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Abstract— Voltage rise is an undesirable side-effect of solar
photovoltaic (PV) generation, arising from the flow of surplus
electrical power back into the grid when PV generation exceeds
local demand. Customers deploying residential-scale battery
storage are likely to further exacerbate voltage rise problems
for electrical utilities unless the charge/discharge schedules
of batteries is appropriately coordinated. In this paper, we
present a real-time pricing mechanism for use in a network of
distributed residential energy systems (RESs), each employing
solar PV generation and battery storage. The pricing mech-
anism proposed in this paper is based on a Market Maker
algorithm in which predicted power profiles and real-time
pricing information is iteratively exchanged between a central
entity and each of the RESs. The Market Maker formulation
presented in this paper is shown via simulation studies to
converge to a fixed price vector, thereby reducing the price
volatility observed in an earlier formulation, while achieving
the same reduction in power usage variability as a centralised
model predictive control (MPC) scheme presented previously.

I. INTRODUCTION

Widespread deployment of solar photovoltaics (PV) at
the residential level can cause network difficulties in the
form of voltage rise caused by households generating more
power than they consume; e.g., in the middle of a sunny
day while the residents are not at home. If in addition solar
PV is augmented with residential battery storage, voltage
rise problems may well be exacerbated by multiple batteries
discharging to the grid at the same time as local generation
already exceeds the local load. Hence, an important question
is: how to schedule battery storage?

A natural performance metric in this context is the reduc-
tion in variation of the grid usage profile or, in other words,
the achieved reduction in power demand variability relative
to the average demand over some time window. In [1],
[2], we presented centralised, decentralised, and distributed
model predictive control (MPC) schemes aimed at reducing
this deviation. Here, we differentiate between decentralised
control, where any individual residence chooses how to
schedule its battery without any external information, and
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distributed control where some level of communication be-
tween residences is permitted. Not surprisingly, in [2], it is
observed that the centralised MPC scheme performs better
than the distributed MPC scheme which, in turn, performs
better than the decentralised MPC scheme.

As a result of the curse of dimensionality, the centralised
MPC scheme presented in [2] does not scale up to a
large number of residences. Hence, in [3], we developed a
hierarchical distributed optimisation algorithm that recovers
the performance of the centralised MPC scheme. However,
the algorithm presented in [3], similar to the centralised MPC
scheme of [2], is essentially a cooperative scheme whereby
all residences cooperate to achieve the goal of reducing
network deviation from the average.

By contrast, the distributed MPC scheme of [2] is based on
a real-time pricing mechanism referred to as a Market Maker
[4], [5]. In this scheme, an iterative process is employed
whereby residences communicate predicted power profiles to
a central entity that computes prices that are then broadcast to
all residences. This process is repeated a number of times.
A drawback of the Market Maker proposed in [2] is that
this iterative process may not converge to a fixed price
vector, with the possibility of marked price volatility from
one iteration to the next.

In this paper, we present an alternate Market Maker
formulation that, at least in simulation, appears to converge
to a fixed price vector. Furthermore, using this new Market
Maker, we provide simulation results which recover the
performance of the centralised MPC scheme.

The paper is organised as follows. In Section II we
introduce the mathematical model of the Residential Energy
System (RES) and define the desired performance metrics.
The centralised MPC approach is presented in Section III and
our new Market Maker algorithm is described in Section IV.
A simulation study using data from an Australian electricity
distribution company, Ausgrid, is undertaken in Section V.
Concluding remarks are provided in Section VI

II. THE RESIDENTIAL ENERGY SYSTEM

We consider Residential Energy Systems (RESs) com-
prised of residential load, generation, battery storage, and
a connection to the electricity network. Let Z € N be the
number of RESs in the local area under consideration. A
simple model of RES 4, i € {1,...,Z}, is given by

zi(k) = w;(k) 4+ u; (k) ()



where z; is the state of charge of the battery in kilowatt-hours
(kWh), u; is the battery charge/discharge rate in kilowatts
(kW), w; is the static load minus the local generation in
kilowatts, and z; is the power supplied by/to the grid in kilo-
watts. Here, T represents the length of the sampling interval
in hours. While the system dynamics (1) is autonomous,
the performance output (2) depends on the time varying
quantity w;(-).

The RES network is then defined by the following
discrete-time system

z(k+1) =
z(k) =

f(@(k), u(k)),
h(u(k), w(k))

where z,u,w,z € RZ, and the definitions of f and h are
given componentwise by (1) and (2), respectively. For each
RES i € {1,...,Z}, the constraints on the battery capacity
and charge/discharge rates are described by the constants
C;,u; € Ryg and u, € Ry, i.e.,

Our aim is to design a pricing mechanism so as to avoid
peaks in supply and demand or, put another way, to flatten
the performance output z. To this end, let

1 T
T(k) = = Zzi(k)

denote the average power demand at time & and let A denote
the number of samples in a simulation. The performance met-
ric of peak-to-peak (PTP) variation of the average demand
of all RESs is given by

( max H(k)> - < min H(k)> . (PTP)
ke{o0,....N —1} ke{0,...N—1}

The second performance metric of the root-mean-square
(RMS) deviation about the average is defined as

1 N-1
w2 (k) =7)° (RMS)
k=0

with the average demand 1" := A%I ZQ[;Ol ZiI=1 w; (k).

III. CENTRALISED MODEL PREDICTIVE CONTROL

We recall the model predictive control (MPC) algorithm
for the control of a network of RESs introduced in [2]
and [1], respectively. This approach is a centralised MPC
(CMPC) scheme, in which full communication of all relevant
variables for the entire network as well as a known model
of the network are required.

MPC iteratively minimises an optimisation criterion with
respect to predicted trajectories and implements the first
part of the resulting optimal control sequence until the next
optimisation is performed (see, e.g., [6] or [7]). To this end,
we assume that we have predictions of the residential load
and generation some time into the future that is coincident
with the horizon of the predictive controller. In other words,
given a prediction horizon N € N, we assume knowledge

of w;(j) for j € {k,...,k+ N — 1}, where k € Ny is the
current time.

To implement the CMPC algorithm, we compute the
network-wide average demand at every time step k over the
prediction horizon by

k+N—-1

. 11 ,
(k) ::fzﬁ Z wi(j) —zi(k) | . @)

i=1 j=k
After the average demand is computed, the joint cost function

hN—-1 1 Z )

Via(k): k) = min 37 () = 730 (wil) + () )

j=k i=1 o

2i(5)
is minimised with respect to the predicted control in-
puts ﬁ() = (ﬂ1(~),ﬁ2(-),...,ﬂ1(~)>T with ﬁl() =
(@ ()52 i € {1,2,...,T}, subject to the system
dynamics (1), the current state x(k) = (21 (k),...,2z(k))T,
terminal constraints Z(k+N) = Zeng, and the constraints (3)
for i € {1,...,Z}. The vector of the predicted performance
output Z(-) is defined in the same way as the predicted
control %(-). Explicitly, we use the hat notation to denote
predicted values, with the absence of a hat denoting the
actual value. Additionally we use the notation wu(j) =
(u1(4),...,uz(j))" for a fixed time j € N. The same holds
for the other variables x, w, and z.

IV. AN IMPROVED MARKET MAKER SCHEME

The CMPC approach contains an implicit assumption
that individual RESs willingly contribute to the goal of the
grid operator, i.e., reducing variance in electricity supply.
However, the benefit to an individual RES of such a scheme
is separate to any price mechanism. Here, we will design a
real-time pricing mechanism that recovers the performance
of the CMPC scheme and which corresponds to the natural
behaviour of an RES, namely minimisation of cost.

We assume that the price for energy at a fixed time is
given by a quadratic function [ : I C R — R of the form

I(z;b) = T'p(z+a1(b—z)2+cb), z<b
Tl Top(rta(z—b) 4 w), 2>b

where ¢, € R is given by

—b2. al,

Cp =
b { —bz'ag,

and depends on the parameter b while p, aj, a; € RT are
positive constants. Note that ¢; is defined so that I(0;b) = 0
holds. The function ! needs to be monotonically increasing
to capture the fact that increasing energy usage incurs
increasing costs. Hence, we restrict the domain to I =
[b—a;t/2,00). In this case, I(z;b) > 0 for all z > 0 and
[(z;b) < 0 for all z < 0; i.e., energy demand produces costs
and energy production leads to a profit.

The parameter b defines a variable threshold. An energy
demand smaller than the threshold is penalised with addi-
tional costs aj - (z —b)? while an energy demand bigger than
the threshold is penalised by as - (z — b)2. In other words,

ifb>0
itb<0



both excessive usage and excessive generation are penalised,
dependent on the threshold b. The constant p is not necessary
for the analysis of the cost function but is used to scale the
costs to realistic energy prices.

We assume that the parameter b is time dependent and can
be chosen by the Market Maker. Minimising the energy costs
for an individual system in an MPC context can be achieved
by minimising the cost function

k+N-—-1

v(zib) = Y Uz(5);0()- 5)
j=k

The question which has to be addressed by the Market Maker
is how to choose the parameters b(j) to achieve the same
value of PTP and RMS as obtained by CMPC.

Assuming that z;(j) > 0 implies costs and z;(j) < 0
yields a profit, it is clear that each RES wants to have
a fully discharged battery at the end of the prediction
horizon, i.e., Z;(k + N) = 0 in order to minimise cost
or maximise profit. Hence, the average energy consumption
= Zizzl > L.:,ivfl 2;(4) during the prediction window cor-
responds to (k) given by (4), and thus, does not depend
on the individual strategies of the RESs as long as each
RES follows the paradigm of profit maximisation. In order to
make a fair comparison between the Market Maker algorithm
and CMPC, we set the terminal constraint in the CMPC
scheme to be Z(k + N) = xeng = 0.

The idea behind the choice of b(j), j € {0,...,N — 1},
is to penalise the deviation from the average ((k). Here,
we assume that the Market Maker knows the desired power
profile 2; = (2,(4))520 " If

_ 1 & _ 1
k) = 2D &) >0 (c(k) -2 a0 < 0)
i=1
holds, the RESs should be motivated to use more (less)
energy, i.e., b(j) should be increased (decreased).

Note that no information on the battery capacity, the
charging rate, the load data w(k), w(k+1),...,w(k+N—1),
or the initial state of the batteries is transmitted to the Market
Maker, and the energy demand of an RES is the outcome of
its own optimisation. The scaling factor x, computed in (7)
below, guarantees boundedness of the threshold values.

Algorithm 4.1: Set the iteration index ¢ = 0, the maximal
iteration number /.« € N, and a bound by, € RT.
Initialisation: The Market Maker collects the desired power

profile 20 = (2?(]‘))?:571, i € {1,2,...,Z}, from each

RES i, computes ((k), and sets b° = ({(k),...,C(k)T.
(1) Increment the iteration index ¢ by one.
(2) The Market Maker computes the average predicted

energy demand at time j, j € {k,1,...,k+ N —1}:
Iy 1 ¢ Sl—1
') == 2% (4)
(3) The Market Maker sets
b(j) = b1 () + (C(k) — (), (6)

computes the scaling factor

max;—o,...N—1|(((k) — II(j))|
max;—o,.. n—_1|b¢(j)]

R = bmax (7)
for j =k, k+1,...,k+ N — 1, and broadcasts & - b’
to the RESs.

(4) Each RES determines its energy usage profile by
solving an optimal control problem, i.e.

sl
Z =

argmin v(2;; k - bY)
S.t. i‘L(k) =0
,(J+1) =25
2i(J) = wi(j) +
Vi=k,....,k+ N

and sends 2! to the Market Maker.
(5) If £ < Liax g0 to step (1). Otherwise, return °.

V. NUMERICAL RESULTS

In this section we compare the performance of CMPC with
the performance of Algorithm 4.1. Additionally we show the
benefits of Algorithm 4.1 in terms of a price interpretation.
All simulations use a setting of 30 RESs, initial conditions
x;(0) = O[kWh], constraints u; = —u,; = 0.3[kW] and C; =
2[kWh], a discretisation of 7' = 0.5[h], and a simulation
length of A/ = 387. (N is chosen such that x;(387) = 0 for
all i € {1,...,Z} holds.)

A. Performance of the improved Market Maker scheme

z [kW]

0 5 10 15 20
time in [h]

Fig. 1.  Open loop solution of the aggregated power demand
%Zizzl 2:(9) (j =0,...,47) of CMPC (red) and Algorithm 4.1
(top) and the difference between the open loop CMPC solution and
Algorithm 4.1 (bottom). The blue line is with bmax = 50 and the
black line with bmax = 100.

Figure 1 compares the (open loop) solution at a fixed time
step of the aggregated power demand %Zil Z() (4 =
0,...,47) solved with CMPC and Algorithm 4.1 with two
values of byax; bmax = 90 and b,.x = 100. We observe that
the solution of Algorithm 4.1 is close to the CMPC solution
and the difference appears to decrease with increasing by, x-



Additionally, the parameters p = 0.3, a3 = 5 - 102 and
as = 2-1072 for bypax = 50, and p = 0.3, a; = 5107
and ay = 2 - 1073 for byax = 100 are used in Algorithm
4.1 to ensure that the cost function [(z;b) is monotonically
increasing on the given data set. Note that according to our
numerical experience the parameters p, a;, and as are not
important for the performance of the algorithm as long as the
monotonicity assumption holds. The specific values chosen
here provide reasonable prices when £(z; b) is assumed to be
given in cents per kWh. The differences with respect to our
performance metrics for the three settings are negligible (cf.
Table I).

[ Method “ PTP [ RMS ]
Uncontrolled 1.3362 | 0.2281
CMPC 0.7362 | 0.0711
Alg. 4.1, bypae = 50 0.7362 | 0.0712
Alg. 4.1, bz = 100 0.7362 | 0.0711

TABLE I
PERFORMANCE OF THE DIFFERENT MPC SCHEMES.

B. Benefits for individual RES in terms of energy prices

Algorithm 4.1 recovers the performance of CMPC by
solving the problem in a distributed fashion where each RES
solves its own optimal control problem. Additionally the cost
function can be interpreted as actual energy prices. Figure
2 shows the time varying prices for 1[kWh] of continuous
usage in the corresponding time interval of 30 minutes and
the parameters connected to by, = 50.
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Fig. 2. Half hourly time varying prices (in cents) for continuous

usage of 1[kWh].

Not only does our proposed scheme meet the goal of the
grid operator, i.e., flattening the aggregated power demand,
but also the individual RESs can benefit from increasing
their battery capacity to lower their electricity costs. Figure 3
shows the reduction of the electricity costs of RES 1 and
the impact on the other RESs, if the battery size of RES
1 is given by C; = 2 - ¢ and charging/discharging rate
Uy = —uy; =0.3-cforc=0,...,5. The energy consumption
of RES 1 during the simulation is 126[kWh]. The average
energy consumption of the other systems is 92[kWh]. In
Table II the costs for energy with changing battery sizes
are given.

We observe that the installation of additional capacity
provides a benefit to RES 1, albeit with a diminishing return.
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Fig. 3. Cost reduction of the RESs if RES 1 (blue line) increases

the battery capacity from 0 to 10 in steps of 2.

The impact on the other systems is mixed. On the one
hand, the installation of additional capacity results in lower
prices since the overall network deviations are reduced. On
the other hand, RESs who previously benefited from selling
power at high prices see a reduction in their profit.

VI. CONCLUSION

In this paper, we have presented a novel real-time pric-
ing mechanism for networks of residential energy systems
(RESs) with the aim of reducing variation in network us-
age. This pricing mechanism is based on a central Market
Maker entity that sets prices based on individual predicted
usage. Simulations indicate that, when each RES acts so as
to minimise its cost, this pricing mechanism recovers the
performance of a centralised optimal control algorithm.
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Battery Capacity RES; av. RES2_3¢
Cy [kWh] ® ($)
0 42.5720 30.8757
2 41.4419 30.8617
4 40.5828 30.8474
6 39.9673 30.8283
8 39.5356 30.8048
10 39.2373 30.7848
TABLE II

ENERGY COSTS FOR RES1 AND THE AVERAGE OF THE COSTS FOR THE
OTHER RESS DEPENDING ON THE BATTERY CAPACITY OF RES;.



