
An exact column-generation approach for the

lot-type design problem

Miriam Kießling Sascha Kurz Jörg Rambau

August 3, 2012

Abstract

We consider a fashion discounter distributing its many branches with
integral multiples from a set of available lot-types. For the problem of
approximating the branch and size dependent demand using those lots
we propose a tailored exact column generation approach assisted by fast
algorithms for intrinsic subproblems, which turns out to be very efficient
on our real-world instances. Keywords: p-median, facility location, lot-
type design, real world data, column generation Mathematics subjects
classification: 90C06; 90C90; 90B99

1 Introduction

Due to small profit margins of most fashion discounters, applying OR methods
is mandatory for them. In order to reduce the handling costs and the error
proneness in the central warehouse, our business partner orders all products in
multiples of so-called lot-types from the suppliers and distributes them without
any replenishing to its branches. A lot-type specifies a number of pieces of a
product for each available size, e.g., lot-type (1, 2, 2, 1) means two pieces of size
M and L, one piece of size S and XL, if the sizes are (S,M,L,XL).

We want to solve the following approximation problem: which (integral)
multiples of which (integral) lot-types should be supplied to a set of branches
in order to meet a (fractional) expected demand as closely as possible? We call
this specific demand approximation problem the lot-type design problem (LDP)
in [6]. In that paper, also a basic model for the LDP was introduced, accom-
panied by an integer linear programming formulation and a tailored heuristic,
which turned out to perform very well for the real-world data of our partner.

For many practical instances the set of applicable lot-types and thus the
number of variables is so large that the ILP formulation from [6] cannot be solved
directly.1 In this paper, we therefore propose a column generation approach.
For our problem adding a new variable or column requires the introduction

1E.g. for 12 different sizes, which is reasonable for lingerie or children’s clothing, there are
1 159 533 584 different lot-types, if we assume that there should be at most 5 items of each
size and that the total number of items in a lot-type should be between 12 and 30.

1

of additional constraints in most cases. So we have to generate columns and
cuts simultaneously. Similar problems and approaches have been addressed
in [5, 10]. In order to overcome the integrality gap of the ILP relaxation we
propose a tailored branching scheme complemented by the use of additional
cover cuts. This results in an exact column generation approach for the LDP,
which is enhanced by properly chosen algorithms for important subproblems.
We apply this algorithm to a stochastic version SLDP of the LDP, where the
expectation over more than one demand-scenario is optimized. The SLDP is
of the same form as the LDP, and thus all optimization techniques viable for
the LDP immediately apply to the SLDP. Since using the SLDP instead of the
LDP can make decisions more robust against forecasting errors, we based our
investigations in this paper on the SLDP.

Branch-and-price algorithms are common for large-scale integer program-
ming problems [8]. Unifying general remarks can be found in [2, 11]. Branch-
price-and-cut algorithms are surveyed in [9]. The LDP is related to the p-median
and the facility location problem: for recent computational results on large in-
stances of the p-median problem we refer the reader to [1, 4, 7].

A formal problem statement is given in Section 2, followed by an ILP model
in Section 3. Our algorithm is presented in Section 4. We show computational
results on real-world data in Section 5, before we conclude with Section 6.

2 Formal problem statement

We consider the distribution of supply for a single product and start with the
formal problem statement in the deterministic context.

Data. Let B be the set of branches, S be the set of sizes, and M⊂ N be an
interval of possible multiples. A lot-type is a vector (ls)s∈S ∈ N|S|, l is applicable
if minc ≤ ls ≤ maxc for all s ∈ S and mint ≤

∑
s∈S ls ≤ maxt.

2

By L we abbreviate the set of applicable lot-types. There is an upper bound
I and a lower bound I given on the total supply over all branches and sizes.
Moreover, there is an upper bound k ∈ N on the number of lot-types used. By
db,s ∈ Q≥0 we denote the expected demand at branch b in size s.

Decisions. Consider an assignment of a unique lot-type l(b) ∈ L and an
assignment of a unique multiplicity m(b) ∈ M to each branch b ∈ B. These
data specify that m(b) lots of lot-type l(b) are to be delivered to branch b.

Objective. The goal is to find a subset L ⊆ L of at most k lot-types and
assignments l(b) ∈ L and m(b) ∈ M such that the total supply is within the
bounds

[
I, I
]
, and the deviation between inventory and demand is minimized.

2A parameterizable set of applicable lot-types is a practically relevant case: By setting
minc = 1 we can enforce that each branch is supplied in each size with at least one item, a
requirement which legally arises for advertised products. Since the main advantage of using
lot-types lies in the reduction of the number of picks in the central warehouse, we should
guarantee, that this effect does not dwindle away by selecting lot-types with too few items,
which can be controlled by a suitable value for mint. There are practical reasons for the
parameter maxt, too: combining too many winter coats in a lot would cause serious handling
problems.

2

We call this optimization problem the Lot-Type Design Problem (LDP), see
[6] for more details. Using the introduced decision variables we can express
the relevant decision-dependent entities as follows. The inventory of branch b
in size s given assignments l(b) and m(b) is given by Ib,s(l,m) = m(b)l(b)s.
Moreover, the total supply resulting from l(b) and m(b) is given by I(l,m) =∑
b∈B

∑
s∈S Ib,s(l,m).

This deterministic model can slightly be enhanced to a stochastic model
by considering a set A of scenarios (for the success of the product). For each
scenario a ∈ A we denote by pa its probability and with dab,s ∈ Q≥0 the demand
at Branch b in Size s in Scenario a for all b ∈ B and s ∈ S. The goal then is to
minimize the expected total deviation between inventory and demand.

We call this single-stage stochastic optimization problem the Stochastic Lot-
Type Design Problem (SLDP). The SLDP is equivalent to an ordinary LDP with
a modified objective function, since the expected total deviation ∆(l,m) can be
written as

∑
b∈B

∑
s∈S

∑
a∈A p

aδab,s(l,m), where δab,s(l,m) := |dab,s − Iab,s(l,m)|.
In other words, the certainty equivalence principle (see e.g. [3, p. 28]) holds if
the input data are the expected deviations for all branches and sizes. Certainty
equivalence does not hold if the input data are the expected demands, though.

3 Modelling

We use binary assignment variables xb,l,m indicating whether l(b) = l and
m(b) = m and binary selection variables yl indicating whether l ∈ L in order
to model the SLDP as the following integer linear program. As an abbreviation
we utilize |l| :=

∑
s∈S

ls.

min
∑
b∈B

∑
l∈L

∑
m∈M

cb,l,m · xb,l,m (1)

s.t.
∑
l∈L

∑
m∈M

xb,l,m = 1 ∀b ∈ B (2)∑
l∈L

yl ≤ k (3)∑
m∈M

xb,l,m ≤ yl ∀b ∈ B, l ∈ L (4)

I ≤
∑
b∈B

∑
l∈L

∑
m∈M

m · |l| · xb,l,m ≤ I (5)

xb,l,m ∈ {0, 1} ∀b ∈ B, l ∈ L,m ∈M (6)

yl ∈ {0, 1} ∀l ∈ L, (7)

where cb,l,m =
∑
a∈A

pa ·
∑
s∈S

∣∣dab,s −m · ls∣∣ ≥ 0.

3

4 A custom-made branch-and-price algorithm

Since the set of applicable lot-types and, thus, the set of binary variables in
the stated ILP formulation may become quite large, a natural approach is to
consider applicable lot-types dynamically in a branch-and-price algorithm.

In this section we show how special structure can be used to obtain a fast
branch-and-price algorithm for practically relevant instances: We typically have
300 ≤ |B| ≤ 1600 and 3 ≤ |M| ≤ 7 while |L| can be around 109, see the example
stated in the introduction.

The idea of our specialized exact branch-and-price algorithm is based on the
following practical observations on real-world data:

• The integrality gap of our SLDP model is small.

• Solutions generated by heuristics perform very well (see [6]).

• There seems to be a “small” set of good and a “large” set of bad solutions.

• No mathematical structure of the set of good solutions is known a-priori.

• A proof of optimality is wanted.

This led us to the following branch-and-price algorithm:

(1) Use the heuristics from [6] to determine a starting solution (x?, y?).

(2) Initialize the restricted master problem RMP (see below), as follows: For
each branch b we compute the three (locally) best fitting lot-types and
add them to ζb. Additionally we add all lot-types used in (x?, y?). We
set L′ = ∪b∈B ζ(b). For each branch b ∈ B and each lot-type l ∈ ζ(b)
we compute the corresponding optimal multiplicity m̂ and set η(b, l) =
{m̂− 1, m̂, m̂+ 1} ∩M.

(3) Let (x′, y′) be an optimal solution of RMP. If the costs are smaller than
the costs of (x?, y?), then we set L̄ = {l ∈ L′ | y′l ≥ ε}, where ε is a small
constant, e.g., ε = 0.15, and branch on L̄, i.e., we perform step (5).

(4) We solve the pricing problem and possibly add lot-types from L′ to a ζb,
enlarge a η(b, l), or add a new lot-type to L′, i.e., we generate new columns
and rows, go on with step (3), or stop otherwise.

(5) Solve the lot-type design problem restricted to the set L̄ of applicable lot-
types and possibly update the best solution (x?, y?). Add the cover-cut∑
l∈Ci yl ≤ k − 1 with Ci = L̄ to RPM and go to step (3).

Step (1) – the starting heuristics – is sketched and Subsection 4.7 and used in
step (2) to initialize the set of columns and constraints of the RMP, see Subsec-
tion 4.6. The branching scheme of step (3) and (5) is described in Subsection 4.4.
The pricing algorithm, i.e. step (4) can be found in Subsection 4.5.

4

In order to obtain fast implementations of the mentioned five steps we have
identified some common subproblems which can be solved by purely combi-
natorial algorithms. Those workhorse methods for determining locally best
fitting lot-types, determining optimal multipliers and solving the restriction of
the SLDP to k applicable lot-types are stated in subsections 4.1, 4.2, and 4.3,
respectively.

Before we start with the details let us first comment on the adapted branch-
ing scheme in steps (3) and (5). We generate two branches: One branch con-
taining the completely enumerated decision options (this branch can be solved
to optimality immediately, e.g., by complete enumeration), one branch with the
remaining decision options only (this branch receives a single cover cut excluding
the decision options considered in the other branch).

Although this kind of branching seems weird at first glance – splitting off
at most a usually constant number of feasible solutions asymptotically yields a
linear depth of the full tree –, there is a rationale behind this: Whenever we can
find all the few good solutions by solving promising subproblems, we can prune
the remaining subtree as soon as all subproblems containing a good solution
have been generated. Because of the small integrality gap, this can be detected
by the LP relaxation value. And a pricing algorithm can prove LP optimality
even if not all variables have been generated.

Our branch-and-price algorithm must generate a promising subproblem in
such a way that excluding that subproblem can be done efficiently in the re-
stricted master problem.

The master problem (MP) of a branch-and-price node is defined to consist
of the static SLDP model plus some cover-cuts (14) (see Subsection 4.4) of the
node, which exclude the decision options of subproblems. (MP) can be restricted
to a manageable sized restricted master problem (RMP) by the following: We
only consider a (small) subset L′ ⊆ L of the lot-types. For each branch b ∈ B
we consider a subset ζL′(b) = ζ(b) ⊆ L′ of these lot-types and for each l ∈ ζL′(b)
we consider only a subset ηM(b, l) = η(b, l) ⊆M of the multiplicities.

The restricted master problem (RMP) then reads as follows:

min
∑
b∈B

∑
l∈ζ(b)

∑
m∈η(b,l)

cb,l,m · xb,l,m (8)

s.t.
∑
l∈ζ(b)

∑
m∈η(b,l)

xb,l,m = 1 ∀b ∈ B (9)

∑
l∈L′
−yl ≥ −k (10)∑

b∈B

∑
l∈ζ(b)

∑
m∈η(b,l)

m · |l| · xb,l,m ≥ I (11)

∑
b∈B

∑
l∈ζ(b)

∑
m∈η(b,l)

−m · |l| · xb,l,m ≥ −I (12)

∑
m∈η(b,l)

−xb,l,m + yl ≥ 0 ∀b ∈ B, l ∈ ζ(b) (13)

5

∑
l∈Ci

−yl ≥ −γi ∀i ∈ I (14)

xb,l,m ≥ 0 ∀b ∈ B, l ∈ ζ(b),m ∈ η(b, l) (15)

yl ≥ 0 ∀l ∈ L′. (16)

The dual restricted master problem (DRMP) is then given by:

max
∑
b∈B

αb − kπ + Iu− Iv −
∑
i∈I

γiµi (17)

s.t. αb − βb,l +m|l|u−m|l|v ≤ cb,l,m ∀b ∈ B, l ∈ ζ(b),m ∈ η(b, l)
(18)

−π +
∑

b∈B : l∈ζ(b)

βb,l −
∑

i∈I : l∈Ci

µi ≤ 0 ∀l ∈ L′ (19)

αb ∈ R ∀b ∈ B (20)

π, u, v ≥ 0 (21)

βb,l ≥ 0 ∀b ∈ B, l ∈ ζ(b) (22)

µi ≥ 0 ∀i ∈ I. (23)

The pricing problem is defined by finding those constraints in the dual (DMP)
of the unrestricted master problem (MP) that are most violated by the current
solution of (DRMP).

4.1 Workhorse 1: Finding best fitting lot-types for single
branches

The following optimization problem is extensively used in the pricing step, see
Lemma 1, and in primal heuristics in Sections 4.6 and 4.7 (setting Ω = 0,
L′ = ∅).

For a given branch b we show how to solve the optimization problem

min
l∈L\L′,m∈M

cb,l,m − Ω ·m · |l|, (24)

where Ω = u− v ∈ R is given.
So let us assume that the cost coefficients cb,l,m are given by the expression in

Section 2, the set of lot-types L is parameterized using the integers minc, mint,
maxc, maxt, L′ is given by an explicit list, andM =

[
m,m

]
for two integers m,

m. In a preprocessing step we compute for each branch b ∈ B, each size s ∈ S,
and each multiplicity m ∈M the values γ(b, s,m, ls) =

∑
a∈A pa ·

∣∣dab,s−m · ls∣∣,
where minc ≤ ls ≤ maxc, and ψ(b, s,m) = min

{
γ(b, s,m, ls) : minc ≤ ls ≤

maxc
}

.

Let Λ be the value cb,l̂,m̃−Ω·m̃·|l̂| of our current champion, where we initialize
Λ = +∞. Next we fix the possible multiplicities m ≤ m ≤ m and in each case
start a branch&bound tree. To describe the nodes of the branch&bound tree we
use a set F ⊆ S, where we set F = ∅ for the root node. In each fixing step we

6

choose a size s ∈ S\F and fix minc ≤ ls ≤ maxc, i.e., the number of items in size
s of the emerging lot-type. If we either have

∑
s∈F ls+

∑
s∈S\F minc > maxt or∑

s∈F ls +
∑
s∈S\F maxc < mint, we can prune the search tree, since the fixed

values ls can not be continued to an admissible lot-type.
Now let us estimate the minimal possible cost for the partially fixed lot-

type corresponding to F . The maximum number of items that can occur in
the remaining sizes in S\F is given by r = min

(
|S\F| ·maxc,maxt−

∑
s∈F ls

)
.

Similarly the minimum number of items of the remaining sizes is given by r =
max

(
|S\F|·minc,mint−

∑
s∈F ls

)
. If Ω > 0 then we set r = r, otherwise we set

r = r. With this, every extension of the partially fixed lot-type corresponding
to F results in costs of at least∑

s∈F
γ(b, s,m, ls) +

∑
s∈S\F

ψ(b, s,m)− Ω ·m ·
∑
s∈F

ls − Ω ·m · r.

If these costs are at least as large as the costs Λ of our current champion, we
can prune the search tree.

In the leafs, where the lot-type l is completely specified, we check whether
l ∈ L′. If this is not the case we have found a new champion.

4.2 Workhorse 2: Optimal multiplicities

A rather easy but relevant subproblem of the SLDP is the determination of
an optimal multiplicity m̂, i.e., for a given branch b and lot-type l we ask for
m̂ ∈ M satisfying cb,l,m̂ ≤ cb,l,m for all m ∈ M. The most simple way would
be to check all |M| possibilities for m and pick the best one.

As the deviations cb,l,m are convex in m and M consists of an interval of
non-negative integers, we can determine m̂ in at most O(log |M|) evaluations
using binary search.

4.3 Workhorse 3: Solving the SLDP-k

In this subsection we present an efficient algorithm for the SLDP-k, which is
the SLDP with only k applicable lot-types. In other words we assume that
the yi of the ILP formulation from Section 2 are already fixed and it remains to
determine the optimal xb,l,m. If we drop Inequality (5) on the overall supply the
resulting optimization problem becomes easy. Since the number k of lot-types
is a small number we may check them all for each branch b ∈ B and determine
the corresponding optimal multiplicity using the methods from Subsection 4.2.
This way, we can easily determine a best fitting lot-type l(b) and an optimal
multiplicity m(b) for each branch separately.

If accidentally Inequality (5) is valid, then we have an optimum solution
for the SLDP-k. Or otherwise we have derived a lower bound for its optimum
objective value. In the latter case we consider the SLDP-k and relax the in-
tegrality condition to 0 ≤ xb,l,m ≤ 1. Due to the convexity of the objective
function (1) this problem can be efficiently solved by greedily adjusting the
multiplicities m(b) and the assignments l(b) in order to fulfill Inequality (5).

7

For brevity we discuss only the case where the overall supply is strictly larger
than I. Here we have to iteratively take away items from some branches. To
this end we introduce relative costs for each branch b and each alternative. If
m(b) − 1 is also an element of M then we can simply reduce m(b) by one,

which results in relative costs of
cb,l(b),m(b)−1−cb,l(b),m(b)

|l(b)| ≥ 0 per item. Another

possibility is to change the used lot-type l(b). Therefore we denote by ϕb(l
′) the

largest integer such that ϕb(l
′) · |l′| < m(b) · |l(b)|, i.e., ϕb(l

′) is the multiplicity
m for branch b and lot-type l resulting in a minimal coefficient cb,l′,m while
reducing the number of supplied items to branch b. If and only if ϕb(l

′) ∈ L we
can modify the pair (l(b),m(b)) to (l′, ϕb(l

′)) resulting in relative costs of

cb,l,ϕb(l′) − cb,l(b),m(b)

m(b) · |l(b)| − ϕb(l′) · |l′|
≥ 0

per item. So, after at most O(1 + (k − 1) logM) evaluations of coefficients
cb,l,m we can determine the alternative with minimum relative costs ∆−b for
each branch b, where we set ∆−b =∞ if there is no feasible alternative.

If we have the relative costs ∆−b for all b ∈ B and the corresponding actions

at hand, we can pick a b̂ ∈ B which minimizes ∆−b . Let δ > 0 denote the number
of items which are removed by the corresponding action and I denote the overall
supply corresponding to the current pair of functions l, b. Due to the convexity
of the objective function (1) we can state the following:

(a) If ∆−
b̂

=∞, then the SLDP-k subproblem is infeasible.

(b) If I − δ ≥ I, then, after performing the greedily optimal action, the new
assignments l̃(b) and m̃(b) correspond to an optimal solution of SLDP-k,
where Inequality (5) is replaced by

∑
b∈B

∑
l∈L

∑
m∈M

m · |l| · xb,l,m ≤ I − δ.

(c) If I − δ < I we obtain the optimal solution of the SLDP-k with fractional
variables xb,l,m by utilizing a suitable linear combination of the old assign-

ment (l(b),m(b)) and the cheapest decreasing alternative (l̃(b), m̃(b)).

Thus, after a finite number of iterations, depending at most linearly on the dif-
ference between the initial overall supply and I, we obtain the optimal solution
of the SLDP-k with at most two fractional variables xb,l,m. To also solve the
integral SLDP-k we utilize a branch-bound approach.

In order to obtain an efficient algorithm we maintain the ∆−b -values in a
heap data structure, so that in each recursion step we only have to determine
one new ∆−b -value, while the update of the heap can be done in O(log |B|).

4.4 Branching into the most promising subproblem and
the rest

At a node of Depth i of the branch-and-price tree we split the current node into
two: one branch contains the most promising subproblem, the other branch
contains the remaining decision options.

8

Let us now state how to determine the most promising subproblem: Given an
optimal solution of the current (RMP), we consider the values of the attained y-
variables. To simplify the notation we assume that they are ordered downwards,
i.e., y1 ≥ y2 ≥ · · · ≥ y|L′|. For a small constant ε > 0, e.g., ε = 0.15, we consider
an index q such that yq ≥ ε and yq+1 < ε. We call the subproblem of the SLDP
with a given C := {1, . . . , q} ⊆ L as its set of applicable lot-types the most
promising subproblem SLDP|C of SLDP.

The node corresponding SLDP|Ci is then solved exactly. If
(Ci
k

)
≤ 100 000

then we completely enumerate all k-subsets of lot-types in Ci and subsequently
solve the corresponding SLDP-k (see Subsection 4.3). Otherwise we solve the
corresponding ILP formulation from Section 3 directly. The other node has
to be worked on further by branch-and-price: Excluding the most promis-
ing subproblem in this branch can be achieved by adding a single cover cut∑
l∈Ci yl ≤ γi := k − 1.

4.5 The combinatorial pricing algorithm

We associate with the constraints of the master problem (MP) the dual variables
αb, π, u, v, βb,l, and µi. With this, for each lot-type l the reduced costs for a
variable xb,l,m are given by

cb,l,m − αb −m · |l| · (u− v) + βb,l, (25)

and for a variable yl the reduced costs are given by

0 + π −
∑
b∈B

βb,l +
∑

i∈I:l∈Ci

µi. (26)

Lemma 1 If
⋃
i∈I Ci ⊆ L′,

min
b∈B,l∈ζ(b),m∈M

cb,l,m − αb −m · |l| · (u− v) + βb,l ≥ 0, (27)

min
b∈B,l∈L′\ζ(b),m∈M

cb,l,m − αb −m · |l| · (u− v) ≥ 0, and (28)

max
L\L′

∑
b∈B

max
(

0, max
m∈M

αb +m · |l| · (u− v)− cb,l,m
)
≤ π (29)

then the current optimal solution of (RMP) is optimal for (MP).

Proof 1 If Inequality (27) is valid, then there is no variable xb,l,m with l ∈
ζ(b) having negative reduced costs. For a given branch b and a given lot-type
l ∈ L\ζ(b) (DRMP) does not contain the variable βb,l since (RMP) does not
include the corresponding inequality. We extend the dual solution by setting

βb,l =

{
0 : l ∈ L′\ζ(b),

max (0,maxm∈M αb +m · |l| · (u− v)− cb,l,m) : l ∈ L\L′
(30)

9

for all b ∈ B. Due to Inequality (28) and βb,l = 0 there is no variable xb,l,m
with l ∈ L′\ζ(b) having negative reduced costs. The same is true for all lot-types
l ∈ L\L′ and all branches b ∈ B due to the selection of βb,l in Equation (30).

Next we remark that Inequality (19) remains valid after appending some
dual values βb,l = 0 for lot-types l ∈ L′. From Inequality (29) we conclude∑
b∈B βb,l ≤ π for all l ∈ L\L′. Since {i ∈ I | l ∈ Ci} = ∅ this is equivalent to

Inequality (19).
Thus, by using Equation (30), we have constructed a feasible solution of

the dual master problem without changing the objective value. Since the primal
solution of the (RMP) can be extended to a feasible solution of (MP) having the
same objective value by setting the missing variables to zero, the current optimal
solution of the (RMP) is also optimal for the (MP). q.e.d.

In other words this means that we can restrict ourselves onto (25) to price out
new variables. The first part of the proposed pricing algorithm loops over all
branches b ∈ B and performs the following checks:

(1) For all l ∈ ζ(b) let Fl be the set of all multiplicities m ∈ M\η(b, l) satis-
fying

αb − βb,l +m · |l| · (u− v) > cb,l,m. (31)

If Fl is not empty let m̃ be an element with smallest distance to the
elements of η(b, l). We then add m̃ to η(b, l), i.e., we generate the variable
xb,l,m̃.

(2) For all l ∈ L′\ζ(b) we perform the same test as in (1) while remarking that
here we have η(b, l) = ∅. If there exists a pair (l,m) satisfying Inequal-
ity (31), then we choose m̂ ∈ M such that cb,l,m̂ ≤ cb,l,m for all m ∈ M.
We then add l to ζ(b) and m̂ to η(b, l), i.e., we generate the variable xb,l,m̂.

In step (3) we solve minL\L′
∑
b∈Bmin (0,minm∈M cb,l,m−αb−m · |l| · (u−v))

slightly adapting the algorithm given in Subsection 4.1, i.e. instead of consider-
ing costs of a single branch we sum over the costs of all branches. Let l̂ be the
optimal solution with objective value κ. If κ > −π, then we add l̂ to L′, i.e. we
generate the variable yl̂. For each b ∈ B we determine the optimal multiplicity

m̂, see Subsection 4.2, with respect to l̂. If cb′,l̂,m̂ − αb′ − m̂ · |l̂| · (u− v) < 0 we

add l̂ to ζ(b′) and m̂ to η(b′, l̂).

Lemma 2 If the pricing algorithm does not return a new column, then the
current optimal solution of (RMP) is optimal for (MP).

Proof 2 Let us assume that the pricing algorithm does not return a new vari-
able. Due to step (1) we have cb,l,m − αb − m · |l| · (u − v) + βb,l ≥ 0 for all
b ∈ B and all l ∈ ζ(b). Similarly we have cb,l,m − αb −m · |l| · (u − v) ≥ 0 for
all l ∈ L′\ζ(b) due to step (2). From step (3) we conclude Inequality (29). Due
to the construction of the cover cuts we also have ∪i∈I Ci ⊆ L′ so that we can
apply Lemma 1. q.e.d.

10

4.6 Initial set of columns

As the behavior of a column generation algorithm depends on a suitable selection
of the initial columns, we propose an initial variable selection in this subsection.

For each branch b we compute the three (locally) best fitting lot-types, see
Subsection 4.1, and add them to ζb. Additionally we add all lot-types used in
the best heuristically found solution of the algorithm sketched in Subsection 4.7.
The initial set L′ of lot-types is then given by ∪b∈B ζ(b). For each branch b ∈ B
and each lot-type l ∈ ζ(b) we compute the corresponding optimal multiplicity
m̂, see Subsection 4.2, and set η(b, l) = {m̂− 1, m̂, m̂+ 1} ∩M.

4.7 A starting heuristic

In [6] the authors have proposed the so-called Score-Fix-Adjust heuristic for the
SLDP. Here we briefly describe the idea. For each branch we determine the
three best fitting lot-types, see Subsection 4.1, and add a score of 100 to the
best fitting lot-type, a score of 10 to the second best fitting lot-type and a score
of 1 to the third best fitting lot-types. (Of course this can be generalized to the
first t best fitting lot-types and different scoring schemes.) With this we have
implicitly assigned a score to each lot-type l ∈ L, where most of the lot-types
obtain the score zero. We can extend this scoring to the k-subsets of L by
summing up the individual scores so that we implicitly get an order of the

(|L|
k

)
many feasible lot-type combinations. With this we traverse the k-subsets of L in
descending order, where ties are broken arbitrarily. (This can be done without
explicitly generating all such subsets beforehand.) In the fixing step we assume
that the applicable lot-types are restricted to the current k-subset of L. Now
we are in the situation of Subsection 4.3, i.e., we have SLDP-k, and proceed by
starting with a locally optimal assignment of the lot-types and multiplicities,
which then is adjusted until it fits the global cardinality constraints (5). Remark:
The adjustment step presented in Subsection 4.3 is an improved variant of the
one in [6].

5 Computational results

In this section we compare our proposed branch-and-price algorithm, see Ta-
ble 43, with the ILP model from Section 3 solved directly using ILOG CPLEX
12.1.0. The key parameters of some selected problem instances are summarized
in Table 1. We have tried to include the whole range from small to very large
problem instances. In Table 2 we demonstrate that the number of variables and
constraints explodes as the problem size increases. To support our assertion
that the formulation is really tight we have included the integrality gaps.

One can formulate an alternative compact formulation of the SLDP, see
Appendix A for the details. Since its performance turns out to be really bad we

3In the Instance 1 marked with a “?” we have not used the variables of the optimal solution
found by the SFA heuristic.

11

Instance 1 2 3 4 5

k 3 5 5 4 5
|B| 10 10 1303 1328 682
|S| 4 4 4 7 12
|M| 3 3 3 3 3

minc 0 0 0 1 0
maxc 2 5 5 3 5
mint 4 3 3 7 12
maxt 8 15 15 14 30
|L| 50 1211 1211 1290 1 159 533 584

I 66 66 12 100 9898 16 200
I 54 54 11 900 9702 15 500

Table 1: Key parameters for some selected problem instances.

Instance 1 2 3 4 5

variables 1550 37 541 3 634 211 5 140 650 2.374 · 1012

constraints 513 12 123 1 212 003 1 714 451 7.908 · 1011

CPU time [min] 0 0 27 36 N/A
objective 11.479 11.367 1482.952 6096.536 N/A

LP relaxation 11.479 11.367 1482.952 6095.525 N/A
integrality gap 0% 0% 0% 0.017% N/A

Table 2: Performance of the ILP model (Section 3). Instance 5 could not be
solved.

Instance 1 2 3 4 5

CPU time [s] 1 1 1 1 2
successful node 10 12 648 180 463

Table 3: Performance of the SFA heuristic from Subsection 4.7.

Instance 1? 2 3 4 5

CPU time [s] 1 1 2 4 937
variables (initial LP) 74 76 20 952 7975 13 129

constraints (initial LP) 43 43 7944 5315 6642
variables (final LP) 76 76 20 952 9937 64 877

constraints (final LP) 44 43 7944 6248 32 183
cover cuts 0 0 0 2 4

pricing steps 2 1 1 4 141

Table 4: Performance of the column generation algorithm from Section 4.

12

do not give the results except for Instance 1, the smallest one: This instance has
502 variables and 1204 constraints. (In general we have roughly k · |B| · |M| · |S|
instead of |B| · |L| · |M| variables.) The root relaxation of the compact model
yields a trivial lower bound of zero; it takes 3 335 836 nodes and 97 minutes to
solve this tiny example to optimality.

Table 3 underpins our assertion that the SLDP can be solved heuristically
quite well, and the SLDP-k can be solved exactly fast: It takes less than 15 sec-
onds to solve 100 000 SLDP-k instances, even for Instance 5.

6 Conclusion and future work

We have considered the stochastic lot-type design problem SLDP, which is an
industrially relevant problem. We provided a tight ILP model of it. This model,
however, has in many cases too many variables for solvers of the shelf. Thus, we
presented a custom-made branch-and-price algorithm that is able to solve the
SLDP exactly for real-world instances in preliminary computational results.

Currently we perform field experiments at our business partner to compare
the deviation measure ∆(l,m) with explicit recourse costs for markdowns dur-
ing the sales process. This results in a large-scale two-stage stochastic integer
program with recourse, and the algorithm in this paper for the SLDP is needed
for its solution as a subroutine, which is required to provide an optimality cer-
tificate.

References

[1] P. Avella, A. Sassano, and I. Vasilyev. Computational study of large-scale
p-median problems. Math. Program., 109(1):89–114, 2007.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Oper. Res., 46(3):316–329, 1998.

[3] Dimitri P. Bertsekas. Dynamic Programming & Optimal Control, Vol. I.
Athena Scientific, 3rd edition, 2005.

[4] M. Boccia, A. Sforza, C. Sterle, and I. Vasilyev. A cut and branch approach
for the capacitated p-median problem based on Fenchel cutting planes. J.
Math. Model. Algorithms, 7(1):43–58, 2008.

[5] D. Feillet, M. Gendreau, A.L. Medaglia, and J.L. Walteros. A note on
branch-and-cut-and-price. Oper. Res. Lett., 38(5):346–353, 2010.

[6] C. Gaul, S. Kurz, and J. Rambau. On the lot-type design problem. Optim.
Methods Softw., 25(2):217–227, 2010.

[7] A. Klose and S. Görtz. A branch-and-price algorithm for the capacitated
facility location problem. Eur. J. Oper. Res., 179(3):1109–1125, 2007.

13

[8] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Oper. Res., 53(6):1007–1023, 2005.

[9] M. E. Lübbecke and J. Desrosiers. Branch-Price-and-Cut Algorithms. John
Wiley & Sons, Inc., 2011.

[10] I. Muter, S.I. Birbil, and K. Bulbul. Simultaneous column-and-row genera-
tion for large-scale linear programs with column-dependent rows. Technical
Report SU FENS 2010/0004, Sabanci University, 2010.

[11] F. Vanderbeck. Branching in branch-and-price: a generic scheme. Math.
Program., Ser. A, 130(2):249–294, 2011.

A A compact model for parameterizable sets of
lot-types

In the special case of a parameterizable set of lot-types we can model the SLDP
with fewer variables:

min
∑
b∈B

∑
s∈S

∑
a∈A

δab,s

s.t.
∑
i∈K

∑
m∈M

xb,i,m = 1 ∀b ∈ B

vb,s,i,m −maxc · xb,i,m ≤ 0 ∀(b, s,m, i) ∈ U
vb,s,i,m − li,s ≤ 0 ∀(b, s,m, i) ∈ U

vb,s,i,m − li,s −maxc · xb,i,m ≥ −maxc ∀(b, s,m, i) ∈ U

I ≤
∑
b∈B

∑
s∈S

∑
m∈M

∑
i∈K

m · vb,s,i,m ≤ I

li,s ≤ maxc ∀i ∈ K, s ∈ S
li,s ≥ minc ∀i ∈ K, s ∈ S∑

s∈S
li,s ≤ maxt i ∈ K∑

s∈S
li,s ≥ mint ∀i ∈ K

δab,s +
∑
i∈K

∑
m∈M

m · vb,s,i,m ≥ dab,s ∀b ∈ B, s ∈ S, a ∈ A

δab,s −
∑
i∈K

∑
m∈M

m · vb,s,i,m ≥ −dab,s ∀b ∈ B, s ∈ S, a ∈ A

xb,i,m ∈ {0, 1} ∀b ∈ B, i ∈ K,m ∈M
vb,s,i,m ≥ 0 ∀(b, s,m, i) ∈ U

li,s ∈ Z ∀i ∈ K, s ∈ S
δab,s ≥ 0 ∀b ∈ B, s ∈ S, a ∈ A,

14

where we use the abbreviations K := {1, . . . , k} and U := B × S ×M×K. We
utilize the binary variable xb,i,m to model the assignment of the lot-type and
multiplicity to a certain branch b, i.e., we have xb,i,m = 1 if and only if branch b
is supplied with lot-type i in multiplicity m. Of course, for each branch b only
one xb,i,m is one. In order to incorporate the bounds on the total number of
supplied items we utilize the auxiliary variables vb,s,i,m. For a given branch b
and size s we set vb,s,i,m = li,s · xb,i,m, i.e. vb,s,i,m = li,s if branch b is supplied
with lot-type i in multiplicity m and vb,s,i,m = 0 otherwise. The linearization of
this non-linear equation is quite standard using suitable big-M constants. The
deviations δab,s then are given by

δab,s =

∣∣∣∣∣dab,s −
k∑
i=1

∑
m∈M

m · vb,s,i,m

∣∣∣∣∣ .
Again the linearization of this non-linear equation is standard.4

Since the symmetric group on k elements acts on the k different lot-types one
should additionally destroy the symmetry in the stated ILP formulation. This
can be achieved by assuming that the lot-types (li,s)s∈S are lexicographically
ordered. For the ease of notation we assume that the set of sizes S is given
by {1, . . . , s}. As an abbreviation we set t := maxc−minc +1. With this the
additional inequalities

s∑
j=1

(
li,j −min

c

)
· ts−j ≥ 1 +

s∑
j=1

(
li+1,j −min

c

)
· ts−j ∀1 ≤ i ≤ k − 1,

which are equivalent to
∑s
j=1 (li,j − li+1,j) ·ts−j ≥ 1 for all 1 ≤ i ≤ k−1, will do

the job. We remark that using some additional auxiliary variables a numerical
stable variant can be stated easily. (This becomes indispensable if ts gets too
large.)

We remark that the LP relaxation of the compact model yields large inte-
grality gaps 5. The typical approach would now be to solve a Dantzig-Wolfe
decomposition of the compact model by dynamic column generation, leading
to a master problem very similar to the SLDP model we presented in the first
place. And column generation on that SLDP model is what we proposed in the
paper.

4We remark that one can express the deviations δab,s also using the binary assignment

variables xb,i,m instead of the item counts vb,s,i,m. In this case we have to replace the two
inequalities containing δab,s by δab,s +m · li,s − dab,s · xb,i,m ≥ 0 and δab,s −m · li,s +m ·maxc ·(
1− xb,i,m

)
≥ −dab,s for all (b, s,m, i) ∈ U , a ∈ A. Or we may use both sets of inequalities.

It turns out that this alternative formulations is solved slightly faster on some inspected
instances.

5Assuming some technical conditions on the demands, the four parameters for the lot-tyes,
and the applicable multiplicities, which are not too restricting, one can construct a solution
of the LP relaxation having an objective value of zero. E.g. we assume minc ≤ dab,s ≤
maxc ·max{m ∈M}

15

