Preprint Version 1

The Process Checklist — Simple Establishment of
Execution Support for Human-driven Processes

Transforming Process Models to Process Checklists

Michaela Baumann - Stefan Schoénig -
Michael Heinrich Baumann - Stefan
Jablonski

2015

Abstract In traditional approaches business processes are executed on top of
IT-based Workflow-Management Systems (W{MS). The key benefits of the ap-
plication of a WIMS are task coordination, step-by=step guidance through pro-
cess execution and traceability supporting compliance issues. However, when
dealing with human-driven workflows, conventional WfMS turn out to be too
restrictive. Especially, the only way to handle exceptions is to bypass the sys-
tem. If users are forced to bypass WfMS frequently, the system is more a liabil-
ity than an asset. In order to diminish theddependency from IT-based process
management systems, we propose an alternative way of supporting workflow

M. Baumann

Databases and Information Systems
University of Bayreuth

Tel.: +49-921-55-7625

Fax: +49-921-55-7622

E-mail: michaela.baumann@uni-bayreuth.de

S. Schonig

Databases and Information Systems
University of Bayreuth

Tel.: +49-921-55-7627

Fax: +49-921-55-7622

E-mail: stefan.schoenig@uni-bayreuth.de

M. H. Baumann

Applied Mathematics

University of Bayreuth

Tel.: +49-921-55-3280

Fax: +49-921-55-5361

E-mail: michael.baumann@uni-bayreuth.de

S. Jablonski

Databases and Information Systems
University of Bayreuth

Tel.: +49-921-55-7620

Fax: +49-921-55-7622

E-mail: stefan.jablonski@uni-bayreuth.de

2 Michaela Baumann et al.

execution that is especially suitable for human-driven processes. We introduce
the so-called process checklist representation of process models where processes
are described as a paper-based step-by-step instruction handbook.

Keywords process modelling - process checklists - paper-based process
execution

1 Introduction

This article is an extended paper of the conference proceeding [1]<In addition
to various improvements and further concepts the work at hand extends our
previous article by a description of the actual implementation as well as by a
detailed evaluation and case study section.

Since approximately 20 years process management is‘regarded as an innovative
technology both for the description of complex applications.and for supporting
their execution [7]. In traditional approaches business processes are executed
on top of IT-based Workflow-Management Systems (W1MS) [17]. The key ben-
efits of the application of a WfMS are task coordination, step-by-step guidance
through process execution and traceability supporting compliance issues [14].
However, when dealing with human-driven workflows that heavily depend on
dynamic human decisions, conventional WfMS turn out to be too restrictive
[15]. Especially, the only way to handle exceptions — which regularly occur
in human-driven workflows - is.to bypass the system. If users are forced to
bypass WIMS frequently;the system is more a liability than an asset [15]. In
total, users start to complain that “the computer won'’t let them” to do the
things they like to accomplish [2]. So‘users like to get more independent from
“electronic systems” in order to become more flexible. If original documents
are needed for executing a process, in many cases a paper-based execution
model is preferred. [9)«

Furthermore; the introduction of a WfMS is regarded as a huge, cost-intensive
projeet [10]. Many organizations cannot afford to introduce such a system
therefore. However, they desire to manage their processes since they regard
them as valuable and effective. In order to diminish the dependency from IT-
based process management systems, we propose an alternative way of support-
ing workflow” execution that is especially suitable for human-driven processes,
like it is the case for example in public administration and authorities. We in-
troduce the so-called process checklist representation of process models. Here,
processes are described as a paper-based step-by-step instruction handbook.
The process checklist is handed over during process execution from process
participant to process participant.

Successful task accomplishments are recorded through signatures of corre-
sponding agents. In principle the most important statement is that at the
end of the process all signatures are on the checklist. So it is completely out-
put oriented. Nevertheless, the checklist method describes a valuable form of

The Process Checklist 3

model execution
IT-based BPMN WIMS
[trans-
1 formation
paper-based checklist vector — graphical checklist

Fig. 1: Schematic approach to differentiate paper-based from IT-based process management
systems.

process usage and widens its spectrum towards non-computer based and ex-
tremely flexible process execution. If needed, certain parts of the checklist can
even be deleted, changed or added during the execution by simply using a
pen. However, traceability is still maintained. Besides, the process checklist
also supports the key benefits of traditional WEMS. The checklist is handed
over to responsible agents (task coordination), process tasks areserialized and
marked by a unique identifier (step-by-step guidance) and the checklist itself as
well as the corresponding signatures ensure traceable process execution. The
work at hand provides the general structure of process checklists as well as an
elaborate transformation algorithm of basic BPMN process model elements
[11] to process checklists. Fig. 1 shows a comparison of traditional IT-based
process execution and the paper-based approach provided by the work at hand.

2 Background and Related Work

A checklist is a list of items required, ¢hings to be done, or points to be consid-
ered, used as a reminder [16]. Checklists are generally seen as a suitable means
for error management and performance improvement in highly complex scenar-
ios like clinical workflows [5]. Therefore, we propose to define a generic method
for tranmsforming general process models to the checklist representation. The
problem of transforming a model drawn in one business process modeling no-
tation into another notation has been examined in different papers, e.g., [6],
[8]. However, to the best of the authors’ knowledge, the transformation of pro-
cess models to@ checklist representation has not been discussed so far, except
for the previously mentioned paper [1] which is the basis for the work at hand.
Before specifying the transformation of process models into checklists, we have
to determine how suitable process models should look like and what elements a
checklist consists of. These specifications are necessary to give concrete map-
ping rules. For process models, only basic elements of the Business Process
Modeling Notation are allowed, as [18] shows this is enough in most cases and
as the paper at hand has to be seen as a first approach to this topic.

Definition 1 (Process model) A process model is defined according to
BPMN 2.0 (see e.g. in [11]) allowing for the following basic elements:

4 Michaela Baumann et al.

— flow objects: activities, events (start, end), gateways (AND, XOR, OR)
sequence flows

— data (input/output) objects

participants: one pool, possibly separated into different lanes

As we consider the application of checklists appropriate only within one
company, there should not occur processes with more than one pool. Therefore,
we do not have to take message flows into account. Which forms of activities,
events and gateways can be covered with our transformation rules will become
apparent when it comes to the concrete transformation of process models into
checklists. We specify a checklist as follows.

Definition 2 (Checklist vector) A checklist is a vector C = (p!, p}, ..., pt),
n € N, t € {o,c} with two different kinds of components:

p{ = (ID;, AC;,0D;, AG;)
with ID;, AC;, OD;, AG; being strings and
p; = (AN, CO;, GT 5 AG))
with AN;,CO;, AG; being strings and GZT; being a vector of the form
GTj = (85:45,1, 95,1852, 95,25 -+ Wi ks G k)

with k € N, strings a;;, integers (or NULL) g¢;; € {1,...,n} U{NULL},
l=1,...,k and s; € {0,1}.

This definition uses a lot of different variables that need some explanation:

The component p° of aschecklist vector as defined above is called operating
point. It contains information about incoming data objects (ID), the activity
(AC) which may be anactivity in the literal sense of BPMN or an event,
outgoing data objects (OD), and the performing agent (AG). An operating
point gives more or less conrete instructions to the respective agent about
what he has to do. The other component of a checklist vector, p°, is called
control-point. In general, a control point is a transformed gateway, therefore
it contains information about the condition (CO) which may also be empty
if it corresponds to a parallel gateway, and the responsible agent (AG as in
p°). AN is a component kept free for special annotations (we will see exam-
ples later) and/GT is a vector with one boolean component s and k pairs of
string (a) and integer (g) components. g refers to other components of C and
is therefore element of {1,...,n} or NULL.
With this formal definition of a checklist, the checklist vector, it is already pos-
sible to give concrete mapping instructions as listed in the next section. Before
we turn towards this subject, we want to give the reader a visual impression of
how the two components p° and p® may be illustrated on a graphical checklist
in Fig. 2 and Fig. 3. The components of vector G1}; are shown in Fig. 4.

In which way these checklist components are filled with information given
by the process model and how the resulting operating and control points are
represented in the graphical checklist is explained in the next two sections.

The Process Checklist

AC;

OD;

AG;

date, signature

Fig. 2: Visualization of p§ which means the i-th component of C is an operating point.

J AN;

co;,

GT;

AG;

date, signature

Fig. 3: Visualization of p; which means the j-th component of C is<a control point.

0ajs1 95,1

0aj5,2 95,2

date, sign.

date, sign.

[1@5,k—1 9j,k—1 date, sign.

5.k 9gsk

Fig. 4: Visualization of GT};. Entries date and signature in the third column only appear, if
s; = 1. The k-th row never has a square in the first column nor a date and signature. In
fact, the k-th row may be empty, i.e., a; x = “” and gjx = NULL.

3 Transformation of Process Model Elements

This section focuses on generating a checklist, that means it is explained, in
which way the single elements of the (BPMN) process model are transferred
into either operating points or control points. These steps are basically per-
formed in a simply algorithmic way, except for parallel gateways.

3.1 Transformation of Activities

Activities are transformed straight into operating points p°. Their description
is mapped onthe field AC' whereas all directly incoming data and directly
outgoing data is mapped on the field I D and OD respectively. The participant
of the corresponding lane or hierarchy of lanes, that may, e.g., be a single
person is mapped onto the field AG. An example of an activity with documents
and participant is given in Fig. 5.

3.2 Transformation of Subprocesses

Occurring subprocesses, marked with a symbol as seen in Fig. 6, may be taken
into a checklist in different ways:

6 Michaela Baumann et al.

G) O
< H AC: >

Fig. 5: Exemplary excerpt from a process model with labels according to an operating point
pg. ID; = IDO:1.1DO2.1DO3 and OD; = ODO;1.0DOx.

H
H

Fig. 6: Symbol for a subprocess in BPMN 2.0.

.

1. Include the complete subprocess. This leads to‘a comparatively long but
correct checklist.

2. Generate a new checklist for each subprocess. One control point j has to
be inserted into the original checklist with work instructions for printing
and passing on the new checklist (a,1 =“print and pass new checklist =
to agent y”, g1 = NULL) which has to be signed due to s; = 1 and
with instructions for waiting for this checklist to come back completely
processed. Parameter aj > is set to “finally go to” and g;2 = j + 1.

3.3 Transformation of Gateways
3.8.1 Transformation of Exclusive Gateways

An exclusive'split gateway (Fig. 7) has to be transformed into a control point
in which the decision question and the possible answers with the respective
“go to”-numbers (g; 1,952 and g; 3 in Fig. 7) are mentioned. Parameter s; is
set to 0 as the decision has not to be signed in field GT}. If there is an exclusive
join gateway (Fig. 8) too, at the end of each branch of the respective splitting
gateway a jump instruction to the next point in the checklist after the join
gateway (g;4 in Fig. 8) must be inserted, except the next point following a
branch is the point following the join gateway. The execution of an exclusive
gateway may cause problems if at least one “go to”-number is in the past, but
this problem will be solved in the next section.

The Process Checklist 7

aj,1

Em—

7 COj aj2

S) S

AG;

a;,3

———» 3

Fig. 7: Exclusive split gateway with question CO; and possible answers a;1,4a;,2,a;,3. p§:
AN; may be used for data. g; x = jk, k= 1,2,3, aj4 = “” and gj4 = NULL.

BTG ') S—

AGj, 1

Fig. 8: Exclusive join gateway that does not have to exist if the outgoing branches of the ex-
clusive split gateway end with terminal events. p?k _1: AN, 1 =%, C0;, -1 = “XOR end”,
Sje—1 =0, aj, —1 = “goto ", gj, —1 = ja, k = 2,3.

3.8.2 Transformation of Parallel Gateways

There are several ways of transforming parallel gateways into a checklist
whereby all of them have different advantages and disadvantages. Some of
these possibilities are listed below. Note, that a mixture of these transforma-
tion possibilities is also‘conceivable.

Static Sequential Transformation This type of transforming a parallel gateway
takes the several branches of the process model that are between the split and
join gateway and brings them into an arbitrary order. The gateway itself is
not mapped to the checklist.

Dynamic Sequential or Postbor Transformation A parallel split will be trans-
formed to a control point pj. The parallel branches in the process model have
to be written down in a sequential way in the checklist. At the end of each
branch a jump to pj, realized with a simple control point, is necessary and
in p§ the number of the point following the respective parallel join has to be
noted. The parameter specifications are in the captions of Fig. 9. There are
different ways of executing this parallel split, and some of them correspond to
another transformation, but this will be dealt with in the next section.

Parallel Transformation For each parallel branch a checklist is generated and
distributed by the agent of the split gateway (AG; in Fig. 9) to the agents of
the first process element of the branches. It is modelled as one control node p5.
If the gateway splits into £ branches, then a; ;41 =“Finally go to” and g; x+1 =

8 Michaela Baumann et al.

EE—

B

AG,

B

Aij‘l

>3

Fig. 9: Parallel split gateway p?: ANj; for annotation, e.g. data objects, CO; = “AND”,
sj=1,a51,...,a53 =", gj1 = j1, gj,2 = j2, 95,3 = J3, aja ="Finally go to”, gj4 = ja.
Parallel join gateway p?k_lz ANj, -1 =", COj, -1 =“AND end”, s;, 1 = 0, aj, —1 =“go
£, gjo—1 = j, k= 2,3,4.

j + 1. If the name of the current checklist is “Checklist”, then CO; =“AND —
print checklists “Checklist_sub1”,...,“Checklist_subk”, if the names of the sub-
checklists are “Checklist_subl”,...,“Checklist_subk”. Of course a;1,...,a;
have to reference these sub-checklists, g 1,...,9;x =NULL and s; = 1 which
means that signatures for all returning sub-checklists are meeded (see also
procedure for subprocesses in Section 3.2).

3.8.8 Transformation of Inclusive Gateways

The transformation of inclusive gateways can, be done similar to the trans-
formation of parallel gateways. More precisely, there are the possibilities to
use the dynamic sequential or. postbox transformation or the parallel transfor-
mation. The only difference is; that in p; we have CO; and aj 1, ..., a; like
in the exclusive gateway transformation, i.e., the condition/question and the
answers have to be taken over-from theprocess model.

3.4 Transformation of Events

3.4.1 Direct- Transformation of Fvents

Some events, like signal events, can be transformed like activities, that means
to p¢, with AC; = 7 or AC; is used for transmitting some message.

3.4.2 Indirect Transformation of Events
Most events, like time, condition and message events, are requirements for the

next point in the checklist and can be modelled this way. This requirement is
written down in AC or AN of the following operating or control point.

3.4.3 Ignored Events

Other events, like the start event, can be ignored, that means they have no
respresentation in the checklist, because they won’t influence the execution.

The Process Checklist 9

3.5 Transformation of infrequent, mutually exclusive activities or branches

As a paper-based checklist needs direct human treating during its execution
(see Section 4), it can be handled very flexible by the agents, which does not
mean, that the agents can do what they want during the execution, but they
have a certain freedom which is not given when processing with the aid of a
WIMS. Consider a clinical workflow where a diagnosis (outgoing data) has to
be made in one step and, according to this diagnosis, the treatment has to
be executed in the following step (diagnosis as incoming data). Implementing
all different kinds of diagnosis-depending treatments would cause an exclusive
gateway with nearly innumerable branches or subprocesses, not-to mention
that all these eventualities have to be considered at modeling time (cf. [3].
What if a certain treatment has been forgotten because of its rareness, for
example?

When facing this problem in the context of checklists, the following solution is
conceivable: List only the most frequently made diagnoses in the corresponding
XOR-control point ((a;,1,95.1),-- -, (aji,9;.:)) and add one(aj,i+1, g;,1+1) With
aji1+1 = other and gj;41 referring to an empty operating point where the
conrete diagnosis and all incoming and outgoing data.can be entered at run
time by the doctor in charge. These empty operating points offer a way to
reduce complexity of the process model and to prevent the process to get
stuck during its execution. But as‘they require good knowledge about the
process they can only be filled in-by agents with the corresponding expertise
and should therefore not be overused.,

4 Enactment of the graphical checklist

A graphical checklist contains a cover sheet with name of the checklist (name of
the process), timestamp, and a list for writing down the current checklist and
the current point, i.e., the next point to be worked on. Furthermore, a graphical
checklist consists of at least one checklist as described above (resulting from
a checklist vector) with a consecutive number, starting with 1, a receipt book
and a list for data objects and maybe data objects (documents). An illustrating
example for the cover sheet and a graphical checklist with consecutive number
2 is given in Fig. 10.

When starting a process with checklists, the “process owner”, i.e., that per-
son starting the execution of the process, has to print the checklist with cover
sheet and data object list. Then he assigns the checklist its current number 1.
Input data, that means input documents, have to be added and scheduled in
the respective list. On the cover sheet “1-1” is noted, that means, the current
status of execution is “checklist 1” and “point 1”. In addition, he has to write
his name on the cover sheet so that the checklist can be handed over to him af-
ter finishing the process. This graphical checklist has to be passed to the agent
named in point 1, who has to check for completeness, that means especially if
all listet documents are handed over, and quit the delivery. The process owner

10 Michaela Baumann et al.

@

name of ’ ‘
process owner

name of checklist

11|23 ’ ‘
1-2 2-6

| |
1-6 2-10

v | |
2-2

Fig. 10: Cover sheet (left-hand side) with name of the checklist/process, name of process
owner and list of the next points to be executed; checklist (right-hand side) with current
number in the upper right corner and operating/control points. Obviously,.in checklist no.
1 a gateway caused a jump into the past (from point no. 7 to point no. 2).

has to archive the signed receipt for later reconstruction if necessary.

Every time an agent gets the graphical checklist he has to run through
this acknowledgement process (checking the documentsfor completeness, sign
a receipt) and then check for the current point of the checklist on the cover
sheet. When the last entry is 1-23 he-has to look at point 23 of the current
checklist, that has number 1, and exécute this point, if all necessary documents
are available and possible conditiens are fulfilled. Of course, the agent named
in this point should be correct (otherwise the checklist has not been handed
over properly). After execution of the current point he has look which agent
is next. If it is himself he-executes the next point and writes it down on the
cover sheet, else he updates the document list, writes the next point on the
cover sheet, hands the checklist over.and archives the received receipt. If one
agent sends a doecument directly to another, this document has to be deleted
from the data object list and maybe listed again later on by the other agent.

4.1 Execution of Operating Points

Operating points are executed straightaway as described above, performing the
task (with possible constraint resulting from a transformed event) as given in
AC. If documents are produced, they should correspond to that ones listed in
the outgoing documents OD. After performing the task, he signs the operating
point for making clear, he has finished this point.

4.2 Execution of Control Points
4.2.1 Ezecution of Fxclusive Gateways

If a control point resulting from an exclusive gateway has to be processed,
the agent has to check for the condition or question in field CO. He marks

The Process Checklist 11

his answer in GT in the box O in front of the corresponding answer a.;. If
there are any documents helping him to decide, they are listed in AN. After
marking he gets the number of the next point, g. ;. Two possible sceneries may
occur: g.; is greater than the current point number, then everything can go
on as before. If g.; is smaller than the current point number, then there is
a problem, as that point with number g.; may have been processed already
in the past and therefore is signed already. If such a return occurs, than the
agent of the control point has to print a new checklist (just the checklist itself)
and assign it the number ¢ 4+ 1 if the number of the current checklist was 1.
On the cover sheet, he writes for the next point to be executed (i + 1)—(g. ;).
After doing this, he signs in field AG and passes the new checklist (together
with the old one for reconstruction opportunity) to the agent of point g.;.
This agent has to recognize that the consecutive number ofithe checklist has
changed which is obvious on the cover sheet.

4.2.2 Ezxecution of Parallel Gateways

Static Sequential Transformation If a parallel gateway was transformed in the
static sequential way, then it does not appear in the checklist, that means the
performing agents do not know, that there has been a gateway in the BPMN
process model. All branches are executed in the specific order as chosen by the
person who transformed the process model.

Dynamic Sequential Transformation When coming to a control point being
the transformation of a parallel gateway with the dynamic sequential method
the agent of that point.can decide about the execution order of the different
branches during the processing of the checklist. He can take into account the
current circumstances like availability of the agents in the different branches,
or anything else. When he chooses one branch, he marks his decision in the
corresponding box [J, notes it on the cover sheet and passes the graphical
checklist over to the-agent of the respective point, on the right-hand side
of the marked box. The branch is processed and at the end there is a control
point-that refers back to the control point where the decision of the branch was
made. So, the agent gets the checklist back (with checking for all documents
and quitting again) and signs the chosen branch in GT (that one with the
marked box, that has not been signed yet). Then he chooses the next branch
to be processed the same way as before. If all branches have been marked
and signed, then he signs the whole control point in field AG and passes the
checklist over to the agent of that point listed after “finally go to” in GT'. The
whole procedure can be reconstructed with the notes on the cover sheet.

Postboxr Method If parallel gateways are performed with the postbox method,
the checklist itself looks the same as transformed according to the dynamic
sequential way. The difference is in the execution, as the postbox method
allows for parallel processing of the different branches. When the performance
of a checklist reaches an AND control node the checklist is posted like an

12 Michaela Baumann et al.

announcement in one place together with all documents (that can be stored in
a postbox) and all agents can look for the next points that have to be executed
on the cover sheet, where all first points of the different branches have to be
noted in a parallel way. With this method, the documents do not have to be
handed over from one point to another. After finishing all branches, the agent
of the control node that started the postbox method collects the checklist
and all documents now being in the postbox, checks for completeness, signs
in AG if everything is okay and goes on as before. This method may become
confusing and needs initiative of all agents. But it considers the parallel aspect
of parallel gateways.

Parallel Transformation With this method it is also possible to consider si-
multaneity of the different branches. The agent of the control node prints all
required sub-checklists, marks the boxes (] in GT if handed over together with
needed documents to the respective agents of the first points.in the branches,
as listed in GT, and signs every returning sub-checklist in G7T'. If all sub-
checklists have returned, he signs in AG and'the execution of the control node
is finished. As one can imagine, this method<is more elaborate, as multiple
checklists have to be generated, but it provides a good-overview over the pro-
cess in contrast to the postbox methods We recommend this method if the
branches are relatively long, so that the effort of generating more than one
checklist is somehow justified.

The mentioned transformation and execution versions are somehow sug-
gestions, clearly many other versions are imaginable and of course different
versions can be mixed asswe would probably suggest in the situation of Fig.
11. Here, the two long subprocesses [1 and [2 can be executed with two sepa-
rate checklists whereas the short subprocess can be included into the checklist
in a (dynamic) sequential'way, i.e., it would be performed before or after the
two long subprocesses.

4.2.3 Ezecution of Inclusive Gateways

Like the transformation of inclusive gateways, the execution of inclusive gate-
ways can again be seen as a mixture of exclusive and parallel gateways. The
agent of the eorresponding control point has to choose his anwers (mark the
boxes), in‘contrast to exclusive gateways possibly more than one, and then
for the chosen ones he can proceed like with parallel gateways (except for the
static sequential method, as this was no possible transformation for inclusive
gateways).

All methods mentioned so far require a well-modelled process model, that
means for example, that there are no returns out of AND branches, no doc-
ument is needed in parallel branches without having a copy of it, or that no
document is archived if there is the possibility of a return into the past where
this document will be needed again. Changes of the underlying process model

The Process Checklist 13

@

long long
sub- sub-
pro- pro-
cess cess
i1 2

v

Fig. 11: Schematic part of a process model with one short and two-comparatively long
parallel subprocesses that can be executed as a composition of the presented methods.

involve modifications of the checklist for all futuresprocess instances. If prob-
lems or questions during the execution of one checklist occur, one should confer
with the corresponding process owner.

5 Implementation

In order to provide a simple transformation possibility the described transfor-
mation procedures.fromBPMN to a process checklist representation have been
implemented in‘a C-Sharp application using the Microsoft .NET framework.
This way, process checklists can be generated from existing BPMN models in
a few seconds.

5.1 Checklist‘-Meta-Model and Model Transformation

In a first stepy the user selects the BPMN-XML file to be transformed from
a file dialogSubsequently, the selected file is parsed by the application. As
a result, an instantiation of the (simplyfied) BPMN meta-model is generated.
Note, that for this approach we are only considering the basic BPMN elements
as described in Section 2. Afterwards, the user has to choose the transformation
method of possibly occurring parallel gateways, i.e., whether a static sequen-
tial, a dynamic sequential or a parallel transformation method is preferred.
The provided information is finally used to transform the BPMN model in-
stance to an instance of the checklist meta-model. The meta-model as an UML
diagram is shown in Fig. 12. A checklist consists of several C'hecklist Elements
that can either be an OperatingPoint or a Control Point. An OperatingPoint

14 Michaela Baumann et al.

ChecklistElement
-number : int 0.1
OperatingPoint ControlPoint
-activity : string <> <> -annotation : string
1 1 -condition : string
ResponsibleAgent -signature : boolean
-name : string
outgoing ingoing
goto
0..* 0..* *
DataObject GoTo
-name : string -answer : string

Fig. 12: Meta-model of the process checklist.

can have several ingoing as well as outgoing DataObjects and is performed by
exactly one Responsible Agent. A ControlPoint has several GoT o-instructions
and has also exactly one ResponsibleAgent. A GoTo-instruction refers to a
ChecklistElement again.

The different checklist model elements can finally be read and visualized. Of
course, there is no fixed-checklist visualization method. However, the visualiza-
tion method presented in the work at hand is the result of different case studies
and discussions with process participants. It turned out to be an adequate and
understandable representation.

5.2 Checklist Serialization

In order to be able to adequatly save and share generated checklists the appli-
cation additionally provides a possibility to serialize checklists to XML!. The
following listing shows an excerpt of the generated XML code of the example
checklist vector of Fig. 14.

<checklist process=’Subscribing for an exam’>

<controlpoint no=’2’ annotation=’’ condition=’Exam type?’
signature=’0’>
<gotolist>
<goto answer=’written’ gotoNo=’3’ />

1 Complete example checklist XML-files as well as a XML Schema definition can be found
at the project website. See checklists.kppq.de for more information.

The Process Checklist 15

<goto answer=’oral’ gotoNo=’9’ />
</gotolist>
<agent name=’Student’ />
</controlpoint>

<operatingpoint no=’5’ activity=’Perform exam correction’>
<ingoing>
<DataObject name=’Exam unmarked’ />
</ingoing>
<outgoing>
<DataObject name=’Exam marked’ />
</outgoing>
<agent name=’Auditor’ />
</operatingpoint>

</checklist>

6 Evaluation and Analysis

For evaluating the desired advantages of paper-based checklists in contrast to
the corresponding BPMN-based.process models as execution support, the ana-
lyzed topics were divided into.two categories, namely objective and subjective
topics. The objective topics; flexibility, parallelism and length, could easily be
derived from the executionmsupport tools after determining the particular eval-
uation criteria. The subjective -topics, comprehensibility, orientation and relia-
bility, had to be derived {rom interviews and surveys and an ensuing statistical
evaluation. Two different processes were modeled to get more reliable results.
The first onegssubscribing for an exam, was modeled as a graphical BPMN pro-
cess model as shown at the end of the paper in Fig. 18 and a straight-forward
checklist. Parts of the checklist are represented in Fig. 13. The corresponding
checklist vector as basis for the graphical checklist is presented in Fig. 14. The
graphical BPMN model was chosen as we discovered, that this is the usual
way of supporting the execution of human-based processes, available for all
involved actors;in small and middle-sized companies. A map of the graphical
BPMN-model is posted publicly which allows several instances of the process
to proceed simultaneously. An IT-based WIMS is often not available or too
expensive for these firms. The first process included the student, the chair’s
secretariat, the auditor and the assessor as involved agents. For the second
process, applying for a business trip, again a graphical BPMN process model
was generated as well as two different checklists to examine the differences
presented in Section 3.3.2 concerning the transformation of parallel gateways.
Involved actors were the head of chair, the chair’s secretariat and the appli-
cant. The two different transformations of the parallel gateway appearing in
the process model were the static and the dynamic sequential transformation.

16 Michaela Baumann et al.

student
1 determine —_—
exam subject (name)
(date, signature)

student

XOR. O written: 3

(name)

exam type?

[oral: 9

(date, signature)

student
system

3 netiRetien fioom w?ltten exam, —(name)
(Written exam) ate written exam

(date, signature)

student

1 room written exam, perform
date written exam written exam

(name)

(date, signature)

Fig. 13: Parts (first 4 points) of the final graphical checklist for the process “subscribing for
an exam” which was used for evaluation.

To do a parallel transformation was not suitable in this context, as the paral-
lel subprocesses were t00 short to get any substantial advantages of this form
except perhaps better values for the parallelism criterion. To get results for
the subjective criteria every execution support tool was evaluated by 21 test
persons which means a total of 105 evaluations.

6.1 Objective Topics

First of all, the conditions for the three objective topics had to be set up.
For the topic of flexibility three possible values are available: A low flexibility
value means that during the execution of a process the underlying process
model can’t be changed. A medium value means that the order of activities
can be customized or that certain elements can be deleted. A high flexibility
value is assigned, if nearly everything can be adjusted during execution. For
example, if the chair’s secretary is not accessible this agent can be changed to
another person in all activities where necessary for this single process instance.
The parallelism values are distributed in the following manner: A low value
is allocated if the execution order is determined before process initialization
and is therefore only sequential. A medium value means that the execution
order is sequential but determinable at run time. Parallelism is high if real
parallelism is possible. For the “Subscribing for an exam”-process model no

The Process Checklist 17

No/| type | ID/AN | Ac/CO |OD/GT |AG

1 |o determine exam student
subject

2 |ec XOR so =0 student
exam type? a1 =written g2,1 =3

az2 =oral goo2 =9

3 |o system notifi- | {room written exam, date | student
cation (written | written exam}
exam)

4 o {room written | perform written student

exam, date | exam
written exam}

5 |o {exam perform exam cor- | {exam marked} auditor

unmarked } rection

6 |o {exam marked} | register exam secretariat
marks in system of chair

7 o {exam marked} | send exam to ex- secretariat
amination office of chair

8 |c XOR end sg =0 student

ag,1 = go to gg,1. = 15

9 |o system notifica- student
tion (oral exam)

10 |o determine and as- | {examination date} secretariat
sign examination of chair
date

11 |o {examination | perform oral exam | {minutes of examination | auditor

date} (unsigned)}
12 |o {minutes of | sign minutes of ex- [{minutes of examination | assessor
examination amination (signed)}
(unsigned)}

13 o {minutes of | sign minutes of ex- | {minutes of examination | auditor
examinationl amination (signed)}
(unsigned)}

14 |o {minutes of | Send’ exam mark secretariat
examination and / protocol to of chair
(signed)} examination office

15 |o exam notification secretariat
and performance of chair
finished

Fig. 14: Checklist vector for the process “Subscribing for an exam” containing all elements
according to Definition 2 needed for the graphical checklist.

parallelism values could be distributed as the are no parallel gateways in the
BPMN process model.
Length of the process execution support tools is just the number of all flow
objects in the BPMN model (activities, events, gateways) or the number of
operating and control points in the checklists. This value depends strongly on
the underlying process and shall only give an impression of the compactness of
the different tools. Only tools with the same underlying process are comparable
with each other. Table 1 shows the results of the objective evaluation criteria
for the two processes “Subscribing for an exam” and “Applying for a business

trip”

18 Michaela Baumann et al.

Subscribe for exam | Apply for business trip

BPMN Checklist | BPMN ShortChecklist LongChecklist

Flexibility low high low high high
Parallelism | NA NA high low medium
Length 16 15 20 15 18

Table 1: Values for the objective evaluation criteria for the different support tools; NA =
not available.

Comprehensibility

Subscribe for exam Apply for business trip
= =
o - S — — =
£ S 1
2 | 2 |
o o
- T T - T T T
BPMN Checklist BPMN ShortChecklist ~ LongChecklist

Fig. 15: Boxplot evaluation of the comprehensibility for the two processes “Subscribe for
exam” (BPMN model and checklist) and “Apply for business trip” (BPMN model, a short
checklist and a long checklist).

6.2 Subjective Topics

As mentioned in the introduction of the current section, the subjective evalua-
tion criteria are comprehensibility, orientation and reliability. The test persons
had to go through the two processes with the help of the different process ex-
ecution tools.and afterwards rate their impressions of the three subjective cri-
teria by classifying with a Likert scale of five classes. The generated boxplots!
allow a good interpretation of the results for the three criteria.

Fig. 15 shows the boxplots for comprehensibility of the different process
execution tools for both processes. A high value reflects the opinion of the test
person that she completely understands the process and the handling of the
execution tool, in contrast to a low value where she neither understands the
process nor the tool’s handling. As it can be seen in Fig. 15, the answering dis-
persion for the BPMN models is greater than that of the checklists which could
occur from the fact, that some persons easily understand the BPMN notation,
but some do not, and that the checklists are understood quite well among all

1 For more information about boxplots see [4], Section 2.2, and [13].

The Process Checklist 19

Orientation

Subscribe for exam Apply for business trip

high
Il

high
Il

T T T T T
BPMN Checklist BPMN ShortChecklist . LongChecklist

Fig. 16: Boxplot evaluation of the orientation for the two processes “Subsecribe for exam”
(BPMN model and checklist) and “Apply for business trip” (BPMN model, a short checklist
and a long checklist).

test persons. Furthermore, the median of all'answers for the checklists is higher
than that of the corresponding BPMN-model, although the shorter, but less
flexible, checklist for the business trip process seems easier to understand than
the longer but more flexible one.

The second subjective evaluation eriterion is orientation, which asks for
knowing the own position during the execution of the process and the steps
that have to be performedmext. Again, a set of boxplots for the two processes
and the two, respectively three, execution support tools was generated and is
shown in Fig. 16. The results for the‘orientation aspect are similar to that of
comprehensibility: Dispersion for the BPMN support tools is higher than for
the checklists'and values for the median are higher, which means better, for
the checklists than for,the BPMN execution support tool. As it can be seen,
the short checklist for the business trip process has a better orientation value
than-the long checklist. This could be caused by the fact, the short checklist
provides. a slightly better overview over the process and clearer instructions
for the tasks, as there are fewer control points and thus more sequential task
chains which allow for easier orientation. Moreover, one conspicuity is that
the difference of the BPMN support tools and the checklists is greater for the
orientation aspect than for the first aspect, comprehensibility.

In Fig. 17, boxplots for the third subjective evaluation criterion, reliability,
are presented. A high level of reliability means that the course of the process
execution so far is traceable and it is clear, who has carried out which tasks. It
sticks out that the mean values for the BPMN support tool are quite low and
for the checklists have even increased compared to the other evaluation criteria.
There is hardly any spread in the responses concerning the checklists which
means that they provide a high reliability for nearly all test persons. Responses
concerning the BPMN model again vary very much, but at a lower level than

20 Michaela Baumann et al.

Reliability

Subscribe for exam Apply for business trip

high
|

high
|

low
|

low
|

T T T T T
BPMN Checklist BPMN ShortChecklist . LongChecklist

Fig. 17: Boxplot evaluation of the reliability for the two processes “Subscribe for exam”
(BPMN model and checklist) and “Apply for business trip” (BPMN model, a short checklist
and a long checklist).

before. So, even for the people who understood the BPMN evaluation tool
quite well, it does not seem to provide-an accordingly good value of reliability
during the execution.

7 Conclusion, Limitations and Future Work

In order to diminish the dependency frem IT-based process management sys-
tems, the work at hand<proposed an’alternative way of supporting workflow
execution that is suitable for human-driven processes. We introduced the pro-
cess checklist‘representation of process models where processes are described
as a paper-based step=by-step instruction handbook. The process checklist is
handed-over during process execution from process participant to process par-
ticipant. Successful task accomplishments are recorded through signatures of
corresponding process participants.

This way, the process checklist also supports the key benefits of traditional
WIEMS. The cheeklist is handed over to responsible agents (task coordination),
process tasks are serialized and marked by a unique identifier (step-by-step
guidance) and the checklist itself as well as the corresponding signatures en-
sure traceable process execution. The work at hand provides the general struc-
ture of process checklists as well as a transformation algorithm of basic BPMN
process model elements to process checklists. Furthermore, we described im-
plementation details by giving a concrete checklist meta-model as well as a
XML-based serialization possibility. The checklist approach has been evalu-
ated in two real-life case studies, i.e., it supported the execution of university
processes. The results showed that process checklists serve as a feasible process
execution support and are highly accepted by process participants.

The Process Checklist 21

In contrast to the advantages over IT-based process management systems as
mentioned before, paper-based checklists can also have disadvantages com-
pared to traditional systems. Checklists represent a single point of access, so
support for distributed agents may be difficult. If this is the case, one has
to ask if using a paper-based checklist is the right thing for this specific ap-
plication, as we recommend using checklists for example in administrational
environments.

In general, it is possible to transform a procedural process model to a process
checklist based on the proposed algorithm. However, due to the serialization of
the process, the checklist representation has of course problems when dealing
with parallelism. Here, process modelers have to choose a suitable transfor-
mation method as described in Section 4. The presented case studies focused
on a first evaluation in the field of university processes. For future work we
will evaluate the proposed approach especially within business cases: Here, we
expect useful experiences regarding the acceptance and'cooperation of partic-
ipating agents. Based on these results we will further improve methodology,
design and representation. Furthermore, we will focus the transformation of
loosely-specified processes like declarative proeess models; e.g., Declare [12].

Acknowledgements The presented work is developed and used in the project “Kompe-
tenzzentrum fiir praktisches Prozess- und Qualitdtsmanagement”, which is funded by “Eu-
ropéischer Fonds fiir regionale Entwicklung (EFRE)”.

Michael Heinrich Baumann wishs to thank Hanns-Seidel-Stiftung e.V. (HSS).

References

1. M. Baumann, M. H. Baumann, S. Schonig, S. Jablonski: Enhancing Feasibility of Human-
driven Processes by Transforming Process Models to Process Checklists. 15th Working
Conference of Business Process Modeling, Development, and Support (BPMDS 2014),
Springer, 2014

2. C. Condon: The Computer Won’t Let Me: Cooperation, Conflict and the Ownership of
Information, CSCW, pp. 171-185, 1993

3. J. Wi Ely, M. L. Graber, P. Croskerry: Checklists to Reduce Diagnostic Errors, Academic
Medicine, 03/2011, Vol. 86, Issue 3, pp. 273-404

4. L. Fahrmeir; R. Kiinstler, I. Pigeot, G. Tutz: Statistik — Der Weg zur Datenanalyse,
Springer-Verlag Berlin Heidelberg, sechste, liberarbeitete Auflage, 2007

5. B. M. Hales, P. J. Pronovost: The checklist — a tool for error management and perfor-
mance improvement, Journal of Critical Care, Vol. 21, Issue 3, pp. 213-235, 2006

6. R. Hauser, M. Friess, J. M. Kiister, J. Vanhatalo: Combining Analysis of Unstructured
Workflows with Transformation of Structured Workflows, Proc. 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), 2006

7. S. Jablonski: Do We Really Know How to Support Processes? Considerations and Re-
construction, G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 393-410, 2010,
Springer-Verlag Berlin Heidelberg, 2010

8. J. Koehler, R. Hauser, J. Kiister, K. Ryndina, J. Vanhatalo, M. Wahler: The Role of
Visual Modeling and Model Transformation in Business-driven Development, Proc. 5th
International Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT’06), Vienna, Austria, 2006

9. P. Luff, Ch. Heath, D. Greatbatch: Tasks-in-interaction: paper and screen based docu-
mentation in collaborative activity, CSCW, 1992

22 Michaela Baumann et al.

10. M. Melenovsky: Business process managements success hinges on business-led initia-
tives, Gartner Research, Stamford, CT, no. July, pp. 1-6, 2005

11. Object Management Group Inc.: Business Process Model and Notation (BPMN) Version
2.0, http://www.omg.org/spec/BPMN/2.0, 2011

12. M. Pesi¢: Constraint-Based Workflow Management Systems, Shifting Control to Users,
2006

13. http://www.r-project.org/, 2014-09-30

14. M. Reichert, B. Weber: Enabling Flexibility in Process-aware Information Systems,
Springer Berlin Heidelberg, 2012

15. W. Van der Aalst, M. Weske, D. Griinbauer: Case handling: a new paradigm for business
process support, Data & Knowledge Engineering, 53 (2), pp. 129-162, 2005

16. A. M. Wolff, S. A. Taylor, J. F. McCabe: Using checklists and reminders in clinical
pathways to improve hospital inpatient care, MJA 2004, 181, pp. 428-431

17. M. Zairi: Business Process Management: a Boundaryless Approach to Modern Compet-
itiveness. Business Process Management Journal, Vol. 3, pp. 64-80, 1997

18. M. zur Muehlen, J. C. Recker: How Much Language Is Enough? Theoretical and Practi-
cal Use of the Business Process Modeling Notation, Z. Bellahséne and M. Léonhard (Eds.):
CAIiSE 2008, LNCS 5074, pp. 465-479, 2008, Springer-Verlag Berlin Heidelberg, 2008

23

The Process Checklist

|
! 1
3 2
[
|
|
|
(pouif .
|uoneywexs ¢ % |
Jos : : | s1ep uoneuwexa
uoneuwexe .
wexe 210 wioped |
1o sanuw ubig .
| s
g
UONB1100 WEX® Wiopad
2oy0. 4.
1wexe o} 100001 Iz
PUE yeW Wexe puss 3
3 @jep uopeuiwexe g
| uBisse pue suluweleq <2
(pospew) wexs . m
g
soyj0 weysAs ur syew ! H
UONBUIWEXS O} WEXS Puss wexe Jajsiboy |
B ; |
|
| wexe usnum sieg (wex® [e:0) uonedytou wajsAs
Ll ko
R | leso “
le I walans wexa 4
Wexe uspUM uLioad (Wexe uspuM) UoNEdYIOU WBISAS g
3 uepum] 2
Jwexe uanum wooy
3 odh wex3
|
|

Fig. 18: BPMN model for the process “Subscribing for an exam”.

