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Abstract

In this thesis, I have studied magnetic dipolar interactions between paramag-

netic and nonmagnetic colloidal particles immersed in a magnetic fluid under

the influence of an external time dependent magnetic field. These interactions

play an important role in colloidal self-assembly. As a result, of these inter-

actions different forms of anisotropic superstructures evolve in 2-Dimension

and 3-Dimension during the self-assembly process. The time dependent exter-

nal magnetic field is an important controlling parameter for the self-assembly

process. The interactions leads to a specific equilibrium positions of the para-

magnetic and nonmagnetic particles with specific orientations of the magnetic

moments.

Three different colloidal systems immersed in ferrofluid with external time

dependent magnetic field have been investigated. In each of them the effect

of inter dipolar interactions on the particles is discussed. Three systems are

arranged and discussed in three separate chapters. In chapter 3, an attempt

has been made to study the diffusion of particles in a colloidal flower system

and compare the diffusion of the petals of the flower with other single file

diffusion in 1-dimension. Beside the long-range interactions, in chapter 4, we

have studied the strength of the systems and order of phase transition taking

place due to core size effects of self-assembled flower shaped magnetic colloidal

clusters and diamagnetic clusters in a precessing magnetic field. In chapter 5,

different anisotropic assemblies and colloidal phases are studies as a function

of the composition mixture of paramagnetic and diamagnetic particles in an

external time dependent magnetic field.

self-assembly, precessing magnetic field, ferrofluid, paramagnetic and non-

magnetic particles, diamagnets



Zusammenfassung

In dieser Promotion habe ich magnetische Dipolwechselwirkungen zwischen

paramagnetischen und nichtmagnetischen kolloidalen Partikeln in einer ma-

gnetischen Flüssigkeit unter dem Einfluß eines externen zeitabhängigen Ma-

gnetfeldes studiert. Diese Wechselwirkungen spielen eine wichtige Rolle bei

der kolloidalen Selbstorganisation. Als Ergebnis dieser Wechselwirkungen er-

scheinen verschiedene Formen von zwei- und dreidimensionalen anisotropen

Superstrukturen während des Selbstorganisationsprozesses. Das zeitabhängige

externe magnetische Feld ist ein wichtiger Kontrollparameter für den Selbstor-

ganisationsprozeß. Die Wechselwirkung führt zu spezifischen Gleichgewichts-

positionen der paramagnetischen und der nichtmagnetischen Partikel mit einer

spezifischen Orientierung der magnetischen Momente.

Drei verschiedene kolloidale Systeme in Ferrofluid mit externem zeitabhän-

gigem Magnetfeld wurden untersucht. In jedem von Ihnen wird der Effekt von

interdipolaren Wechselwirkungen auf die Partikel diskutiert. Drei Systeme sind

in drei einzelnen Kapiteln angeordnet und werden dort diskutiert. In Kapitel

3 wurde der Versuch gemacht die Diffusion von Partikeln in einer „kolloidalen

Blume“ zu studieren und die Diffusion der Blütenblätter mit anderen single

file Diffusionsystemen in einer Dimension zu vergleichen. Neben den langreich-

weitigen Wechselwirkungen haben wir in Kapitel 4 den Einfluß der Größe des

Kerns der kolloidalen Blumen und Cluster auf die Stärke des Phasenübergangs

erster Ordnung von einem Cluster zu einer Flüssigkeit untersucht. In Kapitel

5 werden verschiedene anisotropische Ansammlungen und kolloidale Phasen

in Abhängigkeit der Zusammensetzung der Mischung von paramagnetischen



und diamagnetischen Partikeln in einem externen zeitabhängigen Magnetfeld

studiert.

Selbstorganisation, präzedierendes Magnetfeld, Ferrofluid, paramagnetische

und unmagnetische Partikel, Diamagnete



Chapter 1

Introduction

1.1 Introduction

The structure and dynamics of colloids is an important scientific problem with

profound implications in medical-, health care-, pharmaceutical -, oil recovery-

and coating applications [6]. Colloids are a metastable ensemble of nanoscopic

to micron-sized particles immersed in to a carrier fluid that are stabilized

against aggregation via short-range (nanometer range) interactions.

The current thesis deals with colloids that beside the short-range interac-

tions interact also via long-range magnetic dipole interactions. The questions

addressed in this thesis are a) how static long-range dipolar interactions might

affect the dynamics of the colloids and b) how dynamic dipolar interactions

caused by time dependent external magnetic fields might affect the statics and

dynamics of the colloids.

Dipolar interactions are long-range interactions because the energy of an

ensemble of aligned dipoles is super-extensive, i.e. the dipole energy per unit

volume grows logarithmically with the size of the sample. In order to render the

1
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dipolar energy of a sample extensive dipolar interactions tend to destroy the

alignment with superstructures of dipoles that point into different directions

in different regions of the sample. Different dipolar colloidal particles there-

fore communicate with each other over large distances, while ordinary colloidal

particles only interact when coming close. In chapter 3, we investigate the dif-

ference in diffusion of colloidal particles this long-range interaction causes in a

single file of colloids that are not allowed to pass each other. For short-range

interacting colloids, the single file diffusion is characterized by a delayed hard-

core interaction. The colloids first have to freely diffuse toward a neighbour

before they encounter the repulsive barrier imposed by the neighbour. In a

single file diffusion system, such delay becomes apparent in the velocity auto-

correlation function of the particles. A free diffusion positive correlated peak

of the correlation function at short times is followed by an anti-correlated min-

imum at longer times. The effective diffusion constant over longer times is the

integral over the velocity autocorrelation function and vanishes because the

positive and negative regions in the correlation function cancel each other. As

a result, the long time diffusive behaviour is subdiffusive. It is clear that col-

loidal particle interacting via long-range dipolar interactions feel the presence

of the other particle immediately and therefore lack the delay for the single file

diffusing [2] hard-core particles. One of the questions addressed in this thesis

is therefore how do long-range dipolar interactions alter the hard-core single

file diffusion.

Dipolar interactions are not only interesting because of their long range.

They also have a very interesting angular dependence. The sign of the inter-

action depends on the angles both magnetic dipole moments enclose with the

separation vector between both dipoles as well as on the angle between the

2



CHAPTER 1. INTRODUCTION 1.1. INTRODUCTION

two dipole moments. This angular dependence is such that the interaction

when averaged over all separation directions exactly vanishes. The trace of

the dipolar interaction tensor vanishes. Attractive separation directions can-

cel repulsive interaction directions. For this reason, structures assembled via

dipole interactions can never be isotropic. They are always anisotropic. If we

apply external magnetic fields to the sample that vary in direction on a time

scale too fast for the individual particles to rearrange into the corresponding

instantaneous equilibrium structure we can eliminate all dipolar interactions

when scanning over attractive and repulsive directions just in a way such that

attraction and repulsion cancel each other. The simplest way of averaging away

dipolar interactions is by spinning at the magic angle, a technique extensively

used in chemistry for the narrowing of NMR peaks. Here we apply precessing

magnetic fields to an ensemble of magnetic colloids and use the precession an-

gle as a control parameter of the self-assembled structure of the colloids. The

dipolar interaction between particles switches sign when the precession angle

passes the magic angle. As a result a structural rearrangement of the particles

is caused and we might investigate the order of the structural phase transition

happening in the system. The question addressed in chapter 4 is hence how

the dynamics of structures caused by time dependent precessing external fields

close to the magic angle reveal the order of the structural phase transition.

Our magnetically interacting colloids are paramagnetic colloids consisting

of a polystyrene bead filled with grains of magnetite. Their dipole moment

point into the direction of the local magnetic field with a magnitude that is

proportional to the strength of the local magnetic field. In most of the ap-

plications studied in this thesis, depolarization fields of the particles are weak

and the local field is dominated by the direction of the external field. In such

3
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situation, all paramagnetic beads have magnetic moments that point into the

same direction. We can enrich the structure of the assembly [5] by incorporat-

ing diamagnetic particles. Such diamagnets react to an external field with a

magnetic moment anti-parallel to the external field. Since diamagnetic suscep-

tibilities of most materials at room temperature are small, we must use a trick

to obtain effective diamagnets. This trick consists of immersing nonmagnetic

colloids into a ferrofluid. When using a ferrofluid with susceptibility between

the zero susceptibility of the non-magnetic colloids and the susceptibility of

the paramagnetic colloids the paramagnetic colloids still act as paramagnets

while the non-magnetic beads act effectively as diamagnetic particles in the

background of the ferrofluid. Such effective diamagnets run under the name

magnetic holes. In chapter 5, we expose a mixture of paramagnets and mag-

netic holes [1] [3] to time dependent external fields to self assemble the mixture

into various structures. The question addressed in this chapter is which type

of anisotropic structures of the mixed system may be assembled when using

various forms of external magnetic field modulations.

To answer these questions I have arranged the thesis into the following

structure: chapter 1 includes a brief introduction to the thesis with motivation

as a subsection. Experimental details have been provided in the subsection

titled methodology with the materials parameter of chapter 2. Chapter 3,

chapter 4, and chapter 5 are the attached published manuscripts with the

results and conclusion. Finally, chapter 6 includes the summary.

4



CHAPTER 1. INTRODUCTION 1.2. COLLOIDAL FLOWER

1.2 Dynamics of self-assembly of flower-shaped

magnetic colloidal clusters

In chapter 3, we were interested to study the effects of dynamic interactions

of paramagnetic and nonmagnetic particles in a 1-dimensional system. We

observed single file diffusion present in our system. Single file diffusion refers to

the 1-dimensional motion of interacting particles in pores, which are so narrow

that the mutual passage of such particles is excluded. Since the sequence of

particles in such a situation remains unaffected over time t, leads to deviation

from normal diffusion. Such a single file diffusion of colloids in 1-dimensional

have already been reported [C. Lutz et al, 2004]. Where the colloidal particles

were trapped by a scanning laser beam to a circular optical trap.

Our system consists of paramagnetic and nonmagnetic particles immersed

in ferrofluid under static magnetic field (magnetic field strength ~H(t) = Ĥ~ez,

z-direction), sandwiched between two glass coverslips. Under such conditions

flower shaped magnetic colloids are formed, where the paramagnetic particle

is at the center i.e. the core of the flower and the nonmagnetic particles are

at the equator, the petals, shown in Figure(1.1). External magnetic field in-

duces magnetic moments in the particles that interacts via the dipole dipole

interaction. Due to the presence of static magnetic field in the system of

magnetic and nonmagnetic particles immersed in ferrofluid (chapter 3), the

effective dipoles i.e. the magnetic dipole minus the ferrofluid background of

the two sorts of particles point into opposite directions Figure(1.2). Hence,

in presence of static magnetic field the nonmagnetic particles immersed in

ferrofluid behaves as diamagnets and the paramagnets behaves still as para-

magnets. These diamagnets are attracted towards the core (paramagnet) to

5



1.3. TRANSITION STRENGTH CHAPTER 1. INTRODUCTION

Figure 1.1: a) schematic representation of colloidal flower-shaped clusters [7]
formed in a perpendicular field Hz. The center particle is a paramagnetic
particle, which is the core of the flower and the particles around the core are the
diamagnetic particles that are referred as petals of the flower. b) represents X,
Y and Z are the coordinate axis with Hx, Hy and Hz are the external magnetic
field respectively.

form a circular channel. Around the core the diamagnets have a repulsive

force between each other and interact by soft-core interactions. The motions

of these interacting particles (diamagnets) in the circular array made us mo-

tivated to study and characterize the single file diffusion in the self-assembled

flower-shaped magnetic colloidal clusters.

1.3 The transition strength from solid to liquid

colloidal dipolar cluster in precessing mag-

netic fields

Due to the presence of hard-core and dipolar interactions present in the mag-

netic colloidal flower system we can study the influence of long range inter-

actions on to the single file diffusion chapter 3. Long-range interactions also

6
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Figure 1.2: a)Schematic representation of the behaviour of super-paramagnetic
and nonmagnetic particles in an applied magnetic field when immersed in a
thin film of ferrofluid; Figure 2a indicates that the direction of the applied
magnetic field is in the z direction. Figure 2b shows a mixture of nonmagnetic
and super-paramagnetic particles immersed in thin film of ferrofluid between
two glass cover slips under the influence of the magnetic field. Figure 2c
reveals the alignment of dipole moment of ferrofliud and Figure 2d shows the
effective magnetic moment of the magnetic and nonmagnetic particles under
an external applied magnetic field. It can be noted that Figure 2c and Figure
2d can combine to form Figure 2b. Here represent χ the susceptibility factor.

play an essential role for phase transitions between differently ordered phases.

A first-order phase transitions exhibit a discontinuous change in the order pa-

rameter. The change of one phase to other occurs via a coexistence of the

two phases. The area of the hysteresis measures the dissipated energy when

traversing the coexistence region back and forth. Whereas a second order phase

transition is a transition where the order parameter changes continuously at

the transition. Second order transitions are associated with critical behavior

of response functions as a function of the control parameter while first order

transitions exhibit no critical behavior.

The formation and rupture of flower-shaped magnetic colloidal clusters can

be considered as a finite size phase transitions. It was a question of interest,

is the change in the hysteresis could reveal the strength and order of the

phase transitions in the system. The formation and rupture of the flower-

7



1.3. TRANSITION STRENGTH CHAPTER 1. INTRODUCTION

shaped magnetic colloidal clusters and diamagnetic clusters takes place with

the change in the precession angle, the control parameter. A hysteresis loop

is observed when tuned the precession angle, from low to high and vice versa.

Whether the study of the width of the hysteresis could reveal the order of

the system? Besides, is it possible to define the order and strength by the

measuring the response function, the angular velocity of the particles as a

function of change in the precession angle?

These flower-shaped magnetic colloidal clusters were formed from paramag-

netic and nonmagnetic particles immersed in diluted ferrofluid under a static

magnetic field in the z-direction and sandwiched between two glass coverslips

(Figure (1.1)). Whereas the diamagnetic colloidal clusters were formed from

nonmagnetic particles immersed in concentrated ferrofluid under a rotating

field Figure(1.3) and sandwiched between two glass coverslips. The magnetic

field strength being ~H(t) = Ĥ(~ex sin Ωt+~ey cos Ωt) , with Ω being the angular

frequency in x-y plane. The flower-shaped magnetic colloidal were stable at low

angles and nearby the magic angle these structures were unstable whereas, the

diamagnetic clusters were stable at high angles and their stability decreased

reaching towards the magic angle. Here the magic angle ϑmagic is the de-

fined as a unique angle, which is approximately 54.73 ◦. It is the root of a

second-order Legendre polynomial P2(cos θ) = 0 and interactions depending

on this second-order Legendre polynomial vanishes at this angle. Mathemat-

ically ϑmagic = θm = arctan
√

2 ≈ 54.73 ◦ ,Figure(1.4). As external magnetic

field induces magnetic moments in the particles and they interact via dipole

dipole interaction. The effective dipoles (diamagnetic cluster formation) i.e.

the magnetic dipole minus the ferrofluid background of the two sorts of parti-

cles point into same directions (x-y plane), shown in Figure(1.5). Similarly, in

8



CHAPTER 1. INTRODUCTION 1.4. COLLOIDAL PHASES

Figure 1.3: a) schematic representation of diamagnetic cluster formed in a
rotating magnetic field H|| in x-y plane. A core to petal size ratio is chosen
to form the colloidal cluster. b) represents X, Y and Z are the coordinate
axis with Hx, Hy and Hz are the external magnetic field with H|| being the in
plane rotating effective magnetic field and being the precession angle. Ω is the
external applied frequency.

both the systems of colloidal flower and diamagnetic cluster due to the presence

of external magnetic field the particles interact via dipole dipole interaction.

1.4 Magnetic field controlled composite paramag-

netic-diamagnetic colloidal phases

Neutralization of opposite charge is one of the major concepts in ordinary

matter where two opposite charges cancel each other. The interactions taking

place between these opposite charges is isotropic and is independent of direc-

tion. This charge neutralization is the key towards the organizations of matter

on the atomic and molecular scale leading to self-assembly. It is spontaneous

breaking of rotational symmetry [4] and the quantization of angular momentum

that produces crystalline structures with forming direct bonds in atoms and

molecules. Whereas, neutralization process is different in case of mesoscopic

9
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Figure 1.4: Schematic representation of magic angle.

sized particles due to the absence of the quantum phenomena and angular

momentum being a continuous quantity. In a colloidal system the direct bond

formation does not work. Steric interactions are the means to spontaneously

break the rotation symmetry to form colloidal crystal for isotropic structures.

Direct bond in colloidal system are only possible using intrinsically anisotropic

colloidal particles e.g. Janus or ellipsoid particles.

One of the other possibilities to use the magnetic or electric dipole moment

using an external field. In case for a mixture of paramagnetic and nonmagnetic

particles immersed in a magnetic fluid under magnetic field. The effective

dipole moment induced due to the same external magnetic field results in

pointing the dipoles into opposite direction for paramagnetic and nonmagnetic

particles. The induced magnetic moment neutralizes each other similarly like

the charge neutralization, forming rich variety of anisotropic self-assembled

structures. An attempt has been made to study this charge neutralization of

magnetic moments in an external magnetic field resulting in forming different

anisotropic structures.

10
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Figure 1.5: Schematic presentation of the behaviour of nonmagnetic particles
under a rotating magnetic field when immersed in a thin film of ferrofluid.
Figure 5a indicates the direction of the applied magnetic field in the x-y plane.
Figure 5b shows two different sizes of nonmagnetic particles immersed in thin
film of ferrofluid between two glass coverslips under the influence of the ro-
tating magnetic field. Figure 5c reveals the alignment of dipole moment of
ferrofliud and Figure 4d shows the effective magnetic moment of nonmagnetic
particles under an external applied rotating magnetic field, assuming the effect
of ferrofluid to be negligible. It can be observed that Figure 5c and Figure 5d
can combine to form figure 5b.

Our system consists of paramagnetic and nonmagnetic particles immersed

in ferrofluid under a magnetic field ~H(t) = Ĥ cosϑext~ez + Ĥ sinϑext(~ex sin Ωt+

~ey sin 2Ωt) as shown in Figure (1.5), sandwiched between two glass coverslips.

We use magnetic field with three different frequencies with zero-frequency,Ω

and 2 -Ω frequency along different axes. This magnetic field was applied to

the particles such that there is no torque.

Dipolar interactions are anisotropic and differ in sign for interactions be-

tween similar (paramagnetic or diamagnetic ) particles and opposite (param-

agnetic and diamagnetic ) particles. The composite structure of a mixture of

diamagnetic s and paramagnets is therefore expected to exhibit a rich variety

of structures. These structures will be explored in chapter 5.

11



1.4. COLLOIDAL PHASES CHAPTER 1. INTRODUCTION

Figure 1.6: Schematic representation of the external magnetic field applied
~H(t) = Ĥ cosϑext~ez + Ĥ sinϑext(~ex sin Ωt + ~ey sin 2Ωt). H (t) is the total ex-
ternal magnetic field strength applied to the sample. Where x,y and z are the
coordinate axises.

12



Chapter 2

Materials and Method

2.1 Materials

2.1.1 Ferrofluid

Ferrofluid is a complex fluid, which has magnetic properties like solid while

being a fluid in its physical state. The ferrofluids contain tiny magnetic ma-

terials of the order 10 − 12 nm in size in a liquid medium. These nanometer-

sized particles are coated with a stabilizing dispersing agent, which prevents

particle agglomeration even under an applied strong magnetic field gradient.

Depending on the medium, these ferrofluids can be classified either as (a) oil

based or (b) water based. For the current experiments, water based ferroflu-

ids were procured from Ferrotec Ferrosound. Ferrofluid EMG 705 and EMG

707 were two water-based ferrofluids used for the present experiments. The

EMG 705 has a saturation magnetization at 22 mT with magnetic susceptibil-

ity of 4.04 (SI units) whereas the EMG 707 has 11 mT with susceptibility of

1.51 (SI Units) [Ferrotec Ferrosound USA]. Super-paramagnetic beads Spheri-

13



2.1. MATERIALS CHAPTER 2. MATERIALS AND METHOD

cal super-paramagnetic beads (M-270 and MyOne) have been purchased from

Dynal Invitrogen (Invitrogen Dynal Oslo, Norway). These procured beads

were highly monodisperse and had a mean diameter of either 2.8µm with

concentration of 2.8 × 109 beads/ml or 1.0µm with concentration of 10 mg/l.

Colloids made of these particles are paramagnetic in nature and have a core

shell structure. The core of the particles is filled with nanometer-sized grains

of magnetite that is surrounded by a polymer shell. The surface of the colloids

used here is functionalized with carboxylate groups, which dissociate in water

and cause a negative surface charge on the particles. On a nanometer scale,

these particles repel each other, which prevent the aggregation of the beads.

The magnetite core renders the particles paramagnetic in an external field in

proportion to the applied magnetic field. Therefore, the individual particles

interact on a large scale via magnetic dipole-dipole interactions. Moreover, the

particles have a large surface area, high capacity, efficient magnetic pull and

a low sedimentation rate during incubation [Invitrogen, MyOne and M-270].

The hydrophilic nature of the particles assists in preventing particle agglomera-

tion or particle sticking to the surfaces Polystyrene Beads Fluorescent spherical

polystyrene dyed microparticles (beads) have been procured from three compa-

nies namely Fluoro-Max (ThermoFischer Scientific), Duke Scientific (Thermo

Scientific Palo Alto, CA) and Spherotec (Lake Forest Illionis). The differently

coloured micro particles were visible whether it is polarization or fluorescence

microscopic technique employed for their examinations. The mean diameters

of the mono-dispersed particles ranged from 0.5µm to 9.9µm. The concen-

tration of these particles was either 1 % solids/weight or 1 % weight/volume

depending on the source of procurement. The different labeling of fluorescent

groups helped not only in distinguishing each system from the other but also
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assisted to identify nature of the specific particles under fluorescence micro-

scope. These dyed fluorescent micro-particles were marginally less hydrophilic

in nature than the Dynal super-paramagnetic beads; the problems related to

particle agglomeration and sticking to the surface were avoided by using a

mechanical shaker (IKA MS 3 basic, GmbH).

2.1.2 Magnetic Field

External magnetic field was applied using the help of different kinds of laboratory-

fabricated solenoids machined at University of Bayreuth. Some of these solenoids

had soft iron core, Mu-metal core or simply air core depending on the exper-

imental requirements. The nature of the core was selected according to the

requirement for maintaining varied intensity and uniformity of magnetic field

on the samples. The amplitude / intensity of the magnetic field on the sample

were varied by changing the current in the solenoids. The magnetic field pro-

duced by the solenoids was recorded using a Gauss meter (Lakeshore). Tem-

perature at the solenoids was examined frequently by an infrared temperature

sensor, which was however maintained at the ambient temperature. Water-

cooled solenoids were also incorporated in the experiments wherever necessary

to cool down the solenoids and avoid burning.

2.1.3 Optical Microscopy

The assembly process was observed under a Fluorescence Microscope (pur-

chased from LEICA DM 5000 B) in a reflection mode. Dual fluorescence band

gap filters of green and red were used to observe micro-particles of two differ-

ently dyed fluorescence particles simultaneously. In addition, a plane Polarizor
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filter was used to observe the Dynal beads, which were non-fluorescent. In ad-

dition, Digital fast black and white camera from Leica with an air c-mount

was used to record the live movements. Most of the clippings stored by the

camera were recorded using ∼ 27 frames per second.

2.2 Method

2.2.1 Dynamics of self-assembly of flower-shaped mag-

netic colloidal clusters

Sample Preparation: A mixture of paramagnetic particles (diameter 2a =

2.8µm) with nonmagnetic fluorescent (red) polystyrene particles (diameter 2a

= 1.0µm) immersed in 20% diluted ferrofluid EMG 705 was prepared in con-

trolled proportions ( paramagnetic 1 : nonmagnetic 4 by volume). This mix-

ture was vigorously shacked to form a homogenous mixture. Using a pipette

a small amount 0.5µlof this mixture was placed at the center between two

pre-cleaned glass cover slips. Extra care was taken while placing the top glass

cover slip such that no air bubble exits to reduce drift. External Field and

Optical Microscopy: The sample was placed on top of a solenoid, shown in

Figure (2.1). An electric current of 0.43 Ampere was supplied to produce a

static magnetic field of 10.0 mT in the z-direction.

This sample was observed under fluorescence microscope in a reflecting

mode. Red fluorescence filter was used to observe the red fluorescence particles

whereas the Polarization filter was used to observe the non-fluorescence para-

magnetic particles. Observations and recording: When observed with the red

filter fluorescence particles of the colloidal flowers i.e the petals were observed.
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Figure 2.1: a) schematic representation of sample on top of solenoid and b)
Hz being the external static magnetic field in the z direction. Here x, y and z
are the coordinate axises.

The nonmagnetic particles surrounded the paramagnetic particles in a circular

way very similar to a flower-shaped colloidal assembly. The red fluorescence

polystyrene particles were present at the equator of the parmagnetic particles

and paramagnetic particles being at the center in the reflection mode of the

microscope. Movies of these colloidal flower assemblies were captured using a

Basler camera (Basler A311fc). The dynamics of the colloidal flower formation

and its characteristics was then analyzed by using image processing techniques

with the help of a commercially available software package (MATLAB) and

open source packages such as ImageJ and Virtual Dub.

2.2.2 The transition strength from solid to liquid col-

loidal dipolar clusters in precessing magnetic fields

Sample Preparation: 1). Colloidal flowers: Two sets of mixtures were pre-

pared with varying particles size. The mixtures are a) paramagnetic parti-

cles (diameter 2a = 2.8µm) with nonmagnetic fluorescent (red) polystyrene
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particles (diameter 2a = 1.0µm) and b) paramagnetic particles (diameter 2a

= 2.8µm) with nonmagnetic fluorescent (yellow-green) polystyrene particles

(diameter 2a = 3.1µm) immersed in 20 % diluted ferrofluid EMG 707 was pre-

pared in controlled proportions ( paramagnetic 1 : nonmagnetic 4 by volume).

These mixtures were vigorously shaken to form homogenous mixtures. Using

a pipette a small amount ( 0.5µl) of these mixtures were placed at the center

between two sets of pre-cleaned glass cover slips. Extra care was taken while

placing the top glass cover slip such that no air bubble exits to reduce drift. 2).

Diamagnetic Clusters: Three sets of mixtures were prepared with nonmagnetic

particles varying particle sizes. The mixtures are a) fluorescent (yellow-green)

polystyrene particles (diameter 2a = 9.9µm) with nonmagnetic fluorescent

(yellow-green) polystyrene particles (diameter 2a = 3.1µm), b) fluorescent

(yellow-green) polystyrene particles (diameter 2a = 3.1µm) with nonmagnetic

fluorescent (yellow-green) polystyrene particles (diameter 2a = 3.1µm) and c)

fluorescent (yellow-green) polystyrene particles (diameter 2a = 3.1µm) with

nonmagnetic fluorescent (pink) polystyrene particles (diameter 2a = 2.0µm)

immersed in concentrated ferrofluid EMG 707 was prepared in controlled pro-

portions ( paramagnetic 1 : nonmagnetic 4 by volume). These mixtures were

vigorously shaken to form homogenous mixtures. Using a pipette a small

amount 0.5µl of these mixtures was placed at the center between two sets

of pre-cleaned glass cover slips. External Field and Optical Microscopy: The

samples were placed on top of a solenoid, shown in Figure (2.2). For the for-

mation of colloidal flowers a static perpendicular field HZ 6.5 mT was applied.

Later an external rotating magnetic field H|| 1.62 mT with angular frequency

Ω ≈ 188s−1 was applied. For the diamagnetic clusters a rotating magnetic

field H|| 1.62 mT with angular frequency Ω ≈ 188s−1 was applied superposed
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by a static magnetic field in the z-direction. These samples were observed un-

Figure 2.2: a) Schematic representation of arrangements of five sets of solenoid
coils and b) the combined rotating magnetic field H|| and the perpendicular
field H with being the angular frequency and the precession angle .

der fluorescence microscope in a reflecting mode. Different colored fluorescence

filters were used to observe the fluorescence particles whereas the Polarization

filter was used to observe the non-fluorescence paramagnetic particles. Obser-

vations and recording: When observed with the different colored fluorescence

filters colloidal flowers and clusters were observed. In case of colloidal flow-

ers, the nonmagnetic particles surrounded the paramagnetic particles, which

were similar to a flower-shaped colloidal assembly. With the application of the

in plane field the diamagnets start to rotate. By varying the perpendicular

field the angular frequency of the diamagnets could be altered. At very high

static magnetic field 26.0 mT, the flowers have less angular frequency com-

pared to when the static field is low 8.0 mT. In case of diamgnetic clusters,

the diamagnets formed isotropic structures similar to the colloidal flowers. In

diamagnetic cluster with a high static magnetic field, the angular frequency

of the diamagnets around the equator was higher compared to when the field

was less. Movies of these colloidal flowers and diamagnetic clusters were cap-
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tured using a Leica high-speed camera (Leica DFC 360 FX). The dynamics

of the colloidal flowers and clusters formation were analyzed by using image-

processing techniques in with the help of a commercially available software

package (MATLAB) and open source packages such as ImageJ and Virtual

Dub.

2.2.3 Magnetic field controlled composite paramagnetic-

diamagnetic colloidal phases

Sample Preparation: A mixture of paramagnetic particles (diameter 2a =

2.8µm) with nonmagnetic fluorescent (red) polystyrene particles (diameter 2a

= 1.0µm) immersed in concentrated ferrofluid EMG 707.was prepared in con-

trolled proportions ( paramagnetic 2 : nonmagnetic 4 by volume). This mix-

ture was vigorously shaken to form a homogenous mixture. Using a pipette

a small amount 0.5µl of this mixture was placed at the center between two

pre-cleaned glass cover slips. External Field and Optical Microscopy: The

sample was placed on top of a solenoid, shown in Figure(2.3). A combination

of static magnatic field in the z-direction was applied with an in plane time

dependent magnetic field . This sample was observed under fluorescence micro-

scope in a reflecting mode. Red fluorescence filter was used to observe the red

fluorescence particles whereas the Polarization filter was used to observe the

non-fluorescence paramagnetic particles. Observations and recording: Chang-

ing the static magnetic field anisotropic structures evolved in 2-dimension and

3-dimension. At high static magnetic field H 26.5 mT colloidal flowers are ob-

served where as decreasing this magnetic field results in forming 3-dimensional

anistropic sandwiched structure. Where the paramagnets are at the middle
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Figure 2.3: a) schematic representation of the arrangement of solenoid coils
and b) time dependent magnetic field produced by the five sets of solenoid
coils similar to Lissajou curve.

layer and the diamagnets are on the either sides of the paramagnets. Movies

of these colloidal flowers, sandwiched structures, decorated strings were cap-

tured using a Leica camera (Leica DFC 360 FX).
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Dynamics of self-assembly of flower-shaped magnetic colloidal clusters
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In a static magnetic field paramagnetic and nonmagnetic colloids immersed in a ferrofluid self-assemble into
fluctuating colloidal flowers. Adsorption and desorption of nonmagnetic petals to larger paramagnetic cores
and changes in the petal conformation around the paramagnetic core induce a fluctuating dynamics. We track
the motion of colloidal petals on the paramagnetic core. Adsorption and desorption of petals occur on a larger
time scale than the rotational diffusion of the petals. Magnetic dipole interactions split the motion of the petals
into different modes of rotational diffusion. Modes of rotational diffusion that change the petal conformation
are suppressed compared to the conformation invariant rotational diffusion of all petals. The suppression of
higher modes of rotational diffusion results in a subdiffusive dynamics of the individual petals.

DOI: 10.1103/PhysRevE.82.031406 PACS number�s�: 82.70.Dd

I. INTRODUCTION

Colloidal assemblies are mesoscopic systems in thermo-
dynamic equilibrium. Understanding the complex structures
of these assemblies, the soft interactions between the indi-
vidual particles, and the resultant dynamics in real space is of
current interest; because colloidal assemblies are being used
as models for atomic crystals �1� for glasses �2�, for van der
Waals crystals �3�, and as systems for the study of dynamic
self-assembly �4,5�. The softness of the interactions gives
rise to fluctuations around the equilibrium that allows ob-
serving directly the transport processes �6–8� which lead to
the dynamic self-assembly of the system. Diffusion is con-
sidered as one of these basic passive means for irreversible
transport into equilibrium. It arises from fluctuations of the
particle velocity due to stochastic forces. These forces act on
the diffusing particles due to collisions with other particles
from a reservoir at a certain temperature. In the presence of
stochastic and deterministic microscopic forces, macroscopic
diffusion can be expressed as the zeroth moment of the par-
ticle velocity autocorrelation and/or cross-correlation func-
tions �9�. Kubo �9� extended a generalized concept of diffu-
sion that allows defining and measuring the diffusion of
interacting particles. It has been shown by Erb et al. �5� that
paramagnetic and nonmagnetic colloidal particles immersed
in a ferrofluid can self-assemble into colloidal flowers in a
static magnetic field. The colloidal flowers result from the
effective dipolar attraction of the paramagnetic colloids in
which nonmagnetic particles behave as magnetic holes in the
ferrofluidic background. The dipole interaction is a tensorial
traceless interaction that depends on the angle between the
magnetic moments and the particle separation. For holes sit-
ting at the pole positions above or below the paramagnetic
bead the dipole interaction with the paramagnetic bead is
repulsive. In the equatorial plane on the other hand it is at-
tractive. The dipole interaction between two magnetic holes
on the other hand is repulsive in the plane normal to the
magnetic moments and attractive along the direction of the
magnetic moments. The planar structure of the colloidal

flowers is a result of the complex angular dependency of the
dipolar interactions.

Here, an attempt has been made to measure the normal
modes of diffusion, as well as the adsorption and desorption
kinetics of the petals in colloidal flowers using the concept
proposed by Kubo �9�. Kubo generalized the concept of dif-
fusions for situations where the particle kinetics is a super-
position of random motion and directed interactions that
force the particles into deterministic directions. The interac-
tions correlate the motion of the particles that would other-
wise show a degenerate individual diffusion. The correla-
tions split the individual diffusion into statistically
independent normal modes of diffusion. It is demonstrated
that the adsorption and desorption kinetics as well as the
mode dependence of the normal modes of petal diffusion can
be understood by the competition of dipolar forces with the
fluctuating forces from the viscous carrier fluid.

II. EXPERIMENT

We study the superparamagnetic Dynabeads M-270 car-
boxylic acid, 2.8 �m in diameter �Cat. No. 143.05 D� ob-
tained from Invitrogen Dynal �Oslo, Norway�, and Fluro-
Max red fluorescent polymer microsphere beads with
1.0 �m diameter �Cat. No. R0100� obtained from Duke
Scientific �Palo Alto, CA�. The particles from Dynal are
supplied in concentrations of approximately
2�109 beads ml−1 �10–30 mg ml−1� and from Fluro-Max
supplied with concentration of approximately 1% volume
fraction suspended in water and respective surfactant. Para-
magnetic particles are mixed with nonmagnetic particles and
diluted ferrofluid EMG 705 FerroTec Ferrosound �FerroTec
GmbH, Germany� with controlled proportions depending on
the experiment. Electric current of 0.43 A was supplied to the
water-cooled coils to produce a magnetic field of 10.0 mT,
machined at University of Bayreuth. The mixture of the
beads with ferrofluids was taken on a precleaned glass slide
with a cover slip to reduce the air drift. Static magnetic field
from the z direction was applied to the sample and was ob-
served under the LEICA DM4000B �Leica Microsystems
Wetzlar GmbH, Germany� fluorescence microscope through
63� polarization lens in reflecting mode. Videos were cap-*thomas.fischer@uni-bayreuth.de
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tured using a color charge-coupled device Basler camera
�Basler A311fc� high frame rate from Basler AG, Germany.

III. ADSORPTION AND DESORPTION

Nonmagnetic beads of radius a=0.5 �m in a diluted
aqueous ferrofluid �EMG 705 Ferrotec Ferrosound /water
=1:4� adsorb at and desorb from the paramagnetic beads of
radius R=1.4 �m. When they adsorb they form a colloidal
flower with one paramagnetic bead at the core of the flower
surrounded by several nonmagnetic beads forming the petals.
A typical colloidal flower is depicted in Fig. 1. The assembly
is a dynamic structure and the number of petals N�t� fluctu-
ates as a function of time because nonmagnetic beads adsorb
at and desorb from the paramagnetic core. If we assume a
Boltzmann distribution for the number of petals we may ex-
tract the potential energy of adsorption of N beads U�N� as

U�N� − U�Nref� = − kBT ln� t�N�
t�Nref�

� , �1�

where t�N� denotes the total time when one finds the colloi-
dal flower with N petals, Nref denotes a reference number of
petals, and T is the temperature. In Fig. 2 we plot the adsorp-

tion potential as a function of the number of petals obtained
via Eq. �1� by measuring N�t� over a time duration of 4000
video frames. The adsorption potential shows a pronounced
minimum near six petals. Assuming the potential to arise via
dipolar attraction of the nonmagnetic beads to the paramag-
netic core and due to dipolar repulsion between the equally
spaced nonmagnetic petals, we predict a potential of

U�N� =
4��0�F

2H2a3

9�R/a + 1�3 N�− � �p

�F
− 1�R3

a3

+
1

2 �
j=1

N−1
1

8 sin3�j�/N�	 . �2�

In Eq. �2� �0 denotes the vacuum permeability, �F and �p are
the effective susceptibilities of the ferrofluid and of the para-
magnetic particle, and H is the external magnetic field. The
potential has a minimum for an equilibrium number of par-
ticles given approximately by

Neq =
2�


3

�p

�F
− 1

R3/2

a3/2 . �3�

The dashed line in Fig. 2 shows a fit of the experimental data
�solid line� obtained from Eq. �1� to the theoretical prediction
in Eq. �2� using �P=0.082 and �F=0.063. Note that the the-
oretical fit exhibits a minimum around N=7 instead of the
value N=6 in the experiment.

The 2N-dimensional conformational space of the
petals is spanned by the positions �rj ,� j , j=1, . . . ,N� of the
petals. In an N-fold colloidal flower the equilibrium configu-
ration is determined by the conformation rj =R+a and
� j =2�j /N �j=1, . . . ,N�. A transition to a �N−1�-fold flower
happens when, for example, the Nth petal separates from the
flower �rN→�� and the remaining N−1 petals rearrange
their angular positions � j �j=1, . . . ,N−1�. We describe the
reaction pathway of such a conformational change by the
reaction coordinate �r. The position of the Nth petal is
rN=R+a+�rN, �N=0 and the other beads adapt the
positions rj =R+a, � j =���rN�+2��−���rN���j−1� / �N−2�.
The angle 2���rN� describes the angle between the first and
the �N−1�th petals that readjust �from �=2� /N to
�=� / �N−1��, while the Nth petal leaves the flower �see top
in Fig. 3�. We compute the reaction pathway such that the
remaining petals j=1, . . . ,N−1 adjust their positions to the
energy minimum of the dipolar energy of the N petal system
while the Nth petal is fixed at the position rN=R+a+�rN.
Usually no significant changes in energy are computed when
the separation �rN of the leaving petal has exceeded
�rN	4 �m. Hence, separations larger than 4 �m can
be considered as quasi-infinite separations. In Fig. 3 we
plot the dipolar energy versus the reaction coordinates
�rN �N=3, . . . ,11� for a cascade of transitions from an 11-
fold colloidal flower toward a flower with two petals. The
cascade from the 11-folded flower to the theoretical mini-
mum flower with seven petals is plotted on the left side. The
remaining cascade from the minimum sevenfold flower to-
ward a two-petal flower is plotted at the right. The reaction
coordinates alternate between the lower �even N� and upper

FIG. 1. �Color online� �a� Fluorescence microscope image of a
six-petaled colloidal flower and �b� scheme of a colloidal flower.
The paramagnetic core particle is nonfluorescent and hence not vis-
ible in the fluorescence image. The nonmagnetic fluorescence petal
particles are visualized as bright spots in the fluorescence micro-
scope image.

FIG. 2. Adsorption potential of the colloidal petals. The solid
line is obtained from the experimental data by using Eq. �1�. This
potential levels off near 5kBT due to lack of events. The dashed line
is a fit according to Eq. �2�.
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�odd N� axes. Numbers indicate equilibrium flowers of the
corresponding number of petals. The potential thus changes
from the N petal flower energy EN to the �N−1� petal flower
energy EN−1. The potential of a N petal flower with the Nth
petal at a distance �r=5 �m is indistinguishable from the
potential energy of a �N−1�-petaled flower. This confirms
that a petal at a distance �r	5 �m can be considered as
fully separated from the flower. For the desorption of the
seventh petal the energy exhibits a maximum EA along the
reaction pathway. This maximum corresponds to a transition
state, i.e., a saddle point in conformational space located at a
distance �r7,max�0.7 �m from the minimum position of the
seventh petal with an activation barrier of the desorption of
�EA−E7��0.7kBT. The activation energy for the adsorption
is �EA−E6��0.5kBT. A qualitatively similar transition state
is computed between the seven- and eight-petaled flowers.
All other transitions in the number of petals show no transi-

tion state. Hence, all flowers with N
6 and N	8 are un-
stable. The six- and eight-petaled flowers are metastable
E6 ,E8	0, and the sevenfold flower is the stable conforma-
tion E7=0 for the given parameter set. Assuming an Arrhen-
ius behavior for the rate constant k6→7 of the adsorption pro-
cess of the seventh petal one would expect a rate constant of
the order

k6→7 =
kBT

6��a
��rmax�−2exp�− �EA − E6�/kBT� , �4�

where �=10−3 N s m−2 is the ferrofluid viscosity. Inserting
the values �rmax�0.7 �m and �EA−E6��0.5kBT from Fig.
3 into Eq. �4� we obtain k6→7�0.3 s−1. In Fig. 4 we plot the
autocorrelation function of the petal number,

��N�t��N�t + � , �5�

where �N�t�=N�t�−Neq denotes the petal number fluctuation.
The autocorrelation function decays with a typical rate of
kex�0.3 s−1 in good agreement with the estimate given by
Eq. �4�. For larger times 	10 s the experimental autocor-
relation function becomes statistically unreliable since the
number of events ��meas -� drops to 1 as the time separa-
tion  approaches the time meas of the measurement.

IV. PETAL CONFORMATION AND DYNAMICS

Once the petals adsorb to the paramagnetic core there is
some freedom of conformation, and one observes flowers
with petals equally spaced around the core as well as confor-
mations where the petals are crowded at one side of the core.
We define the one-dimensional density of particles as

� = N/�� , �6�

where �� denotes the minimum angular range over which
the N petals are distributed and 2�−�� is the largest gap

FIG. 3. �Color online� �Top� Scheme of a N-petaled flower los-
ing the Nth petal along the reaction coordinate �rN, while the an-
gular positions of the remaining petals adjust. �Bottom� The
potential-energy cascade from a 11-petaled flower via the stable VII
petal flower �left� toward a two-level flower �right�. The flower
loses the Nth petal along the reaction coordinate �rN; black curves
correspond to the desorption of a N=even petal �lower abscissa�,
and green �gray� curves correspond to the desorption of a N=odd
petal �upper abscissa�. The energy of a petal separated by
�rN=5 �m is indistinguishable from an infinitely separated petal
and hence equals to the energy of a �N−1�-petaled flower. The
numbers labeling the ends of the curves correspond to the number
of the petals in the flower. The transition state between sixfold and
sevenfold petal flowers �red �black� arrow� is at a distance of
�r=0.7 �m from the equilibrium position of the seventh petal and
has an activation energy of EA=0.7kBT.

FIG. 4. �Color online� The autocorrelation function
��N�t��N�t+� versus time as obtained from the experimental data
�solid line�. The number of petals changes on a time scale of 3 s.
The dashed line corresponds to an exponential decay with rate con-
stant 0.3 s−1. The statistical error �error bars� of the correlation
function increases when the time lag  approaches the time of mea-
surement meas=70 s.
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between the petals. We compute the potential energy of a
conformation U��� as

U��� − U��ref� = − kBT ln�g��ref���reft��,���
g�����t��ref,��ref�

� , �7�

where t�� ,��� is the total time when the petals in the flower
show a density in the interval �� ,�+��� and where

g��� � �N

�
−

N

�hc
�N−2

�8�

is the leading-order approximation for the configurational
space density �10� available for conformations of density �,
whereas �hc= �R /a+1� /2 is the maximum �hard-core� pack-
ing density of the petals around the core. Figure 5 shows the
potential U��� computed via Eq. �7� for flowers consisting of
an arbitrary number of petals. The resolution �� varies with
� and is chosen in a way so as to ensure that t�� ,���	0 for
all �. Since the data at higher potential are sparse the reso-
lution 1 /�� is best at the minimum and decreases when
moving toward higher potential. We find the lowest potential
for densities ��1 corresponding to a hexagonal arrangement
of the petals with equal spacing of � /3 between the petals.
The petal conformation results from the simultaneous mini-
mization of the petal number and the minimization of the
dipolar repulsion between the petals. The dipolar repulsion
between the petals, however, is weak and allows for signifi-
cant fluctuations around a conformation. We therefore
tracked the angular position � j�t� �j=1,2 ,3 , . . . ,N�t�� of the
adsorbed petals as a function of time. The accuracy of the
tracking of � j�t� was better than 2°. The angular frequency
� j�t�= �̇ j�t� of each individual petal is a fluctuating function
of time. We measure the angular frequency using finite dif-
ferences of the angular positions of consecutive frames. The
frame rate of the camera was 30 frames per second. We
define the autocorrelation function of the angular frequency
of two petals of a colloidal flower with N petals as

CN��,� = �� j�t�� j���t + ��„N�t� − N…�„N�t + � − N… .

�9�

Here, � denotes the neighbor number ��=0 is the same
particle, �=1 is the nearest neighbor, etc.�. Both delta func-
tions �(N�t�−N) and �(N�t+�−N) discard all times where
the petal number deviates from the fixed petal number N
from the correlation.

In Fig. 6 we plot C6�� ,� versus  for �=0,1 ,2 ,3. The
angular frequencies are correlated for zero time delay
�i.e., =0�, showing that part of the petal diffusion can be
considered as a Markovian process on the time scale
	0.03 s of the measurement. The most prominent obser-
vation is that neighboring petals are not statistically indepen-
dent. As does the petal autocorrelation function C6�0,�, the
petal cross-correlation functions C6���0,� also show the
same albeit weaker instantaneous positive correlation. This is
a dynamic proof of the deterministic interaction of the petals.
Apart from this positive correlation a weak anticorrelated
decay is observed for the autocorrelation C6�0,� and the
cross correlation C6���0,� for 	0.05 s �see the inset in
Fig. 6�. It is a measure for the retardation of the interaction.
In single file diffusion �11–13�, where particles interact only
via hard-core repulsion, a strong algebraic anticorrelation
significantly alters the diffusion of the particles. Neighboring
particles in single file diffusion remain uncorrelated at short
times and become anticorrelated only at times typical for the
individual diffusion time needed to encounter each other. The
retardation of such a hard-core interaction is significant.
Single file diffusion becomes most prominent in the thermo-
dynamic limit N→�, where the time scale of the simulta-
neous correlated diffusion of the rigid flower separates from
the individual diffusion of the petals.

Our system differs from a system exhibiting single file
diffusion. It has a small number of petals, and the petals
interact instantaneously via the soft dipolar interactions; re-
tardation effects are weak. In no time are the petals allowed
to diffuse individually. Hence, the relatively weak delayed
anticorrelation follows the instantaneous delta correlation
with a relative short delay. The diffusion constant of the pet-
als is given by half the area under the autocorrelation func-

FIG. 5. Effective petal potential as a function of the petal den-
sity � as obtained from the experimental data via Eq. �7�. The
dashed line is a linear fit.

FIG. 6. �Color online� Angular frequency autocorrelation and
cross-correlation functions for a colloidal flower with six petals.
The black line corresponds to the autocorrelation, while the red,
blue, and green lines correspond to cross correlations between near-
est ��=1�, second-nearest ��=2�, and third-nearest ��=3� neigh-
bors, respectively.
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tion. While the finite frame rate of the camera broadens the
experimental correlation function, the area under the corre-
lation function is not affected by the convolution of the data
with the time resolution function of the camera. Hence, the
diffusion constants have no significant dependence on the
frame rate of recording,

DN��� = �
0

�

dCN��,� . �10�

Equation �10� is Kubo’s �9� generalization of the concept of
diffusion to particles that interact. The interaction of the par-
ticles causes the motion of one particle to statistically depend
on the motion of another. The statistically dependent motion
of the particles can be decomposed into statistically indepen-
dent normal modes of motion. In Fig. 7 we plot the diffusion
constant D6��� versus �. The petals behave like being
coupled by soft springs, with petals not diffusing indepen-
dently, but with neighbors performing a correlated diffusion.
The correlation decreases when moving away toward further
distant neighbors. We may decompose the correlated motion
of the petals into uncorrelated normal modes of diffusion via

��m,t� =
1


N
�
j=1

N

e2�imj/N� j�t� . �11�

The corresponding statistically independent diffusion con-
stants of the normal modes,

DN�m� =
1

N
�
�=1

N

e2�im�/NDN��� , �12�

are plotted in Fig. 8. The mode m=0 has the highest diffu-
sion constant, and the diffusion constant decreases with the
mode number m. The mode m=0 corresponds to a rigid ro-

tation of all petals by the same amount. It therefore corre-
sponds to the rotational diffusion of the entire flower that
leaves the conformation of the flower unchanged. The higher
modes m	0 involve relative motion of petals that change
the conformation. Such modes are suppressed to diffuse by
the dipolar repulsion between the petals. The higher is m, the
shorter is the distance 2� /m between petals that are moving
in opposite directions. The most likely conformation is an
equilibrium conformation such that an m�0 mode usually
raises the dipolar energy of the system. This explains why
the diffusion of higher modes �m�	0 is suppressed by the
dipole-dipole interaction.

Contrary to single file diffusion the diffusion mode of the
petals arises from mostly instantaneous response of the
flower to conformational changes. In single file diffusion the
suppression of higher modes arises from a retarded response
to conformational changes that only sets in when one petal
diffuses to its neighbor and encounters its hard-core repul-
sion.

In conclusion we have characterized the dynamic fluctua-
tions of magnetic colloidal flowers. These fluctuations can be
understood as a result of deterministic forces arising due to
dipolar interactions and statistical forces arising from the
collisions of the embedding fluid. The soft character of the
dipolar interactions places this system between that of a free
system and a system interacting via hard-core interactions.
The soft confinement of the particles leads to a mode-
dependent diffusion that differs from single file diffusion.
The desorption and adsorption of the petals can be under-
stood as activated processes. The colloidal flowers are thus a
two-dimensional model system for the dynamics of more
complex three-dimensional colloidal assemblies such as
Pickering emulsions �14� and colloidosomes �15�.

FIG. 7. Diffusion constant D6��� versus �.
FIG. 8. Normal-mode diffusion constants D6�m� versus the

mode number m.
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Abstract. We report on the rotation of colloidal clusters of diamagnetic beads and of mixtures of param-
agnetic and diamagnetic beads in a ferrofluid in a precessing external magnetic field. The precession angle
of the external field is a control parameter determining the stability of the cluster. Clusters become locally
unstable when the local precession angle reaches the magic angle. Cluster shape dependent depolarization
fields lead to a deviation of the local from the external precession angle such that close to the external
magic angle different cluster shapes might coexist. For this reason cluster transitions are weakly or strongly
first-order transitions. If the transition is weakly first order a critical speeding up of the cluster rotation is
observed. No speeding up occurs for strongly first-order cluster transitions with hysteresis. The strength
of the first-order transition is controlled by the size of the core of the cluster.

1 Introduction

The formation of a solid from an assembly of particles is a
result of the strength, range and form of attractive particle
interactions. In this respect colloidal particles have evolved
into a rich model system. The interactions between two
pairs of colloids are often known quantitatively and the
resulting structure [1,2] can be viewed with microscopic
techniques. Amongst the variety of different colloids para-
magnetic colloids are one special class of colloids that in-
teract via long-range dipole interactions. The orientation-
dependent tensor form of the dipole interactions results
in complex static [3] and dynamic [4] structures that can
be formed from paramagnetic colloids. Dipole interactions
switch from attractive to repulsive depending on whether

⋆ Supplementary material in the form of an avi file available
from the Journal web page at
http://dx.doi.org/10.1140/epje/i2012-12017-x

Supplementary.avi is a movie showing the rotation of the col-
loidal flowers and diamagnets of figure 1 at precession angles
close and far from the magic angle. Top two rows of movies
are colloidal flowers. The first row is close to the magic angle.
The second row of movies shows the same flowers at a lower
angle. Bottom two rows of movies are colloidal diamagnetic
clusters. The third row shows the colloidal clusters close to the
magic angle, the forth row shows the same colloidal clusters
at a higher precession angle. The core size ratio increases for
both the colloidal flowers and for the colloidal clusters from the
left toward the right. The ratio of the rotation speed of similar
flowers and clusters decreases at the same time.

a e-mail: thomas.fischer@uni-bayreuth.de

the magnetic dipole moments are oriented longitudinal or
transversal with respect to the particle separation. This
orientation dependence of the dipolar interactions can be
further exploited by using time-dependent magnetic fields
with large Mason number [5] that vary on a time scale
too fast for the colloids to relax to their instantaneous
equilibrium position [3,6,7]. The colloids therefore expe-
rience the time-averaged dipolar interactions. These are
attractive in those directions where the frequency of lon-
gitudinal orientations of the induced magnetic moment
is larger than half the frequency of the two transversal
orientations. For an isotropic fluctuation with equal prob-
abilities of longitudinal and the two transversal orienta-
tions the average dipole interaction vanishes. One of the
simplest time-dependent magnetic fields is a precession of
the magnetic field around an axis with precession angle
ϑ. For such precession, the frequencies of longitudinal and
transversal orientations become similar at the magic an-
gle [8] ϑmagic = 54.7◦ and dipole interactions switch sign.
For precession angles below the magic angle the dipole in-
teractions are attractive along the precession axis [9] and
repulsive in the plane perpendicular to it. For larger an-
gles we have the opposite behaviour. Dipole interactions
are similar for the interaction of diamagnetic particles the
magnetic moment of which point in the opposite direc-
tion than for paramagnets. Dipole interactions, however,
switch sign when one looks at the interaction of paramag-
netic and diamagnetic particles. A paramagnet in a pre-
cessing field will attract other paramagnets along the pre-
cession axis and diamagnets in the plane perpendicular to
the precession axis if the precession angle is below magic.
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One can prepare effective diamagnetic colloids by immers-
ing non-magnetic colloids, so-called magnetic holes, into
a ferrofluid. The interaction of effective diamagnets with
paramagnets leads to the formation of flower shaped clus-
ters [10] with a paramagnetic core surrounded by diamag-
netic petals. In our present experiments magnetic colloidal
holes and paramagnetic colloids are placed in a thin film
of ferrofluid between to glass plates. The magnetic fer-
rofluid glass boundaries give rise to virtual image dipoles
suppressing any further attraction of beads of any kind
along the film normal and assembly mainly happens in the
plane. We assembled different planar clusters of effective
diamagnets and of a mixture of effective diamagnets and
paramagnetic beads in a ferrofluid film subject to a pre-
cessing field. Amongst the clusters formed here we focus
on clusters that are isotropic in the film plane. Isotropic
clusters of diamagnetic beads form above the magic an-
gle while colloidal flowers with a paramagnetic core sur-
rounded by diamagnets form below the magic angle. Both
clusters fall apart when approaching the magic angle from
different sides (from above and below, respectively), and
the precession angle serves as a control parameter for the
stability of the clusters. If the orientation of the magnetic
dipoles of each particle were oriented along the direction
of the external magnetic field then dipolar interactions
would be proportional to the second Legendre polynomial
of the precession angle of the external field and therefore
continuously decrease to zero when approaching the magic
angle. From such a picture one would assume the transi-
tion from a cluster toward a colloidal liquid to be of second
order. However, the local field at the position of one col-
loidal particle is a superposition of the external field with
the depolarization field resulting from the magnetic mo-
ments of the other particles and therefore the local field
is generically oriented into a direction different from the
external field. An individual particle will hence precess
with an angle, different then the precession angle of the
external field. The deviation of the local from the external
precession angle can self-consistently stabilize or destabi-
lize a certain cluster shape. It is for this reason possible
that different structures can be locally stable at the same
time. One then observes a coexistence of clusters with a
liquid. Depolarization from third particles will therefore
in general render the cluster stability/instability transi-
tion into a first order transition. The current work focuses
on the question of the strength of order of the cluster sta-
bility transition. We will show that for clusters consisting
of one central core particle and a one-particle thick ring
of particles surrounding the core particle, the ratio of the
core particle radius to the ring particle radius determines
how strongly or weakly the transition is of first order.

A second order transition is a transition where the or-
der parameter changes continuously at the transition. A
first order transition exhibits a discontinuous change of the
order parameter. The change of one phase to the other oc-
curs via a coexistence of the two phases. The area of the
hysteresis measures the dissipated energy when traversing
the coexistence region back an forth. Second order transi-
tions are associated with a critical behaviour of response

functions as a function of the control parameter, while first
order transitions exhibit no critical behaviour.

Here we measure the angular velocity of isotropic col-
loidal clusters in a ferrofluid that occurs as a response to
an external precessing field. As a function of the exter-
nal precession angle this angular velocity shows a critical
speeding up for clusters undergoing a weakly first-order
transition to a colloidal liquid with a small hysteresis,
while clusters undergoing a strong first-order transition
with a large hysteresis show no critical speeding up.

The anisotopic part of the susceptibility tensor of
isotropic cluster vanishes such that there is no magnetic
torque on the cluster arising due to a preferential orien-
tation of the cluster. The only magnetic torque acting on
isotropic clusters is exerted via a memory effect in the
contrast of the cluster to surrounding susceptibility. The
magnetization in the sample lags behind the magnetic field
in both the ferrofluid and in the cluster such that the non-
vanishing angle between magnetization and magnetic field
results in a magnetic torque in both the ferrofluid and in
the cluster. The background torque in the ferrofluid is bal-
anced by the sample wall and the positive or negative ex-
cess torque on the cluster results in a steady asynchronous
co- or counter rotation of the cluster. The cluster suscepti-
bility of isotropic clusters is a shape-independent isotropic
tensor that reflects the interactions that keep the cluster
intact. The angular frequency of rotation of the clusters
is therefore an ideal measure for the self-consistent inter-
actions that keep the integrity of the cluster.

2 Experimental

For the study of the dynamical behavior of the col-
loidal flowers and colloidal clusters we used superparam-
agnetic Dynabeads M-270 functionalized with carboxylic
acid (Invitrogen Dynal Oslo, Norway) of diamater a =
2.8µm and effective susceptibility χ = 0.8, non-magnetic
carboxylate-coated yellow-green fluorescence polystyrene
particles of diameter 2.0µm from FluroMax, red fluores-
cent polystyrene microspheres of diameter 2a = 1.0µm
from Duke Scientific (Palo Alto, CA) and green fluores-
cence polystyrene particles with diameters 2a = 3.1µm
and 2a = 9.9µm were obtained from ThermoScientific.

For colloidal flowers the paramagnetic and non-
magnetic particles were immersed in diluted fer-
rofluid EMG 707 FerroTec Ferrosound (FerroTec
GmbH, Germany) with controlled proportions (EMG
707 : H2O = 20 : 80) depending on the experiment and
sandwiched between two cover slips of a separation
of roughly 100µm. The susceptibility of EMG 707 is
χF = φFφPχmagnetite, with χmagnetite = 21 the suscepti-
bility of bulk magnetite, φP = 2% the volume fraction
of magnetite nanoparticles in the undiluted ferrofluid
and φF = 1 (φF = 0.2) the volume fraction of ferrofluid
in the ferrofluid water mixture. The cover slip was then
subjected to static magnetic field, produced by a coil
mounted under the sample. Colloidal flowers are formed
and these flowers are then placed in a rotating field pro-
duced by pairs of Helmholtz coils and was observed with
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Fig. 1. a)-b) Reflection polarization —respectively,
fluorescence— microscope image of a colloidal flower
consisting of a paramagnetic (non-fluorescent) core of
diameter 2a1 = 2.8µm in an aqueous diluted ferrofluid
(EMG707 : H2O = 20 : 80) surrounded by an isotropic ring of
diamagnets of diameter a) 2a2 = 3.1µm and b) 2a2 = 1.0µm.

The images were obtained in a normal field of Ĥ⊥ = 7mT.
c)-e) Fluorescence microscope images of isotropic clusters of
diamagnets of diameter c) 2a1 = 3.1µm and 2a2 = 3.1µm,
d) 2a1 = 3.1µm and 2a2 = 2.0µm and e) 2a1 = 9.9µm and
2a2 = 3.1µm, immersed into an undiluted ferrofluid (EMG
707). The clusters were assembled in an in-plane rotating

field of Ĥ‖ = 1.62mT at a precession angular frequency of
Ω = 188 s−1. The scale bar in all images corresponds to 3µm.
The movie in the supporting information shows the rotating
clusters under the in-plane field of Ĥ‖ = 1.62mT and two
different normal fields with a precession angle close and far
from the magic angle.

fluorescence or reflection microscopy, LEICA DM5000
(Leica Microsystems Wetzlar GmbH, Germany).

For colloidal clusters non-magnetic particles with dif-
ferent size diameters were immersed in undiluted ferrofluid
EMG 707 sandwiched between two cover slips. The cover
was then subjected to a rotating magnetic field where
isotropic colloidal clusters are formed. Then a static mag-
netic field normal to the film was superposed to the ro-
tating in-plane field and the dynamics of the clusters were
observed under the fluorescence microscope.

The field direction of the magnetic field changes from
the air into the ferrofluid film according to Ĥ ferrofluid

⊥ =

Ĥair
⊥ /(1 + χF ) and Ĥ ferrofluid

‖ = Ĥair
‖⊥, and the preces-

sion angle in the ferrofluid and in the air are related via
tanϑferrofluid = (1+χF ) tanϑ

air. χF denotes the magnetic
susceptibility of the ferrofluid. All external fields and ex-
ternal precession angles are given in terms of their values
inside the ferrofluid.

3 Results

Isotropic colloidal flowers were assembled in a static mag-
netic field normal to the sample consisting of a mixture of
paramagnetic and non-magnetic particles dispersed in a

Fig. 2. (Colour on-line) Hysteresis loops of the formation and
rupture of colloidal flowers and of diamagnetic clusters as a
function of the static normal field Ĥ⊥. The colloidal flowers
consisted of a paramagnetic (non-fluorescent) core of diame-
ter 2a1 = 2.8µm in an aqueous diluted ferrofluid (EMG 707 :
H2O = 20 : 80) surrounded by an isotropic ring of diamagnets

of diameter 2a2 = 1µm in a rotating field of Ĥ‖ = 1.62mT
at a precession angular frequency of Ω = 188 s−1. Blue up-
ward triangles correspond to increasing the normal field and
pink downward triangles to decreasing normal field. The dia-
magnetic clusters consisted of core particles of diameter 2a1 =
3.1µm and petals of diameter 2a2 = 3.1µm immersed in an
aqueous undiluted ferrofluid (EMG 707). The rotating in-plane
field strength and frequency were the same as for the colloidal
flowers. Red circles are measured upon increasing and the green
squares upon decreasing the normal field. The inset shows the
same hysteresis loops in terms of the precession angle.

diluted ferrofluid. It has been shown [11,12] that with the
proper dilution the magnetic susceptibility can be tuned
to prefer a number of diamagnetic petals absorbing at the
magnetic core corresponding to a full monolayer of petals
around the core. Such kinds of isotropic colloidal flowers
are displayed in fig. 1a)-b). Clusters of a bidisperse (radii
a1 and a2) mixture of effective diamagnets in a ferrofluid
were formed in an in-plane rotating magnetic field. The
diamagnetic clusters formed are planar clusters lying in
the mid plane of the ferrofluid sample having a rich vari-
ety of conformations with different numbers of diamagnets
forming one clusters. Amongst this variety we picked out
clusters having a core formed by a bead of radius a1 sur-
rounded by a complete monolayer of beads with radius a2.
Examples of such isotropic diamagnetic clusters are shown
in fig. 1c)-e).

Both types of clusters were exposed to a precessing
magnetic field being a superposition of a rotating mag-

netic field H‖(t) = Ĥ‖[ex cosΩt + ey sinΩt] in the plane

of the ferrofluid film and a static field H⊥(t) = Ĥ⊥ez.
The precession angle is defined by the ratio of this two
components of the field via tanϑ = Ĥ⊥/Ĥ‖. The exter-
nal fields reported are those in the ferrofluid film far away
from the clusters. In fig. 2 we show the stability of such
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Fig. 3. (Colour on-line) Dependence of the width of the hys-
teresis loop of the formation and rupture of colloidal flowers
(red) and diamagnetic clusters (blue) on the ratio of the core
radius and the petal radius. The red and blue lines are fits
according to eq. (8).

clusters as we sweep the normal component Ĥ⊥ of the
precessing field. Colloidal flowers are stable for low pre-
cession angles (large normal field Ĥ⊥) while clusters of
holes are stable at large precession angles (small normal

field Ĥ⊥). Decreasing the normal component of the field
destabilizes the colloidal flowers and they fall apart at a
critical field Ĥ⊥c1. If we start the experiment at Ĥ⊥ = 0
one observes a mixture of magnetic hole clusters and para-
magnetic beads. Colloidal flowers form from this mixture
upon surmounting a second threshold Ĥ⊥c2 > Ĥ⊥c1. We
characterize the width of this hystersis by the difference
of the two critical fields ∆Ĥ⊥ = Ĥ⊥c2 − Ĥ⊥c1. The width
of the hystersis ∆Ĥ⊥ is a measure of how strongly the
transition is of first order.

A similar hysteresis is measured when diassembling
diamagnetic clusters by increasing the normal component
Ĥ⊥ of the precessing field and reassembling a cluster of
a generically different shape and size when decreasing the
field. The strength of the transition both for the colloidal
flowers as well as for the magnetic hole clusters depends
on the size ratio a1/a2 of the colloids of the core and of the

petals. In fig. 3 we plot the width of the hystersis ∆Ĥ⊥
versus the size ratio a1/a2. The width of the hystersis
increases with the size ratio.

The rotating parallel component and the contrast of
the imaginary part of the magnetic susceptibility ∆χ′′ of
the cluster to the surrounding ferrofluid result in a torque

τ = 4πµ0∆χ′′V Ĥ2 sin2 ϑ.

Here µ0 is the vacuum permeability, V denotes the volume
of the cluster, and Ĥis the absolute value of the magnetic
field. This torque causes the clusters to rotate around
their core with an angular frequency ω < Ω. The ratio

Fig. 4. The angular velocity of different colloidal flowers and
diamagnetic clusters as a function of the precession angle
recorded at a constant in-plane rotating field of Ĥ‖ = 1.62mT
at a constant precession angular frequency of Ω = 188 s−1.

Fig. 5. The angular velocity ratio of different colloidal flowers
and diamagnetic clusters near and far from the magic angle as
a function of the ratio of the core to the petal radii.

ω/Ĥ2 sin2 ϑ measures how efficient the magnetic field ro-
tation is converted into a rotation of the cluster. In fig. 4
we plot the angular frequency ω at fixed in-plane field
strength and frequency as a function of the precession
angle ϑ for different clusters. Some of the clusters show
a speeding up when one approaches the magic angle [13],
where the clusters fall apart. Other clusters do not change
their angular frequency when changing the normal com-
ponent of the field. We characterize the cluster speed up
by the ratio ωfast/ωslow, where ωfast denotes the angular
frequency just before rupture and ωslow is the angular fre-
quency at low (high) precession angle where the colloidal
flower (magnetic hole cluster) is stable.



Eur. Phys. J. E (2012) 35: 17 Page 5 of 6

Fig. 6. The angular velocity ratio of different colloidal flowers
and diamagnetic clusters near and far from the magic angle as
a function of width of the hysteresis.

In fig. 5 we plot the cluster speed up versus the size
ratio a1/a2 of the colloids of the core and of the petals.
The speed up decreases with the size ratio for both the
colloidal flowers and for the magnetic hole clusters.

Figures 3 and 5 show that both the width of the hys-
tereses and the speed up of the rotation correlate with the
ratio of the core-to-the-petal radius acore/apetal. We may
combine figs. 3 and 5 to measure the speed up as a func-
tion of the strength of the first order transition. Hence,
in fig. 6 we plot the cluster speed up versus the width
of the hysteresis. A large speed up is observed for small
hysteresis while no speed up occurs at large hysteresis.

4 Discussion

If we consider the core particle to be larger than the parti-
cles in the ring it is a good approximation to describe the
local magnetic field as that in the absence of the petal par-
ticles. Toussaint et al. [14] have shown that image dipoles
due to the presence of the ferrofluid glass walls can cause
a first-order transition with two stable distances between
the diamagnets. Here those effects are neglected since the
sample thickness is much larger than the separation of
the petals from the core. Neglecting the image dipoles,
the field from the core is described by

H =

⎧
⎪⎪⎨
⎪⎪⎩

[
I+

a3
1(χc−χF )

1+χc+2(1+χF )
3rr−r2I

r5

]
· Hext, for r > a1,

3(1+χF )
1+χc+2(1+χF )Hext, for r < a1,

(1)

where I denotes the unit tensor, and χc denotes the sus-
ceptibility of the core particle of radius a1. The effec-
tive magnetic moment of the core and petal particles
mc = Vc(χc−χF )H(r = 0) andmP = VP (χP −χF )H(r =
a1 + r2) are thus determined by the local field at the par-
ticle positions r = 0 and r = a1 + r2, the volumes Vc and

VP of the particles and the susceptibility contrasts to the
ferrofluid. The dipolar interaction hence reads

W = −µ0

4π
mc ·

[
3rr − r2I

r5

]
· mP (2)

= −γHext ·
[
3rr − r2I

r5
+

a31(χc − χF )

1 + χc + 2(1 + χF )

×
(
3rr − r2I

r5

)2
]

· Hext, (3)

where

γ =
µ0

4π
VPVc

3(1 + χF )

1 + χc + 2(1 + χF )
(χc −χF )(χP −χF ) (4)

and r is the separation vector between the core and petal
particle. The first term in (3) corresponds to the inter-
action of the petal particle in the unperturbed exter-
nal field and the second term is the perturbation of the
magnetic moment of the petal particle due to the pres-
ence of the core particle. For an external field Hext =
Hext(sinϑext[ex cosΩt+ey sinΩt]+cosϑextez) and a petal
particle sitting in the equatorial plane at a distance r =
a1 + r2 the time-averaged dipole interaction energy reads

W =
1

2

γH2
ext

(a1 + r2)3

(
1 +

β

(1 + r2/a1)3

)

×
[
P2(cosϑext) − 4β

β + (1 + r2/a1)3

]
, (5)

where

β =
(χc − χF )

1 + χc + 2(1 + χF )
. (6)

The first term in (5) corresponds to a renormalized
long-range dipole interaction that scales with second Leg-
endre polynomial P2(cosϑext) of the precession angle ϑext

and switches sign when passing the magic angle. This
part of the interaction is attractive if (χc − χF )(χP −
χF )P2(cosϑext) < 0 and explains the stability of the col-
loidal flowers (χc−χF > 0, χP −χF < 0, P2(cosϑext) > 0)
for small precession angles ϑext < ϑmagic and the stability
of the diamagnetic clusters (χc − χF < 0, χP − χF <
0, P2(cosϑext) < 0) for large precession angles ϑext >
ϑmagic. The second term is independent of the precession
angle. Its sign does not depend on the sign of the suscep-
tibility contrast sign(χc − χF ) of the core particle to the
ferrofluid. The second term is repulsive for petal particles
that are magnetic holes (χP −χF < 0), while for paramag-
netic particles it is attractive. The destabilizing correction
term is short range. This results in an equilibrium distance
of the petal from the core given by

r2,min = a1

[
3

√
4β

P2(cosϑext)
− β − 1

]
, (7)

that moves from infinity at the magic angle ϑext = ϑmagic

toward the hard-core distance a2 as one moves away from
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the magic angle. The picture changes when the dipole in-
teractions between the petals are taken into account as
well. Here the different range of both interactions becomes
important when summing up the interaction of all petal
particles. We expect that in a cluster of N particles that
the dipole interaction increases with the number of pairs
of particles that scales as N2, while the short-range cor-
rection increases with the number of nearest neighbor par-
ticles that scales like N . This explains the hystereses since
once a cluster is formed it can be stabilized by the long-
range dipole interactions even when a single pair of par-
ticles is not yet stable. The minimum radius of N petals
will hence be different from that of one petal described
by eq. (7). We expect the hystereses to roughly scale with
the ratio of the long-range to short-range interactions such
that

∆H ∝ 1/(β + (1 + a2/a1)
3). (8)

In fig. 3 we have incorporated curves according to eq. (8)
with the prefactor of eq. (8) fitted to the data. The fit
agrees well for the colloidal cluster but is less accurate
for the colloidal flowers. This is not too suprising since
the different susceptibility of the core of the flower adds
to the complexity of the phenomenon. The width of the
hystereses is a measure for the strength of the first-order
transitions. If the transition is weakly first order, some of
the second-order critical phenomena are likely to persist.
This is what we observe in the critical speeding up. For
a second-order transition we would expect the rotation
speed of the cluster to diverge. For a weakly first-order
transition there is significant increase when approaching
the transition, while no significant increase is observed
when the transition is strongly first order. The interac-
tion between particles at the magic angle in an isotropic
environment vanishes. Some interaction will persist if the
larger size of the core renders the environment anisotropic.
The self-consistent deviation of the system from isotropic
is what stabilizes or destabilizes the particular conforma-
tion and renders the transition from second to first or-
der. It is therefore conceivable that the presence of a large
core particle is responsible for the strong first-order type
of transitions in the clusters with a large core. The corre-
sponding second-order speeding up of the rotation of the
cluster is destroyed by the large core and partially persists
for smaller core sizes.

5 Conclusions

The rotation of colloidal clusters of non-magnetic holes
and of mixtures of paramagnetic beads with non-magnetic

holes in a ferrofluid in a precessing external magnetic field
depends on the precession angle of the external field that
serves as a control parameter for the stability of the clus-
ters. Near the magic angle cluster-shape–dependent de-
polarization fields cause an orientation of the local field
deviating from the external field and render cluster tran-
sitions weakly or strongly first order. If the transition is
weakly first order a critical speeding up of the cluster rota-
tion is observed. No speeding up occurs for strongly first-
order cluster transitions with hysteresis. The strength of
the first-order transition is larger the larger the size of the
core as compared to the petal particles of the cluster.

This work is supported by the German Science Foundation
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   Abstract  

 

We report on differently ordered colloidal phases of a mixture of 

paramagnetic and diamagnetic colloids subject to a quickly varying time 

dependent magnetic field. Effectively paramagnetic and effectively 

diamagnetic colloids are created from paramagnetic and nonmagnetic 

colloids immersed into a thin film of aqueous ferrofluid. The time averaged 

dyadic product of the magnetic field with itself serves as a control parameter 

for a sequence  of transitions between differently correlated orientation order 

between the paramagnetic and diamagnetic colloids.  We observe anti- and 

equimagnetic order along directions that are orthogonal to each other. At the 

magic angle equimagnetic and antimagnetic directions of the colloidal order 

change via an intervening biaxial ordered phase to a phase were the 

equimagnetic ordered direction is replaced by an antimagnetic ordering and 

vice versa.   
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1. Introduction  
Neutralization of opposite charges is one of the driving concepts leading to the 

organization of matter on the atomic and molecular scale. The interaction between point 

charges is isotropic and does not depend on direction. It is spontaneous breaking of 

rotational symmetry and the quantization of angular momentum that nevertheless 

produces crystalline structures with directed bonds in atoms and molecules. Colloidal 

particles have been used as a model for atoms on a larger scale1,2. They however are 

of mesoscopic size, where quantum phenomena are absent, and angular momentum is 

a continuous quantity. The principles leading to directed bonds in microscopic systems 

therefore do not work on the colloidal scale. In isotropically interacting colloids steric 

interactions are the means to spontaneously break rotation symmetry and form a 

colloidal crystal3. The only possibility of obtaining directed bonds in colloidal systems is 

by using colloidal particles that are intrinsically anisotropic. For this reason chemists 

have synthesized Janus particles4,5 and patchy colloids6,7 with surface functionalities 

that vary as a function of the location on the particle surface. Other possibilities are the 

use of ellipsoidal particles8-10 the shape of which is different in different directions. A 

third possibility is to use a magnetic11 or electric12 dipole moment using an external 

magnetic or electric field. Induced paramagnetic dipoles do not neutralize in an external 

field but build up an induced magnetization with a macroscopic magnetic moment given 

by the magnetization of the sample times its volume. The situation changes when 

considering a mixture of paramagnetic and diamagnetic colloids13. Diamagnets and 

paramagnets point into opposite directions in the same field. They are able to neutralize 

each other on a macroscopic scale. In this sense, mixtures of paramagnets and 

diamagnets in an external magnetic field are a model system for neutralizing, 

anisotropically interacting particles that posses a variety of mesoscopic arrangements 

that is richer than that of isotropic colloids and than that of non-neutralizing anisotropic 

colloids. In the current manuscript, we show a few of the most obvious colloidal phases 

that form in such a system, when we apply a field varying on time-scales faster than the 



inter particle dynamics.    

 

 

2. Experiment 

Figure 1 a) Scheme of the experimental setup. b) Scheme of the field modulation The 

field varies in time according to  [ ]ttHHt yxextzext Ω+Ω+= 2sinsinsinˆcosˆ)( eeeH ϑϑ   with 

the tip of the magnetic field vector following the black Lissajou figure. This modulation 

produces the same time averaged dipole interactions as a field precessing at a 

precession angle of extϑ around the z-axis (green cone) but causes no net torque on the 

colloidal assembly.  γ(t) denotes the angle between the particle separation vector rij and 

the field.  Only the projection angles of the field extϑ and the bond bϑ  enter in the angular 

dependence of the time averaged interaction. Whether the interaction between the 

induced moments mi and mj is attractive or repulsive depends on whether extϑ and bϑ  

are smaller and larger than the magic angle. The interaction also is proportional to the 
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product of the effective susceptibilities of the pair of particles. In the scheme a 

diamagnetic particle sits at the origin and a paramagnetic particle at rij. The magnetic 

moment mi of the diamagnet is pointing opposite to the field, while mj points along the 

magnetic field.  c) The magnetic field is generated by coils outside the ferrofluid. At the 

ferrofluid glass interface the magnetic boundary conditions (continuity of ⊥H and ||B ) 

cause a deflection of the field. All field directions mentioned in this work are expressed 

in terms of their value inside the ferrofluid. 

In our experiment we have used micron-sized superparamagnetic particles of diameter 

2.8 μm (Invitrogen Dynal Oslo, Norway), fluorescence red polystyrene particles of 

diameter 1.0 μm (Thermo Scientific) and water based ferrofluid EMG 707 FerroTec 

Ferrosound (FerroTec GmbH, Germany) of susceptibility χf=1.5. Both the 

superparamagnetic and fluorescence polystyrene particles were immersed in undiluted 

ferrofluid with controlled proportions and were placed between two cover slips. The 

sandwiched cover slips were placed in a time dependent magnetic field produced by 5 

coils (two coils for the x direction, 2 coils for the y direction in the plane of the ferrofluid 

film and one z-coil normal to the film) and observed with either reflection or  

fluorescence microscopy (LEICA DM5000, Leica Microsystems Wetzlar GmbH, 

Germany).  

 

Typical fluxes in one direction were of the order of  3 mT and orientational fluctuations 

of the magnetic field were of the order of f= Ω/2π=10-40 Hz. At these conditions the 

viscous forces inhibit the motion of individual particles into their instantaneous 

equilibrium positions and only the time averaged dipolar interactions between the 

particles force them into their time averaged equilibrium conformation.  The field 

direction of the magnetic field changes from the air into the ferrofluid film according to 

)1/(ˆˆ
F

airferrofluid HH χ+= ⊥⊥  and airferrofluid HH ||||
ˆˆ = , and the orientation angle in the ferrofluid 

and in the air are related via air
F

ferrofluid ϑχϑ tan)1(tan += . Fχ  denotes the magnetic 

susceptibility of the ferrofluid. All external fields and external orientations are given in 

terms of their values inside the ferrofluid. 



2. time averaged dipole interactions 

The magnetic field induces excess magnetic moments )(tim in the particles that interact 

via the dipole dipole interaction 

5

2
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:)()(
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r
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Irr
mm

−
−=

π
μ

  (1) 

, where 0μ   denotes the vacuum permeability,  ijr   the separation vector between the 

interacting beads and  I  denotes the unit tensor. The tensor  5

23

ij

ijijij

r
r Irr −

 is traceless and 

hence only the traceless part ( )Immmm jiji ⋅−
3
1 of the tensor jimm is relevant for the 

interaction between the beads. If we neglect the influence of other beads on the excess 

magnetic moment of an individual bead, and if we assume an instantaneous response 

of the bead magnetization then the magnetic moment is related to the external field via   

exti
i
effi V Hm χΔ=  (2) 

where  
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is the effective susceptibility contrast with χf and χi the ferrofluid and particle 

susceptibility and Vi the particle volume. The dipole interaction can therefore be 

rewritten as: 
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Since in our experiments the intra particle dynamics is slow compared to the modulation 

of the external field the particle separations can be considered time independent during 

one period of the magnetic field such that the time average taken over one period 



affects only the traceless magnetic field tensor
3

)()()( 2 IHH tHtt extextext − . For a modulation 

of the form 

tHtHHt yyxxzz Ω+Ω+= 2sinˆsinˆˆ)( eeeH   (5) 

the time averaged traceless dyadic product of the external field is diagonal in x,y,z 

coordinates and reads: 
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z
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sin =ϑ  is the time averaged precession angle 

and 
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H
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=ε is the eccentricity of the modulation. Insertion of equation (6) into (4) 

leads to the time averaged dipolar interaction in the form: 
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where  bϑ  and bϕ are the bond tilt and azimuth angle defined via 
r
z

b =ϑsin  and 

b
b r

y
ϑ

ϕ
cos

sin =  and 2P  and 2
2P  are Legendre polynomials of degree 2 and associated 

Legendre polynomials of degree 2 and order 2. For vanishing eccentricity of the 

modulation the averaged dipole interaction is purely uniaxial and the interaction only 

depends on the bond tilt angle. The averaged dipole interaction changes sign at the 

magic angle  magicb ϑϑ =  i. e. the zero of the second Legendre polynomial. In magic angle 

spinning NMR this magic angle magicϑ is used to suppress the influence of dipole 

interactions on NMR line shapes. Here it is used in a similar way to switch the sign of 

the average dipole dipole interactions. From equation (6) we deduce that there are three 



ways to switch the sign. The product of the effective susceptibility contrasts j
eff

i
eff χχ ΔΔ is 

positive for similar beads but negative for a paramagnetic and diamagnetic pair of 

beads. Bond angles that are attractive for similar beads are repulsive for a 

paramagnetic and diamagnetic pair of beads and vice versa.  We might switch the sign 

by using precession angles of the magnetic field magicext ϑϑ
<
>  below and above the magic 

angle. Finally the interaction switches sign when the bond tilt angle between the beads 

is  magicb ϑϑ
<
>  below and above the magic angle.  

With eccentricity the bond structure becomes biaxial. The biaxiality is of minor 

importance if the precession angle of the field is far away from magic, since then the 

uniaxial components overpower the biaxiality. Close to the magic angle, however, the 

eigenvalue structure of the dyadic product of the magnetic field changes such that one 

eigenvalue is zero while the other two have opposite sign. This results in one attractive 

one repulsive and one indifferent bond direction.    

In figure 2 we plot the color coded bond angular dependence of the averaged dipole 

interaction for similar beads for an eccentricity of 10% when passing through the magic 

precession angle. Far away from the magic precession angle (a) the cyan color at the 

latitude of the magic bond tilt angle separates the attractive polar bond directions (blue-

violet) from the repulsive directions around the equator.  When approaching the magic 

precession angle (b) the indifferent (cyan) zone approaches the equator near πϕ ,0=b  

and remains near the magic bond tilt angle for intermediate longitudes. The indifferent 

zone from the southern and northern hemisphere eventually merge (c) when the 

eigenvalue in x direction switches sign restricting the repulsive directions around the 

equator to the longitudes around 2/πϕ ±=b .  When further approaching the magic 

precession angle the merged indifferent zones disjoin into a eastern and western zone 

creating an attractive plane along πϕ ,0=b (d). Then the indifferent zone moves toward 

the poles near the longitudes around 2/πϕ ±=b , where they merge right at the magic 

precession angle (e). It is at the magic precession angle where the eigenvalue in z-

direction switches sign, leaving an attractive direction along the x-axis and a repulsive 



direction along the y-axis. When passing the magic precession angle the indifferent 

zones disjoin and retreat along πϕ ,0=b (f). The plane 2/πϕ ±=b is now repulsive. 

Finally the indifferent zones merge at the equator near 2/πϕ ±=b  the third eigenvalue 

along the y axis switches sign (g) and the indifferent zone disjoin to move back (h) to 

the magic bond tilt angle with a polar repulsive direction and an equatorial attractive 

direction that is just opposite to the behavior observed for a precession angle below 

magic (i). The effect of the eccentricity is hence a sequential change of sign of the three 

eigenvalues instead of a simultaneous switch for a truly uniaxial modulation. Note that 

the same result holds for a paramagnetic and a diamagnetic bead when we interchange 

attractive and repulsive.  

 

Figure 2) angular dependence of the time averaged dipolar interactions color coded 

from (violet = attractive via  cyan = indifferent toward orange = repulsive) for precession 

angles a)-d) magicext ϑϑ <  e) magicext ϑϑ = and f)-i) magicext ϑϑ >  and an eccentricity of 10%. 

The eigenvalues switch sign in figure c) for the x-direction, in e) for the z-direction and in 

g) for the y-direction  

It is therefore clear that the use of time dependent magnetic fields varying in all three 

directions of space open up the possibility to create a rich variety of differently arranged 

assemblies of colloids. The use of paramagnets and diamagnets further enriches the 

possibilities since bond directions between magnetically similar and different particles 
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point along directions that are orthogonal to each other. Some of those assemblies are 

shown in the next section. 

3. Results 

Figure 3: collection of fluorescence- (left) and polarization reflection microscope images 

(middle left) together with a side view scheme of the structure (middle right) of a mixture 

of paramagnetic beads 2ap=2.8μm, and effective diamagnets 2ad=1.0μm immersed into 

a undiluted aqueous ferrofluid χf=1.5. Fluorescence microscopy images visualize the 



diamagnets while polarization reflection microscopy  images visualize the paramagnets. 

The right figure shows the corresponding angular dependence of the dipole interactions 

as explained in figure 2. The images in figure a) show the random arrangement in the 

absence of a magnetic field. Figures b-d are recorded in a magnetic field of 

( ) mTHHH yx 82.12/ˆˆ 22
|| =+= and a frequency Ω=  120s‐1. The vertical field (precession 

angle) in the images were b) Hz
air=26.5mT ( °=10extϑ ) c) Hz

air =4.0mT ( °= 49extϑ ) d) Hz
air 

=2.22mT ( °= 64extϑ ) e) Hz
air =1.27mT ( °= 75extϑ ).  

We applied a field of the form equation 5 with an eccentricity of less than 5%. This 

ensures that the dyadic product of the magnetic field at two different times is a 

symmetric tensor ( 0HHHH =′−′ )()()()( tttt ), where the bar denotes the time average. As 

a consequence there is no net time averaged torque onto the colloidal structure14.  In 

what follows we describe the assemblies of paramagnetic and diamagnetic particles as 

we increase the angle ϑext. 

 

Colloidal flowers 

In a static field =Ĥ 21200 A/m, ϑext=0 normal to the ferrofluid film we observe the 

formation of colloidal flowers. Such flowers form due to the dipolar attraction of 

diamagnetic particles in the equatorial plane 2/πϑ =b of the paramagnets. They have 

been first discovered by Erb et al.13 They are highly dynamic structures where the petals 

of the flowers may diffuse15 and they can be easily set into rotation with time dependent 

magnetic fields having an asymmetric part in the dyadic product16. Figure 3b shows a 

fluorescence microscope image of such colloidal flowers with 2ap=2.8μm paramagnetic 

cores and 2ad=1.0μm petals. An ensemble of flowers can be seen via the fluorescent 

petals of the flower surrounding the non fluorescent paramagnetic cores. The flowers 

are located in the middle of the sample indicating that gravitation and image dipoles 

prevent the binding of paramagnetic beads into one dimensional strings with a 

diamagnetic mantle. 



 

Decorated strings 

Upon increasing the precession angle to ϑext =49° we observe the formation of 

paramagnetic strings undulating around the middle plane of the film with a period of 

three to five beads (figure 3c). The entire structure is decorated with a collection of 

diamagnets that horizontally adsorb to the undulating string at the sides of the string. 

The bonds between diamagnets and paramagnets in this structure are also in the 

horizontal plane but perpendicular to the bonds between the paramagnets in the string. 

A scheme of the decorated strings is shown to the right of figure 3c These strings 

correspond to the biaxial angular dependence of the dipolar interactions.   

Sandwiched membranes 

At precession angles of the order ϑext =64° the paramagnetic beads form membranes 

instead of strings. These paramagnetic membranes are sandwiched between two layers 

of diamagnets that adsorbed to the membrane on either side. At the transition angle 

ϑ=51°  the orientation of the membrane normal is in the plane of the ferrofluid making 

the sandwich structure clearly visible in the fluorescence microscope image. The two 

diamagnetic adsorption layers appear as brightly fluorescing lines of diamagnetic beads 

sandwiching the non fluorescent paramagnets. Upon increasing the precession angle 

the membrane bends (figure 3d) such that part of the membrane normal remains in the 

horizontal direction while the normal to the lower part of the membrane now aligns with 

the film normal. Eventually upon further increasing the precession angle the membrane 

flattens and entirely lies in the film plane (figure 3e), allowing a closer inspection of the 

diamagnetic order of the absorbed layers. For all systems studied here the 

paramagnetic membrane is a close-packed two dimensional structure with a hexagonal 

unit cell with unit vectors having the length of a paramagnetic bead diameter 2ap. The 

order of the diamagnetic adsorbate on the contrary varies a lot and sensitively depends 

on the size of the diamagnetic beads, on the concentration ratio of diamagnets versus 

paramagnets and on the susceptibility of the diluted background ferrofluid. In what 

follows we describe the order of the diamagnetic adsorbate under various conditions. 



 

Paramagnetic crystal enslaved diamagnetic gas phase 

Figure 3b shows a superposition of a reflection microscopy image of the sample with a 

fluorescence microscope image of the same sample taken immediately one after 

another for a tilt angle of  ϑext =π/2.  The paramagnetic particles order into a series of 

planar clusters surrounded by regions that are completely depleted of paramagnetic 

colloids. Within the clusters a crystalline hexagonal arrangement of the paramagnetic 

beads is observed.  The arrangement of the diamagnetic colloids is not completely 
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Figure 4: Mean square displacement of the diamagnetic beads upon a cluster for a 

diamagnetic gas Hz=0.8mT,  Ω =  120s-1, H||=1.82mT, 2ad=1μm (black) and for an 

enslaved crystal Hz=1.01mT, Ω= 120s-1, H||=1.82mT, 2ad=2μm (orange). The shaded 

region corresponds to mean square displacements smaller than the paramagnetic unit 

cell size. 

uncorrelated to the paramagnets. Diamagnetic particles from the paramagnetic depleted 

regions  adsorb on top and below the paramagnetic crystalline clusters. As a result the 

density of diamagnetic particles on top and below the clusters is larger than the density 

in the paramagnetic depleted regions. The paramagnetic crystal is sandwiched between 



two layers of diamagnetic gas. The diamagnetic particles perform Brownian motion, and 

the mean square displacement of the diamagnets increases linearly (figure 4) with a 

slope defining the gaseous diffusion constant of the diamagnets. The increase of the 

mean square displacement beyond the area of the unit cell of the paramagnetic crystal 

shows that the diamagnets remain mobile in this phase. For this reason we call this 

phase the  paramagnetic crystal enslaved diamagnetic gas phase. This does not mean 

that the diamagnetic gas possesses no order. In figure 5 we plot the radial correlation 

functions ∑ ∫ −−=Δ
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jdid

rr

rd
dd rdr

N
rrg

,
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of the paramagnets and diamagnets, where Np and Nd are the number of paramagnets 

and diamagnets in a particular cluster and the ipr and jdr are the positions of the ith 

paramagnet and the jth diamagnet. While the long range behavior of both correlation 

functions is goverened by the shape of the cluster, the short range behavior shows that 

despite of the mobility of the diamagnetic gas, the crystal order of the paramagnet is 

imprinted upon the gas via the magnetic field modulations from the paramagnet. 
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Figure 5 radial correlation function of paramagnetic particles (blue) and diamagnetic 

particles (red) in a diamagnetic gaseous phase cluster. Although the diamagnetic gas is 

mobile the crystal structure of the paramagnets is imprinted upon the diamagnets. 



  

The auto-correlation-function of the diamagnets share the peaks occurring in the 

autocorrelation function of the paramagnets. Since the diameter of the diamagnets is 

much smaller than that of the paramagnets more than one diamagnet can reside on top 

and below one paramagnet. We observe a disorder in the occupancy number of the 

diamagnets of the sites above and below the paramagnetic crystals. A site can be 

vacant, or have one, two, three or four diamagnets on top of a paramagnet. This 

disorder is expressed by the substructure in the cross correlation function occurring in 

the hard core region of the auto correlation function.  
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Figure 6 top left) Polarization reflection microscope image of an enslaved crystalline 

phase of the diamagnets recorded at Hz=1.01mT, Ω= 120s-1,H||=1.82mT, 2ad=2.0μm. 

The magnetic holes are sitting on top of the paramagnets as sketched in the scheme to 

the top right. The scheme at the bottom shows a side view with two of the frustrated 

bonds between the diamagnets shown in yellow. 

Upon increasing the radii of the diamagnets and upon diluting the ferrofluid we observe 

a slowing down of the large scale diffusion that eventually stops completely. For a bead 

diameter ad=2.0μm the diamagnets remain on top and below the paramagnetic particle 

they reside. In the plot of the meansquare displacement of the diamagnetic beads in 

figure 5, we observe a much weaker increase of the mean square displacement with 

time that eventually settles at roughly 1 percent of the area of a paramagnetic unit cell. 

According to the Lindemann criterion a crystal should melt when the root mean square 

displacements of its elements amounts for one tenths of the lattice spacing. We would 

hence expect a diamagnetic crystal to immediately melt under the current conditions. It 

is, however, not the interactions between the diamagnets but the interaction with the 

crystal potential of the paramagnets that causes the crystalline order of the diamagnets. 

The diamagnets are hence enslaved by the paramagnetic crystal and form two crystal 

layers growing epitaxial with the same unit cell on the paramagnetic crystals.   

Paramagnetic crystal incommensurate diamagnetic crystal phase  

For larger densities of the diamagnets and when using concentrated ferrofluids the 

attraction between the diamagnets overcomes the paramagnetic crystal potential and 

the diamagnets form close-packed hexagonal crystals on top and below the 

paramagnetic close-packed hexagonal crystal that has its own unit cell turned by 30 

degees with respect to the paramagnetic unit cell. The close-packed cells of the 

paramagnetic and diamagnetic crystal layers have periodicities defined by the 

diameters of the paramagnetic and diamagnetic beads that generically are 

incommensurate. Figure 7 shows such an incommensurate crystal structure. 

 



 

 

Figure 7: fluorescence- (top left), and polarization reflection microscope image (top 

middle) of an incommensurate crystalline phase Hz=0mT,  Ω=  120s‐1,  H||=1.82mT, 

2ad=2.0μm  (black). The top right picture shows a scheme of the packing of the 

paramagnets (red) and diamagnets (green). On the bottom we have a side view 

scheme of the incommensurate structure, where two paramagnetic diamagnetic bonds 

that are partially frustrated are shown in yellow.  

 

We also observe the formation of disordered structures when neither the 

interdiamagnetic interaction nor the interaction of the diamagnets with the paramagnets 

dominates. Under such circumstances diamagnets may form small close packed 

incommensurate clusters on top of the perfectly ordered paramagnet that follow the 

periodicity of the paramagnetic lattice on a larger scale.    

 



4 Discussion 

The structure of the phases observed can all be understood by considering the time 

averaged dipolar interactions between the constituents (equation 7). Depending on the 

precession angle of the external field we expect paramagnets to bind to larger 

structures in bond angle directions that are attractive (violet in figure 2). In this way we 

obtain an assembly of paramagnets in the attractive bond directions equi
b

equi
b ϑϕ , that are all 

pointing with their magnetic moments in the same direction parallel to the external field. 

The order resembles a ferromagnetic ordering, however, the magnetic moments here 

are not permanent but are induced by the external field. We hence named the ordering 

an equimagnetic ordering. The time averaged dipole interaction between diamagnets 

behaves the same way creating a diamagnetic equimagnetic order with the diamagnetic 

moments all pointing antiparallel to the magnetic field. Bonds between diamagnets and 

paramagnets are attractive in bond directions anti
b

anti
b ϑϕ ,  perpendicular to the 

equimagnetic bonddirections. In those orthogonal directions (orange bond directions in 

figure 2) we obtain an antimagnetic order of alternating para- and diamagnets that 

resembles a ferrimagnet, however, the alternating moments are induced moments not 

permanent moments.  

 

The entire order hence consists of opposite magnetic particles that assemble in an 

alternating induced antimagnetic sequence in one or two directions while the 

arrangement is equimagnetic in the remaining directions. Whether the antimagnetic 

ordering is in plane and the equimagnetic is normal to the film or the other way round is 

controlled by the precession angle extϑ of the external magnetic field. Antimagnetic 

equatorial ordering magic
anti
b ϑϑ > and equimagnetic polar magic

equi
b ϑϑ < ordering is supported 

by precession angles  magicext ϑϑ <  below the magic angle, while equimagnetic equatorial 

magic
equi
b ϑϑ > ordering and antimagnetic polar ordering magic

anti
b ϑϑ <  is supported by angles 

magicext ϑϑ > . It is for this reason colloidal flowers form at magicext ϑϑ < while sandwich 

structures are stable for magicext ϑϑ > .  When the precession angle of the magnetic field is 



near magic magicext ϑϑ ≈ we are in the regime were biaxial ordering prevails with 

equimagnetic ordering along one equatorial direction magic
equi
b

equi
b ϑϑϕ >= ,0  and 

antimagnetic ordering along magic
anti
b

anti
b ϑϑπϕ >= ,2/ the other equatorial direction. 

At large precession angles we observe the equatorial equimagnetic ordering with 

crystalline packing of the paramagnets and different types of packing of the diamagnets.  

The gaseous and different crystalline diamagnetic structures are controlled by the 

strength of thermal fluctuations and the dipole interactions. Whether the dipole 

interaction between paramagnets or diamagnets or between diamagnets and 

paramagnets dominates can be controlled via the susceptibility contrasts that can be 

changed by diluting the ferrofluid, the size of the particles, and the volume fraction of 

both types of particles. Small particles are mobile and prefer gaseous phases, large 

particles are immobile. At low volume fractions of diamagnets dφ  in a diluted ferrofluid 

( 1<<Fχ ) their interaction with the paramagnets is stronger ( 11
pF χχ∝ ) than the 

interaction between them ( 2
Fχ∝ ). Each paramagnet binds one diamagnet to its 

northpole leaving diamagnetic bonds frustrated because the diamagnets are separated 

more than their close-packed distance. It is for such conditions where we observe the 

enslaved crystal phase. In concentrated ferrofluid at a high fraction of diamagnets each 

paramagnet in the membrane can bind more than one diamagnet, the diamagnetic 

dipole interaction becomes stronger, such that diamagnets form a close packed 

membrane above the paramagnets as well. As a draw back some of the diamagnets 

reside at positions with bond angles to the paramagnet that are suboptimal (figure 7 

bottom). In this limit paramagnetic diamagnetic bonds are partially frustrated and 

incommensurate phases are observed. 

We can estimate the amount of neutralization between the paramagnets and 

diamagnets by the excess susceptibility 

[ ]ddpp
ext

excess

eff H
M φχφχχ Δ+Δ==Δ  (8) 

, where pφ , and dφ are the volume fractions of para- and diamagnets. For our samples 

we had 0>Δ effχ  such that interactions between paramagnets dominate all other dipole 



interactions. They hence formed structures they also would have formed without the 

presence of the diamagnets. The diamagnets, however, had to accept the distorted 

structure of the magnetic field, generated by the paramagnets and arrange themselves 

accordingly. Presumably when using truly neutralizing mixtures  0≈Δ effχ , the then more 

symmetric situation between para- and diamagnets would produce even more 

interesting superstructures. At present we do not have ferrofluids of sufficient magnetic 

susceptibility to test such fully dipolar neutralized superstructures.  However, even 

without having explored the full parameter space of possible structures it is clear that 

the control of the different parameters in the dipole interaction of different particles as 

well as the control of the volume fraction of particles allows the construction a rich 

variety of phases in a mixed diamagnetic and paramagnetic system. 

 

5 Conclusions 
Antimagnetically ordered colloidal phases with alternating arrangements of effectively 

diamagnetic and paramagnetic particles are formed in mixtures of paramagnetic and 

diamagnetic colloids immersed into a ferrofluid and subject to a quickly varying time 

dependent magnetic field. Depending on the mean orientation of the time averaged 

dyadic product of the external magnetic field the alternating order is observed in the 

plane of the film in form of colloidal flowers or normal to the film in the form of 2D 

paramagnetic crystals sandwiched between a diamagnetic gas or crystal. Near the 

magic angle eccentricity of the modulation creates also biaxial structures. The order of 

the diamagnetic sandwich layer depends on a subtle balance of parameters entering 

into the dipole interactions at work between the different particles     
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Chapter 6

Summary

We have studied the effect of dipolar interactions on the statics and dynamics

of mixed paramagnetic and diamagnetic colloidal particle system. In (chapter

3) We have studied magnetic dipole interactions in a self-assembled flower-

shaped magnetic colloidal system. One of the question was how the diffusion

in a dipolar interacting system differs from a short range interacting single file

diffusion in a 1-dimensional system. We have measured the diffusion constant

using Kubo’s theory where we find out the mode dependency. We found that

the response of the particles to conformational changes were less delayed in

the dipolar system as compared with the hard-core single file diffusion sys-

tems. We have different modes of diffusion characterized by the Fourier index

m and they decrease with the Fourier mode m while in the hard-core single file

diffusion it increases. For m equals zero the diffusion constant of a hard-core

system has the lowest value whereas, in our self-assembled flower-shaped mag-

netic colloidal cluster system we have the highest value. We have measured the

angular velocity-autocorrelation functions where in the dipolar system we can

see an instantaneous positive correlated response followed by an immediate

65



CHAPTER 6. SUMMARY

anti-correlate response. In a hard-core single file system the anticorrerlated

response follows after a significant delay. In a dipolar system, we have no sep-

aration of time scales because the long range nature of the dipolar interactions

lets particle quickly react to changes in conformation that are far away from

the particle.

In chapter 4, we have studied the order of the transition for the self-assembly

of flower-shaped magnetic colloidal clusters and diamagnetic clusters in a pre-

cessing magnetic field. The transition is always first order but the strength

of the first order transition is governed by the size of the core for both the

clusters and the flowers. The order is strongly first order for large cores and

weakly first order for small cores. We explain this by the deviation of the local

magnetic field near the petals that is induced by the perturbation of the core.

In chapter 5, we have studied different ordering of paramagnets and dia-

magnets in a time dependent magnetic field. We have found three different

motives of structures such as sandwiched membranes, strings, and flowers made

from the composite mixture of paramagnetic and diamagnetic particles. In all

structures bonds between similar particles form into directions orthogonal to

directions of bonds between different particles.

In summary, we have shown, that long range anisotropic dipolar interactions

between paramgnetic and diamagnetic colloids give rise to new static order,

different forms of passive dynamics such as soft single file diffusion and to active

non-critical dynamics. Both the long range and the anisotropy of the dipolar

interactions lead to the emergence of new phenomena in colloidal systems.
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