fit indices for the models are 0.45 for (a), 0.41 for (b) and 0.38 for (c).    
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Fig. 3.S3. The path model crossloading effect of soil texture “silt % and clay %” and PFTs “root/shoot ratio, root length and 

root horizontal width” without accounting for intraspecific trait variability on (a) soil aggregate stability, (b) soil 

penetration resistance and (c) soil shear strength.   
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Table 3.S1. Results of the three path models of the effects of soil texture “silt % and clay%”, vegetation cover, species 

richness, root density and PFTs “root/shoot ratio, root length and root horizontal width” without accounting for 

intraspecific trait variability, on three soil stability measures, (A) soil aggregate stability, (B) soil penetration resistance 

and (C) soil shear vane strength. Provided are the direct, indirect and total effects, unstandardized path coefficient 

(estimates), standard error of regression weight (S.E.) and level of significance for regression weight (P). Significant 

paths (P < 0.05) are given in bold. 

 Effects S.E. t value P 

Direct Indirect Total 

(A) Soil aggregate stability (goodness-of-fit = 0.45) 

Soil texture → Vegetation cover 0.364 0.000 0.364 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.114 0.043 0.157 0.219 0.522 0.606 

Soil texture → Root density 0.2147 0.2478 0.4625 0.187 1.15 0.262 

Soil texture → Aggregate stability 0.217 0.445 0.662 0.114 1.900 0.070 

Vegetation cover → Species richness 0.068 0.000 0.068 0.185 2.010 0.136 

Vegetation cover → PFTs -0.251 0.018 -0.232 1.87 1.15 0.262 

Vegetation cover → Root density 0.069 -0.011 0.058 0.173 0.403 0.690 

Vegetation cover → Aggregate stability 0.263 0.019 0.282 0.102 2.58 0.016 

Species richness → PFTs 0.279 0.000 0.279 0.210 1.33 0.195 

Species richness → Root density 0.405 0.045 0.451 0.184 2.200 0.037 

Species richness → Aggregate stability 0.0966 0.2604 0.357 0.1186 0.841 0.423 

PFTs → Root density 0.1638 0.000 0.1638 0.167 0.982 0.335 

PFTs → Aggregate stability 0.079 0.0865 0.1656 0.100 0.789 0.437 

Root density → Aggregate stability 0.5284 0.000 0.5284 0.117 4.48 <0.000 

(B) Soil penetration resistance (goodness-of-fit = 0.41) 

Soil texture → Vegetation cover 0.364 0.000 0.364 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.069     0.035    0.104 0.220     0.314       0.756 

Soil texture → Root density 0.219     0.243    0.462 0.185    1.190      0.2457 

Soil texture → Penetration 0.417     0.153    0.571 0.179     2.330      0.028 

Vegetation cover → Species richness 0.067 0.000 0.068 0.180 0.372 0.713 

Vegetation cover → PFTs -0.268     0.018   -0.250 0.198 -1.360 0.186 

Vegetation cover → Root density 0.082    -0.024    0.0587 0.172    0.482 0.6338 

Vegetation cover → Penetration -0.073     0.023   -0.050 0.163         -0.450 0.656 

Species richness → PFTs 0.276     0.0000    0.276 0.210     1.310       0.200 

Species richness → Root density 0.395 0.055 0.451 0.182 2.170 0.0399 

Species richness → Penetration -0.094 0.220 0.126 0.188 -0.503 0.6194 

PFTs → Root density 0.202 0.000 0.202 0.164 1.230 0.2303 

PFTs → Penetration -0.002 0.099 0.097 0.160 -0.013 0.9895 

Root density → Penetration 0.490 0.000 0.490 0.189 2.590 0.016 

(C) Soil shear vane strength (goodness-of-fit = 0.38) 

Soil texture → Vegetation cover 0.365 0.000 0.365 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.103 0.052 0.1556 0.218 0.476 0.638 

Soil texture → Root density 0.216 0.245 0.462 0.187 1.160 0.258 

Soil texture → Shear strength 0.274 0.190 0.464 0.202 1.360 0.188 

Vegetation cover → Species richness 0.066 0.000 0.066 0.180 0.370 0.714 

Vegetation cover → PFTs -0.252 0.019 -0.233 0.196 -1.290 0.209 

Vegetation cover → Root density 0.068 -0.010 0.058 0.173 0.396 0.695 

Vegetation cover → Shear strength -0.007 0.049 0.042 0.183 -0.039 0.969 

Species richness → PFTs 0.298 0.000 0.298 0.209 1.430 0.165 

Species richness → Root density 0.403 0.047 0.451 0.185 2.180 0.039 

Species richness → Shear strength 0.020 0.163 0.184 0.213 0.096 0.924 

PFTs → Root density 0.158 0.000 0.159 0.168 0.947 0.352 

PFTs → Shear strength -0.100 0.068 -0.032 0.180 -0.557 0.582 

Root density → Shear strength 0.429 0.000 0.429 0.313 2.118 0.046 
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Table 3.S2. Results of the three path models of the effects of soil texture “silt % and clay%”, vegetation cover, species 

richness, root density and PFTs “root/shoot ratio, root length and root horizontal width” with accounting for 

intraspecific trait variability, on three soil stability measures, (A) soil aggregate stability, (B) soil penetration resistance 

and (C) soil shear vane strength. Provided are the direct, indirect and total effects, unstandardized path coefficient 

(estimates), standard error of regression weight (S.E.) and level of significance for regression weight (P). Significant 

paths (P < 0.05) are given in bold. 

 Effects S.E. t value P 

Direct Indirect Total 

(A) Soil aggregate stability (goodness-of-fit = 0.58) 

Soil texture → Vegetation cover 0.364 0.000 0.364 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.385 0.127 0.512 0.193 2.120 0.041 

Soil texture → Root density -0.043 0.506 0.463 0.136 -0.318 0.753 

Soil texture → Aggregate stability 0.217 0.445 0.662 0.114 1.900 0.070 

Vegetation cover → Species richness 0.068 0.000 0.068 0.185 2.010 0.136 

Vegetation cover → PFTs -0.030 0.019 -0.011 0.174 -0.174 0.863 

Vegetation cover → Root density 0.051 0.009 0.059 0.114 0.444 0.661 

Vegetation cover → Aggregate 

stability 

0.257 0.027 0.284 0.096 2.670 0.013 

Species richness → PFTs 0.284 0.000 0.284 0.185 2.010 0.042 

Species richness → Root density 0.246 0.204 0.451 0.126 1.950 0.063 

Species richness → Aggregate stability 0.127 0.231 0.357 0.114 1.110 0.279 

PFTs → Root density 0.719 0.000 0.719 0.128 5.610 <0.000 

PFTs → Aggregate stability 0.242 0.258 0.500 0.162 1.490 0.149 

Root density → Aggregate 

stability 

0.559 0.000 0.559 0.168 2.130 0.044 

(B) Soil penetration resistance (goodness-of-fit = 0.54) 

Soil texture → Vegetation cover 0.364 0.000 0.364 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.395 0.125 0.520 0.191 2.060 0.049 

Soil texture → Root density -0.053 0.516 0.463 0.135 -0.394 0.697 

Soil texture → Penetration 0.443 0.128 0.571 0.188 2.360 0.027 

Vegetation cover → Species richness 0.068 0.000 0.068 0.180 0.378 0.709 

Vegetation cover → PFTs -0.041 0.020 -0.022 0.172 -0.240 0.812 

Vegetation cover → Root density 0.059 0.001 0.060 0.113 0.521 0.607 

Vegetation cover → Penetration -0.080 0.031 -0.049 0.157 -0.506 0.617 

Species richness → PFTs 0.289 0.000 0.289 0.183 2.114 0.047 

Species richness → Root density 0.240 0.210 0.451 0.126 1.910 0.068 

Species richness → Penetration -0.102 0.228 0.126 0.186 -0.546 0.590 

PFTs → Root density 0.728 0.000 0.728 0.129 5.660 <0.000 

PFTs → Penetration -0.123 0.426 0.302 0.268 -0.460 0.650 

Root density → Penetration 0.585 0.000 0.585 0.276 2.120 0.045 

(C) Soil shear vane strength (goodness-of-fit = 0.52) 

Soil texture → Vegetation cover 0.365 0.000 0.365 0.176 2.070 0.048 

Soil texture → Species richness 0.460 0.025 0.485 0.180 2.550 0.017 

Soil texture → PFTs 0.400 0.125 0.525 0.191 2.100 0.046 

Soil texture → Root density -0.059 0.521 0.463 0.136 -0.433 0.669 

Soil texture → Shear strength 0.305 0.158 0.463 0.213 1.430 0.164 

Vegetation cover → Species richness 0.068 0.000 0.068 0.180 0.376 0.710 

Vegetation cover → PFTs -0.041 0.020 -0.022 0.172 -0.241 0.811 

Vegetation cover → Root density 0.059 0.000 0.059 0.113 0.522 0.606 

Vegetation cover → Shear strength 0.009 0.035 0.044 0.178 0.049 0.961 

Species richness → PFTs 0.290 0.000 0.290 0.183 2.119 0.045 

Species richness → Root density 0.239 0.212 0.451 0.126 1.900 0.069 

Species richness → Shear strength -0.009 0.194 0.185 0.210 -0.042 0.967 

PFTs → Root density 0.732 0.000 0.732 0.129 5.670 <0.000 

PFTs → Shear strength -0.174 0.396 0.222 0.305 -0.570 0.574 

Root density → Shear strength 0.541 0.000 0.541 0.313 2.118 0.046 
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Abstract 

Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong 

rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion by trapping eroded 

material. Here we analyze how local management affects the trapping capacity of field margins in a monsoon 

region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow 

slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for 

each of four different types of field margins (“intensive managed flat”, “intensive managed steep”, “extensive 

managed flat” and “extensive managed steep”) with Astroturf mats. The mats (n = 15 / site) were placed before, 

within and after the field margin. Sediment was collected after each rain event until the end of the monsoon 

season.  

The effect of management and slope on sediment trapping was analyzed using linear mixed effects 

models, using as response variable either the sediment collected within the field margin or the difference in 

sediment collected after and before the field margin. In all cases, there was a positive relation between rainfall 

and sediment collected. While there was no difference in the amount of sediment reaching the different field 

margin types, extensively managed field margins showed a large reduction in collected sediment before and after 

the field margins. This effect was particularly pronounced in steep field margins. We conclude that a field 

margin management promoting a dense vegetation cover is a key to mitigating negative effects of soil erosion in 

monsoon regions, particularly in field margins with steep slopes. 

 

Keywords: Soil erosion, field margins, sediment retention, management, slope, agricultural landscape, 

monsoon.  
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4.1 Introduction  

Soil erosion is a widespread problem in agricultural landscapes, especially in areas subjected to intensive 

rainfall events. Soil erosion has been intensifying in recent years (Pimentel et al., 1995), and causes potentially 

sever reductions in productivity (Eswaran et al., 2001). Due to the summer monsoon, East Asian countries such 

as South Korea receive a huge amount of rainfall, which impacts both the agriculture and economy (Chen et al., 

1988). These rains along with the human activities cause water erosion that in addition to production losses 

produces severe problems in agricultural landscapes, e.g. sedimentation downstream of fields in flood plains and 

water bodies, which as a result affects water quality (Van Oost et al., 2007; Xu et al., 2013). Water erosion is 

responsible for degradation of a total 441 M ha or 59% of the total degraded soil in Asia (Oldeman, 1994). 

Preventing and controlling soil erosion can principally be achieved by reducing the erosive impact of 

rainfall and by maintaining soil infiltration rates, which consequently will prevent surface flow. This can be done 

using several methods; e.g. within the field via crop rotation and tillage practices (Raclot & Albergel, 2006; 

Wang et al., 2010); by improving soil stability which will help in soil erosion control in the longer term (Barthès 

& Roose, 2002), or between fields by using vegetated field margins (Zheng, 2006; Wei et al., 2014)..  

Several studies have shown that field margins can assist in sediment retention by trapping as much as 

70-90% of the inflowing sediment, consequently reducing sediment loads to rivers and streams (Duzant et al., 

2010).  The vegetation of the field margin efficiently removes large heavy particles (Hickey & Doran, 2004). 

Owens et al. (2007), in their study on field margins in southwest England, found that field margins were 

effective in trapping the coarse sediment fractions, and that soil type, slope, land-use and management influence 

the amount of sediment that can be trapped by field margins. Heede (1990), in a study on natural vegetated 

buffer strips in pine forests in Arizona, showed that the vegetated buffer strips trapped 61 times more sediment 

than sites where buffer strips were missing.  

Two important determinants of how effectively field margins mitigate the negative effects of soil erosion 

are the characteristics of their vegetation and the slope of the field margin. Vegetation traps sediments and 

protects soil against erosion mainly by reducing runoff and by increasing the infiltration rate into soil (Zheng, 

2006; Fu et al., 2011). Moreover, plants protect soil using their roots, which bind the soil particles via the root 

excretions (Traore et al., 2000; Gyssels et al., 2005; de Baets et al., 2007), by reducing the raindrops' effect on 

the soil with their canopy (Gray & Sortir, 1996; Durán Zuazo et al., 2008), acting as a physical barrier to change 

sediment flow at the soil surface (Van Dijk et al., 1996; Lee et al., 2000; Martínez et al., 2006).  The spatial 

distribution of vegetation along the slope is an important factor for reducing the sediment runoff (Lavee et al., 

1998; Calvo-Cases et al., 2003; Francia Martínez et al., 2006). While Abrahams et al. (1996) have shown that 

the effect of slope steepness on soil loss is complex, erosion is expected to increase as the slope steepens (Zheng, 

2006; Fu et al., 2011), as a result of the respective increase in velocity and volume of surface runoff (Ziadat & 
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Taimeh, 2013). The effect of slope is modulated by other factors like soil properties (Singer & Blackard, 1982), 

surface conditions (Martínez et al., 2006) and vegetation cover (Singer & Blackard, 1982; Hancock et al., 2015). 

While thus important elements exist for understanding how field margin vegetation structure and slope interact 

in mitigating erosion effects, there is a knowledge gap on how alternative management of the field margin 

translates into reduced or enhanced soil erosion effects. 

The aim of this paper is therefore to investigate how the local management of field margins affects their 

potential to mitigate the negative effects of soil erosion in a monsoon area. In particular, we compare the amount 

of sediment trapped between intensively managed field margins (i.e. by cutting) and extensively managed field 

margins (no management for at least one year). First, we analyze the effects of the two field margin management 

intensities, on both shallow and steep slopes, on the sediment differences collected after and before the field 

margins, which is related to the net uptake or release of sediment of the field margin. Second, we analyze the 

amount of sediment collected within the different field margins, which will give us a wider picture on the 

amount of sediment that will be trapped by the different types of the field margins. 

 

4.2 Materials and methods 

4.2.1 Study site 

The study was conducted in the Haean-myun catchment in the Kangwon Province located in the 

northeast of South Korea (128°05’ to 128°11’ E, 38°13’ to 38°20’ N; Fig. 4.1). Elevation in the study site varies 

from 500 to 750 m a.s.l. The mean annual air temperature is 10.5 oC; the mean monthly temperature varies 

between -10 oC in January and 27 oC in August (1999 - 2013). The average precipitation is 1,500 mm, with 70% 

of the rain falling during the summer monsoon from July to August; with rainfall events > 50 mm/day being 

common (Fig. 4.2) (Berger et al., 2013). The catchment is part of the watershed of the Soyang Lake, which is the 

largest reservoir in South Korea (Kim, B et al., 2000). The Haean-myun catchment is a major agricultural 

hotspot that substantially affects the trophic state of the reservoir (Park et al., 2010). The total catchment area is 

64 km² with 58% of the catchment classified as forested mountains and 30% as agricultural areas (22% dryland 

fields and 8% rice paddy fields), while the remaining 12% are residential areas and semi-natural areas including 

grassland, field margins, riparian areas, channels, and farm roads (Seo et al., 2014). The topography of the 

research area is characterized by flat areas and moderately steep slopes in the center of the catchment and steep 

slopes at the forest edges.  The terrain is highly complex with a variety of different hill slopes and flow 

directions.  
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In the Haean-myun catchment, soils are strongly affected by human activities; especially dry fields are modified 

by the addition of the excavated materials from nearby mountain slopes in order to offset annual erosion losses 

(Park et al., 2010). Average annual soil erosion rate ranges from 30 to 54 (t ha-1yr-1) (Arnhold et al., 2014).  

 

Fig. 4.1. The 12 sampling sites for the sediment trapping in Haean-myun catchment. 

 

4.2.2 Study design and sediment collection 

To test the effect of management (“intensively managed”, hereafter “managed” or “extensively 

managed”, hereafter “natural”) and slope degree (“steep” or “flat”) of the field margin in erosion control, 12 sites 

were installed in Haean-myun catchment for our four different combinations, which are “managed-flat”, 

“managed-steep”, “natural-flat” and “natural-steep” with three replicates for each treatment (Fig. 4.1). Managed 
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field margins were continuously managed by cutting for the whole season, while the natural ones were left 

without any type of management. Steep slopes were selected to have approximately a 35o slope, while the flat 

slopes ranged from 1o to 2o. To reduce potential confounding factors other than management and slope, all sites 

were selected to be next to radish fields, which are considered to have the highest average annual soil erosion 

rate within our study catchment (Arnhold et al., 2014), with the same age and field slope degree from 2o to 5o. 

To trap the sediment that reached the field margins, Astroturf mats with a size of 34 cm x 25 cm (850 

cm2) (for more details see (Lambert & Walling, 1987; Walling & Owens, 2003), were installed at three levels: 

upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field 

margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the 

sediments that leave the field margin to the next field or to the stream. In total, 15 mats were installed at each 

site, with five mats at each level (Fig. 4.3). Mats were installed in May 2013 and were monitored after each rain 

event until the end of the monsoon season. Mats containing sediments were collected and transferred to the 

laboratory, where the sediments were dried at room temperature, removed from the mats and weighed.  

 

Fig. 4.2. Rainfall frequency distribution in Haean-myun catchment for July and August between 1999 and 2013. 
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Fig. 4.3. Schematic diagram showing the location of the Astroturf mats (grey squares) before, within and after the field 

margin. All selected field margins had a width of 5 m and were located next to radish fields. 

 

4.2.3 Statistical analysis 

We used linear mixed effects models (LME) to analyze three response variables: (1) the sediment 

amount collected before the field margin, with “rainfall amount” and “field margin type” as well as their 

interaction as fixed effects, to test whether the different field margin types received different amounts of 

sediment; (2) the difference of sediment collected after and before the field margin, with “rainfall amount”, 

“slope”, “management” and the two-way and three-way interactions between these as fixed effects, to quantify 

the main and interaction effects of management and slope on sediment retention of field margins ; (3) the 

sediment amount collected within the field margin with “rainfall amount” and “field margin type” as well as 

their interaction as fixed effects to yield additional insights on the sediment retention and release within field 

margins. In all cases, the field margin ID was used as a random variable. Backward variable selection from the 

full model with AIC was done on models fitted with maximum likelihood; final parameter estimates were done 

with restricted maximum likelihood (REML). 

The variance of model residuals increased with the amount of rainfall. We accounted for this 

heteroscedasticity by modelling residual variance as an exponential function of rainfall.  

All the statistical analyses were performed with R, version  3.1.2 (R Development Core Team, 2014), 

using package “nlme” (Pinheiro et al., 2013). 
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4.3 Results 

From May to August 2013, Haean-myun catchment received a total amount of 740 mm rainfall in 18 

different rain events, where rainfall ranged between 8 mm to 107 mm/event (Table 4.S1). In all cases, we found 

a clear positive relation between rainfall, and the sediment amount captured by the Astroturf mats (Figs. 4.4a, 

4.5a, 4.6a and Fig. 4.S1). 

There was no statistically significant difference in the amount of sediment that reached the four field 

margin types (Table 4.1). Averaged over all rainfall events, the mean sediment that reached the four field margin 

types was 1.2 ± 0.13 g/cm2 for the managed flat, 1.18 ± 0.13 g/cm2 for the managed steep, 1.18 ± 0.13 g/cm2 for 

the natural flat, and 1.22 ± 0.14 g/cm2 for the natural steep margins (Figs. 4.4a and 4.4b); indicating that we were 

successful in keeping upslope factors potentially affecting sediment movement constant.  

 

4.3.1 Difference in sediment collected after and before the field margins 

Except for managed flat field margins, the differences between sediment collected after and before the 

field margin increased with increasing rainfall (Fig. 4.5a). However, while managed steep margins acted as a 

source of sediments, natural field margins acted as a sink (Fig. 4.5b): averaged over all rainfall events, the mean 

sediment difference in the managed flat margins was 0.001 ± 0.003 g/cm2, in the managed steep margins 0.032 ± 

0.004 g/cm2, in the natural flat -0.070 ± 0.005 g/cm2, and in the natural steep -0.064 ± 0.005 g/cm2 (Fig. 4.5b). 

The best linear mixed effect model explained 91% of the variance of the sediment difference collected 

after and before the field margin (Table 4.2), and contained a significant three-way interaction between rainfall 

amount, management and slope (P = 0.048, Fig. 4.S2).  

 

4.3.2 Sediment collected within the field margins 

Within field margins, Astroturf mats in the natural field margins trapped more sediment than those in the 

managed field margins. Differences between natural and managed margins were pronounced in steep slopes 

(Figure, 4.6a). Averaged over rainfall events, the mean sediment collected within the managed flat margins was 

1.19 ± 0.14 g/cm2, in the managed steep margins 0.74 ± 0.08g/cm2, in the natural flat margins 1.30 ± 0.15 g/cm2 

and in the natural steep margins 1.43 ± 0.16g/cm2 (Fig. 4.6b). 

The best linear mixed effect model explained 71% of the variance of the sediment collected within the 

field margins (Table 4.3) and contained statistically significant interactions between the effect of rainfall and the 

different field margin types. The increase of sediment collection with rainfall was lowest in the managed steep 

slopes. All other field margin types had higher increases of sediment collection with rainfall, in the case of steep 
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natural margins; the increase of trapped sediment with rainfall was almost twice as high as in managed steep 

margins (Fig. 4.6a, Table 4.3 and Fig. 4.S3).  

Overall, we found that natural field margins trapped substantial amounts of sediment, leading to a net 

reduction of sediment load in runoff from the field margin relative to the water reaching the field margin. The 

benefits of natural field margins increased with rainfall intensity and slope.  

Table 4.1. Linear mixed effect model for the effect of rainfall on the sediment collected before field margins. 

 Estimate SE DF t value P AIC R2 

(Intercept) 0.222 0.065 143 3.43 0.001** 
219 0.65 

Rainfall 0.023 0.001 143 19.99 <0.001*** 

Significance codes:  *** P < 0.001, ** P <0.01, * P <0.05. Statistically significant variables are indicated in bold 

 

 

Fig. 4.4. Sediment collected before the field margin in the four different field margin types at different rain events, (a) 

relation between sediment collected before the field margin at different types and the rainfall and (b) average amount 

of the sediment collected before the field margin for the four different types.  
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Table 4.2. Linear mixed effect model for the effect of rainfall, slope and management on the difference in sediment 

collected after and before field margins. 

 Estimate SE DF t value P AIC R2 

(Intercept) -0.032 0.038 140.000 -0.825 0.411 

- 68.4 0.91 

Rainfall 0.001 0.001 140.000 1.027 0.306 

Steep 0.062 0.054 8.000 1.144 0.286 

Natural -0.095 0.054 8.000 -1.761 0.116 

Rainfall *Steep 0.004 0.001 140.000 2.663 0.009** 

Rainfall*Natural -0.009 0.001 140.000 -7.112 <0.001*** 

Slope*Natural -0.012 0.077 8.000 -0.161 0.876 

Rainfall*Steep*Natural -0.004 0.002 140.000 -1.987 0.048* 

Significance codes:  *** P < 0.001, ** P <0.01, * P <0.05. Statistically significant variables are indicated in bold 

 

 

Fig. 4.5. Difference between sediment collected after and before the field margin in four different field margin types at 

different rain events.  
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Table 4.3. Linear mixed effect model for the effect of rainfall and field margin type on the sediment collected within field 

margins. 

 Estimate SE DF t value P AIC R2 

(Intercept) 0.107 0.128 140.000 0.832 0.407 

264 0.71 

Rainfall 0.015 0.002 140.000 6.316 <0.001*** 

Managed Flat 0.039 0.182 8.000 0.214 0.836 

Natural Steep 0.112 0.182 8.000 0.614 0.556 

Natural Flat 0.111 0.182 8.000 0.612 0.557 

Rainfall* Managed Flat 0.010 0.003 140.000 2.946 0.004** 

Rainfall* Natural Steep 0.014 0.003 140.000 4.131 <0.001*** 

Rainfall* Natural Flat 0.011 0.003 140.000 3.209 0.002** 

Significance codes:  *** P < 0.001, ** P <0.01, * P <0.05. Statistically significant variables are indicated in bold 

 

 

Fig. 4.6. Sediment collected within the field margin in the four different field margin types at different rain events, (a) 

relation between sediment collected within the field margin at different types and the rainfall and (b) average amount 

of the sediment collected before the field margin for the four different types.  



Chapter 4: Effect of field margins on erosion control 

 
 

85 

 

4.4 Discussion 

The current study is one of the few studies investigating the effect of field margin management on the 

potential of field margins to mitigate negative impacts of soil erosion, a key problem particularly in monsoon 

agricultural landscapes. We examined the combined effect of field margin management (“natural” or 

“managed”) and field margin slope (“flat” or “steep”) on sediment trapping in three different levels, i.e. before, 

within, and after the field margin, after each rain event during the monsoon season in an agricultural landscape 

of South Korea. Our results highlight that natural field margins can substantially reduce the amount of sediments 

in runoff, compared to the managed field margins, which on steep slopes may even increase sediment in 

downstream runoff.  

 

4.4.1 Effect of rainfall amount on sediment collection 

We found a positive relationship between rainfall amount and the sediments collected at the different 

levels of sediment collection before, within, and after the field margin, with a near linear increase of sediment 

deposition with rainfall amount for all field margin types (Figs. 4.4a, 4.6a and Fig. 4.S1). This result is well in 

line with several other studies. In a study that also used Astroturf mats for sediment collection, conducted in 

arable fields in England, equally showed a positive linear relation between rainfall and sediment deposition 

(Duzant et al., 2010). Arnaez et al. (2007), in their study on agricultural vineyards in Spain, reported a linear 

relationship between rainfall intensity and soil erosion rates (R2 = 0.76).Wei et al. (2014), reported that water 

erosion rates are affected markedly by the occurrence, characteristics, and distribution of rain events. Nearing et 

al. (2005), showed that the variability of rainfall serves key functions in the generation of water erosion. 

According to a study on the Loess Plateau in China, the rainfall amount is significantly affecting soil erosion 

intensity (Sun et al., 2013). 

 

4.4.2 Effect of vegetation cover on sediment collection 

Our results showed that natural field margins, with comparatively high and dense vegetation cover, 

contributed to soil erosion control by trapping sediment. In agreement with our results, Sun et al. (2013) showed 

that soil erosion significantly declined by increasing vegetation cover. Similar results have been reported e.g. by  

Fu et al. (2011), who demonstrated that improving vegetation cover in areas that are susceptible to soil erosion 

improve soil erosion control. 
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4.4.3 Effect of slope degree on the sediment collection 

For the effect of the slope on sediment trapping, our results showed the importance of the slope degree, 

but only in combination with management effect, i.e. in field margins with dense vegetation cover there was 

little difference in sediment trapping between shallow and steep slopes (Fig. 4.4a and Fig. 4.S2). Moreover, for 

flat slopes there was no big difference in the sediment collected within either the natural or managed field 

margins, but in steep slopes, natural field margins trapped more sediment than managed field margins (Fig. 

4.6a). According to Fu et al. (2011), erosion increases as a function of slope, but this effect is also influenced by 

other factors like the vegetation cover (Hancock et al., 2015), since dense vegetation may sufficiently reduce the 

increased runoff water velocity in steep slopes. In an experimental field study, Zheng (2006) showed that while 

over 90% of the erosion came from slopes without vegetation cover, low erosion occurred in slopes that were 

covered by dense vegetation. 

 

4.4.4 Effectiveness of the Astroturf mats in sediment trapping 

We used the Astroturf mats for sediment collection, because they can represent the natural ground 

surface well due to their rough surface and their pliability, and they allow for removing sediment easily (Steiger 

et al., 2003). Furthermore, they provide an easy and fast way to illustrate the effect of soil erosion to local 

farmers and also allow them to monitor erosion themselves. Even though the Astroturf mats allowed to clearly 

identify effects of rainfall amount, management and slope on sediment trapping in our study, they have some 

limitations, for example they can have very low efficiency to trap small soil fractions (Deletic, 1999). 

Furthermore, sediment can bypass the mats if they are full of sediment, so mats need to be checked on a regular 

basis to replace mats that are full of sediment. Regardless of the limitations of using the Astroturf mats to trap 

sediment within the agricultural field margins, results obtained by this method can be calibrated to predict the 

sediment amount that can be trapped within the field margins on the catchment scale using the modified 

Morgan–Morgan–Finney erosion model (MMF) (Morgan & Duzant, 2008) that predicts the runoff and soil loss 

leaving each field below the field margin. Duzant et al. (2010), showed that erosion data that collected from field 

margins using the Astroturf mats can be used to simulate the effectiveness of field margins using the MMF 

model, when the field margin area that effectively contribute to soil erosion is defined from field observation. 

 

4.4.5 Conclusions 

The current study demonstrates the important role of field margin management and slope degree in 

mitigating soil erosion in a monsoon agricultural landscape. Particularly on steep slopes, a field margin 

management that promotes a dense vegetation cover is important for improving sediment retention in the field 

margins and thereby reducing negative effects downslope.  
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4.7 Supplementary materials 

 

Fig. 4.S1. The relationship between sedimentation and rainfall in the 12 study sites at different positions. The R2 and for 

these relationships are (0.91, 0.79 and 0.74) for sediment collected before, within and after the field margins, 

respectively (P < 0.001 in all cases). 
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Fig. 4.S2. The effect of three-way interaction between rainfall amount, management and slope of field margin on the 

difference in sediment collected after and before field margins. 

 

Fig. 4.S3. The effect of two-way interaction between rainfall amount and type field margin on the sediment collected within 

field margins.  
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Table 4.S1. Average amount of sediment deposited on the Astroturf mats for each rain event in the different field margins’ 

type at different positions “before, within and after”. 

Rain event 
Rainfall 

(mm) 
Field margin type 

Sediment deposition rate at different positions of 

the field margin (g cm-2) 

Before Within After 

1 10 Managed Steep 0.064 (0.05) 0.039 (0.04) 0.080 (0.06) 

1 10 Managed Flat 0.065 (0.05) 0.064 (0.05) 0.064 (0.05) 

1 10 Natural Flat 0.064 (0.05) 0.072 (0.06) 0.035 (0.03) 

1 10 Natural Steep 0.065 (0.06) 0.081 (0.07) 0.042 (0.03) 

2 15 Managed Steep 0.078 (0.06) 0.048 (0.04) 0.094 (0.07) 

2 15 Managed Flat 0.079 (0.07) 0.078 (0.07) 0.077 (0.07) 

2 15 Natural Flat 0.078 (0.07) 0.086 (0.07) 0.042 (0.04) 

2 15 Natural Steep 0.076 (0.07) 0.095 (0.08) 0.049 (0.04) 

3 8 Managed Steep 0.038 (0.03) 0.022 (0.02) 0.045 (0.03) 

3 8 Managed Flat 0.037 (0.03) 0.036 (0.03) 0.037 (0.03) 

3 8 Natural Flat 0.037 (0.03) 0.044 (0.04) 0.020 (0.02) 

3 8 Natural Steep 0.038 (0.03) 0.045 (0.04) 0.023 (0.02) 

4 28 Managed Steep 0.158 (0.13) 0.092 (0.08) 0.186 (0.14) 

4 28 Managed Flat 0.155 (0.13) 0.149 (0.13) 0.155 (0.13) 

4 28 Natural Flat 0.152 (0.13) 0.163 (0.14) 0.085 (0.07) 

4 28 Natural Steep 0.159 (0.14) 0.184 (0.15) 0.097 (0.08) 

5 40 Managed Steep 0.163 (0.13) 0.097 (0.09) 0.193 (0.15) 

5 40 Managed Flat 0.159 (0.14)  0.153 (0.13) 0.160 (0.14) 

5 40 Natural Flat 0.156 (0.13) 0.167 (0.14) 0.092 (0.08) 

5 40 Natural Steep 0.164 (0.14) 0.187 (0.15) 0.103 (0.09) 

6 15 Managed Steep 0.082 (0.06) 0.048 (0.04) 0.092 (0.07) 

6 15 Managed Flat 0.079 (0.07) 0.084 (0.08) 0.080 (0.07) 

6 15 Natural Flat 0.079 (0.07) 0.086 (0.07) 0.047 (0.04) 

6 15 Natural Steep 0.085 (0.08) 0.095 (0.08) 0.050 (0.04) 

7 107 Managed Steep 0.501 (0.38) 0.335 (0.29) 0.620 (0.50) 

7 107 Managed Flat 0.527 (0.45) 0.557 (0.49) 0.560 (0.48) 

7 107 Natural Flat 0.524 (0.44) 0.575 (0.49) 0.334 (0.28) 

7 107 Natural Steep 0.545 (0.47) 0.653 (0.53) 0.354 (0.29) 

8 31 Managed Steep 0.145 (0.12) 0.080 (0.07) 0.171 (0.14) 

8 31 Managed Flat 0.145 (0.13) 0.142 (0.12) 0.142 (0.12) 

8 31 Natural Flat 0.153 (0.13) 0.155 (0.13) 0.076 (0.06) 

8 31 Natural Steep 0.148 (0.13) 0.170 (0.14) 0.086 (0.07) 

9 45 Managed Steep 0.163 (0.13) 0.099 (0.09) 0.191 (0.15) 

9 45 Managed Flat 0.159 (0.14) 0.154 (0.13) 0.159 (0.14) 

9 45 Natural Flat 0.157 (0.13) 0.170 (0.14) 0.092 (0.08) 

9 45 Natural Steep 0.164 (0.14) 0.187 (0.15) 0.103 (0.09) 

10 45 Managed Steep 0.162 (0.13) 0.099 (0.09) 0.189 (0.15) 

10 45 Managed Flat 0.161 (0.14) 0.152 (0.13) 0.158 (0.14) 
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Rain event 
Rainfall 

(mm) 
Field margin type 

Sediment deposition rate at different positions of 

the field margin (g cm-2) 

Before Within After 

10 45 Natural Flat 0.159 (0.14) 0.170 (0.14) 0.092 (0.08) 

10 45 Natural Steep 0.163 (0.14) 0.188 (0.15) 0.102 (0.09) 

11 15 Managed Steep 0.075 (0.06) 0.049 (0.04) 0.094 (0.07) 

11 15 Managed Flat 0.079 (0.07) 0.080 (0.07) 0.078 (0.07) 

11 15 Natural Flat 0.079 (0.07) 0.089 (0.07) 0.043 (0.04) 

11 15 Natural Steep 0.076 (0.07) 0.096 (0.08) 0.050 (0.04) 

12 96 Managed Steep 0.451 (0.34) 0.301 (0.26) 0.551 (0.46) 

12 96 Managed Flat 0.480 (0.41) 0.508 (0.44) 0.504 (0.43) 

12 96 Natural Flat 0.472 (0.40) 0.536 (0.46) 0.299 (0.25) 

12 96 Natural Steep 0.489 (0.43)  0.586 (0.48) 0.318 (0.26) 

13 55 Managed Steep 0.195 (0.16) 0.118 (0.10) 0.225 (0.18) 

13 55 Managed Flat 0.192 (0.17) 0.182 (0.16) 0.190 (0.16) 

13 55 Natural Flat 0.190 (0.16) 0.207 (0.18) 0.109 (0.09) 

13 55 Natural Steep 0.194 (0.17) 0.226 (0.19) 0.122 (0.10) 

14 60 Managed Steep 0.199 (0.16) 0.122 (0.11) 0.230 (0.18) 

14 60 Managed Flat 0.196 (0.17) 0.187 (0.16) 0.192 (0.16) 

14 60 Natural Flat 0.193 (0.16) 0.214 (0.18) 0.112 (0.10) 

14 60 Natural Steep 0.197 (0.17) 0.230 (0.19) 0.123 (0.10) 

15 45 Managed Steep 0.162 (0.13) 0.099 (0.09) 0.190 (0.15) 

15 45 Managed Flat 0.161 (0.14) 0.152 (0.13) 0.159 (0.14) 

15 45 Natural Flat 0.158 (0.14) 0.173 (0.15) 0.092 (0.08) 

15 45 Natural Steep 0.163 (0.15) 0.189 (0.16) 0.102 (0.09) 

16 60 Managed Steep 0.199 (0.16) 0.123 (0.11) 0.230 (0.18) 

16 60 Managed Flat 0.197 (0.17) 0.187 (0.16) 0.192 (0.17) 

16 60 Natural Flat 0.193 (0.17) 0.211 (0.18) 0.112 (0.10) 

16 60 Natural Steep 0.196 (0.17) 0.231 (0.19) 0.123 (0.10) 

17 44 Managed Steep 0.161 (0.13) 0.099 (0.09) 0.182 (0.14) 

17 44 Managed Flat 0.161 (0.14) 0.160 (0.14) 0.159 (0.14) 

17 44 Natural Flat 0.158 (0.14) 0.180 (0.15) 0.092 (0.08) 

17 44 Natural Steep 0.164 (0.15) 0.190 (0.15) 0.103 (0.09) 

18 16 Managed Steep 0.074 (0.06) 0.049 (0.04) 0.093 (0.07) 

18 16 Managed Flat 0.078 (0.07) 0.078 (0.07) 0.076 (0.07) 

18 16 Natural Flat 0.078 (0.07) 0.088 (0.07) 0.042 (0.04) 

18 16 Natural Steep 0.075 (0.07) 0.095 (0.08) 0.050 (0.04) 

 

Values are means with standard deviation in parentheses.  
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Chapter 5: Synopsis & Outlook 
 

In this thesis, considerable effort has been put into understanding the processes governing plant 

community structure and resulting functioning in agricultural field margins. This was done by focusing on 

describing naturally occurring plant communities of the field margins in the agricultural landscape of Haean-

myun catchment in South Korea (Chapter 2) and how it can affect the ecosystem functioning (e.g. soil stability, 

soil erosion control) (Chapters 3 and 4), which consequently will help us to understand the functional role of the 

field margins as an important component of the agro-ecosystem.  

With these premises let me in the following pages summarize and guide through the essence of the 

thesis, including summary of the key results, a general discussion on the importance of the thesis’s findings, the 

future trends and some concluding remarks. 

 

5.1 Summary  

5.1.1 Effect of local-management and landscape-scale land-use on plant communities (Chapter 2) 

Changes in land-use practices within agricultural landscapes, such as agriculture intensification and 

widespread removal of natural vegetation, have led to a decline in biodiversity (Fritch et al., 2011). Diversity in 

agricultural landscapes is important for the conservation of typical cultural landscapes (Berkes & Davidson-

Hunt, 2006; Gao et al., 2013) and their species (Myers et al., 2000; Pimm et al., 2014) but also for ecosystem 

services such as pest control (Naeem et al., 2012; Reich et al., 2012). However, although a decline of 

biodiversity in response to land-use changes is well documented (Chapin et al., 2000; Sala et al., 2000) it often 

remains unclear which types of land management affect which components of biodiversity.  

We study field margins in an agricultural landscape in South Korea. The area is subjected to rapid 

change in land-use, as it has been shifting over the last 40 years towards intensive agriculture, which led to an 

expansion in farm fields and a reduction in natural areas and (Kettering et al., 2012). Within these agricultural 

landscapes, field margins have an important function for conservation (Marshall, 1988; Moonen & Marshall, 

2001), as they provide species refuges as well as feeding and breeding habitats (Ma et al., 2013). Field margins 

and their diversity also play an important function within the agroecosystem as they promote, for example, soil 

stability (Pohl et al., 2009; Pérès et al., 2013). In order to reduce species loss and the loss of important 

ecosystem functions, it is important to understand the effects of different aspects of land management, e.g. local 

field margin management and landscape structure, on the species growing within the field margins. In the 

studied field margins we contrast two main types of management. First, local management, which includes 
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cutting, spraying herbicides to remove field margin vegetation, and deciding on field margin width. Second, the 

landscape-scale land-use management, which can affect the regional species pool and provides opportunities for 

species dispersal, is here measured as the percentage of non-farmed habitat. 

To test how the local management and the landscape-scale land-use influence plant communities of 

agricultural field margins, we studied multi-facet plant community structure which includes alpha, beta and 

gamma diversities and species level characteristics such as rareness, growth forms and dispersal types. Firstly, 

we surveyed 100 field margins covering Haean-myun catchment. In each plot we measured four environmental 

variables: exposure, slope, width of the field margin and management type (i.e. “managed” for field margins that 

had signs of management activities from the ongoing season such as cutting or spraying herbicides and 

“unmanaged” for field margins that had left untouched in the season). For the botanical survey each plot was 

sampled using three subplots of one square meter per subplot; subplots were 4 m apart from each other. In each 

subplot, we estimated three different vegetation characteristics: vegetation cover (i.e. the percentage of ground 

covered by vegetation), species richness (i.e. the number of observed species) and species abundance (i.e. the 

number of observed individual / species). The managed field margins were sampled after one month of the 

management activities. Secondly, we classified all species into dispersal groups of either abiotic (wind- or 

unassisted dispersal) or biotic dispersal (e.g. by insects, birds, and mammals) and according to their growth form 

into annual and perennial according to Kim, M et al. (2000). Finally, to test the influence of the landscape-scale 

land-use, we calculated the percentage of the non-farmed habitats around each plot in five distinct buffer zones 

of 100, 200, 300, 400 and 500 m radii. Non-farmed habitats included field margins, fallows, forest, riparian 

areas, pasture and grassland in the land-use maps for 2010 provided by Seo et al. (2014). 

To achieve our goal, we performed our data analyses in three steps: First, we calculated alpha (α) 

diversity of the 300 subplots, pairwise beta (β) diversity of the 100 plots, each represented by the mean species 

abundance in the three subplots, and, separately for the managed and unmanaged plots, gamma (γ) diversity. 

Second, we analyzed the effects of local management and landscape-scale land-use on alpha diversity using 

linear mixed effects models and on pairwise beta diversity by calculating local contribution to beta diversity 

(LCBD). Finally, we analyzed the species abundance response to local management and landscape-scale land-

use using generalized linear mixed models. 

Our results showed that the local management and landscape-scale land-use have very different effects, 

as local management influences mostly the more rare species, those with abiotic dispersal and with perennial 

growth form. In contrast, landscape-scale land-use influences more the abundance of species in the managed 

plots where the abundant species are perennials. Based on the species abundance, the managed field margins 

found to harbor fewer species and have a positive relation to landscape-scale land-use.  
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In conclusion, we emphasize the importance of the multi-scale approach as it supports an enriched and 

coherent portrayal of biodiversity responses to local and landscape-scale managements. As the local 

management is mainly affecting the plots that have no surrounding habitats, it is important that if the field 

margins are managed they should at least have access to non-farmed habitats in the surroundings to help 

increasing the plant diversity via species dispersal. 

 

5.1.2 Effect of plant functional traits on soil stability (Chapter 3) 

Soil stability is a key ecosystem function provided by agricultural landscapes, which refers to the 

ecosystem function of resistance to disintegration when disturbed. Soil stability is critical for water infiltration, 

root growth and resistance to water and wind erosion (Bronick & Lal, 2005; Gyssels et al., 2005) and thus is a 

crucial soil property affecting soil sustainability and crop production (Letey, 1985). Soil stability can be 

measured in the field by several methods. The most common methods are: (1) Soil aggregate stability, which 

reflects how the soil aggregates react to precipitation, as the unstable aggregates tend to produce a slaked soil 

layer when it gets wet, which causes limitation in the infiltration rate, increasing the surface runoff and limiting 

the plant growth (Tisdall & Oades, 1982). (2) Soil penetration resistance, a composite soil property that is 

governed by more basic properties, including soil cohesion, soil compressibility and soil/metal friction (Dexter et 

al., 2007). Penetration resistance correlates with several other important variables, such as root elongation rate 

(Taylor & Ratliff, 1969). (3) Soil shear vane strength, which measures the soil cohesiveness and resistance to 

shearing forces exerted by gravity, moving fluids and mechanical loads (Morgan, 2009). It reflects how the soil-

root matrix produces a type of reinforced earth, which is much stronger than the soil or the roots separately and 

how this matrix can resist the environmental factors and human activities (Simon & Collison, 2001). There are 

many factors that control soil stability via direct and indirect pathways. Particularly important are abiotic soil 

characteristics such as soil texture and clay content (Denef & Six, 2005; Chenu et al., 2011), biotic vegetation 

characteristics such as species richness, vegetation cover and plant diversity (Pohl et al., 2009; Pérès et al., 

2013), and biotic functional characteristics such as plant roots, soil fauna, and microorganisms (Gyssels et al., 

2005). 

To test the influence of vegetation characteristics (vegetation cover %, species richness and root 

density), soil characteristics (soil texture “silt and clay %”) and plant functional traits (PFTs) on soil stability, we 

built a conceptual path model to disentangle these effects on soil aggregate stability, soil penetration resistance 

and soil shear vane strength. Using data collected from the field margins in Haean-myun catchment in Korea 

using 30 sampling plots of 1 m2 (Fig. 5.1). In each plot (1) we estimated three different variables describing the 

vegetation characteristics; vegetation cover (i.e. the percentage of ground covered by vegetation), species 

richness (i.e. the number of observed species) and root density (estimated as percentage using a 30 cm x 30 cm 
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metallic frame placed on the soil profile; (2) we measured above- and belowground PFTs for a total of 15 

individuals of the 10 most representative species in the study site, these PFTs included plant height and leaf size 

for the aboveground compartment of each individual, root horizontal width (RHW), root length (RL), root 

diameter (RD), root dry mass (RDM), specific root length (SRL) and root/shoot ratio (RSR) as belowground 

traits. We then up-scaled the functional properties to the community level using community weighted means 

(CWM) for each of the PFTs based on ignoring or accounting for intraspecific trait variability (ITV). (3) We 

used bulk density, water content, wettability, percentage of clay and silt as soil characteristics at each of our 30 

sampling plots. Before running the path model, we did variable selection based on a redundancy analysis (RDA), 

which allowed us to choose those variables and traits that showed a significant relation to soil stability. In a 

second step, we fitted the conceptual path model with all remaining variables based on a Partial Least Squares 

Path Modeling (PLS-PM) approach, separately for each of the stability measure with and without the ITV. 

Model evaluation of PLS-PMs was based on the R2 coefficient for the soil stability measure and the overall 

model goodness-of-fit (GoF) index. 

 

Fig. 5.1. A conceptual path model for effects of the abiotic soil characteristics (soil texture “silt % and clay %”), vegetation 

characteristics (vegetation cover, species richness and root density) and PFTs (RSR = root/shoot ratio, RL = root 

length and RW = root horizontal width) on three soil stability measures (Soil aggregate stability, soil penetration 

resistance and soil shear vane strength). Numbers on arrows indicate previous studies that support the path; 1. 

Lane et al. (1998), 2. Denef and Six (2005), 3. Petchey and Gaston (2002), 4. Pohl et al. (2009), 5. Reich et al. 

(2012), 6. Pérès et al. (2013) and 7. Gyssels et al. (2005). 

 

Our results showed that soil stability is not only strongly influenced by abiotic variables (e.g. soil 

structure) and vegetation structure (e.g. cover and species richness) but also by the functional composition of 
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plant communities. Furthermore, our results showed that ignoring intraspecific trait variability resulted in lower 

fit for our conceptual model to the data. Accounting for intraspecific variability, the three components of soil 

stability were either moderately (soil shear vane strength, soil penetration resistance) or well (soil aggregate 

stability) explained by our conceptual path model. In all three analyses, root density had the strongest direct 

effect on soil stability. Accounting in addition for indirect effects, we could show that PFTs had a similarly 

strong influence, which was mostly mediated by root density. The most important PFTs were root length and the 

root/shoot ratio. PFTs themselves were strongly affected by species richness and soil texture. 

In conclusion, this study demonstrated the important role of intraspecific trait variability not only in 

responses of plant communities to changing conditions but also in their effect on key ecosystem functions. 

Results corroborate for an important specific example (soil stability in agricultural landscapes) earlier findings 

suggesting that the functional trait composition of communities can be much more important for ecosystem 

functioning than vegetation cover or species richness. These findings have important implications for managing 

field margins in order to improve soil stability as communities should not only be enriched by species with 

favorable root traits but it should also be considered that species show important plasticity in their root traits. 

 

5.1.3 Effect of management and slope of field margin on soil erosion control (Chapter 4) 

Soil erosion is one of the common problems affecting agricultural landscapes, especially in areas 

subjected to intensive rainfall events. Soil erosion has been intensifying in recent years (Pimentel et al., 1995), 

and causes reductions in productivity, reaching 50% in some lands (Eswaran et al., 2001). As mentioned before, 

field margins have a series of extremely important roles within the landscape, e.g. reflecting agricultural, 

environmental, conservation, recreational, and cultural or historical interests (Greaves & Marshall, 1987; 

Marshall & Moonen, 2002; Hickey & Doran, 2004; Olson & Wäckers, 2007; D’Acunto et al., 2014). In this 

study we are concentrating on the field margin’s environmental role in erosion control due to its efficiency in 

sediment trapping. As the vegetation of the field margin efficiently can trap sediment and protect soil against 

erosion by reducing runoff and by increasing infiltration rate into soil. One of the factors that influence soil 

erosion and runoff is slope steepness. It has been shown that erosion is expected to increase as a function of 

slope steepness (Zheng, 2006; Fu et al., 2011), but this effect is also affected by other factors like soil properties 

(Singer & Blackard, 1982), surface conditions (Martínez et al., 2006) and vegetation cover (Singer & Blackard, 

1982; Hancock et al., 2015).  

To test the effect of management (“intensively managed”, hereafter “managed” or “extensively 

managed”, hereafter “natural”) and slope degree (“steep” or “flat”) of the field margin in erosion control, 12 sites 

were installed in Haean-myun catchment for our four different combinations, which are “managed-flat”, 

“managed-steep”, “natural-flat” and “natural-steep” with three replicates for each treatment (Fig. 1.3D). 
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Managed field margins were continuously managed by cutting for the whole season, while the natural ones were 

left without any type of management. Steep slopes were selected to have approximately a 35o slope, while the 

flat slopes ranged from 1o to 2o. To reduce potential confounding factors other than management and slope, all 

sites were selected to be next to radish fields, which are considered to have the highest average annual soil 

erosion rate within our study catchment (Arnhold et al., 2014), with the same age and field slope degree from 2o 

to 5o. 

To trap the sediment that reached the field margins, Astroturf mats with a size of 34 cm x 25 cm (850 

cm2) (for more details see (Lambert & Walling, 1987; Walling & Owens, 2003), were installed at three levels: 

upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field 

margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the 

sediments that leave the field margin to the next field or to the stream. In total, 15 mats were installed at each 

site, with five mats at each level (Fig. 5.2). Mats were installed in May 2013 and were monitored after each rain 

event until the end of the monsoon season. Mats containing sediments were collected and transferred to the 

laboratory, where the sediments were dried at room temperature, removed from the mats and weighed.  

 

Fig. 5.2. Schematic diagram showing the location of the Astroturf mats (grey squares) before, within and after the field 

margin. All the field margins selected to have the width of 5 m and to be next to radish fields. 

 

Our results showed that in all cases, there is a positive relation between rainfall and sediment collected. 

Natural field margins showed high efficiency in reducing soil erosion in comparison to the managed ones. For 

the field margin slope, it showed effectiveness in combination with vegetation cover, as natural margins that 

have steep slopes had more sediment trapped in comparison to the managed margins.  

In conclusion, this study demonstrated the important role of field margins in controlling water soil 

erosion in agricultural landscapes, especially those which face huge rainfall amounts. These findings have 
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important implications for field margins’ management, placement and design within the agricultural landscape in 

order to effectively control soil erosion. 

 

5.2 Outlook 

The plant communities of field margins are an important aspect of agroecosystem ecology. A major 

research challenge was to link studies aiming to understand the determinants of species distribution on the one 

hand and the consequences of biodiversity patterns for ecosystem functioning on the other hand. 

Study of the drivers of multi-scale plant community structure in agricultural field margins revealed a 

better understanding of the effects of local field margins’ management on plant communities and how it can 

affect important ecosystem services in agricultural landscapes. There is still scope for further research in this 

area, as the possibility of testing the effect of local management and landscape context on the functional 

composition of plant communities needs more research. 

The next chapter describes the effect of the functional composition of plant communities on soil stability 

as one of the important ecosystem services in agricultural landscapes that face monsoonal climate. The value of 

the results from this study could be increased further by more applied research about the functional roles of the 

plant communities and how it can affect the whole ecosystem. Thus, testing the functional role of plant 

communities should not be restricted to experimental fields but in addition more field work in different 

geographic areas with different climatic conditions would allow for a better assessment of the functionality of 

field margins. While the results of this study point towards functionality of field margins in areas facing 

monsoonal climate, more research on different ecosystem functioning (e.g. nutrient cycling) would be beneficial.  

Results of the erosion control using field margins showed how effective the field margins' vegetation in 

mitigating soil erosion is. Further work is needed to mitigate soil erosion in agriculture landscapes using field 

margins. To achieve this goal, it is important to investigate the source and pathways by which sediment are 

transported to waterbodies on a catchment scale, which can be done using models, tracers and field experiments. 

Furthermore, socio-economic studies on the costs and benefits of having wider field margins, which can lead to 

flatter slopes, should be conducted; this should be done via interacting with the farmers to focus the work and 

promote findings. Finally, a robust field margin management plan should be developed in Korea to provide a 

dense vegetation cover to prevent soil erosion. 
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5.2.1 Future plan for field margin placement and design: 

Due to the importance of the field margins in soil erosion control within the agricultural landscapes, a 

decision support system (DSS) framework has been implemented by Deeks et al. (2012), for the effective design 

and placement of the vegetated field margins within the agricultural field system in the UK. We have found that 

most of the research on effectiveness of field margins in controlling soil erosion were conducted in the UK to 

test the capability of field margins to trap sediment and the associated nutrients (Owens et al., 2007) or to apply 

erosion models for the assessment of field margin performance in erosion control (Duzant et al., 2010). On the 

other hand, we didn’t find any research that has been done in areas with monsoon climate like South Korean 

agricultural landscapes. A step forward from these studies that have been done in the UK, our results showed 

how the management activities and slope degree of field margins are of a great importance in soil erosion 

control. This will help in providing local farmers with specific guidelines for managing field margins to get the 

maximum benefits out of them in areas like South Korean agricultural landscapes, which are characterized by a 

monsoon climate. 

Based on the results of the current study, previous studies which have been done in Haean-myun 

catchment, and the DSS framework, we feel that several adjustments to field margins in areas that have 

monsoonal climate are profitable, which can be explained in six main steps as follows (Fig. 5.3): 

1. Identify fields with soil erosion problems: in this step, target fields that have high risk of erosion are 

identified, which we can achieve by local knowledge, soil erosion models, and farm advisors (Arnhold et 

al., 2013; Arnhold et al., 2014). 

2. Identify sediment flow pathways and target location of the field margin features: in order to achieve this 

step, we have to identify the flow direction of the sediment and the field margin positions, which can be 

done using adding local information about erosion to a topographic map, or by using erosion models. 

3. Identify methods to prevent or reduce soil erosion: after identifying the sites that susceptible to erosion 

risk, we will propose the best method to prevent soil erosion, which can be done based on our current 

results by considering increasing the vegetation cover and reducing the vegetation removal by cutting or 

spraying herbicides, especially within the field margins that have steep slopes.  

4. Consider the proper width of field margin: Here we are considering the field margin’s design; according to 

Yuan et al. (2009), the effective width of field margins should range between three and six meters as it can 

remove fair amounts of sediments. 

5. Field margin establishment and vegetation cover: once we have selected the field margins and its design, 

we have to check three important features (1) the field margin’s width, which should be in the range that 

helps controlling erosion; (2) the field margin’s slope, if it is steep or flat and (3) the vegetation cover 

percentage which will depend on the field margin’s slope and width.  
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6. Field margin monitoring: as a guarantee that the field margins are functionally controlling the soil erosion, 

it should be monitored frequently to check for any changes that may make it less functional, which can 

include (1) gaps that may appear within the field margin due to sediment flow; (2) soil compaction, which 

can appear due to human and animal movement and will affect infiltration rate and sediment deposition 

and (3) vegetation cover reduction, due to grazing, soil compaction, age or diseases (Owens et al., 2007; 

Deeks et al., 2012). 

 

 

Fig. 5.3. Schematic diagram of our future plan for functional placement and design of field margins within agriculture 

landscape to reduce soil erosion (modified after Deeks et al. (2012)). 

 

5.3 Concluding remarks 

As agricultural landscapes occupying around 50% of the earth’s land surface (USDA, 2013), it is pivotal 

to sustain and maintain the biodiversity in these system to improve the ecosystem functioning. In this thesis, we 

provided several recommendations for improving the ecosystem functions in agricultural landscapes using the 

field margins as a functional component of the agroecosystem (Fig. 1.1).  

6. Field margin monitoring by checking for damages and 
maintain.

5. Field margin establishment, by considering, width, 
vegetation cover and slope  

4. Identify appropriate width and shape of field margin.

3. Identify methods of preventing soil loss.

2. Identify the sediment flow pathways and locate field 
margins towards which sediment is likely to be transfered.

1. Identify fields with erosion problem.
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We showed how important the local-management of the field margins and the surrounding landscape-

scale land-use in maintaining the diversity in the agricultural landscapes. For areas like South Korea, better laws 

and strategies should be developed to control the field margin’s local management, which will help in 

conserving the biodiversity by providing the suitable habitats for flora and fauna and consequently, will affect 

the soil quality and stability which will help in controlling the soil erosion happens during the monsoon time in 

South Korea. Furthermore, we demonstrated how essential is the field margin’s plant functional community 

composition on soil stability as an important ecosystem function in the agricultural landscapes. Finally, we 

modified a pre-existing future decision support system (DSS) framework for the effective design and placement 

of the vegetated field margins within the agricultural field system to help in protecting soil erosion via field 

margins in agricultural landscapes that face monsoonal climate. 
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