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Summary 
Mitochondria are membrane-bounded organelles, which are important for diverse cellular and 

physiological processes such as energy production by oxidative phosphorylation. Loss of functional 

mitochondria can lead to cell death and is associated with neurodegenerative diseases like 

Parkinson’s disease and amyotrophic lateral sclerosis. In order to execute their tasks, mitochondria 

have to communicate and interact with different cellular structures including other organelles and 

the cytoskeleton.  

In the first part of this study, it is shown that the contacts between the endoplasmic reticulum (ER) 

and mitochondria are important for the mitochondrial turnover by autophagy, also called mitophagy. 

Mitophagy is a process ensuring the appropriate quality and quantity of mitochondria by 

sequestering a mitochondrion within a double membrane and delivering it to degradative organelles. 

Failed mitophagy in neurons is supposed to result in accumulation of dysfunctional mitochondria and 

ultimately to neurodegeneration. By screening a collection of several hundred yeast mutants for 

defective mitochondrial autophagy, the four mutants lacking the ER-mitochondria encounter 

structure (ERMES), which connects ER and mitochondria, were found to have a decreased rate of 

mitophagy. Strikingly, artificial tethering of mitochondria and ER by a chimeric protein restores 

mitophagy in the ERMES mutants, indicating that loss of spatial proximity between the two 

organelles is the main cause of the mitophagy deficit. Moreover, one of the ERMES subunits interacts 

with the autophagic membrane expansion factor Atg8, which suggests that ERMES plays a role during 

growth of this membrane. Consequently, ERMES mutants show aberrant autophagic membrane 

structures, which can again be rescued by artificial mitochondria-ER tethering. It can thus be 

hypothesized that ERMES mediates the spatial proximity between mitochondria, the membrane 

expansion factor Atg8 and the ER, and that ERMES thereby promotes lipid flux from the ER to the 

autophagic membrane. 

In the second part, a genetic screen revealed that mitochondrial dynamics is important for the 

inheritance of mitochondria into the daughter cell. In yeast, mitochondria are transported along the 

actin cytoskeleton by the myosin V motor protein Myo2. The mutant myo2(LQ) allele carries two 

amino acid substitutions resulting in impaired mitochondrial motility. By introducing this allele into 

yeast deletion mutants on a genome-wide scale by synthetic genetic array technology, it was shown 

that mutants lacking fusion-competent mitochondria heavily depend on a functional transport 

machinery, since otherwise mitochondria are not transported into the daughter cell. However, if 

mitochondrial division is blocked in the myo2(LQ) mutant, mitochondrial inheritance is restored, 

indicating that mitochondrial dynamics regulates the amount of mitochondria that is transported 

into the bud. 

In sum, this study provides new insights into how the interplay of mitochondria with different cellular 

structures orchestrates mitochondrial behavior.  
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Zusammenfassung 
Mitochondrien sind membranumschlossene Organellen, die für zahlreiche zelluläre und 

physiologische Prozesse wichtig sind. Der Verlust funktioneller Mitochondrien kann zum Zelltod führ-

en und ist mit neurodegenerativen Krankheiten wie Parkinson und amyotropher Lateralsklerose as-

soziiert. Um ihre Aufgaben zu bewältigen, müssen Mitochondrien mit verschiedenen zellulären Struk-

turen, wie anderen Organellen oder dem Zytoskelett, kommunizieren und interagieren. 

Im ersten Teil dieser Arbeit wird gezeigt, dass Kontakte zwischen dem endoplasmatischen Retikulum 

und Mitochondrien wichtig für den mitochondrialen Abbau über Autophagie sind, der auch als Mito-

phagie bezeichnet wird. Mitophagie stellt sicher, dass Mitochondrien in angemessener Anzahl und 

Qualität vorhanden sind, indem Mitochondrien in einer Doppelmembran eingeschlossen und in ab-

bauende Organellen transportiert werden. Man geht davon aus, dass der Verlust der Fähigkeit zur 

Mitophagie in Neuronen dazu führt, dass nicht-funktionelle Mitochondrien akkumulieren, was 

schließlich in Neurodegeneration resultiert. Indem mehrere hundert Hefemutanten hinsichtlich ver-

änderter Mitophagieraten untersucht wurden, konnten vier Mutanten als Mitophagie-defizient iden-

tifiziert werden, denen die ER-mitochondrion encounter structure (ERMES) fehlt, welche ER und Mito-

chondrien verbindet. Erstaunlicherweise konnte dieser Defekt gerettet werden, indem mittels eines 

chimären Proteins die mitochondrialen ER-Kontakte wieder künstlich hergestellt wurden. Dies deutet 

darauf hin, dass der Verlust der räumlichen Nähe zwischen den beiden Organellen der Hauptgrund 

für das Mitophagie-Defizit ist. Zudem interagiert eine der ERMES-Untereinheiten mit dem Auto-

phagie-Membranexpansionsfaktor Atg8, was nahelegt, dass der ERMES-Komplex eine Rolle beim 

Wachstum von Autophagiemembranen spielt. Dementsprechend zeigen ERMES-Mutanten ver-

änderte Autophagiemembran-Strukturen, die wiederum durch künstliche ER-Mitochondrien-Ver-

bindungen wiederhergestellt werden können. Deshalb kann angenommen werden, dass der ERMES-

Komplex die räumliche Nähe zwischen Mitochondrien, dem Membranexpansionsfaktor Atg8 und 

dem ER herstellt, wodurch der Komplex den Lipidfluss vom ER zur Autophagiemembran unterstützt. 

Im zweiten Teil wurde ein genetisches Screening durchgeführt, welches zeigte, dass die 

mitochondriale Dynamik wichtig für die Vererbung von Mitochondrien an die Tochterzelle ist. In Hefe 

werden Mitochondrien entlang des Aktin-Zytoskeletts über das Klasse V Myosin-Motorprotein Myo2 

transportiert. Das mutante myo2(LQ) Allel führt zu reduzierter mitochondrialer Beweglichkeit. Indem 

dieses Allel genomweit über synthetic genetic array-Technologie in Hefedeletionsmutanten 

eingeführt wurde, konnte gezeigt werden, dass Hefen ohne fusionskompetente Mitochondrien stark 

von einer funktionellen Transportmaschinerie abhängen, da ansonsten Mitochondrien nicht in die 

Tochterzelle transportiert werden können. Wenn allerdings die mitochondriale Teilung in der 

myo2(LQ) Mutante unterbunden wird, führt dies zu verbesserter mitochondrialer Vererbung. Dies 

deutet darauf hin, dass die mitochondriale Dynamik die Menge an Mitochondrien reguliert, die in die 

Tochterzelle transportiert wird.  

Zusammengefasst bietet diese Arbeit neue Einsichten, wie das Zusammenspiel von Mitochondrien 

mit verschiedenen zellulären Strukturen das Verhalten von Mitochondrien beeinflusst.  



Introduction 

 

1 
 

Introduction 

The mitochondrial life cycle 

Mitochondria are semi-autonomous organelles. They derived from an α-proteobacterial ancestor, 

which was taken up by a phagocytic archea-like host cell. The prey survived the feast and was 

integrated into the host cell’s physiology (Gray et al., 1999). The prey’s genome was reduced and 

most of its genes were transferred to the host nucleus. Nowadays, mitochondrial DNA (mtDNA) 

codes only for few RNAs and proteins in most organisms. Accordingly, the majority of mitochondrial 

proteins has to be imported from the cytosol (Reichert and Neupert, 2004). To this end, 

mitochondria contain a sophisticated system of import machineries which recognize their substrates 

and transfer them to their destination within the organelle (Schmidt et al., 2010). 

Mitochondria consist of several distinct compartments (Frey and Mannella, 2000). Mitochondria are 

surrounded by the mitochondrial outer membrane (MOM), which encloses the inter membrane 

space (IMS) lying between MOM and mitochondrial inner membrane (MIM; Figure 1A). The MIM 

invaginates into cristae, the lumen of which is continuous to the IMS and which are connected to it 

by cristae junctions. ATP is generated by oxidative phosphorylation at the cristae membrane since 

the electron transport chain complexes and the ATP synthase reside there (Vogel et al., 2006; Wurm 

and Jakobs, 2006). Enclosed by the MIM is the mitochondrial matrix, where the mtDNA is packed into 

nucleoids, iron-sulfur clusters are synthesized and the citric acid cycle takes place, to name only 

some of the most prominent features.  

 

Figure 1. The mitochondrial life cycle. (A) Schematic representation of a mitochondrion, which divides into two 

daughter units. One unit can then be sequestered by a double-membraned autophagic vesicle and turned over. If 

this does not happen, the two mitochondria can refuse. (B) Schematic representation of the basic components of 

mitochondrial fusion (left) and division (right) in yeast. MOM, mitochondrial outer membrane; MIM, mitochondrial 

inner membrane. 
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Cells benefit from mitochondria in various ways. Efficient energy generation relies on oxidative 

phosphorylation in the MIM and cells depend on proteins containing iron-sulfur clusters, which are 

exclusively assembled in mitochondria (Lill and Mühlenhoff, 2005). Furthermore, mitochondria are 

involved in calcium signaling (Rizzuto et al., 2012), programmed cell death (Tait and Green, 2010), 

oxidation of fatty acids (Kunau et al., 1995) and cell cycle regulation (McBride et al., 2006). 

Another characteristic trait of mitochondria is their dynamic nature. Like many membrane-bounded 

organelles, mitochondria cannot form de novo. This results in the necessity to grow by import of 

proteins and lipids and to multiply by fission, which is reminiscent of the bacterial ancestry of 

mitochondria. Whilst bacterial cell division machineries assemble on the inside of the cell, the 

mitochondrial fission machinery operates from the organelle’s exterior (Friedman and Nunnari, 

2014). Since the work in this study was solely carried out in yeast, the focus will be on the situation in 

Saccharomyces cerevisiae. In this organism, the transmembrane protein Fis1 recruits the dynamin-

related protein Dnm1 via the redundant adaptor proteins Mdv1 or Caf4 (Figure 1B; Bleazard et al., 

1999; Mozdy et al., 2000; Tieu and Nunnari, 2000; Tieu et al., 2002; Schauss et al., 2006). Dnm1 then 

assembles into oligomers on the mitochondrial surface and forms spirals wrapping around 

mitochondria, which subsequently sever the membranes upon GTP hydrolysis (Ingerman et al., 

2005). Interestingly, mitochondria constrict prior to Dnm1 assembly as they are otherwise too big to 

be surrounded by Dnm1 spirals. It had been a long standing question what mediates this constriction. 

It became clear that ER tubules enwrap and constrict mitochondria, which are eventually divided by 

Dnm1 (Friedman et al., 2011). 

If the genes coding for the fission components are missing, mitochondria form giant networks that 

are hyper-connected. The hyper-connected morphology in fission mutants is caused by the ongoing 

fusion activity, which is not counteracted by mitochondrial division. If both, mitochondrial fusion and 

division are blocked, a wild type-like mitochondrial network can be maintained (Sesaki and Jensen, 

1999). Mitochondrial fusion basically depends on three components (Figure 1B; reviewed in 

Westermann, 2010). In trans interactions of the MOM GTPase Fzo1 tether the mitochondria to be 

fused and GTP hydrolysis provides the energy for lipid bilayer mixing of the MOMs. Afterwards, the 

MIMs of the parental mitochondria are fused in a very similar manner by the GTPase Mgm1. In 

addition, the MOM protein Ugo1 is required for mitochondrial fusion by connecting Fzo1 and Mgm1. 

If FZO1, MGM1 or UGO1 are deleted, mitochondria are present as fragmented, unconnected entities 

since mitochondria are constantly divided but cannot refuse (Hermann et al., 1998; Wong et al., 

2000; Sesaki and Jensen, 2004). Mitochondrial fusion is regulated by ubiquitylation and 

deubiquitylation of Fzo1 and its subsequent degradation or stabilization, respectively (Fritz et al., 

2003; Cohen et al., 2008; Anton et al., 2013). The MIM protein Mgm1 is present in two isoforms as it 

is cleaved by the protease Pcp1 in an ATP level-dependent manner (Herlan et al., 2004). Since both 

isoforms are necessary for fusion, ATP levels might regulate the fusion competence of single 

mitochondria.  

Mitochondrial dynamics serves several purposes. If fusion is blocked, mitochondria quickly lose their 

genome (Merz and Westermann, 2009) probably since division often results in some mitochondrial 
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daughter units devoid of mtDNA. If these units cannot regain mtDNA from fusing with another 

mitochondrion and are transferred to daughter cells, these cells contain no mtDNA at all. Thus, 

fusion is important for the inheritance of the mitochondrial genome. Furthermore, if mtDNA is 

mutated in one mitochondrion, fusing with another mitochondrion with intact mtDNA can 

complement the defect and therefore preserve respiratory-competent mitochondria (Nakada et al., 

2001; Ono et al., 2001).  

During the mitochondrial life cycle, mitochondrial fission results in functionally distinct mitochondrial 

entities with different metabolic capacities. In higher eukaryotes, mitochondria with a low 

membrane potential are less likely to fuse with the rest of the network and are prone to degradation 

by autophagy (Figure 1A). Thus, fission contributes to the maintenance of a healthy mitochondrial 

population (Twig et al., 2008). It remains controversial, whether fission is also necessary for 

mitochondrial autophagy in yeast (Mendl et al., 2011; Mao et al., 2013). Mitochondrial fission is 

furthermore required for the release of cytochrome c from the IMS into the cytosol, which is an 

important event during the activation of programmed cell death (Fannjiang et al., 2004; Youle and 

Karbowski, 2005). In higher eukaryotes, it has been observed that mitochondria fragment during 

mitosis. Prevention of the fragmentation results in an unequal mitochondrial distribution between 

daughter cells and metabolically inactive cells (Taguchi et al., 2007; Kashatus et al., 2011), 

highlighting the importance of mitochondrial dynamics for mitochondrial inheritance.  

 

Mitochondrial contacts with other organelles  

In the early years of cell biology, mitochondria were regarded as isolated, bean-shaped 

compartments – as seen by electron microscopy – which were primarily responsible for energy 

production by oxidative phosphorylation. However, fluorescence microscopy has shown that 

mitochondria have diverse morphologies ranging from filamentous, interconnected mitochondria in 

fibroblasts, which allow energy-transmission within cells (Amchenkova et al., 1988), to highly 

fragmented mitochondria during yeast meiosis (Gorsich and Shaw, 2004). Moreover, it has become 

obvious that mitochondria do not just import substrates, metabolize them and export the products, 

but that they also communicate with other organelles by membrane contact sites. In yeast, 

mitochondria form physical contacts with the plasma membrane (PM), the vacuole, the ER and 

possibly peroxisomes.  

Mitochondrial ER contacts are the best-characterized contacts of mitochondria with another 

organelle so far. Close and extended proximity between mitochondria and ER can easily be seen by 

microscopy in yeast and mammalian cells (Rizzuto et al., 1998; Achleitner et al., 1999). The presence 

of physical contacts was shown by the isolation of ER membranes associated with mitochondria, the 

so-called mitochondria associated membranes (MAM; Vance, 1990).  

The situation in higher eukaryotes is complex. The proteins proposed to tether ER and mitochondria 

are the mitofusin Mfn2 (de Brito and Scorrano, 2008), the mitochondrial porin VDAC and the calcium 

channel IP3R bridged by grp75 (Szabadkai et al., 2006), the mitochondrial VABP and the ER localized 
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PTPIP51 (De Vos et al., 2012), or mitochondrial Fis1 and ER resident Bap31 (Iwasawa et al., 2011), to 

name just a few. Presumably, this diversity reflects the variety of different cell types and tissues in 

higher eukaryotes. The functions of these contacts range from lipid transfer and calcium exchange to 

apoptosis (reviewed in Rowland and Voeltz, 2012; Kornmann, 2013).  

The situation in yeast appears to be simpler. In order to identify proteins tethering ER and 

mitochondria, Kornmann et al. (2009) performed a synthetic biology screen. They envisioned that 

yeast strains carrying mutations in genes coding for the tether(s) would grow poorly and that they 

could be rescued by expression of an artificial protein called chiMERA (construct helping in 

mitochondrion–ER association). This protein consists of an  N-terminal  mitochondrial  membrane  

anchor,  GFP,  and  a  C-terminal  ER  tail  anchor and thereby bridges both organelles. Indeed, growth 

defects of strains with mutations in the genes MMM1, MDM10, MDM12 and MDM34 were rescued 

by chiMERA (Kornmann et al., 2009). These four components form the ER-mitochondria encounter 

structure (ERMES; Figure 2A). Mmm1 is a glycosylated protein in the ER membrane, Mdm10 and 

Mdm34 are MOM proteins, and Mdm12 is a soluble factor. Later, the MOM protein Gem1 was 

identified as an integral component and regulator of ERMES’ number and size (Kornmann et al., 

2011; Stroud et al., 2011). ERMES is present in several foci per cell (Figure 2B).  

MMM1, MDM10, MDM12 and MDM34 were initially discovered in screens searching for genes which 

are important for the maintenance of mitochondrial morphology since the mutants were found to 

have huge, spherical mitochondria (Burgess et al., 1994; Sogo and Yaffe, 1994; Berger et al., 1997; 

Dimmer et al., 2002; Youngman et al., 2004). Subsequently, the corresponding proteins were 

reported to have various functions. Mmm1, Mdm10 and Mdm12 were proposed to work in the 

import of MOM proteins (Meisinger et al., 2004; Meisinger et al., 2007). It was furthermore 

suggested that the same proteins form a so-called ‘mitochore’ complex which links mitochondria to 

actin cables and promotes mitochondrial movement towards the bud (Boldogh et al., 2003). In 

addition, several studies found that ERMES mutants have defects in mitochondrial lipid composition 

and proposed that ERMES transfers lipids between ER and mitochondria (Kornmann et al., 2009; 

Osman et al., 2009; Tamura et al., 2012; Tan et al., 2013), although a direct involvement of ERMES in 

this process has recently been questioned (Nguyen et al., 2012).  

Originally, Mmm1 was mistakenly assigned to be an integral protein of the MOM (Burgess et al., 

1994). Later it was found to be glycosylated at its N-terminus, which – together with microscopy data 

– demonstrates that Mmm1 is localized in the ER membrane (Kornmann et al., 2009). This, in turn, is 

hard to reconcile with Mmm1 functioning in mitochondrial outer membrane biogenesis or as a 

mitochore. However, Mmm1, Mdm12 and Mdm34 have tubular lipid-binding (TULIP)-like domains, 

which are known to bind lipids (Kopec et al., 2010). Furthermore, ERMES’ localization at the 

mitochondrial ER interface suggests a role in lipid traffic. It is reasonable to assume that primary 

defects of ERMES mutants in lipid transfer result in an altered lipid composition and as secondary 

effects in disturbed MOM biogenesis, mitochondrial morphology and inheritance.  
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Figure 2. Molecular nature of mitochondrial contact sites. (A) Structure of ERMES. (B) Cells expressing 

mtGFP and Mmm1-3xmCherry were analyzed during logarithmic growth by epifluorescence microscopy. DIC and 

merged fluorescence (false colors) images are shown. Cell boundaries are indicated by broken lines. (C) 

Structure of vCLAMP. The unknown mitochondrial binding partner of Vps39 is indicated with “?”. (D) Structure of 

mitochondrial ER contacts tethered by Mmr1. The factors recruiting Mmr1 to ER or mitochondria, respectively, are 

indicated with “?”. (E) Structure of contacts between mitochondria and plasma membrane. The factor recruiting 

Mdm36 to the MOM is indicated with “?”. 

Evidence in favor of the lipid transfer hypothesis came from an unanticipated direction. ERMES 

mutants are viable even if they are presumably not able to import lipids from the ER. Since 

mitochondria do not receive lipids from vesicles, mitochondria must have at least one more lipid 

import pathway apart from ERMES. Elbaz-Alon et al. (2014) assumed that, if this alternative pathway 

was missing, there should be more lipid traffic from the ER and accordingly more ERMES dots per cell 

to sustain mitochondrial lipid composition. Hence, they screened yeast mutants for the appearance 

of excess ERMES foci and found the vps39 mutant. Vps39, a protein responsible for vacuolar fusion, 

is enriched at sites of close proximity between mitochondria and vacuoles. Furthermore they 

observed that mitochondria of ERMES mutants form extended vacuolar contacts. Strikingly, vps39 

and ERMES double mutants are inviable indicating that they function in redundant pathways which 

are essential for cell viability. Characterization of conditional double mutants revealed that the 

mutants suffer from severe defects in lipid composition, suggesting that ERMES and Vps39 transfer 

lipids to mitochondria from the ER and the vacuole, respectively. Overexpression of Vps39 results in 

increased association of mitochondria with vacuoles and this depends on another vacuolar fusion 

protein, Ypt7, which is a known binding partner of Vps39 (Honscher et al., 2014). This led to the 
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model of vCLAMP (vacuole and mitochondria patch). Ypt7, which is prenylated and anchored in the 

vacuolar membrane, interacts with Vps39 acting as a molecular hinge between vacuole and 

mitochondria (Figure 2C). The mitochondrial binding partner of Vps39 remains unknown. In sum, this 

suggests that mitochondrial biogenesis relies on lipid supply from ER and vacuoles. 

Recently, another potential mediator of lipid transfer from the ER to mitochondria has been 

proposed (Lahiri et al., 2014). The ER membrane protein complex (EMC) consists of six proteins 

(Emc1-6), which all interact with the translocase of the other membrane (TOM) complex in the 

MOM, thus connecting ER and mitochondria. Loss of this complex renders ERMES essential, which 

can be rescued by chiMERA, suggesting that both complexes execute redundant functions and tether 

ER and mitochondria. Disturbance of the EMC results in fewer contacts between the ER and 

mitochondria and in reduced lipid transfer from the ER to mitochondria. Interestingly, contacts 

between TOM and EMC colocalize with ERMES, raising the question why two different tethering 

complexes are required at the same site. 

Mmr1 has been proposed as a mitochondrial ER tether which is unrelated to lipid transfer. Mmr1 is a 

peripheral mitochondrial protein, which has been implicated in mitochondrial inheritance (Itoh et al., 

2004). Swayne et al. (2011) gathered evidence that Mmr1 is not only present on mitochondria but 

also associated with the ER and that it localizes to sites of mitochondrial ER contacts in the bud tip 

(Figure 2D). The function of this tether is to anchor mitochondria in the bud to prevent retrograde 

movement back into the mother cell and will be discussed more thoroughly in the next chapter.  

Contacts between mitochondria and the PM are thought to fulfill the antagonistic function of 

retaining some mitochondria in the mother cell (Klecker et al., 2013; Lackner et al., 2013). Num1 is a 

313 kDa cortical protein containing a pleckstrin homology (PH) domain, which allows association of 

Num1 with the PM by binding to phosphoinositide PtdIns(4,5)P2. By interaction with the peripheral 

mitochondrial protein Mdm36 and an unknown mitochondrial binding partner it mediates the 

contacts between mitochondria and the PM (Figure 2E), the function of which will be discussed in 

more detail below. Interestingly, Lackner et al. (2013) found the ER to be in close proximity to the 

mitochondrial PM interface, suggesting an anchor comprising components of mitochondria, PM, and 

ER, which is called mitochondria–ER–cortex anchor (MECA). However, electron microscopic studies 

found no involvement of the ER at mitochondrial retention sites (Klecker et al., 2013). Mitochondrial 

contacts with the PM in mammalian cells are less frequent because of interjacent ER stacks (Csordas 

et al., 2010) and little is known about the molecular identity of the tethers, although recently it has 

been proposed that mitochondria are attached to domains of the PM which are enriched in the gap 

junction component Cx32 (Fowler et al., 2013). 

In addition, peroxisomes appear to be linked to mitochondria in the ‘peroxisome–mitochondrion  

connection’ (Schrader et al., 2013). Not only do mitochondria and peroxisomes both function in 

metabolic pathways like detoxification of ROS or oxidation of fatty acids and share their division 

machinery (Schrader et al., 2012), but the movement of both organelles is coupled in 

Schizosaccharomyces pombe (Jourdain et al., 2008). They are found in close proximity in S. cerevisiae 

(Rosenberger et al., 2009) and can be copurified from rat liver (Islinger et al., 2006). Cohen et al. 
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(2014) found that a subpopulation of yeast peroxisomes is located near mitochondria at sites of 

ERMES complex and acetyl-CoA synthesis. Moreover, ERMES mutants show peroxisomes with 

morphological aberrations, suggesting that peroxisomal localization at the ER-mitochondrion 

interface has a functional significance in the biogenesis of peroxisomes. The molecular nature of 

these contacts, however, remains elusive.  

Another way of mitochondria to connect to other organelles are the recently discovered 

mitochondrion-derived vesicles (MDV). These vesicles bud off from mitochondria and fuse with 

peroxisomes or endosomes in mammalian cells (Neuspiel et al., 2008; Soubannier et al., 2012). The 

subpopulation targeted to peroxisomes might be involved in peroxisomal biogenesis (Mohanty and 

McBride, 2013), whereas the endosome-targeted MDVs provide a way for mitochondria to degrade 

superfluous proteins (Sugiura et al., 2014). 

In sum, these findings convincingly demonstrate that mitochondria are not at all isolated organelles 

within a cell, but that contacts to other organelles shape both mitochondria themselves and the cell’s 

physiology as a whole. 

 

Mitochondrial transport and partitioning 

Mitochondria are membrane-bounded organelles, which cannot form de novo and accordingly have 

to be inherited (Warren and Wickner, 1996). In contrast to metazoa or fungi like S. pombe and 

Neurospora crassa, whose mitochondria rely on microtubules for transport (Steinberg and Schliwa, 

1993; Yaffe et al., 1996; Lawrence and Mandato, 2013), mitochondrial transport in S. cerevisiae 

exclusively depends on the actin network (Drubin et al., 1993). Since budding yeast exhibits an 

asymmetrical cell division, mitochondria have to be actively segregated into the new bud. For the 

process of budding, a bud site is selected and the assembly of actin cables from this position 

establishes an axis of polarity (Pruyne et al., 2004). 

Yeast has two formins, Bni1 and Bnr1, which nucleate actin polymerization into filaments (Goode and 

Eck, 2007). Bnr1 assembles actin filaments at the bud neck (Kikyo et al., 1999), whilst Bni1 localizes to 

the bud tip in early cell cycle stages and is later found at the bud neck (Ozaki-Kuroda et al., 2001). 

Cells can cope with deletion of either gene but deletion of both genes results in synthetic lethality, 

indicating that the formins have redundant roles and can complement each other’s loss (Ozaki-

Kuroda et al., 2001).  Actin formation by formins results in the flow of actin cables from the bud into 

the mother cell, since actin is incorporated into the filament at the positions of formins. This 

retrograde flow has to be overcome by mitochondria and thereby provides a potential quality control 

mechanism, as it has been hypothesized that only fitter mitochondria master this challenge (Vevea et 

al., 2014). Genetical enforcement of the actin flow did indeed lead to the inheritance of mitochondria 

with a more reducing milieu and to an increase in replicative life span (Higuchi et al., 2013), which 

corroborates the idea of retrograde flow as a quality filter.  

There are conflicting models on how mitochondria are transported along actin cables. In a motor-

protein independent scenario developed by the group of Liza Pon, the proteins Jsn1 and Puf3 recruit 
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another initiator of actin polymerization, the Arp2/3 complex, to mitochondria (Fehrenbacher et al., 

2005; Garcia-Rodriguez et al., 2007). The actin polymerization on the mitochondrial surface is then 

supposed to push mitochondria into the bud, resembling the way how the intracellular pathogen 

Listeria monocytogenes exploits the Arp2/3-dependent actin polymerization to move inside of 

infected cells. This process, however, provides no directionality which is essential for mitochondrial 

inheritance. The above mentioned mitochore complex consisting of Mmm1, Mdm12 and Mdm34 is 

thought to offer a mechanism of directed movement by tethering mitochondrial membranes and 

DNA to the actin network reminiscent of the kinetochore connecting chromosomes and microtubules 

(Boldogh et al., 2003). As it has already been noted above, the localization of Mmm1 in the ER is 

barely compatible with its proposed mitochore function. Moreover, it is hard to imagine how 

retrograde actin flow might serve as a quality control mechanism, if mitochondria are just passively 

moving along actin flow but do not have to work against it.    

An alternative model suggests that mitochondrial movement along cytoskeletal tracks is mediated by 

the class V myosin Myo2 (summarized in Westermann, 2014). Class V myosins are processive motors, 

which transport cargos against the actin cable flow (Reck-Peterson et al., 2000). There are two class V 

myosins in S. cerevisiae, Myo2 and Myo4. Myo4 transports ER tubules into the bud (Estrada et al., 

2003). Yet, deletion of the corresponding gene has no impact on mitochondrial inheritance (Simon et 

al., 1995), not only demonstrating that Myo4 does not transport mitochondria but also that 

mitochondrial inheritance is not coupled to the ER. MYO2 is an essential gene and the protein it 

codes for was shown to transport peroxisomes, vacuoles, secretory vesicles, Golgi cisternae, 

microtubule plus ends and lipid droplets (reviewed in Pruyne et al., 2004; Knoblach and Rachubinski, 

2015). Early actin gliding assays showed that there is ATP-dependent motor activity on isolated 

mitochondria (Simon et al., 1995). Binding of isolated mitochondria to actin filaments in vitro 

depends on Myo2 and its essential light chain Mlc1 and can be prevented by addition of antibodies 

raised against the cargo binding domain (CBD) of Myo2 (Altmann et al., 2008). Depletion of Myo2 or 

Mlc1 by a titratable promoter results in abnormal mitochondrial morphology and mutations of the 

CBD lead to buds devoid of mitochondria (Altmann et al., 2008; Förtsch et al., 2011), which 

demonstrates that Myo2 has an important role in mitochondrial inheritance. 

It has been considered that Myo2 is only required for the transport of one or more mitochondrial 

retention factors into the bud in order to prevent retrograde movement (Boldogh et al., 2004) 

instead of actively pulling mitochondria into the bud. Using a mitochondria-specific Myo2 variant 

called Myo2-Fis1, Förtsch et al. (2011) were able to discriminate between the two possibilities. This 

chimeric protein consists of Myo2, the CBD of which was replaced by the transmembrane segment of 

the MOM protein Fis1. Hence, Myo2-Fis1 is a MOM anchored motor protein which can only drive the 

transport of mitochondria but not of putative retention factors. Strikingly, expression of Myo2-Fis1 

restores mitochondrial inheritance in myo2 mutants and even leads to an accumulation of 

mitochondria in the bud, which is inconsistent with the idea of Myo2 as a transporter of retention 

factors. Together with the finding that Myo2 can be detected on the surface of highly purified 

mitochondria by immuno-electron microscopy this demonstrated that Myo2 is responsible for the 

motor-dependent transport of mitochondria into the bud (Figure 3; Förtsch et al., 2011).  
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Myo2-dependent transport usually relies on adaptor molecules between the motor protein and its 

cargo. These adaptors include Inp2 for peroxisomes, Vac17 and Vac8 for vacuoles, Sec4 for secretory 

vesicles, and Kar9 for microtubule plus ends (Yin et al., 2000; Wagner et al., 2002; Ishikawa et al., 

2003; Fagarasanu et al., 2006). Two proteins, Mmr1 and Ypt11, have been discussed as linkers 

between mitochondria and Myo2. Mmr1 (Mitochondrial Myo2p Receptor-related) is a high-dose 

suppressor of mitochondrial myo2 defects, constitutes a peripheral mitochondrial protein, interacts 

with Myo2 and localizes to mitochondria in the bud (Itoh et al., 2004). Deletion of MMR1 results in 

delayed entrance of mitochondria into the bud in a substantial fraction of cells, whereas 

overexpression leads to an accumulation of mitochondria in the bud similar to myo2-fis1, which are 

characteristics of a myosin receptor.  

 

Figure 3. Mitochondrial transport in S. cerevisiae. Components involved in mitochondrial transport and 

partitioning are shown. The arrows indicate a balanced movement between mother and daughter cell. The “?” 

indicates that factors contributing to the backwards movement are currently unknown. The “X” symbolizes a yet 

unknown potential MOM protein recruiting Myo2 to mitochondria. See text for details.  

Ypt11 is a small Rab-GTPase, which interacts with the CBD of Myo2. Its deletion leads to late arrival 

of mitochondria in the bud and its overexpression results in mitochondrial accumulation in the bud, 

which is reminiscent of Mmr1 (Itoh et al., 2002). Ypt11 function was shown to be not mitochondria-

specific for it is also involved in the inheritance of cortical ER (cER) and Golgi (Buvelot Frei et al., 

2006; Arai et al., 2008; Frederick et al., 2008). Interestingly, Ypt11 was proposed to be involved only 

in the transport of retention factors to the bud to avoid mitochondrial retrograde movement 

(Boldogh et al., 2004; Pon, 2008) as it has been suggested for Myo2 (see above). This scenario was 
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also excluded by a mitochondria-anchored variant of Ypt11 which was only able to drive Myo2-

dependent mitochondrial transport but not transport of retention factors and indeed restored 

mitochondrial inheritance in a ypt11 mutant (Lewandowska et al., 2013). Therefore, Ypt11 might 

connect mitochondria and Myo2 like the Rab-GTPase 27a does in the case of a class V myosin and 

melanosomes, lysosome-related organelles of higher eukaryotes (Wu et al., 2002). Double mutants 

with deletions of YPT11 and MMR1 are inviable due to a complete lack of mitochondrial inheritance 

and can be rescued by expression of Myo2-Fis1, which demonstrates that the inheritance of 

mitochondria is essential for cell survival and suggests that both proteins work in parallel and 

redundant transport pathways (Itoh et al., 2004; Chernyakov et al., 2013). Interestingly, both 

proteins bind to the CBD of Myo2 at non-overlapping regions (Eves et al., 2012), which is consistent 

with the idea of Mmr1 and Ypt11 as independent Myo2 receptors.  

There are, however, problems with the assumption that these two proteins are solely responsible for 

mitochondrial inheritance. First of all, mutations in the CBD of Myo2 which result in its inability to 

either bind Mmr1 or Ypt11 lead to aberrations in mitochondrial morphology and severe inheritance 

defects (Altmann et al., 2008; Förtsch et al., 2011; Eves et al., 2012). This is not the case for mmr1 or 

ypt11 deletion mutants having only mild defects (Itoh et al., 2002; Itoh et al., 2004). Moreover, 

neither Mmr1 nor Ypt11 are integral MOM proteins; actually, Ypt11 has never been detected on the 

mitochondrial surface. Even if the two proteins are able to recruit Myo2, something else must recruit 

them to mitochondria as in the case of the vacuolar Myo2 receptor. Here, the cytosolic Myo2 

receptor Vac17 is linked to vacuoles by the membrane-anchored Vac8 (Ishikawa et al., 2003). Since 

mitochondrial inheritance is an essential process, potential Myo2 receptor candidates are expected 

to be essential proteins inserted in the MOM. 

The inheritance of diverse cargos by Myo2 provides a mechanism for the regulation of organellar 

mass which is transferred to the daughter cell. Eves et al. (2012) found that the binding sites for 

vacuoles and mitochondria on the CBD of Myo2 overlap and that the two organelles compete for 

Myo2. Overexpression of the vacuolar receptor Vac17 for example results in increased vacuolar 

volume and decreased mitochondrial mass in the bud. The opposite is true when Mmr1 is 

overexpressed. Therefore, it is plausible that the binding affinities of Myo2 receptors determine how 

many motor proteins contribute to the inheritance of either cargo and hence how much organellar 

mass reaches the daughter cell.   

Myo2-driven mitochondrial transport is not the only process contributing to the partitioning of 

mitochondria. The 313 kDa protein Num1 has been shown to anchor mitochondria in the mother cell 

opposite to the bud by tethering mitochondria to the PM (Figure 3; Klecker et al., 2013; Lackner et 

al., 2013). Mutants lacking Num1 have a hyper-connected mitochondrial network, which is 

reminiscent of mitochondrial division mutants (Cerveny et al., 2007). The peripheral MOM protein 

Mdm36 interacts with Num1 (Lackner et al., 2013) and its loss has been shown to result in a 

mitochondrial phenotype similar to num1 mutants (Hammermeister et al., 2010). Strikingly, 

expression of an artificial mitochondria-PM tether restored mitochondrial morphology and division 

activity in num1 and mdm36 mutants (Klecker et al., 2013). These results support a model in which 
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Num1 and Mdm36 connect mitochondria and PM. Moreover, the data are consistent with the idea 

that anchorage of mitochondria at the PM together with Myo2-driven movement provides tension 

on mitochondrial tubules, which is required for Dnm1-dependent division (Figure 3; Westermann, 

2014). Interestingly, ERMES also plays a role in mitochondrial division. ER tubules wrap around 

mitochondria and constrict them so that Dnm1 can sever the mitochondrial membranes (Figure 3; 

Friedman et al., 2011). Components of the ERMES complex have been shown to be in very close 

proximity to mtDNA (Boldogh et al., 2003; Meeusen and Nunnari, 2003) and Murley et al. (2013) 

demonstrated that ERMES ensures that both mitochondrial daughter units receive mtDNA after the 

division. 

Instead of being the mitochondrial Myo2 receptor, Mmr1 has also been proposed to anchor 

mitochondria in the bud (Figure 3; Swayne et al., 2011). In this scenario, Mmr1 associates with the 

MOM and the ER and thereby tethers the two organelles. These Mmr1-mediated contacts are only 

found at the bud tip. Interestingly, mitochondrial distribution in mmr1 mutants is shifted towards the 

mother, whilst it is moved towards the daughter in num1 mutants, since the anchor in the mother is 

missing. In the mmr1 num1 double mutant, however, the normal mitochondrial distribution is 

reestablished, suggesting that Mmr1 acts antagonistically to Num1, anchors mitochondria in the 

daughter cell and that both proteins, Mmr1 and Num1, regulate mitochondrial distribution (Klecker 

et al., 2013).   

Only little is known about mitochondrial transport away from the bud tip back to the mother called 

retrograde movement. Mitochondria frequently move in this direction (Fehrenbacher et al., 2004) 

presumably by accompanying the retrograde flow of actin filaments (Peraza-Reyes et al., 2010). The 

mitochore complex was proposed to connect mitochondria and the actin filaments during this 

process, but the role of this complex is highly controversial as has been outlined above. It is currently 

unclear which particular proteins are involved in the retrograde movement of mitochondria.   

 

Autophagy 

Autophagy is the most important degradative pathway in cells besides the proteasome system. 

During autophagy, proteins, aggregates, pathogens or organelles are sequestered from the cytosol 

and transferred to the lysosome or the lysosome-like yeast vacuole for degradation (Inoue and 

Klionsky, 2010; Yang and Klionsky, 2010). Autophagy plays important roles in developmental 

processes, life span, immunity, neurodegeneration and survival of tumor cells. During autophagy in 

yeast, cargos are sequestered from the cytosol by a double-membraned structure called isolation 

membrane or phagophore arising from the phagophore assembly site (PAS) near the vacuole (Figure 

4). When the phagophore seals around the cargo, it forms a mature autophagosome, which 

subsequently fuses with the vacuole and upon hydrolysis of lipids and coat proteins releases its cargo 

into the vacuolar lumen. After processing the cargo, its building blocks can be recycled.  

Many proteins which are essential for autophagy have been initially identified by genetic screens in 

yeast (Tsukada and Ohsumi, 1993). These screens and subsequent efforts led to the discovery of 
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more than thirty autophagy-related (Atg) proteins. Autophagy is commonly induced by nitrogen 

starvation resulting in the inhibition of the TOR (target of rapamycin) complex, a master regulator of 

cell growth, which in its active form hyperphosphorylates Atg13 (Loewith and Hall, 2011). Upon TOR 

inhibition, Atg13 is dephosphorylated, the Atg1 kinase complex becomes active and allows formation 

of the PAS. There, components of the core autophagic machinery coalesce and cooperate in the 

initiation, elongation and maturation of the autophagosomal membrane (Suzuki et al., 2001; Kim et 

al., 2002; Suzuki et al., 2007). The amount of the small 13 kDa protein Atg8 determines the size of the 

autophagosome. Atg8 is a component of the mature autophagosome and is involved in the fusion of 

the autophagosome with the vacuole (Kirisako et al., 1999; Nakatogawa et al., 2007). It has an 

ubiquitin-like fold and is covalently coupled to phosphatidylethanolamine (PE) by an ubiquitin-like 

conjugation system, which enables the insertion of Atg8 into the autophagosomal membrane 

(Ichimura et al., 2000; Kirisako et al., 2000). A second ubiquitin-like conjugation system comprising 

the proteins Atg5/7/10/12/16 is also required for Atg8 lipidation and many more proteins at the PAS 

for maturation of the phagophore (reviewed in Nakatogawa et al., 2009; Mizushima et al., 2011). 

Upon completion of the autophagosome, the Atg proteins have to dissociate from the 

autophagosome, which involves the PtdIns3P phosphatase Ymr1, whose loss leads to accumulation 

of autophagosomes with Atg proteins still attached to them (Cebollero et al., 2012b). Fusion of the 

outer autophagosomal membrane with the vacuole is subsequently mediated by the Rab GTPase 

Ypt7 and the t-SNARE Vam3 (Darsow et al., 1997; Kirisako et al., 1999). The remaining autophagic 

body is then disintegrated by the lipase Atg15, the cargo is broken down and exported out of the 

vacuole to fuel metabolism (Epple et al., 2001; Reggiori and Klionsky, 2013). 

 

Figure 4. Autophagic degradation of cytosolic proteins by autophagy. (1) Phagophore growth is initiated at 

the phagophore assembly site (PAS) in close proximity to the vacuole in order to sequester cytosolic proteins. (2) 

The phagophore matures and seals to form an autophagosome. (3) The outer membrane of the autophagic 

vesicle fuses with the vacuole and releases an autophagic body with one remaining membrane. (4) The 

autophagic body is disintegrated and (5) the cargo is degraded and exported.  

The origin of the autophagosomal membrane has been a matter of debate for decades (Tooze and 

Yoshimori, 2010). Plasma membrane, Golgi apparatus and endosomes were proposed to contribute 
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to autophagosome formation (Tooze, 2013) but mounting evidence points to an important role of ER 

and mitochondria in this process. Hailey et al. (2010) found that mitochondrial and autophagosomal 

membranes are transiently continuous and autophagosomes contain mitochondrial membrane 

markers in mammalian cells. In contrast, other studies showed that autophagosomal precursors arise 

from dynamic ER domains, which due to their shape were named omegasomes (Axe et al., 2008; 

Hayashi-Nishino et al., 2009). These conflicting results could be reconciled when Hamasaki et al. 

(2013) had a closer look and demonstrated that autophagosome formation happens at and relies on 

mitochondrial ER contacts. Furthermore, yeast mutants defective in the secretory pathway are 

autophagy-deficient (Ishihara et al., 2001; Reggiori et al., 2004; Lynch-Day et al., 2010) and ER exit 

sites (ERES), where vesicles leave the ER, are functional components of the core autophagic 

machinery and are necessary for phagophore growth (Graef et al., 2013; Suzuki et al., 2013), which 

suggests that the ER contributes membrane material to autophagosomes.  

 

The selective degradation of mitochondria by mitophagy  

Besides bulk autophagy, which degrades cytosolic components independent of substrate identity, 

there are selective forms of autophagy specific for particular cargos. Selective autophagy exists for 

the degradation of ribosomes (ribophagy), protein aggregates (aggrephagy), ER (ER-phagy or 

reticulophagy), peroxisomes (pexophagy), nuclei (nucleophagy), mitochondria (mitophagy), and 

pathogens (xenophagy) (Kraft et al., 2008; Manjithaya et al., 2010; Youle and Narendra, 2011; 

Cebollero et al., 2012a; Lamark and Johansen, 2012; Mijaljica et al., 2012; Gomes and Dikic, 2014; 

Schuck et al., 2014). These processes are responsible for the degradation of superfluous or harmful 

components. In contrast, the yeast cytoplasm-to-vacuole-targeting (Cvt) pathway ensures the 

transport of a folded cargo across the vacuolar membrane (Teter and Klionsky, 1999). The precursors 

of two peptidases, Ams1 and Ape1, are transported into the vacuole in autophagic vesicles, auto-

inhibitory peptides are cleaved off and the mature proteins are active at their destination.  

Mitochondrial autophagy attracted a lot of interest since blockage of this pathway is associated with 

Parkinson’s disease (PD), presumably because mitochondrial quality control cannot prevent the 

accumulation of dysfunctional mitochondria in neurons. In healthy mammalian cells the kinase PINK1 

is imported from the cytosol into the MIM in a membrane potential-dependent manner and rapidly 

degraded. In dysfunctional mitochondria with a low membrane potential, however, PINK1 cannot be 

imported into the MIM, but accumulates on the MOM and recruits the E3 ubiquitin ligase parkin 

(Narendra et al., 2010), which results in ubiquitination of mitochondrial substrates (Figure 5A; 

Matsuda et al., 2010). Afterwards, the ubiquitin-binding adaptor p62 accumulates on these 

mitochondria and interacts with LC3, the mammalian Atg8 homolog, in order to promote autophagic 

sequestration of the mitochondrion (Pankiv et al., 2007; Geisler et al., 2010). It has been found that 

PD patients carry mutations in the genes coding for PINK1 and parkin which lead to compromised 

mitophagy in cell culture systems (Narendra et al., 2010), suggesting that mitophagy maintains a 

healthy mitochondrial population especially needed in vulnerable cells like neurons. If this pathway 

fails, it might have detrimental effects on brain function. Mouse models confirming this assumption 
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are, however, not available yet. Remarkably, a recent study connected mitophagy with amyotrophic 

lateral sclerosis (ALS), an abundant neurodegenerative disorder. Mutations in optineurin, which 

cause ALS, lead to reduced mitophagy (Wong and Holzbaur, 2014). Optineurin can bind to 

ubiqitinated mitochondrial substrates and recruit LC3 in a similar way p62 does. 

 

Figure 5. Different molecular mechanisms of mitophagy. See text for details. (A) PINK1/parkin-mediated 

mitophagy in mammalian cells. (B) Receptor-mediated mitophagy in mammalian cells. (C) Receptor-mediated 

mitophagy in yeast. Atg8 is the yeast ortholog of mammalian LC3. 

Apart from the PINK1/parkin-mediated mitophagy depending on ubiquitination, there exists another 

type called receptor-mediated mitophagy. Red blood cells are completely devoid of mitochondria 

since they are degraded by mitophagy already during the maturation of reticulocytes, precursors of 

erythrocytes (Kundu et al., 2008). The MOM protein NIX contains an LC3-interacting region (LIR) 

which interacts with LC3 as well as the LC3 paralog GABA receptor-associated protein (GABARAP) and 

functions as a mitophagy receptor (Figure 5B). Consistently, loss of NIX results in red blood cells still 

retaining mitochondria and the development of anemia in mice (Sandoval et al., 2008). Additionally, 

the proteins BNIP3 and FUNDC1 also have LIRs and are thought to function as mitophagy receptors in 

a similar manner (reviewed in Liu et al., 2014).  

This is reminiscent of how mitophagy works in yeast. Here, the MOM protein Atg32 has an Atg8-

family interacting motif (AIM, corresponding to LIR in mammals) and acts as a mitophagy receptor. 

Atg32 has been discovered by two independent screens for mutants with defective mitochondrial 

autophagy (Kanki et al., 2009a; Kanki et al., 2009b; Okamoto et al., 2009). Atg32 is essential for 

mitophagy, but dispensable for all other kinds of autophagy, demonstrating its specificity. Atg32 is 

massively induced upon respiratory growth and is thought to mediate the recruitment of the 

autophagic machinery to mitochondria when cells enter the stationary phase and surplus 
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mitochondria are degraded (Okamoto et al., 2009). Atg32 activity is regulated by post-translational 

modifications at least by two different mechanisms: the domain facing the IMS is processed by the 

protease Yme1, which is important for mitophagy (Wang et al., 2013), and Atg32 is activated by 

casein kinase 2 (CK2) mediated phosphorylation (Aoki et al., 2011; Kanki et al., 2013). Atg32 acts as 

an autophagic degron and appears to be rate-limiting, since its overexpression results in mitophagy 

under non-mitophagy inducing conditions (Okamoto et al., 2009) and its relocalization to 

peroxisomes is sufficient to trigger pexophagy (Kondo-Okamoto et al., 2012). Atg32 interacts with 

Atg8 and Atg11, a scaffold protein necessary for selective types of autophagy (Figure 5C; Kanki et al., 

2009b; Okamoto et al., 2009). Atg11, in turn, recruits the mitochondrial fission machinery in order to 

isolate mitochondrial pieces destined for degradation (Mao et al., 2013). The requirement of 

mitochondrial division for mitophagy in yeast is controversial since fission mutants exhibited 

mitophagy defects in some studies (Kanki et al., 2009a; Abeliovich et al., 2013; Mao et al., 2013), 

whilst others  (Okamoto et al., 2009; Mendl et al., 2011) found no effect. A recent study showed that 

mitochondrial matrix proteins are degraded by mitophagy to different extents (Abeliovich et al., 

2013). The aconitase Aco1, for example, is evenly distributed within the mitochondrial network and 

efficiently degraded together with mitochondria, whereas the mitochondrial chaperone Hsp78 

changes its even distribution upon mitophagy induction and concentrates in several foci which are 

spared from mitophagy. Strikingly, this depends on mitochondrial dynamics and demonstrates the 

importance of this process during mitophagy. In mammalian cells, mitochondrial division constantly 

produces daughter units with a low membrane potential. These mitochondria are less likely to refuse 

with the network and are prone to degradation; here, mitochondrial division is necessary for 

mitophagy (Twig et al., 2008).  

It is largely unknown how mitophagy in yeast is exactly regulated and which proteins contribute to 

the pathway. Mitophagy relies on the components of the core autophagic machinery which are 

mandatory for induction of autophagy and mitophagosome (an autophagosome sequestering 

mitochondria) formation (summarized in Kanki and Klionsky, 2010). Two MAPK signaling pathways 

are required upstream of Atg32 for induction of mitophagy (Mao et al., 2011) and the redox potential 

of cells determines the level of mitophagic degradation (Deffieu et al., 2009). The stress sensor Whi2 

also appears to be involved in mitophagy (Mendl et al., 2011), although this has recently been 

questioned (Mao et al., 2013). It remains elusive how and if the signaling pathways are connected.  

Although not much is known about the regulation of mitophagy, the characterization of mitophagy-

deficient mutants demonstrated that it has a pivotal role in cell physiology. atg32 mutants frequently 

lose their mitochondrial genome under starvation conditions, presumably due to excess ROS 

produced by superfluous mitochondria (Kurihara et al., 2012). Furthermore, under conditions of 

caloric restriction, compromised mitophagy results in reduced membrane potential and respiration, 

increased ROS levels and ultimately in a decreased life span (Richard et al., 2013). Mitophagy is also 

induced in yeast when mitochondria are damaged, as has been shown for disturbance of F1FO-ATPase 

biogenesis or genetically induced osmotic swelling of mitochondria (Priault et al., 2005; Nowikovsky 

et al., 2007). Moreover, loss of the mitochondrial quality control factor Vms1, which mediates the 

proteasomal degradation of mitochondrial proteins, results in increased mitophagy (Heo et al., 
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2010). In sum, this suggests that mitophagy ensures that mitochondrial quality and quantity meet the 

cellular needs. 

 

Functional genetics in yeast 

Yeast has proven an invaluable tool to assign functions to genes, which is a central challenge of the 

post-genomic era. It was the first domesticated microorganism and was used for baking bread and 

brewing beer. Besides, it was the first eukaryote whose genome was completely sequenced (Goffeau 

et al., 1996). The genome contains 12 megabases of information on 16 linear chromosomes and 

stores about 6000 genes. More than 40% of the yeast proteins have human homologs, thus providing 

a potential model for human diseases (Lander et al., 2001).  

A great step towards an understanding of the yeast genome was the construction of the first deletion 

collection (also known as yeast knock-out [YKO] collection) containing mutants in which each open 

reading frame (ORF) is replaced by a cassette conferring resistance to an antibiotic (Winzeler et al., 

1999; Giaever et al., 2002). This collection exists in different variations, which contain haploid 

mutants with different mating type or hetero- and homozygous diploids (Giaever and Nislow, 2014). 

Later, additional libraries were produced covering essential genes with a titratable promoter or 

genes whose mRNA stability is disturbed (Mnaimneh et al., 2004; Breslow et al., 2008). More than 

1000 genome-wide screens were performed and led to an expanding annotation of the genome 

(Giaever and Nislow, 2014). Several of these screens addressed  genes required for mitochondrial 

activity and morphology and expanded our knowledge about mitochondrial biogenesis (Dimmer et 

al., 2002; Altmann and Westermann, 2005; Luban et al., 2005; Merz and Westermann, 2009). 

Comprehensive, functional information was not only derived from deletion mutant analysis but also 

from a strain collection containing all ORFs fused to a GFP coding sequence allowing the microscopic 

localization of proteins under different conditions (Huh et al., 2003; Breker et al., 2013). Protein-

protein interactions were assessed by the yeast tandem affinity purification collection (Krogan et al., 

2006), genome-scale two-hybrid studies (Ito et al., 2001) and protein-fragment complementation 

assay (PCA) collections (Tarassov et al., 2008). 

Nonetheless, many genes remain functionally unclassified. Only about 20% of the yeast genes are 

essential, suggesting a great amount of redundancy among the genes (Winzeler et al., 1999; Giaever 

et al., 2002). The identification of genetic interactions is one way to take advantage of this 

redundancy in order to uncover gene functions. Genetic interactions occur when two mutations of 

different genes are combined and produce an unexpected phenotype; e. g., when deletions of two 

genes, which individually are not harmful to the cell, result in synthetic lethality of the double mutant 

(summarized in Dixon et al., 2009). This concept is based on the assumption that a combination of 

mutations, which individually result in a growth defect, has a multiplicative effect. If mutant a has a 

fitness of 0.7 compared to wild type and mutant b has a fitness of 0.4, one expects a fitness of 0.7 x 

0.4 = 0.28 for the double mutant ab (Figure 6A). There are two classes of genetic interactions: 



Introduction 

 

17 
 

negative and positive ones. If ab has fitness below 0.28, it is a negative interaction, if the fitness 

exceeds 0.28, it is a positive one.  

The concept intuitively becomes clear in the case of symmetric positive interactions. If the products 

of two genes C and D are components of a complex and if disintegration of the complex by deletion 

of either gene results in a growth defect of 0.6, the combination of the two deletions will not result 

in a double mutant cd with a fitness of 0.6 x 0.6 = 0.36 but 0.6, since the complex is dysfunctional to 

the same extent in the single mutants and the double mutant and hence they have the same fitness 

(Figure 6B). This fitness is better than expected and demonstrates that gene products physically 

interacting with each other have the tendency to show positive genetic interactions (Collins et al., 

2007). Another possible cause for positive interactions is that the genes function in antagonistic 

pathways and the double mutants have a more wild type-like situation like in the case of num1 

mmr1 double mutants. Loss of NUM1 results in a mitochondrial distribution shifted towards the 

bud, while Mmr1 depletion leads to a shift towards the mother. Double mutants, however, show a 

rather wild type-like distribution (Klecker et al., 2013). Alternatively, the genes work in the same 

pathway and blocking the pathway flux results in a comparable outcome in both single and double 

mutants. Negative interactions can occur when genes work in parallel or redundant pathways 

contributing to the same biological process. Cells can cope with deletion of either gene but have a 

severe fitness defect when the deletions are combined with the extreme case of being inviable 

(synthetic lethality) as in the case of the two formin coding genes BNI1 and BNR1.  

 

Figure 6. Genetic interactions. (A) Two hypothetical single mutants a and b have a reduced fitness compared to 

wild type AB. The actual fitness of the double mutant ab can equal the expected fitness of the combined single 

mutants’ fitness (no interaction), be lower (negative interaction) or higher (positive interaction) than the expected 

fitness. (B) A special case of a hypothetical symmetric positive interaction, where the single mutants c and d have 

the same fitness as the double mutant cd.  

Genetic interaction networks have turned out to be powerful tools and contributed to the 

identification of genes working in chromosome biology, lipid quality control and many other 

processes (Collins et al., 2007; Dixon et al., 2009; Surma et al., 2013). In order to identify genetic 

interactions on a genome-wide scale, the synthetic genetic array (SGA) technology was developed. In 

SGA technology, a query strain carrying a mutation is crossed to an array of mutants. Selectable 

markers allow the subsequent isolation of double mutants, whose fitness can be quantified and 
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genetic interactions can be uncovered (Tong et al., 2001). Automated replica-plating enabled the 

high-throughput screening of more than a thousand query mutations, resulting in the first “genetic 

landscape of a cell” (Tong et al., 2004; Costanzo et al., 2010). Applying this method with a focus on 

mitochondria gave rise to the MITO-MAP and led to the discovery of six genes involved in the 

biogenesis of cristae (Hoppins et al., 2011). Exactly the same genes were found at the same time by 

two independent groups using different methods (Harner et al., 2011; von der Malsburg et al., 2011), 

which demonstrates that genetic interactions are a powerful tool in order to assign functions to 

genes. 

The technology is now broadly applied by geneticists and the automation of the process will lead to a 

highly anticipated map, where all digenic interaction data from deletion mutants are integrated. 

However, the genetic interactomes of essential genes remain largely unknown since deletion 

mutants are not available. Hypomorphic alleles with reduced expression of the query gene have been 

screened but may not yield a comprehensive picture of the interactomes (Breslow et al., 2008; 

Costanzo et al., 2010). Yet, determination of the interactomes of specific point mutants of essential 

genes with a defined spectrum of phenotypes are an attractive alternative to hypomorphic alleles 

and will expand our knowledge about biological processes, which are essential in yeast.  
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Aim of this thesis 
One major goal of this study was the identification of yet unknown regulators of mitochondrial 

autophagy. Two genome-wide screens for mutants with defective mitophagy have already improved 

our knowledge about mitophagy by identifying the mitochondrial outer membrane receptor Atg32, 

which recruits the core autophagic machinery to mitochondria (Kanki et al., 2009a; Kanki et al., 

2009b; Okamoto et al., 2009). However, these screens missed all strains that were not able to respire 

due to the used growth conditions. These strains are of particular interest because of their potential 

involvement in mitochondrial function. In order to test whether respiratory-deficient yeast mutants 

exhibit altered mitophagy, a deletion library comprising about 380 strains with compromised growth 

on respiratory medium (Merz and Westermann, 2009) was assayed for mitophagy by using a 

fluorescent biosensor and a novel culturing protocol. The four mutants lacking the genes coding for 

ERMES complex proteins had an impaired mitochondrial autophagy and their role during mitophagy 

was further characterized. 

The second major objective was to gain new insights into the process of mitochondrial inheritance. 

To this end, genetic interactions of the mutant myosin motor allele myo2(LQ), which results in a 

mitochondrial inheritance defect (Förtsch et al., 2011), were mapped on a genome-wide scale using 

SGA methodology. This method enables the identification of genes with similar functions by assaying 

the growth of double mutants (Dixon et al., 2009). Genetic interactors of myo2(LQ) and thus 

potential players in mitochondrial transport and inheritance were characterized.  
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Results 

Mitochondrial ER contacts are the sites of mitophagosome 

biogenesis 

Respiratory activity is not necessary for mitophagy 

Two genome-wide screens for mutants with defects in mitophagy identified the mitochondrial outer 

membrane receptor Atg32 (Kanki et al., 2009a; Kanki et al., 2009b; Okamoto et al., 2009). In these 

studies, cells were cultured on non-fermentable carbon sources, which leads to substantial 

proliferation of mitochondria which are degraded during starvation. Yet, these studies missed 

respiratory-deficient mutants, since these were not able to proliferate in the used growth media.  

In order to work with respiratory-deficient mutants another protocol had to be established that 

allows cells to grow on fermentable carbon sources. A fluorescent biosensor called mtRosella was 

used for the detection of mitophagy (Nowikovsky et al., 2007; Rosado et al., 2008). mtRosella 

consists of a pH-stable, fast maturing DsRed (Bevis and Glick, 2002) fused to a pH-sensitive GFP 

variant called pHluorin (Miesenböck et al., 1998). This fusion protein carries an N-terminal 

mitochondrial targeting sequence (MTS; Figure 7A), which ensures its localization in the 

mitochondrial matrix (pH 7.0).  

During growth, the green and red fluorescence signals overlap in the mitochondrial network but do 

not appear in the vacuolar lumen, where the autophagic degradation is taking place (Figure 7B). After 

starvation, however, mtRosella is transported to the vacuole together with mitochondria, and the 

green fluorescence signal is lost due to the acidic pH of the vacuole (pH 6.2), while the red signal 

persists. This assay is specific for mitochondrial autophagy, since the red vacuolar fluorescence is 

missing in the mitophagy-deficient strain atg32 (Figure 7B). 

For induction of mitophagy, the cells were cultured using a synthetic medium containing the 

fermentable carbon sources galactose (2%) and raffinose (2%) called SGalRD. Since glucose is able to 

repress mitochondrial function and proliferation (Gancedo, 1998), its amount was reduced to a 

minimum (0.1%) that still enables substantial cell growth. After logarithmic growth in SGalRD and 

nitrogen starvation for one day, the fraction of cells exhibiting red vacuolar fluorescence was 

determined. Over 60% percent of the cells were mitophagy positive, indicating that the induction 

was robust and reliable, although it was not as strong as the induction after growth on the non-

fermentable carbon source glycerol (Figure 7C). 

To test whether respiratory deficiency per se might have an effect on mitochondrial autophagy, 0 

cells were used as a model for respiratory-deficient strains. 0 cells lack mtDNA and therefore several 

parts of the respiratory chain complexes, which results in their inability to respire. Since it was shown 

that these cells were unable to perform bulk autophagy under some conditions (Graef and Nunnari, 

2011), it appeared reasonable to assume that mitophagy might also be affected. On the other hand, 
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mitophagy is perceived as a quality control mechanism that may sense the reduced mitochondrial 

membrane potential as an indicator of mitochondrial dysfunction and thus mitophagy might even be 

enhanced in this strain. After growing 0 cells in SGalRD and starving them for one day, it became 

apparent that these cells did not display any mitophagy defect compared to + cells (Figure 7D and E) 

and that neither the presence of mtDNA nor respiratory activity are necessary for mitophagy.  

 

Figure 7. Monitoring mitophagy by using the biosensor mtRosella in respiratory-deficient mutants. (A) 

Schematic representation of mtRosella. See text for details. N, N-terminus; C, C-terminus; MTS, mitochondria 

targeting sequence. (B) Cells expressing mtRosella were grown in synthetic medium with glucose to logarithmic 

growth (- starvation) and starved for two days in sporulation medium (+ starvation). The vacuole was stained 

using CellTracker Blue CMAC. Cell boundaries are indicated by broken lines. Bar, 5 µm. (C) Cells expressing 

mtRosella were either cultured to logarithmic growth in synthetic medium with glycerol and glucose (3% and 

0.1%, respectively; SGly) or galactose, raffinose and glucose (2%, 2%, and 0.1%, respectively; SGalRD) and 

starved for one day in SD-N. At least 100 cells were scored for red vacuolar fluorescence. Values represent the 

mean of triplicate experiments + SD. (D) Cells expressing mtRosella were grown to logarithmic growth in SGalRD 

and starved in SD-N. Bar, 5 µm. (E) Quantification of ρ
+
 and ρ

0
 cells cultured as in (D) and starved for one day in 

SD-N. Values represent the mean of triplicate experiments + SD. 
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These results show that the novel protocol for mitophagy induction upon growth on SGalRD and 

subsequent nitrogen starvation leads to detectable levels of mitophagy and that this also works in 

non-respiring yeast mutants, revealing for the first time that these mutants are capable of mitophagy 

at a wild type-rate despite their defects like a decreased membrane potential. It is therefore 

promising to test respiratory-deficient mutants for defective mitophagy by applying this protocol. 

 

Screening of respiratory-deficient mutants for altered mitophagy 

Strains with compromised respiratory capacity are of great interest because of their putative defects 

in mitochondrial functions, but these strains have been neglected in recent mitophagy screens (Kanki 

et al., 2009a; Okamoto et al., 2009). The pet library is a collection of such strains derived from a 

genome-wide screen for yeast mutants which are unable to grow on non-fermentable carbon 

sources (Merz and Westermann, 2009). It contains over 380 strains, each harboring an ORF locus 

where a gene of interest is replaced by a cassette conferring resistance to geneticin. These strains are 

listed in Table 6 (Appendix). 

To identify mutants with defective mitophagy the collection was transformed with a plasmid coding 

for mtRosella, cultured in SGalRD in deep-well microtiter plates, starved for two days and the fraction 

of cells showing red vacuolar fluorescence was determined. Wild type cultures had about 50% 

mitophagy positive cells, whereas 39 strains had reduced mitophagy rates (< 20%) and 54 strains had 

increased rates (> 80%; Figure 8A and B). These strains are listed in Table 1. The mitophagy rates of 

all strains are recorded in Table S1 (Appendix). 

 

Figure 8. Screening of respiratory-deficient mutants for altered mitophagy. (A) 382 respiratory-deficient 

mutants from the pet library were cultured in SGalRD in deep-well microtiter plates and starved for two days. At 

least 100 cells were scored for red vacuolar fluorescence. Values represent the mean of at least two independent 

experiments. ERMES mutants are highlighted with red arrows. The mean value of WT (orange line) and the SD of 

WT (light orange) are indicated. (B) Analysis of the screening results reveals that about one quarter of the tested 

strains show either reduced or increased mitophagy rates.   

Remarkably, almost two thirds of the strains showed mitophagy rates higher than the WT (52%) and 

the median of all strains was 61%. This might reflect the biased nature of the screen, which only 
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includes non-respiring mutants and points to the possibility that these mutants harbor mitochondrial 

defects resulting in increased mitochondrial degradation. 

The mitophagy-defective mutants pep12, vps16 and kgd2 were all found in at least one of the 

earlier screens (Kanki et al., 2009a; Okamoto et al., 2009), confirming the reliability of the screening 

assay. Strikingly, all of the four mutants lacking the mitochondrial ER tether ERMES had defects in 

mitochondrial autophagy and will be described in depth in the following chapters.  

Table 1. Strains with defective mitophagy. Strains with less than 20% or more than 80% mitophagy positive 

cells are highlighted in red and green, respectively. Strains appear in alphabetical order with regard to their 

systematic names. 

  
Sytematic 

name 
Standard 

name 
 

  
Systematic 

name 
Standard 

name 
 

  
Systematic 

name 
Standard 

name 
  YAL010C MDM10 

 
  YAL013W DEP1 

 
  YLR144C ACF2 

  YBL019W APN2 

 
  YAL016W TPD3 

 
  YLR369W SSQ1 

  YBL021C HAP3 

 
  YBL053W 

  
  YLR403W SFP1 

  YBL031W SHE1 

 
  YBR026C ETR1 

 
  YML061C PIF1 

  YBL036C 

  
  YBR081C SPT7 

 
  YMR070W MOT3 

  YBL062W 

  
  YBR146W MRPS9 

 
  YNL052W COX5A 

  YBL080C PET112 

 
  YBR251W MRPS5 

 
  YNL071W LAT1 

  YBR282W MRPL27 

 
  YBR283C SSH1 

 
  YNR025C 

   YCR024C SLM5 

 
  YCL001W-A 

  
  YNR037C RSM19 

  YDL107W MSS2 

 
  YCR028C-A RIM1 

 
  YNR041C COQ2 

  YDL192W ARF1 

 
  YCR046C IMG1 

 
  YOL051W GAL11 

  YDR010C  
 

  YDL012C 

  
  YOL095C HMI1 

  YDR065W RRG1 

 
  YDL039C PRM7 

 
  YOL148C SPT20 

  YDR148C KGD2 

 
  YDL091C UBX3 

 
  YPL031C PHO85 

  YDR296W MHR1 

 
  YDL099W BUG1 

 
  YPL148C PPT2 

  YDR337W MRPS28 

 
  YDR115W 

  
  YPL254W HFI1 

  YGL218W 

  
  YDR448W ADA2 

      YGR220C MRPL9 

 
  YEL027W CUP5 

      YHR006W STP2 

 
  YEL061C CIN8 

  
Mitophagy rate 

  YHR009C TDA3 

 
  YER014C-A BUD25 

  
< 20% 

   YHR038W RRF1 

 
  YER155C BEM2 

  
> 80% 

   YHR168W MTG2 

 
  YGL071W AFT1 

      YHR194W MDM31 

 
  YGL135W RPL1B 

      YJL180C ATP12 

 
  YGL215W CLG1 

      YKR006C MRPL13 

 
  YGR155W CYS4 

      YLL006W MMM1 

 
  YGR174C CBP4 

      YLL042C ATG10 

 
  YIL125W KGD1 

      YLR226W BUR2 

 
  YIL153W RRD1 

      YMR035W IMP2 

 
  YIL157C FMP35 

      YMR064W AEP1 

 
  YJL096W MRPL49 

      YMR188C MRPS17 

 
  YJL101C GSH1 

      YNL185C MRPL19 

 
  YJL121C RPE1 

      YOL009C MDM12 

 
  YJL184W GON7 

      YOR036W PEP12 

 
  YKL054C DEF1 

      YOR135C IRC14 

 
  YKL087C CYT2 

      YOR150W MRPL23 

 
  YKL119C VPH2 

      YPL013C MRPS16 

 
  YKL155C RSM22 

      YPL045W VPS16 

 
  YKR001C VPS1 

      YPR099C 

  
  YLR055C SPT8 

      YPR116W RRG8 

 
  YLR139C SLS1 
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Notably, pho85, clg1 and five deletions associated with the SAGA complex (spt7, spt8, spt20,  

ada2, hfi1) showed increased mitophagy rates. Pho85 is a cyclin-dependent kinase, which 

interacts with Clg1 and whose absence is known to result in increased bulk autophagy (Yang et al., 

2010). The SAGA complex is a global regulator of transcription and especially involved in PHO85-

related gene transcription (Lee et al., 2000). Presumably, the increased mitophagy defect of pho85 

and of the associated deletion mutants is an indirect consequence of their augmented bulk 

autophagy, indicating that mitophagy is regulated alongside with bulk autophagy.  

Upregulated mitophagy is a phenomenon which has been rarely observed until now. Deffieu et al. 

(2009) showed that the deletion of GSH2, the gene product of which catalyzes the second step of 

glutathione synthesis, results in increased mitophagy. However, they were unable to show that 

gsh1 lacking the first step of glutathione synthesis behaves in a similar way, since this mutant is 

respiratory-deficient and was not compatible with their techniques. gsh1 is here shown to also have 

enhanced mitophagy rates like gsh2, confirming that glutathione regulates mitophagy. Together 

with the result from pho85, this highlights the fact that the screening assay reveals candidates 

which are likely to show increased mitophagy, in turn indicating that the screen is reliable.  

The deletions of RIM1, HMI1, IMG1 and PIF1, which are involved in the maintenance and repair of 

the mitochondrial genome, resulted in amplified mitophagy, too, pointing to the possibility that 

mtDNA absence does not interfere with mitophagy (Figure 7D and E), while presence of non-

functional mtDNA has an effect on mitophagy. Loss of three proteins working in mitochondrial 

metabolism (Coq2, Lat1, and Kgd1) as well as proteins associated with the respiratory chain (Fmp35, 

Cox5a, Cbp4, and Cyt2) increased the level of mitophagy. Interestingly, deletion of a mitochondrial 

Hsp70-type molecular chaperone, Ssq1, also rendered mitochondria more prone to mitophagy, 

which indicates that when quality control acting at the molecular level is absent, mitophagy might 

take over and act at the organellar level.  

Apart from the components of the ERMES complex, none of the genes identified in the screen has 

been further characterized with regard to its role in mitophagy.  Some of them point to interesting 

hypotheses and may deserve further investigation. 

 

Mutants lacking the ER-mitochondria tether ERMES have a mitophagy defect 

The mitophagy screen revealed that the four mutants mmm1, mdm10, mdm12 and mdm34 

show defective mitophagy (Figure 8A). All of them lack a gene coding for a subunit of the 

mitochondrial ER tether ERMES connecting mitochondria with the ER (Kornmann et al., 2009). ERMES 

consists of the ER membrane protein Mmm1, two mitochondrial outer membrane proteins, Mdm10 

and Mdm34, and the soluble factor Mdm12 (Figure 2A). If one component is missing, the mutants 

display several defects like aberrantly swollen mitochondria, mtDNA loss and defective mitochondrial 

lipid composition (Hobbs et al., 2001; Kornmann et al., 2009; Osman et al., 2009; Tan et al., 2013).  
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To check the mitophagy defect, mutants with a confirmed genotype were transformed with a 

plasmid coding for mtRosella and grown in SGalRD. The increase in the proportion of mitophagy 

positive cells was observed over four days of starvation by fluorescence microscopy. All four ERMES 

mutants had strong defects in mitophagy after one day of starvation compared to WT (Figure 9A and 

B). With increasing time, almost all cells of a culture managed to degrade part of their mitochondria 

in mmm1, mdm10 and mdm34, but not in mdm12, which had less than 50% mitophagy positive 

cells after four days of starvation. The defect is, however, not as strong as in atg32 cells, where 

mitophagy was never observed (data not shown).  

The mitophagy defect was also checked by assaying free GFP on a Western blot. Rosella is processed 

between DsRed and GFP in the vacuole and the amount of free GFP, which is itself protease resistant, 

compared to Rosella full-length protein is proportional to autophagic degradation (Mijaljica et al., 

2012). While the WT efficiently processed mtRosella after one day of starvation and processing was 

completely absent in atg32, all four ERMES mutants showed an intermediate phenotype (Figure 

9C). In sum, these results demonstrate that ERMES is important for mitophagy, albeit not essential, 

and that loss of ERMES leads to delayed degradation of mitochondria by autophagy.      

 

Figure 9. ERMES mutants degrade mitochondria slower than wild type cells. (A) Cells expressing mtRosella 

were grown to logarithmic growth and starved for one day in SD-N. Representative images are shown. Bar, 5 µm. 

(B) Cells expressing mtRosella were cultured as in (A) and starved for the indicated time points. At least 100 cells 

per strain were scored for red vacuolar fluorescence at the different time points. Values represent the mean of 

triplicate experiments + SD. (C) Cells were cultured in SGalRD and starved for one day. Cell extracts were 

subjected to SDS-PAGE and Western blotting. mtRosella and processed free GFP were detected with an anti-

GFP antibody. 
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ERMES mutants show no defect in bulk autophagy and the Cvt pathway 

The origin of autophagosomal membranes has been discussed for a long time (Tooze and Yoshimori, 

2010; Mizushima et al., 2011). It has been proposed that lipid transport from the ER to mitochondria 

at contact sites and from mitochondria to autophagosomes is necessary for autophagy (Hailey et al., 

2010) and that autophagosomes form at mitochondria-ER contacts in mammalian cells (Hamasaki et 

al., 2013). If this was also true in yeast, all autophagy pathways could be expected to be 

compromised in ERMES mutants, since mitochondrial ER contacts are missing and lipid transport 

from ER to mitochondria and vice versa are hampered.  

To this end, the localization of GFP-Atg8 was determined under growth and starvation conditions. 

GFP-Atg8 is localized in the cytosol under growing conditions and recruited to the phagophore 

assembly site after induction of starvation. As a permanent component of autophagosomes it is 

transported into vacuoles, a process which depends on bulk autophagy. The localization of Atg8 is 

therefore indicative of the pathway’s functionality (Abeliovich et al., 2003; Klionsky et al., 2012). WT, 

atg1 and ERMES mutants expressing GFP-Atg8 were grown to logarithmic phase, starved for five 

hours and the localization of GFP-Atg8 was determined by fluorescence microscopy. Atg1 is a kinase 

essential for autophagy (Matsuura et al., 1997) and its deletion mutant served as a negative control. 

Under growing conditions, GFP-Atg8 was present in the cytosol in all strains as expected (Figure 10A). 

After starvation GFP-Atg8 persisted in the cytosol in the negative control atg1, while it was localized 

in the vacuole in WT and ERMES mutants, suggesting that bulk autophagy still works in the absence 

of ERMES-mediated ER-mitochondria contacts. In order to see whether the effect on bulk autophagy 

might be quantitative, autophagic flux was analyzed by using the GFP-Atg8 processing assay. 

Analogous to mtRosella, the Atg8 moiety of GFP-Atg8 is degraded in the vacuole, while GFP is 

protease-resistant and the amount of free GFP compared to full-length protein is proportional to 

autophagic activity (Shintani and Klionsky, 2004; Klionsky et al., 2012). This assay revealed that the 

ERMES mutants processed GFP-Atg8 in a wild type-like manner (Figure 10B). To confirm these 

results, a Rosella protein localized in the cytosol (cytRosella) was expressed in WT, atg1 and ERMES 

mutants and processing of this construct was analyzed after one day of starvation. This test showed 

that processing of cytRosella was not reduced in ERMES mutants while it was absent in atg1 (Figure 

10C), which confirms that this process depends on autophagy. In two of the mutants, mmm1 and 

mdm10, processing rather appeared increased which together with the GFP-Atg8 experiments 

demonstrates that decreased mitophagy does not correlate with decreased bulk autophagy in ERMES 

mutants. 

Considering the possibility that ERMES might not be required for bulk autophagy but for selective 

forms of autophagy, the cytoplasm-to-vacuole-targeting (Cvt) pathway was analyzed in ERMES 

mutants. During the Cvt pathway, a precursor form of Aminopeptidase 1 (prApe1) is constitutively 

sequestered by autophagic vesicles in the cytosol and transported into the vacuole in an autophagy-

dependent manner, where an auto-inhibitory peptide is cleaved off and the enzyme matures into its 

active form, mApe1 (Lynch-Day and Klionsky, 2010). prApe1 and mApe1 can be separated by SDS-

PAGE and detected by Western blotting (Klionsky et al., 1992).  WT, atg1 and ERMES mutants were 
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grown to early stationary phase and cell extracts were analyzed in regard to Ape1 processing. While 

the atg1 mutant was defective in Ape1 maturation, ERMES mutants processed Ape1 to the same 

extent as the WT (Figure 10D), which rules out an important role for ERMES in this type of selective 

autophagy.  

 

Figure 10. ERMES mutants show normal bulk autophagy and Ape1 processing. (A) Cells expressing GFP-

Atg8 from its endogenous promoter were cultured to logarithmic growth in SGalRD (growth) and starved for 5 h 

(starvation). The localization of GFP-Atg8 was analyzed by fluorescence microscopy. Bar, 5 µm. (B) Cells 

expressing GFP-Atg8 from its endogenous promoter were starved for the indicated time points. Cell lysates were 

subjected to SDS-PAGE and Western blotting. Processing of GFP-Atg8 was assayed using an anti-GFP antibody; 

Hexokinase (Hxk) and Ponceau S staining served as loading controls. (C) Cells expressing cytosolic Rosella 

(cytRosella) were cultured in synthetic medium and starved for one day. Cell lysates were subjected to SDS-

PAGE and Western blotting using anti-GFP antibodies. The experiment was carried out together with the student 

Markus Spindler. (D) Cells were cultured to early stationary phase in glucose-containing rich medium, cell lysates 

were obtained and subjected to SDS-PAGE and Western blotting using anti-Ape1 antibodies. The asterisk marks 

a cross-reaction of the antibody. prApe1, premature Ape1; mApe1, mature Ape1.    

Taken together, these results demonstrate that ERMES-mediated contacts and lipid transport are not 

necessary for efficient bulk autophagy or the Cvt pathway. This suggests that the mitophagy defect in 

ERMES mutants is a specific defect of mitochondrial autophagy and not an indirect consequence of 

other compromised pathways that might be necessary for autophagic degradation of mitochondria. 
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Altered mitochondrial mass or membrane biogenesis are not the cause of 

aberrant mitophagy in ERMES mutants 

ERMES mutants have a variety of defects. They have a tendency to lose their mitochondrial genome 

(Merz and Westermann, 2009), form giant, swollen mitochondria (Burgess et al., 1994; Sogo and 

Yaffe, 1994; Berger et al., 1997; Dimmer et al., 2002) and have problems in outer membrane 

biogenesis (Meisinger et al., 2004; Meisinger et al., 2007). Presumably, most of these deficits are 

secondary effects deriving from the altered mitochondrial lipid composition as proposed in Klecker et 

al. (2014). Thus, it appeared reasonable to consider the possibility that the mitophagy defect in 

ERMES mutants might also be an indirect effect caused by some of these phenotypes. It is unlikely 

that the enhanced mtDNA loss is the cause of the mitophagy defect since 0 mutants show no such 

effect (Figure 7D and E).  

Maybe ERMES mutants have an altered mitochondrial mass due to their altered lipid composition 

and mitochondrial morphology. If they have less mitochondrial mass in the first place, they could 

degrade the same fraction but less mitochondrial mass than the WT, which could appear as a 

mitophagy defect. To see whether this was true and whether this was a possible explanation for the 

mitophagy defect, steady-state levels of marker proteins of mitochondrial sub-compartments were 

determined in whole cell extracts. Levels of proteins residing in the outer membrane, Tom40, the 

inner membrane, Ndi1, and in the matrix, Ilv5, were comparable to WT (Figure 11A). It is therefore 

unlikely that the overall mitochondrial mass is changed in ERMES mutants and that the mitophagy 

defect is an artefact.  

In order to see whether disturbed outer membrane biogenesis or aberrant mitochondrial 

morphology per se result in mitophagy deficiency, mdm33 and sam37 mutants were assayed for 

mitophagy. mdm33 cells have mitochondria which form large, hollow spheres (Messerschmitt et al., 

2003), whereas sam37 mutants have defects in the assembly of β-barrel proteins in the outer 

membrane and in the maintenance of mitochondrial morphology, resembling the defects in ERMES 

mutants (Meisinger et al., 2004). mdm33 and sam37 mutants expressing mtRosella were starved 

for one day and the fraction of mitophagy positive cells was determined. Mitophagy was effectively 

taking place in both mutants in a qualitative and quantitative manner (Figure 11B and C). This 

demonstrates that disturbance of mitochondrial morphology or outer membrane biogenesis does 

not interfere with mitophagy in general and that these processes are not likely causes of mitophagy 

defects. 
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Figure 11. Altered mitochondrial mass, membrane biogenesis or morphology do not explain the 

mitophagy defect in ERMES mutants. (A) The strains were cultured to logarithmic growth in SGalRD and cell 

lysates were subjected to SDS-PAGE and Western blotting. Tom40 is a subunit of the preprotein translocase of 

the mitochondrial outer membrane, Ndi1 is localized in the mitochondrial inner membrane and involved in electron 

transfer within the respiratory chain, Ilv5 is a mtDNA binding protein and resides in the mitochondrial matrix and 

Hxk is a cytosolic protein serving as a loading control. The asterisk marks a cross-reaction of the anti-Tom40 

antibody. (B) Cells expressing mtRosella were cultured to logarithmic growth in SGalRD, starved for one day and 

analyzed by fluorescence microscopy. Representative images are shown. Bar, 5 µm. (C) 100 cells per strain from 

(B) were scored for red vacuolar fluorescence. Data are mean percentages + SD from triplicate experiments. 

 

Mitophagy in ERMES mutants is not compromised due to misshapen 

mitochondria 

Since ERMES mutants have such huge mitochondria, it was conceivable that mitophagophores were 

not able to sequester these mutant mitochondria, even if altered mitochondrial morphology does 

not result in a mitophagy deficiency per se (Figure 11B and C). To address this question more directly, 

normal mitochondrial morphology was restored in ERMES mutants and a possible rescue of 

mitophagy was determined. Defects of ERMES mutants concerning stability of respiratory chain 

complexes, mitochondrial lipid composition and morphology can be rescued by overexpression of 

either MCP1 or MCP2 (Tan et al., 2013). These genes code for mitochondrial proteins of poorly 

characterized function, were identified in a screen for overexpression suppressors of mdm10 and 

were proposed to work in mitochondrial lipid homeostasis (Tan et al., 2013). 
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Figure 12. Restoring mitochondrial morphology in ERMES mutants does not rescue mitophagy. (A) Cells 

expressing mtRosella and carrying MCP1, MCP2 overexpression (OE) plasmids or a vector control were cultured 

to logarithmic growth, starved for one day and analyzed by fluorescence microscopy before (growth) and after 

starvation. Representative images are shown. Bar, 5 µm. (B) At least 100 cells per strain from (A) were scored for 

presence of WT-like mitochondria before starvation. Data represent the mean percentages of triplicate 

experiments + SD. (C) At least 100 cells per strain from (A) were scored for red vacuolar fluorescence after 

starvation. Data represent the mean percentages of triplicate experiments + SD. 

ERMES mutants overexpressing either MCP1 or MCP2 showed restoration of mitochondrial 

morphology under growing conditions as expected (Figure 12A and B) with the tendency of MCP1 to 

have stronger effects.  The essential question was now, whether the rescued ERMES mutants would 

still have problems degrading their mitochondria. ERMES mutants overexpressing MCP1 or MCP2 

were starved for one day and the fraction of mitophagy positive cells was determined by mtRosella. 

Strikingly, mitophagy was not restored in ERMES mutants with wild type-like mitochondrial 

morphology (Figure 12A and C). It can thus be excluded that the abnormal mitochondrial morphology 

is the reason for the mitophagy defect in ERMES mutants. Since MCP1 and MCP2 overexpression are 

thought to also restore mitochondrial lipid composition and stability of respiratory chain complexes 

(Tan et al., 2013), which has not been confirmed here, these defects are also unlikely to be the origin 

of the mitophagy defect. 

 

Deletion of DNM1 in an ERMES mutant background has no additional 

influence on mitophagy 

In recent years it has become evident that mitochondrial ER contacts play an important role during 

mitochondrial fission in yeast and mammalian cells in a process called ER-assisted mitochondrial 

division (ERMD; Friedman and Nunnari, 2014). ER tubules wrap around mitochondria and constrict 

them prior to recruitment of Dnm1 (or the human homolog Drp1), which ultimately divides 

mitochondrial tubules (Friedman et al., 2011). It has been shown in yeast that ERMD happens at 

ERMES-mediated contacts and is important for segregation of mtDNA during fission (Murley et al., 

2013). Interestingly, Mao et al. (2013) found that the mitophagy adaptor protein Atg11 recruits the 

mitochondrial division machinery to mitochondria in order to isolate small pieces of mitochondria 

suitable for mitophagy. They propose that this mitophagy-specific fission process occurs at sites 

marked by ERMES.  

If defective mitochondrial division was the cause for reduced mitophagy in ERMES mutants, the 

effect should be amplified, when DNM1 is deleted in an ERMES mutant background, since 

mitochondrial division would be completely absent then. To this end, double mutants lacking Dnm1 

and one of the ERMES subunits (in the following called dnm1 ermes) were constructed by tetrad 

dissection, and mitochondrial morphology as well as mitophagy were analyzed (with the notable 

exception of dnm1 mmm1 because the two loci reside on the same chromosome and meiotic 

recombination was too rare and thus no double mutants were obtained). dnm1 showed net-like 

mitochondria and ERMES mutants had big, globular mitochondria as expected (Figure 13A and B). 
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The mitochondrial morphology of ERMES mutants is epistatic to the DNM1 deletion, as dnm1 

ermes double mutants had the same morphology as the ERMES single mutants, but did not show 

any net-like structures.  

 

Figure 13. Analysis of dnm1 ermes double mutants with regard to mitochondrial morphology and 

mitophagy. (A) Cells expressing mtGFP were cultured to logarithmic growth in glucose-containing synthetic 

medium and analyzed by fluorescence microscopy. Representative images are shown. Bar, 5 µm. (B) Cells were 

prepared as in (A) and at least 100 cells per strain were scored for mitochondrial morphology. Data represent the 

mean percentages of triplicate experiments + SD. (C) Cells expressing mtRosella were cultured to logarithmic 

growth in SGalRD, starved for the indicated time points and analyzed by fluorescence microscopy. At least 100 

cells were scored for red vacuolar fluorescence at the indicated time points. Data represent the mean 

percentages of triplicate experiments + SD. 

In terms of mitophagy, the dnm1 mutants behaved like the WT (Figure 13C). ERMES single mutants 

showed almost no mitophagy after one day of starvation, but detectable levels after two days. These 

levels were very similar to the ones of the corresponding double mutants, suggesting that DNM1 

deletion in an ERMES mutant background does not augment the mitophagy defect. Thus, hampered 

mitochondrial division is not a likely cause of the defect in ERMES mutants.  
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The observation that the ERMES mutants had only very few mitophagy positive cells after one day of 

starvation in this experiment in comparison to earlier experiments (for example Figure 9B) can be 

explained in terms of strain construction. In former experiments, the strains were obtained from a 

deletion library and these strains carried the deletions for many generations and had the opportunity 

to adapt by epigenetic modifications or age-associated changes. In this experiment, however, strains 

were derived from tetrad dissection after sporulation. It is known that yeast cells are cured from age-

associated damages during gametogenesis and life-span is reset (Unal et al., 2011). This may explain 

the different outcome of these experiments. 

 

Artificial mitochondrial ER tethering promotes mitophagy in the absence of 

ERMES 

The ERMES complex has initially been identified in a synthetic biology screen (Kornmann et al., 2009). 

It had been considered that if tethering of mitochondria to the ER is important, mutation of potential 

tethering proteins would be harmful to the cell and might be complemented by expression of an 

artificial tether named chiMERA. chiMERA consists of the transmembrane domain derived from the 

MOM protein Tom70 at the N-terminus and of the ER tail anchor of Ubc6, which are connected by a 

GFP moiety allowing microscopic visualization of the protein (Figure 14A). Using this construct, 

Kornmann et al. (2009) were able to show that Mmm1, Mdm10, Mdm12 and Mdm34 connect ER and 

mitochondria.  

If the mitophagy defect in ERMES mutants was directly caused by loss of proximity between the ER 

and mitochondria, it could be predicted that expression of chiMERA restores mitophagy in the 

mutants by connecting mitochondria and ER. ERMES mutants expressing chiMERA under control of 

two different promoters were starved and the percentage of mitophagy positive cells was 

determined by using mtRosella. chiMERA slightly reduced mitophagy in WT, whereas strikingly the 

process was largely restored in mmm1, mdm10 and mdm34, but not in mdm12 (Figure 14B). 

This indicates that loss of contacts between mitochondria and the ER per se is the major cause of the 

mitophagy defect in ERMES mutants.   

Epifluorescence (Figure 14C) and confocal (Figure 14D) microscopy confirmed that chiMERA exhibits 

a preferentially ER-like staining pattern, which partially overlaps with mitochondria as has already 

been described (Kornmann et al., 2009). This was also true for mdm12, indicating that chiMERA is 

properly localized in this mutant. Steady-state levels of chiMERA showed that only low levels were 

present in mdm12 (Figure 14E). They were, however, comparable to mdm34 for the PADH construct 

and to mdm10 for the PTEF construct, in which the rescue worked. This might suggest that Mdm12 

has an additional role in mitophagy apart from mitochondrial ER tethering.  
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Figure 14. Expression of chiMERA rescues the mitophagy defect in ERMES mutants. (A) Schematic 

representation of chiMERA, which consists of an ER and a mitochondrial transmembrane anchor at either 

terminus which are linked by GFP. (B) Cells expressing mtRosella and chiMERA either from ADH or TEF 

promoter or carrying a vector control were cultured to logarithmic growth and starved for two days. At least 100 

cells were scored for red vacuolar fluorescence. Values represent the mean of at least two independent 

experiments. Asterisks indicate statistical significance (* p < 5%; two-tailed Student’s t-test). (C) Cells expressing 

chiMERA from the ADH promoter and mtRFP were cultured in SGalRD and chiMERA localization was analyzed 

by fluorescence microscopy. Arrows indicate colocalization of chiMERA and mitochondria. Bar, 5 µm. (D) 

mdm12 cells prepared as in (C) were analyzed by confocal microscopy. Images are from a z-series with a 

distance of 0.6 µm between the planes. (E) Lysates from cells expressing chiMERA either from ADH or TEF 

promoter were subjected to SDS-PAGE and Western Blotting. chiMERA was detected using anti-GFP antibodies. 

Hexokinase (Hxk) served as a loading control. 
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Mitophagosomes form at ER-mitochondria contact sites 

Since loss of direct contacts between ER and mitochondria is the main cause of mitophagy deficiency 

in ERMES mutants (Figure 14), it was considered that mitophagosomes might form at ERMES-

mediated contacts in yeast. To test this, autophagosomes were labeled with GFP-Atg8, ERMES was 

visualized by Mmm1-ERFP and cells were starved for one hour to induce formation of 

autophagosomes. Mmm1 signals in close vicinity to or even overlapping with GFP-Atg8 could be 

observed in the case of small Atg8 patches, nascent isolation membranes and mature 

autophagosomes (Figure 15A). Quantification revealed that ERMES is associated with Atg8 patches in 

over 40% of the cells and that this is increased to over 75% when isolation membranes and mature 

autophagosomes were analyzed (Figure 15B). Additional staining of the vacuole demonstrated that 

ERMES is present at the isolation membrane edge distal to the vacuole, which presumably is its 

growing end (Figure 15C). Since ERMES mutants have a mitophagy-specific defect (Figure 10), these 

structures likely represent mitophagosomes, and the association between them and ERMES indicates 

that ERMES has a direct role in their biogenesis.  

To confirm that mitophagosomes form at these contact sites, the localization of GFP-Atg32 and 

Mmm1-ERFP was analyzed. GFP-Atg32 stains the mitochondrial network under growing conditions, 

but concentrates during starvation into few distinct foci (Kanki et al., 2009b) likely marking 

mitophagosomes. These GFP-Atg32 foci overlap with ERMES marked by Mmm1-ERFP (Figure 15D), 

strengthening the idea that mitophagosomes form at mitochondrial ER-contacts. 

If mitophagosomes form at mitochondrial ER contacts, the Atg32-marked mitophagosomes should 

colocalize not only with ERMES but also with the ER in general. To test this idea, the ER was stained 

with GFP targeted to the ER lumen by a signal sequence and fused to the retention signal HDEL. 

Mitophagosomes were stained with ERFP-Atg32. After a two hour starvation, colocalization of ER and 

mitophagosomes could be seen (Figure 15E). 

In sum, these results demonstrate that mitophagosomes form at ERMES-mediated mitochondrial ER 

contacts and that ERMES localizes to the growing end of the mitophagophore, which suggests that 

the contacts contribute to the progression of mitophagosome development.  
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Figure 15. Mitochondrial ER contacts are sites of mitophagosome biogenesis. (A) mmm1 cells expressing 

plasmid-borne GFP-Atg8 and Mmm1-ERFP from their endogenous promoters were cultured to logarithmic growth 

in SGalRD, starved for 1 h and analyzed by fluorescence microscopy. IM, isolation membrane; AP, mature 

autophagosome. Bars, 5 µm (main images); 1 µm (insets). (B) Cells from (A) were quantified for association of 

GFP-Atg8 patches or IMs and APs with Mmm1-ERFP. Values represent the mean of triplicate experiments + SD 

(n = 194 cells).  (C) mmm1 cells were prepared as in (A) and the vacuole was stained using CellTracker Blue 

CMAC. Bars, 5 µm (main images); 1 µm (insets). (D) Cells expressing GFP-Atg32 from the MET25 promoter and 

Mmm1-ERFP were cultured in SGalRD with 10 µg/ml methionine to logarithmic growth, starved for 2 h and 

analyzed by fluorescence microscopy. Arrows indicate the sites of overlapping signals. Bar, 5 µm. (E) atg32 

cells expressing GFP targeted to the ER (GFP-HDEL) and ERFP-Atg32 from the MET25 promoter were prepared 

and analyzed as in (D). Arrows mark sites of overlapping signals. Bar, 5 µm. 

 

Mmm1 interacts with Atg8 in vivo independent of Atg8 lipidation 

Since ERMES and Atg8 associate during mitophagy, it was tested whether Mmm1 and Atg8 directly 

interact. To this end, GFP-tagged Atg8 was isolated from cell extracts of starved cells with beads 

coated with anti-GFP single chain antibodies. Eventually, co-immunoprecipitation of Protein A-tagged 

Mmm1 was tested. GFP-Atg8 was efficiently purified by IP together with free GFP (Figure 16A), which 

presumably was released during autophagy-dependent processing of GFP-Atg8. However, Mmm1 
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was not detectable in the eluate fraction, indicating that ERMES and Atg8 either do not interact or 

the interaction is unstable or transient and the interacting proteins cannot be co-purified from cell 

extracts. Alternatively, the ProteinA and the GFP tags of Mmm1 or Atg8 might hinder the interaction. 

In order to detect an interaction of Mmm1 and Atg8 in vivo, a bimolecular fluorescence 

complementation (BiFC) approach was used. In this assay, two proteins of interest are each fused to 

two different fragments of a fluorescent protein (Kerppola, 2008a, b). The fragments do not give 

fluorescence signals when expressed within one cell unless they are brought into close proximity by 

tagging them with two interacting proteins (Hu et al., 2002). Thus, interactions of proteins can be 

detected in living cells. Accordingly, the C-terminus of Mmm1, which is exposed to the cytosol 

(Burgess et al., 1994), was fused to the C-terminal fragment of an enhanced YFP (Nagai et al., 2002), 

called YC. Atg8 was tagged with the N-terminal fragment of YFP, YN, at its N-terminus because at its C-

terminus an arginine is cleaved off during starvation (Ichimura et al., 2000; Kirisako et al., 2000) and 

the C-terminus is therefore unsuitable for tagging. The fusion proteins were expressed from 

multicopy plasmids and were under control of the ADH promoter in a BiFC expression system 

adopted to yeast (Skarp et al., 2008). Initially, a atg1 strain was used since Atg proteins are 

recruited to PAS in this strain, but turnover of the autophagosomes is blocked (Suzuki et al., 2007) 

and it was thus expected that interactions of proteins involved in mitophagosome biogenesis are 

more stable. 

After starvation, fluorescence complementation was observed between Mmm1-YC and YN-Atg8 but 

not between the appropriate controls (Figure 16B), demonstrating an interaction between the two 

proteins in vivo. As expected, this interaction occurred on the mitochondrial surface (Figure 16C). In 

order to test, whether the interaction depends on the post-translational modification and 

localization of Atg8, BiFC was analyzed in atg3, where Atg8 cannot be coupled to PE (Ichimura et al., 

2000). Moreover, Atg8 cannot be targeted to the PAS when its lipidation is obstructed as can be seen 

in atg3 after starvation (Figure 16D). WT, atg1 and atg3 cells showed fluorescence 

complementation, which demonstrates that Atg8 lipidation and PAS localization are not necessary 

for the Mmm1-Atg8 interaction (Figure 16E).  

In sum, these results show that Mmm1 and Atg8 interact in the course of mitophagy on the 

mitochondrial surface independent of Atg8 lipidation, suggesting that ERMES plays a direct role in 

mitophagosome biogenesis prior to lipidation of Atg8 with PE. 
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Figure 16. Analysis of Mmm1 and Atg8 interaction. (A) Strains expressing ProtA-Mmm1 and carrying either an 

empty vector (ctrl) or a vector coding for GFP-Atg8 were cultured in synthetic medium with glycerol (3%) and 

small amounts of glucose (0.1%) to logarithmic growth, starved for 1 h and harvested. After shock-freezing, cryo-

grinding and solubilisation, co-immunoprecipitation was performed using GFP binding protein coupled beads and 

subsequently input (0.5%) and IP (10%) fractions were subjected to SDS-PAGE and Western blotting using anti-

GFP and PAP antibodies. (B) atg1 cells expressing the indicated split-YFP fusions or control proteins were 

cultured to logarithmic growth in SGalRD, starved for 3 - 4 h and analyzed by fluorescence microscopy. YC, C-

terminal fragment of YFP; YN, N-terminal fragment of YFP. Bar, 5 µm. (C) atg1 cells expressing Mmm1-YC, YN-

Atg8 and mtRFP were prepared and analyzed as in (B). (D) Cells expressing GFP-Atg8 from its endogenous 

promoter were prepared as in (B) and analyzed before (growth) and after 4 h of starvation. (E) Cells expressing 

Mmm1-YC and YN-Atg8 were prepared and analyzed as in (B). 
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ERMES is dispensable for mitochondrial localization of Atg8 

Atg32 interacts with both Atg8 and Atg11 in the course of mitophagy (Kanki et al., 2009b; Okamoto 

et al., 2009) and is necessary for the recruitment of Atg8 to mitochondria (Okamoto et al., 2009). 

Since ERMES colocalizes and interacts with Atg8 during mitophagosome biogenesis, it appeared 

reasonable to assume that ERMES might also be important for the recruitment of Atg8 to 

mitochondria or for the interaction of Atg8 with Atg32. 

Mitochondrial localization of GFP-Atg8 was therefore tested in atg32, ERMES single and atg32 

ermes double mutants by fluorescence microscopy after starvation. Surprisingly, Atg8 was 

efficiently targeted to mitochondria independent of all deletions tested (Figure 17A), which suggests 

that neither Atg32 nor ERMES is necessary for Atg8 recruitment to mitochondria. This is in contrast 

to observations made by Okamoto et al. (2009) who showed that Atg8 cannot target to mitochondria 

in the absence of Atg32. In these experiments mitophagy was induced by culturing the cells on non-

fermentable carbon sources to stationary phase and this difference might be the reason for the 

conflicting results, which means that ERMES and Atg32 are dispensable for Atg8 recruitment to 

mitochondria under the conditions used here. Another possible explanation is that determining 

mitochondrial recruitment of Atg8 by fluorescence microscopy is not sensitive enough and 

mitochondrial Atg8 localization occurred by chance in atg32 and ERMES mutants. However, no 

evidence was found in favor of the hypothesis that ERMES recruits Atg8 to mitochondria. 

Still, ERMES could be important for the interaction of Atg8 and Atg32, which occurs on the 

mitochondrial surface and marks mitochondria for degradation (Mao et al., 2013). Colocalization of 

GFP-Atg8 and ERFP-Atg32 was tested as an indicator of protein-protein-interaction in WT and ERMES 

mutants after starvation. Fluorescence microscopy showed that colocalization of the two proteins 

could be observed in all strains (Figure 17B), indicating that the interaction of both proteins was not 

hampered, that this step of mitophagy is not disturbed and that mitophagy is blocked at a later 

stage. 
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Figure 17. ERMES is not necessary for Atg8 recruitment to mitochondria. (A) Cells expressing mtRFP and 

GFP-Atg8 from its endogenous promoter were cultured to logarithmic growth in SGalRD, starved for 4 h and 

analyzed by fluorescence microscopy. Bar, 5 µm. (B) Cells expressing GFP-Atg8 from its endogenous promoter 

and ERFP-Atg32 from the MET25 promoter were cultured to logarithmic growth in SGalRD with 10 µg/ml 

methionine, starved for 1 - 2 h and analyzed by fluorescence microscopy. 

 

Mitochondrial ER contacts are important for the formation of the 

mitophagophore 

During bulk and selective autophagy, Atg proteins coalesce at the PAS (Suzuki et al., 2001). From this 

dot-like structure, an isolation membrane or phagophore (mitophagophore in the case of mitophagy) 

grows and matures into an autophagosome (mitophagosome in the case of mitophagy). It has been 

shown in a recent study that Atg proteins are differentially distributed along the phagophore and 

mark different steps of phagophore biogenesis (Suzuki et al., 2013).  
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In order to determine whether mitophagy is blocked at a particular step, two different Atg proteins 

were chosen as markers and their localization was analyzed in WT and mmm1 after starvation. 

Atg14-GFP is a component of the phosphatidylinositol 3-kinase (PI3K) complex (Kihara et al., 2001; 

Obara et al., 2006) and marks an early step of membrane growth, as it is present at the junction 

between vacuole and phagophore termed vacuole-isolation membrane contact site (VICS; Suzuki et 

al., 2013). Atg5-GFP is in a complex with Atg12 and Atg16 and contributes to lipidation of Atg8 

(reviewed in Mizushima et al., 2011; Ohsumi, 2001). The complex is not a constituent of mature 

autophagosomes (Suzuki et al., 2001), but labels growing phagophores (Suzuki et al., 2013). 

As expected Atg14-GFP and Atg5-GFP both colocalize with ERMES after starvation (Figure 18A), 

which further demonstrates the presence of ERMES at the site of mitophagosome biogenesis. Atg14-

GFP shows a punctate pattern on mitochondria in WT as well as in mmm1 (Figure 18B), indicating 

that formation of the VICS is not affected in ERMES mutants, which is consistent with the finding that 

Atg8-Atg32 colocalization was not affected (Figure 17B). Atg5-GFP also exhibits this staining pattern 

but only in WT cells (Figure 18C, upper panels). In absence of ERMES, Atg5-GFP was present in 

multiple dots on mutant mitochondria (Figure 18C, middle panels). Quantification of Atg5-GFP dots 

showed that they are significantly enriched in mmm1 (Figure 18D).  

As has already been noted, a recent study proposed that ERMES is present at sites of mitophagy-

specific fission because it is involved in ERMD (Mao et al., 2013). If compromised mitochondrial 

fission was the reason for the Atg5-GFP phenotype, it should also be visible in the dnm1 mutant, 

where mitochondrial fission is absent. Analysis of Atg5-GFP in dnm1 after starvation revealed that 

only one to two Atg5-GFP structures marking autophagosomal membrane growth are present at the 

giant mitochondrial networks (Figure 18C and D) and that fission defects are not the cause of 

aberrant mitophagosome biogenesis in ERMES mutants. This is in good agreement with the 

experiments that exclude compromised ERMD as origin of the mitophagy defect in ERMES mutants 

(Figure 13). 

Taken together, these results strongly suggest that mitophagy is blocked in ERMES mutants at the 

step after induction of mitophagosome biogenesis at mitochondria, where the mitophagophore 

grows. Excess mitophagophores likely arise in mmm1 because limited lipid transport from the ER to 

the growing mitophagophore prevents maturation of phagophores and mitophagosome biogenesis is 

induced at a different site of the mitochondrion. In the wild type situation on the other hand, ERMES 

promotes mitophagy by ensuring spatial proximity between mitochondria, ER, and the phagophore 

expansion factor Atg8 and thus likely facilitates lipid flux from the ER to the growing phagophore.  
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Figure 18.mmm1 cells show an altered staining pattern of the phagophore marker Atg5. (A) mmm1 cells 

expressing either Atg5-GFP (upper panel) or Atg14-GFP (lower panel) from the GPD promoter and Mmm1-ERFP 

from its endogenous promoter were cultured to logarithmic growth in SGalRD, starved for 1.5 h and analyzed by 

fluorescence microscopy. Bar, 5 µm. (B, C) Cells expressing Atg14-GFP or Atg5-GFP from the GPD promoter 

and mtRFP were prepared and analyzed as in (A). (D) Cells were prepared as in (C) and scored for Atg5-GFP 

dots in cells with at least one dot. Data represent the mean of at least 150 cells per strain + SD. Asterisks indicate 

statistically significant differences (*** p < 0.05%; n. s., not significant; two-tailed Student’s t-test). 

 

Mitophagophore biogenesis is rescued by artificial ER-mitochondria tethering 

but not by restoring normal mitochondrial morphology 

Artificial mitochondrial ER tethering by ERMES restores mitophagy in ERMES mutants (Figure 14). If 

the surplus Atg5-GFP structures (Figure 18) represent the major defect responsible for the mitophagy 

deficit, this phenotype should also be rescued by expression of chiMERA.  
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Indeed, chiMERA had no influence on the quantity of Atg5-GFP dots in WT cells, but strikingly 

reduced the amount to a wild type-like level in mmm1 (Figure 19A and B). This result demonstrates 

that loss of mitochondrial ER contacts is the reason for the Atg5-GFP phenotype and that restoring 

these contacts leads to physiological mitophagophore biogenesis and in consequence to 

reestablished mitophagy. 

 

Figure 19. Expression of chiMERA but not MCP1 overexpression rescues the Atg5-GFP phenotype of 

mmm1 cells. (A) Cells expressing Atg5-GFP from the GPD promoter and chiMERA from the ADH promoter or 

carrying a vector control were cultured to logarithmic growth in SGalRD, starved for 1.5 h and analyzed by 

fluorescence microscopy. (B) Cells from (A) were scored for Atg5-GFP dots per cell in cells with at least one dot. 

Data represent the mean of at least 75 cells per strain + SD. (C) Cells expressing Atg5-GFP from the GPD 

promoter and overexpressing MCP1 from the TPI promoter or carrying a vector control were prepared and 

analyzed as in (A). (D) Cells from (C) were analyzed as in (B). Asterisks indicate statistical significance (*** p > 

0,05%; n. s., not significant; two-tailed Student’s t-test). 

In order to test whether this was a specific effect of chiMERA, mitochondrial morphology and lipid 

composition was restored in mmm1 by overexpression of MCP1, which did not rescue mitophagy 

(Figure 12). MCP1 overexpression did not have an effect on the quantity of Atg5-GFP dots, neither in 

WT nor in mmm1 (Figure 19C and D), showing that mutant mitochondrial morphology is not the 

reason for the Atg5 phenotype.  
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Taken together, these results are in good agreement with the findings that only the reestablishment 

of mitochondrial ER contacts, but not of mitochondrial morphology, rescues the mitophagy defect in 

ERMES mutants. Furthermore, they demonstrate that ER-mitochondria contacts are important for 

regular maturation of mitophagophores.    

 

ERMES is important for the localization of Atg9 to mitochondria 

Atg9 is outstanding among the Atg proteins because it is the only Atg protein with transmembrane 

domains (Noda et al., 2000). Atg9-positive vesicles do not only localize to the PAS but also to dot-like 

structures on or near mitochondria already under nutrient-rich conditions and are thought to provide 

membrane material to the phagophore (Mari et al., 2010). Atg9-GFP labels the edges of the 

phagophore (Suzuki et al., 2013), where membrane growth likely occurs. If ERMES is important for 

growth of the phagophore and if this growth is compromised in mmm1, Atg9-GFP staining patterns 

should be altered in ERMES mutants.  

It was first tested whether Atg9-GFP colocalizes with ERMES, which was indeed the case (Figure 20A). 

Interestingly, this association could already be seen under nutrient-rich conditions and 

independently of mitophagy induction. Atg9-GFP dots localized to mitochondria under nutrient-rich 

and under starvation conditions in WT cells (Figure 20B, upper panels). In nutrient-rich medium, the 

staining pattern of Atg9-GFP changed in some cells of mmm1, but it was still present on 

mitochondria (Figure 20B, lower panels). If mitophagy was induced by starvation, the appearance of 

the Atg9-GFP staining was completely altered in cells lacking ERMES. While Atg9-GFP was present as 

a distinct dot on a single mitochondrion in wild type cells, these discrete structures were rare in 

mmm1 and Atg9 positive structures wrapped around a mitochondrion (Figure 20B). 

In sum, ERMES is important for correct localization of Atg9 after induction of mitophagy. Since Atg9 is 

important for the growth of the phagophore, this further strengthens the idea that ERMES is a vital 

hub for mitophagophore biogenesis. 
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Figure 20. Atg9 associates with ERMES and is mislocalized when ERMES is absent. (A) mmm1 cells 

expressing Atg9-GFP from the GPD promoter and Mmm1-ERFP from its endogenous promoter where cultured to 

logarithmic growth in SGalRD, starved and analyzed by fluorescence microscopy before (growth) and after 1.5 h 

starvation. Bar, 5 µm. (B) Cells expressing Atg9-GFP from the GPD promoter and mtRFP were prepared and 

analyzed as in (A).   

 

Artificial mitochondrial localization of a peroxisome-specific autophagy 

receptor complements the mitophagy defect in ERMES mutants 

Apart from mitophagy, the autophagic degradation of peroxisomes, called pexophagy, is among the 

best studied selective autophagy pathways so far. During pexophagy, the peroxisomal membrane 

protein Pex3 recruits the specificity factor Atg36, which in turn interacts with Atg8 and Atg11. 

Subsequently, the peroxisome gets sequestered by a phagophore (Motley et al., 2012). Interestingly, 
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Pex3 that is artificially targeted to mitochondria by fusion to the MOM protein Om45 (Om45-Pex3) is 

able to rescue the mitophagy defect in atg32 (Figure 21A, Motley et al., 2012). Moreover, Pex3 is 

also involved in tethering peroxisomes to the ER (Knoblach et al., 2013). A subpopulation of Pex3 

resides in the ER and interacts with Inp1, which builds a molecular bridge to peroxisomal Pex3. 

Because of these characteristics of Pex3 it was asked, whether Om45-Pex3 can restore mitophagy in 

ERMES mutants (see schematic Figure 21A). 

 

Figure 21. Om45-Pex3 rescues the mitophagy defect in ERMES mutants and the Atg5 phenotype in 

mmm1 and mdm12 cells.  (A) Schematic representation of the experiment’s rationale. See text for details. (B) 

Cells expressing mtRosella and Om45-Pex3 or carrying a vector control were cultured in SGalRD to logarithmic 

growth, starved for 1 day and analyzed by fluorescence microscopy. At least 100 cells were scored for red 

vacuolar fluorescence. Values represent the mean of at least five quantifications per strain + SD. Asterisks 

indicate statistical significance (* p > 5%; *** p > 0,05%; two-tailed Student’s t-test). (C) Cells expressing Atg5-

GFP from the GPD promoter and Om45-Pex3 or carrying a vector control were cultured as in (B), starved for 1.5 

h and analyzed by fluorescence microscopy. Cells were scored for Atg5-GFP dots per cell in cells with at least 

one dot. Data represent the mean of at least 100 cells per strain + SD. 

To this end, Om45-Pex3 was expressed in atg32 as well as in ERMES mutants, and mitophagy was 

quantified after one day of starvation by using mtRosella. As expected, Om45-Pex3 efficiently 

restored mitophagy in atg32. Interestingly, Om45-Pex3 also enhanced mitophagy in all ERMES 
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mutants (Figure 21B), even in mdm12, which has not been rescued by chiMERA expression. 

Expression of Om45-Pex3 also reestablished the regular formation of the phagophore, which was 

tested by quantification of Atg5-GFP dots in mmm1 and mdm12 (Figure 21C).  

How exactly Om45-Pex3 restores the mitophagic pathway in ERMES mutants is unclear. Is the rescue 

caused by the ability of Om45-Pex3 to recruit the autophagic machinery to mitochondria or by its 

capacity to reestablish the contacts with the ER by interaction with Inp1, the hinge between 

peroxisomes and ER? Since recruitment of Atg8 to mitochondria and its interaction with Atg32 still 

work in ERMES mutants anyway (Figure 17), the former is not a likely explanation. Since the 

mitophagy defect in ERMES mutants is caused by loss of ER-mitochondria contacts, the latter is a 

plausible alternative. However, this remains to be shown by construction of ermes inp1 double 

mutants, where artificial tethering by Om45-Pex3 is supposedly absent and Om45-Pex3 expression 

should not result in a mitophagy rescue.   
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Mapping the genetic interactome of the mitochondrial inheritance 

mutant myo2(LQ) 

Genomic integration of the myo2(LQ) mutations leads to reduced growth, 

diminished mitochondrial inheritance and synthetic lethality with ypt11 

In yeast, mitochondria are transported along the actin cytoskeleton via the myosin V motor protein 

Myo2 (reviewed in Westermann, 2014). Mutations in the proximal half of Myo2’s cargo binding 

domain (CBD) can result in mitochondrial inheritance defects (Altmann et al., 2008). A very severe 

impairment of mitochondrial morphology and inheritance results from the combination of the two 

amino acid substitutions L1301P and Q1233R, termed myo2(LQ) (Figure 22A, Förtsch et al., 2011).  

myo2(LQ) appears as a suitable tool to screen for novel regulators of mitochondrial transport and 

distribution by application of a genetic interaction approach. Mapping of genetic interactions on a 

genome-wide scale can reveal genes working in the same or antagonistic pathways and thereby 

uncover unanticipated functions of known or previously uncharacterized genes. 

To this end, a query strain with a mutation of interest like myo2(LQ) is crossed to an ordered array of 

viable yeast deletion mutants, double mutants are isolated using synthetic genetic array (SGA) 

technology and their growth is quantified to identify genetic interactions (Baryshnikova et al., 2010). 

Therefore, the myo2(LQ) mutation has to be introduced into the genome of a starter strain suitable 

for SGA and it has to be ensured that this mutation leads to the expected phenotypes. It has to be 

noted that effects of myo2(LQ) have been previously analyzed in strains lacking genomic MYO2 

(myo2) but harboring a plasmid coding for myo2(LQ) under control of its endogenous promoter 

(Förtsch et al., 2011). 

A DNA fragment comprising part of the MYO2 locus and coding for the LQ substitutions was fused to 

a cassette that confers uracil prototrophy to the starter strain (Figure 22B). This DNA fragment was 

introduced into the starter strain, thereby replacing the wild type MYO2, and recombinants were 

selected on medium lacking uracil. Sequencing the MYO2 locus revealed that the myo2(LQ) 

mutations were successfully introduced into the starter strain producing the myo2(LQ) query strain 

(data not shown). As a control, a MYO2 query strain was constructed with a DNA fragment coding for 

MYO2 instead of myo2(LQ) in front of the URA3 cassette. 

A drop dilution assay showed that the introduction of the myo2(LQ) allele resulted in a mild growth 

defect, which was enforced when cells were cultured at elevated temperatures (Figure 22C). This is in 

good agreement with published results (Förtsch et al., 2011). In order to confirm the mitochondrial 

inheritance defect, the MYO2 and myo2(LQ) query strains were stained with the mitochondria-

specific dye rhodamine-B-hexylester during logarithmic growth. The myo2(LQ) mutation led to buds 

that were frequently devoid of mitochondria, which was only very rarely observed in MYO2 cells 

(Figure 22D). This demonstrates that the myo2(LQ) query strain exhibits the expected mitochondrial 

inheritance defect.  
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Figure 22. Phenotypes of myo2(LQ). (A) Space-filling diagram of the CBD of Myo2 (PDB 2F6H; Pashkova et 

al., 2006) generated by using PyMOL software (PyMOL Molecular Graphics System, version 1.3; Schrödinger). 

The mutated residues of the myo2(LQ) allele are highlighted in red. (B) Schematic representation of myo2(LQ) 

strain construction. A PCR construct carrying part of the myo2 coding region (with mutations leading to amino 

acid substitutions Q1233R and L1301P) as well as an URA3 cassette, which confers uracil prototrophy, was 

inserted into the MYO2 locus. The two query strains were constructed by Johannes König, Zellbiologie, Bayreuth. 

(C) The MYO2 (upper panel) and myo2(LQ) (lower panel) query strains were adjusted to the same optical density, 

diluted in serial 1:10 steps and spotted on glucose-containing rich medium. Plates were incubated at 30°C and 

37°C. (D) Cells were cultured to logarithmic growth in glucose-containing rich medium, mitochondria were stained 

with rhodamine-B-hexylester and cells were analyzed by fluorescence microscopy. The arrowhead indicates a 

bud devoid of mitochondria. Bar, 5 µm. (E) The myo2(LQ) query and a ypt11 strain were crossed, sporulated 

and tetrads were dissected on glucose-containing rich medium. After 3 days of incubation, the genotypes were 

determined by plating the cells on medium lacking uracil and on medium containing geneticin.   

Another phenotype of myo2(LQ), which is particularly important for its application in an SGA screen, 

is its synthetic lethality with ypt11. Ypt11 is a Rab GTPase, which interacts with both Myo2 (Itoh et 

al., 2002) and Mmr1 (Lewandowska et al., 2013) and whose deletion has mild effects on 

mitochondrial inheritance (Itoh et al., 2002; Boldogh et al., 2004). However, if YPT11 is deleted in 

addition to the myo2(LQ) mutation, cells die due to a lack of mitochondrial transport into the bud 

(Förtsch et al., 2011). To confirm this synthetic lethality, the myo2(LQ) query strain was crossed with 

ypt11 and after sporulation, tetrads were dissected by micromanipulation on rich medium. As 
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expected, determination of the spores’ genotype revealed that not a single double mutant could be 

obtained (Figure 22E), demonstrating that combining the myo2(LQ) and ypt11 mutations in a single 

cell is lethal.  

Taken together, integration of myo2(LQ) into the genome of an SGA starter strain results in a mild 

growth defect, compromised mitochondrial inheritance and synthetic lethality with ypt11. Thereby, 

the strain proves applicable in an SGA analysis.  

 

Synthetic genetic array analysis with myo2(LQ) 

In order to identify novel players in the transport and inheritance of mitochondria, a myo2(LQ) and a 

MYO2 query strain were crossed to an ordered array of more than 4000 yeast deletion mutants 

(Figure 23A). The mutants of the deletion library carried a cassette conferring resistance to geneticin 

(kanMX4) and replacing a particular ORF, while the query strains carried a URA3 cassette behind the 

MYO2 locus conferring uracil prototrophy (Figure 23B). Diploid cells were consequently selected by 

growth on plates containing geneticin and lacking uracil. After sporulation, haploid cells were 

selected by growth on medium containing the antibiotics canavanine and thialysine, for which the 

query strains carried a recessive resistance and which accordingly kill diploid cells. Haploid double 

mutants were subsequently isolated by growth on plates containing geneticin and lacking uracil. 

Images of the plates were acquired. Determination and normalization of colony sizes as well as 

identification of genetic interactions was performed using the web browser based SGAtools 

(http://sgatools.ccbr.utoronto.ca/) as described previously (Wagih et al., 2013). The tool corrects and 

normalizes the colony sizes, which means it rescales colonies growing close to the edges of the plates 

since they have usually more access to nutrients and therefore are bigger. Then the program scores 

every strain by subtracting the estimated fitness from the actually measured fitness. Four replicates 

of each strain were present on the plates and the mean genetic interaction score was calculated 

from these. 

The genetic interaction scores from replicate 1 are shown in Figure 23C. Most of the screened strains 

showed no genetic interaction with myo2(LQ) as most of the scores are about 0. However, several 

hundred of them were below the recommended threshold of -0.3 for negative interactions and 

above 0.3 for positive interactions (Figure 23D, Wagih et al., 2013). Since this number is too high to 

characterize all of the candidates, the screen was performed once more (Figure 23C). As can be seen 

from the mean score standard deviation of the two replicates, the first replicate was more 

reproducible; moreover, it had fewer hits, fewer strains were lost (Figure 23D) and it appears as if the 

first replicate was of better quality for unknown reasons. However, the overlap of both replicates 

contained about 100 strains of negative and positive interactors, respectively (Figure 23D), which 

appears as a reasonable number of interactors for a gene with as many functions like MYO2. The 

genes appearing in both replicates were considered as bona fide interactors (Table 7, Appendix). The 

genetic interactions scores of all strains from the two replicates are listed in Table S2 (Appendix). 
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Figure 23. Synthetic genetic array analysis with myo2(LQ) as a query mutation. (A) Schematic 

representation of the myo2(LQ) SGA. MYO2 and myo2(LQ) query strains are crossed to the MATa yeast deletion 

library and heterozygous diploid cells are selected. After sporulation (meiosis), haploid and subsequently double 

mutants are selected. Plates are imaged and colony size is quantified, normalized, and genetic interactions are 

scored. The red square indicates the position of the ypt11 strains. (B) Schematic representation of the 

chromosomal loci of the used strains. The deletion library contains strains lacking non-essential genes, which 

were replaced by the kanMX4 cassette conferring resistance to geneticin (upper panel). The query strain 

myo2(LQ) carries the L1301P and Q1233R mutations in its genome at the MYO2 locus linked to an URA3 

cassette conferring uracil prototrophy (lower panel). The corresponding control query strain (middle panel) has the 

same organization at its MYO2 locus but carries a wild type copy of MYO2. (C) Strains from the SGA, which was 

performed as described in (A), were ordered according to their genetic interaction score with myo2(LQ). (D) 

Comparison of the two screens in regards to the number of strains screened, mean score standard deviation 

(SD), the number of negative and positive interactors and their overlap in both replicates. (E) Analysis of GO term 

enrichments for bioprocesses among the negative interactors. The fold enrichment is the ratio of the GO term 

frequency among the negative interactors and among all the tested strains.    
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Genes can be categorized into so-called gene ontology (GO) terms indicating if the genes are involved 

in a particular process, function or are localized at a certain cellular component. Since the screen 

aimed at the identification of cellular processes contributing to mitochondrial inheritance, the 

negative and positive interactors were analyzed for an enrichment of GO terms for cellular processes 

with a p value < 5%, as has been described in Boyle et al. (2004). Fold enrichment was calculated as 

the ratio of the frequency of genes with a given GO term among the hits (i.e., the negative and 

positive interactors, respectively) and the frequency of genes with this GO term among the 

background set (i.e., the screened strains). No significant functional enrichments were found among 

the positive interactors, however, Figure 23E shows that several bioprocesses were enriched many-

fold among the negative interactors. These processes could be categorized into several classes 

mainly based on the localization of the process like mitochondrion or cytoskeleton or the overall 

function of the process like nuclear inheritance or mitosis. The GO terms ‘mitochondrion 

inheritance’, ‘mitochondrion distribution’ and ‘mitochondrion localization’ were identified, 

suggesting that the screen includes hits which are specific for mitochondrial functions and 

inheritance. Surprisingly, most of the functional enrichments concern the inheritance of the nucleus, 

which is consistent with the fact that Myo2 orients the mitotic spindle (Hwang et al., 2003). This can 

also explain the interactions with genes involved in microtubule-associated processes, which in yeast 

almost exclusively comprise the migration of the nucleus. Furthermore, components contributing to 

organelle organization in general, mitosis and cell polarity were found to be enriched among the 

negative interactors.  

Among the reproducible, mitochondrion-related negative interactors was YPT11, as expected, since 

myo2(LQ) ypt11 cells have already been shown to be inviable due to a severe mitochondrial 

transport defect (Figure 22E; Förtsch et al., 2011). Furthermore, the genes encoding the ERMES 

subunits Gem1, Mmm1 and Mdm34 exhibited negative interactions with myo2(LQ). ERMES mutants 

are known to have defects in mitochondrial inheritance (Burgess et al., 1994; Sogo and Yaffe, 1994; 

Berger et al., 1997; Frederick et al., 2004; Youngman et al., 2004; Förtsch et al., 2011). The genetic 

interaction with myo2(LQ) is consistent with the idea that the functionality of mitochondrial ER 

contacts is required for maintenance of a transportable morphology and loss of this morphology 

leads to inheritance defects (Förtsch et al., 2011). It is plausible that cells with such barely 

transportable mitochondria cannot tolerate certain mutations of the motor protein Myo2. myo2(LQ) 

also showed a genetic interaction with the phosphatase coding gene PTC1, the deletion of which has 

been reported to result in delayed inheritance of mitochondria, vacuoles, peroxisomes and cortical 

ER. Besides, loss of Ptc1 has effects on the steady-state levels of Mmr1, Vac17 and Inp2, which 

interact with Myo2 in order to promote organelle inheritance (Roeder et al., 1998; Du et al., 2006; Jin 

et al., 2009; Swayne et al., 2011). Ptc1 is required for the proper distribution of Mmr1, Myo2 itself 

and Myo4, which transports cortical ER (Jin et al., 2009; Swayne et al., 2011). Likely, if these 

processes fail in ptc1 and if the interaction of Myo2 with mitochondria is additionally affected by 

the myo2(LQ) mutation, mitochondrial inheritance is massively blocked and double mutants grow 

very poorly. 
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myo2(LQ) exhibited additional interactions with NUM1, which anchors mitochondria in the mother 

cell, and with genes encoding components of the mitochondrial fusion machinery. These interactions 

will be discussed in more detail below. 

Taken together, the screening of more than 4000 yeast deletion strains with myo2(LQ) as a query 

mutation revealed about 200 strains growing surprisingly well or poorly. Several of the negative 

interactors can be explained easily, since these genes have already been shown to be involved in the 

inheritance of mitochondria. Although it is not known which interactors are specific for 

mitochondria, since Myo2 has diverse targets and may thus interact with genes unrelated to 

mitochondria, it is reasonable to assume that characterization of the interactors may yield new 

players involved in mitochondrial inheritance. 

 

myo2(LQ)num1 mutants are synthetic sick 

The combination of the two mutations myo2(LQ) and num1 reproducibly showed a negative genetic 

interaction. This interaction has already been seen in two previous screens, where hypomorphic or 

conditional alleles of myo2 showed a negative interaction with num1 (Tong et al., 2004; Costanzo et 

al., 2010). Num1 is a 313 kDa protein present at the cell cortex in mother cells, it interacts with 

dynein and microtubules and is important for nuclear migration (Farkasovsky and Kuntzel, 2001). It 

was also found to play a role in mitochondrial dynamics by facilitating mitochondrial division 

(Cerveny et al., 2007). Recently, Num1 was shown to form a complex with Mdm36, a peripheral 

mitochondrial protein, which is thought to act as an adaptor between Num1 and mitochondria 

(Hammermeister et al., 2010; Lackner et al., 2013). This complex is thought to anchor mitochondria 

at the mother cell at sites opposite to the bud and to ensure that a portion of mitochondria remains 

in the mother cell (Klecker et al., 2013; Lackner et al., 2013). 

The negative genetic interaction between myo2(LQ) and num1 is surprising since one would expect 

that mitochondrial transport into the bud in myo2(LQ) num1 cells would be relieved when the 

mitochondria are not retained in the mother. This relief is expected to result in a positive genetic 

interaction. In order to verify the negative interaction, myo2(LQ) cells were crossed with num1. 

After sporulation, tetrads were dissected on rich medium. As anticipated from the screening results, 

the colony size of double mutants was very small compared to wild type and single mutants (Figure 

24A). Quantification of colony size showed that num1 grew almost as good as WT and myo2(LQ) 

had less than 70% of fitness compared to WT (Figure 24B). This means that the double mutant 

myo2(LQ) num1 has an expected fitness almost identical to the fitness of myo2(LQ), if the two 

genes work in unrelated pathways. However, the double mutant had a fitness of only about 5% 

compared to WT, which represents a negative genetic interaction and confirms the screening result. 

If the small colony size was due to problems of the double mutants of regrowing immediately after 

sporulation, the growth defect should not be observed in a drop dilution assay. Still, the myo2(LQ) 

num1 double mutants grew unexpectedly poorly (Figure 24C). 
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Figure 24. myo2(LQ) and num1 genetically interact. (A) myo2(LQ) and num1 cells were crossed, sporulated 

and tetrads were dissected on glucose-containing rich medium. After 3 days of incubation the genotypes were 

determined by plating the cells on medium lacking uracil and on medium containing geneticin. (B) Quantification 

of fitness. Colony size was determined after tetrad dissection and normalized to WT. Values represent the mean 

of 16 colonies per strain + SD. Asterisks indicate statistical significance (*** p > 0,05%; two-tailed Student’s t-test). 

The red line marks the expected fitness of the double mutant calculated by the product of the two single mutants’ 

fitness. (C) Strains were adjusted to the same optical density, diluted in serial 1:10 steps and spotted on glucose-

containing rich medium. Plates were incubated at 30°C and 37°C. 

These results demonstrate that myo2(LQ) and num1 genetically interact and that the performed 

SGA screen produced results, which are reliable and consistent with previous observations (Tong et 

al., 2004; Costanzo et al., 2010).  

 

The growth phenotype of myo2(LQ) num1 is caused by a nuclear migration 

defect rather than a mitochondrial deficit 

Although the genetic interaction of myo2(LQ) and num1 was confirmed, the origin of the 

interaction is not clear since Myo2 and Num1 are involved in multiple processes. In order to test 

whether the double mutant’s growth deficit is caused by a mitochondria-specific effect, mtGFP 

expressing single and double mutants were analyzed with regard to mitochondrial morphology and 

mitochondrial inheritance. myo2(LQ) had mitochondria clumped mostly at the mother cell opposite 

to the bud (Figure 25A), which is consistent with previous observations (Förtsch et al., 2011). num1 

mitochondria were also aberrant and their distribution was slightly shifted towards the bud, which is 

in agreement with the literature (Cerveny et al., 2007; Klecker et al., 2013). The myo2(LQ) num1 

double mutants had mitochondrial networks which appeared very large, were distributed over the 

whole mother cell and often absent in the bud (Figure 25A). The inheritance defect of myo2(LQ) is 
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obviously epistatic to the bud-shifted mitochondrial distribution of num1, which is plausible since 

bud-directed movement depends on Myo2. The mitochondrial morphology of the double mutant 

resembles the one of dnm1 cells, in which the interaction of mitochondria with the actin 

cytoskeleton has been prevented either genetically by deletion of MDM20 (Bleazard et al., 1999) or 

chemically by addition of latrunculin A (Cerveny et al., 2001). Since num1 cells have a mitochondrial 

division defect similar to dnm1 and the myo2(LQ) mutation presumably leads to reduced 

attachment of mitochondria to actin, this phenotype might be common in cells with compromised 

mitochondrial fission as well as hampered mitochondria-actin interaction. 

To determine whether the genetic interaction was based on a mitochondrial inheritance defect, it 

was quantified how many buds carried mitochondria in single and double mutants. When bud size 

and therefore cell cycle phase was ignored, almost all buds of WT and num1 contained 

mitochondria, whereas over 40% of buds were devoid of mitochondria in myo2(LQ) and myo2(LQ) 

num1 double mutants (Figure 25B, upper panel). Therefore, deletion of NUM1 does not alleviate 

the mitochondrial inheritance defect in a myo2(LQ) background; indeed, it had no effect at all. Num1 

is present at the bud tip only in large buds (Farkasovsky and Kuntzel, 1995; Heil-Chapdelaine et al., 

2000) and might thus anchor mitochondria not only in the mother but also to the daughter’s cell 

cortex at late cell cycle phases. If this was the case, retrograde transport of mitochondria from the 

daughter into the mother might be enhanced in myo2(LQ) num1 double mutants, since 

mitochondria would not be anchored in the daughter due to absence of Num1. Furthermore, 

retrograde transport would not be readily counteracted by anterograde movement because of the 

myo2(LQ) mutation. Consequently, it can be predicted that large buds are more often devoid of 

mitochondria, which would lead to the observed growth defect in myo2(LQ) num1 double mutants. 

However, no effect on mitochondrial inheritance was observed when large buds were quantified for 

presence of mitochondria (Figure 25B, lower panel). Accordingly, no evidence was found in support 

of the hypothesis that defective mitochondrial inheritance was the origin of the genetic interaction 

between myo2(LQ) and num1.  

In order to address the question of a mitochondria-specific effect more directly, it was tested 

whether restoring anterograde mitochondrial movement by Myo2-Fis1 in the double mutant rescued 

the growth defect. Myo2-Fis1 is a mitochondria-specific Myo2 variant, the CBD of which was 

replaced by the mitochondrial membrane anchor of Fis1 and which restores anterograde 

mitochondrial movement in myo2(LQ) (Förtsch et al., 2011). Overexpression of Myo2-Fis1 leads to 

accumulation of mitochondria in the bud (Förtsch et al., 2011), which is toxic in num1 since 

mitochondria are not retained in the mother and are completely transferred into the bud (Klecker et 

al., 2013), leading to the mother cell’s death. This would supposedly also be the case in myo2(LQ) 

num1 double mutants and therefore myo2-fis1 was put under control of a galactose-inducible 

promoter and double mutants carrying either an empty vector or a myo2-fis1 expression plasmid 

were plated on media with different concentrations of glucose, which represses the myo2-fis1 

expression, and galactose, which induces the expression. 
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Figure 25. Phenotypic characterization of myo2(LQ) num1 mutants. (A) Cells expressing mtGFP were 

cultured in glucose-containing synthetic complete medium to logarithmic growth and analyzed by fluorescence 

microscopy. Representative images are show. Bar, 5 µm. (B) Cells expressing mtGFP were prepared as in (A) 

and the percentage of buds irrespective of bud size (upper panel) and the percentage of large buds (lower panel) 

containing mitochondria in at least 100 cells were determined. Values represent the mean of triplicate 

experiments + SD. (C) Cells expressing myo2-fis1 from a galactose-inducible promoter or carrying a vector 

control were adjusted to the same optical density, diluted in serial 1:10 steps and spotted on different growth 

media (SCD, upper panel; SCGal + 2% glucose, second panel; SCGal + 1.5% glucose, third panel; SCGal + 1% 

glucose, fourth panel; SCGal + 0.5% glucose, fifth panel). For determination of the percentage of buds with 

mitochondria, cells were grown in the corresponding liquid media to logarithmic growth and scored for buds with 

mitochondria in at least 100 cells. Values represent the mean of triplicate experiments ± SD. (D) Cells were grown 

in glucose-containing rich medium to logarithmic growth, fixed, stained with DAPI and analyzed by fluorescence 

microscopy. Representative images are shown. Arrows indicate cells with more than one nucleus. Bar, 5 µm. 

Cells with at least two nuclei were scored in at least 100 cells per strain. Data represent the mean of triplicate 

experiments ± SD. 
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Low expression of myo2-fis1 did not lead to an improved growth of the double mutant, whereas high 

expression was toxic compared to the vector control as expected (Figure 25C). Quantification of buds 

with mitochondria showed that the double mutant’s inheritance defect was indeed restored with 

increasing expression of myo2-fis1 (Figure 25C). However, this did not result in improved growth, 

indicating that the growth deficit is not caused by the inheritance defect. The fact that inheritance 

was rescued already under conditions, which should repress Myo2-Fis1 expression, might be caused 

by a leakiness of the GAL promoter. The toxic effect of high Myo2-Fis1 concentrations was likely due 

to the transport of all mitochondria into the bud. In sum, no evidence favoring the hypothesis of a 

mitochondria-specific defect in myo2(LQ) num1 double mutants could be obtained.  

Num1 and Myo2 are both involved in nuclear migration. Num1 serves as an anchor for dynein, which 

drives the mitotic spindle through the bud neck (Bloom, 2001; Farkasovsky and Kuntzel, 2001), and 

Myo2 orients the spindle towards the bud, serving as a molecular hinge between cytoplasmic 

microtubules, Bim1 and Kar9 on the one side and actin cables on the other side (Hwang et al., 2003). 

Thus, it appears plausible that myo2(LQ) num1 double mutants suffer from a severe nuclear 

migration defect. In order to test this idea, nuclei were stained with DAPI and the presence of 

multiple nuclei within one cell was quantified. WT and myo2(LQ) cells always showed only one 

nucleus per cell, whereas about one tenth of num1 cells contained more than one nucleus (Figure 

25D). This fraction is increased more than twofold in double mutants, which is an unexpectedly high 

value compared to single mutants, demonstrating that combination of the two mutations results in a 

strong nuclear migration defect. It has been shown that the amino acid substitution L1301P of 

myo2(LQ) results in Myo2’s inability to bind Kar9 (Eves et al., 2012) and therefore to bridge 

microtubules with the actin network. Consistently, myo2(LQ) reproducibly showed negative genetic 

interactions with arp1, dyn1, ldb18, bud6, jnm1, ase1, kip2, and nip100, which lack gene 

products that are mostly members of the yeast dynactin complex and that are all involved in 

establishment or orientation of the mitotic spindle.  

In sum, a mitochondria-specific effect is not likely to be the cause for the growth defect in myo2(LQ) 

num1 double mutants, but this defect is reasonably due to disturbed nuclear migration. This 

highlights that screening with myo2(LQ) does not exclusively produce mitochondria-related hits and 

emphasizes the necessity to determine the origin of a genetic interaction when SGA is performed 

with query genes that are undoubtedly involved in more than one process.  

 

Mutants with disturbed mitochondrial dynamics genetically interact with 

myo2(LQ) 

The mutants fzo1, mgm1 and ugo1 had mean genetic interaction scores – calculated from the 

two screening replicates – of -0.65, -0.48 and -0.41, respectively, indicating that these genes interact 

negatively with myo2(LQ). These strains lack genes necessary for the fusion of mitochondria 

(reviewed in Westermann, 2010). To confirm the interaction, myo2(LQ) was crossed with fzo1, 

mgm1 and ugo1. After sporulation, tetrads were dissected on rich medium and genotypes were 
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determined. No double mutant was obtained in either case (Figure 26A), which demonstrates that 

combining myo2(LQ) with mutations leading to blocked mitochondrial fusion is synthetic lethal. 

Thereby, the screening results were confirmed.  

Mitochondrial morphology is balanced by fusion and fission events. If blocking fusion leads to 

lethality in a myo2(LQ) background, obstructing the antagonistic pathway of fission might result in 

the opposite effect, i.e., a positive genetic interaction. To test this idea, myo2(LQ) was crossed with 

dnm1 and tetrads were dissected after sporulation. All spores were able to grow and colonies of 

double mutants appeared larger than myo2(LQ) colonies (Figure 26A). Quantification revealed that 

WT and dnm1 grew similarly well, while myo2(LQ) had a growth defect (Figure 26B). The calculated 

fitness of the double mutant almost equals the myo2(LQ) single mutant’s fitness. However, the 

double mutants had colony sizes nearly as large as the WT and differed significantly from myo2(LQ) 

(Figure 26B). DNM1 deletion therefore alleviates the compromised growth of myo2(LQ), which 

represents a positive genetic interaction as predicted.   

 

Figure 26. Genetic interactions of mitochondrial fusion and division components with myo2(LQ). (A) 

myo2(LQ) cells were crossed with the indicated strains, sporulated and tetrads were dissected on glucose-

containing rich medium. After 3 days of incubation the genotypes were determined by plating the cells on medium 

lacking uracil and on medium containing geneticin. (B) Quantification of fitness. Colony size was determined after 

tetrad dissection and normalized to WT. Values represent the mean of at least 14 colonies per strain + SD. 

Asterisks indicate statistical significance (* p > 5%; ** p > 0,5%; n. s., not significant; two-tailed Student’s t-test). 

The red line marks the expected fitness of the double mutant calculated by the product of the two single mutants’ 

fitness. (C) Strains were adjusted to the same optical density, diluted in serial 1:10 steps and spotted on glucose-

containing rich medium. Plates were incubated at 30°C and 37°C. 
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If the genetic interactions of myo2(LQ) with components of mitochondrial fusion were caused by a 

compromised fusion activity itself, the synthetic lethality should not be rescued by additional 

deletion of DNM1. In myo2(LQ) fzo1 dnm1 triple mutants, mitochondria are still not able to fuse, 

but can be expected to be static like in fzo1 dnm1 double mutants (Sesaki and Jensen, 1999). If, 

however, the effect is caused by the fragmented mitochondrial morphology in fzo1, additional 

deletion of DNM1 should rescue the cells, since fzo1 dnm1 double mutants have a regularly 

shaped mitochondrial network (Sesaki and Jensen, 1999). In order to discriminate between the two 

possibilities, myo2(LQ) was crossed with a fzo1 dnm1 double mutant and tetrads were dissected 

after sporulation. Apart from myo2(LQ) fzo1 cells, all possible combinations of mutations could be 

obtained. A drop dilution assay revealed that myo2(LQ) dnm1 cells grew better than myo2(LQ) as 

already expected (Figure 26C). But most importantly, fzo1 dnm1 myo2(LQ) triple mutants were 

viable. They grew slightly less well than myo2(LQ), but this is possibly due to the fact that fzo1 

dnm1 double mutants grew also slightly worse than WT. This result suggests that the synthetic 

lethality between myo2(LQ) and fusion components is not caused by the loss of mitochondrial fusion 

activity but by the abnormal, fragmented mitochondrial morphology, which can be rescued by DNM1 

deletion.        

 

Dnm1 depletion alleviates the mitochondrial inheritance defect of myo2(LQ) 

Since DNM1 deletion rescues the growth deficit of myo2(LQ) cells, it was tested whether 

mitochondrial inheritance was simultaneously restored. Single and double mutants expressing 

mtGFP were therefore analyzed with regard to mitochondrial morphology and inheritance. While 

dnm1 cells had the characteristic mitochondrial nets, which can be seen at one side of the cell, 

myo2(LQ) cells exhibited an abnormal mitochondrial morphology and buds devoid of mitochondria 

(Figure 27A). In myo2(LQ) dnm1 double mutants, however, mitochondria were organized in giant 

nets distributed all over the mother cell’s cortex. Like in myo2(LQ) num1 double mutants, this 

phenotype appears typical for mitochondrial fission defective mutants with compromised 

mitochondria-actin association (Bleazard et al., 1999; Cerveny et al., 2001).   

Quantification of buds with mitochondria showed that myo2(LQ) dnm1 double mutants have 

significantly more buds containing mitochondria than in myo2(LQ) single mutants (Figure 27B). This 

demonstrates that blocking mitochondrial division relieves the mitochondrial inheritance defect of 

myo2(LQ).  
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Figure 27. Deletion of DNM1 in a myo2(LQ) background alleviates the transport defect. (A) Cells expressing 

mtGFP were cultured in glucose-containing synthetic complete medium to logarithmic growth and analyzed by 

fluorescence microscopy. Representative images are shown. Arrows indicate mitochondria in the buds of 

myo2(LQ) dnm1 cells. Bar, 5 µm. (B) Cells were prepared as in (A) and at least 100 medium-sized buds were 

scored for presence of mitochondria. Values represent the mean percentages + SD from triplicate experiments. 

Asterisks indicate statistical significance (** p > 0.5%; two-tailed Student’s t-test). 

 

Mitochondrial inheritance is blocked in myo2(LQ) fzo1 mutants  

Since dnm1 and myo2(LQ) show a positive genetic interaction in regard to both growth and 

mitochondrial inheritance, it was tested whether growth and inheritance also correlate in the case of 

myo2(LQ) and fzo1, i.e., whether myo2(LQ) fzo1 double mutants have a severe inheritance defect. 

To circumvent the drawback of myo2(LQ) fzo1 mutants being inviable, a temperature-sensitive fzo1 

allele, fzo1-1, was used (Hermann et al., 1998). This allele has three amino acid substitutions (K538I, 

N543I and P553Q) and leads to fragmentation of the mitochondrial network and the inability to grow 

on non-fermentable carbon sources at 37°C.  

myo2(LQ) cells expressing mtGFP were mated with fzo1 cells complemented with a plasmid coding 

for either FZO1 or fzo1-1 under control of its endogenous promoter and myo2(LQ) FZO1 or fzo1-1 

double mutants were obtained by tetrad dissection. A drop dilution assay showed that myo2(LQ) 

FZO1 mutants are viable and grow well (Figure 28A), demonstrating that the observed growth defect 

can be prevented by plasmid-borne Fzo1, is specific for the FZO1 deletion and not caused by a 

second site mutation. myo2(LQ) fzo1-1 mutants grew already poorly at 25°C, which shows that the 



Results 

 

61 
 

fzo1-1 allele cannot completely complement the loss of wild type FZO1 and therefore behaves as 

described (Hermann et al., 1998). At 37°C, however, the myo2(LQ) fzo1-1 double mutant is almost 

dead and confirms the genetic interaction between myo2(LQ) and fzo1. Accordingly, the strains are 

suitable for further characterization. 

 

Figure 28. Mutation of FZO1 enhances the mitochondrial inheritance defect in myo2(LQ) cells. (A) Strains 

were adjusted to the same optical density, diluted in serial 1:10 steps and spotted on glucose-containing selective 

medium. Plates were incubated at 25°C and 37°C. (B) Cells expressing mtGFP were grown to logarithmic growth 

at 25°C and stained with calcofluor. Cultures were splitted in half and either incubated for 1,5 h at 25°C or 37°C. 

Representative images are shown. The outlines of cells are indicated with dashed lines. Bar, 5 µm. (C) Cells from 

(B) were fixed with 3.7% formaldehyde and at least 100 buds (not stained with calcofluor) per strain were scored 

for presence of mitochondria. Data represent the mean values of triplicate experiments + SD.   

Cells were then cultured at the permissive temperature of 25°C. Cells were pulsed with the cell wall 

stain calcofluor to allow the identification of mother cells. Eventually, one half of the culture was 

incubated at permissive and the other half at restrictive temperature. Cells were allowed to form 

new buds for 1.5 hours and mitochondrial inheritance was analyzed in cells, the mother of which 

showed a calcufluor signal and the bud did not. This staining pattern indicates that the bud was 

formed after the calcofluor pulse and therefore after the temperature shift. Microscopic analysis and 

quantification revealed that the MYO2 fzo1-1 mutant has a slight mitochondrial inheritance defect at 

restrictive temperature (Figure 28B and C). The myo2(LQ) FZO1 mutant had a substantial inheritance 
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defect already at 25°C, which was increased at 37°C and which is consistent with published 

observations (Förtsch et al., 2011). The myo2(LQ) fzo1-1 mutant exhibited a pronounced defect 

already at permissive temperature, which is augmented at 37°C. At this temperature, almost no buds 

received mitochondria. Since mitochondrial inheritance is an essential process, this defect explains 

the observed synthetic lethality and shows that the maintenance of the mitochondrial network is 

vital when mitochondrial transport is hampered.  

 

Fragmentation of mitochondria leads to impaired mitochondrial inheritance 

Since mitochondria are not inherited by the bud in myo2(LQ) fzo1 mutants, it was considered that 

fragmentation of mitochondria results in a mitochondrial inheritance defect per se, even if the 

transport machinery is not hampered. To this end, mutants lacking the mitochondrial fusion 

machinery were scored for mitochondrial inheritance. A fzo1 dnm1 double mutant served as a 

control, in which mitochondria are also unable to fuse, but form a wild type-like network (Sesaki and 

Jensen, 1999). The mip1 mutant lacking the mitochondrial DNA polymerase and consequently 

mtDNA was also included in the assay, given that mitochondrial fusion mutants cannot maintain their 

mitochondrial genome (Westermann, 2010).  

Whilst wild type cells almost always managed to inherit mitochondria to the bud, about 20% of buds 

in fusion mutants were devoid of mitochondria (Figure 29A and B). This inheritance defect was 

statistically significant in fzo1 and mgm1, but not in ugo1. The defect was not caused by the 

absence of mtDNA in the fusion mutants since the mip1 mutant showed no inheritance deficit. 

Apparently, the defect is based on the fragmented mitochondrial morphology in fusion mutants 

because prevention of mitochondrial fission by deletion of DNM1 in a fzo1 background restored 

mitochondrial inheritance. 

Thus, mutants with fragmented mitochondria have problems in inheriting their mitochondria to the 

bud. This confirms the observation that fzo1-1 mutants exhibit an inheritance defect under restrictive 

conditions (Figure 28C). Hence, the major objective of the myo2(LQ) SGA screen to uncover mutants 

with previously unknown mitochondrial inheritance defects was accomplished by the identification 

of mitochondrial fusion as a novel pathway contributing to the partitioning of mitochondria. 
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Figure 29. Analysis of mitochondrial inheritance in mitochondrial fusion mutants. (A) Strains expressing 

mtGFP were cultured to logarithmic growth; cells were pulsed with calcofluor and further incubated for 1.5 h to 

allow formation of new buds. Representative images are shown. The outlines of cells are indicated with dashed 

lines. Bar, 5 µm. (B) Cells were prepared as in (A) and at least 100 buds (not stained with calcofluor) per strain 

were scored for presence of mitochondria. Data represent the mean values of triplicate experiments + SD. 

Asterisks indicate statistical significance in comparison to WT (* p > 5%; n. s., not significant; two-tailed Student’s 

t-test). 
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Discussion and outlook 

The role of mitochondrial ER contacts in mitophagy 

ERMES-mediated mitophagophore biogenesis  

Screening mutants with compromised respiratory growth revealed that mutants lacking the 

mitochondrial ER tether ERMES fail to degrade their mitochondria by autophagy. Several lines of 

evidence suggest that ERMES has a pivotal role during growth of the phagophore, which occurs after 

initiation of mitophagophore growth at the phagophore assembly site (PAS). Assembly of the 

vacuole-isolation membrane contact site (VICS) before phagophore growth as marked by Atg14-GFP 

on mitochondria is not disturbed when ERMES is absent (Figure 18B). Moreover, Atg8 and Atg32 still 

colocalize in ERMES mutants (Figure 17B), indicating that mitochondrial recruitment of the core 

autophagic machinery works. Obvious defects occur only at later steps. The phagophore marker 

Atg5-GFP is present in several dots per mitochondrion in mmm1 (Figure 18C), suggesting that 

formation of excess mitophagophores is induced in cells missing ERMES. Furthermore, the staining 

pattern of Atg9-GFP marking the edges of the phagophore (Suzuki et al., 2013) is massively changed 

in mmm1 (Figure 20B), which confirms that phagophore biogenesis is affected.  

In the wild type situation, the ERMES component Mmm1 and the phagophore constituent Atg8 

interact in vivo on mitochondria (Figure 16). The fact that Mmm1-Atg8 interaction is not 

compromised in cells incapable of Atg8 lipidation indicates that Mmm1 interacts with Atg8 prior to 

its coupling to PE, which is essential for Atg8 accumulation at the PAS (Suzuki et al., 2001), further 

corroborating the idea that ERMES is specifically involved in phagophore biogenesis. Expression of 

the artificial ER-mitochondria tether chiMERA (Kornmann et al., 2009) rescues the Atg5 phenotype 

and the mitophagy defect (Figure 14 and Figure 19). This can also be achieved by expression of a 

mitochondria-specific variant of the peroxisomal ER tether protein Pex3 called Om45-Pex3 (Figure 

21), which in sum demonstrates that loss of spatial proximity between mitochondria and ER is the 

main reason for the mitophagy defect.  

Why is there a need for the ER at the sites of mitophagophore biogenesis? An obvious possibility is 

that the ER supplies lipids to the growing phagophore. The origin of the autophagosomal membrane 

has been discussed for a long time (Tooze and Yoshimori, 2010; Mari et al., 2011; Tooze, 2013). 

However, there is growing evidence for an involvement of the ER in this process in yeast. Blocking 

early steps of the secretory pathway results in defective autophagy (Ishihara et al., 2001; Reggiori et 

al., 2004). Moreover, ER exit sites (ERES), where secretory vesicles leave the ER, are present at the 

PAS and autophagosome formation relies on the functionality of these sites (Graef et al., 2013; 

Suzuki et al., 2013).  

In sum, this points to a scenario in which ERMES tethers the mitochondrion destined for degradation, 

the phagophore expansion factor Atg8 and the ER in order to facilitate lipid flux from the ER to the 

phagophore (Figure 30). Biogenesis of surplus mitophagophores in ERMES mutants may therefore be 



Discussion and outlook 

 

65 
 

induced since mitophagophores cannot mature in the absence of ERMES presumably due to 

insufficient lipid supply. Consequently, mitophagophore biogenesis is induced at multiple sites on 

one mitochondrion. Since Mmm1 interacts with non-lipidated Atg8, ERMES may also be involved in 

the lipidation of Atg8 at mitochondria or in the insertion of Atg8 into the mitophagophore.  

 

Figure 30. Model of ERMES-mediated mitophagophore biogenesis. ERMES facilitates spatial proximity 

between the phagophore assembly site (PAS), which is marked by Atg9 (9) and Atg14 (14), the phagophore 

marked by Atg5 and Atg8, and the ER. The putative lipid flux from the ER to ERMES to the phagophore is 

indicated by a dashed line. See text for details.  

This model is consistent with results from previous studies that highlighted the importance of 

mitochondrial ER contacts for starvation-induced autophagosome biogenesis in mammals. Hailey et 

al. (2010) have proposed that mitochondria supply membrane material for autophagosomes. In this 

scenario, lipids are transported across Mfn2-mediated ER-mitochondria contacts and are then 

transferred to the growing autophagosome. However, it has been shown that autophagosomes arise 

from specialized subdomains of the ER, called omegasomes, in mammalian cells (Axe et al., 2008; 

Hayashi-Nishino et al., 2009). These conflicting results have been reconciled by the observation that 

the ER-resident SNARE protein syntaxin 17 (STX17) recruits ATG14 to the mitochondria-associated 

membranes (MAM), the contact sites between mitochondria and the ER in mammalian cells 

(Hamasaki et al., 2013). Omegasomes marked by the protein DFCP1 also relocalize to the MAM 

under starvation, which depends on Mfn2 and PACS-2, both implicated in ER-mitochondria crosstalk 

(Simmen et al., 2005; de Brito and Scorrano, 2008). Furthermore, it has been shown that 

autophagosomes form at contacts between mitochondria and ER-derived omegasomes (Hamasaki et 

al., 2013), which does not exclude the possibility that mitochondria directly contribute lipids to the 

growing autophagosome as suggested by Hailey et al. (2010).  

However, these results do not shed light on the process of mitophagy, since in mammalian cells 

mitochondria elongate under starvation conditions and hence are saved from degradation (Gomes et 

al., 2011). Instead, mitochondria are removed from the cell by mitophagy when they are damaged. 



Discussion and outlook 

 

66 
 

This damage can be triggered for example by chemical uncoupling of the electron transport chain 

(Narendra et al., 2008) or by light-induced activation of the mitochondria-targeted fluorescence 

protein KillerRed, which can be triggered to produce ROS (Bulina et al., 2006; Heo et al., 2013). Using 

the latter assay revealed that damaged mitochondrial pieces are removed from the network and 

degraded by mitophagy (Yang and Yang, 2013). Mitophagosomes form at sites that overlap with 

omegasomes marked by DFCP1. However, whether maintenance of mitochondrial ER contacts is 

functionally important for this process remains to be shown.  

In conclusion, the results provided by this study demonstrate that in yeast mitochondrial ER contacts 

are not only the sites of mitophagosome biogenesis but that they have a vital function in mitophagy, 

presumably by ensuring a sufficient lipid supply from the ER to the mitophagophore. Given the fact 

that autophagosomes and mitophagosomes in mammalian cells also form at contacts between ER 

and mitochondria and that these contacts are functionally important at least in the case of general 

autophagy (Hailey et al., 2010; Hamasaki et al., 2013), it can be concluded that these contacts have 

retained their importance for this process during evolution.  

 

ER-assisted mitochondrial division and mitophagy 

During the mitochondrial life cycle, mitochondria frequently fuse and divide. Division events 

sometimes produce daughter units with decreased and increased membrane potential, respectively 

(Twig et al., 2008). Mitochondria with reduced membrane potential are less likely to refuse with the 

mitochondrial network but are prone to degradation by mitophagy, which ultimately results in the 

maintenance of a healthy mitochondrial population. Blocking mitochondrial fission consequently 

reduces mitophagy and results in oxidized proteins and less respiratory capacity, highlighting the 

quality control aspect of mitophagy (Twig et al., 2008). 

Recent studies revealed the importance of the ER in mitochondrial division. Dnm1 divides 

mitochondria by forming spirals around them. These spirals have a diameter of about 100 nm, which 

is too thin for a mitochondrion with a diameter of about 300 nm (Ingerman et al., 2005). 

Interestingly, constriction of mitochondrial tubules precedes recruitment of Dnm1 to these 

constrictions and even occurs in the absence of Dnm1 (Legesse-Miller et al., 2003). Friedman et al. 

(2011) have shown that the ER enwraps mitochondria in yeast and mammalian cells and that 

mitochondrial division ensues at these sites, which fit the diameter of Dnm1 spirals in vitro. This 

process has been termed ER-assisted mitochondrial division (ERMD) and was found to be important 

for the segregation of mitochondrial nucleoids to both mitochondrial daughter units (Murley et al., 

2013; Friedman and Nunnari, 2014). Notably, the ER also determines the fission sites on endosomes 

in mammalian cells, suggesting that the ER is a common factor in organelle dynamics (Rowland et al., 

2014). 

Since compromised mitochondrial fission results in reduced mitophagy and fission requires the ER to 

surround mitochondria, it appears reasonable to assume that mutants lacking mitochondrial ER 

contacts have fission and consequently mitophagy defects. However, two lines of evidence suggest 
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that hampered mitochondrial fission is not the reason for the mitophagy defect in ERMES mutants. 

First, dnm1 ermes double mutants show the same mitophagy rate as the ERMES single mutants 

(Figure 13). In other words, interfering with mitochondrial division in an ERMES mutant background 

does not enhance the mitophagy defect. Second, loss of ERMES leads to formation of excess 

mitophagophores as marked by Atg5-GFP (Figure 18C and D). This very pronounced phenotype 

cannot be seen when mitochondrial fission is absent, which demonstrates that a putative fission 

defect in ERMES mutants is not the cause of the mitophagy defect.  

The fact that in this study dnm1 mutants did not have a mitophagy defect is in contrast to the 

results from Mao et al. (2013), who observed a mild deficiency, but it is in good agreement with 

observations from Mendl et al. (2011), who found no mitophagy defect in these mutants. Mao et al. 

(2013) propose that the diverging results can be explained as a result of different mitophagy 

induction protocols. Mao et al. (2013) starved the strains for nitrogen after culturing them on non-

fermentable carbon sources, which is thought to be a very strong stimulus. Mendl et al. (2011) 

cultured the strains on non-fermentable carbon sources and induced mitophagy by addition of 

rapamycin, which mimics starvation but is perceived as a milder stimulus. The induction used here is 

not as strong as with non-fermentable carbon sources and nitrogen starvation (Figure 7C). In sum, 

this suggests that Dnm1-mediated division is important for efficient mitophagy when the stimulus is 

very strong and degradation of mitochondria has to be quick.  

Mitophagy-specific fission is thought to act after mitophagy induction when the autophagy adaptor 

protein Atg11 recruits Dnm1 to mitochondria (Mao et al., 2013). It has been observed that ERMES 

subunits colocalize with these sites and therefore it has been proposed that ERMES functions during 

the process of mitophagy-specific division (Mao et al., 2013). Even if the main reason for the 

mitophagy defect in ERMES mutants is not the fission defect but the defective mitophagophore 

biogenesis, the results presented here do not exclude a role of ERMES in mitophagy-specific fission. It 

is plausible that ERMES is present at mitochondria destined for degradation, that ERMES supports 

mitophagy-specific fission and functions in the growth of the mitophagophore (Figure 31).  

 

Figure 31. Involvement of ERMES in mitophagy-specific fission and mitophagophore biogenesis. See text 

for details. PAS, phagophore assembly site.  
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This scenario points to several interesting questions. First, what happens to ERMES after completion 

of mitophagy-specific fission? Does ERMES remain associated with the mitochondrial network and is 

available for another round of mitophagy-specific division, thereby isolating more mitochondrial 

pieces, which are then accessible for mitophagy?  

Second, if ERMES remains on the mitochondrion separated for degradation, the contacts between 

ER-resident Mmm1 and the mitochondrial components should be resolved in order to not degrade 

part of the ER. It is currently unclear how this can be done. A candidate for this process is Gem1, 

which is a subunit of ERMES and acts as a negative regulator (Kornmann et al., 2011; Stroud et al., 

2011; Murley et al., 2013).  

The third fascinating question concerns the fate of mitochondrial DNA. Prior to ERMD, mitochondrial 

nucleoids are segregated to the daughter units (Murley et al., 2013). What happens to mtDNA during 

mitophagy-specific fission? One possibility is that mtDNA is spared from degradation and remains 

within the mitochondrial network. Alternatively, degrading mtDNA by mitophagy provides a plausible 

mechanism to adjust mtDNA content to mitochondrial mass, which declines during mitophagy. We 

already know from hepatocytes that mitochondrial fission and sequestration in autophagosomes are 

coordinated and that mtDNA is degraded alongside with mitochondria (Kim and Lemasters, 2011). 

Furthermore, it is tempting to speculate that mitophagy offers a mechanism for cells to get rid of 

defective mtDNA, which causes various diseases (Wallace, 2005, 2010).  

 

ER association as a prerequisite for organellophagy 

The autophagic degradation of different organelles, called organellophagy, shares common features 

like organelle-specific receptors, which interact with Atg8 and recruit the core autophagic machinery, 

thereby facilitating the sequestration of the organelle by an autophagosome and subsequent 

degradation (reviewed in Okamoto, 2014). It is an interesting question whether an association of the 

ER with the organelle destined for degradation is necessary for organellophagy in general like in 

mitophagy.  

Pexophagy, the autophagic degradation of peroxisomes, together with mitophagy is the most 

intensively studied organellophagy pathway. Although mitochondria and peroxisomes do not share a 

common evolutionary heritage, they have common traits. Both organelles are engaged in -oxidation 

of fatty acids and in detoxification of ROS. It is currently unclear whether direct contact sites 

between the two organelles exist, however, peroxisomes from rat liver cells co-sediment with 

mitochondria, suggesting that such contacts are indeed established (Islinger et al., 2006). Moreover, 

peroxisomes and mitochondria move in association with each other in fission yeast (Jourdain et al., 

2008) and were found to be in close proximity by electron microscopy in baker’s yeast (Rosenberger 

et al., 2009). Both organelles use the same signaling pathway to the nucleus in order to induce 

expression of mitochondrial or peroxisomal genes (Chelstowska and Butow, 1995) and, strikingly, 

fission of mitochondria and peroxisomes both rely on the same machinery in yeast and mammals 

(Schrader et al., 2012). This process is important for the degradation of both organelles when 
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organellophagy-specific division is initiated by Atg11-mediated recruitment of Dnm1 (Mao et al., 

2013; Mao et al., 2014). Furthermore, the mitophagy-specific protein Atg32 can induce pexophagy 

when targeted to peroxisomes, and relocalization of the pexophagy machinery to mitochondria is 

sufficient to complement the absence of the mitophagy receptor Atg32 (Kondo-Okamoto et al., 2012; 

Motley et al., 2012). In addition, this relocalization rescues the mitophagophore defect in ERMES 

mutants presumably by restoring the contacts to the ER (Figure 21). These observations indicate that 

mitophagy and pexophagy share many common hallmarks. 

Interestingly, mitochondria and peroxisomes both establish contacts with the ER, which are 

important for the organelles’ behavior (Kornmann et al., 2009; Knoblach et al., 2013). While ERMES 

tethers mitochondria and ER, peroxisomal attachment to the ER relies on Pex3 anchored on 

peroxisomes and Pex3 residing in the ER membrane (Knoblach et al., 2013). Both are bridged by Inp1 

acting as a molecular hinge. The absence of Pex3 results in defective pexophagy as expected, if 

peroxisomal ER contacts are supposed to be important for the degradation of peroxisomes, but this 

protein also recruits Atg36, which in turn recruits Atg8 and Atg11 during pexophagy (Motley et al., 

2012). However, Inp1 was found to be dispensable for pexophagy (Motley et al., 2012), suggesting 

that these contacts are not essential for this process. However, no data demonstrating this has been 

presented.  

Yet, peroxisomes destined for degradation were frequently found in close vicinity to mitochondria 

(Mao et al., 2014). Hence, the degradation of both, mitochondria and peroxisomes, may be coupled 

and initiated at the same sites within a cell. It is not clear whether peroxisomes and mitochondria 

share contacts with each other or if ERMES is in close proximity with peroxisomes during their 

degradation. Interestingly, it has been reported that during normal growth some peroxisomes are 

indeed close to mitochondrial ER contacts (Cohen et al., 2014), which strengthens the idea that 

pexophagy is executed at junctions between ER and mitochondria. It has not been tested yet, if 

ERMES is important for pexophagy, which would suggest that growth of phagophores sequestering 

peroxisomes relies on mitochondrial ER contacts. Furthermore, it is unknown whether the ER is 

involved in peroxisomal division as it is in the case of mitochondria. But Inp1 bridging ER and 

peroxisomes was proposed to be involved in peroxisomal fission, since it interacts with Vps1 

(Fagarasanu et al., 2005), which in turn is redundant with Dnm1 in peroxisomal fission (Kuravi et al., 

2006; Fagarasanu et al., 2010), suggesting that peroxisomal division happens at peroxisomal ER 

contacts. Interestingly, Vps1 was found to be important during pexophagy and to interact with Atg11 

and Atg36 (Mao et al., 2014), which are part of the pexophagy machinery.  

It will be interesting to see whether degradation of peroxisomes and mitochondria is coupled and if 

this degradation occurs at mitochondrial ER contacts. Moreover, it is of general interest whether 

fission of peroxisomes relies on contacts with the ER. Thus, the ER might have a general role in 

organelle dynamics and organellophagy. 
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Genetic interactions of myo2(LQ) 

Organelle specificity of myo2(LQ) 

The class V myosin Myo2 transports multiple cargos like peroxisomes, vacuoles, secretory vesicles, 

microtubule plus ends, Golgi cisternae, lipid droplets and mitochondria (reviewed in Pruyne et al., 

2004; Knoblach and Rachubinski, 2015) and therefore has to cooperate with a variety of different 

adaptor molecules. It is plausible that MYO2 genetically interacts with many different genes involved 

in the transport of diverse structures. In this study, a myo2 mutant (Q1233R and L1301P) with a 

mitochondrial inheritance defect was used as a query strain and crossed to a yeast deletion library in 

order to screen for genetic interactions. About 200 reproducible interactions were detected. 

However, the myo2(LQ) mutant does not only have a mitochondrial but also a vacuolar inheritance 

defect, since both mutations lead to an inability of Myo2 to interact with the mitochondrial Myo2 

interactor Mmr1 and the vacuolar Myo2 receptor Vac17 (Catlett et al., 2000; Förtsch et al., 2011; 

Eves et al., 2012). Moreover, the L1301P mutation of myo2(LQ) results in defective binding of Kar9 

(Eves et al., 2012), which mediates the interaction of Myo2 with microtubule plus ends and is 

important for nuclear migration (Hwang et al., 2003). It is unlikely that myo2(LQ) has an effect on the 

transport of secretory vesicles or peroxisomes, as the two mutated residues do not lie in the 

corresponding binding regions (Pashkova et al., 2006; Fagarasanu et al., 2009). If the transport of 

Golgi structures is affected, has not been tested yet. 

The transport and inheritance of vacuoles is not an essential process because vacuoles can be formed 

de novo by an unknown mechanism (Weisman, 2006). Additional mutations, which are blocking 

vacuolar inheritance completely in myo2(LQ) cells, are not expected to be detected by screening for 

unexpected growth behaviors in an SGA approach. The daughter cells lacking vacuoles will just 

rebuild vacuoles and multiply. Nuclear migration and mitochondrial inheritance are important for 

normal growth and are at least in part mediated by Myo2. Consequently, the genetic interactome of 

myo2(LQ) is expected to reveal genes involved in the inheritance of the nucleus and of mitochondria. 

This was confirmed by the observation that most functional enrichments were found for the 

processes related to mitochondria and to the nucleus (Figure 23E). Moreover, the negative genetic 

interaction of myo2(LQ) and NUM1 is caused by a strong disturbance of nuclear migration (Figure 

25). This raises the question of how to filter out mitochondria-specific hits. A promising possibility is 

to test whether the expression of myo2-fis1 rescues the growth defects of the negative interactors. 

Myo2-Fis1 is only able to restore the mitochondrial inheritance defect in the myo2(LQ) mutant, but 

not the defects of other organelles, as Myo2-Fis1 resides in the MOM (Förtsch et al., 2011). It has 

thus been shown that the synthetic lethality of myo2(LQ) ypt11 double mutants is based on a 

complete block of mitochondrial inheritance and that viability can be reinstated by myo2-fis1 

expression (Förtsch et al., 2011). Hence, a sublibrary containing all negative interactors can be 

crossed with a myo2(LQ) query strain carrying either an empty vector or a plasmid coding for myo2-

fis1, and double mutants can be obtained by SGA technology. The double mutants carrying the 

empty vector are expected to exhibit growth defects as in the original screen, while mitochondria-
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specific interactors should be rescued by myo2-fis1 expression and the corresponding colonies 

should appear bigger than the ones with the control plasmid.  

In contrast to the double mutants of negative interactors, which are barely growing or even inviable, 

mitochondrial inheritance can be assessed more directly in double mutants of positive interactors, 

which are growing better than expected. A sublibrary of positive interactors (yfgX) can be crossed 

with a MYO2 and a myo2(LQ) query strain each carrying a plasmid coding for mtGFP. Double mutants 

can then be constructed by SGA technology and the fraction of buds with mitochondria can be 

quantified by fluorescence microscopy. The expectation is that in the wild type situation almost 100% 

of the buds have mitochondria in contrast to about 50% in the myo2(LQ) single mutant. If the other 

single mutant (yfgX) also would have about 100% of buds containing mitochondria, the calculated 

mitochondrial inheritance of the double mutant (myo2(LQ) yfgX) equals the one in the myo2(LQ) 

single mutant of 50%. If the fraction, however, would be higher than 50% in the double mutant, 

mitochondrial inheritance would be alleviated and the situation would be comparable to myo2(LQ) 

dnm1 double mutants. This double mutant grows surprisingly well and has more buds with 

mitochondria than expected (Figure 27). In double mutants identified by this approach, unexpected 

good growth and mitochondrial inheritance correlate and they are promising candidates for further 

characterization. 

Possibly, these candidate genes code for components which are involved in the retrograde transport 

of mitochondria from the bud into the mother. If these genes are missing in a myo2(LQ) background, 

mitochondrial retrograde transport is expected to be reduced, inheritance of mitochondria to be 

alleviated and ultimately the double mutant is expected to grow better than the myo2(LQ) single 

mutant. If the gene products promote the backwards movement of mitochondria, their 

overexpression should result in a significant fraction of buds devoid of mitochondria in the wild type 

and be toxic in a myo2(LQ) background, since anterograde movement is hampered by the myo2(LQ) 

mutation and is at the same time heavily counteracted by the hyper-activation of retrograde 

transport. Thus, components of the retrograde transport of mitochondria can be identified.  

 

Significance of genetic interactions between components of mitochondrial 

dynamics and myo2(LQ) 

Screening for genetic interactors of myo2(LQ) revealed that mutations blocking mitochondrial fusion 

are synthetic lethal in a myo2(LQ) background (Figure 26). myo2(LQ) cells with the conditional fzo1-1 

allele show an almost complete block of mitochondrial inheritance under restrictive conditions 

(Figure 28), which explains the growth defect. The growth defect is rescued when mitochondrial 

fragmentation by mitochondrial division is prevented (Figure 26C), demonstrating that the fusion 

activity is not essential for myo2(LQ) mutants. Rather, these mutant cells depend on a wild type-like 

mitochondrial morphology. Blockage of mitochondrial division in myo2(LQ) mutant cells with fusion-

competent mitochondria results in enhanced mitochondrial inheritance and augmented growth 

compared to myo2(LQ) single mutants (Figure 26 and Figure 27). Thus, components of two 
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antagonistic pathways, mitochondrial fusion and division, genetically interact with myo2(LQ) in 

divergent ways regarding growth and mitochondrial inheritance. Moreover, the temperature-

sensitive fzo1-1 allele and deletion of mitochondrial fusion components lead to many buds devoid of 

mitochondria in a wild type MYO2 background (Figure 28B, C and Figure 29), indicating that 

fragmentation of mitochondria per se results in compromised inheritance. Notably, this is the first 

study observing an inheritance defect in yeast fusion mutants, although these have been 

characterized for more than 15 years (Hermann et al., 1998; Rapaport et al., 1998). 

The question remains why mitochondrial morphology is important for inheritance. Possibly, a hyper-

connected mitochondrial network alleviates the anterograde movement since much mitochondrial 

mass can be transported into the bud by pulling on a single mitochondrial tip. This would explain the 

effects of the DNM1 knock-out. However, deletion of NUM1, which also results in net-like 

mitochondria (Cerveny et al., 2007), had no effect on mitochondrial inheritance in a myo2(LQ) 

background (Figure 25A and B), suggesting that the hyper-connection of the network alone is not 

sufficient to ease the transport. On the other hand, basal fission activity in num1 cells might be 

strong enough to slightly disconnect the mitochondrial network and thus to obscure the effect.    

In the case of fragmented mitochondria many transport events of single mitochondria are required 

to ensure the inheritance of a large organellar volume. This might already be difficult for cells with a 

functional transport machinery and be further aggravated by compromising the machinery with the 

myo2(LQ) allele. However, it is counterintuitive that smaller mitochondria are harder to transport 

and that no mitochondrion at all is inherited by the bud in the myo2(LQ) fzo1-1 mutant. Smaller 

mitochondria are expected to be the simpler cargo. Accordingly, secretory vesicles are transported 

by Myo2 with 3 µm/s (Schott et al., 2002), whereas the bigger mitochondria move with a velocity of 

clearly below 1 µm/s (Boldogh et al., 2004; Förtsch et al., 2011). One possible explanation for the 

defect is that the density of mitochondrial Myo2 receptors is too low on fragmented mitochondria in 

order to pull them into the bud. If this was the case, overexpression of the two proposed Myo2 

receptors Mmr1 and Ypt11 might rescue the inheritance defect of fusion mutants and the growth 

defect of myo2(LQ) fzo1-1 double mutants. Moreover, the growth defect of myo2(LQ) fzo1-1 double 

mutants may prove valuable as a tool to search for additional mitochondrial Myo2 receptors. A 

screen comprising all yeast ORFs should be able to uncover genes the overexpression of which 

rescues the growth defect. Potentially, this screen can enable the identification of proteins that 

recruit Ypt11, Mmr1 or Myo2 itself to the mitochondrial surface and thereby promote anterograde 

transport.   

Although the effects of mitochondrial dynamics on inheritance have not attracted much attention in 

yeast, it is known that mitochondrial distribution in neurons depends on fusion and fission 

(Hollenbeck and Saxton, 2005). Neurons are an ideal model to study mitochondrial transport since 

mitochondrial biogenesis occurs mainly in the cell body and mitochondria then have to be 

transported into the tips of dendrites and axons (reviewed in Sheng, 2014). These transport 

processes cover distances of up to one meter. Interestingly, there are conflicting results on the issue 

which morphologies are easier to transport. Defects in mitochondrial fusion and division have both 
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been shown to impact on mitochondrial motility and both pathways were demonstrated to be 

necessary for the transport of mitochondria to their destination (Li et al., 2004; Verstreken et al., 

2005). Thus, a balance between fusion and division appears to ensure a mitochondrial morphology 

suitable for neuronal transport, which is highly important for the functionality of neurons. Miro, the 

human homolog of Gem1, connects mitochondria with kinesin and microtubules for mitochondrial 

transport. Remarkably, overexpression of Miro results in interconnection of mitochondria and boosts 

their transport, whereas compromising the functionality of Miro leads to mitochondrial 

fragmentation and less transport activity (summarized in Sheng, 2014), resembling the situation in 

myo2(LQ) cells. There, mitochondrial hyper-connection augments mobility, whilst fragmentation 

hampers transport. Furthermore, Miro directly interacts with the human homolog of Fzo1, Mfn2, and 

knock-down of Mfn2 results in less mitochondrial anterograde and retrograde movement (Misko et 

al., 2010).  

Obviously, mitochondrial dynamics is an important factor for the movement of mitochondria. It is yet 

unclear, which role the dynamics exactly plays. One can speculate that fragmented mitochondria are 

less likely to be inherited to the daughter because this morphology is a hallmark of mitochondria 

with reduced functionality and these mitochondria would be detrimental to the daughter’s health. 

Mitochondria undergo division and fragment in yeast and mammalian cells when they are damaged 

and stressed, for instance with H2O2, and this results in heavily reduced mitochondrial motility in 

yeast (Baker et al., 2014; Zhou et al., 2014). Moreover, yeast cells accumulate fragmented, 

dysfunctional mitochondria concomitantly with replicative age (Scheckhuber et al., 2007; Hughes and 

Gottschling, 2012; Wang et al., 2014). Possibly, mitochondria with declined metabolic capacity adopt 

a shape by fragmentation that is less likely to be transported into the daughter cell, thus providing a 

potential quality control filter in addition to mitophagy. The biogenesis of Mgm1, the MIM 

component required for mitochondrial fusion, offers a putative mechanism, since the processing of 

Mgm1 by the protease Pcp1 depends on ATP (Herlan et al., 2004). Mitochondria with reduced 

oxidative phosphorylation and ATP thus might lack an Mgm1 isoform which is essential for fusion. 

Hence, these mitochondria cannot refuse with the mitochondrial network and are not inherited. In 

future experiments, this hypothesis can be tested by observation of mitochondrial motility via time-

lapse fluorescence microscopy in stressed and aged yeast cells. 
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Materials and methods 

Molecular biology 

Plasmids and primers 

Many of the plasmids used here were already described in Böckler and Westermann (2014). For a full 

list of primers and plasmids see Table 2 and Table 3 below. Standard procedures were used for 

cloning and amplification of plasmids (Green and Sambrook, 2012). PCR was performed using Pfu or 

phusion polymerase (Fermentas, St. Leon-Rot, Germany). For construction of pYX122-ssGFP-HDEL, 

ssGFP-HDEL was amplified using WP1055-ssGFP (Prinz et al., 2000) as a template and 

oligonucleotides WP1055fwdEcoRI and WP1055revXhoI and cloned into EcoRI and XhoI sites of 

pYX122 (R&D Systems, Abingdon, UK). To generate pYES-mtRosella, the BamHI/NotI fragment of 

pAS1NB-CS-RG (Rosado et al., 2008) was cloned into the BamHI/NotI sites of pYES-mtGFP 

(Westermann and Neupert, 2000). The HindIII/XhoI fragment of pYES-mtRosella was ligated into the 

HindIII/XhoI sites of pVT100U-mtGFP (Westermann and Neupert, 2000) to produce pVT100U-

mtRosella. The HindIII/SacI fragment of pVT100U-mtRosella was cloned into the HindIII/SacI sites of 

pBN1001 to generate pBN-mtRosella. Rosella was amplified from pAS1NB-CS-RG with primers 

cytRosellafwdBamHI and cytRosellarevXhoI and cloned into the BamHI/XhoI sites of pRS425-GPD 

resulting in pRS425-GPD-cytRosella. To generate pRS415-ADH-chiMERA and pRS415-TEF-chiMERA, 

the BamHI/XhoI fragment of pRS415-GPD-chiMERA (Kornmann et al., 2009) was cloned into the 

BamHI/XhoI sites of pRS415-ADH and pRS415-TEF (Mumberg et al., 1995), respectively. For cloning of 

pRS316-MMM1, pRS416-MDM12, and pRS416-MDM34, the genes were amplified from genomic 

DNA by using the primers MMM1fwdBamHI, MMM1revstopSpeI, MDM12fwdEcoRI, MDM12revXhoI, 

MDM34fwdHindIII and MDM34revXhoI, respectively. The genes were then cloned into pRS316 or 

pRS416 (Sikorski and Hieter, 1989; Christianson et al., 1992). yEmRFP (ERFP) was amplified from 

yEpGAP-Cherry (Keppler-Ross et al., 2008) using oligonucleotides MMM1eRFPfwd and 

MMM1eRFPrev and cloned into the SacI/SpeI sites of pRS316 to produce pRS316-ERFP. MMM1 with 

its endogenous promoter was then amplified from genomic DNA using the primers MMM1F and 

MMM1R and subsequently ligated into the XhoI/SpeI sites of pRS316-ERFP to produce pRS316-

MMM1-ERFP. pRS415-GFP-ATG8 was generated by ligating the BamHI/XhoI fragment of GFP-

ATG8(414) (Abeliovich et al., 2003) into the BamHI/XhoI sites of pRS415 (Sikorski and Hieter, 1989; 

Christianson et al., 1992). ATG8-N-YN-425ADH was generated by amplifying ATG8  from genomic 

DNA using the primers ATG8fwd and ATG8rev and cloning into the SmaI/XhoI sites of N-YN-425ADH 

(Skarp et al., 2008). MMM1-C-YC-426ADH was produced by amplifying MMM1 from genomic DNA 

using the oligonucleotides MMM1fwd and MMM1revnostop and cloning into the BamHI/ClaI sites of 

C-YC-426ADH (Skarp et al., 2008). pRS415-MET-GFP-ATG32 and pRS415-MET-ERFP-ATG32 were 

generated by amplifying  ATG32 using the primers ATG32fwdApaI and ATG32revXhoI. ATG32 was 

then cloned into the ApaI/XhoI sites of pRS415-MET-GFP-DNM1 and pRS415-MET-ERFP-DNM1, 

respectively. GFP-tagged versions of ATG5, ATG9, and ATG14 were produced by amplifying the genes 
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from genomic DNA using the primers ATG5attBfwd, ATG5attBrev, ATG9attBfwd, ATG9attBrev, 

ATG14attBfwd, and ATG14attBrev, respectively. The genes were then cloned into pAG413-GPD-ccdB-

GFP (Alberti et al., 2007) using the Gateway cloning system (Invitrogen, Carlsbad, CA). A DNA 

fragment coding for the mitochondrial presequence of N. crassa Su9 was amplified from pYES-mtGFP 

using primers GatewaySu9PSpYESmtGFPfwd and GatewaySu9PSpYESmtGFPrev. It was then cloned 

into pAG423-GPD-ccdB-dsRed using the Gateway cloning system to produce pAG423-GPD-mtdsRed. 

FZO1 and fzo1-1 with their endogenous promoter and terminator were amplified from genomic DNA 

coding either for FZO1 or fzo1-1 (Hermann et al., 1998) by using primers FZO1Xba1fwd and 

FZO1EcoRIrev and cloned into the XbaI/EcoRI sites of pRS313 resulting in pRS313-FZO1 and pRS313-

fzo1-1. pRS316-3xmCherry was produced by amplifying 3xmCherry from pYM-3xmCherry(HIS3MX6)-

2 using the primers 3xmCherryfwdSpeI and 3xmCherryrevNotI and cloning them into the SpeI/NotI 

sites of pRS316. Then MMM1 was amplified from genomic DNA using the primers MMM1F and 

MMM1R and cloning it into the SpeI/XhoI sites of pRS316-3xmCherry thus generating pRS316-

MMM1-3xmCherry. pAG415-GAL-myo2-fis1 was constructed as described in Klecker et al. (2013). 

 

Table 2. Plasmids used in this study. 

Name Relevant characteristics Source 

ATG8-N-YN-425ADH 2µ / LEU2 / ADH prom 
this study; Böckler & Westermann, 
2014 

C-YC-426ADH 2µ / URA3 / ADH prom Skarp et al., 2008;  

GFP-ATG8(414) 
CEN / TRP1 / endogenous 
prom 

Abeliovich et al., 2003 

GFP-ATG8(416) 
CEN / URA3 / endogenous 
prom 

D. Klionsky, Michigan, USA 

MMM1-C-YC-426ADH 2µ / URA3 / ADH prom 
this study; Böckler & Westermann, 
2014 

N-YN-425ADH 2µ / LEU2 / ADH prom Skarp et al., 2008 

pAG413-GPD-ccdB-GFP CEN / HIS3 / GPD prom Alberti et al., 2007 

pAG413-GPD-ATG14-GFP CEN / HIS3 / GPD prom 
this study; Böckler & Westermann, 
2014 

pAG413-GPD-ATG5-GFP CEN / HIS3 / GPD prom 
this study; Böckler & Westermann, 
2014 

pAG413-GPD-ATG9-GFP CEN / HIS3 / GPD prom 
this study; Böckler & Westermann, 
2014 

pAG415-GAL-ccdB CEN / LEU2 / GAL prom Alberti et al., 2007 

pAG415-GAL-myo2-fis1 CEN / LEU2 / GAL prom T. Klecker, Zellbiologie, Bayreuth 

pAG423-GPD-ccdB-dsRed 2µ / HIS3 / GPD prom Alberti et al., 2007 

pAG423-GPD-mtdsRed 2µ / HIS3 / GPD prom 
this study; Böckler & Westermann, 
2014 

pAS1NB-CS-RG 2µ / LEU2 / PGK1 prom Rosado et al., 2008 

pBN1001 2µ / LEU2 / ADH prom B. Neumann, Zellbiologie, Bayreuth 

pDONR221 gateway cloning vector Invitrogen, Darmstadt 

pJM14 (Om45-Pex3) CEN / URA3 / OM45 prom Motley et al., 2012 

pRS313 CEN / HIS3 Sikorski & Hieter, 1989 
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Name Relevant characteristics Source 

pRS313-FZO1 
CEN / HIS3 / endogenous 
prom 

this study 

pRS313-fzo1-1 
CEN / HIS3 / endogenous 
prom 

this study 

pRS316 CEN / URA3 Sikorski & Hieter, 1989 

pRS316-3xmCherry CEN / URA3 this study 

pRS316-MMM1-
3xmCherry 

CEN / URA3 / endogenous 
prom 

this study 

pRS316-ERFP CEN / URA3 
this study; Böckler & Westermann, 
2014 

pRS316-MMM1 
CEN / URA3 / endogenous 
prom 

this study; Böckler & Westermann, 
2014 

pRS316-MMM1-ERFP 
CEN / URA3 / endogenous 
prom 

this study; Böckler & Westermann, 
2014 

pRS415 CEN / LEU2 Sikorski & Hieter, 1989 

pRS415-ADH CEN / LEU2 / ADH prom Mumberg et al., 1995 

pRS415-ADH-chiMERA CEN / LEU2 / ADH prom 
this study; Böckler & Westermann, 
2014 

pRS415-GFP-ATG8 
CEN / LEU2 / endogenous 
prom 

this study; Böckler & Westermann, 
2014 

pRS415-GPD-chiMERA CEN / LEU2 / GPD prom Kornmann et al., 2009 

pRS415-MET-ERFP-ATG32 CEN / LEU2 / MET25 prom this study 

pRS415-MET-ERFP-DNM1 CEN / LEU2 / MET25 prom D. Scholz, Zellbiologie, Bayreuth 

pRS415-MET-GFP-ATG32 CEN / LEU2 / MET25 prom 
this study; Böckler & Westermann, 
2014 

pRS415-MET-GFP-DNM1 CEN / LEU2 / MET25 prom J. Nunnari, Davis, USA 

pRS415-TEF CEN / LEU2 / TEF prom Mumberg et al., 1995 

pRS415-TEF-chiMERA CEN / LEU2 / TEF prom 
this study; Böckler & Westermann, 
2014 

pRS416 CEN / URA3 Sikorski & Hieter, 1989 

pRS416-MDM10 
CEN / URA3 / endogenous 
prom 

C. Meisinger, Freiburg 

pRS416-MDM12 
CEN / URA3 / endogenous 
prom 

this study; Böckler & Westermann, 
2014 

pRS416-MDM34 
CEN / URA3 / endogenous 
prom 

this study; Böckler & Westermann, 
2014 

pRS425-GPD 2µ / LEU2 / GPD prom Mumberg et al., 1995 

pRS425-GPD-cytRosella 2µ / LEU2 / GPD prom 
this study; Böckler & Westermann, 
2014 

pVT100U-mtGFP 2µ / URA3 / ADH prom Westermann & Neupert, 2000 

pVT100U-mtRFP 2µ / URA3 / ADH prom Y. Brede, Zellbiologie, Bayreuth 

pVT100U-mtRosella 2µ / URA3 / ADH prom 
this study; Böckler & Westermann, 
2014 

pYES-mtGFP 2µ / URA3 / GAL prom Westermann & Neupert, 2000 

pYES-mtRosella 2µ / URA3 / GAL prom 
this study; Böckler & Westermann, 
2014 

pYM-3xmCherry 
(HIS3MX6)-2 

 C. Ungermann, Osnabrück 

pYX122 CEN / HIS3 R&D systems, Abingdon, UK 
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Name Relevant characteristics Source 

pYX122-ssGFP-HDEL CEN / HIS3 / TPI prom 
this study; Böckler & Westermann, 
2014 

pYX142 CEN / LEU2 R&D Systems, Abingdon, UK  

pYX142-MCP1 CEN / LEU2 / TPI prom Tan et al., 2013 

pYX142-MCP2 CEN / LEU2 / TPI prom Tan et al., 2013 

pYX142-mtGFP CEN / LEU2 / TPI prom Westermann and Neupert, 2000 

WP1055-ssGFP CEN / URA3 / MET prom Prinz et al., 2000 

yEpGAP-Cherry 2µ / URA3 Keppler-Ross et al., 2008 
 

Table 3. Primers used for cloning in this study.  

Name Sequence (5' - 3') 

3xmCherry fwd SpeI TTTACTAGTCAGGTCGACATGGTGAGC 

3xmCherry rev NotI TTTGCGGCCGCTCACTTGTACAGCTCGTCCATGC 

ATG14 attB rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCTACCACGTACCATCGG

TCATG 

ATG14 attB fwd 
GGGGACAGTTTGTACAAAAAAGCAGGCTTCATGCATTGCCCAATT 

TGCCACC 

ATG32 fwd ApaI ATATGGGCCCGTTTTGGAATACCAACAAAG 

ATG32 rev XhoI TAATACTCGAGTGAGTAGGAACGTGTATGTTTG 

ATG5 attB fwd 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAATGACATTAAACAA

TTACTTTG 

ATG5 attB rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTCGAGCTCAGAGGAAGCTTTA

TCG 

ATG8 fwd TTTTCCCGGGATGAAGTCTACATTTAAGTCTGAATATC 

ATG8 rev TTTTCTCGAGCTACCTGCCAAATGTATTTTCTC 

ATG9 attB fwd 
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAGAGAGATGAATAC

CAGTTACC 

ATG9 attB rev 
GGGGACCACTTTGTACAAGAAAGCTGGGTCTCTTCCGACGTCAGACTTC

TTG 

cytRosella fwd BamHI TATGGATCCATGGCCTCCTCCGAGG 

cytRosella rev XhoI TATCTCGAGTCAGTGATCAGATTTGTATAGTTC 

DsRedFP AAAGGTAACATGGCCTCCTCCGAGGACGTC 

DsRedRP AAAGAGCTCCTACAGGAACAGGTGGTGGCG 

FZO1 XbaI fwd TTTTCTAGAGTGCTTGAGTATCAGGAGAAGG 

FZO1 EcoRI rev TTTGAATTCGAGCTATTACTTCCAGGGAC 

Gateway Su9 PS 
pYESmtGFP fwd 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCGAAAAAAATGGCCTCCACT

CGTGTCCTCGC 

Gateway Su9 PS 
pYESmtGFP rev 

GGGGACCACTTTGTACAAGAAAGCTGGGTGTTCTTCTCCTTTACTCATA

GATCTGG 

MDM12 fwd EcoRI TATGAATTCTGTTTGAAACCAACTCGAAGC 

MDM12 rev XhoI TATCTCGAGTGGTTTCACAAACACAAGC 

MDM34 fwd HindIII TATAAGCTTTCGAAACACTGATCTGGAC  

MDM34 rev XhoI TATACTCGAGGTACGGTTGTGGTCAGTCG 

MMM1 eRFP fwd TATATAACTACTAGTATGGTTTCAAAAGGTGAAGAAGATA  

MMM1 eRFP rev TATATAGAGCTCCACAGCTGCTCGAGCG 

MMM1 F  AAACTCGAGTGCTTATGCCGTTATTTGAGG 

MMM1 fwd TTTTGGATCCATGACTGATAGTGAGAATGAATCC 
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Name Sequence (5' - 3') 

MMM1 fwd BamHI ATATATGGATCCTGCTTATGCCGTTATTTGAGG 

MMM1 R GAAGAAAAGCCTACAGAGTTAACTAGTTTT 

MMM1 rev no stop TTTTATCGATTAACTCTGTAGGCTTTTCTTCTC 

MMM1 rev stop SpeI TAATACTAGTTTTGGAGAAGTCGTATCACC 

pBN1001 fwd BglII AATTATAGATCTCCTCAACATAACGAGAACAC 

pBN1001 rev BglII TATTATAGATCTTCGTCTACCCTATGAAC 

WP1055 fwd EcoRI GATACGAATTCATGAAAGCATTCACCAGTTTACTATG  

WP1055 rev XhoI ATATCTCGAGTTACAATTCGTCGTGGCAGCCGGATC  

 

Yeast genetics and cell biology 

Yeast strains 
Table 4. List of yeast strains used in this study. Strains derived from mating of BY4741 and BY4742 cells, 

sporulation and subsequent tetrad dissection of haploid cells are listed as isogenic to “BY”. Strains were 

transformed with plasmids listed in Table 2. 

Isogenic Name Genotype Source 

BY4742 WT MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Brachmann et al., 1998 

BY4741 WT MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Brachmann et al., 1998 

BY4742 Δatg32 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ1 Δatg32::kanMX4  Giaever et al., 2002 

BY4742 WT (ρ
0
) MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ρ

0
 

T. Klecker, Zellbiologie, 
Bayreuth 

BY4742 Δmmm1 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δmmm1::kanMX4 Giaever et al., 2002 

BY4742 Δmdm10 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δmdm10::kanMX4 Giaever et al., 2002 

BY4742 Δmdm12 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δmdm12::kanMX4 Giaever et al., 2002 

BY4742 Δmdm34 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δmdm34::kanMX4 Giaever et al., 2002 

BY4742 Δatg1 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δatg1::kanMX4 Giaever et al., 2002 

BY4742 Δmdm33 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δmdm33::kanMX4 Giaever et al., 2002 

BY4742 Δsam37 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δsam37::kanMX4 Giaever et al., 2002 

BY4742 Δdnm1 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Δdnm1::kanMX4 Giaever et al., 2002 

BY4741 Δmmm1 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
Δmmm1::kanMX4 

Giaever et al., 2002 

BY4741 Δmdm10 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
Δmdm10::kanMX4 

Giaever et al., 2002 

BY4741 Δmdm12 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
Δmdm12::kanMX4 

Giaever et al., 2002 

BY4741 Δmdm34 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
Δmdm34::kanMX4 

Giaever et al., 2002 

BY 
Δmdm10  
Δdnm1 

MATα his3Δ1 leu2Δ0 met15Δ0  lys2Δ0 ura3Δ0 
Δmdm10::kanMX4  Δdnm1::kanMX4 

this study 

BY 
Δmdm12  
Δdnm1 

MATα his3Δ1 leu2Δ0 MET15 LYS2 ura3Δ0 
Δmdm12::kanMX4  Δdnm1::kanMX4  

this study 

BY 
Δmdm34  
Δdnm1 

MATα his3Δ1 leu2Δ0 MET15 lys2Δ0 ura3Δ0 
Δdnm1::kanMX4 Δmdm34::kanMX4  

this study 

BY 
Δatg32 
Δmmm1 

MATα his3Δ1 leu2Δ0 met15Δ0 lys2Δ0 ura3Δ0 
Δatg32::kanMX4 Δmmm1::kanMX4   

this study 

BY 
Δatg32 
Δmdm10   

MATα his3Δ1 leu2Δ0 met15Δ0 LYS2 ura3Δ0 
Δatg32::kanMX4 Δmdm10::kanMX4  

this study 
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Isogenic Name Genotype Source 

BY 
Δatg32 
Δmdm12 

MATα his3Δ1 leu2Δ0 met15Δ0 LYS2 ura3Δ0 
Δatg32::kanMX4 Δmdm12::kanMX4   

this study 

BY 
Δatg32 
Δmdm34 

MATα his3Δ1 leu2Δ0 met15Δ0 LYS2 ura3Δ0 
Δatg32::kanMX4 Δmdm34::kanMX4  

this study 

YPH500 Δmmm1 
MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-
Δ63 his3-Δ200 leu2-Δ2 Δmmm1::HIS3MX6 

Dimmer et al., 2005 

BY4741 
ProtA-
Mmm1 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ProtA-MMM1 
[HIS3] 

C. Meisinger, Freiburg 

BY Y7092  
MATα Δcan1::STE2pr-Sp_his5 Δlyp1 ura3Δ0 leu2Δ0 
his3Δ1 met15Δ0 

Baryshnikova et al., 
2010 

BY 
Y7092 
MYO2  

MATα Δcan1::STE2pr-Sp_his5 Δlyp1 ura3Δ0 leu2Δ0 
his3Δ1 met15Δ0 MYO2-URA3 

J. König, Zellbiologie, 
Bayreuth 

BY 
Y7092 
myo2(LQ)  

MATα Δcan1::STE2pr-Sp_his5 Δlyp1 ura3Δ0 leu2Δ0 
his3Δ1 met15Δ0 myo2(LQ)-URA3 

J. König, Zellbiologie, 
Bayreuth 

BY4741 Δypt11 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δypt11::kanMX4 Giaever et al., 2002 

BY4741 Δnum1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δnum1::kanMX4 Giaever et al., 2002 

BY WT * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 this study 

BY Δnum1 * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 Δnum1::kanMX4 this study 

BY myo2(LQ) * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 this study 

BY 
myo2(LQ) 
Δnum1 * 

MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 
Δnum1::kanMX4 

this study 

BY4741 Δfzo1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δfzo1::kanMX4 Giaever et al., 2002 

BY4741 Δmgm1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δmgm1::kanMX4 Giaever et al., 2002 

BY4741 Δugo1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δugo1::kanMX4 Giaever et al., 2002 

BY4741 Δdnm1 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δdnm1::kanMX4 Giaever et al., 2002 

BY Δfzo1 * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 Δfzo1::kanMX4 this study 

BY Δdnm1 * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 Δdnm1::kanMX4 this study 

BY myo2(LQ) * MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 this study 

BY 
myo2(LQ) 
Δdnm1 * 

MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 
Δdnm1::kanMX4 

this study 

BY4741 
Δfzo1 
Δdnm1 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Δfzo1::kanMX4 
Δdnm1::kanMX4 

M. Dürr, Zellbiologie, 
Bayreuth 

BY 
Δfzo1 
Δdnm1 * 

MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 Δfzo1::kanMX4 
Δdnm1::kanMX4 

this study 

BY 
myo2(LQ) 
Δfzo1 
Δdnm1 * 

MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 
Δfzo1::kanMX4 Δdnm1::kanMX4 

this study 

BY 
myo2(LQ) 
Δfzo1 */** 

MAT? ura3Δ0 leu2Δ0 met15Δ0 his3Δ1 myo2(LQ)-URA3 
Δfzo1::kanMX4  

this study 

* Strains were constructed by mating the Y7092 myo2(LQ) strain with BY4741 yfg1::kanMX4 strains. 

can1::STE2pr_Sp_his5, lyp1 alleles and mating type have not been tested.  

** Strain was complemented with either pRS313-FZO1 or pRS313-fzo1-1. 

Culturing and media 

Yeast cells were cultured on rich medium, selective minimal (SM) or selective complete (SC) medium 

as described in Sherman (2002) with 0.67% yeast nitrogen base (YNB) with ammonium sulfate and 

without amino acids as nitrogen source and with 2% glucose (dextrose; D), 2% galactose (Gal) or 3% 

glycerol as carbon sources, respectively. 2% agar was added to the above mentioned media in order 

to produce medium plates. If geneticin (G418) was added to plates, YNB was omitted, since 
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ammonium sulfate inhibits the action of G418. Instead, 0.1% monosodium glutamate (MSG) was 

used as a nitrogen source and 0.17% YNB without amino acids and without ammonium sulfate was 

added in addition. The standard temperature was 30°C, if not indicated otherwise, and agitation was 

150 rpm for tubes and flasks and 280 rpm for deep-well plates. For culturing cells prior to starvation, 

cells were cultured on SGalRD (0.67% YNB with ammonium sulfate and without amino acids, 2% 

galactose, 2% raffinose, and 0.1% glucose, supplemented with adenine, lysine, methionine, 

tryptophan and additional supplements depending on the strain). Yeasts were starved in SD-N (0.17% 

YNB without amino acids and without ammonium sulfate, 2% glucose, without further supplements). 

For screening the pet library, cells were inoculated in 200 µl SGalRD and incubated overnight in deep-

well plates (96 format; 30°C, 280 rpm). 300 µl fresh medium was added, cells were grown for 

additional six hours and washed four times with water before resuspending them in 300 µl SD-N and 

starvation for two days. Sporulation of diploids was carried out either in liquid medium (1% 

potassium acetate, 0.005% zinc acetate) or on plates (1% potassium acetate, 2% agar) for up to two 

weeks at 22°C. For sporulation during SGA, enriched sporulation medium (1% potassium acetate, 

0.1% yeast extract, 0.05% glucose, 0.000025% histidine, 0.000025% lysine, 0.000125% leucine, 2% 

agar) was used. For long-time storage of yeast, cells were resuspended in 15% glycerol and frozen at -

80°C. 

 

Transformation of plasmids 

Cells were cultured to logarithmic growth either in liquid medium or on plates. Plasmids were 

transformed into yeast by resuspending cells in 360 µl transformation mixture (33% PEG4000, 0.1 M 

lithium acetate (pH 7.5), 0.42 mg/ml single stranded carrier DNA from salmon sperm, 0.5 – 1 µg of 

plasmid DNA). After an 1 h heat shock at 42°C, cells were pelleted by centrifugation and resuspended 

in 100 µl water and plated on appropriate synthetic selection medium. For transformation of 

pAS1NB-CS-RG into the pet library, the library was plated on glucose-containing rich medium and 

incubated for two days at 30°C. Cells were then resuspended in 150 µl of water, pelleted and 

resuspended in 150 µl of transformation mixture per well in a microtiter plate (96 format) and heat-

shocked for 1 h at 42°C. After pelleting the cells they were resuspended in 50 µl water and plated by 

using sterile pinning tools on SMD plates lacking leucine for selection of transformants.  

 

Drop dilution assay 

Different strains were cultured to stationary phase, adjusted to the same optical density (oD600 

between 0.5 and 2) and diluted in serial 1:10 steps in water. 5 µl of cell suspension from the dilutions 

were dropped on agar plates and incubated for several days at the required temperatures. 
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Construction of diploid cells and tetrad dissection 

Approximately equal amounts of haploid yeast cells of opposite mating types were taken from agar 

plates and resuspended in glucose-containing liquid rich medium and allowed to mate (30°C, 150 

rpm) for up to 8 h. 100 µl of culture were then plated on appropriate selection medium and 

incubated overnight (30°C). Diploids were transferred to fresh selection plates to get rid of remaining 

haploids and again incubated overnight. After sporulation, a small amount of cells was resuspended 

in water and 2 mg/ml zymolyase was added (10 min, room temperature). 50 µl of cell suspension 

were plated at the edge of an agar plate and allowed to dry. Tetrads were dissected by using a 

micromanipulator (Singer MSM Series 300 with Acer n30 pocket PC; Singer Instruments, Roadwater, 

UK). After growth for several days, single colonies were transferred to appropriate selection medium 

and genotypes were determined by colony-PCR if necessary.  

 

Quantification of colony size 

Sizes of colonies generated by tetrad dissection were determined by using ImageJ software (version 

1.43; National Institutes of Health, Bethesda, USA). An image of the plate with the colonies was 

opened and converted to a binary picture. Colonies were selected by using the wand (tracing) tool 

and the colony size in pixels was measured by using the shortcut ‘ctrl + m’. 

 

Synthetic genetic array 

SGA was essentially performed as described in Baryshnikova et al. (2010) and a ROTOR HDA robot 

(Singer Instruments) was used for plating. Query strains were plated on PlusPlates (Singer 

Instruments) containing YPD solid medium and incubated for two days at 30°C. The MATa deletion 

library was plated in a 384 format on YPD and incubated for 2 to 3 days at ambient temperature. The 

library was then arrayed to a high-density of 4 x 384 = 1536 strains on one YPD plate. Then, every 

deletion strain was present in four replicates on the plate. The query strains were mixed with this 

high-density array (HDA) by plating the query strains on the HDA and using the target mix option. 

Cells were allowed to mate for one day at room temperature. Colonies were then plated on diploid 

selection medium (SCD[MSG] containing 200 mg/l G418, but lacking uracil, 2% agar) and grown for 1 

day at 30°C. This selection was repeated once. Then cells were plated on enriched sporulation 

medium using the target mix option and incubated at 22°C for 5 to 10 days. Sporulated yeast cells 

were then plated on MATa selection medium (SCD lacking histidine, arginine and lysine; containing 

50 mg/l canavanine and 50 mg/l thialysine, 2% agar) and incubated for 2 days at 30°C. Colonies were 

plated on MATa/kanR selection medium (SCD[MSG] lacking histidine, arginine and lysine; containing 

50 mg/l canavanine and 50 mg/l thialysine as well as 200 mg/l G418, 2% agar) and incubated for 1 

day at 30°C. Cells were replica-plated on MATa/kanR/URA3 selection medium (SCD[MSG] lacking 

histidine, arginine, lysine and uracil; containing 50 mg/l canavanine and 50 mg/l thialysine as well as 

200 mg/l G418, 2% agar) and incubated for 1 to 2 days until colonies grew to a substantial size. This 

was repeated once. Finally, colonies were replica-plated on MATa/kanR/URA3 selection medium and 
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incubated for 20 h at 30°C. Then plate images were acquired from 40 cm distance by using a Kodak 

EasyShare DX7590 camera.  

 

SGA data acquisition  

Data were acquired using the web browser-based SGAtools (http://sgatools.ccbr.utoronto.ca; Wagih 

et al., 2013). Images were named according to the instructions and loaded for image analysis (1536 

format). Autorotation of images was allowed, colonies were assigned as ‘bright’ and images were 

processed. Correct identification of colonies by the software was confirmed by visual inspection. A 

table with the information about the position of every strain on the plates was uploaded. In the 

options section, ‘4 (2 x 2) replicates’ was chosen and the software was told to score the normalized 

output. The normalized and scored results were downloaded as an Excel file. 

 

Functional enrichment analysis of GO terms 

Functional enrichment analysis of GO terms was carried out using the web browser tool ‘GO term 

finder’ from the ‘Saccaromyces Genome Database’ (SGD; http://www.yeastgenome.org/cgi-

bin/GO/goTermFinder.pl; Boyle et al., 2004). The list of negative or positive interactors, respectively, 

was uploaded as well as the background set of screened strains and functional enrichments of GO 

terms for process, function and component with a p value < 5% were searched. Subsequently, the 

ratio of the cluster frequency and the background frequency was determined. 

 

Fluorescence microscopy 

Microscopy procedures have already been described in Böckler and Westermann (2014). 

Epifluorescence microscopy was performed using an Axioplan 2 or an Axiophot microscope (Carl 

Zeiss, Jena) equipped with an Evolution VF Mono Cooled monochrome camera (Intas, Göttingen) 

with Image ProPlus 5.0 and Scope Pro4.5 software (Media Cybernetics, Rockville, US) or a Leica 

DCF360FX Camera with Leica LAF AF Version 2.2.1 software (Leica Microsystems, Wetzlar), 

respectively. Images were acquired using a Plan Neofluar 1003/1.30 Ph3 oil objective (Carl Zeiss). 

For confocal microscopy, a Leica TCS SP5 system (Leica) was used in combination with an inverted 

Leica DMI 6000 CS Trino microscope equipped with an HCX PL APO CS 63.0×/1.40 oil UV objective 

and LAS AF SP5 MicroLab software (Leica). This system is equipped with an Argon laser (458 nm/5 

mW, 476 nm/5 mW, 488 nm/20 mW, 496 nm/5 mW, 514 nm/20 mW), a DPSS laser (561 nm/20 mW) 

and the respective acusto-optical tunable filters (AOTF). 
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Staining of cellular structures 

Vacuoles were stained by addition of 100 µM CellTracker Blue CMAC to cells. After incubation for 30 

min under agitation, cells were washed at least three times and subjected to fluorescence 

microscopy. In order to visualize mitochondria, 5 µM rhodamine-b-hexylester was added to cells. 

Cells were immediately subjected to fluorescence microscopy. For staining of DNA, cells were fixed 

with 100% methanol for five minutes, washed once with PBS and resuspended in PBS. 1 µg/ml DAPI 

was added and cells were incubated for five minutes at room temperature. After washing the cells 

four times with PBS and resuspending them in 200 µl PBS they were either stored at 4°C or 

immediately subjected to fluorescence microscopy. To stain cell walls, cell suspensions were mixed 

1:1 with 10 mM HEPES/2% glucose buffer (pH 7.2), pelleted and resuspended in HEPES/glucose 

buffer. 25 µM calcofluor was added and cells were incubated for 30 min under agitation. After 

washing once with water cells were resuspended in fresh medium and further cultured as required.  

 

Protein biochemistry 

Preparation of cell extracts 

Cells were incubated in 200 µl 0.1 M NaOH for 10 min at room temperature, pelleted and boiled for 5 

min in SDS sample buffer (600 mM Tris-HCl, pH 6.8; 5% glycerol, 2% SDS, 4% β-mercaptoethanol, 

0.0025% bromophenol blue). 

 

SDS-PAGE, Western blotting, immuno-detection and antibodies 

Proteins were separated by SDS-PAGE. Stacking gels (10 x 150 x 1 mm) contained 5% acrylamide-

bisacrylamide mixture (Roth, Karlsruhe, Germany), 60 mM Tris-HCl (pH 6.8), 0.1% SDS, 0.05% APS 

and 0.1% TEMED. Resolving gels (90 x 150 x 1 mm) contained either 8% or 10% acrylamide-

bisacrylamide, 385 mM Tris-HCl (pH 8.8), 0.1% SDS, 0.05% APS and 0.035% TEMED. 8% acrylamide-

bisacrylamide mixture was used for resolution of ProtA-Mmm1, 10% acrylamide-bisacrylamide 

mixture for Ape1, chiMERA, cytRosella, GFP-Atg8, Hexokinase, Ilv5, mtRosella, Ndi1, and Tom40. 

Electrophoresis was performed at a constant current of 15 – 20 mA in a vertical chamber (Mini-

PROTEAN Tetra Electrophoresis System, BioRad, München) in running buffer (0.1% SDS, 192 mM 

glycine, 25 mM Tris). Proteins were transferred to a nitrocellulose membrane (Amersham 

Biosciences, Piscataway, USA) by semi-dry Western blotting. The gel was placed on three filter sheets 

(Whatman, Kent, UK) and the membrane soaked in transfer buffer (11.26 g/l glycine, 2.42 g/l Tris, 0.2 

g/l SDS, 200 ml/l methanol) and covered with three filter sheets soaked in transfer buffer. With a 

constant current of ca. 1.5 mA/cm2 of membrane, the proteins were blotted between 30 min and 1 

h. Successful blotting was confirmed by soaking the blots for 1 – 5 min in Ponceau staining solution 

(0.5% PonceauS, 3% TCA) and destaining with water. The blot was then incubated in TBST buffer (6% 

Tris, 8.8% NaCl, 0.5% Tween20; pH 7.5) with 5% milk powder for 30 min under agitation. After 

incubation with primary antibody for 1 h at room temperature or overnight at 4°C, the blot was 
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washed three times with TBST, the secondary antibody coupled to horseradish peroxidase (HRP) was 

added for 1 h and the blot was again washed with TBST three times. For decoration of ProtA-Mmm1, 

PAP antibody was added for 2.5 h, washed three times with TBST and detection followed without 

prior addition of a secondary antibody. For detection, 2 ml of solution 1 (12.1 g/l Tris, 250 mg/l 

luminol), 800 µl of solution 2 (1.1 g/l coumaric acid in DMSO) and 2.4 µl 30% H2O2 were mixed in a 

final volume of 5 ml and 100 µl of solution A and B from ECL Ultra TMA-6 (Lumigen, Southfield, USA) 

were added. The blot was covered with the solution and luminescence was detected using the 

ImageQuant LAS-4000 gel documentation (GE Healthcare Europe GmbH, Freiburg). 

Table 5. Antibodies used in this study. Antibodies were diluted in TBST with 5% milk powder with the 

exception of anti-Ape1 diluted in TBST without milk. 

Antibody Organism Dilution Source 

anti-Ape1 (sc-26740) goat 1 : 200  Santa Cruz Biotechnology, Dallas, USA 
anti-GFP (ab6556) rabbit 1 : 3,000 Abcam, Cambridge, UK  
anti-Hxk rabbit 1 : 15,000 unknown 
anti-Ilv5 rabbit 1 : 500 J. Herrmann, Kaiserslautern, Germany 
anti-Ndi1 rabbit 1 : 1,000 Seo et al., 1998 
anti-Tom40 rabbit 1 : 2,000 W. Neupert, München 
Peroxidase Anti-Peroxidase (PAP)  
Soluble Complex antibody (P1291) 

rabbit 1 : 2,000 Sigma-Aldrich, St. Louis, USA 

anti-rabbit HRP (w4011) goat 1 : 10,000 Promega, Mannheim 
anti-goat HRP (sc-2033) donkey 1 : 1,000 Santa Cruz Biotechnology, Dallas, USA 

 

Shock-freezing of cells and cryo-grinding 

Cells were grown overnight (30°C, 150 rpm) in 20 ml of synthetic medium containing 3% glycerol and 

0.1% glucose supplemented with methionine, tryptophan, lysine, leucine, histidine and adenine 

(concentrations according to Sherman, 2002). 100 ml of fresh medium were added and the culture 

was grown during the day. 500 ml fresh medium were inoculated for overnight incubation and the 

oD600 was 0.2 on the next day. Cells were washed twice with 500 ml water and starved (30°C, 150 

rpm) for 1 h in 500 ml SD-N. Cells were pelleted and resuspended in 8 ml SD-N. The suspension was 

transferred to a syringe closed with a luer plug and pelleted. The supernatant was discarded and the 

pellet in the syringe was pressed into a vial filled with liquid nitrogen. After discarding the liquid 

nitrogen, the shock-frozen yeast cells were stored for at least one day at -80°C. Frozen cells were 

transferred to a precooled 10 ml grinding jar (Retsch, Düsseldorf) containing a 10 mm steel ball. The 

jar was subsequently introduced into the CryoMill (Retsch) and cooled automatically with liquid 

nitrogen. The sample was precooled for 5 min with 5 Hz and then grinded for 15 min with 25 Hz. The 

yeast powder was then transferred to a precooled vial to avoid thawing. The powder was stored at -

80°C.  
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Immuno-precipitation 

200 mg of frozen yeast powder were transferred to ice-cold SS34 tubes and allowed to semi-thaw on 

ice for several minutes. The powder was resuspended in 2 ml solubilization buffer (20 mM Tris, pH 

7.4; 50 mM NaCl, 10% glycerol, 0.1 mM EDTA, 1% digitonin, 2 mM PMSF, 30 mg/l DNaseI, 10x EDTA-

free protease inhibitors [Roche, Mannheim]) and incubated for 45 min under agitation at 4°C. After 

centrifugation (10 min, 17.000 rcf, 4°C), the supernatant (input fraction) was transferred to a 15 ml 

vial. 18 µl of sepharose beads covered with camelid-derived single-domain antibodies against GFP 

(provided by M. Hermann and O. Stemmann, Genetics, Bayreuth; see also Rothbauer et al., 2008) 

were equilibrated with 500 µl equilibration buffer (20 mM Tris, pH 7.4; 50 mM NaCl, 10% glycerol, 

0.1 mM EDTA) and with 500 µl solubilization buffer in Mobicol Mini Columns (Boca Scientific, Boca 

Raton, USA). Beads were transferred to the solubilized material and incubated for 90 min at 4°C 

under agitation. Beads were pelleted (5 min, 7 rcf, 4°C) and transferred to the columns. Beads were 

washed twice (30 sec, 4°C, 500 rpm, eppendorf F45-30-11) with washing buffer (20 mM Tris, pH 7.4; 

60 mM NaCl, 10% glycerol, 0.5 mM EDTA, 0.3% digitonin). 100 µl of SDS sample buffer were added to 

the beads, boiled for 10 min at 99°C and elution was performed (1 min, 2000 rcf).  
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Appendix 

The pet library 
Table 6. List of deletion strains contained in the pet library (Merz and Westermann, 2009), which has been 

screened for mitophagy defects. 

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YAL044C GCV3 
 

YHR116W COX23 
 

YGR222W PET54 

YAL026C DRS2 

 

YCL007C  

 

YGR243W FMP43 

YAL013W DEP1 
 

YLR204W QRI1 
 

YBL019W APN2 

YAL010C MDM10 
 

YLR226W BUR2 
 

YBL021C HAP3 

YAL009W SPO7 
 

YKL040C NFU1 
 

YBL031W SHE1 

YLL041C SDH2 

 

YKL054C DEF1 

 

YBL032W HEK2 

YLR055C SPT8 
 

YKL055C OAR1 
 

YBL036C  

YLR056W ERG3 
 

YKL080W VMA5 
 

YBL045C COR1 

YLR125W  
 

YKL109W HAP4 
 

YBL046W PSY4 

YML087C  

 

YKL119C VPH2 

 

YBL053W  

YMR188C MRPS17 
 

YKL148C SDH1 
 

YBL057C PTH2 

YOR036W PEP12 
 

YKL155C RSM22 
 

YBL062W  

YER070W RNR1 
 

YGR105W VMA21 
 

YBL080C PET112 

YOR332W VMA4 

 

YGR112W SHY1 

 

YBL082C ALG3 

YOR350C MNE1 
 

YOR135C IRC14 
 

YBL090W MRP21 

YOR358W HAP5 
 

YOR196C LIP5 
 

YGL066W SGF73 

YOR380W RDR1 
 

YOR200W  
 

YGL070C RBP9 

YOL004W SIN3 

 

YOR221C MCT1 

 

YGL071W AFT1 

YOL008W COQ10 
 

YJL176C SWI3 
 

YNL185C MRPL19 

YOL051W GAL11 
 

YLR393W ATP10 
 

YNL184C  

YOL071W EMI5 
 

YLR403W SFP1 
 

YNL177C MRPL22 

YPL262W FUM1 

 

YDR148C KGD2 

 

YNL170W  

YPL254W HFI1 
 

YDR162C NBP2 
 

YNL159C ASI2 

YPL234C TFP3 
 

YDR195W REF2 
 

YKL208W CBT1 

YPL188W POS5 
 

YDR204W COQ4 
 

YKL212W SAC1 

YPL136W  

 

YDR216W ADR1 

 

YKR001C VPS1 

YPL097W MSY1 
 

YDR237W MRPL7 
 

YKR006C MRPL13 

YDR065W  
 

YOR305W  
 

YDR264C AKR1 

YDR079W PET100 
 

YER061C CEM1 
 

YDR270W CCC2 

YDR116C MRPL1 

 

YLR260W LCB5 

 

YDR276C PMP3 

YDR129C SAC6 
 

YLR270W DCS1 
 

YDR296W MHR1 

YDR349C YPS7 
 

YLR294C  
 

YDR298C ATP5 

YDR364C CDC40 
 

YLR295C ATP14 
 

YDR337W MRPS28 

YDR378C LSM6 

 

YLR304C ACO1 

 

YHR039C-B VMA10 

YDR392W SPT3 
 

YLR312W-A MRPL15 
 

YIR021W MRS1 

YEL003W GIM4 
 

YGL215W  
 

YMR064W AEP1 

YEL007W  
 

YGL237C HAP2 
 

YMR070W MOT3 

YEL024W RIP1 

 

YGL244W RTF1 

 

YMR072W ABF2 

YEL027W CUP5 
 

YGL251C HFM1 
 

YMR077C VPS20 

YEL050C RML2 
 

YGR020C VMA7 
 

YMR089C YTA12 

YEL051W VMA8 
 

YPL059W GRX5 
 

YOL095C HMI1 

YEL061C CIN8 

 

YPL045W VPS16 

 

YOL096C COQ3 

YER058W PET117 
 

YPL031C PHO85 
 

YHR168W MTG2 
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Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YER087W  
 

YPL013C MRPS16 
 

YLR038C COX12 

YHR030C SLT2 

 

YPR116W  

 

YMR158W MRPS8 

YHR038W RRF1 
 

YPR123C  
 

YNL252C MRPL17 

YHR039C MSC7 
 

YPR134W MSS18 
 

YPL132W COX11 

YHR049C-A  
 

YPR191W QCR2 
 

YML110C COQ5 

YHR060W VMA22   YGR220C MRPL9   YML120C NDI1 

YMR097C MTG1 
 

YBR026C ETR1 
 

YGL129C RSM23 

YMR098C  
 

YBR044C TCM62 
 

YGL135W RPL1B 

YPR036W VMA13 
 

YNL005C MRP7 
 

YGL143C MRF1 

YPR066W UBA3 

 

YNL037C IDH1 

 

YGL165C  

YPR099C  
 

YNR020C  
 

YER114C BOI2 

YJL120W  
 

YNR025C  
 

YER131W RPS26B 

YJL121C RPE1 
 

YNR037C RSM19 
 

YER145C FRT1 

YJL063C MRPL8 

 

YNR041C COQ2 

 

YER154W OXA1 

YJL046W  
 

YNR042W  
 

YER155C BEM2 

YHR006W STP2 
 

YNR045W PET494 
 

YLR377C FBP1 

YHR009C  
 

YNL081C SWS2 
 

YOL148C SPT20 

YHR026W PPA1 

 

YIL125W KGD1 

 

YER017C AFG3 

YHR067W HTD2 
 

YIL153W RRD1 
 

YER050C RSM18 

YHR194W MDM31 
 

YIL155C GUT2 
 

YAL039C CYC3 

YLL018C-A COX19 
 

YIL157C FMP35 
 

YML061C PIF1 

YLR447C VMA6 

 

YOR331C  

 

YMR015C ERG5 

YML081C-A ATP18 
 

YOR150W MRPL23 
 

YMR021C MAC1 

YAL047C SPC72 
 

YOR187W TUF1 
 

YMR035W IMP2 

YAL054C ACS1 
 

YNL052W COX5A 
 

YMR151W YIM2 

YJR077C MIR1 

 

YNL071W LAT1 

 

YMR150C IMP1 

YJR113C RSM7 
 

YNL073W MSK1 
 

YMR193W MRPL24 

YJR120W  
 

YKL194C MST1 
 

YMR228W MTF1 

YJR121W ATP2 
 

YBR289W SNF5 
 

YMR256C COX7 

YJR122W CAF17 

 

YCR028C-A RIM1 

 

YMR257C PET111 

YJR144W MGM101 
 

YCR046C IMG1 
 

YMR267W PPA2 

YDL192W ARF1 
 

YGR155W CYS4 
 

YMR282C AEP2 

YDR010C  
 

YLR382C NAM2 
 

YMR286W MRPL33 

YDR025W RPS11A 

 

YPL148C PPT2 

 

YMR287C DSS1 

YBR282W MRPL27 
 

YNL315C ATP11 
 

YMR293C  

YBR283C SSH1 
 

YPL078C ATP4 
 

YHL038C CBP2 

YCL001W-A  
 

YJL101C GSH1 
 

YHR011W DIA4 

YCR020W-B HTL1 

 

YKR085C MRPL20 

 

YPL271W ATP15 

YCR024C  
 

YLR439W MRPL4 
 

YPL215W CBP3 

YCR071C IMG2 
 

YBR081C SPT7 
 

YJL209W CBP1 

YJL003W COX16 
 

YBR128C ATG14 
 

YJL180C ATP12 

YJR033C RAV1 

 

YBR146W MRPS9 

 

YLL027W ISA1 

YJR040W GEF1 
 

YDL012C  
 

YLL033W  

YJR048W CYC1 
 

YDL032W  
 

YLL042C ATG10 

YDL099W BUG1 
 

YDL033C SLM3 
 

YOR318C  

YDL107W MSS2 

 

YDL039C PRM7 

 

YOR330C MIP1 

YDL128W VCX1  
 

YDL044C MTF2 
 

YOR375C GDH1 

YDL114W  
 

YDL045W-A MRP10 
 

YOL009C MDM12 

YDL129W  
 

YDL056W MBP1 
 

YOL033W MSE1 

YDL133W  

 

YDL067C COX9 

 

YOL083W  

YDL157C  
 

YDL068W  
 

YOR065W CYT1 

YDR269C  
 

YDL077C VMA6 
 

YHR051W COX6 

YDR271C  
 

YDL091C UBX3 
 

YHR091C MSR1 
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Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YGL017W ATE1 
 

YDR448W ADA2 
 

YHR120W MSH1 

YGL218W  

 

YDR458C HEH2 

 

YPL173W MRPL40 

YBL099W ATP1 
 

YDR491C  
 

YPL172C COX10 

YBL100C  
 

YDR523C SPS1 
 

YPL104W MSD1 

YBR003W COQ1   YDR529C QCR7   YOR127W RGA1 

YOR155C ISN1 

 

YNL213C  

 

  

YOR158W PET123 
 

YML095C-A  
 

YDR375C BCS1 

YOR241W MET7 
 

YJL127C SPT10 
 

YGR062C COX18 

YOR211C MGM1 
 

YJL124C LSM1 
 

YGR076C MRPL25 

YLR067C PET309 

 

YJL102W MEF2 

 

YGR102C  

YLR069C MEF1 
 

YJL096W MRPL49 
 

YGR150C  

YLR070C XYL2 
 

YAL016W TPD3 
 

YGR167W CLC1 

YLR091W  
 

YGL218W  
 

YGR171C MSM1 

YHR147C MRPL6 

 

YBR039W ATP3 

 

YGR174C CBP4 

YBR179C FZO1 
 

YJL184W GON7 
 

YGR180C RNR4 

YBR251W MRPS5 
 

YNL138W SRV2 
 

YGR215W RSM27 

YBR268W MRPL37 
 

YPR067W ISA2 
 

YKL003C MRP17 

YCL010C SGF29 

 

YBR097W VPS15 

 

YKL016C ATP7 

YCR003W MRPL32 
 

YGL206C CHC1 
 

YKL114C APN1 

YDR175C RSM24 
 

YGL240W DOC1 
 

YKL134C OCT1 

YDR194C MSS116 
 

YGR262C BUD32 
 

YKL138C MRPL31 

YDR197W CBS2 

 

YBL093C ROX3 

 

YKL169C  

YDR230W  
 

YER014C-A BUD25 
 

YKL170W MRPL38 

YDR114C  
 

YLR239C LIP2 
 

YMR231W PEP5 

YDR115W  
 

YLR337C VRP1 
 

YLL006W MMM1 

YLR139C SLS1 

 

YLR369W SSQ1 

 

YLR148W PEP3 

YLR144C ACF2 
 

YFL016C MDJ1 
 

YKL002W DID4 

YLR201C COQ9 
 

YDR079C-A TFB5 
 

YKL087C CYT2 

YLR202C  
 

YDR379C-A  
 

YDR377W ATP17 

YLR203C MSS51 

 

YEL059C-A SOM1 

 

YLR240W VPS34 

YDR347W MRP1 
 

YHR050W-A  
 

YNL243W SLA2 

YDR350C ATP22 
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Genetic interactors of myo2(LQ) 
Table 7. List of deletion strains that genetically interacted with myo2(LQ) in two indepedent replicates of 

an SGA screen. Strains appear in alphabetical order according to their systematic name. 

Negative interactors   Positive interactors 

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YAL048C GEM1 
 

 YBL087C RPL23A 

YBL007C SLA1 
 

 YBL090W MRP21 

YBR179C FZO1 
 

 YBR098W MMS4 

YBR200W BEM1 
 

 YBR284W YBR284W 

YBR246W RRT2 
 

 YBR298C MAL31 

YCL010C SGF29 
 

 YCL009C ILV6 

YCR028C FEN2 
 

 YCL062W YCL062W 

YDL006W PTC1 
 

 YCR076C FUB1 

YDL134C PPH21 
 

 YCR090C YCR090C 

YDR050C TPI1 
 

 YDL129W YDL129W 

YDR136C YDR136C 
 

 YDL182W LYS20 

YDR150W NUM1 
 

 YDL190C UFD2 

YDR162C NBP2 
 

 YDL203C ACK1 

YDR435C PPM1 
 

 YDR011W SNQ2 

YDR470C UGO1 
 

 YDR014W RAD61 

YDR477W SNF1 
 

 YDR015C YDR015C 

YEL036C ANP1 
 

 YDR022C ATG31 

YER068W MOT2 
 

 YDR042C YDR042C 

YGL058W RAD6 
 

 YDR079C-A TFB5 

YGL070C RPB9 
 

 YDR183W PLP1 

YGL119W COQ8 
 

 YDR251W PAM1 

YGL168W HUR1 
 

 YDR306C YDR306C 

YGL211W NCS6 
 

 YDR382W RPP2B 

YGL214W YGL214W 
 

 YDR391C YDR391C 

YGL218W YGL218W 
 

 YDR448W ADA2 

YGR036C CAX4 
 

 YEL067C YEL067C 

YGR078C PAC10 
 

 YFL010W-A AUA1 

YGR089W NNF2 
 

 YFL020C PAU5 

YGR101W PCP1 
 

 YFR038W IRC5 

YGR180C RNR4 
 

 YGL032C AGA2 

YHR129C ARP1 
 

 YGL066W SGF73 

YHR183W GND1 
 

 YGL081W YGL081W 

YHR187W IKI1 
 

 YGL199C YGL199C 

YIL040W APQ12 
 

 YGL208W SIP2 

YIL128W MET18 
 

 YGL226W MTC3 

YIR023W DAL81 
 

 YGR042W YGR042W 

YJL056C ZAP1 
 

 YGR125W YGR125W 

YJL063C MRPL8 
 

 YGR126W YGR126W 

YJL179W PFD1 
 

 YGR244C LSC2 

YJL204C RCY1 
 

 YHL004W MRP4 
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Negative interactors   Positive interactors 

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YJL206C YJL206C 
 

 YIL041W GVP36 

YKL002W DID4 
 

 YIR017C MET28 

YKL048C ELM1 
 

 YIR028W DAL4 

YKL136W YKL136W 
 

 YJL012C VTC4 

YKL201C MNN4 
 

 YJL100W LSB6 

YKL213C DOA1 
 

 YJL136W-A YJL136W-A 

YKR004C-A YKR004C-A 
 

 YJL146W IDS2 

YKR054C DYN1 
 

 YJL159W HSP150 

YLL006W MMM1 
 

 YJL215C YJL215C 

YLL040C VPS13 
 

 YJR048W CYC1 

YLL049W LDB18 
 

 YJR053W BFA1 

YLR014C PPR1 
 

 YJR087W YJR087W 

YLR024C UBR2 
 

 YJR091C JSN1 

YLR055C SPT8 
 

 YJR094W-A RPL43B 

YLR182W SWI6 
 

 YJR096W YJR096W 

YLR240W VPS34 
 

 YJR097W JJJ3 

YLR319C BUD6 
 

 YJR135W-A TIM8 

YLR320W MMS22 
 

 YJR151W-A YJR151W-A 

YLR337C VRP1 
 

 YKL065C YET1 

YLR357W RSC2 
 

 YKL093W MBR1 

YLR373C VID22 
 

 YKL106C-A YKL106C-A 

YLR418C CDC73 
 

 YKL137W CMC1 

YML013C-A YML013C-A 
 

 YKL205W LOS1 

YML032C RAD52 
 

 YKR035C YKR035C 

YML112W CTK3 
 

 YLR035C MLH2 

YMR024W MRPL3 
 

 YLR118C YLR118C 

YMR072W ABF2 
 

 YLR125W YLR125W 

YMR116C ASC1 
 

 YLR152C YLR152C 

YMR202W ERG2 
 

 YLR248W RCK2 

YMR294W JNM1 
 

 YLR312C-B YLR312C-B 

YNL025C SSN8 
 

 YLR342W-A YLR342W-A 

YNL170W YNL170W 
 

 YLR435W TSR2 

YNL233W BNI4 
 

 YMR143W RPS16A 

YNL250W RAD50 
 

 YMR269W TMA23 

YNL298W CLA4 
 

 YMR307W GAS1 

YNL304W YPT11 
 

 YNL069C RPL16B 

YNR010W CSE2 
 

 YNL173C MDG1 

YOL081W IRA2 
 

 YNR045W PET494 

YOR035C SHE4 
 

 YNR052C POP2 

YOR039W CKB2 
 

 YNR057C BIO4 

YOR058C ASE1 
 

 YOL012C HTZ1 

YOR106W VAM3 
 

 YOL013C HRD1 

YOR139C YOR139C 
 

 YOL024W YOL024W 

YOR231W MKK1   YOL027C MDM38 
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Negative interactors   Positive interactors 

Systematic 
name 

Standard 
name   

Systematic 
name 

Standard 
name 

YOR246C ENV9 
 

 YOL037C YOL037C 

YOR269W PAC1 
 

 YOL045W PSK2 

YOR299W BUD7 
 

 YOL046C YOL046C 

YOR311C DGK1 
 

 YOL048C RRT8 

YPL002C SNF8 
 

 YOL067C RTG1 

YPL023C MET12 
 

 YOL072W THP1 

YPL057C SUR1 
 

 YOL092W YPQ1 

YPL155C KIP2 
 

 YOR006C TSR3 

YPL174C NIP100 
 

 YOR044W IRC23 

YPL264C YPL264C 
 

 YOR061W CKA2 

   
 YOR078W BUD21 

   
 YOR108W LEU9 

   
 YOR111W YOR111W 

   
 YOR195W SLK19 

   
 YOR242C SSP2 

   
 YOR330C MIP1 

   
 YOR364W YOR364W 

   
 YPL022W RAD1 

   
 YPL139C UME1 

   
 YPL158C AIM44 

   
 YPL227C ALG5 

   
 YPL272C PBI1 
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DVD 

 

The print-version of this thesis contains an additional DVD. The enclosed DVD is divided into the 

directories:  

 

…/Mitophagy Screen  contains Table S1 

…/myo2(LQ) SGA scores contains Table S2 

…/Thesis contains a PDF document of this thesis and of the summary in English 

and German 

 

Table S1. List of strains screened for mitophagy positive cells with corresponding mitophagy rates. 

Strains were ordered according to their mitophagy rate. Values represent the mean of at least two 

independent experiments, in which at least 100 cells were scored for red vacuolar fluorescence. 

Figure 8A is based on these data. 

 

Table S2. List of genetic interaction scores derived from two independent replicates of an SGA 

screen with myo2(LQ) as a query strain. Strains were ordered according to their genetic interaction 

score. Data were acquired as described in the Materials and Methods section (‘Synthetic genetic 

array’ and ‘SGA data acquisition’). Figure 23C and D are based on these data.  
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