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Abstract 

Fragile lands such as mountainous regions and drylands are highly vulnerable for land 

degradation and subsequent decline in productivity resulting from anthropogenic and 

natural causes. In developing countries of the tropics like Ethiopia, the human-induced 

impact is aggravated by the increasing population of subsistence farmers living in these 

areas. Land use/land cover type mainly determines the sustainability of supplies of 

ecosystem services and biodiversity supported. Land use decisions made without 

caution often deteriorate ecosystems in fragile lands and have detrimental impacts on 

supplies of ecosystem services. Therefore, continuous monitoring and assessment of 

land use/land cover types in fragile lands is essential to ensure sustainable supplies of 

ecosystem services in such environments that are liable for deterioration. Remote 

sensing provides fast and recurrent data for assessing land cover and ecosystem 

services. The main objective of the dissertation is identifying the potentials and 

limitations of remote sensing for assessing ecosystem services and map two major land

cover types detrimental for ecosystem services in fragile lands of Ethiopia. Ethiopia was 

chosen for the case studies due to the ongoing pressure on fragile lands of the country 

which is triggered by population growth, large-scale agricultural land acquisition and 

problems arising from invasive species. The thesis is organized in series of chapters 

described below.

Overview of the thesis highlighting the research questions, methods and major findings 

is presented in Chapter 1. Following the general overview (Chapter 1), potentials and

limitations of remote sensing in quantifying and mapping ecosystem services are 

reviewed (Chapter 2). The review showed that there is uncertainty involved in 

quantifying and mapping ecosystem services with remote sensing data which calls for 

more research to find the link between ecosystem services and image spectra. Moreover, 

while selecting remote sensing data, factors such as resolution, sensor types, and 

financial and technical capacity of users need to be considered. In Chapter 3, the trends

in Prosopis juliflora invasion of the Awash basin of Ethiopia were mapped using Landsat 

ETM + and ASTER images for the years 2000, 2005, 2010 and 2013, and potential 

impacts on ecosystem services were assessed. Results showed that over the past decade 

P. juliflora spread rapidly and has had negative impacts on the supplies of ecosystem 

services such as provisioning and cultural services. Further research is needed to 
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understand drivers of P. juliflora invasion, quantify its impacts on ecosystem services 

and identify controlling mechanisms. Chapter 4 discusses undercover cropland inside 

forests of the Bale Mountains of Ethiopia and its influential factors. Land use/land cover 

classes were derived by classifying RapidEye images using Random Forests 

classification approach. Undercover cropland was mapped using Boosted Regression 

Trees on field observed percent cover, topographic and location and parameters. The 

influential factors of undercover cropland are elevation, distance to settlements, slope, 

East aspect and distance to national park with elevation being the most important factor. 

Therefore, ecosystem management efforts in such mountainous areas should be based 

on the relative importance of these influential factors. In the last section (Chapter 5), the 

studies in the thesis are synthesized and presented. Besides, recommendations about 

monitoring of fragile lands and ecosystem services, management of invasive species, 

mountain regions, and future prospects of remote sensing in ecosystem services 

assessment are provided.
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Zusammenfassung 

Fragile Landschaften wie Gebirgsregionen und Trockengebiete sind sehr anfällig für 

Landdegradierung und dem daraus resultieren den Rückgangder Produktivität, 

ausgelöst durch verschiedene natürliche und anthropogene Einflussfaktoren. In 

tropischen Entwicklungsländern wie Äthiopien werden insbesondere vom Menschen 

verursachte Effekte durch die stetig steigende Zahl von Subsistenzlandwirten verstärkt. 

Die Art der Landbedeckung und Landnutzung bestimmt dabei in erster Linie die 

Nachhaltigkeit von Ökosystemleistungen sowie den Erhalt von Biodiversität. 

Unbedachte und voreilige Landnutzungsentscheidungen führen oft zur Schädigung von 

Ökosystemen mit negativen Konsequenzen für die Bereitstellung von 

Ökosystemleistungen. Die kontinuierliche Beobachtung und Bewertung von 

Landbedeckung und Landnutzung ist deshalb außerordentlich wichtig, um die 

nachhaltige Verfügbarkeit dieser Ökosystemleistungen zu gewährleisten, insbesondere 

in empfindlichen Landschaften, die besonders anfällig für Degradierung sind. Methoden 

der Fernerkundung liefern dabei schnelle und periodisch verfügbare Informationen, um 

Landbedeckung und Ökosystemleistungen bewerten zu können. Hauptziel dieser 

Dissertation ist es, die zwei wichtigsten Landbedeckungstypen räumlich zu erfassen, die 

sich schädigend auf die Ökosystemleistungen von fragilen Landschaften in Äthiopien 

auswirken. Äthiopien wurde als Fallstudienregion ausgewählt aufgrund des anhaltend 

hohen Drucks, der insbesondere durch Bevölkerungswachstum, großangelegte 

Landaneignungen sowie dem Eindringen invasiver Arten auf fragile Landschaften 

ausgeübt wird. Die Arbeit ist in fünf Kapitel unterteilt, welche im Folgenden erläutert 

werden. 

Kapitel 1 gibt einen allgemeinen Überblick, beleuchtet die Fragestellungen der 

Arbeitund fasst die Methoden und wichtigsten Ergebnisse zusammen. In Kapitel 2 

werden die Möglichkeiten und Grenzen der Fernerkundung für die Quantifizierung und 

Kartierung von Ökosystemleistungen  diskutiert. Die Analyse zeigt, dass die 

Quantifizierung  und  Kartierung  von  Ökosystemleistungen  mithilfe  von 

Fernerkundungsdaten mit deutlichen Unsicherheiten verbunden ist und zusätzlicher 

Forschungsbedarf bei der Verknüpfung von Spektraldaten mit Ökosystemleistungen 

besteht. Darüber hinaus sind auch andere Faktoren, wie Auflösung, Sensortypen sowie 

finanzielle und technische Kapazitäten bei der Auswahl  von geeigneten 
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Fernerkundungsdaten entscheidend. In Kapitel 3 werden die Ausbreitungstrends von 

Prosopis juliflora im Awash-Becken in Äthiopien mithilfe von Landsat ETM+ und ASTER 

Aufnahmen aus den Jahren 2000, 2005, 2010 und 2013 beschrieben und deren 

potentielle Auswirkungen auf Ökosystemleistungen bewertet. Die Ergebnisse zeigen, 

dass sich P. juliflora innerhalb des letzten Jahrzehnts rasant in der Region ausgebreitet 

hat, mit negativen Konsequenzen insbesondere für bereitstellende und kulturelle 

Ökosystemleistungen. Weiterer Forschungsbedarf besteht insbesondere im Hinblick auf 

die Treiber der Ausbreitung von P. juliflora, die Quantifizierung der Effekte auf

Ökosystemleistungen sowie zu möglichen Kontrollmechanismen. Kapitel 4 diskutiert 

verdeckte landwirtschaftliche Anbauflächen innerhalb der Wälder der Bale Mountains in

Äthiopien  und  deren  Einflussfaktoren.  Mithilfe  eines  Random  Forest 

Klassifikationsverfahrens wurden Landbedeckungs und Landnutzungsklassen  aus 

RapidEye Satellitenaufnahmen abgeleitet. Die verdeckten Anbauflächen konnten mittels 

Boosted Regression Trees und Feldbeobachtungen zu Bedeckungsgrad, Topographie 

und standortspezifischen Parametern kartiert werden. Als Einflussfaktoren für das 

Vorhandensein verdeckter Anbauflächen wurden Höhenlage, Entfernung zu Siedlungen, 

Hangneigung, östliche Exposition sowie die Entfernung zum Nationalpark identifiziert, 

wobei die Höhenlage den größten Einfluss hatte. Bewirtschaftungsmaßnahmen von

Ökosystemen in diesen Gebirgsregionen sollten  demnach an der relativen 

Bedeutsamkeit dieser Einflussfaktoren ausgerichtet werden. In Kapitel 5 werden die 

einzelnen Studien dieser Arbeit noch einmal zusammenfassend präsentiert 

sowieHandlungsempfehlungen zur Überwachung  fragiler Landschaften und 

Ökosystemleistungen und zur Kontrolle invasiver Arten und zur Bewirtschaftung 

vonGebirgsregionen gegeben. Darüber hinaus werden die Zukunftsperspektiven von 

Methoden der Fernerkundung zur Bewertung von Ökosystemleistungen diskutiert. 
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Chapter 1 Synopsis 

1.1 Fragile lands, cover and ecosystem services 

Gow et al. (1987) defined the term ‘fragile lands’ as ˶lands liable for deterioration and 

are under common agricultural, silvicultural, and pastoral use systems and management 
practices˵. These lands are characterized by declining productivity resulting from 

prevalent degradation (Gow et al. 1987, Jodha 1991, Bebbington et al. 1993, Osuji et al. 

2010). Once disturbed by anthropogenic and natural causes their recovery is very slow 

(Liu et al. 2010, Bakr et al. 2012).  

Fragile lands include drylands, forests and generally upland ecosystems that are less 

favored for intensive agriculture (Scherr and Hazell 1994, Liu et al. 2003, Barbier 2010). 

These lands are highly liable for degradation due to high concentrations of human 

population whose livelihood is largely dependent on agriculture (Barbier 2012). In 

developing countries, population in fragile lands doubled during the period 1950–2003

(The World Bank 2003). The high poverty rate in the rural areas of these countries 

forces the inhabitants to mainly depend on subsistence agriculture (Karsenty and 

Ongolo 2012, Pritchett and de Weijer 2011, Besley and Persson 2011, Baliamoune-Lutz 

and McGillivray 2011). Given the rapidly growing rural population and apparent poverty, 

the pressure on fragile ecosystems has increased over the past decades (Le et al. 2012).  

The land use/land cover (LULC) type in fragile lands largely influences the ecosystem 

services that are supplied (Figure 1). Human decisions introduce land cover types that 

are beneficial or detrimental to supplies of ecosystem services. The type of LULC and the

location where it is practiced may imply its detrimental impacts. For instance, croplands 

introduced to mountainous steep slopes can be detrimental cover types in those regions. 

Likewise, new plant species introduced to drylands could turn to be invasive and 

become detrimental for supplies of ecosystem services. Similarly, tea and palm tree 

plantations that involve conversion of natural forests are detrimental for forest 

ecosystem services.     
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Figure 1 General concept and the different phases of the dissertation. 

In this study two major examples of fragile lands (mountain region and drylands) are 

analyzed and discussed in relation to the detrimental impacts of selection of land cover 

types that improperly suit to these vulnerable lands. The general framework of concepts 

considered and the different phases in the dissertation are illustrated in Figure 1. In 

Phase 1 opportunities and challenges in the application of remote sensing for assessing 

ecosystem services were analyzed based on literature review. In phase 2 two major 

LULC types were mapped and their detrimental impacts on ecosystem services was 

assessed and discussed. 

1.1.1 Fragility of mountain regions and detrimental effects of croplands  

Nearly 27 percent of the earth's surface are mountains and support about 22 percent of 

the world's population (cf. Rodríguez-Rodríguez et al. 2011). Globally, these land masses 

are less accessible marginal and highly fragile areas (Jodha 2000, Oyonarte et al. 2008, 

Platts et al. 2011). Ecosystems in these regions support high biodiversity and supply 

various services such as provisioning (food, water, timber, fiber and fodder), regulatory 

(erosion control, flood control and water purification) and cultural (recreation, aesthetic 

and tourism) (MA 2005, TEEB 2010, Marquis et al. 2012, Rodríguez-Rodríguez et al. 

2011, Grêt-Regamey et al. 2012). The origins of most of the rivers in our planet are the 

mountain regions (Liniger et al. 2005, Viviroli and Weingartner 2008). More than 50 

percent of the water used for home consumption, irrigation, hydropower, and industries 

globally comes from mountain areas (Messerli et al. 2004, Liniger et. al 2005, Viviroli et 

al. 2007).  
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In developing countries like Africa, the rural poor people are directly dependent on 

natural resources for their livelihoods especially for provisioning services (Egoh et al. 

2012).  

Although mountain ecosystems are sources of multiple services and biodiversity, they 

are highly fragile and vulnerable to rapid global development (Grêt-Regamey et al. 2012, 

Pauli et al. 2005, Lama and Devkota 2009, Messerli et al. 2004, Messerli 2012). In the 

past decades, the low capacity, access to resources, and insufficient awareness of the 

people living in mountain regions, may have aggravated the impact of global changes  

(Jodha 2000). Moreover, indigenous knowledge is often ignored and new concepts are 

externally imposed on the local communities (Marquis et al. 2012). Mountain regions 

are often exploited with the aim of maximizing short-term benefits without considering 

their fragility and threatening impacts on the sustainable supplies of ecosystem services 

and conservation of biodiversity (Rodríguez-Rodríguez et al. 2011). 

Agriculture constitutes a large portion of the global land cover with agroecosystems 

comprising about 40% of the earth's surface (Power 2010). Globally, potential arable 

land with low constraints is 12.6 percent (Blum and Swaran 2004). Growth in 

agricultural sector is usually considered as a fundamental step in reducing poverty 

especially in developing countries (Adhikari et al. 2013). In mountainous areas, 

agricultural land expansion is one of the leading driving forces of land degradation 

(Shrestha et al. 2014). Being triggered by the growing demand for food production, 

where there is shortage of land for growing crops, agricultural land expansion often 

involves conversion of other land covers such as forests and pasture lands (Foley et al. 

2005). For instance, in the tropical regions, expansion of agricultural land during the 

20th century was made possible mainly through deforestation of natural forests 

(Lambin and Meyfroidt 2011).  

In principle, cultivation of crops in mountain regions should be adapted to the local 

situation in order to minimize the negative impacts on the environment (Marquis et al. 

2012). However, especially in developing countries this is often not met and agricultural 

practices frequently end up in soil erosion and land degradation thereby declining 

productivity of the ecosystem (Liu et al. 2012, Sun et al. 2014, Shrestha et al. 2014).  
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In mountainous regions, adverse environmental effects such as high reservoir sediment 

deposition, water pollution and floods in lowlands are usually results of conversion of 

upland forests to croplands (Liniger et al. 2005, Ellison et al. 2012, Neris et al. 2013). 

Generally, land users face tradeoffs between maximizing crop production and supplies 

of other ecosystem services such as water provision, erosion control, sediment retention, 

nutrient retention and flood regulation in the fragile ecosystems of the mountainous 

regions (Chazdon 2008, Polasky et al. 2011, Marquis et al., 2012). Not only mountainous 

areas but often also drylands, because of their problematic socio-economic and bio-

physical conditions are fragile ecosystems in developing countries. 

1.1.2 Fragility of drylands and detrimental effects of invasive plant species 

Drylands are defined as "areas with a ratio of average precipitation to potential 

evapotranspiration of less than 0.65" (Middleton and Thomas 1992). They cover over 40

percent of the terrestrial land and about 35 percent of the global population lives in 

these areas (MA 2005, cf. Frankl et al. 2013). Productivity of ecosystems in the drylands 

is largely constrained by moisture and soil degradation (Maia et al. 2007, Carberry et al. 

2011, Silva et al. 2011, cf. Huang et al. 2012, cf. Frankl et al. 2013). 

Fragility of land in arid and semi-arid areas is mainly manifested in the form of 

desertification which results from anthropogenic impacts in combination with climate 

change (Gow 1987, Slegers and Strosnijder 2008, Mganga et al 2010, Zhao et al. 2004, 

Zhao et al. 2005, Cui and Shao 2005, Zhang et al. 2008). Nevertheless, the major cause of 

change in ecosystems in tropical regions (e.g. the Sahel) is anthropogenic although 

climatic factors have their own share (Brandt et al. 2014). Ecosystems in dryland areas 

are highly fragile and more than 20 percent is already affected by desertification (MA 

2005, Maia et al. 2007, Jing et al. 2010, John et al. 2009). Repeated drought and 

expanding desertification hamper sustainable resource use and management in these 

areas (Frankl et al. 2013, Solh and Ginkel 2014).  

Drylands are highly vulnerable to degradation due to adverse human-induced and

natural factors (van Walsum et al. 2014, Sterzel et al. 2014, cf. Huang et al. 2012). Loss of 

vegetation due to drought and human activities in drylands triggers soil erosion and 

land degradation (Vásquez-Méndez et al. 2010, Moiwo et al. 2010, Wang et al. 2010, 
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John et al. 2009, Ravi et al. 2009). Coupled with moisture shortage, land degradation 

limits vegetation growth and agricultural production in drylands (Maia et al. 2007, Ravi 

et al. 2009, Adhikari 2013). Thus, degradation of drylands has potential to decline the 

supplies of ecosystem services such as water, carbon sequestration, food, forage, fuel, 

and flood regulation (John et al. 2009, Moiwo et al. 2010, Vogt et al 2011). Report on 

global assessment of land degradation and improvements shows that about 22 percent 

of drylands are degraded (cf. Adhikari 2013). In spite of this, about 70% more food 

should be produced by 2050 to feed the rapidly increasing global population (Carberry 

et al. 2011). Since drylands cover larger portion of our planet earth (MA 2005), they also 

need to contribute to the increment in agricultural production. This has been realized 

worldwide and drylands are recently highly exploited for irrigated agriculture mostly 

for food and commodity production (Maia et al. 2007, Carberry et al. 2011, Daftary 

2014). However, this requires protection and/or rehabilitation of drylands against 

desertification and land degradation. 

In the past decades, attempts made to cope with the arising problems of desertification 

and land degradation include development interventions such as introduction of fast 

growing plant species (Hooke and Sandercock 2012, Shelef et al. 2014). However, 

introduction of plant species has been a critical problem in the host areas with 

detrimental effects on the supplies of ecosystem services. Introduction of new species 

usually forms a new pattern of the host ecosystem in which introduced and native 

species interact (Didham et al. 2007, Thomas and Reid 2007, Belnap et al. 2012). The 

newly introduced plant species have potential to overtake the native species and 

eventually become invasive (Kizito et al. 2006, John et al. 2009, Callaway and Aschehoug 

2000, Murrell et al. 2011, Coutts et al. 2011). 

The competitiveness of invasive plants results from the fact that the species are away 

from their natural enemies and have developed mechanisms that enable them suppress 

the native species (Callaway and Aschehoug 2000, Pintό-Marijuan and Munneé-Bpsch 

2013). Coutts et al. (2011) stated that the main drivers for the spreading of invasive 

species are dispersal, demography and formation of landscapes. The characteristics of 

the habitats in the origin of a species and host areas define the patterns and extent of 

invasions (Müller-Schärer et al. 2004, Hejda et al. 2014). Species that are adaptive to 
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wide range of habitats have potential to become highly invasive (Prentis et al. 2008, 

Matzek 2011, Palacio-Lόpez and Gianoli 2011, Müller-Schärer et al. 2004, Hejda et al. 

2014). These plants have capacity to reduce biodiversity and ecosystem services in the 

invaded areas (Le Maitre et al. 2011, Palacio-Lόpez and Gianoli 2011, Hejda et al. 2014).  

Woody plants invasion of drylands has been widely increasing and become a threat to 

ecosystems around the globe (Huxman et al. 2005). For instance, Acacia pycnantha was 

introduced from Australia to South Africa where it became highly invasive (Ndlovu et al. 

2013, Le Roux et al. 2011). The key invasive woody plant species in drylands of East 

Africa include Lantana camara, Psidium guajava, Prosopis juliflora, Prosopis pallida, 

Opuntia ficus indica, Senna spectabilis, Caesalpinia decapetala, Acacia mearnsii, Acacia 

polyacantha, and Acacia farnesiana (Obiri 2011). The detrimental impacts of these 

species include loss of grazing lands, fodder, farm lands, native species, and poisoning of 

livestock (Vilà et al. 2011, Obiri 2011, Powell et al. 2013, Vicente et al. 2013, Fei et al. 

2014). 

1.1.3 Remote sensing of land cover and ecosystem services in fragile lands 

Management of fragile lands is becoming a growing concern globally since it affects the 

supplies of ecosystem services and biodiversity conservation. Thus, the need for robust 

methodologies for monitoring land cover in fragile lands has already been realized to 

ensure sustainable land use (Vogt et al 2011). Remote sensing has become one of the 

main sources of data for mapping land cover and assessing ecosystem services. With 

limited ground data available, high resolution remote sensing data provides an option 

for large scale mapping of land cover and monitoring of ecosystem services (Koch 2014). 

Remote sensing data can be used for quantifying and mapping ecosystem services in 

three major ways (Figure 2). Firstly, remote sensing-based indicators can be directly 

used to quantify and map ecosystem services (e.g. Krishnaswamy et al. 2009). This 

approach involves identification of ecosystem services' indicators that can be derived 

from image spectra. It requires establishing a link between ecosystem services (e.g. 

biomass provision) and remotely sensed data such as vegetation indices (e.g. NDVI, EVI).

Since there is no direct connection between image spectra and ecosystem services, the 
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approach demands intensive field data collection of indicators of ecosystem services and 

linking them with image spectra through statistical analysis (e.g. regression).  

Figure 2 Commonly used approaches for quantifying and mapping ecosystem services 

using remote sensing data: 1 directly using image spectra 2 and 3 using LULC as proxies.

Secondly, LULC maps derived from classification of remote sensing images are used as 

proxies for ecosystem services. Quantifying and mapping ecosystem services in this case 

is usually done by identifying capacity of the LULC classes to support ecosystem services. 

In the past decade, several researchers used LULC as a proxy for quantifying ecosystem 

services (e.g. Sutton and Costanza 2002, Zhao et al. 2004, Li et al. 2007, Maes et al. 2011, 

Liu et al. 2012). For instance, Maes et al. (2011) quantified and mapped ecosystem 

services of Europe based on key indicators identified from LULC classes. Figure 3 shows 

examples of the relative capacity of some LULC classes as key indicators for quantifying 

and mapping ecosystem services. Obviously, croplands have high capacity for food 

production while they have no contribution for timber production unlike forests (Figure 

3). Following identification of the capacity of LULC classes, spatially-explicit ecosystem 

services maps are produced. Although using LULC classes as a proxy for quantifying and 

mapping ecosystem services is simplistic and requires less data, it has some limitations 
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(Eigenbrod et al. 2010; Tianhong et al. 2010). Classification of remote sensing data 

involves a series of multivariate statistical analyses to obtain discrete classes from the 

images. The thematic level of detail i.e. number of classes of the LULC depends on 

properties of the remote sensing data available and/or selected for classification. The 

accuracy of assessment of ecosystem services thus depends on accuracy of the 

classification. 

Thirdly, the LULC classes derived from remotely sensed data can be used as an input for 

scenario-based quantification of ecosystem services using modelling suits such as the 

InVEST tool (Nelson et al. 2009). Similarly, the accuracy of ecosystem services 

quantified using a modelling tool depends on accuracy of image classification as well as 

the model accuracy that relies on the algorithm, parameters considered, and data used 

for calibration and parameterization.  
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Figure 3 Capacity of land cover classes to support ecosystem services (adapted from Maes et al. 2011) 
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1.2 Objectives 

Studying fragile land cover is essential since it increases awareness and reveals the 

formation mechanism of those lands (Jiang et al. 2011). The combined impact of 

agricultural land expansion and invasive plant species threatens the sustainable supplies 

of ecosystem services. The impact is highly aggravated in fragile lands in steep 

mountainous areas and drylands since the people living in these areas are highly 

vulnerable and have low capacity to respond to environmental hazards. Therefore, 

assessing cover types that are detrimental for sustainable supplies of ecosystem services 

in fragile lands is timely and relevant to recommend solutions for sustainable land 

management.  

The main objective of the dissertation is to assess two major land cover types 

detrimental for ecosystem services in fragile lands of Ethiopia. The main reason why 

Ethiopia was chosen for the case studies is due to the ongoing pressure on fragile lands 

of the country which is triggered by population growth, large-scale agricultural land 

acquisition and problems arising from invasive species. The specific objectives are: i) 

Explore opportunities and challenges of remote sensing applications in assessing 

ecosystem services ii) Map the extent of Prosopis juliflora invasion of the Awash Basin of

Ethiopia and iii) Assess undercover cropland inside forests of the Bale Mountains of 

Ethiopia. To achieve the main goal of the research, three major studies were carried out.  

Study 1 Identifying applications of remote sensing in quantifying and mapping ecosystem services 

Globally, there is a growing interest by decision-makers and scientists to quantitatively 

estimate the benefits of nature to humans. Such quantitative assessments require fast 

and cost-effective tools that enable to generate reliable information at various scales.    

Remote sensing is one of such tools that is recently being realized for their applicability 

in quantifying and mapping ecosystem services (e.g. Krishnaswamy et al. 2009; Feng et 

al. 2010). Remote sensing technologies can thus be highly relevant in large-scale 

assessing of ecosystem services in fragile lands as well as any type of land which is of 

interest. Therefore, exploring the potential in using remote sensing for quantifying and 

mapping ecosystem services is a valuable contribution to the future developments of 

ecosystem services research. This study was mainly geared towards identifying remote 

sensing data and methods that can be used to quantify and map ecosystem services at 
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different scales by systematically reviewing literature in the past.  The major themes in 

this study are listed below. 

 Identify remote sensing data and approaches that are used in quantifying and

mapping ecosystem services;

 Identify important factors that need to be considered in selecting suitable remote

sensing data and methods for quantifying and mapping ecosystem services; and

 Discuss examples of remote sensing applications for quantifying and mapping

ecosystem services and identify research gaps that are relevant to the topic.

Study 2 Prosopis juliflora invasion and its impacts on ecosystem services 

Exotic species are often introduced to a given locality for the benefits they provide to the 

society. However, introduction of a new species not always achieves the intended goals 

since a species could become invasive and threaten supply of ecosystem services. P. 

juliflora is one of such species was introduced to provide ecosystem services (e.g., 

breaks to stop wind erosion), but has widely become invasive in those regions, because 

of its characteristics (e.g. deep rooting system, fast germination and coppicing capacity). 

Thus, it is essential to map invaded areas with remote sensing and assess the potential 

impacts of invasion on ecosystem services. In this study the potential risks of 

introducing a species to new vicinity were explored using P. juliflora invasion in the

fragile lands of the Afar Regional State of Ethiopia as an example. The main focuses of 

this study are: 

 Quantifying & mapping of P. juliflora invasion and assess its temporal dynamics;

 Identify and discuss the impacts of  the invasion on selected ecosystem services;

 Identify the major challenges in the management of P. juliflora invasion and

recommend possible solutions.

Study 3 Undercover cropland inside forests: revealed with remote sensing and field observations  

Being driven by the ever increasing global demand for food, cropland has been largely 

expanding worldwide. Recently, this is an ongoing process especially in tropical and 

subtropical countries particularly in the Sub-Saharan African countries. Large-scale 

agricultural land expansion is taking most of the flat-terrains that are suitable for 

mechanized agriculture which in turn led to shifting of the land that is used by local 

small-scale farmers. Since the produced crop from large-scale farms is mainly for export, 
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small-scale cropland continued to expand to feed the increasing population to the extent 

fragile lands that were previously marginalized are nowadays cultivated.  

Due to desperate need for growing crops new patterns of cropland expansion emerge 

and/or old traditional systems such as agro-forestry are adopted in new areas where 

they were previously not practiced. Where there is restriction in clearing of forest lands 

in mountainous areas, secretly growing of crops inside forests (undercover cropland) is 

becoming a common phenomenon. The hidden (undercover) cropland inside forests are 

not direct replicates of traditional agro-forestry systems since we assume that farmers 

use them just as a point of entry to own a new cropland by gradually and secretly 

degrading the forest which will finally be converted to agricultural land. To ensure 

sustainable resource use and management, understanding the patterns of such complex 

systems and the variables that influence them is essential.    

In this study, the patterns of undercover/hidden cropland inside forests and its 

influential factors were assessed using combination of remote sensing and ground 

surveying data based on a case study site in the Bale Mountains of Ethiopia.  The major 

issues addressed here are: 

 to map the general patterns of cropland in the Bale Mountains of Ethiopia and

identify the hotspots of cropland under forest canopies;

 identify explanatory variables of undercover cropland in the region, and

 discuss the emerging challenges and future prospects of the undercover cropland.

12



1.3 Research questions and hypotheses 

To meet the overall goals of the study, the following research questions were considered 

in each of the individual case studies: 

The three research questions outlined above are inter-linked. Research question 1 was 

used to identify to which extent remote sensing contributes to assessment of ecosystem 

services. The opportunities and challenges in the data availability as well as methods are 

explored based on review of past literature. This was an essential step to define the 

scope of the thesis based on resource and time limitations.  Research questions 2 and 3 

address the detrimental impacts of land cover in drylands and mountainous regions 

respectively. Based on research questions 2 and 3, the following hypotheses were 

defined for the individual case studies. 

Hypothesis 1: Prosopis juliflora invasion of the Awash basin increased over the past

decade and puts pressure on ecosystem services and local people's 

livelihood.  

Hypothesis 2: Topographic parameters such as slope, elevation and aspect as well as

location factors such as distance to settlements and the national park 

influence undercover cropland inside forests in the Bale Mountains of 

Ethiopia.  

Hypotheses 1 and 2 above were tested in studies 2 and 3 respectively. 

1 What are the opportunities and limitations of remote sensing in quantifying and

mapping ecosystem services? 

2 How did Prosopis juliflora invasion of the Awash Basin of Ethiopia changed over the

past decade? 

3 What are the influential factors of undercover cropland inside forests in the Bale

Mountains of Ethiopia? 
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1.4 Study area 

1.4.1 Background 

In sub-Saharan Africa, most of the mountainous and dryland areas are highly fragile i.e. 

subjected to deterioration and show slow recovery after disturbance (Peng et al 2011). 

The majority of the population (65%) in the sub-Saharan Africa is rural poor whose 

livelihood is dependent on agriculture (Palm et al. 2009, Messerli 2012). So far, 

agriculture is the major sector in the economies of many countries in the region (Gibbs 

et al. 2010, Dile et al. 2013, Stevenson et al. 2014). With rapid population growth, 

increasing food production mainly involves increasing the size of arable lands including 

the fragile and marginal areas (Oyekale 2012). Land degradation is often aggravated in 

developing countries of the tropics in general and sub-Saharan Africa in particular 

especially where there is unequal access to the arable land which is suitable for growing 

crops (Gibbs et al. 2010, Anya 2013, Laurance et al. 2014). In the past decades, the sub-

Saharan Africa is highly affected by deforestation and land degradation resulting from 

agricultural land expansion (Palm et al. 2009, Blay 2012, Rudel 2013). 

Ethiopia is one of the oldest sub-Saharan African countries with highly fragile 

mountainous areas and drylands. Most of these fragile lands are highly affected by 

deforestation and land degradation that came mainly from agricultural land expansion. 

Ethiopia has a long history of agriculture with its livestock raring and growing of crops 

through "Ox-plow" tradition which dates back to 500-1000 B.C. (Butzer 1981, McCann 

1995, cf. Bard et al. 2000, Tefera 2011, Assefa and Bork 2014). McCann (1995) stated 

that Cushitic people of the northern highlands invented "Ox-plow" although later it 

became the livelihood base for the Semitic peoples. It later spread to the rest of Ethiopia 

including pastoralist areas such as the Somali, Borana and Kereyu in the late 19th and 

20th centuries (McCann 1995, Zeleke and Hurni 2001). Due to the wide range of agro-

climatic zones, different crops are grown across Ethiopia (Bard et al. 2000). This was 

one of the major reasons for Italiy's failed attempt to colonize Ethiopia in the 1890s with 

the aim of exporting crops to the high food demand in Italy (McCann 1995). Crop and 

livestock production has been the livelihood and economic base for different kingdoms 

of Ethiopia for over 2000 years (McCann 1995, Boardman 1999).  
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During the era of the Axumite Kingdom (today's northern Ethiopia and Eritrea) with its 

capital, Axum, which was founded around 100 A.D., Ethiopia was known with ancient 

civilization and trade across the red sea with the Roman Empire and Ancient India 

(Connah 2013, Phillipson 2012). However, during the 7th and 8th centuries most of the 

agricultural land in the kingdom was highly degraded and rainfall become erratic which 

resulted in reduced productivity. Besides, due to entrance of Islam from the Arabian 

peninsula into the eastern part of Ethiopia, the kingdom become landlocked around 715 

A.D. leading to the decline in trade and eventually downfall of Axum around the 800 A.D.

(Butzer 1981). This later led to shift of power from the northern Ethiopia to the then

fertile humid lands of central Ethiopia (Horvath 1969, Butzer 1981). The tradition of

abandoning degraded lands and shifting to new fertile areas continued to be practiced

by the royal families of the Zagwe and Solomonic dynasties of the northern and central

Ethiopia. The capital cities of the Ethiopian empire have also been wandering depending

on interest of the ruling dynasty until today's stable capital of the unified Ethiopia was

found in 1890 by Emperor Menelik II (Table 1). The continuous movement and

resettlement of the royal families in search of fertile lands for growing crops and raring

livestock contributed to deforestation and degradation in the newly inhabited areas

(McCann 1997) and yet continues to do so.

Table 1 Capitals in Ethiopian history (Taken from Horvath 1969). 
Capital Period 

Axum and neighborhood Unknown date B.C.  ̶ 12th century A.D. 

Lasta capitals 12th century   ̶ 1268 

Teguelat  1268   ̶ 1412  

Roving capitals 1412   ̶  1636 

Gondar 1636   ̶  1755 

Regional capitals 1755   ̶  1855 

Magdella 1855   ̶  1868 

Mekele 1868   ̶  1890 

Addis Ababa 1890   ̶  present 

Land reform during the 19th and 20th centuries has been a central problem of Ethiopia 

that hampered the country's sustainable development and resource management  
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(Lanckriet et al. 2014). Menelik II's occupation and unification of the independent states 

in the southern, eastern and western parts of Ethiopia, secured land tenure rights to the 

royal families of the Solomonic dynasty from the central highlands of Ethiopia. This shift 

in land ownership brought instability among the local farmers who entirely lost their 

land and become tenants which in turn has had impact on the management of land 

leading to increased deforestation and land degradation (Teka et al. 2013). The same 

trend continued also throughout the successor of Menelik II, Emperor Haile Selassie I, 

until the end of the Solomonic dynasty in 1974. During the Derg regime (1974–1991),

land was given back to the peasants who till the soil through "Ox-plow" tradition. 

However, large-scale state-owned farms emerged and occupied vast flat areas suitable 

for agriculture, pushing many small-scale farmers to marginal and fragile lands. Under 

the current EPRDF regime, land is owned by the state which brought even more 

instability among the farmers. Due to rapid population growth (Figure 4a) and less 

developed technology that lasted for three millennia, agricultural land continued to 

expand to fragile marginal lands in the expense of remnants of forests and grazing lands 

(Josephson et al. 2014).  

The Agriculture Development Led Industrialization (ADLI) policy of the current 

government of Ethiopia gave priority to maximizing commodity production from the 

sector (Headey et al. 2014). This is particularly realized over the past decade where 

many foreign investors have leased land for growing crops either by evacuating the 

small scale farmers or granting the sparsely populated pastoralist lands resulting in 

drastic increase of croplands (Figure 4b). The recently ongoing land grabbing to boost 

commercial agriculture raises concerns about its impacts on the local people and 

pressure on fragile lands (De Schutter 2011, Lavers 2012, Woodhouse 2012, Sparks 

2012). Due to the growing global demand for agricultural land by foreign and local 

investors, the poor are usually forced to exploit fragile lands/ecosystems thereby 

accelerating land degradation (Blum and Eswaran 2004, Lambin and Meyfroidt 2011, 

Oyekale 2012, Anya 2013, Headey et al. 2014).  
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As a response to deforestation and land degradation in Ethiopia, introduction of fast 

growing exotic plant species was in the past considered as an alternative solution for 

supplying fuel wood, timber, and soil conservation. Several exotic tree and shrub species 

have been introduced in the 19th and 20th centuries for afforestation across different 

parts of the country (Senbeta et al. 2002, Lemma et al. 2006). This has been part of the 

government policy since 1974 as a solution for rehabilitation of degraded lands and 

boost supply of services such as timber and fuelwood (Poschen-Eiche 1987). Fast 

growing exotic tree species such as Eucalyptus, Cupressus and Pinus are important

components of plantation forestry (cf. Lemma et al. 2006). Some of the introduced 

species are highly adapted to the environment of Ethiopia and become the preference of

the people than the slow growing native species though their impact on the environment 

is a paradox. For instance, in humid climates Eucalyptus plantations are found almost in 

all cities, towns and villages throughout the country.  

In the contrary to the positive aspects, some of the introduced exotic species have 

become highly invasive. Most of the exotic plant species introduced to Ethiopia in the 

past decades have become invasive and threatened biodiversity and ecosystem services  

(Fessehaie and Tessema 2014). The top 10 most influential invasive species in Ethiopia 

are presented in Figure 5.  

Species Most affected ecosystems 
Cultivated 
land 

Road 
side 

Grazing 
lands 

Uncultivated 
lands 

Rural 
villages 

Urban 
areas 

River 
side 

Forest 
areas 

Parthenium hysterophorus 

Prosopis juliflora 

Opuntia ficus- indica 

Opuntia stricta 

Mimosa diplotricha 

Mimosa pigra 

Cryptostegia grandiflora 

Lantana camara 

Acacia drepanolobium 

Acacia saligna 

Figure 5 Top 10 invasive plant species and ecosystems they mostly invade (Source: Fessehaie and 

Tessema 2014) 
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These plant species have invaded large areas in the country. For instance, woody plant 

species Prosopis juliflora has rapidly spread throughout Ethiopia invading wide range of 

habitats (Figure 6). 

Figure 6 Major spreading areas of P. juliflora spreading in Ethiopia (Source: Fessehaie and Tessema 2014)

1. 4.2 Case study sites

The two major case studies in this thesis (Study 2 and Study 3) were carried out in two

separate sites, Baadu-the Awash Basin and the Bale Mountains of Ethiopia respectively.

These sites were selected because they represent fragile lands and land-cover related

problems in two different agro-climatic conditions i.e. the lowland areas and high

altitude mountainous areas.

i. Baadu

Baadu is part of the regional state of Afar and is located in the semi-arid part of  the

middle Awash River Basin of Ethiopia (Figure 7). It comprises an area of approximately

1500 km2 and consists of flat floodplains at an altitude of 500m above sea level

surrounded by upland dryland areas. The average rainfall in Baadu is estimated at 450

mm per annum. According to the definition by Middleton and Thomas (1992) the whole

parts of Baadu (floodplains and drylands) fall under the category of drylands with ratio

of precipitation to evapotranspiration below 0.65. Therefore, in this study, fragile

drylands refer to these two categories of landscapes in Baadu.
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Figure 7 Map of Ethiopia showing case study sites 

The Baadu area was selected as one important study site due to three distinct features. 

Firstly, the area has been of interest to state government in the past and the current 

government for large-scale irrigated agriculture. It has been considered as one of the 

bases for the agriculture-led economic development plan of the government of Ethiopia. 

Irrigation capacity of the Awash River and suitability of the land for mechanized 

agriculture attracts small and large-scale private investors as well as the government 

state farms. Secondly, due to availability of water from the Awash River, the Baadu area 

hosts more than twenty pastoral Afar clans who inhabit Baadu (Rettberg 2010). The 

seasonal inundations of the Awash River make water available year round enabling the 

grasslands of Baadu to serve as dry season pastures and drought retreat for Afar 

pastoralists. Thirdly, a new species, Prosopis juliflora, which was introduced to the area

during 1980s for soil conservation and windbreaks has become highly invasive and 

problematic. P. juliflora is potentially threatening ecosystem services and livelihood of

the Afar pastoralists and is also hindering the progress of small and large-scale 

investment in agriculture. This invasive plant species invaded most of the rangelands as 

well as the abandoned croplands in the flood plains of Baadu. Nowadays, P. juliflora is
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recognized world-wide as an invasive plant species that needs to be carefully managed 

and/or eradicated (Pasiecznik and Felker 2001; El-Keblawy and Al-Rawai 2007). 

Though Baadu is highly important for Afar pastoralists and is an area of high potential 

for irrigated agriculture, the damage caused by the invasive species P. juliflora continued 

to increase. Therefore, the study site is a typical example showing impacts of an invasive 

species in a fragile land shared by pastoralists, agro-pastoralists and irrigated 

agriculture simultaneously.  

ii. Bale Mountains

The study site selected for study 3 is part of the Adaba, Dodola, Asasa and Dinsho

districts of the Bale and Arsi zones of the Oromia Regional State in the Southeastern

Ethiopia (Figure 7). It consists of total area of 2500 km2 with elevation range of 2266 to

4059 meters above sea level and average annual rainfall of 1000-1400 mm. The Bale

Mountains study site was preferably selected due to two major reasons.  Firstly, the area

is characterized by high ecological heterogeneity along various altitude ranges from

valley bottoms to mountain tops (Yimer et al. 2006), which made it source of diversified

ecosystem goods and services for local as well as national beneficiaries. For instance,

provisioning services dominant in the Bale Mountains include supplies of food, water,

timber, fuelwood, and fodder.

Secondly, location of the site makes it an important area that needs focus to find 

solutions for sustainable resource use and management. The site is adjacent to the Bale 

Mountains National Park (BMNP), which is known for its high biodiversity and insitu 

conservation of highly endangered mammals, birds, plants, and amphibians that are 

endemic to Ethiopia. Moreover, since the site is situated at the border of four districts 

mentioned above, it is under continuous pressure coming from growing population of 

the districts. The high population growth in the area increased the food demand by the 

local farmers, nearby villages and towns. The fact that pressure due to cropland 

expansion in this area is threatening the national park and the supplies of ecosystem 

services, makes it an interesting site for assessing the patterns of cropland. 

Therefore, the study site was selected since it represents a fragile area under a 

continuous pressure due to multiple actors and growing population from the 
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surrounding districts with potential threat to ecosystem services and the conservation 

areas.  

1.5 Data and methods 

Study 1 Applications of remote sensing for quantifying and mapping ecosystem services 

In this study, literature was systematically reviewed to assess the applications of remote 

sensing in quantifying and mapping the supplies and demands of ecosystem services. 

The definition of ecosystem services used in this study is the Millennium Ecosystem 

Assessment (2005) that defines ecosystem services as “benefits that ecosystems provide 

to support human well-being”. Ecosystem services were defined based on the TEEB 

classification (TEEB 2010). The review was limited to remote sensing applications in 

quantifying and mapping of selected provisioning and regulatory ecosystem services. 

The other ecosystem services were excluded from this review due to lack of literature 

dealing with such ecosystem services. Articles published from year 1990 to 2011 were 

collected from peer reviewed journals using key words from the ISI Web of Science 

(www.webofknowledge.com) and Google Scholar (www.googlescholar.com) as primary 

search engines. The publications were screened with respect to the ecosystem services 

considered. This review focuses particularly on literature that used remote sensing for 

quantifying and mapping ecosystem services. 

Study 2 Prosopis juliflora invasion and its impacts on Ecosystem services 

Detecting invasive plant species in drylands using remote sensing starts with 

understanding of the characteristics of the species and its seasonal variations in terms of 

aspects such as greenness. P. juliflora has distinct features that differentiates it from

other species in the Baadu area. Unlike other vegetation in the area, it remains green 

throughout the year which makes it easily detectable specially during dry seasons. 

Figure 8 shows the seasonal changes of MODIS NDVI values comparing P. juliflora 

dominated pixels with dry upland vegetation. 
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Figure 8 a) Map showing processing window for pixels located in dry uplands with sparse shrubs and grasses b) Monthly variations of 
MODIS NDVI as an indicator of greenness in the dry upland vegetation c) Map showing processing window for P. juliflora dominated 
pixels d) Monthly variations of MODIS NDVI as an indicator of greenness in the P. juliflora dominated pixels.
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The NDVI values from the P. juliflora dominated pixels remained high over all months 

ranging from about 0.60 in the dry seasons to above 0.8 during wet seasons. Whereas, 

the NDVI values in the dry upland vegetation ranges from 0.10 during dry periods to 

0.50 during wet seasons. With high resolution images, P. juliflora can be identified from 

other wetland vegetations such as croplands and grasslands especially during the dry 

periods. Based on the aforementioned preliminary assessment of the characteristics of P. 

juliflora, images from dry seasons were selected for mapping invasion of the species.   

Classification 

To extract P. juliflora invaded layers from the Landsat ETM+ (30 m) and ASTER (15 m) 

satellite images, maximum likelihood supervised classification provided by Envi 5.0 

software was used. Figure 9 illustrates the difference in spatial resolution between the 

satellite images. 

Figure 9 Example of difference in the resolution of the a) Landsat ETM+ and b) ASTER satellite 

images zoomed near a lake area in Baadu 

Training areas representing different land cover classes were defined using data from 

field observations and Google earth images by digitizing polygon features that 

correspond to pixels in the satellite images. These training areas were used to guide the 

maximum likelihood classifier to classify the images into different land cover classes. 

This method is robust and has been widely used in the past for image classification and 

mapping of land cover (Erbek et al. 2004; Tuia et al. 2011; Behnia et al. 2012). An 

example of separation between P. juliflora and other land cover classes is presented in

Figure 10.
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Maximum likelihood classifier assumes normal distribution for each band and calculates 

the probability that an individual pixel belongs to a given class (Paola and Schowengerdt 

1995; Perumal and Bhaskaran 2010; Tuia et al. 2011). The term 'maximum likelihood' 

thus refers to using the maximum probability as a guideline to assign a pixel to a class. 

Pixels with probability below the set threshold will be left unclassified. In supervised 

classification, pixels are clustered into classes based on user-defined training areas 

(Richards 1999). The training areas (Region Of Interests, ROs) can be defined as 

multiple irregular polygons, vectors, and/or individual pixels. The accuracy of 

classification depends on separability between the ROIs (Oskouei and Busch 2012; 

Zhang et al. 2012). Hence, points within each ROI should be homogenous and tightly 

clustering together to avoid overlap between classes.  

Assessing the impacts of P. juliflora on ecosystem services 

The impact of the invasive species, P. juliflora on ecosystem services was analyzed by 

calculating the area of important land categories (wetlands, agricultural lands & dry 

Figure 10  a) Scatter plot of X (Red) vs Y 
(NIR) bands of ASTER image showing 
separability of different land cover 
classes and b) its corresponding 
highlighted display of the image c) profile 
plot of the Region of Interest for the 
classes. 
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lands) that is invaded by the species. Ecosystem services supplied by the above land 

categories were identified based on the Millennium Ecosystem Assessment, 2005 

ecosystem services classification scheme in order to discuss potential loss of the services 

due to the invasion. For comparison, ecosystem services that can be supplied by P. 

juliflora itself were also identified to discuss potential gains in terms of ecosystem 

services supplies due to introduction of the invasive species in the area. In spite of these, 

the beneficiaries of ecosystem services that are affected by the invasion of P. juliflora 

were identified and discussed. In the end, the pros and cons of P. juliflora invasion were 

assessed and summarized based on the impacts on supplies of ecosystem services and 

the beneficiaries affected. 

Study 3 Undercover cropland inside forests 

Random Forest classification 

For this study, level 3A RapidEye images were used to derive LULC classes for the study 

site. The images were corrected for atmospheric and topographic errors using ATCOR 

2/3 software. Figure 11 shows an example of comparison between the original level 3A 

product and the image corrected for atmospheric and topographic errors.  

Figure 11 a) Rapideye image bands 3-2-1 before atmospheric and topographic correction 

b) after atmospheric and topographic correction using ATCOR 2/3

Random Forest (RF) classification method (Breiman 2001) was used to classify the 

RapidEye images. The method uses bootstrap samples derived from user-defined 

training samples for multiple binary decisions in order to randomly select variables at a 
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each node of trees (Breiman 2001; Genuer et al. 2010). The final classification is thus the 

result of  multiple decision trees (Figure 12).  

Breiman (2001) expressed the RF classification as: 

*h(X, Θk), k = 1, ...} ...........................................eq. 1 where h(X, Θk) stands for the kth 

classifier, the * Θk } are independent identically distributed random vectors generated

for the kth tree grown using the training set. X  is an input vector for which a class is 

voted by each tree. The classification process involves random selection of input 

variables (mtry) at each node of the trees (ntree)  to calculate the best split within this

subset (Genuer et al. 2010; Gislason et al. 2006; Rodriguez-Galiano et al. 2012; Zhu et al. 

2012 ). In Figure 12 the ends of tree1, tree2,... treen result in decision for k1, k2, ...kn which 

are later used in voting class k.  

Since its introduction by Breiman (2001), it become highly popular and has been a 

widely used statistical method for classification (Biau et al 2012; Genuer et al. 2010). 

The RF method was preferably used for classification due to its multiple advantages 

over other classification approaches. For instance, Pal (2005) compared RF classifier 

with Support Vector Machines (SVMs) and found that R F requires less number of user 

defined parameters while it provides a comparable accuracy within similar training time 

with SVMs. The random selection of subsets of input variables minimizes correlation 

between classifiers (De’ath 2002; Rodriguez-Galiano et al. 2012). Gislason et al. (2006) 

stated that RF is able to handle large datasets since it is not sensitive to noise or 

overtraining. Besides, it provides estimates of relative importance of variables used in 

classification including the interaction between them (Rodriguez-Galiano et al. 2012; 

Zhu et al. 2012). Moreover, RF provides an option for internally estimating classification 

error (Breiman 2001; Rodriguez-Galiano et al. 2012). 
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 Figure 12 An example of a Random Forest classification tree structure (based on Breiman 2001). Numbers k values 1,2 ... 23 represent land cover classes. 

28



Validation of the satellite image classification 

The results of the satellite image classification were validated using three sets of data: 

high resolution Google earth images, reference LULC classes recorded at the centre of 

sample plots and GPS photos taken in North, East, West and South (NEWS) directions 

from the centre point. The GPS photos were converted to points using QGIS 2.0.1 

software and LULC classes were identified on the photos. The GPS photos were merged 

with the sample points to validate the results of the image classification. The details of 

the steps used in the validation are provided in chapter 3 and 4. 

Boosted Regression Trees 

To identify influential variables for cropland area in the study site, Boosted Regression 

Trees (BRTs), a method for fitting statistical models was used (Leathwick et al. 2006; 

De'ath 2007; Elith et al. 2008). BRTs are combinations of algorithms of regression trees

and boosting. Regression trees are models that use recursive binary splits to relate a 

response to their predictors while boosting is an adaptive method that improves 

predictive performance by combining multiple simple models (Elith et al. 2008). Thus, 

Boosted Regression Trees can be considered as an additive regression model that 

undergoes forward stagewise fitting without changing existing trees when the model 

enlarges (De'ath 2007). An example of BRTs decision tree structure is provided in 

Figure 13. 
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Figure 13 An example of decision trees with responses Yn, predictors variables, Xm and split points tk (based on Elith 2008). A single decision tree consists of

response Yn and predictor Xm and split point tk where n is the number of response, m stands for the number of predictor variables and k is the number of split 

points.   
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1.6 Results and discussion 

1.6.1 Remote sensing applications for quantifying and mapping ecosystem services 

The review of remote sensing applications in "quantifying and mapping ecosystem 

services supplies and demands" provided the following insights. Quantifying ecosystem 

services using remote sensing requires establishing a theoretical link between the 

remote sensing data and the ecosystem in interest. However, there is no direct link 

between images and an ecosystem service. Hence, only proxies can be used to estimate 

ecosystem services (e.g. Carbon storage) based on indicators derived from remote 

sensing data. Remote sensing systems vary in their properties which make selection of 

the sensor system and the methodological prerequisites for deriving proxies of 

ecosystem services (Eigenbrod et al. 2010). The scale at which ecosystem services are 

quantified depend on the spatial, temporal, spectral and radiometric resolution of the 

remotely sensed data (Andrew et al. 2014). Even though indicators for extensive areas 

can be defined based on operationally available data and well-established methods, 

indicators useful for exact quantification of ecosystem services can be only derived 

experimentally at local scale.  

Quantifying and mapping proxies of ecosystem services using remote sensing involves 

uncertainties that come from intrinsic sources of errors such atmospheric influences, 

geometric distortions and drifts in the calibration coefficients of the sensors. Though 

these sources of errors can be corrected to a certain degree, there will still be errors 

resulting from the statistical model used to establish link between an ecosystem services 

parameter (e. g. standing biomass) and the remote sensing data resulting in uncertainty 

of the final results. In general, the success in quantifying and mapping ecosystem 

services using remote sensing depends on the sensor types, resolution, and financial as 

well as technical capacity. Moreover, there are uncertainties involved when using 

remote sensing data for quantifying and mapping ecosystem services and they need to 

be identified and managed.  

1.6.2 Prosopis juliflora invasion and its impacts on ecosystem services 

In this section, the results of the analysis of P. juliflora invasion of Baadu, located in the 

Awash River Basin of Ethiopia, are highlighted. Even though P. juliflora was  introduced 

to the area as an ecosystem engineer mainly for regulating soil erosion, it invaded lands 
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that are crucial in supplying ecosystem services. The species continuously spread to new 

un-invaded areas and dense coppices of P. juliflora emerged after previously invaded 

areas were cleared. Trends in the invasion of P. juliflora in the past decade showed 

drastic increment in the invaded area of wetlands (flood plains) and agricultural lands 

(Figure 14). In the year 2000 from the 45000 ha total area of wetlands, 3600 ha was 

invaded which amounts to 8 % of the wetlands area. The invaded area increased to over 

8000  ha in 2005 making the proportion of invaded area of wetlands about 18 %. In the 

year 2010 more than 13600 ha area (30 % of wetlands) was invaded. Analysis of the 

invasion in 2013 showed that 20000 ha of wetlands (40 % of the total area of wetlands) 

was invaded. 

Figure 14 P. juliflora invasion over the last decade (year 2000 to 2013). 

The area of drylands that is invaded by P. juliflora in the year 2000 was 60 ha which 

comprises < 1 % of the total area of 207000 ha. The invaded area was 20 ha in year 

2005 while it increased to 490 ha and 2500 ha in the years 2010 and 2013 respectively 

with proportion of invaded area still < 1 % of the total area of drylands. Invaded area of  

irrigated agriculture  land was 2 ha in the year 2000 (< 1 % of the total area of irrigated 

agriculture in the year 2000). It further increased to 76 ha, 166 ha and 327 ha in the 
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years 2005, 2010 and 2013 respectively. The proportion of irrigated land invaded in 

these years ranges from 2-4 % of the total area of irrigated land during the same time 

period.  

The findings demonstrated that wetlands of Baadu are the most affected with P. juliflora 

invasion and yet are the most useful sources of ecosystem services on which the 

livelihood of the Afar pastoralists depends on. The most threatened ecosystem services 

include provisioning services such as food and fodder, water, and loss of native tree 

species that supply timber, fuelwood and charcoal. The impacts of P. juliflora on the 

livelihood of people vary among different user groups such as mobile pastoralists, small-

scale agro-pastoralists and large-scale farmers. 

1.6.3 Undercover cropland inside forests 

In the Bale Mountains of Ethiopia, cropland was found as an undercover inside the 

remnants of forests forming a belt in the upper escarpments though there is no 

undercover cropland in the upper most extremes of the site. Field observations 

confirmed that this belt is dominated with J. procera trees. The area of cropland per

pixel of 250 m resolution grid ranges from 0 to 6 hectares. Cropland was observed inside 

J. procera forests including very steep terrains that were entirely covered with forest 

and/or with some open areas that were meadows previously used for livestock grazing. 

The undercover cropland forms vertical strata with cropland as an undergrowth and J. 
procera being the upper canopy. As it was observed in the field, the major crop 

cultivated inside the J. procera forest is wheat due to the high market demand for wheat 

and provision of improved seeds and fertilizer by government due to its recent plan to 

improve crop production. 

The relative influence of different factors on undercover cropland area calculated from 

RapidEye images and field estimated percent cover was assessed using BRTs. The 

results of the BRTs model fitting demonstrated that the highly influential factors for 

undercover cropland area are elevation, distance to settlements, slope, East Aspect and 

distance to national park. Among all the factors tested the most influential is elevation 

which contributed to the highest values of deviance explained by the BRTs model. 

Undercover cropland area showed increment with increasing elevation, slope, distance 
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to major settlements while it decreases with increasing distance from the national park. 

However, after certain limit the graph remains constant with a value of 0 showing that 

there is no undercover cropland above such limits. Similar patterns of the relationships 

between aspect and undercover cropland area were observed. 

Finally, the details of the analysis, the results, discussion and specific conclusions of 

studies 1, 2 and 3 are presented in the manuscripts listed in section 1.7 and included in 

chapters 2 to 4 respectively. The research questions and hypotheses presented in 

section 1.3 are addressed by the first three manuscripts listed in section 1.8 below. 
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1.7 List of manuscripts and specifications of individual contributions 

Manuscript 1 

Title: Quantifying and mapping ecosystem services supplies and demands: a 

review of remote sensing applications. 

Author(s) Yohannes Ayanu, Christopher Conrad, Thomas Nauss, Martin Wegmann 

and Thomas Koellner 

Journal Environmental science & technology 

Status published 

Individual contributions: 

Yohannes Ayanu Major contributions to study design, methods, data collection, 

data analysis, discussion, manuscript writing and editing 

(corresponding and first author) 

Christopher Conrad Minor contributions to study design, methods, discussion and

manuscript editing 

Thomas Nauss Minor contributions to study design, methods, discussion and 

manuscript editing 

Martin Wegmann Minor contributions to study design, methods, discussion and 

manuscript editing 

Thomas Koellner Minor contributions to study design, methods, discussion and 

manuscript editing 
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Manuscript 2 

Title: Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem 

services? 

Author(s) Yohannes Ayanu,  Anke Jentsch, Detlef Müller-Mahn, Simone Rettberg, 

Clemens Romankiewicz and Thomas Koellner 

Journal Regional Environmental Change 

Status published 

Individual contributions: 

Yohannes Ayanu Major contributions to study design, methods, data collection, 

data analysis, discussion, manuscript writing and editing 

(corresponding and first author) 

Anke Jentsch Minor contributions to study design, methods, discussion and 

manuscript editing 

Detlef Müller-Mahn Minor contributions to study design, methods, discussion and

manuscript editing 

Simone Rettberg Minor contributions to study design, methods, discussion and 

manuscript editing 

Clemens 

Romankiewicz 

Minor contributions to study design, methods, data collection, 

data analysis, discussion and manuscript editing 

Thomas Koellner Minor contributions to study design, methods, discussion and 

manuscript editing 
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Manuscript 3 

Title: 

Author(s) 

Journal 

Status 

Unveiling undercover cropland inside forests using landscape 

variables: a supplement to remote sensing image classification.

Yohannes Ayanu, Christopher Conrad, Anke Jentsch and Thomas 

Koellner 

PLoS One 

resubmitted after revision 

Individual contributions: 

Yohannes Ayanu Major contributions to study design, methods, data collection, 

data analysis, discussion, manuscript writing and editing 

(corresponding and first author) 

Christopher Conrad Minor contributions to study design, methods, discussion and

manuscript editing 

Anke Jentsch Minor contributions to study design, methods, discussion and 

manuscript editing 

Thomas Koellner Minor contributions to study design, methods, discussion and 

manuscript editing 
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List of manuscripts written during the study but are not part of the PhD thesis. 

Title: Crop production versus surface water regulation services: assessing 

trade-offs for land use scenarios in the Tat Hamlet Watershed of 

Vietnam. 

Author(s) Yohannes Ayanu, Carsten Marohn, Thanh Nguyen and Thomas Koellner 

Journal International Journal of Biodiversity Science, Ecosystem Services & 

Management 

Status published 

Title: Weakening the Brazilian legislation for forest conservation has severe 

impacts for ecosystem services: A case study from the Atlantic Southern 

Forest.   

Author(s) Gisele Alacorn, Yohannes Ayanu, Alfredo Fantini, Joshua Farley, Abdon 

Schmitt Filho and Thomas Koellner 

Journal Land Use Policy 

Status accepted 
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ABSTRACT: Ecosystems provide services necessary for the
livelihoods and well-being of people. Quantifying and mapping
supplies and demands of ecosystem services is essential for
continuous monitoring of such services to support decision-
making. Area-wide and spatially explicit mapping of ecosystem
services based on extensive ground surveys is restricted to
local scales and limited due to high costs. In contrast, remote
sensing provides reliable area-wide data for quantifying and
mapping ecosystem services at comparatively low costs, and
with the option of fast, frequent, and continuous observations
for monitoring. In this paper, we review relevant remote sensing
systems, sensor types, and methods applicable in quantifying
selected provisioning and regulatory services. Furthermore,
opportunities, challenges, and future prospects in using remote sensing for supporting ecosystem services’ quantification and
mapping are discussed.

■ INTRODUCTION

Many landscapes worldwide show mixed patterns of natural
ecosystems and intensively managed and anthropogenically
modified land cover, e.g. agricultural land and urban settlement,
from which human well-being is supported.1,2 To optimize
between nature conservation and management of ecosystems
for various uses, decision-making should be based on concrete
information about the potential and actual timely benefits ob-
tained from different ecosystems.3−6 Quantifying and mapping
ecosystem services is therefore necessary to periodically deter-
mine the response of ecosystem processes and the services to
global change, e.g. climate and land cover change.7−14 Moreover,
continuous monitoring of ecosystem services is crucial in nature
conservation.15−20

To achieve efficient monitoring of ecosystem services, fast
and low-cost tools that provide reliable information are needed.
For such applications remote sensing provides single scene and
frequent multitemporal data.21−24 Remote sensing has
advantages in that it enables large scale mapping of ecosystem
services with relatively low cost. In addition, remote sensing is a
useful source of data for areas inaccessible for ground surveying.
It provides consistent time series of data and real-time data for
monitoring ecosystem services. Therefore, exploring historical,
present, and future development of remote sensing applications

is useful within the context of monitoring ecosystem services. A
few authors attempted to review the trends of remote sensing
applications in quantifying and mapping ecosystem services.3,4

However, a more systematic analysis showing the remote sensing
systems and methods suitable for quantifying specific ecosystem
services remains unaddressed.
In this article, we review the application of remote sensing in

quantifying and mapping the supplies and demands of eco-
system services. Following this introduction, the scope of this
study and the methods used for literature selection are described.
Furthermore, we give an overview of remote sensing approaches
commonly used in quantifying and mapping ecosystem services.
We discuss also important factors that need to be considered in
selecting suitable remote sensing techniques for quantifying
ecosystem services. Afterward, examples of remote sensing ap-
plications will be presented and we conclude with the identi-
fication of research gaps related to this topic.

Scope of the Review. The term “ecosystem service” has
been used interchangeably with concepts like ecosystem functions,
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environmental services, ecological functions, and environmental
functions.5,6 In this article we adopt the definition by Millennium
Ecosystem Assessment that defines ecosystem services as
“benef its that ecosystems provide to support human well-being”.1

We used the TEEB classification7 as a basis to identify the
ecosystem services. In TEEB classification, provisioning services
include food, water, raw materials, and genetic, medicinal, and
ornamental resources. Regulatory services include regulation of
air quality, climate, erosion, water quality, soil fertility, extreme
events, water flows, pollination, and biological control. Other
ecosystem services in TEEB classification are habitat services
like maintenance of life cycles of migratory species (e.g., nursery
services) and maintenance of genetic diversity (e.g., gene pool
protection). The fourth category of ecosystem services in TEEB
classification is the cultural and amenity services like aesthetic
information, opportunities for recreation and tourism, inspira-
tion for culture, art and design, spiritual experience, and provision
of information for cognitive development.
Due to availability of a sufficient number of publications in

the past decades that proved suitability of remote sensing for
their quantification and mapping, we focus on the provisioning
services (timber and food production) and regulatory services
(air quality, climate, extreme events, waste treatment, erosion,
and soil fertility). On the other hand, ecosystem services like
“Maintenance of genetic diversity” are excluded because the
topic of biodiversity alone is too wide to include in this type of
review where our ultimate goal is to enlighten readers with the
possibilities of using remote sensing for quantifying and map-
ping ecosystem services. The indicators used for quantifying
the ecosystem services, suitable remote sensing data sets, and
the relevant methods are identified and discussed. Within the
aforementioned groups of ecosystem services, only those indi-
cators which were reported to be quantifiable with remote sens-
ing are selected for this review. For more details, please refer to
the Supporting Information (SI) Tables S1 and S2.
Literature Selection. The articles were mainly collected

from peer reviewed journals using the ISI Web of Science (www.
webofknowledge.com) and Google Scholar (www.googlescholar.
com) as primary search engines. The year 1990 was taken as a
starting point for the search and relevant literature was retrieved
until the year 2011. Keywords used in searching the databases
included “ecosystem services”, “quantifying and mapping eco-
system services”, “ecosystem assessment”, “modeling ecosystem
services”, “remote sensing of ecosystem services”, “remote
sensing indices”, “remote sensing of ecosystems”, “radiative
transfer models”, “proxy-based methods for quantifying
ecosystem services”, and “methods for quantifying and mapping
ecosystem services”. Besides these, to account for the fact that
many studies were not conducted in the explicit context of
ecosystem services, more specific keywords like “carbon mapping”,
“biomass estimation”, “flood risk mapping”, “quantifying erosion”,
“soil fertility mapping”, and “water quality assessment” were used.
From a total of 548 studies identified between 1990 and

2011, we selected 297 papers that are primarily relevant to
remote sensing applications in quantifying ecosystem services.
The publications were screened with respect to the ecosystem
services considered. Figure 1 presents the breadth of the
literature in the past two decades for quantifying various types
of ecosystem services although the term “ecosystem services”
was not directly used. This review focuses particularly on
literature that used remote sensing for quantifying and mapping
ecosystem services. Part of the literature was used in this article

and the remaining articles can be found in the Supporting
Information.

■ REMOTE SENSING-BASED APPROACHES FOR
QUANTIFYING ECOSYSTEM SERVICES

Remote sensing can be defined as “the art and science of
acquiring information about an object without being in direct
physical contact with the object”.8 Hence, remotely sensed infor-
mation is usually a physically more or less direct measurement
of the properties of an object through its interference, i.e.
scattering, reflection, and absorption/emission with electro-
magnetic radiation as the primary carrier of the information
signal. A detailed introduction to remote sensing is beyond the
scope of this review and the reader is referred to ref 8.
In general, the quantification of ecosystem services is a 2-fold

indirect procedure. The remotely sensed information is used as
a proxy for some kind of variable (e.g., biomass) which in turn
is used as a proxy for the actual ecosystem service (e.g., carbon
storage). Based on the literature selected, two categories of
commonly used approaches can be identified for deriving
biophysical variables like biomass.4 The first category directly
uses the remotely sensed radiation signal and includes statistical
regressions and/or radiative transfer models. The second
approach uses remote sensing data to generate land use/land
cover classifications which are subsequently linked to ecosystem
services and also serve as input layers within biophysical models
of ecosystem services.

Regression Models. In this type of approach, the quanti-
fication of ecosystem services is achieved by linking remotely
sensed information to a limited number of in situ observations
using semiempirical linear or nonlinear regression models.9−12

For example, vegetation indices derived from the near-infrared
and red proportion of the electromagnetic spectrum can be
linked to in situ biomass measurements to derive a proxy for
timber production.13 Irrespective of the regression type, the
statistical relationship between the sensor signal and the data
derived from field observations is affected by the sensor
characteristics like spectral, spatial, and temporal resolution (cf.
14). Moreover, multiple boundary conditions like time of the
day and year, actual state of ecosystem components, and the
atmosphere also affect the statistical relationship and reduce its
validity for monitoring and spatial transfers to other study areas
(cf. 14).

Figure 1. Identified literature between years 1990 and 2012 that used
remote sensing for quantifying ecosystem services and their indicators.
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Radiative Transfer Models. Unlike the empirical relations
just mentioned above, canopy radiative transfer models allow a
physically more direct derivation of biophysical parameters.
They describe the interaction of electromagnetic radiation with
atmospheric and land-cover constituents like aerosols, clouds,
gases, canopy leafs, and soil surface, and account for scattering,
absorption, and emission characteristics.15,16 Neglecting atmos-
pheric influences, the sensor signal can be modeled as a func-
tion of the sensor characteristics and sampling conditions, and
the physical or biochemical plant canopy properties like leaf
density and photosynthetic physiology. In addition, the pro-
perties of the underlying earth surface, namely the soil char-
acteristics and the understory vegetation patterns (cf. 14) can
be taken into account. The proxy variables are finally derived
from an inverted radiative transfer approach, i.e. by iterating the
vegetation parameters used within the radiative transfer model
to align the modeled sensor signal to the actual remotely sensed
measurements.36−38 Radiative transfer models are affected by
our understanding of vegetation, land processes, and their
interaction which increases uncertainty in the robustness and
accuracy of ecosystem services quantification.17 The lack of a
priori knowledge about land cover and phenology also hampers
the retrieval of biophysical and biochemical variables useful for
quantifying ecosystem services like timber biomass.18

Land Use/Land Cover. Land use/land cover has been
widely used as a proxy for the quantification and mapping of
ecosystem services. This mostly involves assigning of ecosystem
services values to the different land use/cover types.6,19,20

Remote sensing provides useful data for land use/land cover
classification. The classification techniques involve a series of
multivariate statistical analysis to obtain discrete classes from
the remotely sensed data.21 Mostly supervised classification is
used and its accuracy depends on the training areas set. The
thematic level of detail, i.e. number of classes of the land use/
land cover, depends on properties of the remote sensing data
available and/or selected for classification.22 The accuracy of
quantification of ecosystem services thus depends on the ac-
curacy of the classification and the number of the land use/
cover classes.23

Provision of Input Data for Biophysical Models.
Remote sensing provides valuable input data for biophysical
models that are used for the subsequent simulation of eco-
system services. Biophysical models provide an explicit con-
nection between ecosystem services to be quantified and the
remotely sensed parameters. For instance, the Integrated Valuation
of Ecosystem Services and Trade-offs (InVEST) is one of these
tools used for quantifying and mapping ecosystem services like
carbon storage, sediment deposition, pollination, timber, and
water purification.24 InVEST requires area-wide information
on land use/land cover, evapotranspiration, precipitation, and
topography which can be derived from remote sensing data.25,26

The parameterization of InVEST undergoes assigning of num-
erical data to different land use/cover types. For instance,
carbon model uses above-ground, below-ground, dead organic
materials, and soil carbon pool data as an input for quantifying
carbon storage and sequestration which varies with the land
use/cover types.27 Similarly, land use/cover is used as an input
in mapping pollination services because different land use/
cover types have different nesting and flowering potential.27

Though multiple ecosystem services can be quantified and
mapped using biophysical models, this is limited by the complexity
and accuracy of the models.28

■ SELECTING SUITABLE REMOTE SENSING
TECHNIQUES AND APPROACHES FOR
QUANTIFYING AND MAPPING ECOSYSTEM
SERVICES

The properties of remote sensing systems vary significantly
among each other making selection of the sensor system and
the optimal methodology prerequisites for an accurate de-
lineation of the proxies for ecosystem services. For instance,
many indicators can be delineated for extensive areas within a
clearly defined range of uncertainty based on operationally
available data and well-established methods.29 Other indicators
useful for exact quantification of ecosystem services can be only
derived experimentally at local scale.
The success of remote sensing application therefore depends

on careful selection of the data from which the relevant
parameters are derived for the chosen indicators of ecosystem
services.30 Some of the factors that need to be considered while
choosing suitable remote sensing systems and approaches for
quantifying and mapping ecosystem services are presented in
Table 1 and discussed in this section.

Resolution. The properties of remote sensing systems can
be described by their spatial, temporal, spectral, and radiometric
resolution. Spatial resolution refers to the area of ground
observed with a picture element, i.e. pixel, and determines the
level of details captured by the image.30 Due to calculation time
and storage requirements, the potential size of the study area
generally decreases with increasing spatial resolution and vice
versa. Very high (pixel size below 30 m) and high (pixel size
below 1000 m) resolution sensors are therefore typically used
for an in-depth analysis of areas below 100 km2 which is sub-
sequently referred to as landscape scale. Medium resolution
sensors (pixel size up to 1 km) are typically used for larger
regions like subcontinental areas and define the data source
for regional scale analysis. Finally, low resolution sensors
(pixel size around and above 1 km) form the basis for global
scale analysis.
The temporal resolution of a system indicates how often the

sensor records imagery from a particular area.30,31 For instance,
geostationary sensors like the Meteosat system offer a temporal
resolution of 15 min. Polar orbiting platforms have much lower
temporal resolutions, typically in a range between days and
weeks or even months. The temporal resolution of polar or-
biting platforms can be enhanced if the swath width, i.e. the
width across-flight scan line, is increased which in turn generally
decreases the spatial resolution. The spectral resolution is char-
acterized by the number of specific wavelength intervals of the
electromagnetic spectrum to which the sensor is sensitive.8

Such wavelength intervals are also referred to as channels or
bands. The radiometric resolution describes sensitivity of the
sensor and quantifies the accuracy at which the incoming radiation
can be recorded.32

The quantification of ecosystem services is limited by the
respective resolution of the remote sensing system. While
multispectral data (e.g., Landsat, MODIS) have been widely
used (see Table 2 and SI Tables S1 and S2), the retrieval of
some variables is limited by the rather poor combination of
spatial and spectral resolution.33 Thus, utilizing high resolution
hyperspectra, radar and LiDAR sensors would be desirable.
With respect to the current status of these sensors, the deri-
vation of ecosystem parameters such assoil clay mineralogy,34

belowground biomass,35 or water quality indicators like
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chlorophyll-a content, nitrogen, and phosphorus loading36,37 is
primarily restricted to experimental landscape scale studies.
Sensor Types. Two types of sensors can be distinguished,

active and passive sensors. They can be mounted on platforms
on the ground, airplanes, or satellites.

Passive Sensors. These are sensors that receive radiation
emitted from an external source such as reflected sunlight and
emitted thermal radiation from the earth. Most passive sensors
are optical systems, i.e. multispectral, which record data with a
small number of broad bands, or hyperspectral, which record a

Table 1. Commonly Used Sensors and Their Key Attributes with Respect to Scale of Application, Costs, and Availability by
Remote Sensing Typea

satellite/sensor
sensor
typec

spatial
resolution

number
of bands

temporal
resolution

revisit
time in
daysd

maximum swat
width at nadir

(km)
scale of

applicationf costs availability source

passive

multispectral

SeaWiFS SB 4.5 km, 1.1
km

8 16 days daily 2801 R−G yes 1997--- http://oceancolor.gsfc.nasa.gov/
SeaWiFS/

SEVIRI SB 3 km, 1 km 12 15 min daily 2330 R−G yes 2002--- http://www.esa.int/msg/pag4.
html

NOAA
−AVHRR-
1(2,3)

SB 1.1 km 4 (5,6) daily 1−2 2800 R−G free 1978---(1981,
1998)

http://edc2.usgs.gov/1KM/
avhrr_sensor.php

SPOT VGT SB 1 km 4 26 days 2−3 2200 La−R free 1998--- http://www.spot-vegetation.com/

Terra/Aqua
MODIS

SB 1 km, 500
m, 250 m

36 daily 1−2 2330 R−G free 1999/2002--- http://modis.gsfc.nasa.gov/

Terra MISR SB 275 m 4 9 days 2−9 360 La−G yes 1999--- http://www-misr.jpl.nasa.gov/

Landsat MSS SB 80 m 4 16 days 16 185 La−G free 1972−1992 http://landsat.gsfc.nasa.gov/
images/

Landsat TM SB 30 m 7 16 days 16 185 La−G free 1984--- http://landsat.gsfc.nasa.gov/
images/

Landsat ETM+ SB 15−60 m 8 16 days 16 185 La−G free 1999---2003b http://landsat.gsfc.nasa.gov/
images/

ASTER SB 90 m, 30 m,
15 m

14 4−16 days 16 60 La−G yes 1999--- http://asterweb.jpl.nasa.gov/

IRS LISS-III SB 23.5 m 4 24 days 24 140 La−R yes 1995--- http://www.isro.org/satellites/
allsatellites.aspx

SPOT 1, 2, 3 SB 20 m, 10 m 4 26 days 2−3 2200 La−R yes 1986--- http://www.spotimage.com/web/
en/1285-spotmaps.php

SPOT 4 SB 20 m, 10 m 5 26 days 2−3 2200 La−R yes 1998--- http://www.spotimage.com/web/
en/1285-spotmaps.php

SPOT 5 SB 10 m, 5 m,
2.5 m

5 26 days 2−3 2200 La−R yes 2002--- http://www.spotimage.com/web/
en/1285-spotmaps.php

RapidEye SB 5 m 5 1−5.5
days

daily 77 La−R yes 2009--- http://www.rapideye.de/

IKONOS SB 4 m 4 3−5 days 3 11 La−R yes 1999--- http://www.satimagingcorp.com/
satellite-sensors/ikonos.html

QuickBird SB 2.44 m,
2.88 m

4 1−3.5
days

1−3.5 16.5 La−R yes 2001--- http://www.satimagingcorp.com/
satellite-sensors/quickbird.html

hyperspectral

EO-1 Hyperion SB 30 m 220 16 days 16 7.5 La−G yes 2001--- http://eo1.gsfc.nasa.gov/

ER-AVIRIS AB 20 m 224 flight per
request

NA 10.5 La−R yes 1987--- http://geo.arc.nasa.gov/sge/
coral-health/airborne_missions

HyVista-HyMap AB 10−2 m 126 flight per
request

NA 18 La−R yes 1998--- http://www.hyvista.com/

HyEurope-
HyMap

AB 10−2 m 126 flight per
request

NA 18 La−R yes 2009--- http://www.hyvista.com/

CASI (1−3) AB 2−1 m 288 flight per
request

NA 2 La yes 1990--- http://arsf.nerc.ac.uk/
instruments/casi.asp

ERS-SAR SB 30 m 2 (L, C) 3,35,
336 days

35 80.4 La−R yes 1995--- http://earth.esa.int/ers/
instruments/sar/

active

radar, LiDAR

TerraSAR-X SB 1 m, 2 m, 3
m, 18 m

1 (X) 11 days 2 100 La−R yes 2007--- http://www.spotimage.com/web/
en/684-terrasar-x.php

ICEsat/GLAS SB 175−76 m 2 (L, C) 8, 91,
183 days

33 NA G yes 2003--- http://nsidc.org/data/icesat/

aThe resolution in space (spatial) and time (temporal) as well as spectral resolution (number of bands) vary among the sensors. The area coverage
(spatial extent) determines the scale of application and also varies among sensors. bSince 2003 malfunction, serious quality problems. cSB =
Spaceborne, AB = Airborne. dNA= Not applicable. The air craft can fly any convenient time as per request for data. eL = Limited area coverage, M =
medium area coverage, W = wide area coverage. fLa = Landscape, R = Regional, G = Global, La−R = Landscape to regional, La−G = Landscape to
global, R−G = Regional to global.
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large number of narrow spectral bands. Various multispectral
systems are designed to provide data with high spatial re-
solution but limited area coverage (e.g., ASTER, SPOT) or
moderate spatial resolution but global coverage within one or
two days (e.g., AVHRR, MODIS). However, since many of
the technically advanced systems have been launched just
recently, they are inappropriate for long time series analysis.
The only exceptions are the Landsat and NOAA-AVHRR
sensor families which were launched in the early 1970s, and
for which data are continuously stored in cost-free archives per-
mitting easy access.38

Compared with multispectral sensors, hyperspectral sensors
provide more details on the type and state of the observed
ecosystems.39,40 However, their potential is not yet fully ex-
ploited because most of these sensors are in an experimental
stage and mainly mounted on airplanes making the data acqui-
sition rather expensive. In addition, although the spatial reso-
lution is very high, up to <1 m, they have limited area coverage.
With respect to spaceborne systems, there are only a few ex-
perimental instruments available yet which provide hyperspectral
near real-time data with an acceptable aerial coverage at land-
scape scale.41,42

Active Sensors. Active sensors include radar and laser scan-
ners that are emitting signals and receiving the backscattering
electromagnetic radiation. Under extreme weather and dense
vegetation conditions, radar is a prime alternative for optical
systems43 due to the potential to penetrate clouds, haze, and
vegetation canopy.44 Radar can reach into the upper few centi-
meters of soils though intensive data processing techniques are
required.45 Besides radar, LiDAR has proved to be very pro-
mising for mapping vegetation parameters but so far, these
sensors are primarily airborne which results in the same limita-
tions as mentioned for the hyperspectral sensors.46 However,
these restrictions can be overcome by spaceborne laser scanners
which are emerging just recently.47

Most often different sensors are combined for quantification
of ecosystem services. Nevertheless, this approach is com-
plicated since it involves combining categorical data with dif-
ferent projections and different grids with different or the same
pixel size. Moreover, often data of different years are combined,
which is not always easy as land conversion happens all the
time.
Uncertainty. Even though remote sensing provides a prime

alternative for quantifying and mapping ecosystem services,
uncertainties have to be considered. The primary intrinsic sources
of errors are atmospheric influences, geometric distortion, and
drifts in the calibration coefficients of the sensors. While these
influences can be corrected to a sufficient degree, errors related
to the retrieval model, e.g. statistical relationships between vegetation
indices and ecosystem parameters like biomass production are
much harder to quantify, and the error propagation within the
retrieval approach has to be investigated.48,49

Image classification itself is also a potential error source,
because the spatiotemporal variability of biophysical measures
cannot be fully reflected within the classes and this affects the
accuracy of land use based approaches for quantifying ecosystem
services.62−64 Though input data for biophysical models can be
derived from remotely sensed images, the estimation of eco-
system services is affected by accuracy of the data besides the
model uncertainties and magnitude of errors during parameter-
ization and calibration.23

In general, sufficient knowledge about the magnitude of
errors or uncertainties in the data, approaches, and processing

methods is necessary for reliable quantification of ecosystem
services. Therefore, in situ measurements are needed for valida-
tion when using remote sensing data.50 Quality information
assigned to biophysical parameters like the standardized MODIS
products on global scale,51 are helpful for corrections and adap-
tations prior to the analysis.

Financial and Technical Capacity. Remote sensing data
acquisition and processing requires financial, technological,
and professional capacity. Even though there are some freely
available data sets (see Table 1), the quantification of broad
categories of ecosystem services cannot be achieved with these
data sets alone. Acquiring the commercially available satellite
images (e.g., QuickBird) incurs higher costs52 which also ap-
plies to the current hyperspectral, RADAR, and LiDAR sensors.39

Data acquisition from these sensors is usually upon request by
the users which creates inconvenience in obtaining data from a
specific area (see Table 1). Besides the acquisition, processing
and analysis of data like hyperspectral images demands a very
high technical capacity and computers with storage capacities
up to tens of Terrabytes or even Petabytes.53

■ APPLICATIONS OF REMOTE SENSING FOR
QUANTIFYING AND MAPPING ECOSYSTEM
SERVICES

Quantifying Supplies of Provisioning Services. Remote
sensing data sets can be used for quantifying production capacity
of agro-ecosystems and forests using biomass as an indicator.
Biomass estimation for many forest types is challenging due to
the fact that most existing data mainly contain properties of the
vegetation canopy but not of understory vegetation.54 Passive
systems mainly record the interaction of light with the most
upper leaf layers. Hence, single multispectral data, for instance,
are less applicable to detect the structure of a dense forest
because the woody parts of the vegetation like stems or
branches, and sub-canopy layers like shrubs are hardly visible in
the spectral signature of forests.55

Despite single sensors, combining data from multiple sensors
provides more accurate estimation of biomass due to the bene-
fits from the fused properties of the data sets. For instance,
nonlinear regression analysis on a combination of Landsat and
WiFS images provides a reliable estimate of aboveground bio-
mass.56 In addition, using multidate satellite imagery by averaging
over several scenes could reduce the bias resulting from radio-
metric calibration uncertainties and improves biomass estima-
tion.38 Hyperspectral sensors can also improve forest biomass
estimation because they enable distinguishing vegetation com-
position much better than the multispectral sensors.57

In complex story forests, biomass estimations will be more
accurate if stands are stratified as marginal and within-stand
areas.58 In such type of forests, radiation penetrating the canopy
is practically more useful.59 The scattering of low-frequency
radar (L-band, minor C-band) retrieves more detailed informa-
tion about the forest composition.60 However, satellite systems
having such advantageous properties are still rare, and existing
airborne options require an optimum balance between costs
and area under investigation. Radar wavelengths are well
adapted to monitor biomass overtime since the C-band (5.3 GHz)
scattering signal is sensitive to the water content of vegeta-
tion canopy.61 Moreover, since C-band wavelengths are rather insen-
sitive to cloud cover, radar data are more useful in quantifying
biomass during the rainy growing season.61

Besides radar data, airborne laser scanners (ALS) are widely
used for retrieving biomass from complex story forest stands
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since clouds of concentrated laser beams permit very accurate
three-dimensional delineation of the forest structure.60,62 A
statistical link can be established through regression between
the scanning signal of the ALS and biomass.63 Because of local
effects on the ALS, field measurement within sample plots dis-
tributed over the entire area would be needed for applica-
tions in regional or national biomass monitoring projects.63

LiDAR data provide a good estimate of timber production because
they enable accurate tree-height measurement.47 Moreover,
detection of suppressed tress is possible from height models
based on laser scanning data.47,64

Though most studies that have mapped food production in
the past used the readily available national statistics census data
from FAO, remote sensing could be highly applicable where
such data are not sufficient. Most often the census data is com-
bined with remotely sensed data to estimate crop production in
terms of biomass and yield. The useful spatially explicit data
sets include statistical census data, land use/cover data, satellite
imagery, biophysical crop suitability assessments, population
density, and distance to urban centers.65 For instance, com-
binations of the aforementioned data sets were used to develop
a model that enables spatial disaggregation of crop production
through pixel-scale allocation of statistical census data of crop
production.65 Statistical census of cropped area and production
and weather data were synthesized to estimate rice yield at
district level which was further extrapolated to pixel level yield
values over larger areas using MODIS NDVI.66

Estimating biomass of agricultural crops with remote sensing
is less complex in the view of having mainly one vegetation
layer with a comparatively low woody fraction. Hence, data
from optical remote sensing systems especially vegetation in-
dices are highly suitable for estimating biomass and yields of
many crop types.67 One typical variable derived as proxy for
crop growth and biomass production is the leaf area index
(LAI). The LAI can be retrieved either from inverse radiative
transfer models for crops (leaf and canopy models) or cor-
relation with reflectance values or vegetation indices.68 In case
of annual crops, there is seasonal change in biomass production
from bare soil before sowing to the maturity stages, which is
followed by harvest. Biomass estimation for annual crops often
utilizes multitemporal observations utilizing radiation budget
based models due to seasonal changes in biomass production.69

Often, fraction of absorbed photosynthetically active radiation
(fPAR) derived from reflectance serves as a key input parameter
for such models.70

In addition to scale and area extent, information about field
sizes and crop diversity are useful for selecting the most adequate
sensor. For large field sizes, medium resolution multispectral data
are useful for predicting crop biomass and yield to assist
prognosis of regional availability of food crops such as corn and
soybean.71,72 For instance, MODIS data with 250-m resolution
are adequate to monitor homogeneous crop fields greater than
25 ha.73 Integrating multispectral images with field-measured
biomass data enables more accurate estimation of crop
yield.88−90 Moreover, utilization of phenologically tuned time
series of vegetation indices like NDVI is more appropriate in
predicting crop production anomalies.73 In landscapes with
high crop diversity, hyperspectral sensors are more appropriate
than the multispectral systems in identifying crop types and
precise estimation of biomass and/or yield.74 However, since
only a few experimental hyperspectral systems are launched just
recently, they are not fully exploited in precision agriculture
though there appears huge potential in the future. Finally, for

more details on remote sensing applications in forest and crop
biomass estimation, the underlying assumptions, and methods,
please refer to SI Table S1.
Besides ecosystem services that are linked with vegetation

structure, freshwater availability (e.g., water for drinking and
irrigation), which is one of the provisioning services, can also be
tracked and mapped from space. Remote sensing enables
accurate monitoring of fresh water through assessment of
changes in the volume of water stored and flowing in rivers,
lakes, and wetlands.75 The extent and condition of natural
freshwater habitats can be mapped with remote sensing.76

Hydraulic models (e.g., SWAT) that use remotely sensed data
as input are often applied in quantifying and mapping fresh
water.77,78 Fresh water discharge was estimated at global scale
as a measure of global water budget using ocean−atmosphere
mass balance and land−atmosphere water balance models.79

Moreover, satellite-based estimation of interannual variability
and emerging trends in continental freshwater discharge was
plausible at global scale.80 Remote sensing has been used also in
assessing water footprint for crops since it provides physically
based consistent worldwide spatial information.81 Parameters
estimated from remote sensing data to map water footprint for
crops include evapotranspiration, precipitation, water storage,
and runoff. The volume of irrigation applied, and green and blue
evapotranspiration components can be calculated from remote
sensing data to estimate water footprint for crops.81

Quantifying Supplies of Regulatory Services. Ecosys-
tem services like air quality cannot be directly detected with
remote sensing. However, the pollutants (disservices) and eco-
systems retaining pollutants (services) can be mapped to assess
air quality. For instance, the capacity of ecosystems to regulate
air quality can be estimated through the assessment of their
potential to remove or retain dust and reduce airborne pollu-
tants.82,83 In this context remote sensing is useful for detecting
and mapping dust particles and vegetation structure. Overlaying
vegetation structure maps with dust particles maps enables the
contribution of ecosystems in protecting areas such as settle-
ments, waterbodies, and susceptible agricultural lands. High
spectral resolution images are needed for distinguishing dust
and nondust particles but spatial resolution is rather less relevant.84

Since factors determining air quality change with time, high
temporal resolution images are needed for frequent monitoring
of air quality.85,86 Multispectral images like MODIS aerosol
data are applicable in differentiating between dust and nondust
particles.87,88 Combination of data from multiple sensors, e.g.
SEVIRI and GERB instruments on Meteosat-8, provides a
powerful tool for detecting aerosols and estimating their radiative
effect.89 Application of multilinear regression on thermal infrared
channels of satellite data also improves the performance in
detecting dust.89

Ecosystems’ capacity to influence climate can be estimated
using carbon storage and sequestration as an indicator which is
dependent on fluxes, emission, and aboveground storage of
carbon. Basically all previously described remote sensing based
methods to quantify biomass production can be translated to
carbon storage or sequestration. In addition, the net ecosystem
exchange (NEE) of carbon flux can be derived from multi-
spectral images and used as proxy for carbon.90 For instance,
CO2 fluxes can be predicted using AVHRR-NDVI data col-
lected during the growing seasons.90 Combining data from
different sensors such as QuickBird and ASTER improves the
estimation of above ground carbon (AGC).91 Carbon emission
due to fire can be predicted by integrating remote sensing data
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with carbon flux cycles.92 Hyperspectral sensors like AVIRIS
have also proved to be a useful source of data for quantifying
carbon fluxes.93 Due to its capacity to detect forest structure,
LiDAR is also applicable in quantifying forest carbon storage.94

Multisensor satellite data can also be used for more robust and
accurate estimation of carbon storage. For instance, Woods
Hole Research Center (WHRC) developed a national level carbon
stock data set from combinations of MODIS and ground
measured vegetation height data. This can be accessed from the
WHRC Web site at http://www.whrc.org/mapping/nbcd/index.
html. In addition the WHRC used colocated field measurements
of vegetation heights with satellite data such as MODIS, GLAS-
LiDAR, and NASA-Shuttle Radar Topography Mission (SRTM)
for quantifying aboveground woody carbon density for pan-
tropical ecosystems.95

Remote sensing is useful for estimating the capability of eco-
systems to provide protection against extreme events such as
storm, flood, and mass movements.96 Classification of cloud-
free images taken before, during, and after extreme events is
useful for detecting the changes and estimating impacts of the
events as well as capacity of ecosystems to provide protection
against them. For such applications, especially, a high temporal
resolution of suitable sensor systems appears more relevant.
Multispetral images such as SeaWiFS and MODIS sensors

are suitable to map the extent and direction of storms that
originate from river discharge and wind effects or Tsunamis in
coastal areas.105−107 On the other hand, laser scanners and
LiDAR have proved to be other useful data sources for
quantifying damage by storms.97

Flood risk can be predicted directly through monitoring of
inundation events using high temporal resolution images.98

Multispectral images like MODIS time series data are useful to
detect and monitor flood inundation events.99 However, since
passive sensors are affected by clouds, the best alternatives are
radar sensors that penetrate clouds and record flood events
from space.100 For instance, time series of SAR data sets are
applicable in mapping flood temporal dynamics.101 Indirect
monitoring of flood risk is usually through quantification of
damage to vegetation and infrastructure as well as mapping
flood-prone areas and protective structures such as dams, drains,
diversions, and river beds.102

Ecosystems such as forests in mountainous areas provide
protection against mass movements from landslides and ava-
lanches.114−118 Remote sensing helps in mapping areas prone to
or affected by mass flows.103,104 In this context, multispectral
images, e.g. SPOT 5, can be used in combination with ter-
rain parameters such as slope, soil type, and aspect.105 In
addition, hyperspectral sensors like AVIRIS and Hyperion are
useful sources of data to detect and map flow of debris caused
by, e.g., earthquakes due to availability of large number bands
that enable distinguishing debris from land surface and
vegetation.106 Radar technologies, e.g. JERS-1 SAR, have also
proved their potential use in mapping mass flows.107 Besides
preventive investigations, remote sensing can be used for pre-
and postextreme events change detection to estimate the impact
of mass flows.108

Water purification is one of the regulatory services provided
by ecosystems. Quality of surface water is mostly described in
terms of parameters such as chlorophyll-a concentration, colored
dissolved organic matter, salinity, turbidity, and sediment nitrogen
and phosphorus loading.37,45,109,110 Hyperspectral sensors like
hyperion are useful to estimate water purification through quanti-
fication of these key indicators.111,112 Supported with field data,

multispectral images also enable detection of water quality in-
dicators. For instance, surface water parameters can be derived
from MODIS, Landsat, and SeaWiFS at visible and near-
infrared wavelengths.122

Natural ecosystems like forests and grasslands prevent water
erosion by retaining sediments, and protect against wind
erosion through provision of cover for soils. The conversion of
these ecosystems for expansion of agriculture usually leads to
soil erosion, implying the loss of soil protection services with
the increase in commodities like crop yield.113 Erosion can be
detected directly using satellite data through identification of
individual large erosion features and detection of eroded areas
or damage occurred due to major erosion events.114 To esti-
mate sedimentation, the elevation of a riverbed can be cal-
culated by establishing a relationship between imagery data like
SPOT5 with water depth measurements.115 In addition,
reflectance properties of surfaces are determined by the lithologic
composition, grain size, and moisture content of sediments, and
these properties can be detected with remotely sensed images.116

Besides using images from single sensors alone, combination
of sensors such as Landsat-TM and ERS-1 improves estimation
of erosion by enabling discrimination of eroded and noneroded
areas.117 In agricultural fields, spectral reflectance of crop
residues and bare soils can be differentiated to map spatial
variability of residue cover to estimate wind and water erosion
risk.118 For such applications hyperspectral sensors, e.g. Probe-
1, perform better than multispectral sensors like IKONOS.119

Erosion and sediment deposition can be detected and mapped
also using LiDAR data by assessing multitemporal changes in
elevation.120

Ecosystems ensure maintenance of soil fertility which is
characterized by key indicators determining the production
potential of soils such as soil nutrient content, mineralogy, salinity,
contamination, and structure.54 Passive sensors can be used to
directly assess the change in soil quality as a result of these
indicators or indirectly by monitoring structural and functional
properties of the vegetation.133 Nevertheless, these sensors can
only measure the indicators in the uppermost layer of soil.
Hyperspectral sensors are more efficient than multispectral
sensors because they provide large number of bands that enable
one to distinguish and quantify the aforementioned key
indicators of soil quality.121 Alternatively, active radar sensors
are preferable for soils covered with vegetation and to assess
below ground soil properties because they can penetrate the
vegetation and top-soil layer.122,123

Demands for Ecosystem Services. While quantifying and
mapping the supplies of ecosystem services provides
information about the status and availability in the production
areas, quantifying the demands considers the beneficiaries and
factors determining their status.124,125 It is usually described in
terms of the distribution, size, and location of the bene-
ficiaries.126 Beneficiaries are human beings utilizing nearby and/
or far-located infrastructure, settlements, farmlands, recreational
areas, parks, and related ecosystems.2 See Figure 2.
Therefore, estimating the size and distribution patterns of

beneficiaries involves direct estimation of human population
and indirectly through mapping of settlements, infrastructure,
and other ecosystems like valuable croplands.127,128 See Figure
2. Mapping beneficiaries using settlements and population dis-
tribution as proxy is feasible by using nighttime light emissions,
DMSP-OLS data.129 Regression model can be used to establish
an empirical relationship between emissions in the visible and
near-infrared electromagnetic spectrum and census data.129
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A similar approach can be used by combining data from other
sensors (e.g., MODIS) with DMSP-OLS to estimate population
size which is an indicator for demands.130 However, this ap-
proach can only be applied with the assumption that the
infrastructure exists for the emissions of light which cannot be
postulated for large areas like Africa.
Alternatively, an indirect way of monitoring the demands is

mapping the spatial location of human settlements and pro-
perties with remote sensing data to assess the need for a
particular ecosystem service, e.g. protection against hazards like
floods and avalanches.131,132 If very high resolution sensors like
QuickBird are used, the protection demand can be even further
described by spatially and thematically graduated information.
Examples include mapping locations of expensive buildings, open
spaces, and vegetation types within the respective settlements.133

In a nutshell, the examples presented in this section demonstrate
the potential for using remote sensing to quantify the supplies and
demands of provisioning and regulatory services. However,
some data sources, e.g. HyMAP hyperspectral sensors, are
developed very recently and are just at experimental phase to be
used in actual research projects. Hence, there are limited
numbers of articles that deal with their application. Thus, it
should be noted that the application of data from these sensors
may not be limited to what we presented here. Table 2 is
synthesized from what has been discussed above and SI Tables
S1 and S2, with some examples of data from commonly used
sensors.

■ RESEARCH OUTLOOK
This review confirmed that there is uncertainty involved when
using remote sensing data for quantifying and mapping eco-
system services. Therefore, further research is needed to pro-
vide guidelines that assist in validating the reliability of the
results obtained by using remote sensing in quantifying and
mapping ecosystem services. Further studies are needed to find

approaches that are useful in checking the validity of remote
sensing-based proxies in estimating the indicators of ecosystem
services. Developing systematic approaches for the validation of
remote sensing-based findings with field-measured data and/or
model-based approaches call for further research in this field.
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Table S1: Provisioning services: food, raw materials 
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Ecosystem service Indicator(s) (1) Remote sensing data Assumptions and methods to quantify the ecosystem service indicators Satellite/Sensors 

Expected crop production in tons ha
-1

 year
-1

, 
total area of cropland, Area of grasslands 
suitable for grazing, Gross Primary Production 
(GPP) 

Vegetation indices (e.g. 
NDVI, EVI, fPAR, LAI) 

GPP 

NDVI, EVI, fPAR and LAI are considered as indicators of productivity in a crop growing 
season because they show phenology and photosynthetic potential of crops and help 
identify the cropping cycle and growth; stepwise multiple regression and correlation of crop 
biomass with these indices to estimate yield and or fodder productivity ((2), (3), (4), (5), (6), 
(7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19)). High biomass production 
(e.g. crop yield, fodder) is expected in areas with high values of NDVI, EVI, fPAR and LAI.  

GPP is the first component of the carbon cycle and is significant in understanding the effects 
of crop management on food production and can be used as indicator of crop yield and/or 
fodder biomass ((20), (21), (22)).  

AVHRR, MODIS, Landsat, 
Quickbird, SPOT 5, MERIS 

MODIS, MERIS 
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Expected total biomass production (average dry 
matter productivity in forests in m

3
 year

-1
) 

Vegetation indices (e.g. 
NDVI, fPAR, LAI) 

LiDAR data 

RADAR data 

Variations in NDVI, fPAR and LAI are considered as key indicators of forest productivity 
since the photosynthetic capacity of forests can be capture with these indices. Multiple 
regression of forest biomass with these indices to estimate timber production ((23), (24), 
(25), (26), (27), (28), (29), (30), (31), (32), (33), (34), (35), (36), (37), (38)). In addition, 
inversion of radiative transfer models is another method for estimating forest biomass ((39), 
(40), (41), (42), (43)).  

Forest biomass can be directly estimated from space borne and airborne laser scanners 
data once relationship is established (e.g. regression models) between measured biomass 
and LiDAR point data due to the ability of laser scanners to collect point data representing 

the vegetation structure ((44), (45), (46), (47), (48), (49), (50)).  

Radar data can be used to estimate forest biomass productivity because backscattering 
radar coefficient derived from radar data is sensitive to biomass production per plant 
species. Thus, relating radar backscattering coefficient with biomass production by applying 
inversion techniques enables prediction of forest productivity ((51), (52), (53), (54), (55)). 

Landsat, MODIS, IRS-LISS III, 
ASTER, SPOT, IKONOS, 
AVIRIS, MISR 

Laserscanners 

JERS-1 SAR, InSAR 
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Table S2: Regulatory Services: regulation of biophysical conditions (Climate regulation e.g. capacity of ecosystems to influence global climate through carbon storage & sequestration; air quality regulation; 

erosion prevention; water purification; moderation of extreme events like floods, massflow; maintenance of soil fertility, biological control) 
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Ecosystem service indicator (s) (1) Remote sensing data Methods and assumptions to quantify the ecosystem service Satellites/Sensors 

CO2 flux (Net Primary Production: NPP), Net 
Ecosystem Exchange: NEE, Above Ground Carbon 
storage (AGC), Above ground biomass 

Vegetation indices (e.g. 
NPP, NDVI, PRI, WBI, 
EDVI) 

LiDAR data 

Carbon storage and sequestration can be estimated through quantification of NEE of CO2 
flux (NPP) because NEE determines amount of atmospheric carbon stored in an ecosystem 
((56), (57), (58), (59), (60), (61), (62)). Time integrated NDVI (iNDVI) data to estimate CO2 
flux (NPP). Combination of vegetation indices such as NDVI, PRI, EDVI and WBI are 
considered indicators of net CO2 flux (NPP)..Correlating insitu measured CO2 fluxes with 

NDVI over smaller area and upscaling for a larger area (NPP). Moreover, suitable predictors 
can be determined based on regression of field measured AGC data against spectral 
information from the vegetation indices ((63), (64), (65), (66), (67)). Above Ground Carbon 
(AGC) estimation through stepwise multiple regression on spectral information of satellite 
bands. CO2 emission indicates the amount of carbon released to the atmosphere from 
ecosystems (e.g. burning forest or agricultural land) and affects the carbon balance and 
thus, it can be used as indicator of carbon storage ((68), (69), (70), (71), (72), (73)). 

Point cloud LiDAR data enables direct estimation of AGC through calculation of Digital 
canopy height model (DCHTM) and digital terrain model (DTM). AGC estimation from DCHM 
and DTM derived from LiDAR data ((74), (75), (76),, (77), (78), (79)).  

Landsat AVHRR, MODIS, 
AVIRIS, HJ-1A/B, Quickbird, 
ASTER 

Laserscanners 
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Total amount of pollutants removed via dry deposition 
on leaves in tons ha-1 year -1 (dust, airborne pollutants: 
NO2, CO, HCHO, SO2 concentrations) 

Aerosol data, infrared and 
thermal infrared data 

Trace gases and aerosols (O3, NO2, CO, HCHO and SO2) can be used as indicators of air 
quality because aerosol data enable the source of dust polluting air to be discerned. 
Moreover, the change in the amount of dust accumulation in the air changes the spectral 
reflectance of objects and pollutants can be detected from reflectance data ((80), (81), (82), 
(83), (84), (85)). Therefore, correlating insitu air quality parameters (e.g. dust) with remote 
sensing measurements of aerosol optical thickness data and regression analysis of field 
observed dust accumulation data with remotely sensed spectral reflectance data enables to 
assess air quality.  

AVHRR, Landsat, MODIS, 
ERS-2, SEVIRI, MERIS, 
MetOp-IASI 
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Table S2 Continued 

E
ro

s
io

n
 P

re
v
e

n
ti

o
n
(P

o
te

n
ti

a
l 

o
f 

e
c

o
s
y
s

te
m

s
 

to
 r

e
ta

in
 s

o
il
 a

n
d

 t
o

 a
v

o
id

 e
ro

s
io

n
: 

a
re

a
 o

f 

fo
re

s
t 

in
 v

u
ln

e
ra

b
le

 z
o

n
e

s
)

Ecosystem service indicator (s) (1) Remote sensing data Assumptions and methods to quantify the ecosystem service Satellites/Sensors 

Total amount of soil retained in tons ha-1 year-1 
(Eroded area, ground cover, deposited 
sediment). 

Vegetation indices (e.g. 
NDVI, SR) Crop Residue 
Index Multiband (CRIM), 
Antecedent Precipitation 
Index (API), Cellulose 
Absorption Index (CAI). 

LiDAR data 

Constituents of sediments such as the lithologic composition, grain size, and moisture content change 
reflectance properties of surfaces and this enables detection of eroded land and material deposition 
((86), (87), (88), (89), (90), (91), (92), (93)). Surfaces covered with vegetation and/or plant residue are 
less prone to erosion and thus detecting and mapping variability in surface conditions (e.g. vegetation 
cover change) based on spectral reflectance captured by vegetation indices such as NDVI and SR is 
a useful method in predicting risk of erosion ((94), (95), (96), (97)).  

Point cloud LiDAR (Laser scanning) data enables detection of eroded land and deposited soil material 
because it helps to detect change in topographic characteristics of the eroded and sediment 
deposition area ((98), (99), (100), (101), (102), (103), (104)). 

Landsat, ERS-1, IRS, 
IKONOS, MODIS 

Laser Scanners 
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Water clarity; Total amount of pollutants 
removed annually in tons ha-1 year-1, total 
amount of water purified (quantifying chlorophyll 
concentration, dissolved organic matter, salinity, 
turbidity, suspended sediment concentrations, 
water surface temperature and heat flux). 

Light attenuation 
(Reflectance data) 

Brightness (Reflectance 
data)  

Chlorophyll content 

Light attenuation is a measure of turbidity and clarity of water as a function of changes in 
phytoplankton pigments, organic matter, and suspended sediments ((105), (106), (107), (108), (109), 
(110)). Thus, correlating satellite derived reflectance data with insitu measured light attenuation data 
enables assessment of water clarity and hence water purification capacity of ecosystems.  

Brightness of reflectance data from a water body is an indicator of water clarity. Water quality 
determines the spectral reflectance from the water body ((111), (112), (113), (114), (115), (116)). 
Correlating reflectance data from water body with field observed insitu measurements of water clarity 
indicators (brightness).  

Amount of chlorophyll-a, suspended minerals and dissolved organics are indicators of water quality. 
Quantifying phytoplankton chlorophyll-a content, suspended minerals, and dissolved organic matter 
from remote sensing data ((117), (118), (119), (120), (121), (122), (123), (124), (125), (126), (127), 
(128), (129), (130), (131), (132), (133)). 

AVHRR, EO-1 ALI 

Landsat, SeaWiFS, 
QUickBird, IKONOS 

Landsat, SPOT, MODIS, 
Hyperion, CASI 
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Ecosystem service indicator (s) (1) Remote sensing data Methods and assumptions to quantify the ecosystem service Satellites/Sensors 

Total number of storms mitigated, protected 
infrastructure (Flooded area, flood prone area, flood 
events/inundation) 

Hydrological flux derived 
from vegetation indices (e.g. 
NDVI), Water surface 
fraction 

LiDAR data 

RADAR data 

Reflectance properties vary with change in water flux that can be quantified from vegetation 
indices (e.g. NDVI). Thus, inundation processes can be detected and modelled from 
vegetation indices and surface water body is extracted to predict flood extent ((134), (135), 
(136), (137), (138), (139), (140)). Storm from rainfall and fresh water runoff can be detected 
using sea spectral reflectance data because reflectance properties of sea changes with the 
events of storms ((141)). Detecting the extent and direction of plumes that originate from 
river discharge using channels of normalized water leaving radiance to estimate extent of 
storms since plumes are useful indicators of storms prevalence((142), (143)). 

 Damages caused by storms indicate the extent of storms in a given area and can be used 
as a clue to quantify the contribution of vegetation like Mangroves in regulating storms and 
floods. point cloud LiDAR data are useful in mapping damage of mangroves caused by water 
storms due to capacity of laser scanners to collect point data of vegetation structure and 
topography of the surface ((144), (145), (146), (147), (148), (149), (150), (151)). 

In flood plain areas vegetation faces flood stress and this can be used to assess flood 
dynamics indirectly by assessing change in vegetation structure. Temporal series of 
backscattering radar data provides accurate information about vegetation structural and 
functional conditions and hence suitable to monitor flood dynamics as a function of impact on 
the nearby vegetation ((152), (153), (154), (155), (156), (157), (158)). 

AVHRR, Landsat, IRS-LISS 
III, SSM/I, SeaWiFS, 
SeaWiFS, MODIS 

Laserscanners 

ENVISAT-SAR 
RADARSAT-1, TerraSAR-X 

W
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la
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n
 Protected infrastructure, croplands due to vegetation 

in the nearby area  

Detecting dust storms to estimate capacity of ecosystems to protect the surrounding 
infrastructure and croplands using high spatial resolution satellite data because remote 
sensing provides real-time, accurate and for large scale assessment of wind storms ((159), 
(160), (161)). Besides these, wind disturbance and damage severity can be quantified to 
assess the capacity of ecosystems to regulate wind storms since extent of damage to 
vegetation and infrastructure varies with the wind speed and strength ((162), (163), (164)). 

MODIS, AMSR-E, IKONOS, 
NSCAT, QuickSCAT, 
Landsat 

M
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Protected infrastructure, croplands, water bodies due 
to vegetation in the nearby area (e.g. protection 
against landslides, debris, avalanches). 

Reflectance data 

LiDAR data 

RADAR data 

Potential mass flow can be derived from elevation and spectral data because digital surface 
models enable detection of change in topography due to material flows and the spectral 
reflectance properties of surface change when there is mass flow ((165), (166), (167), (168), 
(169), (170)).    

Analysis of LiDAR derived topographic information for characterizing and differentiating mass 
movements (e.g. landslides) because material flow changes the topographic characteristics 
of a landscape that can be detected with laser scanners ((171), (172), (173), (174), (175), 
(176)). 

RADAR backscattering data to map mass movements because radar data can provide 3D 
terrain models and enables evaluation of susceptibility of land surfaces to hazards ((177), 
(178), (179), (180), (181)).  

SEBASS, SPOT 4/5, 
Landsat, ASTER, Hyperion, 
AVIRIS,  
Landsat TM, Beijing-1 
Microsatellite, IKONOS, 
QuickBird 

Laserscanners 

InSAR, ERS-SAR, 
TerraSAR-X, ALOS 
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Ecosystem service indicator (s)  ((1)) Remote sensing data RS
1
 data, methods and assumptions to quantify and map ESS

2
 Satellites/Sensors 

Nutrients: nitrogen (N), Phosphorus(P), Potassium (K), 
organic carbon, Soil nutrients, salinity, heavy metal 
contamination, mineralogy, water content, soil crusts 

Vegetation indices e.g. Non-
Photosynthetic vegetation 
(NPV), Green Vegetation 
(GV), NDVI, EVI 

Vegetation structure and functions are determined by soil fertility (nutrients: N,P,K contents). Thus, 
correlating insitu measurements of soil fertility indicators (soil nutrients: N,P,K, salinity, iron oxide 
content, mineralogy, water content, heavy metal contamination) with vegetation indices such as Non-
Photosynthetic vegetation (NPV), Green Vegetation (GV) and soil (derived from spectral mixture 
analysis), and the NDVI is a useful method in quantifying soil fertility status ((182), (183), (184)). 
Salinity, mineralogy (e.g. smectite, illite, kaolinite), iron-oxide content, and heavy metal contamination 
change the reflectance properties of the soils on bare lands and of vegetation in covered areas. 
Hence, correlating field observed data with bare soil reflectance data for smaller areas and calibration 
of the satellite imagery data for up-scaling over larger landscapes helps in quantifying the status of 
soils ((185), (186), (187), (188), (189), (190)).  

Landsat, ASTER, MODIS, 
SPOT, AVIRIS, HyMap 
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l)
 Avoided damage of crops by pests due to availablity of 

insects that feed on the pests. 
Vegetation indices (e.g. 
NDVI, EVI, NDII, NDWI, 
EWDI, G:R ratio, LAI) 

Enhanced Wetness Difference Index (EWDI) is considered as indicator of plant water stress and can 
be used in detecting pest outbreak with stepwise regression analysis because it shows changes in 
vegetation moisture status before and after pest attack ((191)). Reduction in photosynthetic activity 
causes defoliation and can be used as an indicator of pest attack which can be mapped using indices 
such as NDVI LAI, EVI, NDWI, and G:R ((192), (193), (194), (195), (196), (197), (198), (199)).  

Landsat, MODIS, QuickBird, 
SpecTIR VNIR, AVIRIS, 
HyMap 
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Abbreviations 
AISA Airborne Imaging Spectrometer

ALS Airborne Laser Scanner

AMSR-E Advanced Microwave Scanning Radiometer

ASE Autonomous Scientific Experiment

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

AVHRR Advanced Very High Resolution Radiometer

AVIRIS Airborne Visible Infrared Imaging Spectrometer

BRDF Bidirectional Reflection Distribution Function

CASI Compact Airborne Spectrographic Imager

DAIS Digital Airborne Imaging Spectrometer

DMSP-OLS Operational Linescan System of the Defense Meteorological Satellite Program 

EOS Earth Observing System

ERS European Remote-sensing Satellite

ETM
+ Enhanced Thematic Mapper

GERB Geostationary Earth Radiation Budget

GLAS Geosciences Laser Altimeter System 

IRS Indian Remote-sensing Satellite

IS Imaging Spectroscopy

JERS Japanese Earth Resources Satellite

LiDAR Light Detection And Ranging

MISR Multi-angle Imaging Spectro Radiometer

MODIS MODerate Resolution Imaging Spectroradiometer

MSS Multi-Spectral Scanner

NIRS Near-Infrared Reflectance Spetroscopy

ROSIS 

RADAR

Reflective Optics System Imaging Spectrometer 

RAdio Detection And Ranging

SAR Synthetic Aperture Radar

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SEVIRI Spinning Enhanced Visible and Infrared Imager

SOC Surface Optics Corporation

SPOT Satellite Pour l'Observation de la Terre

SRTM Shuttle Radar Topographic Mission

TM Thematic Mapper

Glossary of selected remote sensing based vegetation parameters 
AGC Above-Ground Carbon

API Antecedent Precipitation Index

CAI Cellulose Absorption Index

CHQ Canopy Height Quantile

CRIM Crop Residue Index Multiband

ECD Êco-Climatic Distance

EDVI Enhance Difference Vegetation Index

EVI Enhanced Vegetation Index

EWDI Enhanced Wetness Diffeence Index

fAPAR fraction of Absorbed Photosynthetically Active Radiation 

G:R Green to Red ratio

GPP Gross Primary Productivity

GV Green Vegetation

LAI Leaf Area Index

LUE Light Use Efficiency

NDII Normalized Difference Infrared Index

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

NEE Net Ecosystem Exchange

NPV Non-Photosynthetic Vegetation

PAM Plant Available Moisture

PAR Photosynthetically Active Radiation

PRI Photochemical Reflectance Index

SIPI Structure Insensitive Pigment Index

SR Simple Ratio

WBI Water Band Index
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Abstract 

The introduction of fast-growing plant species has been a strategy worldwide to combat problems 

arising from land degradation. Prosopis juliflora is an ecosystem engineer that was introduced to 

Ethiopia in the 1970s to address erosion problems but has subsequently become an important invader. 

This paper analyzes the spread of P. juliflora in Baadu, located in the middle Awash Basin of 

Ethiopia, qualitatively assesses its impacts on ecosystem services and identifies research needs and 

challenges for sustainable land management. The plant was introduced in 1983 around cotton farms in 

the case study region to provide erosion regulation. By the year 2013, P. juliflora had invaded 

20,000 ha (40 % of wetlands). It partly invaded also the riverbanks and agricultural lands and is 

expanding into adjacent dryland areas. The negative impacts of this invasion are partially offset by 

provisioning of firewood and charcoal. However, the difficulties to control its rapid spread indicate 

that the threats it poses to ecosystem services, people’s livelihoods and lifestyles may exceed its 

benefits. We argue for an integrated research approach that considers both the services and disservices, 

as well as the social discourse among different groups of actors to appropriately address this issue and 

identify options for sustainable action. 

Key words: Invasive species, Land use, Remote sensing, Pastoralism, Livelihoods, Mapping 



Introduction 

The practice of introducing new plant species as ecosystem engineers has often been used for restoring 

degraded ecosystems and combating the problems that arise from deforestation. Worldwide, fast-

growing exotic species are often introduced for purposes such as soil and water conservation or 

fuelwood and timber production. Various species introduced around the world in the last few decades 

for use in horticulture, food production, and agro-forestry are now some of the most widespread 

organisms (Richardson and Rejmánek 2011). Some species are introduced for horticultural use by 

nurseries, botanical gardens, and individuals (Reichard and White 2001). The ecological ranges of 

many plant species have been extended by human activities in the past centuries. Aside from the 

introduction of species for commodity production in agriculture and forestry, an important reason for 

introducing a species is for its utilization as an ecosystem engineer for soil and water conservation, 

windbreaks, and rehabilitation of degraded lands. Jones et al. (1994) defined ecosystem engineers as 

“organisms that directly or indirectly modulate the availability of resources to other species by causing 

physical state changes by biotic or abiotic materials.” In doing so, ecosystem engineers modify, 

maintain, and create habitats. Ecosystem engineers (e.g., exotic shrub or tree species) can alter the 

hydrological cycle, nutrient cycles, soil stability, humidity, temperature, and light infiltration. For 

example, nitrogen-fixing plants enhance nitrogen input, soil fertility, and productivity, though they 

may outcompete native species in nutrient-limited systems (Ehrenfeld et al. 2001). 

The strategy of introducing engineering species can backfire if they become invasive in the host areas 

(Kumschick and Richardson 2013; Pejchar and Mooney 2009). Thus, this practice has had ecological 

and economic impacts around the globe, with the severity of the impact varying depending on the 

vulnerability of the host ecosystem and the stability of its ecosystem services (Gallien et al. 2010; 

Pyšek and Richardson 2010; Robinson et al. 2008; Vilà et al. 2011). Though species introduced to a 

new vicinity face a new environment, they often outcompete and replace the native species 

(D’Antonio and Meyerson 2002; Allendorf and Lundquist 2003). Once established, these invasive 

plant species transform ecosystems both above- and belowground, especially when their functional 

traits differ from the native flora (Stromberg et al 2007; Wardle et al. 2011).  
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Prosopis juliflora, native to South and Central America and the Caribbean, is a woody species 

growing to a height of 5–10 m with a deep-root system that is also able to fix nitrogen. Due to these 

traits, it was brought to different parts of the world for ecosystem engineering purposes such as 

reclaiming degraded lands (Pasiecznik et al. 2001). For instance, the species was introduced to Sudan 

in 1917 through afforestation programs intending to combat desertification and to provide fuelwood 

(Elfadl and Luukkanen 2006). However, its aggressive invasive nature affected agricultural lands, 

mainly irrigated fields. Arab Gulf regions used the plant for the greening of landscapes in order to 

reduce wind erosion and combat desertification (El-Keblawy and Al-Rawai 2007). The species was 

brought to India in the late nineteenth century for the rehabilitation of sodic lands to supply of 

fuelwood, fodder, timber, and fiber, but it later began to spread and became invasive (Mishra et al. 

2003; Sharma and Dakshini 1996). Likewise, to alleviate fuelwood shortage due to a loss of native 

species through deforestation, P. juliflora was planted around Lake Baringo, Kenya, in the 1980s 

(Mwangi and Swallow 2005). The introduction of P. juliflora to the arid and semi-arid regions of 

Ethiopia in the 1970s and 1980s mainly aimed at soil and water conservation (Tegegn 2008). 

However, the species invaded larger areas than intended and became problematic (Tegegn 2008). A 

good example of this situation is found in Baadu, an area in the middle of the Awash basin of 

Ethiopia, where the species has been highly invasive since the 1990s (Admasu 2008), generating 

ecosystem disservices to the local people living in this region.  

Previous research on P. juliflora in the Awash Basin mainly focused on changes in the social-

ecological system of the Afar pastoralists, specifically how the invasion is perceived by different 

social groups (Müller-Mahn et al. 2010; Rettberg 2010; Rettberg and Müller-Mahn 2012). But these 

studies did not explicitly link P. juliflora to the concept of ecosystem services. Seid (2012) discussed 

the impacts of P. juliflora on pastoral livelihood diversification strategy based on household 

perception surveys without mapping its spatial distribution or considering broad classes of ecosystem 

services. Tessema (2012) described ecological and socioeconomic dimensions of P. juliflora but 

focused on biodiversity and policy challenges in the management of the species without quantitative 
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analysis of the invasion. Though Rettberg and Müller-Mahn (2012) mapped the distribution of P. 

juliflora in Awash basin for the years 2000 and 2007, only the human–environment interaction was 

assessed. Nigussie et al. (2013) used Landsat images to map the rate of P. juliflora invasion in 

Amibara, lower Awash, for the years 1973, 1987, 1999, and 2004 but failed to include recent years. 

Moreover, the authors focused on how this plant species affects biodiversity, human health, and 

livestock production, without providing details of its impact on other ecosystem services. 

In this article, we use remote sensing data to map the rate of P. juliflora invasion in the years 2000, 

2005, 2010, and 2013 and discuss its impacts on multiple ecosystem services. The objectives of this 

paper are threefold: first, to map the temporal dynamics of P. juliflora; second, to identify the impacts 

of the invasion on provisioning ecosystem services (fodder and grass, crop production, fuelwood, 

charcoal, and water), regulatory services (erosion regulation, flood regulation, water purification, and 

soil salinity regulation), and cultural services (secured land and mobility); and third, to identify 

challenges in P. juliflora management and further research needs. 

Methodology 

Description of the case study site 

Baadu is located in the mid-Awash River Valley in the regional state of Afar in Ethiopia (Fig. 1). It 

comprises an area of approximately 1,500 km
2
 and consists of seasonally inundated floodplains 

(wetlands) in the flat areas, at an altitude of 500 m above sea level, surrounded by upland dryland 

areas. The Awash River originates in the central highlands of Ethiopia (Ayenew and Legesse 2007) 

and flows through Baadu floodplains (wetlands). The Baadu wetlands extend along the Awash River 

forming about 25 % of the total area of Baadu. The spatial extent of these floodplains slightly varies 

seasonally depending on the amount of water coming down from the River. A small portion of the 

wetlands, which varies annually from 2 to 16 %, is used for irrigated agriculture, while most of the 

area is used for grazing during dry seasons. The major area of Baadu are drylands that account for 

more than 75 % of the total Baadu area. 
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Fig. 1 Location of Baadu case study site 

Prior to the invasion by P. juliflora, the wetlands hosted an abundance of native grasses, 

important sources of fodder for cattle, while different types of acacia trees (A. tortilis, A. 

senegal, A. mellifera) covered the surrounding hills. With an average annual rainfall of 450 

mm, the Awash River basin is of a critical resource for more than twenty pastoral Afar clans 

who inhabit Baadu (Rettberg 2010). The grasslands of Baadu served as dry season pastures 

and drought retreats for Afar pastoralists due to the seasonal inundations of Awash River that 

make water available year round in the wetlands. 
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Mapping the P. juliflora invasion and assessing its impacts on Ecosystem services 

Remote sensing provides useful data for assessing and mapping ecosystems at different scales 

(Ayanu et al., 2012). In this study, cloud-free Landsat ETM+ (30m resolution) and ASTER 

(15m resolution) satellite images taken during the dry seasons (October- March) of 2000, 

2005, 2010 and 2013 were used to map the P. juliflora invasion. Details of the remote sensing 

data used, and the band combinations for classification, is presented in Table 1.  

Table 1 Satellite images used for land use/cover classification 

Since the spread of P. juliflora and its negative impacts have become more pronounced in the 

last decade, we compared the extent of its invasion over the years 2000, 2005, 2010 and 2013. 

In order to compare the results of the classification from the different years, the Landsat 

ETM+ images were resampled to 15m resolution prior to classification.  

Data from field observations and Google earth were used to identify land cover types and 

training areas were defined by digitizing polygon features in the satellite images. The images 

were classified using maximum likelihood supervised classification method provided by Envi 

5.0 software. The classification results were validated by using Google earth high resolution 

images and 130 ground truth points collected using Trimble Juno 3B GPS. See Figure S1 in 

the electronic supplementary material provided for the distribution of the GPS sample points. 

Ground truth points collected during February-March 2014 were used to validate the 

classification results of October 2013 images. The field data from year 2014 were used 

because of difficulty in acquiring ASTER images for February/March 2014, and there was no field 

visit in the year 2013 due to lack of resources. We found it reasonable to use these data since the 
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months October–March are in the dry season, which provide comparable information regarding the 

spread of P. juliflora. The previous years (2000, 2005, and 2010) were validated using Google Earth 

high-resolution images from the same time period because there were no ground truth points collected 

in these years and the field data from year 2014 could not be used due to drastic change in P. juliflora 

invasion over a time period of 4-10 years . In addition, ground truth points collected in areas where P. 

juliflora invasion prevailed over the past decade was also used to supplement the validation from 

Google Earth images. A confusion matrix was calculated using ground truth Region Of Interests 

(ROIs) to determine accuracy of the image classification for the P. juliflora invasion. Details of the 

steps in image classification are provided in Fig. 2a. 

Figure 2 General workflow for a) mapping P. juliflora invasion b) analysis of the implications of P. 

juliflora invasion on ecosystem services and their beneficiaries. 
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Given spatial resolution of 15 and 30 m, the P. juliflora vegetation that can be detected in the satellite 

images is mainly the dense thickets and forests that could easily be identified in the floodplains of 

Baadu. Single trees and shrubs of small size that are sparsely distributed across the landscape cannot 

be detected with such resolution. Moreover, in the drylands of Baadu, P. juliflora is in its initial stage 

of invasion and is found mixed with other native species which makes it difficult to detect with spatial 

resolution of 15–30 m. Therefore, these limitations need to be taken into consideration while 

interpreting the results of the classification. 

The impact of this invasive plant on ecosystem services was assessed by identifying the ecosystem 

services supplied by different land categories (Fig. 2b). The major ecosystem services that are supplied 

by the wetlands, drylands and agricultural lands were identified based on the Millennium Ecosystem 

Assessment, 2005 ecosystem services classification scheme (MEA 2005). The ecosystem services 

supplied by P. juliflora were also identified, and their extent was estimated. The negative impacts of 

P. juliflora and beneficiaries of ecosystem services affected were also identified. Finally, the pros and

cons of the Prosopis invasion regarding the supply and demand of ecosystem services were assessed. 

Results 

Spreading patterns of P. juliflora in Baadu 

In the initial years following 1983, when the government first introduced P. juliflora to areas around 

irrigated farms and the permanent settlements in Baadu, its spread was rather slow (Fig. 3). In the mid-

1980s, no significant spread and invasiveness of P. juliflora were noted since the species was in its 

early stage of adaptation to the new environment in the host area. After the Derg regime collapsed in 

1991, a lack of resource management and changes in land use contributed to the increased 

vulnerability of the landscape, resulting in the accelerated spread of P. juliflora throughout the 1990s 

and 2000s (Rettberg and Müller-Mahn 2012). The downfall of the Derg regime halted the agricultural 

activities on the state farms in Awash, allowing P. juliflora to invade the abandoned agricultural lands. 
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Figure 3 Spread of P. juliflora in Baadu during the years 2000 to 2013. P. juliflora was 

introduced in 1983 around cotton farms in Baadu but gradually spread to other parts of the 

Awash Valley. 
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Proportion of land invaded by P. juliflora 

In the last decade, from the year 2000 to 2013, among the land categories in Baadu, wetlands were the 

most affected ones by the invasion of P. juliflora (Table 2). By the year 2000, P. juliflora covered 

3,600 ha, invading about 8 % of the total area of wetlands in Baadu. Five years later, in 2005, the area 

covered by P. juliflora had increased to over 8,000 ha, accounting for 18 % of the wetland area. By the 

year 2010, P. juliflora had already invaded over 13,000 ha, which is about 30 % of the total area of the 

Baadu floodplains. Almost 40 % of the wetlands in Baadu was invaded at the end of 2013 which is 

about a 10 % increment over a period of 3 years when compared with year 2010. Only 2 ha (<1 %) of 

agricultural land was invaded in 2000, but the invaded area increased to 76 ha in 2005 (4 %). In the 

year 2010, the total area of agricultural land invaded by P. juliflora increased to 166 ha (2 % of the 

total area of agricultural land in the same year). In the year 2013, the area of agricultural land invaded 

increased to 327 ha (4 %), resulting in reduction in agricultural land mainly due to some investors who 

abandoned their farmland in the same year. The agricultural land area increased in the past decade due 

to increasing demand for cropland and a government program encouraging investors into agriculture. 

The slow invasion of agricultural lands is mainly due to frequent clearing of P. juliflora annually to 

ensure cultivation which would otherwise result in the abandoning of agricultural land. This was the 

case with the state farms that were abandoned during the downfall of the Derg regime. 

Table 2 The rate of P. juliflora invasion as a proportion of invaded lands 

Field observations and interviews made in 2011 and 2012 indicated that P. juliflora recently 

began to spread into the higher-lying dryland areas too. In 2013 the total area of drylands 
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invaded by P. juliflora was 2500 hectares (< 1 % of the total area of the drylands in Baadu). 

As it was observed during the field visit, drylands with relatively less fertile and insufficient 

moisture content appear unfavorable for  the growth of P. juliflora. For further understanding 

of the extent of the P. juliflora invasion in Baadu, please, refer to Table S1 and Figure S 2 

provided in the electronic supplementary material. 

Validation of the image classification results of the P. juliflora invasion 

The accuracy assessment results calculated using the post classification function of Envi 5.0 

software is presented in Table 3. All the images from the different years were classified with 

an overall accuracy above 80% and kapa coefficient above 0.24 which are acceptable values 

for a supervised classification. Validation of image classification results of the year 2013 

using ground truth GPS points gave an overall accuracy of 95.23 % and kapa coefficient of 

0.90 Whereas, the values obtained using Google earth images were 86.40 % overall accuracy 

and 0.73 kapa coefficient implying the improvement in accuracy when ground truth GPS 

points were used. However, in general, the results of accuracy assessment using Google Earth 

images of the same time period are also quite acceptable which shows that  high resolution Google 

Earth images can be used for validating image classifications where there is no available field 

collected data.  
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Table 3Confusion matrix showing the accuracy assessment of the classification of  P.  juliflora 

invasion. 

a) Year 2000 Overall accuracy
a
 = (152034/179636)  84.63%; Kapa Coefficient

b
 = 0.25

Ground truth
c
 Commission

d
& Omission 

e
 Accuracy 

Class Prosopis 
invaded (%) 

Not 
invaded (%) 

Total Commission 
(Pixels) 

Omission 
(Pixels) 

Producer 
accuracy

f
 (%) 

User 
Accuracy

g
 (%) 

Prosopis 
invaded 

16.82 0.10 3.16 153/5552 27449/33001 16.82 97.32 

Not 
invaded 

83.18 99.90 96.74 27449/173931 153/146635 99.90 84.22 

Total 100 100 100 

b) Year 2005 Overall accuracy = (153557/154774)  92.89 %;Kapa Coefficient = 0.55

Ground truth Commission & Omission Accuracy 

Class Prosopis 
invaded (%) 

Not 
invaded (%) 

Total Commission 
(Pixels) 

Omission 
(Pixels) 

Producer 
accuracy (%) 

User accuracy 
(%) 

Prosopis 
invaded 

43.47 0.81 5.64 1217/9508 10781/19072 43.47 87.20 

Not 
invaded 

56.53 99.19 94.36 10781/159135 1217/149571 99.19 93.23 

Total 100 100 100 

c) Year 2010 Overall accuracy = (58554/64944)  90.16%; Kapa Coefficient = 0.79

Ground truth Commission & Omission Accuracy 

Class Prosopis 
invaded (%) 

Not 
invaded (%) 

Total Commission 
(Pixels) 

Omission 
(Pixels) 

Producer 
accuracy (%) 

User accuracy 
(%) 

Prosopis 
invaded 

99.08 21.49 65.44 6052/42502 338/36788 99.08 85.76 

Not 
invaded 

0.92 78.51 34.56 338/22442 6052/28156 78.51 98.49 

Total 100 100 100 

d) Year 2013 Overall accuracy = (39130/41082)  95.23 %; Kapa Coefficient = 0.90

Ground truth Commission & Omission Accuracy 

Class Prosopis 
invaded (%) 

Not 
invaded (%) 

Total Commission 
(Pixels) 

Omission 
(Pixels) 

Producer 
accuracy (%) 

User accuracy 
(%) 

Prosopis 
invaded 

95.00 4.63 33.86 1287/13911 665/13289 95.00 90.75 

Not 
invaded 

5.00 95.37 66.14 665/27171 1287/27793 95.37 97.55 

Total 100 100 100 

Key (adapted from Envi 5.0 User's Guide: Exelis Visual Information Solutions, 2013 ): 
a

Overall accuracy is the ratio of the sum of pixels correctly classified and the total number of pixels. 
b

Kappa coefficient = (total number of pixels in all ground truth classes * sum of confusion matrix diagonals)-(sum of ground truth 
pixels in a class * sum of classified pixels in that class summed over all classes)/(total number of pixels squared - the sum of 
ground truth pixels in that class)* the sum of the classified pixels in that class summed over all classes. 

c
Percent ground truth shows the class distribution for each ground truth class. In a matrix, it is calculated by dividing the number 
of pixels in each ground truth column by the total number of pixels in a given class. 

d
Commission refers to pixels that belong to 'Not invaded' class but are classified as 'Prosopis invaded' class and vice versa.  

e
Omission pixels are pixels that belong to ground truth class but are omitted by the classifier and are not assigned to the proper 
class. 

f
Producer accuracy indicates the probability that the classifier has labeled a pixel into 'Prosopis invaded' class given that the 
ground truth is 'Prosopis invaded' class. The same applies to the 'Not invaded' class. 

g
 User accuracy indicates the probability that a pixel is in 'Prosopis invaded'class given that the classifier has labeled the pixel into 
'Prosopis invaded class'. The same applies to the 'Not invaded' class. 
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Impact of P. juliflora invasion on ecosystem services 

The wetlands of Baadu are sources of wide range of ecosystem goods and services. The major 

ecosystem goods and services that are supplied from these floodplains include provisioning services 

such as fodder/grass for livestock, food and cash crops, water for irrigation and home use, fuelwood, 

and timber. Ecosystems in these wetlands also supply regulatory services such as flood and erosion 

regulation. The cultural services provided by the floodplains include secured land, mobility and refuge 

during dry periods. 

The P. juliflora invasion and associated loss of native wetland vegetation in Baadu has had 

major impacts on the supplies of a broad range of ecosystem services, including regulating 

(e.g. erosion control), provisioning (e.g. fodder/grass, food, fuelwood, water), and cultural 

(e.g. secured land and mobility) services. Different social groups’ use of these services 

depends on their livelihood systems, resource requirements, and resource availability. Thus, 

the benefits or risks of P. juliflora tend to vary among the major user groups, such as the 

mobile pastoralists, sedentary small-scale agro-pastoralists, and large-scale farmers.  

Regulating services 

In the Awash Valley, P. juliflora was mainly used on large, state-run cotton farms to provide 

regulating services such as soil-erosion control and to function as windbreaks (Tegegn 2008) 

due to its fast growth, dense ground coverage, and deep root system (El-Fadl 1997). P. 

juliflora is also useful in the restoration of salinized soils (Bhojvaid et al 1998, Goel and Behl 

2001).Yet some of the capabilities of the species became driving factors in its invasion 

process. For instance, the salt-tolerant nature of P. juliflora facilitated its rapid spread across 

abandoned governmental farms during the 1990s, after the collapse of the Derg regime.  
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Provisioning services: Food and Fodder 

In the past decade, provisioning services in Baadu and the surroundings were drastically 

affected by the invasion of P. juliflora. The livelihood of the mobile Afar pastoralists depends 

highly on livestock production, which in turn is dependent on grass and fodder availability 

(Tsegaye et al. 2013). Therefore, the reduction of grasslands within the wetlands due to the 

spread of P. juliflora affects the livelihood and food security of nomads and agro-pastoralists 

tremendously (Admasu 2008; Amdihun et al 2010). Many of the traditional dry-season 

grazing areas have been taken over by thickets of P. juliflora (Figure 4a). This has been 

especially devastating for the pastoralists, whose cattle depend on the grasslands as a primary 

fodder resource.  

Although the pods of P. juliflora contain high levels of protein and are available twice per 

year, pastoralists in Baadu complain that the pods negatively impact the health of their 

livestock. This may be due to the fact that the animals also browse on the unpalatable leaves, 

which leads to indigestion and dental problems. In some cases, some ruminants are 

spontaneously poisoned and intoxicated by pods of P. juliflora (Câmara et al 2011). The low 

digestibility of the leaves and pods of P. juliflora is mainly associated with the presence of 

harmful substances such as tannins, glucosinolate, cyanogens, alkaloids and nitrates 

(Chaturvedi and Sahoo 2013; Leonard 2011). The ethanolic leaves of P. juliflora could have 

toxic effects on some livestock, so the level of toxicity needs to be evaluated before feeding 

these leaves to animals (Leonard 2011, Silva et al 2013, Wamburu et al 2013). Chaturvedi and 

Sahoo (2013) found that the dried leaves of P. juliflora cannot be included in the feed of 

livestock since they suppresses feed intake and nutrient availability. On the other hand, 

alkaloid-enriched extracts from P. juliflora hinder microbial activity and could be a potential 

feed additive to help decrease gas production during ruminal digestion (dos Santos et al 

2013).   
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Figure 4 a) P. juliflora invaded grazing lands; b) P. juliflora invasion along the Awash River c) P. 

juliflora spread to acacia forests as an undergrowth d) Dense stands of P. juliflora after becoming 

dominant over the native acacia forest. 

Provisioning services: Water 

Water-provisioning services are also affected by the invasion of P. juliflora, because it 

becomes invasive primarily where water is abundant (Elfadl and Luukkanen 2006; Tromble 

1977). This explains its enormous spread in the seasonally-flooded area of Baadu, which is 

vital due to its importance as pasture and cropland. The dense growth and large thorns of P. 

juliflora prevent pastoralists’ and agro-pastoralists' access to water wells and the river,  

especially along the Awash River and irrigation channels (Figure 4b). Moreover, the species 

has the capacity to modify the hydrological regime at the landscape scale and lower the 

groundwater table (Dzikitiet al. 2013; Gallaher and Merlin 2010). P. juliflora produces more 

biomass in the irrigated floodplains, where it grows at the expense of high water consumption, than in 

the drylands (Singh et al 1990). This limits the availability of water for pastoralists, agro-
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pastoralists, and large-scale farms in the wetlands of Baadu. In addition, due to its high 

transpiration rate, P. juliflora substantially decreases the amount of available surface water 

and stream flows (cf. Charles and Dukes, 2007).  

Provisioning services: Fuelwood, charcoal, and timber 

Following its invasion, P. juliflora suppressed the growth of the native tree species, which has 

left the invasive species as the only alternative source of wood in the affected areas (Berhanu 

and Tesfaye 2006; Yohannes et al., 2011). In forested areas, P. juliflora spread as an 

undergrowth shrub (Figure 4c), and later formed dense stands (Figure 4d) that resulted in the 

loss of the native tree species. Contrary to its negative impacts on the native species, P. 

juliflora itself provides wood for multiple uses to the local communities living in Awash 

Valley and the surrounding areas. Well-established forests of P. juliflora with trees up to 10m 

high are the main sources of wood for fuelwood, charcoal, fence, and house construction 

(Figure 5a and b). Charcoal production from P. juliflora (Figure 5b) has recently become a 

new, major source of income for pastoralists living in the affected areas (Rettberg and Müller-

Mahn 2012). 
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Figure 5 a) Fuelwood collected from P. juliflora forest prepared for sell along the main road to the 

surrounding towns b) Charcoal production from P. juliflora forest by the local people in Baadu c) 

Clearing and burning of P. juliflora stand from invaded grazing lands d) Coppices sprouting from 

stems of P. juliflora plants after clearing and burning. 

Cultural services 

Cultural services are understood as non-material benefits of ecosystems (Seid 2012). The invasion of 

P. juliflora has affected several cultural services which play an important role in the livelihood of the

local pastoralists. Secured grazing lands and mobility are important cultural identity markers 

for the Afar pastoralists (Rettberg 2010). P. juliflora has turned the floodplains into an 

impassable dense shrubland and formed impenetrable thickets that block human and herd 

mobility and hinder the traditional nomadic life style. The loss of grazing lands therefore 

causes a feeling of insecurity among the pastoralists. The introduction of P. juliflora was 

solely based on government policy with the underlying perception that pastoralism is a 

backward production and livelihood system. Thus, pastoralists in Baadu consider the loss of 
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their land to P. juliflora as an autocratic governmental intervention that disregarded their 

interests.  

The loss of the aforementioned ecosystem services due to P. juliflora invasion is one among 

several factors resulting in the widespread impoverishment of pastoralists. Following the last 

severe drought in 2003, many pastoralists did not have the capacity to recover due to lack of 

grazing opportunities. Thus, they were forced to give up their pastoralist activities and way of 

life, and had to become sedentary (Müller-Mahn et al. 2010).  

Discussion 

Synthesis of the pros and cons of P. juliflora invasion 

The likely impacts of P. juliflora on supplies of selected ecosystem services are presented in 

Table 4. Negative impacts of P. juliflora include decreased livestock productivity due to the 

loss of grazing land. The most affected social groups here are nomads, who are completely 

dependent on the native vegetation, followed by agro-pastoralists. P. juliflora also reduces 

yields by invading cropland, thus raising concerns for large-scale farmers and agro-

pastoralists. Negative impacts related to decreased water availability for drinking and 

irrigation purposes apply to all people in Baadu and downstream residents. 
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Table 4: a) Relevance of land use/cover types (LULC) for ecosystem service in Baadu b) Impact of P. 

juliflora invasion on beneficiary groups and their dependence on nature’s services for their well-being.  

The positive aspects of P. juliflora are predominantly associated with regulatory services such 

as soil erosion regulation, rehabilitation of sodic soils, flow regulation, and water purification 

(Tripathi and Singh 2010). The dense shrubs of P. juliflora provide physical protection to soils 

against wind erosion during dry periods and against heavy rains during the rainy seasons, thus 

reducing runoff where grasses are not available to cover the soil. In addition, during rainy 
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seasons and when the Awash River overflows, the dense structures of the P. juliflora shrubs 

stabilize the soil, regulate the flow of water, and promote the infiltration of water into the soil. 

Although the existence of a P. juliflora forest alone may not ensure flood regulation (Calder 

and Aylward 2006), the flow regulation provided by P. juliflora is an important benefit 

especially in protecting surrounding farmlands and settlements. The retention of soil by P. 

juliflora also results in a reduced sediment-and pollutant-load in the river and lakes, and 

therefore indirectly contributes to the improvement of water quality. Apart from its regulatory 

services, P. juliflora serves as a resource for fuelwood, timber, and charcoal. Even though P. 

juliflora is useful for provision of the aforementioned services, the functions of this exotic 

species would also have been supplied by the native species in the area (e.g. Acacia species 

and grasses), almost certainly with less harm to the natural ecosystem, farmlands, and water 

resources. 

Challenges in the management of P. juliflora invasion 

The management and control of an exotic species can be controversial, especially concerning 

eradication of the species since its removal may result in unforeseen negative consequences 

for ecosystems and benefits previously provided by the species could be lost (D'Antonio and 

Meyerson 2002; Wittenberg 2004). The introduction of P. juliflora to the Awash Basin has led 

to landscape level consequences and is increasingly perceived as a problem by large scale 

farmers, nomads, and agro-pastoralists. In order to ensure the successful management of P. 

juliflora, three critical challenges need to be addressed. 

Firstly, the functional properties of P. juliflora foster its adaptability and support the invasion 

of the species. P. juliflora has distinct features that contribute to its invasiveness across 

various agro-ecosystems including wetlands, drylands, and irrigated agricultural lands 

(Shiferaw et al 2004). Its fast growth, drought tolerance, high seed yield, and vigorous 
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coppicing gave P. juliflora competitive advantages over the native species in the arid and 

semi-arid regions of Ethiopia (Berhanu and Tesfaye 2006; Singh et al. 2012). Moreover, P. 

juliflora is salt-tolerant, which allows the species to dominate in the salt-affected irrigated 

lands of the Awash Basin. In addition, its seeds pass through the digestive system of animals 

that feed on the pods, enter the soil through animal feces, and form a seedbank that is ready to 

germinate when conditions are favorable (Berhanu and Tesfaye 2006; Shiferaw et al 2004). 

Typically, such seedbanks are difficult to manage and may persist longer than individual 

lifetimes of the organism itself (Hastings et al. 2007). Accumulated evidence suggests that the 

negative impacts of invasive nitrogen-fixers on ecosystem functions show time lags (Crook 

2011; Essl et al. 2011; Vitousek et al 1987). As a nitrogen-fixer, P. juliflora transforms 

ecosystems both above and belowground, and drives ecosystem processes, particularly 

because its functional traits differ from native flora (Wardle et al. 2011). This might push the 

ecological system into a trajectory of P. juliflora invasion, which is irreversible and can no 

longer be controlled by the people in the region.  

Secondly, the social discourse regarding P. juliflora will determine the successful 

management of the species. The need to control the fast spread of P. juliflora is undisputed 

among stakeholders in Ethiopia. However, there are controversial discussions between those 

who favor complete eradication of the species (e.g. pastoralists and agro-pastoralists) and 

those (e.g. NGOs, scientists) who point towards the not fully exploited benefits of the plant as 

a source of timber, charcoal, and feed for animals (Seid 2012). Selling fuelwood, timber, and 

charcoal products extracted from P. juliflora has recently become an important alternative 

source of income for the local people. There is a varied perception of P. juliflora amongst 

various stakeholders, which clearly has impacts on management of the species (Nigussie et al. 

2013). Therefore, these dilemmas and conflicts of interest among stakeholders involved in the 
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management of P. juliflora need to be thoroughly investigated and addressed in order to 

derive applicable management methods. 

Finally, failed past attempts to control P. juliflora indicate the infeasibility of the invasion 

control given the functional properties of the species and difference in the perception of 

stakeholders in the Awash Valley. In order to control the invasion, the government of 

Ethiopia has legalized the eradication of P. juliflora by allowing the local people to 

intensively exploit it for the production of charcoal and fuelwood. Nevertheless, it is apparent 

that the utilization of the species for its various benefits will not ensure sustainable 

management over long-term period. For instance, new sprouts of P. juliflora will not get thick 

enough to produce quality charcoal and hence, harvesting likely results in the formation of 

thickets that are even more difficult to control. Furthermore, non-governmental organizations 

such as Farm Africa have introduced various methods for controlling the affected areas. These 

include the mobilization of the local communities to uproot seedlings from newly invaded 

areas, cutting of mature trees for charcoal production, removal the plant roots 10-30 cm below 

ground to reduce coppicing, and seed collection and crushing before feeding to livestock, in 

order to prevent further dispersal via animals (Admasu 2008). Eradication trials by means of 

cutting and burning (Figure 5c) proved to be extremely labor-intensive and expensive. Despite 

the high level of effort, this procedure appears to be ineffective considering the rapid regrowth 

of P. juliflora that produces numerous sprouts shortly after clearing (Figure 5d). Therefore, 

the species continues to invade new areas and forms inaccessible, dense thickets. In general, 

most of the control measures undertaken were only partially successful in smaller areas such 

as irrigated fields, but failed when applied at larger scales. 

104



Conclusions 

The story of P. juliflora highlights the consequences of unsustainable land use practices with 

ecosystem engineering approaches. Although P. juliflora was introduced to Ethiopia as an 

ecosystem engineer mainly for regulating soil erosion, it became invasive and ironically 

resulted in unforeseen negative impacts on the supply of provisioning and cultural ecosystem 

services. These impacts vary according to the land-use/land-cover types considered. The 

trends in invasion of P. juliflora also showed change in the spatial distribution due to efforts 

in the past that only involved the clearing of invaded irrigated croplands and grasslands. Since 

complete eradication was not possible, the species continued to spread to new areas that were 

not previously invaded. Moreover, dense coppices of P. juliflora emerged after previously 

invaded areas were cleared. Positive and negative impacts on ecosystem services differ among 

social groups depending on the impact of the species on their livelihoods. An analysis of 

ecosystem services and their socio-economic impact has to take into account social 

differentiation. Further research is needed to understand the P. juliflora invasion and its 

impact on ecosystem services, as well as to identify appropriate approaches for controlling the 

spread of P. juliflora. Modeling, for example with the InVEST tool (e.g. Nelson et al 2009), 

or LUCIA (e.g. Ayanu et al. 2011), with the explicit inclusion of longer time scales and 

broader spatial scales is required in order to assess the impact of P. juliflora on ecosystem 

services at the landscape level. In this context, it will be essential to distinguish between 

beneficiaries (nomads, agro-pastoralists, large scale farmers, and downstream residents) in 

order to specify in which way their well-being is affected by P. juliflora. Management 

practices for P. juliflora invasion control should be planned and implemented only after 

considering the invasive characteristics of the species and its perception by social groups in 

the regions. 

105



Supplementary Information 

Electronic supplementary material (Table and Figures) are provided with this article for 

further details in the analysis of the invasion of P. juliflora. 
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Figure S1 Distribution of the GPS sample points taken in February-March 2014. A total of 130 

sample points were used for validating the classification of ASTER images for October 2013.  
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Figure S2 Change detection maps showing  areas with increased, decreased or no change in 

Prosopis juliflora invasion status over the period of 2000 to 2013.  
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Table S1 Change detection statistics (area in square kilometers) for Prosopis juliflora invaded and 

no-invaded land, comparing different years over the period of 2000 to 2013. 

Initial state (year 2000) 
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5
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Prosopis invaded Not invaded Row total Class total 

Prosopis invaded 11.82 69.93 82.08 83.17 

Not invaded 23.73 682.75 706.48 706.48 

Class total  36.22 752.68 

Class changes 24.07 69.93 

Image difference 46.95 -46.19

Initial state (year 2005) 
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0

) 

Prosopis invaded Not invaded Row total Class total 

Prosopis invaded 51.99 266.66 318.65 318.65 

Not invaded 30.04 439.82 469.86 469.86 

Class total 82.03 706.48 

Class changes 31.18 266.66 

Image difference 235.48 -236.62

Initial state (year 2010) 
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) 

Prosopis invaded Not invaded Row total Class total 

Prosopis invaded 118.96 156.17 275.13 275.20 

Not invaded 13.11 499.92 513.03 520.60 

Class total 132.07 656.44 

Class changes 13.11 156.52 

Image difference 143.13 -135.84
Key  (adapted from Envi 5.0 User's Guide: Exelis Visual Information Solutions, 2013 ): 

 The 'Class total' rows indicates the total number of pixels in the initial state class i.e. years 2000, 2005 and 2010.

 The 'Class total' column stands for the total number of pixels in each final state class i.e. years 2005, 2010 and
2013.

 The 'Row total' column is a class-wise summation of all final state pixels that fell into the selected initial state
classes.

 The 'Class changes' row refers to the total number of pixels changed from the initial state class

 The 'Image difference' row refers to the difference in the total number of equivalently classed pixels in the two
images which is computed as  by subtracting initial state class total from the final state class. Positive values
indicate increment in the class size while negative values show decrement in the class size.
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Abstract 

The worldwide demand for food has been increasing due to the rapidly growing global population 

and agricultural lands increased to produce more food crops. The pattern of cropland varies among 

different regions depending on the traditional knowledge of farmers and availability of uncultivated 

land. Satellite images can be used to map cropland in open areas but have limitation for detecting 

undergrowth inside forests. Classification results are often biased and need to be supplemented with 

field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was 

assessed using field observed percent cover of land use/land cover classes, and topographic and 

location parameters. The most influential factors were identified using Boosted Regression Trees 

and used to map undercover cropland area. Elevation, slope, east aspect, distance to settlements, 

and distance to national park were found the most influential factors determining undercover 

cropland area. Under restricted rights for clearing forest, when there is very high demand for 

growing food crops, cultivation could take place inside forests as an undercover. Further research 

on the impact of undercover cropland on ecosystem services and challenges in sustainable 

management is thus essential. 

Key words: Land use, forests, ecosystem services, random forests, conservation, degradation 



1. Introduction

Cropland expansion is one of the major anthropogenic factors  causing loss of major natural 

ecosystems around the globe (Phalan et al. 2013, Gibbs et al. 2010). With the recently increasing 

global population and demand for food, cropland continued to expand and resulted in 'land 

grabbing', large-scale acquisition of agricultural land, mostly in developing countries of the tropics 

(Sankhayan and Hofstad 2001, Phalanet al. 2013, Dereje et al. 2013, Rulli et al. 2012). Vast areas of 

land in sub-saharan African countries such as Sudan, Ethiopia and Kenya are leased to local and 

global investors for large scale agriculture (Lavers 2012, Phalan et al. 2013). In most cases, local 

small-scale farmers are displaced when their land is needed for investment (Häberli and Smith 

2014). Thus, with growing population, poor technology and increasing 'land grabbing', local 

farmers in the sub-Saharan Africa are often forced to look for unoccupied marginal lands in the 

mountains that are not optimal for growing crops due to extremely rugged topography. These 

ecosystems are generally threatened by global land use/land cover (LULC) change and are under 

continuous pressure due to cropland expansion to feed the rapidly growing global population 

(Ayanu et al 2011, Grêt-Regamey et al 2012). Meanwhile, mountainous areas provide diverse 

ecosystem services such as water, sediment retention, erosion control, flood regulation and 

recreation and are hotspots of biodiversity (Körner 2004, Briner et al. 2013, Viviroli et al. 2011). In 

the long-term, conversion of forests and grasslands to croplands may lead to degradation of fragile 

mountainous (Estoque et al. 2012, Lambin et al. 2013). This impact has been realized worldwide 

and protection of mountain ecosystems has gained attention (Denniston 1995, Crabtree and 

Bayfield 1998, Kasperson J. X. and Kasperson R. E. 2013). However, in regions with slow 

industrial development and the majority of the population being subsistence farmers, the past efforts 

in protecting forests in mountainous areas only shifted the patterns and distribution of cropland 

instead of slowing its rate. 
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Agroforestry systems that combine multipurpose trees with crops have been effectively practiced in 

the past across different parts of the world. For instance, in India, wheat has been planted with 

Eucalyptus and Poplar plantation trees (Kohli and Saini 2003, Gill et al. 2009, Singh et al. 1993, 

Singh et al. 1998, Sharma 1992). In western Himalaya, rice and wheat are intercropped with tree 

species such as Grewia optiva, Morus alba and Eucalyptus (Khybri et al. 1992). In China, over two 

million hectares area was an intercrop of wheat and Paulownia trees during the 1990's (cf. Li et al. 

2008). Multipurpose trees such as Ginkago biloba have been grown in southern China with broad 

beans and wheat mixtures (Cao et al. 2009). 

In Ethiopia, agroforestry systems (e.g. combining fruit trees, coffee, crops and vegetables as multi-

story vegetation) have been traditionally practiced for hundreds of years (Negash et al. 2012). 

However, this was mainly limited to flat to moderate slope areas of the southern and south western 

parts of Ethiopia. In the past, researchers have been investigating the potential for the adoption of 

agroforestry systems in the mountainous areas of the Ethiopian highlands (Aerts et al. 2011, 

Jamnadass et al. 2011, Negash et al. 2012). However, the transfer of agroforestry knowledge from 

the southern and southwestern to the mountainous regions of Ethiopia showed limited success. In 

most cases, tree-crop combinations in the mountainous areas of Ethiopia lasted only for short time 

until the forest land is fully converted to cropland. One example of such patterns is undercover 

cropland inside forests in mountainous areas. In this study we define the term 'undercover cropland' 

as cultivation and growing of crops under forest canopies without future plans for transforming the 

forest into a multistory agroforestry system. To ensure sustainability of such complex systems 

where multistory vegetation types form an ecosystem, detailed analysis and assessment of its 

influential factors and emerging land management challenges is essential. 

Remote sensing provides fast and reliable data for large scale assessment of vegetation cover. In 

principle, airborne and spaceborne remote sensing data are suitable for LULC classification (Chan 
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et al. 2008, Seppelt et al. 2011, Cord et al. 2010, Hansen et al. 2013). However, due to their 

property of being a reflectance measure, these datasets are mainly based on canopy structure visible 

from above. Consequently undercover cropland cannot be fully detected. Most of the global land 

cover classifications in the past used coarse resolution data and provided only broad classes such as 

cropland-woodland and cropland-grassland mosaics. Thus, detailed analysis to capture the hidden 

cropland inside forests requires supplementing the remote sensing data with field surveying in order 

to obtain reliable results. 

In this study, we assess undercover cropland area and its explanatory variables in the hilly terrains 

of the Bale Mountains of Ethiopia by analyzing field observed percent cover in combination with 

topographic and location factors using Boosted Regression Trees. The study is based on the 

hypothesis that topographic parameters such as slope, elevation and aspect as well as location 

factors such as distance to settlements and the national park influence undercover cropland 

inside forests in the Bale Mountains of Ethiopia. The main objectives are to i) map LULC and

identify hotspots of cropland under forest canopies; ii) identify explanatory variables and map 

undercover cropland area; iii) assess the emerging challenges and future prospects of undercover 

cropland in the region. 

2. Materials and Methods

2.1 Study site 

Situated in the southeastern part of Ethiopia, the Bale Mountains are characterized by enormous 

ecological heterogeneity and steep gradients of altitudinal zones (Figure 1a). The site we selected 

for data sampling is part of the Adaba, Dodola, Asassa and Dinsho districts of the Arsi and Bale 

zones of the Oromia regional state of Ethiopia. It is adjacent to the boundary of Bale Mountains 

National Park (BMNP), which is known for its enormous biodiversity and insitu conservation of 
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highly endangered mammals, birds, plants, and amphibians endemic to Ethiopia (Gower et al. 2013, 

Johansson 2013, Kidane et al. 2012, Le Saout et al. 2013). 

The region supplies diversified ecosystem goods and services to local and national beneficiaries. 

For instance, provisioning services dominant in the Bale Mountains and the surroundings include 

food, water, timber, fuelwood, and fodder. Regulatory services include flood regulation, erosion 

control and water purification. Due to the availability of tourist attraction sites in the area, aesthetic 

and recreational values are the other important services supplied by ecosystems in the Bale 

Mountains. The high population growth in the area increased demand for food by local farmers, 

nearby villages and towns. In the past, crop production in the area is used to concentrate in the 

lower escarpments and flat areas. However, with increased population, the open grasslands and 

forest areas are nowadays intensively cultivated (Mamo et al. 2010). Besides, recent undercover 

cropland expansion under forest canopies is becoming an ongoing practice. Local farmers expand 

croplands in the uplands where forest clearing is restricted by the local government. Such increasing 

shift in the patterns of land cover indicates potential for tradeoffs in the supplies of various 

ecosystem services such as provisioning and regulatory services. 
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Figure 1 Study site and land use/land cover classes a) Location of the study site and distribution of sample 

plots b) Major land use/land cover types derived using Random Forest classification of RapidEye images. 

Field estimated percent cropland per plot is overlaid on the land use/land cover map. 

The area is under continuous pressure from different actors and a growing population in the 

surrounding districts. This poses a threat to the conservation areas, the BMNP. The fact that the area 

is adjacent to the national park, being at the border of the four districts mentioned above, and 
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varying altitudinal gradient makes it interesting for assessing the LULC, especially the patterns of 

cropland expansion. 

 2.2 Remote Sensing data 

In this study, RapidEye images (Tyc et al. 2005) taken during dry periods (December 2012) were 

used for the LULC classification. The images were orthorectified 3A products with spectral bands 

Blue (440-510 nm), Green (520-590 nm), Red (630-685 nm), Red Edge (690-730 nm) and Near 

Infrared (760-850 nm). Each image had a resolution of 5 meters and covered a total ground area of 

625 km
2
 (25x25 m image dimension). The level 3A products are geometrically corrected for sensor-

related effects using sensor telemetry. The bands are co-registered and spacecraft-related effects are 

corrected using attitude telemetry and best available ephemeris data. These products are further 

orthorectified using ground control points (GCPs) and Digital Elevation Models (DEMs). 

The two scenes were mosaicked using the ENVI 5.0 (Exelis Visual Information Solutions, 2013) 

georeferenced mosaicking function. Atmospheric and topographic corrections were performed 

using ATCOR 3 software (Richter 1998). ATCOR 3 was preferably used for our largely 

mountainous study site  since it provides algorithms for correcting images taken from rugged 

topography (Richter 1998, Richter and Schläpfer 2002). ATCOR 3 corrects changes in spectral 

reflectance of objects, removes haze and reduces the effects of shadow in mountainous terrains 

(Richter 1998, Richter and Schläpfer 2002). 

2.3 Field data sampling 

A field visit in the study site was carried out between October and December 2012, thus in the same 

season in which the RapidEye satellite images were taken. Land use/land cover related data was 

collected with the official permission of Adaba, Dodola, Asassa and Dinsho districts of Ethiopia, 

the local village leaders and private land owners in the area. Since part of the site is inside the 

122



boundary of the Bale Mountains National Park, permission to collect land cover related data was 

granted by the head of the national park. However, the study does not involve animals for 

experimenting and we confirm that the field studies did not involve endangered or protected 

species. A total of 136 sample plots were laid out randomly at varying intervals based on 

heterogeneity of LULC and accessibility of the landscape (see Figure 2 for details of steps in field 

sampling). The interval between the sample plots was long (up to 5 kilometres) in homogenous 

areas while it was short (1-2 kilometres) in heterogeneous landscapes. The sample plots were laid 

out with a distance of 300 m from the centre point in four directions, North, South, East, and West 

(NEWS) with each having an area of 0.36 km
2
 (Figure 2a). The sampling of data was carried out for

each plot and recorded in the worksheets prepared for field surveying. 

Trimble Juno-3B GPS was used to measure the coordinates at the centre of the sample plots to 

identify the spatial location where the data was recorded. Percentage cover of different LULC 

classes was estimated for each plot taking the GPS centre point as a reference. The percent cover for 

each LULC class was estimated visually in a range of 0 to 100. The visual estimation was made 

relative to the total area of the plot i.e. 0.36 km
2
. For this, discontinuous LULC classes (e.g. forest

patches, meadows, croplands) were assumed to be as continuous relative to the plot area to assign 

total percent cover per plot. As a visual guideline the area covered by 1% of the LULC class as a 

percentage of 0.36 km
2
 which is equivalent to 0.0036 km

2
. Thus, one percent cover of LULC is

equivalent to a square land with dimensions of 0.06 x 0.06 km. Besides the percentage cover per 

plot, LULC classes at the GPS points were recorded for later use in the validation of classification 

results. To further support validation of results from the satellite image classification, photographs 

were also taken in four directions from the GPS centre point using the built-in Trimble Juno 3B 

camera. 
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Figure 2 General workflow of a) Field data sampling b) Image classification c) Validation of classification results 

2.4 Land use/land cover classification 

The Random Forest (RF) classifier (Breiman 2001) was used to classify the RapidEye images 

in order to derive LULC classes using R 3.0.2 statistical software package (R Development Core

Team 2008). This method uses an ensemble of tree-like classifiers similar to Bagging Trees in 

which bootstrap samples are drawn to construct multiple trees (Breiman 2001). Breiman (2001) 

stated that RF is a refinement of Bagging Trees, since it improves bagging by ―de-correlating‖ the 

trees. With RF a large number of trees (500 to 2,000) are grown. Unlike Bagging Trees, in RF 

each tree is grown with a randomized subset of predictors from which the name random 

forests is derived. Trees are grown to maximum size without pruning, and are aggregated by 

averaging to select only the best split among a random subset at each node (Breiman 2001). 
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Random Forest classifier searches a random subset of features from the total number of predictors 

to find the best split at each tree node in order to minimize the correlation between classifiers in the 

ensemble. The classifier ensembles are based on the concept that a set of classifiers performs better 

than individual classifiers (Breiman 1996). Since the resampling is not based on weighting, the RF 

classification method is not sensitive to noise or overtraining (Gislason et al. 2006). Moreover, the 

method has been widely used for classification since it provides high classification accuracy 

(Gislason et al. 2006, Prasad et al. 2006, Rodriguez-Galiano et al. 2012, Zhu et al. 2012, Conrad et 

al. 2014). 

For the purpose of classification, eleven major LULC classes (see Table 1) were identified based on 

field observation of the study site. Accordingly, sample polygons (ESRI shape files) representing 

each  class were digitized based on LULC data collected at 136 field sample plots and 

georeferenced GPS photographs taken at the centre of the plots. For each LULC class, 250 samples 

(pixels) were randomly extracted from the list of image features (Figure S1 in File S1) and split into 

training (63 %) and testing (37 %) datasets. Each tree is grown on the training datasets using the 

bootstrap sampling process. The number of trees in the forest (ntree) and the number of random 

subsets of features tried at each node (mtry) were set to 1000 and 3, respectively. For the LULC 

classification, the five bands and indices calculated from the RapidEye images were evaluated for 

their importance in identifying different LULC classes. In RF, the importance of a feature is 

determined based on how often the feature was used in the tree construction process. Figure S1 in 

File S1 illustrates the relative importance of the features evaluated for the RF classification showing 

the most used and least used features.  

After classification into the eleven classes, similar LULC types were grouped into major classes 

such as cropland, forest, meadows or fallowed cropland, shrubs and barelands. From classes listed 

in Table 1, classes 1(dense forest) and 2 (single scattered trees) were grouped into forest since they 
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represent different types of forest. Similarly, classes 3 to 7 were grouped as cropland because they 

all represent areas of land used for growing crops. The boundaries of state farms and major 

settlement areas were digitized manually from the RapidEye images from high resolution Google 

Earth images and GPS points recorded during the field observation and overlaid on the produced 

LULC map. 

2.5 Validation 

For validation of the RF classification, as a cross-validation step, error measurements used were of 

twofold: errors calculated from the Out-Of-Bag (OOB) subset and that calculated from the test 

subset. Firstly, performance of the RF classifier was evaluated using cross-validation during the 

model training process. Each tree is grown using a bootstrapping technique that involves sampling 

in which some of the data are left out i.e. the Out-Of-Bag (OOB) sample, while some others are 

repeated in the sample (Breiman 2001). In the training process, 2/3 of the training data was actually 

used for tree construction leaving 1/3 as OOB. Since the OOB data was not used for tree 

construction, in parallel with the training step, the OOB samples were used for cross-validation. 

Secondly, independent test datasets were used to assess the performance of RF algorithm by 

calculating the proportion of test elements that were incorrectly predicted. Finally, confusion 

matrices were calculated for each predicted class and its corresponding reference class as well as 

the OOB and test error rates. The steps in the cross-validation of the classification result are shown 

in Figure 2b. 

Besides the cross-validation step, reference LULC classes collected at the centre of the sample plots 

were used in combination with reference LULC classes identified from GPS photos taken in NEWS 

directions (Figure 2a). The GPS photos were converted to points using QGIS 2.0.1 software and the 

reference LULC classes were assigned to the points based on the photos. The sample GPS points 

were merged with the photo points and were used to validate the major LULC such as cropland, 
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forest and meadows or fallowed croplands (Figure 2c). A total of 611 (120 GPS points taken at the 

center of the plot and 491 points extracted from GPS photos taken in four directions from the center 

point) were used for the accuracy assessment.

2.6 Identifying factors influencing undercover cropland area 

Boosted Regression Trees (BRTs) (Leathwick et al. 2006; De'ath 2007; Elith et al. 2008), an 

ensemble method used for fitting statistical models was used to identify influential variables for 

cropland area. At each sample plot, undercover cropland area was calculated as the product of area 

of the sample plot and field estimated percent undercover cropland. Boosted Regression Trees 

combine algorithms of regression trees that use recursive binary splits to relate a response to their 

predictors and boosting that combines simple models to improve predictive performance (Elith et al. 

2008). Moreover, BRTs are preferred since they capture complex structures that arise from spatial 

autocorrelation within a dataset. In contrast, with simpler modeling approaches, results are highly 

influenced by spatial autocorrelation in datasets (Crase et al. 2012). De'ath (2007) described BRTs 

as an additive regression model that undergoes stagewise fitting without changing existing trees 

when the model enlarges. 

Boosted Regression Trees were constructed using R 3.0.2 statistical software package

(R Development Core Team 2008) to identify the relationship between undercover cropland area 

and potential influential factors. The factors considered include elevation, slope, east aspect, 

west aspect, north aspect, south aspect, distance to the national park, and distance to settlement 

areas. Slope and aspect maps were derived from digital elevation model, while distance to the 

national park and distance to settlements were calculated from sample plot centers to the 

boundaries of the national park and settlement areas. These factors were selected for analysis since 

they often dictate agricultural activities in mountainous regions (Stage and Sales 2007, Yimer et. 

al 2006). The four aspect raster layers were extracted from aspect map as dummy values of 0 

and 1. All the raster layers were rescaled to a grid size of 10 pixels.
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Values of all the influential factors were calculated for the sample plots where undercover cropland 

area was estimated. The BRTs model was set with Gaussian error distribution, tree complexity of 

2, learning rate of 0.008 and bag fraction of 0.75 while the maximum number of regression trees 

specified was 3000. The results of the relationship between the influential factors and undercover 

cropland area estimated in the field were plotted and visualized as fitted functions showing the 

relative importance of each influential factor as a percentage. In addition to the undercover 

cropland inside forests, influential variables were predicted for total cropland area per plot 

both from field estimated data and the RapidEye images for further understanding of factors 

determining the general patterns of cropland expansion in the region. See Elith et al. (2008) for 

details about Boosted Regression Trees and the model settings. 

2.7 Prediction and mapping of the undercover cropland 

The raster layers of influential variables tested using BRTs model in section 2.6 were used to 

predict and map the percentage cover of undercover cropland. Field estimated percentage 

undercover cropland data from 136 sample plots were used to predict the undercover cropland from

the most influential factors such as elevation, slope and east aspect using Boosted Regression Trees. 

To obtain reliable result, the prediction was done using 16-fold cross-validation of the data. Hence, 

the final predicted undercover map is the result of the 16-fold cross-validation. Furthermore, the 

predicted map of undercover cropland was overlaid with the forest layer derived from the 

classification of RapidEye images to produce the final map of undercover cropland. 

3. Results

3.1 Land use/cover types

The major LULC classes in the case study site are presented in Figure 1b. The major LULC types in

the area include small-scale croplands and the state owned large-scale croplands. Forests are the 

other LULC types situated in the upper escarpments of the area. The upper most escarpments 

adjacent to the forest are Erica arborea shrublands. These shrublands are found mixed with rocky 
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barelands in extremely rugged topography. Settlement areas consist of built-up areas mixed with 

croplands, meadows or fallowed croplands, and scattered trees. In the study site, there is a large 

reservoir that belongs to Melka Wakena hydropower station and is used by the government of 

Ethiopia to generate electricity. The area is near the BMNP and cropland has extended to parts of 

the national park shrinking the area which was previously part of the national park (Figure 1b). 

3.2 Accuracy of classification 

The OOB and test error rates of the RF classification for each LULC class are presented in 

confusion matrix in Table 1a and Table 1b respectively. Most of the LULC types were classified 

with an OOB error rate of 4.87% and test set error rate of 4.22%. The error rate in each class shows 

the proportion of misclassified observations in that class, whereas the average test error rate shows 

the proportion of misclassified observation for the entire dataset. The mean test error rate per class 

ranges from 0 to 10.77. 

The OOB error value computed from the left out data during the training process showed a very 

good performance of the RF model with an average model accuracy of 95%. The calculated test set 

errors imply that all the LULC types were classified with an average accuracy above 95%. The 

numbers in the matrix show the number of samples from the actual class (reference class) that is 

correctly or wrongly predicted. For instance, in the training set, class 1 has 128 samples of which 

121 (94%) are correctly classified while 7 (6%) are misclassified as class 2. In the test set, class 1 

has 122 samples of which the 113 (92%) are correctly classified and 9 (8%) samples are 

misclassified as class 2. The values in confusion matrix of Table 1 for the rest of the classes can be 

also interpreted in a similar way. The matrices indicate major confusion between the ―dense forest‖ 

and ―single scattered tree‖ classes, but also between the class ―single scattered trees‖ and ―recently 

grown green crops‖. These overlaps are very well known and can be attributed to the spectral 

similarity among green vegetation classes. 
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Table 1a)  Confusion matrix showing the error rate of the training dataset (OOB error rate) 

Predicted 

LULC_ID 1 2 3 4 5 6 7 8 9 10 11 Class error 

R
ef

er
en

ce
 

1 121 7 0 0 0 0 0 0 0 0 0 0.05 

2 4 124 5 5 0 1 0 0 0 0 0 0.11 

3 0 2 108 1 0 0 3 6 0 0 0 0.10 

4 0 2 0 120 0 0 0 0 0 0 0 0.02 

5 0 0 0 0 123 0 0 0 0 0 2 0.02 

6 0 0 0 0 1 123 1 0 0 0 0 0.01 

7 0 0 1 0 0 1 111 0 0 0 0 0.02 

8 0 0 1 1 0 0 0 130 0 0 0 0.02 

9 0 0 0 0 0 0 0 0 121 1 0 0.01 

10 0 0 0 0 3 0 0 0 1 117 9 0.08 

11 0 0 0 1 3 1 0 0 5 107 0.11 

 Average OOB estimate of the error: 4.87% 

Table 1b) Confusion matrix showing the error rate of the test dataset 

Predicted 

LULC_ID 1 2 3 4 5 6 7 8 9 10 11 Class error 

R
ef

er
en

ce
 

1 113 9 0 0 0 0 0 0 0 0 0 0.07 

2 5 101 3 1 0 0 1 0 0 0 0 0.09 

3 0 11 116 1 0 0 0 2 0 0 0 0.11 

4 0 0 0 128 0 0 0 0 0 0 0 0.00 

5 0 0 0 0 119 0 0 0 0 0 3 0.02 

6 0 0 0 0 0 125 1 0 0 0 0 0.01 

7 0 0 0 0 0 0 137 0 0 0 0 0.00 

8 0 0 1 1 0 0 0 116 0 0 0 0.02 

9 0 0 0 0 0 0 0 0 128 0 0 0.00 

10 0 0 0 0 0 1 0 0 0 118 4 0.04 

11 0 1 1 0 4 2 0 1 0 5 116 0.11 

     Average estimate of the error rate for the test dataset: 4.22% 

Key: 
LULC_ID Description of classes Broad category 

1 Dense forest Forest 

2 Single scattered trees Forest 

3 Recently grown green crops  Cropland  

4 Close to ripening green crops  Cropland 

5 Ripened crops or recently harvested land Cropland 

6 Cultivated land_dark colored wet soils Cropland 

7 Cultivated land_grey colored dry soils Cropland 

8 Meadows and fallowed croplands Meadows or fallowed croplands 

9 Reservoirs Reservoirs 

10 Shrublands  Erica arborea shrubs 

11 Bare rocks  Rocky barelands 

* LULC_ID: Land use/land cover ID

However, the high resolution of RapidEye data may be one reason that mixed pixel problems have 

less influence on classification accuracies as observed e.g. by Cord et al. (2010) who used ASTER 

15 m datasets for classification of Savannah landscapes in West-Africa. Minor confusion between 
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―Erica arborea shrubs‖ and ―bare rocks‖ can be explained by the topography, because both classes 

mainly occur in rugged terrain where shadows occur which can cause uncertainty during 

classification. The validation results for the three major categories of LULC classes (Cropland, 

forest, meadows or fallowed croplands) is presented in Table 2. These LULC were considered for 

further validation besides the cross-validation step since they are central focus of the research about 

the undercover cropland. 

Table 2 Accuracy assessment of classification results for dominant land cover classes in the study site. 

Ground truth points 

LU_Name Croplands Forests 

Meadows 

or fallowed 

croplands Total 

Class 

accuracy 

(%) 

P
re

d
ic

te
d

 Croplands 379 8 16 403 94.04 

Forests 8 111 6 125 88.80 

Meadows or fallowed croplands 4 8 71 83 85.54 

Total  391 127 93 611 

Sum of correct predictions 561 

Overall Accuracy 91.82 

Kappa Coefficient 0.84 

Cropland and forest were classified with accuracy of 94 % and 89 % respectively. The accuracy of 

classification for the class meadows or fallowed croplands was 86 %. The overall accuracy 

achieved for the three major LULC classes was 92 % with a Kappa coefficient of 0.84 (see Table 2 

for details). In general, the cross-validation and validation results presented in Tables 1 and 2 

showed that the RF classification was performed with an acceptable accuracy. 

3.3 Relative importance of factors influencing undercover cropland area 

The Boosted Regression Trees fitted model for each of the influential factors of undercover 

cropland area calculated from field estimated percent cover is presented in Figure 3. The area of 

undercover cropland rises with increasing elevation, slope, and distance to major settlements while 

it decreases with distance from the national park. However, after certain limit the graph remains 

constant with a value of 0 showing that there is no undercover cropland above such limits. Similar 

patterns of the relationships between aspect and undercover cropland area were observed (Figure 3). 

131



2400 2800 3200 3600

−
4

−
2

0
2

Elevation  (43.7%)

fit
te

d 
fu

nc
tio

n

10 15 20 25

−
4

−
2

0
2

Distance_to_Settlements  (13.8%)

fit
te

d 
fu

nc
tio

n

0.00 0.05 0.10 0.15 0.20 0.25

−
4

−
2

0
2

EastAsp  (13.3%)

fit
te

d 
fu

nc
tio

n

0 10 20 30

−
4

−
2

0
2

Distance_to_National_Park  (10.7%)

fit
te

d 
fu

nc
tio

n

5 10 15 20 25 30 35

−
4

−
2

0
2

Slope  (7.3%)

fit
te

d 
fu

nc
tio

n

0.0 0.1 0.2 0.3 0.4

−
4

−
2

0
2

WestAsp  (4.9%)

fit
te

d 
fu

nc
tio

n

0.0 0.1 0.2 0.3 0.4

−
4

−
2

0
2

SouthAsp  (4.5%)

fit
te

d 
fu

nc
tio

n

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
4

−
2

0
2

NorthAsp  (1.9%)

fit
te

d 
fu

nc
tio

n

132

Yohannes
Textfeld
Figure 3 Boosted Regression Trees fitted model showing the relative importance of influential factors of undercover cropland area calculated from field estimated percent cover. 



The results of the BRTs model of undercover cropland area showing the relative influence of the 

variables considered and predictive performance of the model are summarized in Table 3a and b 

respectively. The Boosted Regression Trees model for area of undercover cropland calculated from 

field estimated percent cover can explain 70.35 % of the total deviance. The deviance was 

determined using Gaussian family distribution function and is a measure equivalent to R
2
.

Explanatory variables Relative influence 

         (%) 

Rank 

Elevation 43.7 1 

Distance to Settlements 13.80 2 

East aspect 13.30 3 

Distance to National Park 10.70 4 

Slope 7.30 5 

West aspect 4.90 6 

South aspect 4.50 7 

North aspect 1.90 8 

Table 3b) Predictive performance of the BRTs model 

Mean total deviance Mean residual 

deviance 

Estimated 

CV Deviance 

CV correlation 

41.25 12.23 26.94 (SE ± 4.5) 0.59 (SE ± 0.05) 

Elevation is the most influential factor accounting for more than 43 % of the variance explained. 

Distance to settlements and east aspect consist of about 27 % while distance to national park and 

slope consist of about 12 % of the total deviance explained. West aspect, south aspect and north 

aspect were found to account for about 11 % of the deviance. 

Besides the undercover cropland, for comparison, the BRTs results of cropland area and its 

influential factors is provided in the electronic supplementary information. Cropland area here 

refers to the area of land in sample plots where crops are grown i.e. including the area of cropland 

estimated as an undercover and the area of cropland in open areas. Figure S2 in File S1 shows 

BRTs fitted model for influential factors of cropland area calculated from plot-level field estimated 

percent cover. The proportion of total deviance explained by slope, elevation and distance to 

national park are 34.7, 30 and 19.7 % respectively while aspect appears less influential for cropland 

Table 3a) Influential factors of undercover cropland area (ha) calculated from field estimated percent cover 

derived using BRTs model with tree complexity, tc of 2, learning rate, lr of 0.008 and bag fraction, bf of 

0.75.
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area estimated at sample points (Figure S2 in File S1). The BRTs fitted models for plot-level 

cropland area calculated from RapidEye images (Figure S3 in File S1) show that elevation is most 

influential factor accounting for 57.7 % of the total deviance explained. Due to difficulty in 

calculating undercover cropland from RapidEye images, the calculated cropland area here refers to 

what can be captured with the images without including the undercover cropland. Distance to 

national park and distance to settlements each account for 8.7 % of the deviance. Aspect appears 

less influential compared with the aforementioned parameters (Figure S3 in File S1). For details on 

the relationship between the holdout deviance and the number of trees in BRTs model for 

undercover cropland area calculated from field estimated percent cover, cropland area calculated 

from field estimated percent cover and RapidEye images, refer to Figure S4 in File S1. 

3.4 Predicted undercover cropland 

The land use in the study site includes cropland inside the remnants of forests. Though the 

classification of RapidEye images shows forest as dominant LULC type in the upstream areas, there 

is cropland under the tree canopies. The undercover cropland area predicted using only the most 

influential variables slope, elevation and east aspect ranges from 0 to 32 m2 per pixel (Figure S5a 

in File S1). Undercover cropland predicted from all the topographic variables elevation, slope, east 

aspect, west aspect, north aspect and south aspect using BRTs is presented in (Figure S5b in File 

S1). Probability of undercover cropland in the area ranges from 0 to 25 m2 per pixel when all 

topographic factors are included in the prediction. Figure S6 in File S1 compares undercover 

cropland area predicted using all variables (Figure S5b in File S1) with selected variables slope, 

elevation and east aspect (Figure S5a in File S1). The scatter plot showed that there is no much 

difference between undercover cropland area predicted using only most influential variables and all 

the variables. Figure S7 in File S1 presents the comparison of cropland area calculated from 

RapidEye images and area estimated in the field. In this study, we assumed that remote sensing 

underestimates area of cropland since undercover cropland cannot be detected. However, results at 
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some of the sample plots showed that classification of RapidEye images overestimated cropland 

area which might be due to error in classification of LULC classes such as meadows as croplands 

(Figure S7 in File S1). Although classification of remote sensing images provides useful 

information, it is usually subjected to unavoidable uncertainties that are calling for more research in 

this discipline. The undercover cropland map produced by overlaying the probability map with the 

forest layer from RapidEye image classification is shown in Figure 4. 

Figure 4 Undercover cropland area predicted from most influential topographic factors identified using 

Boosted Regression Trees (Pixel size of 100 m2).

Undercover cropland is located in the upper escarpments though there is no undercover cropland in 

the upper most extremes of the site (Figure 4). The upper most extremes are dominated with dense 

Erica arborea shrubs and are not suitable to grow crops due to the extremely cold climatic 

condition and also the dense shrubs that require complete clearing for growing crops. Thus, the 

larger portion of undercover cropland forms a belt in the upper escarpments of the study site (Figure 

4). Field observations confirmed that this belt is dominated with Juniperus procera trees. The 

undercover cropland forms a vertical strata with cropland as undergrowth and trees being the upper 

canopy (Figure 5). As it was observed in the field, the major crop cultivated inside the forest is 

wheat. Reasons for this preference of farmers are most likely the high market demand for wheat and 
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provision of improved seeds and fertilizer by the government due to its recent plan to improve crop 

production. 

Figure 5 Undercover cropland area calculated from field estimated percent cover for selected sample plots with 

an area of 36 hectares. Photos labeled a to d show close range view of the undercover cropland taken at the 

location on the map labeled with the same letters.    

The photos in Figure 5 show a close-range view of undercover cropland inside forests from sample 

plots. They reveal hidden cropland inside the areas that was classified as forest using the RapidEye 
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images which mainly capture view of forest canopy from top. Cropland was observed inside forests 

including very steep terrains that were entirely covered with forest and/or with semi-open woody 

pasturelands that were previously used for livestock grazing. 

4. Discussion

4.1 Influential factors of undercover cropland 

Growing of food crops in the Bale Mountains involves not only cultivation of open lands with 

moderate slope but also cultivation inside forests in the upper escarpments. The findings of this 

study confirmed that topographic parameters such as elevation, slope and aspect are important 

factors that influence cropland area in mountainous regions. These parameters were found also 

important determinants of soil properties and vegetation types in the Bale Mountains (Yimer et al. 

2006a, 2006b). Similar studies in mountainous areas also demonstrated that elevation, slope and 

aspect are among the influential factors that need to be considered in mountain ecosystem 

conservation and habitat management (Grêt-Regamey et al. 2012, Hole et al. 2011, Littell et al. 

2012, Pollock et al. 2012). 

 In the Bale Mountains, there is difference in the impacts of topographic parameters on cropland 

area as a whole and the area of cropland which is cultivated as an undercover. For instance, inverse 

relationship was observed between cropland area and topographic parameters such as elevation 

above sea level and slope (in degrees) which conforms to the findings in other mountainous areas 

(Yuejiao 2013). However, area of cropland cultivated as an undercover showed increment with 

increasing elevation and slope inside semi-protected forests. The extremely steep terrains 

correspond to high elevation areas that were not suitable for growing cereal crops. Nevertheless, 

recently farmers started growing crops in these areas which is an indication of impacts of climate 

change in the region. Undercover cropland is influenced also by topographic aspects that modify 

microclimate conditions. East lying aspect was found more determinant compared with other 
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topographic aspects. The main reason for this may be the exposure of land under forest canopies to 

morning sunlight which provides favorable condition for vegetation growth inside forests (Wondie 

et al. 2012). 

Besides the topographic parameters,  the extent of undercover cropland was found to be influenced 

by location parameters such as distance to national park and settlement areas. There is a positive 

relationship between cropland area and distance to the national park whereas the area of cropland 

cultivated as an undercover showed inverse relationship with distance to national park. An inverse 

relationship might result from the fact that areas close to national parks are relatively protected and 

hence, farmers‘ only option has become growing crops as an undercover. Cropland area in general 

increases close to settlement areas but area of cropland cultivated as an undercover inside forests 

decreases near major settlement areas. 

Generally, the study indicated the major topographic and location parameters that limit human 

activities regarding growing of food crops in the mountainous region. The pattern of growing crops 

as an undercover inside forests in the mountain escarpments could have series consequences on 

ecosystem services demanding for prompt solutions to address the ongoing challenge in the region. 

The potential consequences on ecosystem services and the challenges of growing crops as 

undercover are discussed in sections 4.2 and 4.3 below. 

4.2 Consequences on ecosystem services 

The study site we investigated supplies diverse ecosystem services that are essential for livelihood 

of the local people. The undercover cropland in this mountainous region thus has multifaceted 

impacts on supplies of these ecosystem services. For instance, the forest in the area is the major 

source of timber and fuelwood for the local people and to markets in the surroundings. However, 

the recent undercover growing of crops inside the forest in the upper steep slope areas gradually 
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degrades the forest thereby declining supplies of timber and fuelwood. Moreover, most of the 

forested areas where undercover cropland is going on was previously mixed with pasture. Hence, 

cultivation of cropland as an undercover may decrease the supply of fodder for livestock, indirectly 

reducing the livestock production (Baptist et al. 2001, Stephens 2001). 

Cropland under forest canopies often exposes soil to erosion especially in the extremely steep 

terrains (Blanco and Lal 2010; García-Ruiz 2010). In addition, land degradation is likely to happen 

as more fertile soil is washed away. This may in turn damage the agricultural prospects as well as 

the supplies of other ecosystem services in the area (Clark 2012). As it was observed during the 

field surveying, soil that is eroded from the upstream area of the Bale Mountains has already been a 

threat to the supply of electricity by the local hydropower, Melka Wakena, due to the deposition of 

sediments in the reservoir. During rainy seasons the hydropower reservoir is usually filled with 

sediments coming from the upstream area. Sediment deposition in the reservoir increases the cost 

for cleaning and maintenance of the reservoir if undercover cropland continues without considering 

preservation of forests in the upstream areas. Increased runoff from the upstream areas and 

sediment deposition in the rivers and reservoir affects also the supplies of clean water to nearby 

beneficiaries (Nelson et al. 2009; Ayanu et al. 2011; Nguyen et al. 2013). 

4.3 Challenges in transforming an undercover cropland into a sustainable agroforestry system 

Conversion of open forests with herbaceous layer to undercover cropland inside forests in the Bale 

Mountains cannot be regarded as a sustainable agroforestry system. The undercover cropland lacks 

the following major features of an agroforestry system that need to be addressed. 

Selection of tree-crop combination: An agro-forestry system involves multistory land use and is 

widely acknowledged for its capacity to ensure sustainable land use and resource management 

(George et al. 2012, Smith et al. 2012). Traditional agroforestry  is usually a multistory composition 
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of selected multipurpose trees, crops like maize, fruit trees, and vegetables (Alebachew 2012, Plath 

et al. 2011). Agroforestry systems can be used as a remedy for severe environmental problems in 

highland areas but require selection of proper species of trees and crops (Mahboubi et al. 1997; 

Khybri et al. 1992, Cao et al. 2010; Zhang et al. 2013). Unlike traditional agroforestry systems 

involving planned selection and growing of tree-crop combinations, the undercover cropland is 

intended mainly for expanding cropland area without proper selection of tree-crop combination. 

Management of trees and crops: In a well-managed agroforestry system, growing crops like wheat 

under tree canopies (e.g. Eucalyptus) provides favorable microclimate conditions for the crops 

(Kohli and Saini 2003; Singh and Sharma 2007; Smits et al. 2012). Tree canopy structure and 

distance from crops affects crop performance (Sharma 1992; Singh et al. 1993; Li et al. 2008). In 

some cases, toxic effects from trees could reduce the crop yield (Singh et al. 1998; Gill et al. 2009). 

Management practices in an agroforestry system depend on the crops growing under the canopies 

(Anthofer et al. 1998). Considering the aforementioned typical features of tree-crop combinations, 

the undercover cropland lacks proper management of trees and crops as a multistory land use since 

the main goal of the farmers is to find a land for growing food crops. 

Farmers' lack of experience in agroforestry: In the Bale Mountains, traditional knowledge of 

agroforestry is limited because the people in the area are mainly used to monocropping and 

livestock production. Thus, the undercover cropland introduced in the area brings forth dilemmas as 

to whether the farmers are adopting the knowledge of agroforestry from other parts of the country 

or creating a room for clearing forests and expanding cropland in unoccupied forest land restricted 

by the government. It was introduced by the local farmers as a strategy for acquiring more land for 

growing crops inside remnants of the forest in the uplands where clearing of forest is restricted by 

the government. The system emerged as a result of desperate needs for food crop production and 
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resembles a traditional agroforestry system because it involves growing of crops under tree 

canopies. 

In general, given its current status, the undercover cropland would not eventually develop to an 

agroforestry system and it will only aggravate forest degradation. Thus, it can only be considered as 

an initial stage of deforestation which will later end up in complete clearing of the forests by 

gradually decreasing the forest density (Peres and Schneider 2012). The use of open forests for 

livestock production instead of undercover cropland might be a more sustainable land use. At least 

it was a very well established traditional land use, e.g., in the European Alps known as wood 

pasture (Grimmi et al. 2008). 

5. Conclusions

Although satellite image classification can be used for LULC mapping, assessment of undercover 

cropland inside forests requires detailed field surveying. The study confirmed that analysis of field 

observed percent cover and topographic parameters such as elevation, slope and aspect using 

Boosted Regression Trees enables assessment of undercover croplands in forested areas which 

otherwise are not detectable with remote sensing data. The findings showed that extent of 

undercover cropland is determined by elevation, slope, aspect, distance to national park and 

distance to settlements. Among the topographic parameters elevation, slope and east aspect were 

found the most influential factors for growing of crops inside forests having a positive relationship 

between undercover cropland area. Similarly, distance to settlements showed positive relationship 

with undercover cropland area while an inverse relationship was observed with distance to national 

park. Therefore, while planning land use and ecosystem management in mountainous regions, 

decision-makers should take into account the relative importance of these parameters. 
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Further research is essential to find methods for designing and implementing policies that ensure 

sustainable supplies of ecosystem services and nature conservation such as Payments for Ecosystem 

Services (PES) schemes. Stakeholders such as farmers, government officials, environmental 

authorities, Hydropower Company, and the Bale Mountains National Parks (BMNP) should be 

incorporated in decision making. Further research is needed also to create awareness and find 

alternative solutions for the livelihood of the local people to reduce the expansion of cropland in 

extremely steep areas of this mountainous region. Since the undercover cropland resembles a 

traditional agroforestry system, there is potential to transform it in to a more sustainable 

agroforestry system. The following points should be considered to develop an undercover cropland 

into a sustainable agroforestry system. Firstly, proper selection of tree-crop combinations that are 

suitable for mountainous areas needs to be identified and used by the farmers in the area. Secondly, 

management practices for trees and crops in the undercover cropland areas should aim at ensuring 

sustainable supplies of ecosystem services. Lastly, knowledge transfer from well-established 

agroforestry areas to the mountainous undercover cropland areas is essential. 
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Figure S1 Relative importance of features used for classification of RapidEye 

images using RF classification. 



Mean  Decrease in Accuracy (MDA) indicates the extent of decrease in accuracy in the Out-Of- 
Bag (OOB) samples when a variable is excluded from the predictive model. Variables with higher 
values of MDA are more important for classification. Mean Decrease Gini (MDG) defines the 
total decrease in Gini impurity (measure of datasets impurity) when a given variable is used for 
spliting at a node of all trees. Variables with higher MDA values  are more important for 
classification (cf. Golino and Gomes 2014).  

Reference 
Golino, H. F., & Gomes, C. M. A. (2014). Visualizing Random Forest’s Prediction Results. Psychology, 5(19), 2084.
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Figure S5 Predicted undercover cropland in m2 per pixel using a) only most influential 
factors slope, elevation and east aspect b) all topographic factors slope, elevation, east 

aspect, west aspect, south aspect and north aspect. Pixel size is 100 m2.
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Figure S6 Comparison of undercover cropland area (hectares) predicted from X, all 
variables slope, elevation, and aspects (east, west, south and north) with Y, only most 
influential variables (slope, elevation and east aspect). 
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Figure S7 Comparison of cropland area (hectares) X, estimated in the field and 
Y, cropland area calculated from RapidEye images. 
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Chapter 5 

Synthesis and outlook



Chapter 5 Synthesis and outlook 

In this thesis, application of remote sensing in assessing land cover in fragile lands and 

ecosystem services was explored. The synopsis (Chapter 1) provided general 

background about fragile lands, land use/land cover (LULC), ecosystem services, and the 

major research questions of the dissertation. The case studies in this dissertation 

highlighted the pressing problems in land cover that are detrimental for ecosystem 

services in two distinct fragile lands i.e. semi-desert drylands and mountainous areas in 

Ethiopia.  

Firstly, the threatening effects of introducing a species as an ecosystem engineering was 

assessed (Chapter 3) based on invasive species, Prosopis juliflora, in the fragile semi-

desert area of the Afar regional state of Ethiopia. The findings of this study indicated that, 

although P. juliflora was introduced as an ecosystem engineer mainly for regulating soil

erosion, it became highly invasive which confirms Hypothesis 1 which states that 

Prosopis juliflora  invasion of the Awash basin increased over the past decade. The 

invasion mainly of the wetlands has had negative impacts on the supply of ecosystem 

services such as provisioning and cultural services. The impacts vary according to the 

land-use/land-cover types affected and among social groups depending on the impact of 

the species on their livelihoods. The trends in invasion of P. juliflora also showed change 

in the spatial distribution due to efforts in the past that only involved the clearing of 

invaded irrigated croplands and grasslands. The species continued to spread to new 

areas that were not previously invaded which made complete eradication impossible.  

Besides the Awash basin, P. juliflora has spread throughout Ethiopia and become 

invasive in areas such as Arba Minch, Raya Azebo, Diredawa, Borena and South Omo. 

Therefore, spreading of this invasive species raises high environmental concern that 

requires an immediate action. 

Further research is needed to understand the P. juliflora invasion and its impacts on 

ecosystem services, as well as to identify appropriate approaches for controlling the

spread of P. juliflora. Modeling, for example with the InVEST tool (e.g. Nelson et al 2009), 

or LUCIA (e.g. Ayanu et al. 2011), with the explicit inclusion of longer time scales and 

broader spatial scales is required in order to assess the impact of P. juliflora on 

ecosystem services at the landscape scale. In this context, it will be essential to 
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distinguish between beneficiaries (nomads, agro-pastoralists, large scale farmers, and 

downstream residents) in order to specify in which way their well-being is affected by P. 

juliflora. Furthermore, emphasis should be given to management of P. juliflora before it 

drastically invades large areas throughout Ethiopia. The management practices for P. 

juliflora invasion control should be planned and implemented based on the invasive 

characteristics of the species and its perception by social groups in the affected regions. 

Secondly, undercover cropland inside forests and its influential factors were 

investigated (Chapter 4) based on a case study site in the Bale Mountains of Ethiopia. 

The findings showed that with increasing demand for food crops, cropland cultivation 

could take place inside forests as an undercover where clearing the forest is restricted 

by the local government which eventually end up in deforestation (McWilliam et al. 

2012). The influential factors for undercover cropland are elevation, distance to 

settlements, slope, east aspect and distance to national park with elevation being the 

most important factor. This conforms with Hypothesis 2 which states that topographic

parameters such as elevation, slope and aspect as well as location factors such as 

distance to settlements and the national park influence undercover cropland inside 

forests in the Bale Mountains of Ethiopia. Therefore, ecosystem management efforts in 

such mountainous areas should be based on the relative importance of these influential 

parameters. For instance, elevation, slope and aspect are among the influential factors 

considered in mountain ecosystem conservation and habitat management (Grêt-

Regamey et al. 2012, Hole et al. 2011, Littell et al. 2012, Pollock et al. 2012). The study 

also confirmed that application of Boosted Regression Trees on combinations of field 

observed land cover, topographic and location parameters enables assessment of 

undercover croplands inside forested areas.  

Further research is essential to find methods for designing and implementing policies 

that ensure sustainable supplies of ecosystem services and nature conservation. 

Investigations are needed to create awareness and find alternative solutions for the 

livelihood of people to reduce the expansion of cropland to the extremely steep areas. 

For instance, modelling of ecosystem services and analysis of tradeoffs and synergies for 

land use scenarios using the InVEST modeling tool can be very useful.   
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5.1 Monitoring fragile lands and ecosystem services 

The case studies in the drylands and mountainous regions of Ethiopia demonstrated that 

there is an urgent need for monitoring of fragile lands and impacts on ecosystem 

services. Fragile lands are highly threatened by global changes and hence their 

management raises global concern. The impact of detrimental cover types such as

invasive species and growing of crops in steep slope areas is often aggravated in fragile 

lands due to high vulnerability and low capacity of people living in those areas 

(Rejmánek 2000, Robbins 2004, D’Antonio et al. 2004, Thomas and Reid 2007, 

Rejmánek and Richardson 2013). Therefore, continuous monitoring of LULC and its 

impacts is essential to develop applicable management strategies (Aranda and Oyonarte 

2005, Bayramin et al. 2008, Cui and Shao 2005). Despite the efforts made in the past, 

globally, the impacts of invasive species on the multiple values of intensively managed 

lands and natural ecosystems continued to grow, highlighting the necessity of further 

studies in invasive species management. 

5.1.1 Management guidelines for invasive species  

In Ethiopia, there is no strong framework for the monitoring and control of invasive 

species. Therefore, a framework for fighting invasive species should be developed and 

implemented to prevent the loss of biodiversity and ecosystem services. The continued 

threat posed by invasive species calls for an interdisciplinary approach where scientists 

from various disciplines such as ecologists, botanists, economists, environmentalists and 

information technologists are involved for developing a concise management 

framework (Molnar et al. 2008). The concepts that should be included in the framework 

at global scale include: 

 Methods for quantifying impacts on ecosystem services: Developing methods for

quantifying impacts of invasive species for instance, using remote sensing and

modeling tools would help to rank the invasive species based on the damage they

cause. This can be used as a guideline for prioritizing management of the high

risk species.

 Database: It is necessary to build databases for the already established invasive

species and for every new species identified as an invasive. This will be useful for

sharing relevant data worldwide, tracing the impacts and their regulation

strategies.
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 Early warning system: With the changing climate and rapid globalization,

invasive species will continue to emerge worldwide. In some cases invasive

species are not easily identifiable and/or considered as invasive before they

largely threaten ecosystems capacity to supply services. Hence, incorporating an

early warning system for similar agro-ecological zones where the new species

emerged as an invasive would help to prevent the species from spreading.

 Capacity to respond: Management of invasive species requires understanding the

local context in terms of responding to invasive species. The capacity to respond

to an invasive species such as P. juliflora varies among social groups; hence,

analysis of impacts of invasive species should consider social differentiation. In

fragile lands (e.g. drylands), invasive species are more successful in spreading

due to the competitive advantages of the species and low capacity of people to

respond to the invasion. Therefore, fragile lands should be given high priority in

the framework for regulation of invasive species.

Generally, the detrimental effects of invasive species are not questionable and the need 

for their management should get more emphasis. Introduction of new plant species to 

degraded areas may address short-term problems but once established, the new species 

could become more aggressive and turn to be invasive. Therefore, reclamation of 

degraded lands using plants as ecosystem engineers needs to be carried out with caution. 

5.1.2 Sustainable options for mountain ecosystems 

Growing crops inside forests in mountainous areas may temporarily boost food crop 

production. Nevertheless, this happens at the expense of other ecosystem services such 

as erosion control, sediment retention, water purification and flood regulation which in 

turn has serious impact on the downstream users and the hydropower companies. The 

knowledge on topography of undercover cropland is relevant for assessing impacts on 

ecosystem services (e.g. slope for sediment retention).  Moreover, continuous tillage for 

growing annual crops such as wheat and barley inside forests  gradually reduces the 

forest cover and results in death of trees leading to the decline in supplies of services 

such as timber, fuelwood and carbon sequestration. Besides, since the pattern of 

growing crops inside forests of the Bale Mountains mainly aims at land acquisition i.e. " 

land grab by local people " for growing crops, the forest stands will become less stable 
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and eventually be deforested. If the current trend continues, even the extremely steep 

areas of Bale Mountains that are currently covered with forests could turn to be 

degraded rocky terrains in the near future. Therefore, options that ensure sustainable 

supplies of ecosystem services and nature conservation need to be designed and 

implemented. The following can be alternatives for the Bale Mountains of Ethiopia: 

 Payments for Ecosystem Services (PES) schemes: Introducing systems such as

payments for ecosystem services that benefits the poor people living in extreme

steep slope areas could be a useful step towards achieving the sustainable

supplies of ecosystem services (Wunder 2008). Since this involves abandoning

of the upstream croplands inside forests, various stakeholders such as farmers,

government officials, environmental authorities, hydropower company, and the

Bale Mountains National Parks (BMNP) should be incorporated in implementing

PES.

 Developing the undercover cropland into a sustainable agro-forestry system: 
There is potential to transform the undercover cropland inside forests to a more

sustainable agroforestry system. The points that should be considered for the

transformation include:

o proper selection of tree-crop combinations that are suitable for

mountainous areas.

o management practices for trees and crops in the undercover cropland

areas should aim at ensuring sustainable supplies of ecosystem services.

o knowledge transfer from well-established agroforestry areas such as the

Gedio Zone of the Southern Ethiopia to the mountainous areas.

 Terrain management: The supplies of ecosystem services such as water and

sediment retention in the upstream steep slope areas are essential. To ensure

sustainable supplies of services from these fragile lands, terrain management

techniques that consider the linkage between upland and lowland areas is

essential.

Global demand for food crop production is rapidly increasing with the growing 

population leading to large scale acquisition of land, "land grabbing", which is mainly 

taking place in the developing countries where the majority of the rural poor people are 

entirely dependent on subsistence agriculture. This further continuous to push the local 
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people to marginal fragile lands increasing pressure on mountainous areas. Therefore, 

protection of forest and other mountain resources is crucial to ensure sustainable 

supplies of diversified ecosystem services such as water, flood control, erosion control 

and sediment retention (Bales et al. 2006, Rodríguez-Rodríguez et al. 2011, Messerli 

2012). Attempts to fight poverty through investment in Agriculture should not end up in 

the depletion and/or degradation of natural resources (Scherr 2000, Liniger et al. 2005, 

Foley et al. 2005). Rather, poverty alleviation should go hand-in-hand with conserving

nature for the future generation to ensure sustainable supplies of ecosystem services.  

In a nutshell, land use decision in fragile lands should not be made only with short-term 

goals but also focus on the long-term sustainable use and management of these resource 

base. Due to the fragility of these land forms, special emphasis should be given to land 

use decisions to ensure sustainable supplies of ecosystem services. Sustainable supplies 

of ecosystem services and biodiversity from fragile lands can only be achieved through 

careful management of these sensitive land forms. To reach this goal various 

stakeholders such as policy-makers, land owners, users (e.g. pastoralists), scientific 

community, development organizations, society at large and the media should be 

involved to ensure land use in fragile lands.  

5.1.3 Future prospects in remote sensing of ecosystem services 

Remote sensing enables fast and frequent data acquisition options that enable 

continuous monitoring of ecosystem services. There is ample potential in using remote 

sensing for quantifying and mapping proxies for ecosystem services besides the classical 

method using LULC classes. The review of remote sensing applications (Chapter 2) 

identified four major issues that need to be considered in selecting remote sensing data 

and methods for assessing ecosystem services: i) Spatial, temporal, spectral and 

radiometric resolution ii) Sensor types (passive vs active) iii) Uncertainty of the findings 

that call for validation with field data, and iv) Financial and technical capacity. Since its 

publication in 2012, the article has been cited by 12 authors according to the ISI Web of 

Knowledge showing significance of the topic in the current research in the field. The 

following challenging issues are key areas for research in the application of remote 

sensing for assessing ecosystem services: 
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 Linking ecosystem services with remote sensing data: There are no well-defined

theories that directly link some ecosystem services (e.g. flood control, erosion

control) with image spectra. Besides, those ecosystem services which can be

quantified from image spectra (e.g. biomass) require intensive field

measurement or expensive remote sensing data sources such as LiDAR. Further

research is thus essential to find cost and time-efficient approaches that enable

to directly extract ecosystem services from image spectra.

 Dealing with uncertainty: There is uncertainty involved when using remote

sensing data for quantifying and mapping ecosystem services. Thus,

understanding the magnitude of errors or uncertainties in the data and

processing methods is necessary when interpreting the assessment of ecosystem

services. Results should be validated with in situ measurements of the

parameters relevant to the ecosystem services assessed.

The assessment of ecosystem services using remote sensing requires approaches where 

researchers from various disciplines are involved. This includes remote sensing experts 

who address the technical aspects and experts in the fields such as ecology, soil, forestry, 

agriculture, environment, economics and hydrology. This is because different ecosystem 

services require expert knowledge from different disciplines. For instance, sediment 

retention can better be explained by experts in the field of hydrology and soil sciences 

while foresters could better understand the concepts required for quantifying timber 

biomass. It should be noted that images alone cannot tell us about ecosystem services. 

Thus, linking an ecosystem service with remote sensing data should be based on 

theoretical definitions and identifying remote sensing parameters that can be used to 

detect indicators of the ecosystem service.  

The applicability of remote sensing also varies depending on the ecosystem service to be 

quantified. For instance, quantifying storm regulation services can only be done through 

indirect method by estimating the damage in mangrove vegetation. Whereas, timber 

biomass can be directly mapped through regression  of image spectra (e.g. NDVI) with 

measured biomass parameters (e.g. DBH, Height). Thus, lack of defined relationships 

between image parameters and ecosystem services remains a constraint in the 

quantification of ecosystem services using remote sensing data. Moreover, the indirect 
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approach of deriving proxies from remote sensing data raises concern about accuracy 

and reliability of ecosystem services maps. The aforementioned issues confirm that 

quantifying and mapping ecosystem services using remote sensing image spectra is at 

its early stage of development calling for more research to find novel approaches and 

methods that produce reliable results. 

5.2 Scope of the dissertation and future research interests 

Three broad topics are integrated in this dissertation i.e. land cover, ecosystem services 

and remote sensing. As a first step leading towards the main focus of the study, potential 

and challenges of using remote sensing for quantifying and mapping ecosystem services 

was explored based on literature review. This was used to further refine the scope of the 

thesis based on resource availability, data and time limitations. The case studies in this 

dissertation were carried out solely by the individual researcher in the study areas 

where relevant quantitative data on ecosystem services were not possible to acquire 

due to lack of projects working on a similar topic. Due to limited financial budget for this 

dissertation, it was not possible to do intensive and repeated field work. Therefore, the 

study was narrowed down to assessing LULC that are detrimental to ecosystem services 

in two different fragile lands i.e. drylands and mountain regions in Ethiopia.  

The case studies addressed the ongoing land cover related pressure on fragile lands in 

the world where there is immense demand for growing crops and its impacts on 

ecosystem services. With availability of resources and time, intensive remote sensing-

based assessment of ecosystem services can be made possible. Using this dissertation as 

a an entry point, I would like to do further research in remote sensing applications for 

assessing ecosystem services. The research plans include deriving proxies by linking 

vegetation indices derived from remote sensing data with field data collected for 

indicators of ecosystem services. It includes also analysis of dynamics in ecosystem 

services through calibration of time series remote sensing data with field collected 

indicators of ecosystem services. Comparing findings of model-based and remote 

sensing-based analysis is also a research gap in the quantification and mapping of 

ecosystem services. My academic backgrounds are B.Sc. in Forestry, M.Sc. in 

Photogrammetry & Geoinformatics and M.Sc. in Agricultural Sciences. Past research and 

work experience mainly focused on remote sensing and GIS applications, spatially-
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explicit modeling approaches, and ecosystem services assessment shaping my expertise 

in these areas. My future research and career interest would thus be in relevant tasks in 

this direction.    
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