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Abstract

The present thesis is concerned with the photoionization dynamics of atoms exposed
to high intense and ultrashort XUV-laser pulses of free-electron lasers. In particular,
the influence of coherent dynamics of the electrons as well as the electron-electron
interaction are in focus of this survey and the resulting signatures as Rabi oscillations and
characteristic spectra of photoelectrons are analysed. Furthermore, different levels of
theory are applied for one-dimensional model atoms, providing a systematically manner
to pinpoint the features induced by coherent and correlated electron dynamics. To
this end, the exact solution of the time-dependent Schrödinger equation is determined
numerically for a two electron system. To surmount the limitation of the latter to
systems with a small number of electrons, the time-dependent reduced density matrix
formalism is implemented on the Hartree-Fock level as well as one level above and
thus accounts also for a correlated electron-electron interaction. Furthermore, for the
ionization of resonantly driven atomic bound states an extended two level system is
discussed, resulting in an analytic solution.

As a prime example of coherent quantum dynamics Rabi oscillations are studied in
a two electron atom for a resonant laser coupling between the ground state and an
excited bound state. In addition a single-photon absorption of the model atom in the
excited bound state gives rise to an ionization process. It was found that the ground
state occupation as a function of time exhibits damped Rabi oscillations. The ionization,
which induces the damping, scales linearly with the field intensity. For the ion yields
induced by a finite laser pulse a quadratic intensity scaling is observed for pulse lengths
below the Rabi period. Consequently, at a critical pulse area the onset of Rabi cycles
induces a transition between a quadratic and linear intensity scaling in the ion yields. In
the high intensity regime the comparison between the results of a simplified solvable
model, including only two bound states coupled to the ionization continuum, and the
exact solution of the time-dependent Schrödinger equation reveals that the further
excited localized states and the direct two-photon ionization of the ground state carry
a non negligible contribution to the total ionization yields. Besides, a shift of the Rabi
frequency compared to its value for an isolated level is found. The analytic solution of
the simplified model manifests that the shift is related to the ionization. Thus, the higher
ion yields observed for the time-dependent Schrödinger equation affect the respective
Rabi frequency, acquiring a high renormalization of the Rabi frequency of an isolated
system.

Investigations for an off-resonant excitation prove that the basic dependency of
the Rabi amplitudes and of the Rabi frequencies on the detuning coincides with the
one known for the isolated two level system. The detuning additionally affects the
renormalization of the Rabi frequency. Depending on the sign of the detuning a Rabi
frequency larger or smaller than in the isolated two level system is observed. However,
the direct two-photon ionization of the ground state gains in importance already at
small intensities compared to the resonant excitation and affects the intensity scaling
of the ion yields. In particular, for a large detuning the transition from a quadratic to a
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linear intensity scaling is determined by a competition between the direct two-photon
ionization and the Rabi-assisted ionization instead of the critical pulse area needed for
one Rabi cycle. For a fixed detuning the respective intensity at which the transition occurs
is the same for all pulse durations as long as the ion yields do not reach the saturation
regime. In addition, also signatures of the coexistence of different Rabi processes are
observed as beats in the time evolution of the occupation of the ground state.

The influence of correlated electron dynamics on the ionization process has been
studied for a laser excitation in the vicinity of the single-photon ionization threshold
of a helium model. The comparison between the time-dependent Hartree-Fock theory
and the exact numerical solution of the Schrödinger equation reveals that correlation
effects gain in importance at a high radiation intensity with a photon energy close to
the threshold and strongly affect the time evolution of the ground state population.
Furthermore, the momentum distributions of the electrons emitted in a double ionization
process have been analysed. The characteristic signatures of different double ionization
processes allow to separate their respective parts in the total double ionization yield. In
case of the coexistence of a sequential two-photon and a non-sequential three-photon
double ionization the individual ion yields scale quadratically and cubically with intensity.
However, even though the three-photon double ionization dominates at high intensities
its signature is not observed in the total ion yields. Instead, a power law with an exponent
between two and three is found. Studying the temporal evolution of the two-electron
momentum distribution reveals a broad peak at short times which becomes narrower
with ongoing time. This feature reflects the energy-time uncertainty and indicates a
strong coherent regime at short times. A further analysis of the temporal evolution of
the double ionization yields for both electrons leaving the atom in the same direction
exhibits signatures of a recapture process.

Finally, the time-dependent reduced density matrix formalism is applied for an atom
interacting with an ultrashort laser pulse. To this end, the Bogolyubov-Born-Green-
Kirkwood-Yvon hierarchy is truncated one level above the mean field level and therefore
correlations between electrons are included. The reduced one particle matrix and the two
particle correlations are represented by the finite element discrete variable representation.
The numerically obtained time traces of the Hartree-Fock orbitals forming the ground
state are analysed for two, four and six electron atoms excited by an intense ultrashort
XUV laser pulse. In order to identify correlation induced processes in the ionization
dynamics, results for correlated electrons are compared with the time-dependent Hartree-
Fock theory. In this manner, signatures of the shake-off ionization process and the Auger
decay are found in the time evolution of the occupation of the Hartree-Fock orbitals.
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Kurzfassung

Ziel dieser Arbeit ist die theoretische Behandlung der Photoionisation von Atomen durch
hoch intensive Femtosekunden-XUV-Laserpulse von Freien-Elektronen-Lasern, wobei
Einflüsse auf den Ionisationprozess durch kohärente Dynamik der Elektronen sowie
der Wechselwirkung zwischen den Elektronen im Mittelpunkt der Untersuchungen ste-
hen. Deren Auswirkungen, wie Rabioszillationen und charakteristische Spektren der
Photoelektronen, werden in eindimensionalen Atommodellen auf unterschiedlichen
Ausbaustufen der Theorie diskutiert. Der Vergleich zwischen Ergebnissen für verschiede-
ne Ausbaustufen der Theorie ermöglicht eine systematische Analyse der Einflüsse von
kohärenter Dynamik und der Elektron-Elektron-Wechselwirkung auf die Ionisation. Im
Speziellen wird für ein Zweielektronenatommodell die exakte Lösung der zeitabhängigen
Schrödingergleichung numerisch bestimmt. Um deren Begrenzung auf Atome mit einer
geringen Anzahl an Elektronen zu überwinden, wird die Anwendung des zeitabhängi-
gen Formalismus der reduzierten Dichtematrix auf die Photoionisation erprobt. Diese
Theorie wird auf der Hartree-Fock Stufe sowie auf einer Ausbaustufe, die Korrelationen
der Elektronen berücksichtigt, implementiert. Die analytische Lösung eines erweiterten
Zweiniveausystems unterstützt die Untersuchung einer resonante Anregungn zweier
gebundener atomarer Zustände und deren Ionisation.

Als Paradebeispiel für kohärente Quantendynamik werden Rabioszillationen in einem
Zweielektronenatom für eine resonante Laserkopplung zwischen dem Grundzustand
und einem angeregten gebunden Zustand analysiert. Der angeregte Zustand kann durch
die Absorption eines Photons ionisiert werden. Die Grundzustandsbesetzung des Atoms
zeigt gedämpfte Rabioszillationen, wobei die Dämpfung eine unmittelbare Folge der
Ionisation des angeregten Zustands darstellt und linear mit der Intensität des Lasers
skaliert. Im Fall einer kleinen Pulsfläche, die keinen abgeschlossen Rabizyklus induziert,
zeigt die Ionisation als Funktion der Laserintensität eine quadratische Abhängigkeit.
Das Einsetzen der Rabioszillationen bei einer kritischen Pulsfläche bedingt daher einen
Übergang zwischen quadratischen und linearen Skalierungsverhalten der Ionisation
bezüglich der Intensität. Für extrem hohe Intensitäten ergibt der Vergleich zwischen
Ergebnissen eines vereinfachten Modells, das ein Zweiniveausystem an ein Kontinuum
koppelt und der zeitabhängigen Schrödingergleichung, dass weitere in der exakten
Lösung enthaltene gebundene Zustände sowie die direkte Zweiphotonenionisation des
Grundzustandes einen zusätzlichen Beitrag zur Ionisation leisten. Außerdem weicht die
im Modell ermittelte Rabifrequenz von der eines isolierten Zweiniveausystems ab. In der
analytischen Lösung des vereinfachten Modells ist die Frequenzverschiebung eine direkte
Folge der Ionisation. Daher beeinflusst die hohe Ionisation in der exakten Lösung die
Rabifrequenz und führt zu einer starken Renormalisierung bezüglich der Rabifrequenz
eines isolierten Zweiniveausystems.

Weitere Analysen für den Fall einer offresonanten Kopplung zweier atomarer Zustände
zeigen ähnliche Abhängigkeiten der Amplitude und der Frequenz der Rabi Oszillationen
von der Verstimmung des Lasers bezüglich der Resonanzenergie wie in einem isolierten
Zweiniveausystem. Zudem beinflusst die Verstimmung die Renormaliserung der Rabi-



IV

frequenz. In Abhängigkeit von deren Vorzeichen wird meistens eine größere wie auch
kleinere Rabifrequenz als in einem isolierten Zweiniveausystem gefunden. Daneben
beobachtet man im Vergleich zu einer resonanten Anregung einen größeren Einfluss der
direkten Zweiphotonenionisation des Grundzustandes auch bei niedrigen Intensitäten.
Dieser wirkt sich auf den Übergang von einer quadratischen zu einer linearen Inten-
sitätsabhängigkeit der Ionisation aus. Anstelle des Arguments der Pulsfläche, das für
kleine Verstimmungen ähnlich wie bei resonanter Anregung den Skalierungsübergang
auszeichnet, bestimmt für eine stärkere Verstimmung die Konkurrenz zwischen direkter
Zweiphotonenionisation und Rabi-assistierter Ionisation das Skalierungsverhalten des
Ionenertrages. Zudem erweisen sich Schwebungen im Zeitverlauf der Besetzung des
Grundzustandes als Signatur einer Koexistenz zweier Rabiprozesse.

Um Auswirkungen von Korrelationen zwischen Elektronen zu analysieren, wird die
Photoionisation eines eindimensionalen Helium Atommodels in der Nähe der Einphoton-
ionisationsschwelle untersucht. Der Vergleich zwischen der zeitabhängigen Hartree-Fock-
Theorie und der exakten Lösung der Schrödinger Gleichung zeigt, dass knapp über der
Einfachionisationsschwelle für hohe Intensitäten starke Korrelationseffekte auftreten
und den Zeitverlauf der Grundzustandsbesetzung stark beeinflussen. Zudem werden
die verschiedenen Doppelionisationprozesse anhand ihrer charakteristischen Impulsver-
teilung zwischen den abgegebenen Elektronen identifiziert. Bei einer Koexistenz von
nichtsequentieller Zwei- und sequentieller Dreiphotonendoppelionisation zeigen die je-
weiligen Ionenerträge eine quadratische und kubische Intensitätsabhängigkeit. Dennoch
resultiert die Dominanz des Dreiphotonenprozesses bei hohen Intensitäten nicht in das
erwartete kubische Skalierungsverhalten der gesamten Doppelionisation. Stattdessen
folgt die Intensitätsabhängigkeit der gesamte Doppelionisation einem Potenzgesetz mit
einem Exponent zwischen zwei und drei. Des Weiteren zeigt die Impulsverteilung der
freien Elektronen zu kurzen Zeiten ein breites Maximum, das mit fortschreitender Zeit
schmäler wird. Diese Signatur der Energie-Zeit-Unschärfe weist auf ein kohärentes Re-
gime bei kurzen Zeiten hin. Eine Analyse des Anteils der Doppelionisation bei dem beide
Elektronen das Atom in dieselbe Richtung verlassen zeigt Hinweise darauf, dass durch
die Coulomb-Abstoßung zwischen den Elektronen eines von ihnen wieder vom Kern
eingefangen wird.

Der zeitabhängige Dichtematrix-Formalismus wurde zur Modellierung der Wechselwir-
kung zwischen einem eindimensionalen Atom Modell und einem ultrakurzen Laserpuls
angewandt. Dafür wurde die Bogolyubov-Born-Green-Kirkwood-Yvon Hierarchie eine
Stufe über der Hartree-Fock Stufe abgebrochen, wodurch Korrelationen zwischen den
Elektronen berücksichtigt werden. Als Basisfunktionen für die Darstellung der reduzier-
ten Ein- und Zweiteilchen Dichtematrizen wird eine Finite-Elemente-Methode verwendet.
Die numerischen Ergebnisse für die Ionisation von Zwei-, Vier- und Sechselektronenato-
men werden anhand der Besetzungen der Hartree-Fock-Orbitale des Grundzustandes
als Funktion der Zeit analysiert. Um durch Korrelationen induzierte Prozesse in der
Ionisation zu identifizieren, werden Ergebnisse für korrelierte Elektronen mit denen der
Hartree-Fock-Stufe verglichen. Auf diese Weise konnten Signaturen gefunden werden,
die auf Shake-off-Ionisation und Augerzerfälle hinweisen.
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I
Introduction and

motivation

The present thesis is part of the project “Changing of atomic form factors by ultrashort
intensive x-Ray pulses and their influence on X-ray scattering-patterns” 1, which accounts
for the new and extraordinary conditions for X-ray scattering experiments provided
by free-electron lasers (XFEL) in the extreme ultraviolet (XUV) and X-ray regime. In
contrast to common X-ray synchrotrons, for the novel XFEL sources one pulse is sufficient
to record a scattering pattern but also alters the target to a high degree [115]. Due
to the high photon flux of an XFEL, the target atom is expected to undergo multiple
photoionization, excitations and relaxations. Therefore, the assumption of the atoms
as static scatterers during the interaction with the radiation of an XFEL might lose its
general validity [59]. In addition, signatures of the dynamics of the electrons could
appear in the scattering signal. Within this framework the thesis elaborates on the
theoretical description of the time evolution of the photoionization, elaborating the
influence and need of coherent and correlated electron dynamics.

1Orginal german title: " Veränderung atomarer Formfaktoren durch ultrakurze intensive Röntgenpulse
und deren Auswirkungen auf Röntgenbeugungsmuster“.



2 I. Introduction and motivation

I.1 Opportunities of free-electron-lasers

The new generation of free-electron lasers provides radiation with extreme high intensi-
ties, ultrashort femtosecond pulse durations and a high coherence for photon energies
reaching from the XUV to the hard X-ray regime. Until now exist four running facilities
providing XUV photons (FLASH in Hamburg, Germany and FERMI in Trieste, Italy) and
hard X-rays (the LCLS in Stanford, USA and SACLA in the Hyogo Prefecture, Japan). A
detailed list of facilities in construction can be found in reference [127]. The concept of
creating coherent light with free-electron lasers has been developed [99] and realised
[31] about four decades in the past. It is based on the interaction between a relativistic
electron beam and electromagnetic waves both passing through a periodical magnetic
field. Its huge advantage in comparison with standard lasers rises upon the in principle
continuously tunable photon energy over an large range accessing also the XUV and
X-ray regime. The high requirements on the quality of the electron beam and the lack of
mirrors for X-rays had limited the application to infrared and optical light waves using a
external cavity for amplification. Nevertheless developments in accelerator technology
enabled the first realisation of a FEL in the XUV regime at the TESLA Test Facility [4, 10]
using self-amplified spontaneous emission (SASE) [80], followed by FLASH [1, 9], LCLS
[38], FERMI [2] and SACLA [174]. The photon-beam characteristics [1] of those facil-
ities outmatch the one of standard synchrotrons by magnitudes reaching more than a
1000 times higher peak brilliance2. A XFEL pulse can carry 1013 photons per pulse with a
peak power of several gigawatts and a duration of 25-500 femtoseconds [1, 2, 9, 38]. In
spite of the impressive and extraordinary performance, the operation of XFELs has just
started and is therefore still cumbersome, stimulating further developments. The SASE
principle causes fluctuations in the intensity and pulse shape of the XFEL pulse, because
it is initiated by noise [1, 9, 144]. In order to improve this deficit seeding schemes are
applied, triggering the amplification by an external seed signal [2, 3, 176]. Substantial
progress has been achieved in the characterisation of individual XFEL pulses via terahertz
streaking [50] and cross-correlation techniques [34]. Furthermore, recent achievements
[30] in focusing the radiation enable pulses with intensities up to 1017 W/cm2 and
propose that a value of 1019 W/cm2 is within reach.

With these unique properties the XFELs enable new possibilities for imaging nano and
atomic structures, the observation of ultra fast dynamics and exposing matter to extreme
conditions. The possibility of imaging nano and atomic structures in the noncrystalline
phase is of great interest and has been considered in the year 2000 to be achieved with
radiation provided by an XFEL [115]. On the one hand the coherence of the radiation
and the high number of photons per pulse induce a sufficient number of scattering
events to record a coherent diffraction pattern with a single shot. Additionally, the
ultrashort pulse duration assures that the destruction of the structure of the sample
caused by the radiation damage is not affecting the scattering process, also denoted

2Brillance is also denoted as brightness and defined as photons s−1 mm−2 mrad−2 per 0.1% spectral
bandwidth.
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as ”diffracting before destroying”. This scheme has been predicted theoretically for a
range of photon energies, covered by the recent XFELs and targets as nano-structured
materials, molecules, clusters and proteins [17, 58, 61, 115] and was first realised
2006 at FLASH in Hamburg [23]. In the latter the far field intensity diffraction pattern
has been recorded and iterative phase retrieval techniques [42, 106] were applied to
reconstruct the structure of the sample. Further imaging experiments at FLASH and LCLS
[18, 24, 104, 155], pave the way for a recent achievement at the LCLS. In a bio-medical
investigation of the structure and mechanism of the enzyme Trypanosoma brucei cysteine
protease cathepsin B, important contributions to develop therapies against the sleeping
sickness [125] were achieved.

Furthermore, both the short pulse duration and the short wavelength of the XFEL
radiation have led to exciting investigations of dynamic phenomena, providing high
temporal and spatial resolution. Different schemes of pump-probe experiments have
been established, in which the XFEL pulse often serves as the probe pulse applying an
X-ray spectroscopy method with a defined time delay to the pump-pulse. The photon
energy of the pump-pulse is chosen with respect to the subject of interest. In particular,
for the observation of magnetic dynamics an optical pump laser is used in combination
with time-resolved resonant X-ray diffraction [33, 120]. This scheme has been applied
to examine the transition from the collinear to the spiral antiferromagnetic phase in
CuO [71]. In another experiment of the same type the initial strongly coupled order
of spin and charge in stripped La1.75Sr0.25NiO4 was driven out of equilibrium by an
optical laser to observe the regeneration of the initial state [25]. Furthermore, the probe
pulse can be utilized for X-ray absorption near-edge spectroscopy instead of resonant
X-ray diffraction, e.g. for studying spin crossover dynamics [95]. Of course also Bragg
peaks in diffraction patterns, recorded by the probe pulse, give insight in the dynamics
of periodic structures, as demonstrated at FLASH [36]. In the latter, lattice vibrations
were induced in a colloidal crystal by an infrared laser and probed with an XUV pulse.
Another desired target are the dynamics of molecules. In particular it was proposed to
gather detailed knowledge about the evolution of chemical reactions. First proceedings
have been achieved by identifying the ionization and dissociation steps of diatomic
iodine molecules exposed to a strong near-infrared laser [82]. Therefore Kriknova et
al. have measured the characteristic kinetic release energy of iodine ion fragments as
a function of the delay time between a near-infrared and XUV pulse. Afterwards they
associated the kinetic release energy with the product resulting from the instantaneous
impact of the XUV pulse on a specific intermediate state in the dissociation process.
Beside iodine also diatomic oxygen and nitrogen molecules have been in focus, applying
XUV-pump-XUV-probe experiments [100, 139].

In the references discussed so far, the XFEL radiation has been mainly utilized as a
unique tool for imaging and tracing physical processes. Moreover, with an XFEL it is
possible to realise unexplored states of matter and access new physical phenomena, in
particular with respect to the plasma state. By irradiating xenon cluster the generation
and dynamics of a nanoplasma was investigated [19, 48, 81] to obtain detailed knowl-
edge of optical properties and relation between cluster size and the initiated Coulomb
expansion. Furthermore, plasmas were also generated by exposing solid samples to XFEL
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radiation. Here, attention was especially paid to the destruction process [46, 60, 169]
and to the extraordinary behaviour, as the transition of aluminium into a transparent
state due to the strong photoionization [114].

I.2 Photoionization of atoms with XFEL-radiation

Since the photoionization of atoms is present in many applications of XFELs and starts
the destruction process to obtain detailed knowledge about it is of importance. A
very fundamental and basic situation for the understanding of photoionization by XFEL
radiation is the interaction between the intensive femtosecond X-ray pulse and an isolated
atom. In contrast to the ionization induced by infrared and optical lasers, in which the
Coulomb field of the atomic core is bend by the strong electric field of the laser enabling
tunnel ionization and mainly interacting with valence electrons, the photons of XUV and
X-ray radiation have sufficient energy to release electrons of the inner shell of the atom
by the absorption of only a few or even one photon.

The photoionization of rare gases exposed to high intense ultrashort XUV and X-ray
pulses has been in focus in a couple of experiments, primarily detecting the created
ions using ion time-of-flight spectroscopy [129, 136, 137, 157, 158, 170, 175]. This
method measures the yields of different charged ions and mostly deduces the dominating
processes from the intensity dependence of the respective ion yield. Perturbation theory
predicts a power law for the ion yield induced by a photoionization process with XUV
and X-ray photons, in which the base is given by the intensity and the exponent by the
number of involved photons.

First realisations of this scheme at FLASH in the XUV regime [158, 170] using neon
at photon energies of 38.4 eV and 42.8 eV, argon and xenon at 12.7 eV and intensities
up to 1014 W/cm2 indicated that sequential multiphoton ionization of electrons is the
dominating process. Thereby one electron after the other is ejected, always absorbing
the minimal amount of photons, necessary to access the next higher charged ion state,
instead of the direct instantaneous release of two or more electrons at once. Additionally,
due to the applied low photon energy, the ionization starts with the most outer, only
lightly bound electrons. In an experiment with neon and 230-340 fs X-ray pulses at the
LCLS [175] the same behaviour was found in the case of 800 eV, where only the L-shell
electrons can be ripped off. For these excitation conditions the ion yield as a function
of ionic charge state decreases monotonic. On the contrary the higher applied photon
energies of 1050 eV and 2000 eV were able to release also the K-shell electrons. The
preferred ejection of K-shell electrons creates a ”hole” in the electronic configuration
which subsequently decays by the ejection of an Auger electron. This process results in a
higher probability of the atom to end up in an even charged ionic state.

Even though these results suggest that lowest order perturbation theory might be
adequate to describe the dominating photoionization process induced by femtosecond
intense XUV and X-rays pulses, an extraordinary behaviour has been observed in partic-
ular for xenon [137, 157]. In reference [157] xenon was exposed to photons of 93 eV
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and a peak intensities of 1016 W/cm2, creating highly charged states up to Xe21+ due
to the absorption of almost 60 photons in 10-20 femtoseconds. The authors conclude
out of their results for low irradiation that the initial process probably is a sequence of
one-photon ionizations of the 4d shell as predicted in the framework of perturbation
theory. Subsequently Auger decays take part. In this manner Xe4+ can be reached.
Afterwards the 5p shell is supposed to be completely ionized by sequential one-photon
processes leading to Xe6+. Higher ion states could be reached by multiphoton ioniza-
tion with an increasing number of photons. However the authors announced that the
applicability of perturbation theory on their observation of Xe21+ might be questionable.
They also discussed that a strong correlation between the 4d electrons could induce
collective effects enabling the extraordinary high degree of ionization. For heavy atoms
as xenon the ionization thresholds decrease with increasing ionization and therefore
further sequential multiphotons ionization processes are in competition with ionization
paths including excited states, which are possibly effected by quantum coherences and
electron-electron correlations. A further confirmation of this conclusion is provided by a
recent experiment at LCLS [137] with xenon irradiated with 1.5 and 2.0 keV photons.
The observed ion yields for 2.0 keV excitations are in good agreement with results
obtained by rate equations, but in the case of 1.5 keV excitations theoretical predictions
only coincide with the experiment for ion states below Xe28+ and could not reproduce
the high amount of highly charged states up to Xe36+. The ionization thresholds for
different one electron orbitals as a function of charge state manifest that the threshold
of the 3s orbitals falls below 1.5 keV for ion states exceeding Xe18+. The same holds
for the 3d orbitals in the case of ion states higher than Xe24+. Thus, a further single
ionization of the ions is no longer possible. Based on this analysis, the authors explain
their observation of highly charged states up to Xe36+ with “resonance-enabled X-ray
multiple ionization” described as "highly efficient transient resonant excitation process
in highly charged ions accompanied by hollow-atom formation and auto-ionization of
multiple excited states". A similar observation has been made for krypton [136].

So far, measuring the ion yields, comparing them with results obtained by rate
equations and analysing their intensity dependence may give an indication about present
processes. Additional information which help to identify involved processes and can be
estimated theoretically is the kinetic energy of the released photoelectrons, their angular
distribution and the involved transient atomic states. Two useful and well-established
experimental methods to obtain these quantities are electron [39] and fluorescence
spectroscopy. The latter has been applied besides time of flight spectroscopy in the
above mentioned experiments at LCLS with xenon [137] and krypton [136]. The
measured fluorescence spectrum in these experiments supplied the assumption of a
“resonance-enabled X-ray multiple ionization”-regime because emitted photons could
be associated with relaxations in highly charged xenon ions which possess an excited
electron configuration. In this manner the role of transient states, which are involved in
the generation of highly ion states, has been identified. Beside fluorescence spectroscopy
electron spectroscopy has been adopted to investigate ionization of XFEL-radiation
[109, 113, 128, 135, 153]. In particular for a further clarification of the mechanism
responsible for the unexplained high degree of ionization of xenon observed at FLASH
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[128] and for confirming the excitation of a doubly excited state in helium by absorbing
two photons [113].

In addition to the above discussed ionization experiments, demonstrating the ac-
cessibility of unexpected behaviour with XFELs, particular interest has also been paid
to ionization processes which do not play a dominating part in the photoionization of
atoms, but rather aim at understanding the basic principles of the interaction between
photons and the electrons of an atom. These processes, also denoted as few photons few
electrons reactions, are mostly characterised by their small cross sections and therefore
are predestined to be accessible by XFEL radiation. After the investigation of one-photon
double ionization of helium [5, 78] at synchrotrons, the two-photon double ionization
(TPDI) of helium consequently moved into focus and has received enormous theoretical
attention [40, 44, 45, 54, 66, 70, 88, 89, 92, 119]. In general, the TPDI of helium
is classified into two mechanisms, the sequential and non-sequential (direct) double
ionization. In the sequential process the double ionization evolves step by step. After
the absorption of one photon by the neutral atom, inducing the ejection of an electron,
the second photon releases the now stronger bound electron of the residual ion without
being further affected by the first step. The kinetic energy of the two ejected electrons is
determined by the energy conservation separately for each step according to the photon
energy and the ionization thresholds of helium (24.6 eV) or the ion He+ (54.4 eV) and
therefore results in two different values. Obviously this mechanism is only possible
for photon energies above 52 eV [54, 88]. In the case of non-sequential TPDI the two
electrons absorb the two photons simultaneously and are influencing each other while
leaving the atom. Thus, the electrons are leaving the atom preferentially in opposite
direction. Also the partitioning of the kinetic energy between the electrons is not as
strictly defined as for the sequential TPDI, resulting in a more uniform energy distribution
[40, 54]. The two ionization thresholds for neutral and single charged helium add up to
the double ionization threshold of 79.0 eV which can be exceeded by two photons with
an energy larger than 39.5 eV. So between 39.5 eV and 54.4 eV only non-sequential TPDI
is present whereas above 54.4 eV sequential TPDI dominates, although both processes
are energetically allowed [66]. A qualitative similar behaviour is contained in the dou-
ble ionization of neon, concerning the two 2s electrons. First experimental signatures
[111, 112, 117] of non-sequential TPDI of helium with XUV photons, generated via
higher harmonic generation, were found in a quadratic power law for yield of the bare
helium core as a function of intensity. To survey in detail theoretical predictions for TPDI,
concerning the released electron’s kinetic energy and angular momentum distribution, a
“reaction microscope” [166] has been applied at FLASH. In first experiments it recorded
the recoil-ion momentum of helium and neon ions [86, 138]. By neglecting the absorbed
photons the momentum conservation has to be fulfilled only for the momentum of
the neutral atom before the ionization and the momentum of the electrons and ion
afterwards. Thus, the ion momentum distribution is affected by the momenta of the
electrons [67] and reflects their characteristic properties in the case of sequential and
non-sequential TPDI. Furthermore, the kinetic energies of the two electrons, ejected by
the same sequential TPDI event, have been detected [87, 139] for neon, but only with a
precision sufficient to conclude a qualitative agreement with theory.
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Also resonant excitation of atomic bound states gains increasing attention, since on
the one hand it has been connected with unexpected behaviour in Xenon [129, 136] as
the ionization thresholds of the ions exceed the photon energy. On the other hand, XFEL
radiation is supposed to induce Rabi oscillations between atomic states [132] and there-
fore could access the coherent regime of quantum dynamics driven by X-rays. Pioneering
works [16, 79] have demonstrated theoretically the coexistence of Rabi-oscillations and
ionization. However, it seems unlikely that measuring the occupation of atomic states as
a function of time will be possible in the near future, as it had been done for quantum
dots [124]. Nevertheless, recent experiments found signatures of Rabi oscillations in
the ion yield and the Auger electron spectrum. In reference [146] the absolute two-
photon absorption cross-section of Helium has been measured between 20 and 23 eV.
An unexpected behaviour is observed if the photon energy is in resonance between
the initial ground state and an excited bound state. In particular, the exponent of the
power dependence between ion yield and laser intensity deviates from the behaviour
predicted by lowest order perturbation theory. A theoretical investigation [143] estab-
lished that Rabi oscillations are affecting the ionization dynamics and are responsible
for deviations from perturbation theory. A more complex scenario accompanied by Rabi
oscillations is the resonant Auger decay [132], which is initialized by the ionization of
a valence-electron. Thereafter, one resonantly drives a transition between the single
ionized states with a hole either in the valence or in the core shell. The induced Rabi
cycling is accompanied by the decay of the involved excited ion state by the release of an
Auger electron or a photon via simulated emission. This scheme has been realised with
neon at the LCLS [76] and a broadened Auger electron peak was observed. As theory
predicted [116, 132, 133] the broadening of the peak is due to Rabi oscillations.

I.3 Theoretical methods for photoionization

In this chapter currently applied methods for the description of the interaction between
an atom and XFEL radiation are presented. At first, general assumptions commonly
used in this field are discussed, following reference [145]. In comparison with the
electron rest mass of 511 keV the XUV and X-ray photon energy is rather small. Therefore
relativistic quantum electrodynamics are neglected leading to a Hamiltonian approach
for the electrons and the nucleus in an electromagnetic field. Since the mass of a nucleus
exceeds the mass of an electron by magnitudes and the electromagnetic fields of XUV
and X-rays are oscillating fast, it is well justified to assume a fixed nucleus and to account
for the electrons of the atom only. Finally, for the electrons of an atom interacting with
XFEL radiation the Hamiltonian has the following form:

H = Hkin +Hcore-el. +Hel.-el. +Hfield +Hfield-el. . (I.1)

Hkin is the operator for the kinetic energy and Hel.-core describes the attraction of the
coulomb potential of the positive charged nucleus on the electrons. Hel.-el accounts for
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the repulsive interaction between the electrons. In the case of N electrons and Gauss
units they are given by the following expressions:

Hkin =
N

∑
i=1
− 1

2me
∇

2
i , Hcore-el. =

N

∑
i=1
−e2 ·Z
|xi|

, Hel.-el. =
N

∑
i, j=1
i< j

e2

|xi−x j|
. (I.2)

The free electromagnetic field is described by Hfield and the interaction of the field
with the electrons is accounted by Hfield-el.. Until now the question of treating the
electromagnetic field either classical or quantized has not been answered. Of course the
quantization of the electromagnetic field leads to a more accurate model than classical
waves. To reduce the complexity of the model and the effort of numerical approaches a
classical treatment is often used, verified due to the coherence and high photon number
of an XFEL pulse. In case of XUV radiation the wavelength is still much larger compared
to the size of an atom. Thus, a electric field constant with respect to x but oscillating
in time is assumed. Nevertheless, one should be aware that the classical field neglects
spontaneous photoemission.

With this Hamilton operator at hand the photoionization of an atom is contained in the
evolution of the N-electron wave function, which is determined by the time dependent
Schrödinger equation. Therefore, the task for a theoretical description of photoionization
is defined by solving the time dependent Schrödinger equation (TDSE) for the above
written Hamilton operator.

ih̄
∂

∂ t
|Ψ〉= H|Ψ〉. (I.3)

However, the solution of the TDSE in this case is a challenging mission. The analytical
calculation of a wave function evolving under an explicit time dependent Hamilton
operator is limited to a few special cases. Thus, for an intensive ultrashort laser pulse
numerical approaches are the only possible strategy to trace photoionization, but are
connected with an increasing computational effort for a rising number of electrons due
to their interaction between themselves. Up to now in the case of a classical oscillating
electric field a complete numerical solution of (I.3) exist in three dimensions for maximal
two electrons [92] and in one dimension for three electrons [141] . Obviously, to inves-
tigate the response of atoms with more electrons to an intensive ultrashort laser pulse
one has to apply approximating methods. In the following commonly used approaches
are presented and their capabilities accounting for coherent quantum dynamics and
electron-electron correlations are discussed.

I.3.1. Rate-equations and cross sections

A well established method to describe the photoionization of an atom by XUV or X-ray
photons are rate-equations, which couple the occupation numbers of different ion species
and their electronic configurations via transition rates for ionization, excitation and
relaxation processes. An introduction in their application in X-ray physics is given in
[145]. The transition rate or cross section from an initial state |I〉 to a final state |F〉
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is obtained by time dependent perturbation theory where the unperturbed system is
represented by

H0 = Hkin +Hcore-el. +Hel.-el. +Hfield . (I.4)

Both states |I〉 and |F〉 are assumed to be eigenstates of H0. In the limit of long times
compared to the period of a cycle of electromagnetic-field one arrives at Fermi’s golden
rule and the cross sections are mainly determined by the matrix element 〈I|Hfield-el.|F〉.

For calculating the matrix elements the first difficulty consists in obtaining an explicit
form of the states |I〉 and |F〉. In particular for the electron subsystem analytical solutions
for the correlated many-particle states are unknown and therefore one has to find an
adequate analytical or numerical approximation as for example static Hartree-Fock
calculations [35, 131, 156]. For the photon subsystem the easiest formalism is the
classical treatment in which the electric field is considered as an external field and does
not contribute to H0 at all. In the case of a quantized light field a convenient approach is to
choose Fock states [145] to represent the photon subsystem of |I〉 and |F〉. Subsequently,
after one has obtained the photoionization cross sections, the equation of motion for the
occupation numbers of specific electron configurations can be constructed by associating
photoionization as increase or decrease in occupation [102, 103, 131]. Additionally,
relaxation processes as the Auger effect, shake-off ionization and fluorescence can be
included [35, 145].

With respect to coherent quantum dynamics rate equations are the lowest level for
modelling the ionization process since they neglect them completely. Nevertheless their
applicability on photoionization induced by XUV and X-ray photons has been successfully
demonstrated for many experiments [35, 136, 149, 175], even for the novel FEL-sources
where the high intensity might not fulfill the requirements of perturbation theory.

I.3.2. Wave function based methods

This section briefly summarizes wave function based methods which in general solve a
TDSE suitable to model photoionization, but are simplified for the numerical realisation.
Since these schemes result in a wave function, obviously coherent quantum kinetics
are taken into account. Instead, the approximation often affects the interaction and
correlation between the electrons carried by the wave function. As illustration two simple
well known examples can serve, the single active electron approximation [148] and
the time dependent Hartree-Fock (TDHF) method [84]. For the single active electron
approximation it is assumed that the electromagnetic field essentially couples with one
electron of the atom, whereas all others are unaffected. In this way the many particle
wave function has been reduced to a single particle problem. The TDHF approximation
represents the wave function by a single Slater determinant constructed with time-
dependent single particle orbitals. Thus, correlations between the electrons are neglected
and the electron-electron interaction is included on a mean-field level.

In reference [65] a very general formalism to categorize and incorporate many of the
commonly used wave function based methods is presented, called the time-dependent
restricted-active-space configuration-interaction method. It systematically restricts the
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number of Slater determinants by dividing the single particle basis set in partitions
and allocates to every partition a minimal and maximal number of allowed particles.
The many-particle Hilbert space of the restricted-active-space is spanned by Cartesian
products of subspaces corresponding to pairs of a partition and particle number. For a
product of subspaces holds that each particle number is in the allowed interval of the
respective partition and the sum over all particle numbers of the product is equal to the
total particle number. This scheme was originally established in quantum chemistry and
extended for a time-dependent treatment of photoinization by the authors of [65]. It
includes wave function based approximations as single- and two-active electron methods
[75, 148] and time-dependent configuration interaction singles method [49].

Further, the multiconfigurational time-dependent Hartree-Fock [15, 29, 77, 108],
time-dependent close-coupling [55] and the time-dependent R-matrix method [20]
are recently applied on photoionization dynamics. Wave-function based methods are
characterised in being flexible and adjustable to specific scenarios. Furthermore, testing
the accuracy of these approaches is quiet convenient since often the wave function can be
adjusted in small steps in direction of the exact solution. In this way its possible to verify
convergence, as it has been carried out for e.g. the time-dependent multiconfigurational
Hartree-Fock scheme [64]. In particular, the ionization dynamics of helium [56, 64],
lithium [26, 27] and neon [56, 98, 161] have been investigated with wave-function
based methods.

I.3.3. Reduced many-particle methods

The last introduced class of theoretical methods used for the modelling of photoionization
are reduced many-particle methods as the time-dependent density functional theory
[142], the non-equilibrium Green’s function [12] and the time-dependent reduced
density-matrix formalism [147]. They are capable to account for coherent quantum
kinetics and electron-electron interaction beyond the mean-field level and, opposed to
the wave-function based methods, the computational effort does not critically depend
on the number of particles. The time-dependent density functional theory has been
successfully applied to the photonionization of atoms, describing the multiple-photon
single ionization [165] and the knee-structure in the double ionization yield of helium
[91, 162]. Nevertheless, still some open questions remain and are currently discussed.
It is known that the commonly applied "adiabatic local density approximation" to the
exchange-correlation kernel is not well suited for the treatment of Rabi oscillations
[140], double excitations [101, 163] and photon energies beyond the optical regime
[162]. However, recent investigations progress in the development of a non-adiabatic
treatment [21, 37, 164]. Whereas the time-dependent density functional theory is a
well established tool in atomic physics, the non-equilibrium Green’s function and the
time-dependent reduced density-matrix formalism were originally used for homogeneous
many-particle systems. With increasing computational capacities, their application on
inhomogeneous system came into reach and first studies were carried out to overcome
the limitation of the wave function based methods on small systems [13, 147]. However,
the corresponding enormous computational demands limit their application on one-
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dimensional model atoms and up to now only a small number of publications concerning
atomic photoionization [28, 63, 147] exists. To improve the computational performance
a grid-based method has been applied instead of the common representation of the
Green’s function based on single particle orbitals, achieving first progress [11, 12].





II
Applied methods and

models

To investigate the influence of quantum coherences and electron-electron correlations on
photoionization induced by intensive femtosecond XUV-laser pulses, this work discusses
and compares the results of several methods. The most advanced approach presented is
the time-dependent density matrix formalism. The corresponding hierarchy of equation
will be truncated one level above the time-dependent Hartree-Fock theory and thus
also accounts for correlation between the electrons. Furthermore, the time-dependent
Schrödinger equation is solved for one and two electrons. As the most simplifying
model for the resonant two-photon ionization a "reduced level atom" is analysed, which
incorporates the application of the Markov approximation and thereby leads to an
analytical result for a harmonic laser excitation. Finally, one has to mention that all
methods are applied on a one-dimensional atom model.

II.1 One-dimensional atom models

One-dimensional atom models have been widely used in theoretical physics to survey
the impact of intensive short laser pulses on atoms [51, 53, 74, 96, 97, 154, 159].
Due to the reduction to one dimension they allow the numerical treatment of atomic
systems, which in the case of three dimensions would go beyond the computational
possibilities. For example in the 90’s one-dimensional atom models accessed the exact
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solution of the correlated wave function of the time-dependent Schrödinger equation
for a two electron atom [53] and also more recently for a three electron atom [141].
Additionally to the exact solution of the time-dependent Schrödinger equation, one-
dimensional atom models were also adopted for the implementation of quantum kinetic
approaches like the time dependent density functional theory [167], the Green’s function
approach [12] and the multiconfigurational time-dependent Hartree-Fock theory [63].
The computational requirements of these approaches are already quite demanding in
a one-dimensional implementation. The same holds for the time-dependent density
matrix formalism adopted in this thesis and motivates the usage of a one-dimensional
atomic model [147]. Furthermore the exact numerical solution of the time-dependent
Schrödinger equation for laser excited atoms represents an optimal benchmark for
results involving further approximations [12, 91]. Of course one-dimensional atom
models cannot provide quantitative results reproducible by experiments. Nevertheless
they supported the interpretation and explanation of observed physical phenomena.
In particular, the important role of electron-electron correlations in the knee-structure
of the double ionization yields of helium induced by optical lasers [43, 172] has been
manifested by theoretical investigations of one-dimensional atom models [91]. The
re-scattering mechanism [94] was identified as the responsible process. One-dimensional
atom models also contributed to the prediction of a second Knight doublet [52], which
afterwards was confirmed experimentally [171].

For one-dimensional atom models one usually replaces the Coulomb potential. It is
known that the Hamiltonian of an electron in a one-dimensional Coulomb potential
of a positive charged core has an infinite eigenvalue [97]. To avoid this non-physical
situation most publications on one-dimensional atoms utilise the so called “softcore”
potential which shares many properties of the real Coulomb potential. For example the
softcore potential also decreases with 1

r and possesses near-threshold levels that scale
like Rydberg levels. [159]. It is defined as

Vsoft(x) =−
V0√

x2 +κ2
, (II.1)

with the parameters V0 and κ representing the strength and the range to adjust the
potential. In comparison with the real Coulomb potential in Hcore-el. of equation (I.2) V0
can be interpreted as Z · e2. The parameter κ which is necessary to avoid the singularity
is usually set equal to one Bohr radius aB. With this notation the components of the
Hamiltonian for the electrons of a one-dimensional atom read

Tkin(x) =−
1

2me

∂ 2

∂x2 , (II.2a)

Vcore(x) =
−e2 ·Z√
x2 +a2

B

, (II.2b)

Vel(x− x′) =
e2√

(x− x′)2 +a2
B

. (II.2c)



II.2. Finite-element discrete variable representation 15

The interaction of the electrons with a linearly polarized radiation field is taken into
account via the dipole coupling. The polarization axis of the field coincide with the
retained single dimension. In this direction the strongest field induced dynamics are
expected.

Hfield(x) = ex ·E (t). (II.3)

E (t) represents the amplitude of the electric field of the laser radiation. The aim of this
work is to deal with the dynamics of a model atom evolving under the Hamilton operator
H.

H =
N

∑
i=1

Tkin(xi)+
N

∑
i=1

Vcore(xi)+
N

∑
i, j=1
i< j

Vel.(xi− x j)+
N

∑
i=1

Hfield(xi). (II.4)

Exceptions are made for calculations with more than one electron which neglect the
electron-electron interaction. In this case Vel.-el. is discarded and V0 and κ are chosen to
realise a screened core potential. Thus, the system exhibits a similar energetic structure
and ionization thresholds as the corresponding correlated model.

In addition, another one-dimensional potential is applied to replace the Coulomb
interaction between charged particles. It shall be denoted as "cosh-potential" and is given
by

V1d(x) =
−U0

cosh2(αx)
. (II.5)

In contrast to the softcore potential the cosh-potential is short ranged and does not
possess a Rydberg like series of bound states. The parameters U0 and α allow the
adjustment of the strength and the range of the potential. Its advantage is the known
analytic solution of the eigenvalue problem for the stationary single-electron Hamilton-
operator [90]. Also the formulas for the matrix elements of momentum operator, position
operator and the binary electron-electron interaction can be determined analytically.
They are required for an expansion of the wave function or reduced density matrix in
the eigenfunctions of the single-electron Hamilton operator.

Because the numerical implementation always implies a finite basis set, usually the
system possesses reflecting or periodical boundaries. Concerning the ionization process
ejected electrons which reach the boundaries lead to artificial results, in particular when
they return to the atom core. In order to avoid this problem absorbing boundaries
are introduced for the propagation of the wave function towards large times by the
application of complex absorbing potentials [130, 168].

II.2 Finite-element discrete variable representation

For the numerical implementation of the time-dependent Schrödinger equation as well
as of the time-dependent reduced density matrix formalism one has to choose a set of
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basis functions for the representation of the wave function or the reduced density matrix.
In the progression of this thesis, the eigenstates of the stationary field-free single-particle
Hamiltonian, the momentum operator and the position operator were considered as basis
functions and have been tested according to their numerical performance and stability.
The usage of the eigenstates of the stationary Hamiltonian is motivated by the cosh-
potential (equ. (II.5)) which provides analytical expressions for the field-free eigenstates
and the required matrix elements. The choice of this set of basis functions appears further
promising because it allows one to assign the matrix elements of the electron-electron
interaction to individual processes [122] and thus enables the transparent application
further simplifications and approximations. In particular, this proceeding was supposed
to apply for the electron-electron interaction which is the most challenging obstacle in
the implementation of the reduced density matrix formalism beyond the Hartree-Fock
level. Thus, one would have been able to neglect certain parts of the four-point functions
appearing in the equation of motion of the reduced density matrix formalism to reduce
the computational demand. However, the calculation is already quite demanding at the
Hartree-Fock level of the reduced density matrix formalism in this basis set. The matrix
of the electron-electron interaction represents a fully occupied tensor of fourth order.
The evaluation of the corresponding terms requires the numerical execution of three
summations for each element of the reduced density matrix in the equations of motions.
Thus the computation time of the time derivative of the reduced one- and two-particles
density matrices in an implicit time propagation scheme scales for Nb basis functions
with ∝ N5

b and ∝ N7
b .

To overcome this obstacle, the momentum space as well as the position space have
been tested, due to their sparser representation of the matrix of the electron-electron
interaction. The momentum space leads to a collapse of one of summations concerning
the electron-electron interaction as a consequence of the conservation of momentum.
As result the most time expensive contribution for the determination of the interaction
between the electrons themselves scales one order lower compared to the representation
in the eigenstates of the stationary single-particle states. In addition, the calculation
in the momentum space benefits from the diagonal form of the kinetic energy and the
momentum operator. As known, plane waves work well for short ranged potentials
like cosh-potential (equ. (II.5)) whereas in case of a long ranged softcore potential
they lead to a singularity for a momentum equal zero. Another aspect is that the
equation of motion can be easily integrated in time by a finite differences scheme if the
wave function or the reduced density matrix is represented by plane waves or by the
stationary single-particle eigenstates. Instead, in the position space the application of
finite differences on time-dependent Schrödinger equation results in a disadvantageous
stability condition between the values of the time and space steps [123]. Consequently,
the time propagation requires a specific treatment. Nevertheless, the striking argument
is given by the sparsest representation of the matrix of the electron-electron interaction
in the position space. Bearing this in mind, finally the finite-element discrete variable
representation (FEDVR) [126] has been chosen as basis set, which is closely related to
the position space and conserves the advantages of the latter. In the FEDRV, strongly
localized polynomials defined in finite elements describe the dynamic variable and
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provide the connection between neighboured finite elements. Recently, this method is
used successfully for several challenging numerical tasks concerning atoms interacting
with ultrashort intensive laser pulses. Examples are the solution of time dependent
Schrödinger equation for helium in three dimensions [40], the Green’s function [11] and
the time-dependent multiconfigurational Hartree-Fock method [63, 64]. For numerical
applications the FEDVR provides a high accuracy and is substantially more efficient
than a finite-difference Numerov method [121]. In particular, the parallel calculation
of via large computer cluster is highly supported by the FEDVR [68, 152] and therefore
confirms the FEDVR to fit for the task of the present thesis.

In the following a short summary of the properties of the FEDVR is given. The atom
shall be placed in a box with the length L which is divided into NFE finite-elements:

[ri,ri+1] i = 0 . . .NFE −1. (II.6)

Every finite element includes NGL Gauss-Lobatto points

ri ≤ xi
m ≤ ri+1 i = 0 . . .NFE −1, m = 0 . . .NGL−1, (II.7)

which are defined by the Gauss-Lobatto quadrature rule with the corresponding weights
wi

m. The Gauss-Lobatto quadrature replaces the integral a summation and is accurate for
polynomials up to degree 2NGL−3.∫ ri+1

ri

dxg(x)≈
NGL−1

∑
m=0

g(xi
m)wi

m. (II.8)

In contrast to the Gaussian quadrature the first and the last point of the Gauss-Lobatto
quadrature lies on the boundaries of the integral. In the unit interval [−1,1] the remaining
points of the Gauss-Lobatto quadrature rule are determined by the zeros of the first
derivative of the Legendre polynomial PNGL−1(x) of order NGL− 1. The weights in the
unit interval are given by the following formula.

wm =
2

n(n−1)(PNGL−1(xm))2 . (II.9)

The points xm and weights wm of the unit interval are mapped on xi
m and wi

m of the finite
elements via

xi
m =

1
2
((ri+1− ri)xm + ri+1 + ri) , (II.10a)

wi
m =

wm

2
(ri+1− ri). (II.10b)

The basis functions are constructed with the Lobatto shape functions f i
m(x) which are

defined by the Lagrange polynomial [105]. The latter interpolates a function equal one
at xi

m and equal zero at the remaining Gauss-Lobatto points of the finite element.

f i
m(x) =

∏l 6=m
x−xi

l
xi

m−xi
l

for x ∈ [ri,ri+1]

0 else.
(II.11)
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Adopting the quadrature rule for the integration in scalar products leads to the orthog-
onality of the functions. For an integrand containing a Lobatto shape function the
property

f i
m(x

i′
m′) = δi,i′δm,m′, (II.12)

is essential for the usage of the quadrature rule. Now, the normalized set of basis
functions of the FEDVR is built with the help of the Lobatto shape functions.

χ
i
m =

f i
m(x)√

wi
m

with m = 1 . . .NGL−2 i = 1 . . .NFE −1, (II.13a)

χ
i
0 =

f i
NGL−1(x)+ f i+1

0 (x)√
wi

NGL−1 +wi+1
0

with i = 0 . . .NFE −2. (II.13b)

The functions χ i
m(x) only exist in one finite element whereas the bridge-functions χ i

0(x)
connect two neighbouring finite elements. In the next step, the operators Vcore(x) (equ.
(II.2) and Hfield(x) (II.3)) for the one-dimensional model atom have to be expressed by
the FEDVR basis set. Due to the strong localization of the basis functions in the position
space local operators keep their diagonal form, if the quadrature rule (II.8) and equation
(II.12) are applied for the respective integrals. Combining a pair of indices (i,m) in one
index n, the following formulas are received for the one particle operators of the core
potential Vcore(x) (eq. (II.2b)) and the electric field Hfield-el.(x) (eq. (II.3)).

V core
n1,n2

=
∫

dx χn1(x)Vcore(x)χn2(x) = δn1,n2V
core
n1

, (II.14)

Hfield
n1,n2

=
∫

dx χn1(x)Hfield(x)χn2(x) = δn1,n2Hfield
n1

, (II.15)

with V core
n1

=Vcore(xn1) and Hfield
n1

= Hfield(xn1).

For the two particle interaction Vel.-el.(x− x′) the representation in the FEDVR basis set
leads also to a diagonal form.

V el.
n1,n2,n3,n4

=
∫

dx
∫

dx′ χn1(x)χn2(x
′)Vel.(x− x′)χn3(x)χn4(x

′)

= δn1,n3δn2,n4V
el.
n1,n2

with V el.
n1,n2

=Vel.(xn1− xn2). (II.16)

The diagonal form of this operators is a great advantage in the numerical implementation.
More care is needed for the operator of the kinetic energy T kin

n1,n2
, because the derivatives

of the basis functions are not continuous [126]. Since the basis functions are polynomials,
the formulas of the matrix elements of the kinetic energy are simple analytic expressions.
One receives a sparse block diagonal structured matrix which is explicitly given in
[11, 152] and supports the adoption of a parallel implementation.
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II.3 Time-dependent Schrödinger equation

The exact description of the ionization dynamics evolving under the defined one-
dimensional Hamiltonian H (eq. (II.4)) is obtained via the solution of corresponding
TDSE. However, for practical reasons the number of electron has to be small enough to
ensure that the numerical requirement is still feasible by the computational capacities. To
verify the results obtained with approximative approaches and to explore their validity
the solution of the one-dimensional TDSE equation has been determined for the one
and two electron Hamiltonian H. The solution for one or two electrons without Hel.
is preferentially compared with approximations concerning the coherent properties of
the ionization as it is the case for rate equations and in the generic model defined in
section II.5. For an atom with two interacting electrons the solution of TDSE takes the
correlation completely into account. Thus, the TDSE represents a benchmark for the
investigation of electron-electron correlations.

A split operator method [14, 41, 93, 123] was choose out of the large number of
existing time propagation schemes for the TDSE. In this method the time propagation
operator U(H(t),dt) acts successively for small time steps dt on the wave function.

|Ψ(t +dt)〉=U(H, t,dt)|Ψ(t)〉, (II.17)
with U(H(t),dt) = exp(−iH(t)dt/h̄) . (II.18)

During the small time step, it is assumed that the Hamiltonian H(t) is constant and the
time dependence enters only parametrically at each time step. The propagation operator
U(H(t),δ t) is determined by dividing H into a time independent and a time dependent
part (H1 and H2(t)).

U(H1 +H2(t),dt)≈U
(

H1,
dt
2

)
U (H2(t),dt)U

(
H1,

dt
2

)
+O(dt3) . (II.19)

In the framework of the present task H1 and H2(t) shall be identified in the following
manner:

H1 = Hkin +Hcore and H2(t) = Hel. +Hfield(t). (II.20)

With representation of the wave function through the FEDVR basis this approach allows
an efficient numerical implementation. The determination of the exponential operator
requires the diagonal form of the underlying Hamiltonian. Therefore the separation
of H should result in a time-dependent part H2(t), which is already diagonal in the
FEDVR basis set. Since this requirement is fulfilled by Hel. and Hfield the exponential
matrix can be easily determined at each time step without solving the corresponding
eigenproblem. Instead, a diagonal form of the time-independent part H1 in the FEDVR
basis set is not needed. Only at the start of the propagation the sparse matrix containing
the kinetic energy and the core potential must be diagonalized. For a small time step the
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corresponding time propagation operator is represented by a sparse matrix. Further, the
parts of operators H1 for the respective electrons commutate and the time propagation
operator U(H1,δ t) splits into two identical operators, which act on the two different
subspaces of wave function, according to the respective coordinate. The time propagation
operators support a parallel numerical adoption due to their sparse form.

II.4 Reduced density matrix formalism

The reduced density matrix (RDM) formalism is an established tool for many-particle
physics applied for laser excitation of semiconductors and molecules [6, 83, 134] and in
the field of nuclear physics [62]. In this thesis it will be tested on the photoionization
of atoms by an XUV-laser pulse. To the best of the knowledge of the author only the
reference [147] is concerned with this issue. In contrast to this contribution which
uses an expansion based on Hartree-Fock orbital, here the FEDVR shall represent the
dynamic variables as it has been carried out for the non-equilibrium Green’s function
approach in the references [11, 12]. The reduced density matrix formalism enables a
coherent treatment of the dynamics of the electrons induced by an intense laser pulse
and provides a scheme to account for the interaction between the electrons themselves
on different levels. Its advantage is that the computational effort does not depend on the
particle number which is the obstacle for the direct solution of TDSE for larger atoms.
The dynamical variables are the expectation values of normal ordered creation and
annihilation operators a†

j and aj.

ρa,b = 〈ψ|a†
aab|ψ〉, (II.21a)

ρa,b,c,d = 〈ψ|a†
aa†

bacad|ψ〉, (II.21b)

ρa,b,c,d,e,f = 〈ψ|a†
aa†

ba†
cadaeaf|ψ〉, (II.21c)

...

Here, the operators correspond to electrons and therefore fulfil anticommutation rules
for Fermions. The bold index a is assigned with a pair (na,σa) consisting of the respective
spin σa and FEDVR basis function na. The dynamic variables are denoted as two-, four-
and six-point reduced density matrix, due to the number of involved operators. An also
commonly used naming is reduced one, two and three particle density matrixes where
the specification for one particle is often omitted. The equations of motion are obtained
through the Heisenberg equation for operators.

ih̄ ȧ = [a,H]. (II.22)

For an atom interacting with a laser the reduced density matrix of the electrons contains
a large part of the desired information like the polarisation and the ionization yields.
Also the expectation value of the energy according to the Hamiltonian of equation (II.4)
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can already be determined with the knowledge of the four-point function without the
need for reduced density matrices of higher order. Due to the interaction between the
electrons the reduced density matrix formalism does not yield in a closed set of equations
for the reduced one particle matrix. Instead, the equations of motion form a hierarchy
up to the density matrix for all particles of the system, denoted as Bogolyubov-Born-
Green-Kirkwood-Yvon-hierarchy. At each level the hierarchy the corresponding reduced
n-particle density matrix requires the knowledge of reduced density matrix for (n+1)-
particles. Of course, this hierarchy has to be truncated to comply with the numerical
possibilities. To assure a meaningful and controlled condition for the truncation, it is
necessary that the reduced variables ρa,b,c,... are separated in correlated and uncorrelated
terms. The uncorrelated terms are constructed with variables of lower order [173]. To
this end one uses in case of the four-point function

ρa,b,c,d = ρa,dρb,c−ρa,cρb,d +Ca,b,c,d, (II.23)

with Ca,b,c,d representing the correlated fraction. The time-dependent Hartree-Fock
(TDHF) theory is obtained by using this expression in the equation of motion for the
one particle density matrix without correlated contribution Ca,b,c,d. One main issue of
the present thesis is the application of the density matrix formalism beyond the Hartree-
Fock level to explore its potential for an application on the ultra fast ionization process.
Therefore also Ca,b,c,d has to be determined which requires in the present framework
a the reconstruction of the six-point fraction. Following a decomposition described in
[7, 173] gives

ρa,b,c,d,e,f = ρc,dCa,b,e,f−ρb,dCa,c,e,f +ρa,dCb,c,e,f

−ρc,eCa,b,d,f +ρb,eCa,c,d,f−ρa,eCb,c,d,f

+ρc,fCa,b,d,e−ρb,fCa,c,d,e +ρc,dCa,b,e,f (II.24)

+ρc,d
(
ρb,eρa,f−ρb,fρa,e

)
−ρc,e

(
ρb,dρa,f−ρb,fρa,d

)
+ρc,f

(
ρb,dρa,e−ρb,eρa,d

)
+Ca,b,c,d,e,f,

With these decompositions (equ. (II.23) and (II.24)) one arrives at a closed equation
system for the one- and two-particle density matrix if the term Ca,b,c,d,e,f, which carries
the contribution of the correlation to the six-point functions, is discarded. Details of the
derivation of the equations of motion, the numerical implementation and results are
presented in chapter VI.

II.5 Generic model for Rabi-assisted ionization

The influence of coherent quantum mechanics on the ionization process of XUV radiation
has been denoted as one issue of this thesis. Rabi oscillations represent a prime example
for coherent dynamics which are usually observed in laser driven atoms [57] and
quantum dots [124]. With the advent of free electron lasers, which deliver intense
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radiation with an high degree of coherence, the excitation of Rabi oscillations with XUV
and X-ray photons got into the focus of recent investigations [76, 116, 132, 133, 143,
146]. A photon energy enabling a two-photon ionization most likely additionally induces
Rabi oscillations. In the latter, the excitation can be close to the resonance of a transition
between the ground state and an excited state. With respect to this situation, a generic
model is derived. It describes the Rabi cycling of electrons between the two bound states
and gives rise to a single-photon ionization of the upper state, as sketched in figure II.1.
In the end, an analytic solution is obtained which requires the following approximations:

1. A reduced number of bound states

2. Neglecting off-resonant transitions

3. The rotating wave approximation

4. The Markov approximation

Even though the derivation uses the one-dimensional Hamiltonian defined in section II.1
the generic model is not limited to one-dimensional atom models and can be extended to
three dimensions. For each of the approximations the solutions are calculated numerically
in order to identify their respective range of validity and to pinpoint the dominating
processes.

The eigenfunctions of the field-free Hamiltonian of the atom are chosen as basis set
for the representation of the Hamiltonian H. It is separated in a set {|n〉} of bound states
with negative discrete Eigenvalues h̄ωn and a set {|νω〉} corresponding to the continuum
with positive Eigenvalues ω. The index ν, accounts for possible degeneracies of the
continuum.

H =
∞

∑
n=0

h̄ωn|n〉〈n|+
∫

∞

0
dω ∑

ν

h̄ω |ων〉〈νω|+
∞

∑
n=0

∞

∑
n′=0

h̄E (t)µn,n′|n〉〈n′|

+
∫

∞

0
dω

∫
∞

0
dω
′
∑
ν ,ν ′

h̄E (t)µων ,ω ′ν ′|ων〉〈ν ′ω ′|

+
∞

∑
n=0

∫
∞

0
dω ∑

ν

h̄E (t)µn,ων |n〉〈νω|+
∞

∑
n=0

∫
∞

0
dω ∑

ν

h̄E (t)µ
∗
n,νω |νω〉〈n|. (II.25)

The respective dipole matrix elements are h̄µn,n′ = 〈n|e∑
N
i=0 xi|n′〉 for two bound states,

h̄µn,ων = 〈n|e∑
N
i=0 xi|ων〉 for the coupling to the continuum and h̄µων ,ω ′ν ′ = 〈ων |e∑

N
i=0 xi|ω ′ν ′〉

within the continuum. The electric field of the laser E (t) shall be monochromatic at
frequency ωL with an amplitude E0:

E (t) = θ(t)E0 e−iωLt + c.c. . (II.26)

Here θ(t) is the Heaviside function. In the first approximation step, the number of excited
bound states will be reduced by limiting the sum indices n and n′ to Nexc. Especially for
a strong off-resonant excitation more than one of the excited bound states might play
an important role in the ionization process. The time-dependent Schrödinger equation
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|G〉

|X〉
~ωL

~ωL |δω|

|νω〉

|G〉

|X〉
~ωL

~ωL

ionization continuum

|δω|

|νω〉

Figure II.1.: Schematic illustration of a Rabi-assisted ionization process. The photon energy is
close or in resonance to a transition between the initial occupied state |G〉 and an excited state
|X〉 to enable the existence of Rabi oscillations. The situation represents an excitation below the
excited states corresponding to δω < 0.

defined by the Hamiltonian of equation (II.25) with a limited number of excited states
and initially in the ground state will be denoted as "reduced atom". The solution of this
approach will be obtained numerically.

The photon energy of the laser can be tuned also close or in resonance to one excited
state |nexc〉. Therefore, in addition to the ground state one bound state |nexc〉 ,fulfilling
ωnexc −ω0 ≈ ωL, and the continuum are essential to describe the dominating dyna-
mics. In the following the two remaining bound states are denoted as |G〉 (= |0〉) and
|X〉 (= |nexc〉). Furthermore, transitions between the ground state and the continuum
and within the continuum will be neglected. The resulting Hamilton operator reads

H =h̄ωG|G〉〈G|+ h̄ωX |X〉〈X |+
∫

∞

0
dω ∑

ν

h̄ω |ων〉〈νω|+E (t)µX ,G|X〉〈G| (II.27)

+ h̄E (t)µ
∗
X ,G|G〉〈X |+

∫
∞

0
dω ∑

ν

h̄E (t)µX ,ων |X〉〈νω|+
∫

∞

0
dω ∑

ν

h̄E (t)µ
∗
X ,νω |νω〉〈X |.

It includes the transition of electrons between the ground state and the excited state and
between the excited state and the continuum. The wave function shall be represented in
the following form:

|Ψ〉= aGe−i(ωG−δω)t |G〉+aX e−iωX t |X〉+
∫

∞

0
dω ∑

ν

aωνe−iωt |ων〉. (II.28)

δω =ωL−ωX +ωG is the detuning of the laser frequency ωL with respect to the transition
between the two bound states. The corresponding time-dependent Schrödinger equation
for (II.27) and (II.28) leads to the equations of motion for the coefficients aG, aX and aων

for t > 0. It is denoted as "resonant approximation without rotating wave approximation":
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ȧG =− iE0µ
∗
X ,G aX(1+ e−2iωLt)− iδω aG, (II.29a)

ȧX =− iE0µX ,G aG(e2iωLt +1)

− iE0

∫
∞

0
dωµX ,ωνaων(ei(ωX−ω+ωL)t + ei(ωX−ω−ωL)t), (II.29b)

ȧων =− iE0µων ,X aX(e−i(ωX−ω+ωL)t + e−i(ωX−ω−ωL)t). (II.29c)

For solving equation (II.29 ) the following initial conditions for the coefficients aG, aX
and aων are implied:

|aG|= 1 aX = aων = 0 for t < 0. (II.30)

In the next step the rotating wave approximation (RWA) will be applied by neglecting
all the exponential functions which are assumed to oscillate on a faster time scale than
the coefficients aG, aX and aων . Consequently, their averaged contribution add up to
zero. This case is assumed to apply to e±2iωLt and e±i(ωx−ω−ωL)t . On the contrary, the
exponent of e±i(ωx−ω+ωL)t passes during the integration through zero. Thus this term
evolves on a slow time scale and contributes to the dynamics of aG, aX and aων . Taking
this considerations into account one arrives at

ȧG =− iE0µ
∗
X ,GaX − iδωaG, (II.31a)

ȧX =− iE0µX ,GaG− iE0

∫
∞

0
dωµX ,ωνaωνei(ωx−ω+ωL)t , (II.31b)

ȧων =− iE0µων ,X aX e−i(ωx−ω+ωL)t . (II.31c)

The set of equations of motion (eq. (II.31)) is denoted as "resonant approximation"
and the solution is obtained numerically. Further simplification can be achieved by
integrating the equation of the continuum coefficients (eq. (II.31c)) with the initial
conditions (eq. (II.30)).

aων =−iE0µων ,X

∫ t

0
aX(t ′)e−i(ωx−ω+ωL)t ′dt ′. (II.32)

The result can be substituted into equation (II.31b) leading to

ȧX =−iE0µX ,GaG−E 2
0

∫ t

0
dτ γ(τ,ωL)aX(t− τ), (II.33a)

with γ(τ,ωL) =
∫

∞

0
dω|µX ,ων |2ei(ωx−ω+ωL)τ . (II.33b)

The elimination of the continuum coefficients has led to a closed set of equations for
aG and aX ((eq. II.31a) and eq. (II.33a)) by introducing the memory kernel γ(τ,ωL)
(eq. (II.33b)). Transforming them into the Laplace space with respect to the initial
conditions (eq. (II.30)) these equations become algebraic. One arrives at

aG(s) =
s+E 2

0 γ(s,ωL)

s2 +E 2
0 [sγ(s,ωL)+ |µX ,G|2]− iδω[s+E 2

0 γ(s)]
, (II.34a)

aX(s) =
−iE0µX ,G

s2 +E 2
0 [sγ(s,ωL)+ |µX ,G|2]− iδω[s+E 2

0 γ(s,ωL)]
. (II.34b)
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aG(s), aX(s) and aωµ(s) denote the Laplace transforms of the time-dependent functions
aG(t), aX(t) and aωµ(t). These analytic results (II.34) represent an approximative solution
for the time-dependent Schrödinger equation corresponding to the Hamiltonian (eq.
(II.25)). The accuracy depends on the validity of the reduced number of bound states
and the RWA. For further insight it is preferable to obtain an analytic solution in the time
domain. This can be achieved by using the Markov approximation which simplifies the
integral over the memory kernel by presuming different time scales for aX and γ(τ,ωL).
If the memory kernel decreases on a time scale much faster than changes of aX take
place, one can approximate aX(t−τ)∼ aX(t). For all other values of τ the memory kernel
γ(τ,ωL) is close to zero and aX does not affect the integral.∫ t

0
dτ γ(τ,ωL)aX(t− τ)≈

∫ t

0
dτ γ(τ,ωL)aX(t)≈ γ0(ωL)aX(t), (II.35a)

with γ0(ωL) =
∫

∞

0
dτ γ(τ,ωL). (II.35b)

In the last step also the upper limit of the integral was extended involving only a small er-
ror for a fast decaying memory kernel. The Markov approximation implies that the mem-
ory kernel in the Laplace space γ(s,ωL) loses its dependence on s (γ0(ωL)=̂γ(s = 0,ωL)).
This simplifies the transformation of equation (II.34) in the time domain. With the
introduction of

Ω̃0 = E0µX ,G, Γ0 =
1
2
|E0|2γ0(ωL), (II.36a)

Γ
+ = Γ0 + i

δω

2
, Γ

− = Γ0− i
δω

2
, Ω̃

2 = |Ω0|2−Γ
+2

, (II.36b)

and the Markov approximation the results in the Laplace space (II.34) can be rewritten
as

aG(s) =
s+Γ−

(s+Γ−)2 + Ω̃2
+

Γ+

Ω̃

Ω̃

(s+Γ−)2 + Ω̃2
, (II.37a)

aX(s) =−i
Ω̃0

Ω̃

Ω̃

(s+Γ−)2 + Ω̃2
. (II.37b)

The inverse Laplace transformation yields in the analytical solution for the time domain.

aG(t) = e−Γ−t
(

cos(Ω̃t)+
Γ+

Ω̃
sin(Ω̃t)

)
, (II.38a)

aX(t) =−i
Ω̃0

Ω̃
e−Γ−t sin(Ω̃t). (II.38b)

The occupations perform damped Rabi oscillations unaffected by the sign of Ω̃. Obviously,
the damping reflects the photoionization. The ionization in the resonant approximation
is defined by PI = 1−|aG|2−|aX |2. One has to note that the later examined occupation
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probabilities |aG|2 and |aX |2 will oscillate twice as fast as the complex coefficients. The
corresponding frequencies shall be

Ω0 = 2Ω̃0 and Ω = 2Ω̃. (II.39)

Of course, the obtained analytical solution (II.38) contains also the isolated two-level
system for a vanishing coupling to the continuum (γ0→ 0). In this case the Rabi frequency
of |aG|2 and |aX |2 is denoted as

Ω
2
2LS = Ω

2
0 +δω

2. (II.40)



III
Ionization of resonantly

driven atomic states

Photoionization pathways which include a resonant coupling between two bound atomic
states are predestined to show signatures of coherent quantum dynamics under the
intense radiation of recent XFELs. Already the analytic solution of the generic model
developed for these conditions in section II.5 predicts Rabi oscillations between the two
bound states accompanied by the ionization of the atom. For a detailed investigation
of the ionization of resonantly driven atomic states a one-dimensional atom model is
applied in the following. In particular, the validity of the approximations of the generic
model is verified in the high intensity regime of XFELs by the comparison between
different levels of theory. The content of this chapter has been published by the author
and co-workers in reference [73].

III.1 Non-interacting electrons

First, the two electron model will be explored without accounting for the interaction
between the electrons themselves. In this case the wave function Ψ(x1,σ1;x2,σ2; t) is
a single Slater determinant for all times. The resulting Hamiltonian is obtained by
neglecting the electron-electron interaction in equation (II.4) and using a different
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Figure III.1.: Schematic view of a two electron atom model with two discrete states performing
Rabi oscillations that compete with ionization processes. The lower state is initially occupied and
resonantly coupled with the excited state.

parametrization for the softcore potential.

H =H0(x1)+H0(x2)+ e(x1 + x2) ·E (t), (III.1)

with H0(x) =−
1

2me

∂ 2

∂ 2x
+Vsoft(x). (III.2)

In order to obtain a similar ionization threshold and transition energy for non-interacting
electrons as for the standard parametrization of two interacting electrons (eq. (II.4))
the potential strength is set to V0 = 1.8ERydaB and the potential range to κ = 0.73aB.
This choice induces EG = −21 eV and EX = −7 eV for the two lowest orbitals of the
corresponding stationary single particle Schrödinger equation of H0. Both orbitals are
resonantly coupled by an electric field E (t) with h̄ωL = EX −EG.

E (t) = θ(t)E0 e−iωLt + c.c.. (III.3)

The system shall initially occupy the ground state, leading to a spin singlet state.

Ψ(x1,σ1;x2,σ2; t) = ϕ(x1, t)ϕ(x2, t)
(δσ1↓δσ1↑−δσ1↑δσ1↓)√

2
. (III.4)

The orbital ϕ(x, t) is determined by the solution of the time-dependent Schrödinger
equation for a single particle.

ih̄
∂

∂ t
ϕ(x) = (H0(x)+ ex ·E (t))ϕ(x), (III.5)

which is solved numerically without any further approximations. At this point one
has to recall that the generic model developed in section II.5 for δω = 0 delivers an
approximated solution for the time-dependent Schrödinger equation (III.5). For the
adoption of the analytic solution the energetically lowest single particle eigenstate of
H0(x) takes the place of the state |G〉 and the second energetically lowest orbital is
interpreted as the excited state |X〉. The simplicity of the analytic results allows to
analyse the damped Rabi oscillations. The damping represents the ionization of the atom
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and is mainly determined by Γ. This contribution scales proportional to |E0|2 which is
usually interpreted as a single-photon ionization according to lowest order perturbation
theory. However, the ionization of the ground state via a single-photon absorption is
not included in the approximations made for the analytic solution (II.38). Instead, a
two-photon absorption is necessary to eject one electron which results in a scaling ∝ |E0|4
in leading order perturbation theory. This prediction is no contradiction to the derived
analytic results which reflects the perturbation behaviour during the first Rabi cycle for
Ωt� π. In this regime the electrons are transferred from the ground state to the excited
bound state and finally to the continuum. For later times an oscillatory exchange of the
electrons between the two bound states sets in, which cannot be captured by leading
order perturbation theory. A further contribution to the damping of the Rabi oscillations
stems from the complex value of Γ. Determining Ω by taking the root of |Ω0|2−Γ2,
obviously Ω is real for Γ = 0 but in general picks up a finite imaginary part for Γ 6= 0.
The finite value Im(Ω) induces additionally exponentially components on the cosine and
sinus functions and thus also contributes to the damping. Furthermore, the equations
(II.36) predict a deviation of the Rabi frequency Ω from the value Ω0 in the isolated two
level system.

Using the single particle orbitals of H0 the required dipole moment µX ,G and the
memory kernel γ(τ) are calculated. With these values at hand the solution of the
Markov approximation for the coefficients aG and aX is fully determined. In addition
also the resonant approximation (eq. (II.31)) is solved numerically. Compared with the
exact solution of the time-dependent Schrödinger equation the resonant approximation
invoked several simplifications specified in section II.5. These were the reduction to two
bound states, the negligence of transitions between the ground state and the continuum
states, the omission of the coupling between continuum states themselves and the
rotating wave approximation.

Figure III.2 shows the ground state occupation of the two electron atom as a function
of time for three different intensities. The direct numerical solutions of equation (III.5)
(blue solid line) are compared with results provided by the generic model. The red
dashed curve represents numerical results of the resonant approximation and the dotted
green curve is given by the analytic solution obtained via the Markov approximation. At
the lowest applied intensity of I = 3.52 ·1012 W/cm2 (fig. III.2 (a)) all three approaches
quantitatively coincide and the ground state occupations perform damped Rabi oscilla-
tions. As expected for increasing intensity the results at I = 1.27 ·1014 W/cm2 in figure
III.2 (b) exhibit faster oscillations and a stronger damping. Also first deviations between
the exact numerical solution and the approximations of the generic model appear. The
result of the complete time-dependent Schrödinger equation has a slightly stronger
damping representing a higher ionization. But still in all three curves of figure III.2
(b) the Rabi periods coincide and the influence of the Markov approximation is not
noticeable. However, the situation changes drastically for I = 1.41 ·1015 W/cm2 shown in
figure III.2 (c). In this case the results of the generic model underestimate the damping
and reveal faster oscillations. Nevertheless, it is remarkable how close both curves of
the generic model are to each other and instead deviate much stronger from the exact
solution.
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Figure III.2.: Ground state occupation for two non-interacting electrons as a function of time
for three intensities. Three levels of theory are displayed: The direct numerical solution of the
Schrödinger equation (blue solid line) and the generic model, first accounting only for resonant
contributions (red dashed dotted line or circles) and second including additionally the Markov
approximation (green dotted line or crosses).

The results of the generic model qualitatively capture most of the features of the com-
plete numerical solution, but fail quantitatively in the high intensity regime. Evidently,
under this conditions the assumptions of the approximations applied in the generic
model are not valid any more. It is close at hand that the negligence of the direct dipole
coupling between the ground state and the continuum as well as the complete omission
of further bound states decrease the number of possible ionization paths. In the same
manner acts the RWA by keeping only resonant terms in the equations of motion. It is,
however, amazing how strong this non-resonant contributions increase the ionization
although the excitation is Fourier-limited and therefore spectrally narrow.

III.2 Interacting electrons

In the following the discussion is extended to the dynamics of interacting electrons.
The corresponding Hamiltonian is defined in equation (II.4) with N = 2 electrons using
the standard parametrization for the softcore potential. Figure III.3 (a) shows the
ground state occupation probability as a function of time for two intensities. As before,
the ground state occupation performs damped Rabi oscillations. The damping and
frequency of the Rabi oscillations increase with rising intensity. For a detailed quantitative
comparison with the results of non-interacting electrons the Fourier transforms of the
time traces are performed. The spectra are shown in figure III.3 (b) and (c) and have
a rich structure that differs for calculations with and without interaction between the
electrons. In both cases the Rabi oscillations in the time domain correspond to the
dominating peak. Its position shall be denoted as ΩR. First, one recognizes the different
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Figure III.3.: Figure (a) shows the ground state occupation for a system of two interacting
electrons obtained by the exact solution of the Schrödinger equation for two intensities as
indicated. The right panel displays the Fourier transformations of the ground states dynamics for
I = 1.27 ·1014 W/cm2 with (b) and without electron-electron interaction (c).

values of ΩR for interacting and non-interacting electrons due to slightly different dipole
couplings between the ground state and the excited state. Furthermore, both spectra
exhibit peaks at 2ωL and 2ωL±ΩR corresponding to counter-rotating contributions which
are usually neglected by the rotating wave approximation (e.g. see equation (II.29)). The
spectrum corresponding to the dynamics of non-interacting electrons includes additional
peaks at 2ΩR and 2ωL± 2ΩR. Formally, they are generated by the product of the two
single particle orbitals constructing the Slater determinant. Therefore the probability of
the two particle ground state is given by the absolute fourth power of the occupation of
the lowest single particle orbital leading to the observed higher harmonics.

In addition to ΩR also the ionization rate represented by the damping of the Rabi
oscillations can be extracted out of the spectrum. It shall be denoted as ΓR and is
determined by the Full-Width-at-Half-Maximum of the peak at ΩR. In figure III.4 the
intensity dependence of ΓR and ΩR is displayed for calculations with and without
electron-electron interaction. Besides, ΓR and ΩR are extracted for the generic model
corresponding to non-interacting electrons invoking the resonant approximation with
and without the Markov approximation. For all approaches ΓR starts to rise linearly for
low intensities. However, at high intensities a super linear intensity dependence is found
for almost all levels of theory. Only in the case of the Markov approximation ΓR rises
linearly in the whole applied intensity range. In particular the deviation from the linear
intensity dependence of ΓR is most pronounced for the direct solution of non-interacting
particles whereas the resonant approximation only differs less from the behaviour of
the analytic solution. For the interacting particles the extracted damping rate exceeds
the ones of all other approaches. Figure III.4 (b) displays the intensity dependence
of ΩR normalized to Ω0. With rising intensity the renormalized value of ΩR decreases
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and reveals together with figure III.4 (a) the relation between ΩR and ΓR. One can
clearly see that high ionization rates are accompanied by a reduced Rabi frequency ΩR
according to the value Ω0 of an isolated two-level system. It is also remarkable that
for the Markov approximation ΩR does not visibly deviate from Ω0 even though the
renormalization of the Rabi frequency is manifested in the analytic solution (eq. (II.36)).
Instead non-Markovian dynamics are necessary to induce a sufficient ionization for an
appreciable renormalization. This observation is further supported by the direct solution
of the Schrödinger equation for non-interacting particles. Here, as already mentioned
above, additional off-resonant ionization paths contribute at high intensities and result
in a further reduction of ΩR compared to the resonant approximation. In the case of
interacting electrons, the strongest renormalization is found at an intensity of I & 1015

W/cm2. There ΩR decreases to ∼ 75% of its renormalized value.

III.3 Impact on the ionization dynamics

Of course, the degree of ionization is not directly influenced by the specific population
of bound atomic states and does not differ between electrons which are either in the
excited bound state or in the ground state. Nevertheless, it is obvious that in the recent
scenario an excited state is ionized by absorbing only one photon where in contrast two



III.3. Impact on the ionization dynamics 33

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

io
ni

za
ti
on

pr
ob

ab
ili

ty

pulse length [fs]

(b)

10−4

10−3

10−2

10−1

100

1010 1011 1012 1013 1014 1015

io
ni

za
ti
on

pr
ob

ab
ili

ty

I [W/cm2]

(a)

6.08 · 1012 W
cm2

1.37 · 1013 W
cm2

3.80 · 1013 W
cm2

3 fs
12 fs
49 fs

Figure III.5.: Ionization probability of the model atom with two non-interacting electrons. (a):
As a function of the intensity I for three finite pulse durations. (b): As a function of the pulse
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photons are needed to eject one electron out of the ground state. Thus, in this section
the ionization of the model system is analysed with respect to a temporal finite excitation
and its temporal evolution. The ionization probability PI is for this propose defined as

PI = 1−Pbound, (III.6)

with the probability Pbound for both electrons occupying bound states. Thus, PI includes
single and double ionization.

Figure III.5 (a) displays the PI for different durations of square pulses calculated for
the non-interacting electrons. The results of all three pulse durations exhibit a transition
between two different regimes marked by the arrows. On the right side of the arrows
the ionization grows almost linearly with the intensity and is slightly modulated by
small oscillations. This behaviour coincides with the observations of the previous section.
There, the damping of the Rabi oscillations represented the ionization rate and also
scaled linearly with the intensity. In addition PI is also influenced whether the respective
pulse area leads to an averaged higher occupation of either the ground or of the excited
state leading to the small modulations of the ion yield. On the contrary a quadratic
intensity scaling is found at the left side of the arrows as expected for the second order
perturbation theory. It is close at hand that the transition between different regimes
of ionization indicated by the position of the arrows is related to the onset of the first
Rabi oscillation. Precisely, the arrows mark the intensity of a pulse area A = π for each
individual pulse, corresponding to a half Rabi cycle. On the left side of the arrows (A < π)
the ionization probability rises quadratically and monotonically with intensity. In this
regime the occupation of the excited bound state only rises during the pulse without
being transferred back to the ground state. Subsequently, an electron of the excited
bound state is passed to the continuum. For such a two-step process the lowest order
perturbation theory predicts a quadratic intensity scaling of the ion yield which coincides
with the present observation. Furthermore, this characteristic intensity dependence is
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also captured by the generic model. PI can be expressed with the help of the analytic
solution and expanded with respect to E0. The leading order term in E0 verifies PI ∝ I2 at
low intensities. The relation between the modulations superimposed for A > π (fig. III.5
(a)) and the Rabi oscillations can be accessed more directly in figure III.5 (b). There the
ion yields are plotted as a function of the pulse duration for three intensities and reveal
signatures of the alternating occupation of the two coupled bound states. A stepwise
increase of the ionization only occurs while the excited state is significantly occupied.
The increasing frequency of the modulations with rising intensity further confirms the
relation to Rabi cycles.

Even though figure III.5 manifests that measurable quantities are affected by Rabi
oscillations the experimental realisation is still challenging since the properties of the
pulses emitted by XFEL lasers strongly fluctuate. The pulse shape as well as the peak
intensities vary during the operation and the emittance of squared pulses is at this
moment out of reach. In particular the appearance of the Rabi oscillations in the
ion yields as a function of time is not feasible at the moment. More promising for an
experimental realisation appears the transition between the quadratic and linear intensity
scaling of the ion yields. First measurements at SACLA [146] confirmed a linear intensity
scaling for photon energies resonant to the 1s2 and 1s2p states of helium although the
crossover was not observed. In addition theoretical investigations [143] determined the
influence of the fluctuating XFEL pulse properties on the intensity dependence of the ion
yields and found that the transition between a quadratic and a linear intensity scaling
could still be observed.



IV
Ionization of

off-resonantly driven

atomic states

In the following, the analysis is extended to photon energies inducing ionization path-
ways with off-resonantly driven transitions between atomic bound states. The knowledge
of this situation is of importance since in experiments the photon energy might slightly
deviate from the resonance condition. In order to evaluate the stability of the features in-
duced by Rabi oscillations of chapter III, a detuning between the laser and the resonance
frequency should be considered. Furthermore, ionization paths including excited states
can also contribute to the ionization process induced by XFELs. Even though the laser
frequency is above the first ionization threshold of the neutral target atom, the binding
energy of the bound electrons in subsequently produced ions increases with the charge
state of the ions and possibly exceeds the photon energy [136, 137]. When the ions are
no longer ionized by a single-photon absorption, the photon energy might be close to
a transition energy between excited ion states. Thus, the ionization via off-resonantly
driven atomic states can occur at a later point in the interaction between the radiation
and the atom.

Depending on the photon energy, the discussion can be divided into two different
regimes as illustrated in figure IV.1. For a negative detuning δω < 0 (fig. IV.1 (a)), which
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Figure IV.1.: Schematic view of the generic model of section II.5 applied on a two electron atom
for negativ (a) and positve (b) detuning.

implies ω < ωX −ωG, the photon energy is smaller than the transition energy between
the ground state and the first excited state, but still sufficient to ionize the ground state
via a two-photon absorption. In the other case, for a positive detuning δω > 0 (fig. IV.1
(b)), a single-photon excitation of the ground state reaches above the first excited state.
For δω < 0 the reduction of the atom to two bound states and a continuum may be still
justified whereas for δω > 0 further excited bound states are probably involved in the
ionization dynamics for sufficient larger detunings.

The one-dimensional two electron atom applied in chapter III for a resonant laser
excitation is investigated using the different levels of the generic model as well as the
complete TDSE. In this manner one can systematically pinpoint the contribution of the
involved processes. At first, the analytic solution of the generic model shall be discussed
for δω 6= 0. In section II.5 one arrived at equations (II.36) and (II.38). As known for the
isolated two level system the derived analytic solution for the Rabi-assisted ionization
predicts a decrease of the amplitude of the Rabi oscillations for increasing detuning.
Therefore in general a complete inversion between the ground state and the excited state
is not achieved in a Rabi cycle. An enhancement of the fraction of electrons rotating
between the two bound states can be realised with a higher electric field strength of the
laser pulse. Interestingly, the results for aG(t) and aX(t) are not independent on the sign
of δω in contrast to an isolated two level system since γ0 and therefore Γ0, Γ+ and Γ−

are functions of the laser frequency. Usually, rising the laser frequency leads to a smaller
ionization cross section for excitations far away from the ionization threshold resulting
in a decreasing ionization rate Γ0. Furthermore, unfolding the obtained expression for
the Rabi frequency

Ω̃ =±
√
|Ω̃0|2 +

δω2

4
−Γ2

0− iΓ0δω, (IV.1)

reveals an additional influence of the detuning δω on the Rabi frequency Ω compared to
the resonant case. In the latter the renormalization with respect to the Rabi frequency of
the isolated two level system was only affected by the term Γ2

0. The question whether
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the renormalization is smaller or larger than one was exclusively answered by the
stationary properties of the atom contained in γ0. The applied model leads to smaller
Rabi frequencies compared to the isolated two level system. Due to the last term iΓ0δω

in equation (IV.1) for an off-resonantly driven atom the sign of the detuning δω might
induce Rabi cycles rotating slower as well as faster than in the isolated two level system.

Up to now, in this thesis Rabi oscillations have been discussed only between the
ground state and the first excited state. In the following discussion of an off-resonantly
driven system the appearance of Rabi processes is not restricted to one pair of states. To
distinguish several couplings, a Rabi process between the stationary eigenstate n and
n′ of the field free Hamiltonian is characterised by the respective detuning δωn↔n′ and
the frequency Ωn↔n′ . The Rabi frequency of the corresponding isolated system equation
(II.40) is rewritten as

Ω̃n↔n′
2LS

2
= Ω̃n↔n′

0
2
+δω

n↔n′2 with Ω̃
n↔n′
0 = E0µn,n′. (IV.2)

Quantities without a specification in the superscript belong to ground state and first
excited state.

IV.1 Negative laser detuning

At first the validity of the generic model will be tested for negative detunings at a
low intensity. Figure IV.2 shows the time traces of the ground state occupation per-
forming damped Rabi oscillations for detunings of h̄δω = −0,27 eV, h̄δω = −0,82 eV
and h̄δω =−1,63 eV at an intensity of I = 3.17 ·1013 W/cm2. With a stronger detuning
the amplitude of the Rabi oscillations decreases and the Rabi frequency increases, as
known for the isolated two level system. Driving the model atom resonantly at a low
intensity the previous chapter revealed the quantitative agreement between the Markov
approximation (green dotted line and crosses), the resonant approximation (red line)
and the complete solution of the time-dependent Schrödinger equation (blue line). On
the contrary, for the off-resonant case quantitative small deviations appear between
the different levels of theory in the Rabi frequency and in the ionization already at
rather low intensities and are growing with increasing detuning. The first Rabi cycles
in figure IV.2 (a) indicate a higher Rabi frequency for the results of the solution of the
complete Schrödinger equation than for the results of the resonant approximation. This
observation holds also for results obtained for the detunings h̄δω = 0.82 eV in figure
IV.2 (b) and h̄δω = 1.63 eV in figure IV.2 (c) and implies a renormalization of the Rabi
frequency as found for the resonantly driven system, but in the opposed direction. In
addition figure IV.2 (c) exhibits deviations for the ionization rates of the different levels
of theory. The averaged ground state occupation during a Rabi cycle decays slightly faster
for the solution of the complete TDSE than for the results obtained with the generic
model. For a further clarification of this observation the total ionization probability1

1The calculated ionization probability includes single and double ionization as defined in section III.3
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Figure IV.2.: Ground state occupation ((a)-(c)) and ionization probability ((d) and (e)) for
two non-interacting electrons as a function of time for different detunings at an intensity
I = 3.17 · 1013 W/cm2. Three levels of theory are displayed: The direct numerical solution
of the Schrödinger equation (blue solid line) and the generic model, first accounting only for
resonant contributions (red dashed dotted line) and second additionally including the Markov
approximation (green dotted line or crosses).

is displayed as a function of time on a longer time scale, plotted figure IV.2 (d) and
(e). For a small detuning of h̄δω = −0.27 eV all approaches have roughly the same
ionization yields, whereas for h̄δω =−1.63 eV the two approximations underestimate
the ionization in comparison with the exact solution. In contrast to the resonant excita-
tion conditions for h̄δω =−1.63 eV large discrepancies exist also between the resonant
approximation with and without the Markov approximation (green and red curve in
fig. IV.2 (e)). Interestingly, already for rather low intensities the Markov approximation
becomes quantitatively invalid at a high detuning, probably caused by the faster Rabi
oscillations. They are degrading the applicability of separated time scales between the
memory kernel and the expansion coefficient of the excited state. Making no use of
the Markov approximation obviously improves the results but still underestimates the
ionization yields.

In figure IV.3 (a) and (b) the ground state dynamics are displayed for a moderate
intensity I = 1.72 ·1014 W/cm2 and a high intensity I = 3.52 ·1014 W/cm2 at a detuning of
h̄δω =−1.63 eV. The Rabi frequency and the amplitude of the oscillations increase with
rising intensity, as known for the isolated two level system and predicted by the analytic
solution. It was found above that at a high detuning the resonant approximation and the
Makov approximation fail already at the lowest applied intensities. In order to converge
further to the exact solution, figure IV.3 additionally contains results of the resonant
approximation without the RWA (orange line). It is clearly visible that this step does
not significantly alter the results of the ground state occupation compared to the results
of the resonant approximation with the RWA. The frequency of the Rabi cycles, their
amplitude and the ionization are essentially the same with or without the RWA. Only the
fast laser induced oscillations with a very small amplitude are additionally superimposed.
Confirming the applicability of the RWA, this observation points to the failure of the
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Figure IV.3.: Ground state occupation for two non-interacting electrons as a function of time
at a detuning of h̄δω = −1.63 eV for I = 1.72 · 1014 W/cm2 (a) and I = 3.52 · 1014 W/cm2

(b). Plots (d) and (e) show the corresponding ionization probability and in addition also
for I = 3.17 ·1013 W/cm2 (c). Four levels of theory are displayed: The direct numerical solution of
the Schrödinger equation (blue line), the reduced atom with one excited single particle orbitals
(light-blue line) and the resonant approximation with the RWA (red line) and without RWA
(orange line).

remaining simplifications of the resonant approximation. These are the limitation to two
bound states and the negligence of transitions between the ground state and continuum
states and between continuum states themselves.

In order to identify the failing approximation the ensemble of different levels of theory
will be extended by the "reduced atom" (eq. (II.25)). The reduced atom includes all
possible transitions for the ground state, the first excited state and the continuum. In
figure IV.3 the corresponding results are represented by the light-blue curves. The time
evolution of the ionization probability show an excellent agreement with the numerically
exact solution of the time-dependent Schrödinger equation at I = 3.17 ·1013 W/cm2 and
I = 1.72 ·1014 W/cm2 (fig. IV.3(c) and (d)). This observation manifests a non negligible
contribution of the direct coupling between the ground state and the continuum at a
low intensity, enabling a direct two-photon ionization. As long as the applied intensity is
low and therefore the Rabi oscillations do not completely deplete the ground state, the
direct two-photon ionization also contributes in addition to the Rabi-assisted ionization.
Therefore at an intensity of I = 3.52 ·1014 W/cm2 (fig. IV.3 (e)) the influence of the direct
two-photon ionization decreases, as confirmed by the similar ionization dynamics of the
reduced atom and the resonant approximation. The remaining deviations between both
approximations and the complete solution of the TDSE in Figure IV.3 (e) are due to the
growing importance of off-resonant ionization pathways in the high intensity regime.
Although the reduced atom with one excited single particle orbital reproduces ionization
yields at low and intermediate intensities, differences still occur in the time traces of
the ground state occupation. In the results presented in figure IV.3 (a) and (b) for the
reduced atom, the Rabi cycles rotate still slower than for the complete TDSE.

To investigate the influence of the further bound states, figure IV.4 displays results
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Figure IV.4.: Results at an intensity I = 3.52 ·1014 W/cm2 and a detuning h̄δω = −0.82 eV are
obtained via the numerical solution of the TDSE for different numbers of bound states. (a):
Time traces of the ground state in the presence of one (light-blue line), two (violet) and all
available (blue line) single particle states. (b) shows the occupation of the second (green line)
and third (red line) single particle orbital as a function of time for the complete TDSE. The
Fourier transforms of second single particle orbital are plotted in (c) for one (light-blue line)
and two (violet line) single particle states and in (d) for three (orange line) and all (blue line)
available bound states.

obtained by increasing the number of included excited states up to three for an intensity
I = 3.52 ·1014 W/cm2 and a detuning h̄δω =−0.82 eV. In figure IV.4 (a) the evolution of
the ground state occupation is shown for one (light-blue lines), two (violett lines) and
all numerically available excited single particle orbitals (blue lines). It is clearly visible
that the presence of the second excited single particle orbital significantly improves
the agreement with the complete solution of the time-dependent Schrödinger equation.
The damping of the Rabi frequency as well as the Rabi period become much closer
to the exact solution. In figure IV.4 (b) one can see the occupation probability of the
second and third single particle orbital obtained with the complete TDSE. Both signals
are strongly affected by a fast frequency component. The Fourier transformation of the
time trace confirms that the frequency of the fast oscillations can be identified with 2ωL.
It corresponds to the enhanced quivering movement induced by the interaction of the
electric field with the more loosely bound electron in the first excited single particle
orbital. This behaviour is passed further to the occupation of the second excited single
particle orbital. Only if an electron is transferred by a Rabi cycle in the first excited orbital
the occupation of the second excited orbital performs also the fast oscillations which are
necessary to represent the first excited orbital in the field distorted core potential.

A more detailed analysis is provided by the Fourier transforms of the first excited
single particle orbitals displayed in figure IV.4 (c) and (d). The results for the reduced
atom (light-blue curve in fig. IV.4 (c)) including the lowest excited single particle states
show three maxima at ΩR, 2ωL−ΩR and 2ωL. Taking account of the second excited single
particle orbital (violet curve in fig. IV.4 (c)) leads to the appearance of several additional
peaks. In particular, one can identify an additional fundamental frequency Ω1↔2

R at
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16.9 2πfs−1, which is quite close to the expected Rabi frequency Ω1↔2
2LS = 17.9 2πfs−1 for

an isolated off-resonantly coupled two level system composed of the first and the second
excited single particle orbital. This deviation can be identified as the renormalization
caused by the ionization of the atom. The appearance of Ω1↔2

R confirms the possibility of
a step-ladder Rabi mechanism proposed in [118] for the vibrational levels of electronic
states in a H2 molecule. In the investigated model atom this mechanism might contain
two off-resonantly driven steps, one from the ground state to the first excited state
and subsequently to the second excited state. This kind of process is supported by
the negative detuning which reduces the absolute detuning δω1↔2 for the second step.
Indeed the corresponding Rabi frequency Ω1↔2

R is observed in the Fourier-spectrum but
the time traces are not significantly affected. The position of the remaining new peaks is
given by the differences between Ω1↔2

R and the peaks of the reduced system with one
excited single particle orbital. Surprisingly, a contribution at the frequency ΩR +Ω1↔2

R
is not found. In addition, the existence of the second excited single particle orbital
significantly increases the amplitude of the 2ωL oscillations and assists the formation
of the field-strained first excited state as observed in the time evolution. Figure IV.4
(d) displays results for the reduced atom including three excited single particle states
and for the complete solution of the Schrödinger equation. Taking a third excited single
particle state into account leads to the appearance of further frequency components in
the spectrum. The TDSE reveals an additional rich structure due to the Rydberg like
series of the further bound states. However, due to their small amplitudes they do not
affect the time traces of the occupation probability. Only the position of Ω1↔2

R compared
to the results of one and two excited single particle states is shifted to frequencies of
16.0 2πfs−1 (red. atom Nexc = 3) and 15.9 2πfs−1 (TDSE).

IV.1.1. Renormalization for negative detuning

The previous section revealed the important contribution of the direct two-photon
ionization to the ion yield. However, the Rabi frequencies still differ for the different
levels of theory. For a further insight in the renormalization of the Rabi frequency
and its dependence on the intensity, figure IV.5 displays the quotient between the Rabi
frequencies ΩR for models accounting for ionization and Ω2LS for an isolated two level
system. The latter is extracted from the Fourier transformations of the time evolution
of the ground state. Results for three different negative detunings are obtained by the
direct solution of the complete TDSE (blue curves), the solution of the Schrödinger
equation for a reduced number of single particle states (light-blue and violet curves) and
the Markov-approximation (green curves). As already mentioned, the direction of the
renormalization is related to the sign of the detuning. In contrast to the resonant case
the results in figure IV.5 exhibit for almost all applied intensities and detunings a Rabi
frequency larger than in case of an isolated two level system and a non monotonic curve
progression. This behaviour can be verified by the analytic expression (IV.1) for the Rabi
frequency Ω. The term Γ2

0 caused for resonant excitation conditions a renormalization
smaller than one. Now additionally the term iδωΓ0 contributes to the renormalization.
The latter scales linearly with the intensity and is affected by the sign of the detuning.
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Obviously, it is responsible for the initial rise above one of the renormalization and
also explains the larger values of renormalization for an increased detuning. However,
the term Γ2

0 gains in importance for high intensities because of its quadratic intensity
dependence and induces a decrease of the renormalization. As observed in the case of
resonant excitation conditions, for h̄δω =−0.27 eV the renormalization finally becomes
even smaller than one. Furthermore, the comparison with the results containing one
or two excited single particle states manifest an increasing influence of the further
neglected bound states on the renormalization. This observation might at first appear
inconsistent to the declared relation between the renormalization and the ionization,
since similar ionization dynamics were found for the reduced atom and for the exact
solution2. However, one has to recall the part of the further excited states which do
not take part in the Rabi cycle but are involved in the quivering motion induced by the
oscillating electric field as observed in figure IV.4 (b). Even though this process does not
contribute to the ionization it could be interpreted as further losses from the point of
view of the two coupled states and thus affects the renormalization.

IV.1.2. Influence on the ionization yields

Representing a recent accessible quantity and providing information about contributing
processes the final ionization yields are discussed as a function of intensity for finite
pulses with a negative detuning. In section III.3 a transition between quadratic and
linear intensity scaling was found for a resonant excitation due to the onset of Rabi

2As an example in figure IV.3 (d) for h̄δω =−1.63 eV at I = 1.72 ·1014 W/cm2 the ionization dynamics
of the complete TDSE and the reduced atom with one excited single particle state show almost no
quantitative differences.
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oscillations. It is close at hand to verify this feature for an off-resonantly driven atom
due to the following additional aspects. For a resonant excitation the quadratic scaling
at low intensities of the ionization yields could be almost exclusively attributed to a
sequential two-photon ionization in which the atom absorbs one photon to transfer
an electron to the first excited state and afterwards a second photon for the transition
into the continuum. In contrast, one has to recall that in the off-resonant case the
direct two-photon process also contributes to the ion yields and is characterized by a
quadratic intensity scaling. These additional ionization paths are enhanced beside the
Rabi processes because the Rabi oscillations do not completely deplete the ground state.
Therefore, it is not ensured that the presence of Rabi oscillations leads automatically to a
linear intensity scaling as in the case of a resonant laser excitation.

In figure IV.6 each plot shows the ionization yields in dependence of the intensity for
different pulse durations at a fixed detuning. The envelope of the pulse is a rectangle
with smoothed edges during the first and the last five field oscillations. Decrease and
rise follow the right and left edge of a Gaussian curve with σ2 = 5TL/3.5. TL represents
the period of one field oscillation. For a negative detuning of h̄δω =−0.27 eV, displayed
in figure IV.6 (a), the curves for all pulse durations clearly exhibit a crossover between
different intensity scalings. Also the position of the transition moves to a lower intensity
for increasing pulse duration for h̄δω =−0.27 eV and pulse durations of 3 fs (blue line),
6 fs (red line) and 12 fs (green line). Similar to a resonant excitation, this behaviour
reflects the onset of Rabi oscillations at a pulse area of A = π. However, in the curve for
h̄δω =−0.27 eV and a pulse duration 36 fs (orange line) the intensity of the crossover
does not shift to smaller intensities as expected. Compared to the ion yields of the 12 fs
pulse the transition takes place at roughly the same intensity. A similar behaviour is found
for a detuning of h̄δω =−0.82 eV (fig. IV.6 (b)). At least for pulse durations of 3 fs, 6 fs
and 12 fs one observes an intensity scaling below a quadratic scaling before saturation
effects become of importance. Nevertheless a strict linear regime is not established. Only
by rising the pulse duration from 3 fs to 6 fs the weak crossover shifts as expected for the
onset the Rabi cycles. For h̄δω =−1.63 eV (fig. IV.6 (c)) the ion yields do not reveal a
transition between different intensity scalings. One can summarize that for an increasing
absolute value of the detuning and the pulse duration the crossover loses its sharpness
and is not correlated with the pulse area.

This observation reflects the competition between the two ionization pathways con-
tributing to the off-resonantly driven atom, on the one hand the direct two-photon
ionization and on the other hand the Rabi-assisted ionization. Which process dominates
critically depends on the characteristics of the Rabi cycles in the off-resonant case. These
are the dependence of the amplitude of the oscillations on the electric field strength and
the contribution of the detuning to the Rabi frequency. In particular, the latter leads to
a limiting value of the Rabi frequency for low intensities. This value defines a critical
pulse duration at which for all intensities at least one Rabi cycle should be present, even
though with a very small amplitude.

lim
E0→0

Ω = δω ⇒ tc
p =

2π

δω
. (IV.3)
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Figure IV.6.: Ionization yields after a laser pulse as a function of intensity for the detunings h̄δω =
−0.27 eV (a), h̄δω =−0.82 eV (b) and h̄δω =−1.63 eV (c) obtained via the numerical solution
of the complete time-dependent Schrödinger equation. The corresponding pulse durations are 36
fs (orange dashed line), 12 fs (green dotted line), 6 fs (red dashed dotted line) and 3 fs (blue
solid line). The grey lines mark a strict linear or quadratic intensity scaling and tc

p denotes the
maximal Rabi period in the case of E0 = 0 for each detuning, respectively.

The critical pulse lengths for the applied detunings are given in the corresponding plots
of figure IV.6. Obviously, for pulse duration equal or larger than the critical value, the
position of the transition between the linear and quadratic intensity scaling is no longer
exclusively determined by the pulse duration and the corresponding pulse area. Instead,
only the intensity has to be large enough to realise a notable amplitude of the Rabi
oscillations resulting in a linear intensity scaling. This behaviour is demonstrated in
figure IV.6 (a). Ion yields are plotted for pulse durations which are almost equal (green
line, 12 fs) as well as larger (orange line, 36 fs) than the critical value (tc

p = 15 fs). In
agreement with the previous considerations the position of the crossover between the
quadratic and the linear intensity scaling is found for both pulse durations approximately
at the same intensity. One recognizes a smooth crossover for pulse lengths above the
critical value, because the sufficient amplitude of the Rabi oscillations to establish a
linear intensity scaling cannot be declared in a precise condition. In contrast, for the
results, at which the critical pulse area argument holds, the transition is rather sharp.
Therefore the slope of the curve first starts to deviate slightly from the quadratic scaling
and bends itself over a large intensity interval until the Rabi oscillations finally dominates
and the linear scaling regime occurs.

For h̄δω = −0.82 eV and h̄δω = −1.63 eV in figures IV.6 (b) and (c) the ion yields
deviate from the quadratic intensity scaling, but do not access the regime of a purely
linear intensity scaling. A larger detuning results in a smaller critical pulse duration
enabling Rabi oscillations for almost all applied pulses. Nevertheless, also a higher field
strength is required to excite Rabi cycles which induce deviations from the quadratic
intensity scaling. Thus, the direct two-photon ionization dominates until the intensity
is sufficient to provide an adequate amplitude of the Rabi oscillations between the
ground state and the first excited state. The results manifest that for h̄δω =−0.82 eV
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and h̄δω = −1.63 eV the signal already saturates before the Rabi cycles dominate the
ionization. Therefore the ionization scales with an exponent smaller than two without
reaching a strict linear intensity dependence. The characteristic intensity, at which
deviations from the quadratic intensity scaling for pulse lengths larger than the critical
pulse length occur, is related to the amplitude of the Rabi oscillations and depends on
the detuning. Figure IV.6 indicates that for an increasing detuning the position of the
crossover shifts to higher intensities, as expected.

IV.2 Positive laser detuning

Now the frequency of the laser will be adjusted for an excitation of the ground state
above the first excited single particle state without surpassing the third excited single
particle state, which is the energetically next state with a non-vanishing dipole coupling.
Consequently, for a sufficient high detuning the third excited single particle state takes
part in the dynamics and affects the ionization process by the realisation of a additional
Rabi process. At first, the validity of the different approximations of the generic model
is verified by a comparison with the complete time-dependent Schrödinger equation.
Figure IV.7 displays results for two non-interacting electrons obtained with the complete
TDSE, the resonant approximation and the analytic solution at a low intensity of I =
3.17 ·1013 W/cm2. The time evolution of the ground state is plotted for the detunings
h̄δω = 0.82 eV (fig IV.7 (a)) and h̄δω = 1.63 eV (fig. IV.7 (b)), revealing damped Rabi
oscillations with decreasing amplitude for an increasing detuning, as expected. For both
detunings the results of the Markov and the resonant approximation coincide with each
other during the first 20 fs. In comparison with the results of the resonant approximation,
the dynamics of the complete TDSE exhibit oscillations with similar amplitudes but
smaller frequencies.

The ionization dynamics received via the Markov and the resonant approximation
differ only slightly from each other for the applied detunings in figures IV.7 (c)-(d). For
h̄δω = 0.27 eV the results of the generic model match quite well those of the complete
TDSE (fig. IV.7 (c)). On the contrary, for the enlarged detunings of h̄δω = 0.82 eV and
h̄δω = 1.63 eV differences between the ion yields of TDSE and the resonant approxima-
tions occure on long time scales although a qualitatively good agreement for the ground
state occupations was found during the first Rabi cycles at h̄δω = 0.82 eV (fig. IV.7 (b)).
Surprisingly, the Markov approximation as well as the resonant approximation surpass
the ion yields of the complete TDSE, even though they include a smaller number of
transitions. For a negative detuning the opposed behaviour has been observed because
the resonant approximation does not account for the direct two-photon ionization of the
ground state. Thus, adding a corresponding rate probably might improve the resonant
approximation in case of a negative detuning. Nevertheless, for the current positive
detuning a such simple extension probably will not work since it further increases the
ion yields of the resonant approximation. In addition, for the largest applied detuning
h̄δω = 1.63 eV the ionization rate of the TDSE seems to become almost constant. Most
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Figure IV.7.: Ground state occupation ((a) and (b)) and ion yields ((c) - (e)) as a function of time
for two non-interacting electrons at an intensity of I = 3.17 ·1013 W/cm2. The results are obtained
via the Markov approximation (green lines and crosses) the resonant approximation (red lines)
and the complete TDSE (blue lines). The laser frequency induces the detunings h̄δω = 0.82 eV
for (a) and (d), h̄δω = 1.63 eV for (b) and (e) and h̄δω = 0.27 eV for (c).

likely, the reduced ionization for an even higher number of ionization pathways might be
caused by the coherent superposition of additional bound states in the complete TDSE.

In order to explore the impact of the third excited single particle state in the dynamics,
the detuning as well as the intensity of laser are increased. Thus, the photon energy
moves closer to the transition between the ground state and the third excited single par-
ticle state. Consequently, the corresponding Rabi cycles oscillate with larger amplitudes.
Figure IV.11 displays the ground state occupation ((a)-(d)) and the ion yields ((e) and
(f)) obtained via the complete TDSE (blue line) and for the reduced atom including one
(green line), two (red line) and three (orange line) excited states. The laser is adjusted to
the detunings h̄δω = 1.63 eV (fig IV.8 (a), (b), (e)) and h̄δω = 2.72 eV (fig IV.8 (c), (d),
(f)) at an intensity I = 3.52 ·1014 W/cm2. One has to note that the second excited state
does not couple to the ground state due to a vanishing dipole matrix element. The time
traces of the ground state are dominated by the Rabi cycles of the first excited state. For
h̄δω = 1.63 eV the Rabi cycles of the reduced atom including one excited single particle
oscillate the fastest. The second excited single particle orbital contributes essentially to
the renormalization and results in almost the same Rabi frequency as the complete TDSE.
Surprisingly, for h̄δω = 2.72 eV in figure IV.8 (c) the amplitude of the Rabi oscillations
does not decay monotonically in the results for more than two excited single particle
orbitals. Instead, an additional modulation is superimposed onto the amplitudes of the
Rabi cycle between the ground state and the first excited state. Although the signature
appears with the presence of the third excited state, still quantitative deviations from the
results of the complete TDSE are observed. Using a larger time scale (fig. IV.8 (b) and
(d)) the modulations of the amplitudes of the Rabi oscillations become also visible at
h̄δω = 1.63 eV. The different frequencies of the modulations observed for the applied
excitation conditions indicate a dependence on the detuning. Due to the relation to



IV.2. Positive laser detuning 47

0
0.2
0.4
0.6
0.8

1
gr

ou
nd

st
at

e
oc

cu
pa

ti
on

(a) ~δω = 1.63 eV

0.2

0.4

0.6

0.8

1

0 2 4 6 8
time [fs]

(c) ~δω = 2.72 eV

(b) ~δω = 1.63 eV

0 20 40 60 80 100 120
time [fs]

(d) ~δω = 2.72 eV

I= 3.52 · 1014 W/cm2

0

0.25

0.5 (e) ~δω=1.63 eV

0

0.25

0.5

0 100 200 300 400

io
n.

pr
ob

.

time [fs]

(f) ~δω=2.72 eV

red. atom 1
red. atom 2

red. atom 3
TDSE

Figure IV.8.: The plots (a) - (d) display the time evolution of the ground state occupation as a
function of time for the detunings h̄δω = 1.63 eV and h̄δω = 2.72 eV on a small and large time
scale obtained at an intensity I = 3.52 ·1014 W/cm2 for the TDSE and the reduced level system
including two, three and four bound single particle states. The corresponding time dependency
of the ion yields is plotted in figures (e) and (f).

the presence of the third excited single particle state, it is close at hand to identify the
modulations as beats between the two Rabi cycles of the ground state with the first and
third excited state.

Figures IV.8 (e) and (f) display the time evolution of the ion yields for the reduced
atom containing one, two and three excited single particle states and the complete TDSE.
For h̄δω = 2.72 eV (fig. IV.8 (f)) the results including one and two excited single particle
states show a qualitative similar ionization as the complete TDSE. A good quantitative
agreement is achieved with the extension of the reduced atom to three excited single
particle states. Initially the atom is ionized up to 25% in the first 50 fs followed by a
strongly reduced ionization rate. The ionization dynamics of the complete TDSE and
the reduced atom seem to pass through two regimes. In contrast, the Markov and
the resonant approximation (fig. IV.7 (d) and (e)) follow an exponentially increasing
ionization with one global ionization rate. In the case of h̄δω = 1.63 eV figure IV.8 (e)
this signature is even more pronounced. After a steep increase in the first 50 fs, reaching
a value of approximately 50%, the ionization becomes almost constant in the case of
the complete TDSE. For all numbers of excited states the reduced atom reproduces
the initial steep rise and the following strongly reduced ionization rate. However, the
ionization rate of the second regime does not become as low as for the complete TDSE.
This signature denoted as stabilization of the atom or suppression of ionization has been
discussed in literature since a long time [47, 85] and has already been observed in a
one-dimensional model atom for a two-photon ionization [160]. The applied photon
energy in reference [160] realises a similar excitation condition as in the current analysis.
Also the reported characteristic peak-splitting of the probability distribution of the wave
function in the position space [160] is also found for the present discussed excitation
conditions, confirming the observation of the established suppression of ionization.

In order to identify the coexistence of two Rabi processes as the source of the beats
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Figure IV.9.: Occupation probability of the energetic lowest single particle orbital as a function
of time (a) and the corresponding Fourier transformation (b) at an intensity I = 3.52 ·1014 W/cm2

for different detunings obtained via the complete TDSE. The position of the broad peaks in graph
(b) represents the Rabi frequency Ω0↔1

R of an electron rotating between the two lowest single
particle orbitals. The frequency Ω0↔3

R of the Rabi oscillations between the lowest and the third
excited single particle orbital corresponds to the narrow peaks. The respective detuning and
Fourier frequency of the peaks are marked additionally by grey crosses for Ω0↔1

R and grey circles
for Ω0↔3

R . The Rabi frequencies expected for the two isolated two level systems consisting of the
particular states of the atom model are illustrated by the two grey dashed lines.

in the ground state dynamics, figures IV.9 (a) and (b) display the time traces of the
energetic lowest single particle orbital and the corresponding Fourier transformation.
The results are obtained via the complete TDSE at an intensity I = 3.52 ·1014 W/cm2 for
different detunings. The spectra in figures IV.9 (b) reveal a broad and a narrow peak.
The broad peaks correspond to the Rabi frequency Ω0↔1

R of the oscillations between the
lowest and first excited single particle orbital. These peaks are moving to higher Fourier-
frequencies with increasing detuning. The photon energies of the applied detunings are
always smaller than the transition energy from the ground state to the third excited state.
Therefore the corresponding detuning δω0↔3 is negative. With rising δω the absolute
value of δω0↔3 decreases and consequently the corresponding Rabi frequency is reduced.
Indeed, this signature is found for the narrow peak, whose position is denoted as Ω0↔3

R .
It is shifted to lower Fourier-frequencies for increasing δω and passes the position of
Ω0↔1

R . This observation is further illustrated by the grey crosses and circles in fig. IV.9 (b)
which project the position of the peak in the plane of δω and the Fourier-frequency. For
a coexistence of two Rabi processes, the time traces of the ground state occupation might
exhibit oscillating contributions of the sum and the difference of the two respective Rabi
frequencies. Clearly visible, for h̄δω = 1.90 eV the values of both Rabi frequencies almost
coincide. In this case, the time evolution of the occupation of the lowest single particle
orbital (blue line in fig. IV.9 (a)) performs damped Rabi oscillations without additional
modulations. However, modulations in the time traces appear for photon energies
inducing two differing Rabi frequencies. The frequency of the modulations is growing
with increasing distance between the two Rabi peaks. Obviously, the modulations of the
amplitude of the Rabi oscillations stem from the superposition of two coexisting Rabi
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processes of the ground state. The frequency component of the modulation represents
the difference in frequency between the two superimposed processes and originate from
the formation of the absolute squared value of the expansion coefficient of the ground
state. Furthermore, also the Rabi frequencies Ω0↔1

2LS and Ω0↔3
2LS expected for the respective

isolated two level systems are displayed in figure IV.9 (b) by the dashed grey lines. As
already observed above, the coupling with a positive detuning between the energetic
lowest and first excited single particle state induces a slower Rabi frequency Ω0↔1

R for
the complete TDSE than for the respective isolated two level system. Surprisingly, the
same observation is made for the Rabi frequency Ω0↔3

R between the lowest and the third
excited single particle state, even though they are driven with a negative detuning which
previously led to a renormalization larger than one (see section IV.1.1). The intersection
point between the dashed grey lines marks the detuning which realises the equality of
both Rabi frequencies in the case of two independent isolated two level systems. The
solid grey lines of the results obtained via the time-dependent Schrödinger equation cross
each other at approximately the same value for the detuning. Thus, in the present model
the renormalization of the Rabi frequencies neither affects the frequency of the Rabi
beats nor the corresponding required photon energy. Nevertheless, for two coexisting
Rabi oscillations with opposed renormalization the respective photon energy might be
essentially shifted compared to an isolated two level system. In this case, the beats might
prove as a signature suited to demonstrate quantitative deviations of the Rabi frequency
due to the ionization. Also these Rabi beats represent a possibility to slow down the
rather fast Rabi oszillation and would facilitate the access to the latter by experiments.

IV.2.1. Renormalization for positive detuning

In the following, the renormalization of the Rabi frequency induced by the coupling
to the continuum is analysed for the different levels of theory. Therefore the Rabi
frequency ΩR for electrons oscillating between the ground state and the first excited
state is extracted out of the Fourier spectra and normalized to the Rabi frequency Ω2LS
given by the corresponding isolated two level system. Figures IV.10 (a) and (b) display
the corresponding quotient of ΩR and Ω2LS as a function of intensity for two detunings
h̄δω = 0.27 eV and h̄δω = 0.82 eV. The results are obtained via the complete TDSE,
the analytic solution and the reduced atom model including up to four excited single
particle orbitals. For both detunings the renormalization reveals a similar dependence
on the intensity. At low intensities the results for all approaches are close to one and
fall below one with increasing intensities, confirming a smaller Rabi frequency in the
models than for the isolated two level system. In comparison with the complete TDSE
the analytic results obtained via the Markov approximation (green line) substantially
underestimate the deviation from the isolated two level system. Also the reduced atom
model including the first excited single particle state does not reach the renormalization
of the TDSE, but becomes closer with an increasing number of bound states. As in
the case of a negative detuning the second excited single particle orbital has a large
contribution to the renormalization. However it does not take part in a Rabi process,
because its dipole matrix element to the ground state is equal zero and a transition
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Figure IV.10.: Intensity dependence of the Rabi frequency normalized with respect to the
expected Rabi frequency for an isolated off-resonantly driven two level system. Results are
obtained for the detunings h̄δω = 0.27 eV (a) and h̄δω = 0.82 eV (b) via the numerical solution
for the complete time-dependent Schrödinger equation (blue line), the reduced atom with one
(light-blue line), two (violet line), three (orange line), four (red line) excited single particle
orbitals and for the analytic results.

with the first excited single particle orbital is driven strongly off-resonant. Instead the
second excited single particle orbital is involved in the oscillating motion induced by
the electric field when an electron occupies the first single particle state during a Rabi
cycle. Interestingly, for a positive detuning the extension to the third excited single
particle orbital does not lead to a continuous convergence of the renormalization to
the results obtained via the complete TDSE. The received renormalization qualitatively
resembles the behaviour obtained with the reduced atom model including only one
excited state. The initial decay of the quotient ΩR/Ω2LS below one is followed by an
increase at high intensities. Surprisingly, the observation manifests that a qualitatively
correct determination of the renormalization of the Rabi frequency is not achieved by
including only the excited state which takes part in the respective Rabi process. Instead
also the energetically following state is required to reproduce the results of the complete
TDSE. In comparison with the resonantly driven atom model one observes a qualitatively
slightly different behaviour of the renormalization. Here, after an initial decrease the
slope of the quotient ΩR/Ω2LS stays almost constant and slightly recovers in the interval
[1012 : 1014] W/cm2 for δω = 0.27 eV. In contrast, without detuning the renormalization
has shown a monotonically decreasing slope.

IV.2.2. Influence on the ionization yields

In this section the intensity dependence of the ion yields is analysed for different pulse
durations and positive detunings. Figure IV.11 displays the ion yields after a laser
pulse as a function of intensity for pulse durations of tp = 36 fs, tp = 12 fs, tp = 6 fs
and tp = 3 fs and positive detunings of h̄δω = 0.27 eV (a), h̄δω = 0.82 eV (b) and
h̄δω = 1.63 eV (c). The applied pulse form is a rectangle with smoothed edges during
the first and the last five field oscillations. Fall and rise follow a Gaussian curve with
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Figure IV.11.: Ionization yields after a laser pulse as a function of the intensity for the detunings
h̄δω = 0.27 eV (a), h̄δω = 0.82 eV (b) and h̄δω = 1.63 eV (c) obtained via the numerical solution
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solid line). The grey lines mark a strict linear or quadratic intensity scaling and tc

p denotes the
maximal Rabi period in the case of E0 = 0 for each detuning, respectively.

σ2 = 5 ·TL/3.5 where TL is the period of one field oscillation. The results reveal a similar
behaviour as observed for negative detuning. All curves start with a quadratic intensity
scaling at low intensities but in most cases deviate with rising intensity from their initial
behaviour before the saturation of the yields is reached. The curves for a pulse duration
smaller than the corresponding critical pulse length tc

p = 15 fs resemble the situation of
a resonant excitation. There, the position of the crossovers between different intensity
scalings depends on the onset of the Rabi cycles and is determined for each pulse length,
respectively. Figure IV.11 (a) for h̄δω = 0.27 eV nicely illustrates this behaviour for the
pulse lengths of 3 fs, 6 fs and 12 fs. Since the ground state is usually not completely
depleted for δω 6= 0, the direct two-photon ionization contributes to the ion yields in
addition to the Rabi-assisted ionization. Therefore a strict linear intensity scaling is
not achieved. For the ion yields induced by a laser pulse longer than the critical pulse
length(eq. (IV.3)) the Rabi oscillations are present for all field strengths and are in a
competition with the direct two-photon ionization. Here, the initial quadratic intensity
scaling of the ion yields is affected at an intensity which is sufficient to provide reasonable
Rabi amplitudes to exceed the direct two-photon ionization. Consequently, for pulses
longer than the critical pulse length the intensity at which the crossover takes place does
not depend on the pulse length. This is clearly visible in figure IV.11 (c) for the applied
pulse lengths. In comparison with the results for a negative detuning, the crossover is
more pronounced for a positive detuning because the ionization cross-section decreases
with increasing photon energy. Thus, the ion yields saturate at higher intensities for a
positive detuning and the regime of Rab-assisted ionization is enlarged.

By rising the photon energy one can replace the excited state which is preferentially
involved in the Rabi oscillations. For h̄δω = 4.90 eV the transition between the ground
state and the first excited state is now driven strongly off-resonant. Instead, the laser
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excites the ground states electrons to the single excited state constructed with the third
excited single particle orbital (h̄δω0↔3 = −0.052 eV). In addition, also the couplings
between the ground state and the other Rydberg-like states as well as the continuum
are enhanced. The ion yields generated by a laser pulse with h̄δω = 4.90 eV are plotted
in figure IV.12 as a function of the intensity. Pulse durations tp of 36 fs (orange dashed
lines), 12 fs (green dotted lines), 6 fs (red dashed dotted lines) and 3 fs (blue solid lines)
have been applied for a squared pulse (a), a smooth square pulse (b) and a Gaussian
pulse (c). The different shapes of the pulses strongly affect the ion yields. For a Gaussian
shaped pulse with tp ≥ 6 fs the behaviour is similar to resonant excitation conditions. The
ion yields start to increase quadratically with intensity indicating a two-photon ionization
which is followed by linear intensity scaling due to the onset of the Rabi oscillations.

However, at low intensities the ion yields rise linearly for all applied pulse durations
of a sharp or smooth squared pulse. The same behaviour is found for the Gaussian pulse
with tp = 3 fs and contradicts the lowest order perturbation theory. With rising intensity
the slope of these curves increases. For pulses longer than 6 fs the linear intensity scaling
is regained before saturation is reached and is superimposed with oscillations due to
Rabi cycles. Short pulse durations and sharply shaped pulses enhance the regime of
the initial linear intensity scaling. Probably, this observation bases on the broadened
energy distribution caused by the ultrashort pulses and their sharp temporal envelopes.
Therefore the part of photons which have a sufficient high energy to realise a single-
photon ionization is increased. In addition, the high detuning is connected with a photon
energy closer to the ionization threshold. This fact further supports the contribution
of photons with an higher energy than the one corresponding to the central frequency
of the laser. Of course, this type of single-photon process is present in most ionization



IV.2. Positive laser detuning 53

scenarios which in general are supposed to result in a multi-photon ionization. However,
the number of the contributing photons is usually extremely small and thus this process
does in general not result in any significant features. Nevertheless, at a sufficient low
intensity a process with a linear intensity scaling of the ion yields always wins against
the remaining higher order ionization paths. The proposed mechanism inducing the
single-photon ionization at low intensities is further confirmed by the results of figure
IV.12. It is found that the range of the initial linear scaling is enlarged by shorter and
sharper pulses due to their broader frequency distribution. Thus, an excitation commonly
expected to perform a two-photon ionization process can cause a deviation from the
expected quadratic intensity scaling for ultrashort pulses at low as well as at high photon
fluxes. The results further show that the clear appearance of both transitions is not
achieved easily since their respective demands on the pulse duration are opposed to each
other. Short pulses support the linear intensity scaling at low intensities whereas long
pulses increase the regime which is dominated by the Rabi oscillations.





V
The role of electron

correlations

The investigations in the previous chapters elaborated primarily signatures in the ion-
ization which base on the existence of coherences. In the following, we will focus on
the correlations due to the interaction between the electrons and explore their role in
the ionization dynamics at high intensities. To this end, the time-dependent Schrödinger
equation and the time-dependent Hartree-Fock approach are solved numerically in one
dimension for two electrons excited with a coherent femtosecond XUV laser pulse. The
content of this chapter has been published by the author and co-workers in reference
[74]. For the interaction between the core and the electrons and between the electrons
themselves, the short-ranged cosh-potential defined by equation (II.5) is used instead
of the softcore potential. The parameters are adjusted to U0 = 6ERyd and α = a−1

B . This
choice yields in a ground state energy (E0 =−81 eV) and ionization thresholds (single
ionization I(1)p = 27 eV, double ionization I(2)p = 54 eV) comparable to those of the three
dimensional helium atom. The electric field of the laser is represented as

E (t) = E0 cos(ωt)exp

(
− t2

2 t2
p

)
. (V.1)

The pulse duration is controlled by the parameter tp and adjusted in such a way that the
full width at half maximum of the field amplitude is 1.6 fs. The center of the pulse is
placed at the origin of time.
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Figure V.1.: Occupation probability of the ground state as a function of the photon energy for
the two intensities I1 = 3.5 ·1014 W

cm2 and I2 = 5.6 ·1013 W
cm2 .

V.1 Dynamics of the ground state

An important quantity of interest is the occupation probability of the ground state as it
reflects the total ionization yield and has a strong influence on X-ray scattering patterns.
It is extracted from the wave function or the reduced density matrix by projecting
them on the ground state. In figure V.1 the ground state occupation attained after
the interaction with the radiation is displayed as a function of photon energy for two
excitation intensities I1 = 3.5 ·1014 W

cm2 and I2 = 1.3 ·1014 W
cm2 . The results obtained with the

numerically exact solution (blue and black crosses) are compared with those calculated
via time-dependent Hartree-Fock theory1 (blue squares and black circles). In both cases
one receives h̄ω ≈ 27 eV for the one-photon single ionization threshold which results
in a steep decrease of the ground state occupation for higher photon energies. For
photon energies below this threshold only multi-photon ionization processes are possible
resulting in a weak ionization. A sharp minimum above the threshold is present for all
four curves and as expected the total ionization decreases for a reduction of the intensity.
In the Hartree-Fock approximation the minimum is less pronounced and shifts to higher
photon energies with rising intensity whereas in the exact calculation its position is
almost independent on the intensity. Both calculations become more similar the lower
the intensity is adjusted. For photon energies above 40 eV the Hartree-Fock curves
essentially coincide with the exact results.

In order to understand the reason for the deviations between Hartree-Fock and
Schrödinger equation calculations, the time evolution of the ground state occupations
are displayed in figure V.2 for the higher intensity I1 of figure V.1 and for two laser
frequencies. First, the results for an excitation at h̄ω = 38 eV (figure V.2(a)) shall be
discussed which is for both levels of the theory on the right side of the minimum of the

1Details concerning the derivation of the time-dependent Hartree-Fock theory are discussed in section VI.
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final ground state occupation. In this case, the Hartree-Fock result agrees qualitatively
well with the full calculation. During the laser pulse the occupation probability of the
ground state decreases monotonically and finally reaches a value of about ∼ 60% after
the pulse has passed.

In contrast, for an excitation close above the single ionization threshold (fig. V.2(b))
a non monotonic time evolution of the ground state occupation is found in the Hartree-
Fock calculation. The atom is ionized until the ground state is populated with ∼ 34%
probability, followed by the reoccupation of the ground state even though the atom is
still driven by the laser pulse. In the contrary, the time-dependent Schrödinger equation
shows a monotonic evolution of the ionization. A physical explanation of this feature of
the Hartree-Fock approach is found by diagonalising the Hartree-Fock Hamiltonian at
each time step. It must be noted, that the Hartree-Fock solution is equal to a mean-field
treatment and thus the Hartree-Fock Hamiltonian depends parametrically on the time-
dependent values of the reduced density matrix. Consequently, the energy eigenvalues
obtained by the diagonalisation depend on time. These values effectively determine the
ionization threshold [72, 74, 84]. Figure V.3 shows the time evolution of the lowest
eigenvalue for an excitation energy of h̄ω = 33 eV for the two intensities I1 and I2 applied
in figure V.1. The lowest eigenvalue decreases with on going ionization because the
screening of the core potential by the mean-field of the electrons is reduced which
enhances the binding of the remaining electrons. At higher intensity the ionization
threshold can therefore exceed the photon energy. Once this is realised single-photon
processes are significantly suppressed and the ionization stops even though the pulse is
still driving the system. From this time on only transient virtual excitations are generated
which finally disappear after the pulse. This is seen as the recovery of the ground state
occupation in Figure V.2 (b).

For sufficient high frequencies the ionization is not interrupted since the ionization
threshold never becomes larger than the photon energy. This is illustrated in figure V.2
(a) where also the Hartree-Fock curve falls monotonically. The same holds for the lower
intensities used in figures V.1 and V.3. This continuous descent of the threshold is not
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observed in the exact solution, because instead of a mean field charge distribution at the
core the two electrons are treated as quantized charges. So either two electrons or one
are at the core and a continuous transition between the first and the second ionization
threshold does not take place. One expects that the differences between the Hartree-Fock
approximation and the exact theory are most pronounced in the two electron system
considered here. First, because for larger electron numbers a mean-field can build up
more effectively because the contribution of a single electron is less important as in the
two electron case. Second, the difference of the single-photon ionization thresholds
between the ground state and the ion is largest in the present case.

V.2 Few photon double-ionization

A phenomenon well-known for being affected by correlation effects is the double ioniza-
tion of helium. In order to get more insight into the role of different ionization processes,
it is worthwhile to analyse the momentum distribution of the emitted electrons, as
different processes can be discriminated by corresponding characteristic k-space patterns.
In the real space, parts of the wave function can be identified according to

Ψ
He(x1,x2) =

{
Ψ(x1,x2) for |x1|< a, |x2|< a,
0 else,

(V.2a)

Ψ
He+(x1,x2) =

{
Ψ(x1,x2) for |x1|< a, |x2|> a or |x1|> a, |x2|< a,
0 else,

(V.2b)

Ψ
He2+

(x1,x2) =

{
Ψ(x1,x2) for |x1|> a, |x2|> a,
0 else.

(V.2c)

An electron is considered as free when it is found at a distance larger than the threshold
a from the core. The threshold is set to a = 5aB. By transforming the double ionized part
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Figure V.4.: Absolute square of the two-electron wave function restricted to doubly ionized
helium |ΨHe2+

(k1,k2)|2 at a time t = 4.9tp after the pulse maximum for an excitation intensity of
I1 = 3.5 ·1014 W/cm2 and photon energies (a) 60 eV, (b) 52 eV and (c) 44 eV.

ΨHe2+
(x1,x2) into the k-space, the momentum distribution of the two emitted electrons

is found.
Of course, the two emitted electrons have to fulfil the energy conservation. For a

helium atom which is initially in the ground state with energy E0 and absorbs n photons,
the kinetic energies E1

kin and E2
kin of the two ejected electrons have to satisfy the following

relation.

E(1)
kin +E(2)

kin = E0 +nh̄ω, (V.3a)

⇒ h̄2k2
1

2m
+

h̄2k2
2

2m
= E0 +nh̄ω. (V.3b)

Therefore, the electrons involved in a double ionization are distributed on circles in
the k-space. This is illustrated in the figure V.4 where the probability |ΨHe2+

(k1,k2)|2
is plotted for the corresponding momenta k1 and k2 at a time t = 4.9 tp after the pulse
maximum. The results are in qualitatively good agreement with previous calculations
that were performed using a 3D model [45, 69, 119].

With a photon energy of 60 eV (fig. V.4 (a)) it is possible to remove both electrons
one after the other by a sequential single-photon ionization. In this case, the k1 and k2
values of the ejected electrons are determined by the energy conservation which defines
their kinetic energy after they have overcome the first or the second ionization threshold
by absorbing one photon. Thus, the momentum distribution for a sequential two-photon
double ionization is characterised by sharp peaks on a circle.

The photon energy of 52 eV lies just below the second ionization threshold at
I(2)p = 54 eV and therefore the sequential photoionization is suppressed. In this case
the dominating process is the non-sequential two-photon double ionization. The two
electrons are released together from the core by absorbing two photons. It is known
that this process is characterised by a continuous distribution of the momentum over
the circle [54]. In contrast to the sequential double ionization the electrons emitted in
the non-sequential process are strongly correlated in terms of the direction in which
they are ejected. Due to their mutual Coulomb repulsion they clearly tend to leave the
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the slop of the volume averaged total double ionization.

atom in the opposite directions. Another specific mark is the non-uniform partitioning of
the momenta of the electrons implying that one gets almost all of the available energy
whereas the other escapes with rather low velocity [67].

On lowering the photon energy further to 44 eV one observes a coexistence between
a sequential and a non-sequential process indicated in figure V.4 (c). The inner ring
corresponds to a sequential two-photon process and the outer ring reflects a sequential
three-photon double ionization. In the latter, first one electron is removed via a single-
photon ionization and afterwards two photons lift the remaining electron over the second
threshold. Furthermore, a close look at the outer ring reveals that the peaks of electrons
emitted in opposite directions are much sharper than those corresponding to an emission
in the same direction. This is caused by the stronger influence of the Coulomb interaction
on electrons moving side by side with similar velocities compared to the situation where
they fly apart.

As know from perturbation theory the probability of the ionization yield usually
follows a power law with an exponent given by the number of photons of the respective
process. Consequently, the three-photon double ionization only significantly appears
at high intensities whereas the two-photon process dominates at low intensities. For a
quantitative verification a measure for the strength of the two processes is obtained by
integrating the distribution |ΨHe2+

(k1,k2)|2 over the corresponding circles for h̄ω = 44 eV.
The results are displayed in figure V.5. As expected, at low intensity the double ionization
probability in case of the two-photon process rises with the square of the intensity
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whereas for the three photon process the dependency is cubic. Both signal saturate above
∼ 1015 W/cm2 although the ionization probability is still below 10%.

In recent experiments with neon the intensity dependence of the total double ioniza-
tion yield has been analysed [110]. At low intensities a quadratic scaling has been found
while at elevated intensities the exponent is between two and three. Qualitatively, this is
in accordance with obtained results for intensities below ∼ 1015 W/cm2. Assuming that
the total double ionization probability follows a power law of the form In the slope in a
logarithmic plot should give the exponent n. This slope is plotted in the inset of Fig. V.5.
The exponent first increases continuously from 2 to 2.6 until at higher intensities it falls
even below 2. Obviously, for intensities above ∼ 5 ·1014 W/cm2 an exponent between
two and three does not indicate a competition between two- and three-photon processes
of roughly equal strength. Instead, the three-photon process clearly dominates even
though the total yield does not show a cubic intensity scaling due to the saturation of
the signal.

V.3 Time dependence of double ionization

Advancing the available radiation sources to ever shorter pulse durations makes the
temporal evolution of ionization processes to a new focus of interest. First EUV pump
EUV probe experiments [139] have analysed the fragmentation dynamics of N2 and pave
the way towards fully time resolved measurements of ultra fast ionization processes.
For ultra short excitations one expects theoretically that the quantum dynamics evolves
through coherent superposition states during the pulse as well as shortly afterwards. On
the contrary the time evolution can also be described by incoherent transition rates. If
the rates are not introduced phenomenologically, they are usually calculated by using a
golden rule type formula which involves a strict energy conservation between initial and
final state. However, in the standard textbook derivations of the golden rule the energy
conserving delta-function builds up in time. On short time scales deviations from this
behaviour should occur due to the energy-time uncertainty. Indeed, signatures of energy-
time uncertainty that result from femto-second laser excitations of semiconductors have
recently been theoretically predicted and later measured [8].

In order to quantify such effects for the present system in figure V.6 the momentum
distribution |ΨHe2+

(k1,k2)|2 is plotted for different times for a photon energy of 52 eV
along the line k = k1 =−k2, i.e. for the emission of two electrons with opposite momenta.
From figure V.4 (b) it can be seen that along the line k = k1 =−k2 two peaks occur that
are symmetric around k = 0. Figure V.6 is restricted to the peak for positive k values.
The curves have been normalized to their respective maxima in order to facilitate the
comparison. As seen from the figure, at early times while the pulse is starting to rise, the
width of the k distribution is more than twice the value found for times when the pulse
has vanished. This is the characteristic signature of energy-time uncertainty. At early
times the frequency of the pulse and therefore its energy is not yet well defined, resulting
in a rather broad momentum distribution of the emitted electrons. At long times the
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width approaches a finite value which is determined by the finite spectral width of the
incoming radiation. Interestingly, the distribution in figure V.6 is strongly asymmetric
at early times with more weight at higher k values. This may be explained recalling
that the threshold for single electron ionization affects the double ionization probability
because single ionized states appear as virtual intermediate states. This should provide a
double resonance structure near k = k1 = −k2 = 1.3 atomic units. With strictly energy
conserving processes this resonance cannot be reached for our excitation conditions. At
short times, however, the energy-time uncertainty allows some excitations close to this
threshold. The usual resonant enhancement near the threshold of these excitation tails
explains the enhanced distribution at higher k values in figure V.6.

In order to learn more about the interplay of different ionization processes it is
desirable to follow their time evolution separately. To this end one recalls that different
double ionization processes result in characteristic traces in the k-space distribution.
For example, two- and three-photon processes can be separated because they result in
momenta distributed over rings with different radii (cf. figure. V.4). Further, processes
emitting electrons in the same or in the opposite directions can be distinguished by
analysing their momentum distribution restricted to either the first and third or to the
second and forth quadrant in the k1−k2 plane. This classification is related to the different
double ionization processes. Electrons in a direct process are emitted mainly in opposite
directions. Therefore, the distribution in the first and third quadrant can be attributed
almost exclusively to sequential and virtual-sequential processes. Sequential processes
emit electrons with equal probability in the same as in the opposite direction. Assuming
that also virtual-sequential processes give contributions of similar order of magnitude
in all quadrants, it follows from figure V.4 (b) that their contribution to the second and
forth quadrant is small compared to the total number of electrons recorded in this part
of the momentum distribution. Thus, the distribution in these quadrants mainly reflects
direct processes. By integrating over the respective areas in the k1−k2 plane one obtains
a measure for the corresponding processes.
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These integrated quantities are shown in figure V.7 as a function of time for an
excitation intensity of 3.5 · 1014 W

cm2 and a photon energy h̄ω = 52 eV. To improve the
comparability all curves are normalized to their values at long time values. The ionization
of all contributions in Fig. V.7 essentially sets in after the pulse has reached its maximum.
This delay reflects the time electrons have to travel until they are separated enough
from the core to be counted as emitted (cf. Eq. (V.2c)). The amplitudes of two-photon
emission in the same direction and three-photon double ionization rise monotonically
on essentially the same time scale. In contrast, emissions of two electrons in the same
direction start slightly earlier and exhibit a non-monotonic time dependence. A possible
explanation for this non-monotonic behaviour is the repelling interaction between the
electrons emitted in the same direction. Therefore a certain probability exists that one of
the electrons returns to the core area after it has left this region. In a previous study for
excitations far below the second ionization threshold, the almost complete suppression
of two-electron emission in the same direction, which is typically found at long times
for these excitation conditions, has been attributed to this recapture process [45]. Our
results in Fig. V.7 indicate that recapture processes are still noticeable but much weaker
in the virtual-sequential regime studied here.





VI
Application of the

reduced density matrix

on photoionization

This chapter is concerned with the application of the time-dependent reduced density
matrix (TDRDM) formalism on the electrons of an atom exposed to intensive XUV radia-
tion. At first, the derivation of the equations of motion is outlined for the representation
of the RDMs by the finite-element discrete variable representation. In order to account
for the correlations between electrons in the ionization the hierarchy of equations is
truncated one level above the Hartree-Fock theory, limiting the set of dynamical variables
to the reduced one and two particle density matrices. The latter is further separated
in correlated and uncorrelated contributions to allow the controlled truncation of the
hierarchy of equations. Furthermore, the separation between the spin and basis func-
tion variables of the density matrix by a product ansatz will be discussed as well as
the need for reliable initial conditions. To avoid the known numerical disadvantages
of implicit finite difference methods a suitable time-propagation scheme is presented
that benefits from the sparse representation of operators in the finite-element discrete
variable representation. Finally, results of the ionization dynamics for atoms with two,
four and six electrons are discussed. To the best of the knowledge of the author only
Schäfer-Bung and Nest [147] have reported so far about the application of the TDRDM



66 VI. Reduced density matrix formalism

formalism above the mean field level for the interaction between a laser pulse and a
one-dimensional atom. Thus, differences in their realisation compared to following
approach will be addressed in the respective sections.

VI.1 Equations of motion

The first step in the derivation of the equations of motion in the reduced density matrix
formalism is the determination of the time derivative of the annihilation and creation
operators via the Heisenberg equation. For a shortened notation the Hamilton operator
(equ. (II.4)) of the system is split in the electron-electron interaction V el

a,b , the interaction
with the laser field Hfield

a and in a contribution H0
a,b which combines the time-independent

single particle operators for the kinetic energy and the potential of the core.

H0
a,b = T kin

a,b +V core
a,b . (VI.1)

Making use of the decompositions given in equations (II.23) and (II.24) results in a
closed set of equations for the reduced one particle density matrix and the four-point
correlations [7].

ih̄
∂

∂ t
ρa,b =∑

b′
H0

b,b′ ρa,b′−∑
a′

H0
a′,a ρa′,b +

(
Hfield

b −Hfield
a

)
ρa,b (VI.2)

+

(
∑
c

(
V el

b,c−V el
a,c

)
ρc,c

)
ρa,b +∑

c

(
V el

b,c−V el
a,c

)(
−ρa,cρc,b +Ca,c,c,b

)
,

ih̄
∂

∂ t
Ca,b,c,d =

1
2

A

[
∑
d′

H0
d,d′Ca,b,c,d′−∑

a′
H0

a′,aCa′,b,c,d +(V el
c,d−V el

a,b)ρa,dρb,c

]
+
(

Hfield
c +Hfield

d −Hfield
a −Hfield

b

)
Ca,b,c,d +

(
V el

c,d−V el
a,b

)
Ca,b,c,d

+∑
j

(
V el

c,j +V el
d,j−V el

a,j−V el
b,j

)
ρj,jCa,b,c,d

+A

[
∑

j

(
V el

c,j +V el
d,j−V el

a,j−V el
b,j

)(
ρa,jCb,j,c,d +ρj,dCa,b,j,c

)]

+A

[
ρb,c ∑

j

(
V el

c,j−V el
b,j

)(
Ca,j,j,d−ρa,jρj,d

)]
. (VI.3)

The operator A defined by A[ fa,b,c,d] = fa,b,c,d− fb,a,c,d− fa,b,d,c + fb,a,d,c anti-symmetrizes
a function fa,b,c,d. Without the four-point correlations equation (VI.2) completely repre-
sents the time-dependent Hartree-Fock approach for the reduced one particle density
matrix . Equation (VI.3) defines the evolution of the four-point correlations. The six-point
correlation function Ca,b,c,d,e,f, which appears in the decomposition (II.24), is neglected.
This kind of truncation of the hierarchy of the equations has been proposed by reference
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[173]. In contrast to the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy the trunca-
tion induces non-linear equations. Although the reference [173] proved the compatibility
of the truncation with the conservation laws for one and two particle operators, the trace
relation

ρ1,1′,2,2′,...,j,j′ =
1

(N− j)!
Tr(j+1,...,N){ρ1,1′,2,2′,...,N,N′}, (VI.4)

for the reduced density matrices is violated. The reduction of the RDM formalism to the
subdynamics of the j-particle RDMs and correlations is commonly denoted as SUB(j).
Thus, the above implementation represents the SUB(2) level of the RDM formalism and
has also been applied by Schäfer-Bung and Nest [147] in a similar manner. Instead of
the four-point correlation function Schäfer-Bung and Nest determined the reduced two
particle density matrix. Even though they formally used the same reconstruction of the
three particle RDM, in this case uncorrelated contributions enter the one and the two
particle RDM. The separation in correlated and uncorrelated parts of the RDMs avoids
this redundant implication in the equation of motion of the four-point function. Besides,
Schäfer-Bung and Nest represented the two particle RDM by products of two-electron
determinants, using 20 spin orbitals obtained via stationary Hartree-Fock calculations.

VI.1.1. Separation of spin and basis function variables

The derived equations of motion still combine the spin and FEDVR variable. In order
to reduce the number of variables of the reduced density matrix and the four-point
correlations, a product ansatz for the separation of the spin and the function basis set
is proposed, which restricts the degree of freedom. The approach shall account for
a non-polarized spin state, which is not affected by coherences concerning the spin.
Bearing in mind that the applied Hamiltonian does not act on the spin, these conditions
are conserved by the equations of motion if they are fulfilled by the initial state. For the
reduced one particle density the following separation is proposed.

ρa,b = δσa,σb ρna,nb . (VI.5)

In order to motivate the ansatz for the correlation Ca,b,c,d the consequence of equation
(VI.5) on the uncorrelated contribution of the four-point function ρa,b,c,d is determined
via the antisymmetrized product of ρa,b

ρa,dρb,c−ρa,cρb,d =δσa,σd ρna,nd δσb,σc ρnb,nc−δσa,σc ρna,ncδσb,σd ρnb,nd

=
1
2
(δσa,σd δσb,σc−δσa,σcδσb,σd)(ρna,nd ρnb,nc +ρna,ncρnb,nd)

+
1
2
(δσa,σd δσb,σc +δσa,σcδσb,σd)(ρna,nd ρnb,nc−ρna,ncρnb,nd). (VI.6)

Obviously the uncorrelated contributions of the four-point function ρa,b,c,d split into two
parts. One consists of an antisymmetric spin and a symmetric orbit function and the
other is built up by a symmetric spin and an antisymmetric orbit function. As identifiable
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in equation (VI.6), the symmetry and the antisymmetry concerns a permutation within
the pairs (σa,σb), (σc,σd), (na,nb) and (nc,nd). The same separation is adopted for the
four-point correlation function.

Ca,b,c,d =(δσa,σd δσb,σc−δσa,σcδσb,σd)C
S
na,nb,nc,nd

+(δσa,σd δσb,σc +δσa,σcδσb,σd)C
A
na,nb,nc,nd

. (VI.7)

CS
na,nb,nc,nd

and CA
na,nb,nc,nd

are the symmetric and antisymmetric parts of the four-point
correlations. Even though for a single Slater determinant, as it is the case in the Hartree-
Fock theory, the product ansatz for spin and basis function variables is exact, a wave
function including correlations invokes further contributions which are not caught by
the applied ansatz. A physical interpretation is given by the following identities relating
the spin terms with the singlet and triplet states χS(σ1,σ2) and χT

mS
(σ1,σ2).

(δσa,σd δσb,σc−δσa,σcδσb,σd) =2χ
S(σa,σb)χ

S(σc,σd) (VI.8)

(δσa,σd δσb,σc +δσa,σcδσb,σd) =2
[
χ

T
0 (σa,σb)χ

T
0 (σc,σd)+χ

T
1 (σa,σb)χ

T
1 (σc,σd)+

χ
T
−1(σa,σb)χ

T
−1(σc,σd)

]
(VI.9)

Thus, CS
na,nb,nc,nd

corresponds to the correlations carried by two electrons in the spin
singlet state and CA

na,nb,nc,nd
represents the correlations between two electrons in the

spin triplet states. In the implementation of Schäfer-Bung and Nest [147] no explicit
separation between spin and orbital variables is carried out, because they represented
the reduced two particle density matrix by two-electron determinants. The reduced two
particle density matrix constructed by products of two-electron determinants contains
also spin configuration formed by products between singlet and triplet spin states. Thus,
the approach of Schäfer-Bung and Nest implies contributions which are neglected by
equation (VI.7). Inserting equations (VI.5) and (VI.7) into the equations of motion leads
to a closed set of equation of ρna,nb, CA

na,nb,nc,nd
and CS

na,nb,nc,nd
.

ih̄
∂

∂ t
ρna,nb = ∑

n j

H0
nb,n j

ρna,n j −∑
n j

H0
n j,na

ρn j,nb +
(

Hfield
nb
−Hfield

na

)
ρna,nb (VI.10a)

+2(φnb−φna)ρna,nb−∑
n j

(
V el

nb,n j
−V el

na,n j

)
ρna,n jρn j,nb

+∑
n j

(
V el

nb,n j
−V el

na,n j

)(
CS

na,n j,n j,nb
+3CA

na,n j,n j,nb

)
,
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ih̄
∂

∂ t
CS/A

na,nb,nc,nd =
1
2

S/A

[
∑
n j

(
H0

nd ,n j
CS/A

na,nb,nc,n j −H0
n j,na

CS/A
n j,nb,nc,nd

)]
(VI.10b)

+
(

Hfield
nc

+Hfield
nd
−Hfield

na
−Hfield

nb

)
CS/A

na,nb,nc,nd

+
[
V el

nc,nd
−V el

na,nb
+2(φnc +φnd −φna−φnb)

]
CS/A

na,nb,nc,nd

−∑
n j

(
V el

nc,n j
+V el

nd ,n j
−V el

na,n j
−V el

nb,n j

)(
ρna,n jC

S/A
nb,n j,nc,nd ±ρnb,n jC

S/A
na,n j,nc,nd

±ρn j,ndCS/A
na,nb,n j,nc +ρn j,ncC

S/A
na,nb,n j,nd

)
+

1
2

(
V el.-el.

nd ,nc
−V el

na,nb

)
(ρnb,ncρna,nd ±ρna,ncρnb,nd)

+
1
2

S/A

[
ρnb,nc ∑

n j

(
V el

nc,nd
−V el

nb,n j

)(
CS

na,n j,n j,nd
+3CA

na,n j,n j,nd
−ρna,n jρn j,nd

)]
.

The mean field potential of the electron distribution is denoted as φn = ∑n′V el
n,n′ρn′,n′.

Analogously to the operator A a function is symmetrized by the operator S via S[ fa,b,c,d] =
fa,b,c,d + fb,a,c,d + fa,b,d,c + fb,a,d,c. The equations of motion imply that CA

na,nb,nc,nd
and

CS
na,nb,nc,nd

are coupled among each other, indirectly, since both effect ρna,nb and in a direct
manner due to the last line of the equation (VI.10b).

VI.1.2. Choice of the initial values

Starting the propagation of the equation of motion require the choice of initial values
for ρna,nb , CA

na,nb,nc,nd
and CS

na,nb,nc,nd
, which define the state of the atom before it interacts

with the radiation of the laser. Usually, the thermal energy of the target atoms in an XUV
ionization experiment is small compared with the energetic gaps of the atomic states
if the fine structure is neglected. Thus, using the ground state of the atom as starting
point for the time evolution of the ionization dynamics represents a well justified and
commonly applied approach. Nevertheless, one has to ensure that the initial values for
the dynamic variables act as a stationary state in the equations of motion. Due to the
truncation of the hierarchy of the equations of motion this property for equation (VI.10)
is not even guaranteed for the reduced density matrix and the correlations extracted
from the exact correlated ground state. To this end the dynamic variables are divided
into two parts.

ρna,nb(t) = ρ
0
na,nb

+δρna,nb(t), (VI.11a)

CS/A
na,nb,nc,nd(t) =C0,S/A

na,nb,nc,nd +δCS/A
na,nb,nc,nd(t). (VI.11b)

ρ0
na,nb

and C0,S/A
na,nb,nc,nd define the initial values with respect to the ground state and δρna,nb(t)

and δCS/A
na,nb,nc,nd(t) account for the dynamics induced by the laser field and are equal

zero at time t = 0. Furthermore, one assumes that the initial values represent stationary
solutions of the equations of motion. Inserted in the equations of motion without a
laser field these values shall conform to ∂tρ

0
na,nb

= 0 and ∂tC
0,S/A
na,nb,nc,nd = 0. In this manner
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equations are received for the field induced contributions δρna,nb(t) and δCS/A
na,nb,nc,nd(t)

to avoid dynamics of the initial values. In the present thesis the initial ground state
shall be restricted to the Hartree-Fock ground state, which neglects correlation between
the electrons at the beginning, leading to C0,S/A

na,nb,nc,nd = 0. Adopting this approach on the
Hartree-Fock level of the reduced density matrix formalism yields in:

ih̄
∂

∂ t
δρna,nb = ∑

n j

H0
nb,n j

δρna,n j −∑
n j

H0
n j,na

δρn j,nb +
(

Hfield
na
−Hfield

nb

)
ρna,nb

+2∑
n j

(
V el

nb,n j
−V el

na,n j

)(
ρ

0
n j,n j

δρna,nb +δρn j,n jρ
0
na,nb

+δρn j,n jδρna,nb

)
−∑

n j

(
V el

nb,n j
−V el

na,n j

)(
ρ

0
na,n j

δρn j,nb +δρna,n jρ
0
n j,nb

+δρna,n jδρn j,nb

)
−∑

n j

(
V el.-el.

nb,n j
−V el

na,n j

)(
δCS

na,n j,n j,nd
+3δCA

na,n j,n j,nd

)
(VI.12)

One can easily see that without the presence of an electric field and for δρna,nb and
C0,S/A

na,nb,nc,nd equal zero, the right hand side of equation (VI.12) does not induce any
dynamics. The same proceeding is also applied for the equations of motions of the two
particle correlations. In contrast, Schäfer-Bung and Nest used correlated initial values
for the two particle RDM.

VI.2 Time propagation scheme

At this point the direct numerical solution appears straightforward, propagating the
ground state for example via a Runge-Kutta scheme in time. But as it has been discussed
for the time-dependent Schrödinger equation in section II.3, propagation schemes basing
on finite differences for the time do not apply in combination with the FEDVR due to
the operator of the kinetic energy. In order to overcome this obstacle, a propagation
scheme is proposed which avoids the direct acting of Tkin on ρ and CA/S. Instead it makes
use of the exponential operator of the kinetic energy. For a transparent notation the
propagation scheme is illustrated for a simple scalar function g(t). The function g(t) shall
be the solution of the non-linear differential equation

∂tg(t) = Kg(t)+F (g(t), t) . (VI.13)

Compared with the equations of motion of ρna,nb and CS/A
na,nb,nc,nd the numerically critical

part, which contains the kinetic energy, is represented by the linear term with the
constant K in the right hand side of equation (VI.13). The function F depends non-
linearly on g(t) and has an explicit time dependency. Thus it reflects the terms of the
electron-electron interaction and the coupling with the electric field. In order to avoid
the problems of linear term commonly the following transformation is performed.

g(t) = exp(Kt)g̃(t). (VI.14)
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Inserting equation (VI.14) in (VI.13) results in a differential equation for g̃.

∂t g̃(t) = exp(−Kt)F (g(t), t) . (VI.15)

The transformation eliminates the numerical instability of the kinetic energy, but one has
to recall that in the equations of motion of ρna,nb and CS/A

na,nb,nc,nd the simple exponential
function exp(−Kt) refers to the exponential operator of H0. Although H0 has a sparse
representation in the FEDVR basis set, with increasing time the exponential operator
loses this property. Therefore the transformation of equation (VI.14) for CS/A

na,nb,nc,nd scales
with N5

b . Less important but still cumbersome is the need to recalculate the exponential
operator at each time step out of the eigenfunctions of H0. To bypass the obstacles in the
following the differential equation is rewritten in a Volterra integral equation of second
kind. To this end equation (VI.15) is integrated over the interval [t,∆t] and the result for
g(t +∆t) is substituted into the transformation formula (VI.14).

g(t +∆t) = exp(K(t +∆t))
(

g̃(t)+
∫ t+∆t

t
dt ′ exp(−Kt ′)F (g(t ′), t ′)

)
,

= exp(K∆t)
(

exp(Kt)g̃(t)+
∫ t+∆t

t
dt ′ exp(K(t− t ′)F (g(t ′), t ′)

)
,

= exp(K∆t)
(

g(t)+
∫

∆t

0
dt ′ exp(−Kt ′)F (g(t + t ′), t + t ′)

)
. (VI.16)

Adapting the result on the equations of motions for ρna,nb and CS/A
na,nb,nc,nd formula contains

the exponential matrix only for small time steps and thus leads to an advantageously
sparse representation of exp(iH0∆t/h̄). The numerical solution can be carried out via
explicit solvers as discussed in [32]. However, corresponding algorithms are usually
not included in standard numerical libraries and so this approach requires its own
implementation. In the frame work of this thesis a 4th order Runge-Kutta scheme has
been adopted, following [32].

VI.3 Results

In the following, results are presented which have been obtained by the time-dependent
RDM formalism for the photoionization of atoms. To this end, one-dimensional model
atoms consisting of two, four and six electrons are exposed to an ultrashort XUV laser
pulse. Due to the high demands on computing resources, for first testing proposes a
small FEDVR basis set is constructed with NFe = 30 and NGL = 4. In order to optimize the
discretization of the system the length of the finite elements LFE(i) = ri+1− ri is chosen
with respect to the inhomogeneous system. Close at the core of the atom the length of the
finite elements is adjusted to L1 = 0.75aB and monotonically increases up to L2 = 1.2aB
as illustrated in figure VI.1. The small finite elements mapping the region of the core
allow a reasonable resolution of the bound states, whereas the larger spacing outside
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Figure VI.1.: The figure displays the length of the finite elements LFE as a function of the index
i ∈ [0 : NFE − 1]. For the applied grid the length is determined by LFE(i) = L1 +(L2−L1)

1
2(1+

tanh((L1(i−NFE/2)−4aB)/aB) for i ∈ [NFE/2 : NFE −1], corresponding to ri ≥ 0. The negative ri

are obtained by the projection of the respective positive ri. The formula realises a transition
between L1 and L2 at a distance of 4 ab from the core.

of the core affects the properties of the ionization continuum. Due to the boundary
conditions the complete size L of the system determines the energetic distance between
the states of the continuum. Thus, the increasing size of the finite elements improves the
density of states of the continuum, but on the contrary reduces the maximal available
energy compared with finite elements of a constant size of L1 = 0.75aB. Bearing this
relation in mind, the applied grid enlarges the system as much as possible but still covers
the continuum states with the energy required by the excitation conditions. Nevertheless,
the chosen grid does not allow a reasonable description of the ionization, since the size
L of the system is only 31aB and an artificial behaviour must be expected. In particular,
the ejected electrons easily reach the borders of the system and are reflected back to the
core. Thus, impact ionization might influence the ionization dynamics and interferes
with the observation of the desired relaxation mechanisms of the ion as Auger decays.
Furthermore, the kinetic energy of the released electrons will probably be affected after
the ionization process due to scattering processes between the free electrons.

In addition, the small system is unsuited for a long range potential like the softcore
potential. Instead, the short ranged cosh potential is applied for the interaction of the
electrons with the core and among themselves. The atom is exposed to a Gaussian-shaped
laser.

E (t) = E0 sin(ωt)exp
[
−(t− t0)2/2t2

p
]
. (VI.17)

The pulse length tp is set to 0.83 fs and maximum of the pulse is at t0 = 1.21 fs. The
analysis is restricted to photon energies enabling a single-photon ionization of the bound
electrons. Since the Hartree-Fock ground state is chosen as the initial state, the ionization
potential of the each orbital used for the construction of the according Slater determinant
is given by the corresponding Hartree-Fock eigenvalue. The quantity of interest shall be
the projection of the reduced density matrix on the Hartree-Fock orbitals of the ground
state.
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Figure VI.2.: The figure at the right hand side shows a schematic view of the one-dimensional
two electron atom model for the applied laser excitation. In case of the TDHF as well as for
the TDRDM both electrons initially occupy the lowest stationary Hartree-Fock orbital. The
corresponding eigenvalue EHF

1 represents the single-photon ionization threshold. The table on
the left side contains the results of the lowest Hartree-Fock orbital for the small grid and the
converged results.

VI.3.1. Two electron atoms

The one-dimensional model of helium interacting with a laser field is a well known
system showing signatures of electron-electron correlations in the ionization dynamics,
as discussed in chapter V. For the core potential as well as for the electron-electron
interaction the same parametrization is applied as in chapter V.

Vk(x) =
−6ERyd

cosh2(x/aB)
, Vel(x1− x2) =

6ERyd

2cosh2((x1− x2)/aB)
. (VI.18)

Figure VI.2 displays a schematic view of the initial ground state and the excitation
conditions. The eigenvalue of the single particle orbital corresponding to the Hartree-
Fock ground state is given in the table of figure VI.2 for the applied small grid and for a
converged calculation. Obviously, the applied small grid delivers reasonable results for
the energy of the orbitals of the ground state. Similar to chapter V, the photon energy
shall enable a single-photon ionization process. It has been found that correlations
between the electrons occur in particular in the vicinity of the ionization threshold.
Therefore, this scenario represents a suitable framework for the investigation of the
reduced density matrix formalism. However, the adoption of the reduced density matrix
formalism on a two particle system is critical, because the system is already exact
described by the one and two particle density matrix. Thus, the hierarchy of equation
ends with the two-particle RDM and does not include the RDM for three or more particles.
As a matter of fact, contributions resulting from reconstruction of equation (II.24) are not
reliable. For example, the equation of motions VI.10 induce also a non zero contribution
of the asymmetric part CA

na,nb,nc,nd
and therefore violates the conservation of the initial

spin singlet state of the two electrons.
Figure VI.3 (a) displays the time traces of the ground state occupation for an excitation

close to the ionization threshold at h̄ω = 33 eV and I = 3.52 · 1014 W/cm2. Obviously,
the calculation of the SUB(2) (grey dashed line) of the RDM formalism diverges, most
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Figure VI.3.: Time dependence of the occupation of the first orbital are displayed at I = 3.52 ·
1014 W/cm2 for h̄ω = 33 eV (a) and h̄ω = 54 eV (b). The results are obtained via the TDHF theory
(green curve), the TDSE (orange curve), the SUB(2) level of the RDM formalism (grey dashed
curve) and reductions of the SUB(2) with respect to the two-electron system (grey dotted curve
and blue curve). The filed pink area represents the envelope of the electric field.

likely due to the unreliable reconstruction of the three-particle RDM for a two electron
atom. In order to correct the SUB(2), two simplifying reductions are carried out. First,
the asymmetric part of the correlations of the two-particle RDM is neglected in the
calculation, ensuring a spin singlet of the two electron atom. This approach is denoted as
SUB(2CS) and is represented by grey dotted lines in figure VI.3. The second simplification
omits the terms of the three last lines in the equations of motion (VI.10b). They stem
from the reconstruction of the three-particle RDM and therefore are without meaning
for the two electron atom. The corresponding curves in figure VI.3 are plotted with
blue lines and labelled as "red. SUB(2CS)". Figure VI.3 (a) shows that the constriction
to correlations representing a spin singlet state still results in diverging dynamics for
h̄ω = 33 eV. However, an improvement is achieved for the red. SUB(2CS), which exhibits
a monotonic decrease of the ground state occupation. To verify the dynamics of the
ground state obtained with the RDM, figure VI.3 includes results for the TDSE (orange
line) and the TDHF (green line). Exciting the system close above the ionization threshold
at h̄ω = 33 eV induces a large difference between both approaches in agreement with
the observations of section V.1. It is found that the results of SUB(2CS) are quite close to
those of the TDSE and are most likely not influenced by an ionization threshold which is
determined by the mean field of the remaining bound electrons as observed for the TDHF.
Figure VI.3 (b) shows the ground state occupation as a function of time for a photon
energy of h̄ω = 54 eV. In this case the RDM formalism does not diverge. However for the
complete SUB(2) as well as for the limitation to the singlet state SUB(2CS) a ground state
probability above one is obtained. The non-physical behaviour disappears if contributions
of the reconstruction of the three-particle RDM are neglected (blue line, red. SUB(2CS)).
In agreement with section V.1 for a photon energy inducing an excitation high above
the ionization threshold the TDSE and the TDHF yield in similar ionization dynamics. In
particular, the corresponding curves coincide quite well until at 1.5 fs deviations occur
leading to small differences in the final ionization yields. Surprisingly, the dynamics of
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Figure VI.4.: Figure (a) illustrates the one-dimensional four electron atom for a laser excitation
that allows the single-photon ionization of the valence shell. The position of filled electrons
sketches the spin orbitals used for the construction of the Slater determinant of the initial state.
Excitation conditions which enable also the single-photon ionization of the lowest bound orbital
are shown in figure (b). The corresponding eigenvalues of the orbitals can be found in the table.

the red. SUB(2CS) differs from those obtained with the TDSE and TDHF even though
similar ion yields are obtained.

VI.3.2. Four electrons

In the case of four electrons the following parametrization is used for the cosh potential.

Vk(x) =
−10ERyd

cosh2(x/aB)
Vel(x1− x2) =

2ERyd

cosh2((x1− x2)/aB)
. (VI.19)

Since for a neutral target atom the cosh-potential does not provide any localized self-
consistent Hartree-Fock ground state the chosen parameters model a single positive
charged atom. The TDRDM is applied for two types of laser excitations, illustrated in
figure VI.4. First, as sketched in figure VI.4 (a), the photon energy shall enable a single-
photon ionization of the second Hartree-Fock orbital but a multiphoton absorption is
required to ionize the lowest Hartree-Fock orbital. Thus, one expects that the contribution
to the ionization of the second Hartree-Fock orbital dominates. Second, the photon
ionization shall be high enough to realise also a single-photon ionization of the lowest
Hartree-Fock orbital, implying an ionization of the second Hartree-Fock orbital far above
the ionization threshold (see fig VI.4 (b)). Therefore, the ionization of the lowest Hartree-
Fock orbital is expected to be preferred and the creation of a hole-state might be induced.

Figures VI.5 (a) and (b) display the occupation of the first and second Hartree-Fock
orbitals of the ground state as a function for h̄ω = 27 eV at I = 3.52 ·1014 W/cm2 obtained
via the TDHF and the SUB(2). The photon energy allows a single-photon ionization of the
second orbital, whereas the first orbital requires the absorption of three photon for the
release of an electron. Increasing the number of electrons above two obviously improves
the results of the SUB(2) level of the TDRDM formalism. The dynamics of the two lowest
Hartree-Fock orbitals neither diverge nor show any non physical behaviour as it has been
the case for two electrons. As consequence of the excitation condition the single-photon



76 VI. Reduced density matrix formalism

0.6

0.8

1

2n
d

or
bi

ta
l (a) ~ω = 27 eV I= 3.52 · 1014 W/cm2

0.98

0.99

1

0 0.5 1 1.5 2

1s
t

or
bi

ta
l

time [fs]

(b)

0.9

0.95

1

2n
d

or
bi

ta
l (c) ~ω = 82 eV I= 3.17 · 1015 W/cm2

0.9

0.95

1

0 0.5 1 1.5 2

1s
t

or
bi

ta
l

time [fs]

(d)

TDHF
SUB(2)

TDHF
SUB(2)

TDHF
SUB(2)

TDHF
SUB(2)

Figure VI.5.: Figures (a) and (b) display the time traces of the two initially occupied Hartree-Fock
orbitals at a photon energy of h̄ω = 27 eV and I = 3.52 ·1014 W/cm2 obtained via the TDHF theory
(green curve) and the SUB(2) (blue curve). The photon energy corresponds to the situation
sketched in fig. VI.4 (a). Results according to the excitation conditions of fig. VI.4 (b) for
h̄ω = 82 eV and I = 3.17 ·1015 W/cm2 are plotted in figures (c)-(d).

ionization of the second orbital dominates the interaction between the radiation and the
atom. For the depletion during the pulse both approaches obtain quantitatively similar
results but after approximately 1.5 fs differences occur. The TDHF theory predicts a slight
recovery of the occupation of the second orbital whereas further ionization is found for
the SUB(2) calculation. Interestingly, a different behaviour between both levels of theory
is observed for the time evolution of the first Hartree-Fock orbital. In contrast to the
TDHF calculation, where the first orbital is not visibly affected by the laser pulse, the
results including correlations show a small depletion of the lowest orbital.

Results for the excitation condition sketched in figure VI.4 (b) are presented in figures
VI.5 (c) and (d) for an intensity of I = 3.17 ·1015 W/cm2. Even though the intensity of
the radiation was enhanced, less ionization is found for h̄ω = 82 eV than for h̄ω = 27 eV,
reflecting the decrease of the ionization cross section with increasing photon energy. For
the occupation of both orbitals a stronger ionization is observed for the SUB(2) of the
RDM than in case of the TDHF theory. In particular, for the TDHF theory the electrons of
the second orbital follow the quivering motion induced by the oscillating electric field
without being ejected. Only the electrons of the first orbital contribute to the ionization
of the atom. In contrast, as illustrated in figure VI.5 (c), the SUB(2) leads additionally to
the ionization of the second orbital,which even temporarily exceeds the one of the first
orbital. A further remarkable feature is found in the ongoing dynamics of the SUB(2)
calculations, although the intensity of the laser already decreases. In order to explain the
observations for calculations including correlations, the Auger decay and the shake-off
process are considered in the following. In the case of a shake-off process [35] the
departing photoelectron interacts with the remaining bound electrons, resulting in a
further ionization. Preferentially, an electron of an inner shell absorbs the photon and
kicks out an electron of an outer shell while leaving the core. Since the applied photon



VI.3. Results 77

energy of h̄ω = 82 eV exceeds the sum of the ionization threshold of both orbitals of the
ground state, the shake-off process is energetically possible according to the Hartree-Fock
eigenvalues and represents a reasonable explication for the observed depletion of the
second orbital. After the creation of a hole in the first orbital an Auger decay can also
induce the depletion of the second orbital. In this case, one of electrons of the second
orbital is released to the continuum, accompanied by the decay of the other into the first
orbital. On the one hand the higher depletion observed for the second orbital than for
the first orbital for the SUB(2) between 1.5 fs and 2.0fs (see fig VI.5 (c) and(d)) confirms
the presence of the Auger decay. On the other hand, the Auger decay is expected to
lead to a higher occupation of the first orbital in the results of the SUB(2) in comparison
to the TDHF theory. Unfortunately, the genuinely correlated relaxations and ionization
are superimposed with scattering processes between the electrons caused by the small
size of the system. In order to evaluate the influence of reflected electrons, one has to
consider their energy. Photoelectrons of the first orbital are released with a low energy
and in a analogous manner to the shake-off process an impact ionization of the second
orbital is enabled after a reflection at the borders of the system. Therefore, in addition
to the Auger decay and the shake-off process, the ionization of the second orbital is
enhanced due to the small size of the system. The final rise of the second orbital for the
SUB(2) could be caused by scattering events between two free electrons, transferring
one electron into the bound state and the other to a continuum state of higher energy.
Finally, in the presence of an Auger decay a fast reflected Auger electron might carry a
sufficient energy to affect the electrons of the first orbital.

VI.3.3. Six electrons

In the following, the TDRDM formalism is applied for an atom with six electrons. As
it has been the case for four electrons, for a neutral atom with six electrons the cosh
potential does not provide any localized Hartree-Fock ground state. For the chosen
parametrization the atom carries initially a total charge of four positive elementary
charges.

Vk(x) =
−20ERyd

cosh2(xa−1
b )

Vel(x1− x2) =
2ERyd

cosh2((x1− x2)a−1
b )

. (VI.20)

The applied excitation conditions are sketched in figure VI.6 and are similar to the one
used for four electrons. In figure VI.6 (a) the photon energy is sufficient to free an
electron of the valence shell. Releasing an electron of the second orbital or the third
orbital requires a multiphoton absorption. The scenario in figure VI.6 (b) considers
a higher photon energy, enabling the ionization of the second orbital through a one-
photon absorption. Finally, all initially occupied orbitals are accessible via a single
photon absorption, as illustrated in figure VI.6 (c). The eigenvalues of the Hartree-Fock
orbitals can be found in the table of figure VI.7. The variable size of the finite elements
results in a small error for the Hartree-Fock eigenvalues of the lowest and therefore
strongest localized orbital. In case of the following less localized states the error increases
and reaches 7.7 % of the converged value of EHF

3 due to the enlarged finite elements.
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Figure VI.6.: The figure shows the excitation conditions applied on a one-dimensional six electron
atom. In (a) the single-photon ionization is only possible for the electrons of the valence shell
whereas (b) also allows the single-photon ionization of the second Hartree-Fock orbital. A further
increase of the photon energy enables the single-photon ionization of all Hartree-Fock orbitals of
the ground state, as sketched in (c).

According to the demand of the applied grid for a size L as large as possible for the
limited basis set, these errors are acceptable.

Figures VI.7 (a)-(c) display the time dependence of the occupation of the single particle
orbitals forming the Hartree-Fock ground state for an intensity of I = 3.52 ·1014 W/cm2

at a photon energy of h̄ω = 27 eV, referring to the situation sketched in figure VI.6 (a).
The laser pulse interacts almost exclusively with the electrons of the third shell, which is
coupled to the continuum via a single photon absorption. The comparison between the
results of the TDHF with the SUB(2) in figure VI.7 (a) reveals that for both approaches
the initial ionization of the third orbital coincides until approximately the maximal field
strength is reached. Afterwards the occupation determined by the TDHF recovers in
contrast to the results of the SUB(2), which shows a further monotonic decrease. Since a
multiphoton absorption is required for the ionization of the first and the second shell,
the influence of the laser pulse is rather small compared to the valence shell (see fig. VI.7
(b) and (c)). In particular, on the scale of the respective figures no deviations from the
initial occupation is found for both orbitals calculated via the TDHF. However, including
correlations between the electrons induces the additional ionization of the lower lying
shells even though only of a small degree.

Increasing the photon energy to h̄ω = 68 eV realises the scenario sketched in VI.6 (b),
which accounts for the single-photon ionization of the second and third orbital of the
initial Hartree-Fock ground state. Figures VI.8 (a)-(c) show the corresponding occupation
probabilities as a function of time for the TDHF theory and the SUB(2) at a peak intensity
of I = 3.17 ·1015 W/cm2. As expected, the first orbital plays a minor role in the ionization
dynamics and the laser mainly affects the electrons of the second and the third shell.
Obviously, the results accounting for correlations differ from those which include the
interaction between the electrons on the mean field level. Similar to the observation for
four electrons at a photon energy of h̄ω = 82 eV, shake-off ionization and the Auger-decay
might induce the higher ionization between 1.0 fs and 1.8 fs of the third orbital for
correlated electrons. In addition, the less depletion of the second orbital for the SUB(2)
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Figure VI.7.: Figure (a)-(c) displays the time traces of the three initially occupied Hartree-Fock
orbitals at a photon energy of h̄ω = 27 eV and I = 3.52 ·1014 W/cm2 obtained via the TDHF theory
(green curve) and the correlation expansion (blue curve). The photon energy corresponds to the
situation sketched in fig. VI.6 (a). The table contains the eigenvalues of the orbitals forming the
Hartree-Fock ground state of the six electron atom.

compared with for the TDHF theory is in agreement with the expectation corresponding
to an Auger decay. Finally, scattering processes between the free electrons probably lead
to the reoccupation of the third orbital after the laser pulse as observed in the results of
SUB(2) in figure VI.8 (a).

The ionization via a single-photon absorption of all initially occupied shells is enabled
by increasing the photon energy to h̄ω = 163 eV. Figures VI.8 (d)-(f) display the corre-
sponding dynamics induced at an intensity of I = 1.72 ·1016 W/cm2. Despite of the high
intensity, the impact of the laser pulse on the bound electrons is small due to the excita-
tion far above the ionization threshold, resulting in a reduced ionization cross section. It
is found that with exception of the first orbital the calculations including correlations
between the electrons yield in a higher ionization than the TDHF. The photon energy
enables the shake-off ionization of the first orbital induced by the photoelectrons of the
first and second orbital. Besides, also the less depletion of the first orbital in the results
of the SUB(2) compared to the TDHF theory indicates the presence of Auger decays. In
addition, the higher number of involved orbitals and electrons increases the number of
decay channels and enables cascades of Auger decays leading to a higher ionization of
the two outer shells for correlated electrons.

VI.3.4. Remarks

The time traces of the occupation of the Hartree-Fock orbitals obtained with the SUB(2)
level of the RDM formalism revealed many differences in comparison with those of
the TDHF theory. The analysis points out that these differences might to some extend
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Figure VI.8.: Occupation probability of the three initially occupied Hartree-Fock orbitals as
function of time determined via the TDHF theory (green line) and the SUB(2) of the RDM
formalism (blue line). Figures (a)-(c) correspond to a laser pulse with a photon energy of
h̄ω = 68 eV and an intensity of I = 3.17 ·1015 W/cm2. In figures (d)-(f) the properties of the laser
are adjusted to h̄ω = 163 eV and I = 1.72 ·1016 W/cm2.

represent signatures of correlated electron-electron interaction excited by an ultrashort
XUV laser pulse with extreme intensity. In particular, indications of shake-off ionization
processes and Auger decays are found. Besides, an artificial behaviour was observed
caused by the small spatial size of the system. A comparison with the results of Schäfer-
Bung and Nest [147] was not worked out since they did not address the ionization
in their investigations. Instead, they analysed the expectation value of the position
operator and the energy for a one-dimensional four electron atom interacting with a
laser pulse described with SUB(2) level of the TDRDM formalism. Due to the observed
numerical instabilities occurring for the full SUB(2) level they limited their approach
to configuration interaction with single excitations and further to independent electron
pairs. They found that the numerical instabilities stem from the non-linear reconstruction
of the three particle RDM and increase for high intensities and enhanced correlations
between the electrons. Although the above presented results for four and six particles do
not show any signs of numerical instabilities or non-physical behaviour, these problems
were observed in the tested parameter range. In particular, numerical instabilities arise
for an excitation of the four electron atom close to the threshold of the valence shell
with a high intensity. Referring to chapter V, in this situation strong correlations are
expected and thus a similar behaviour concerning numerical instabilities is observed
as reported by Schäfer-Bung and Nest [147]. In addition, probabilities larger than one
or smaller than zero were observed for the diagonal elements of the reduced density
matrix. It is known that these problems are induced by the truncation of the hierarchy of
equations of motion in the TDRDM formalism and that they are related to the violation
of the trace relation (eq. (VI.4)) [150, 151]. More sophisticated truncation schemes
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have already been investigated [7, 22, 107] and may provide an improved performance
for the photoionization as the present approach.





VII
Summary and outlook

The thesis is concerned with the impact of quantum coherences and correlation effects in
the dynamics of electrons for an atom exposed to intense and ultrashort XUV-laser pulses.
To this end, different levels of theory were applied providing a systematic manner to
evaluate the appearance of corresponding processes. As a prime example of coherent
quantum dynamics the first issue of this survey were Rabi oscillations between resonantly
driven bound atomic states of a one-dimensional two electron accompanied by ionization.
A laser pulse enabling Rabi oscillations induces a linear intensity scaling of the ion yield.
On the contrary, for pulses lengths shorter than the Rabi period a quadratic intensity
scaling was found in agreement with the lowest order perturbation theory for a two-
photon ionization. Consequently, at the intensity corresponding to the critical pulse
area of a π-pulse a transition from quadratic to linear intensity scaling takes place in
the ion yields. In the high intensity regime the comparison between the results of the
generic model, consisting of a two level system coupled to the ionization continuum
via the upper state, and the direct solution of the time-dependent Schrödinger equation
reveals that the further excited localized states and the direct two-photon ionization
carry a non negligible contribution to the total ionization yields. Furthermore, the
analytic solution of the generic model predicted a renormalization of the Rabi frequency
in comparison with an isolated two level system, caused by the losses to the continuum.
Thus, the enhanced ion yields observed with the TDSE increase the renormalization of
the respective Rabi frequency.

Investigations for an off-resonant excitation proved, that the basic dependency of the
amplitude and the frequency of the Rabi oscillations on the detuning coincides with the
one known for the isolated two level system. However, the direct two-photon ionization
of the ground state gains in importance compared to the resonant case, affecting the
intensity scaling of the ion yields. Instead of the critical pulse area for one Rabi cycle,
at a large detuning the competition between the direct two-photon ionization and the
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Rabi-assisted ionization determines the transition from a quadratic to a linear intensity
scaling. For a fixed detuning the position of this transition is the same for all pulse
durations as long as the ion yields have not reached the saturation regime. Besides, beats
in the time evolution of the occupation probabilities of the ground state were identified
as signatures of the coexistence of different Rabi processes.

The influence of correlated electron dynamics on the ionization process has been
studied for a laser excitation in the vicinity of single-photon ionization threshold of a
one-dimensional helium model. The comparison between the time-dependent Hartree-
Fock theory and the exact numerical solution of the Schrödinger equation reveals that
correlation effects gain in importance at a high radiation intensity with a photon en-
ergy close to the threshold and strongly affect the time evolution of the ground state
population. It was found that in the Hartree-Fock approach the single-photon ioniza-
tion threshold is determined by the mean field of the electrons remaining at the core
and thus continuously increases with the rising fraction of free electrons during the
interaction with the laser pulse. However, the time-dependent Schrödinger equation
strictly distinguished between the threshold for electrically neutral and single ionized
two electron atoms. Whenever a high photoionization raises the single-photon ionization
threshold of Hartree-Fock approach above the photon energy, deviations compared to
the solution including correlation have been observed. Furthermore, the momentum
distributions of the electrons emitted in a double ionization process have been analysed.
The characteristic signatures of different double ionization processes allowed to separate
their respective parts of the total double ionization yields. In case of the coexistence
of a non-sequential three-photon and a sequential two-photon double ionization, the
corresponding ion yields scale quadratically or cubically with intensity. Surprisingly, the
double ionization signal saturates even when its value is lower than 10%. At a high
radiation intensity the three photon process clearly dominates even though the total
ion yield follows a power law with an exponent below three. The time evolution of
the two-electron momentum-distribution revealed a broad peak at short times which
becomes narrower with ongoing time. This feature reflects the energy-time uncertainty
indicating a strong coherent regime at short times. In addition, the time evolution of
the different processes, contributing to the double ionization yields, shows a monotonic
increase for the three photon double ionization and the two-photon process with the
emission of both electrons in the opposite direction. In contrast, the ion yields for the
two-photon process with both electrons leaving the atom in the same direction pass
through a maximum with ongoing time, caused by a recapture process.

Finally, the time-dependent reduced density matrix formalism was applied for one-
dimensional atom models interacting with an ultrashort laser pulse. To this end, the
Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy was truncated one level above the
mean field level and therefore correlations between electrons are included. The one
particle matrix and the two particle correlations were represented by the finite element
discrete variable representation. The product ansatz chosen for the separation of the
spin and basis function variables distinguishes between correlations of the spin singlet or
of spin triplet states. The numerically obtained time traces of the Hartree-Fock orbitals
which form the ground state were analysed for two, four and six electron atoms excited
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by an intense ultrashort XUV laser pulse. In order to identify correlation induced process
in the ionization dynamics, results of the SUB(2) level of the TDRDM formalism were
compared with the TDHF theory. In this manner, signatures of the shake-off ionization
process and the Auger decay were found in the time evolution of the occupation of
the Hartree-Fock orbital of the ground state. Besides, the small size of the used system
induced artificial behaviour because ejected electrons are reflected at the border and
therefore interact with other reflected free electrons and remaining bound electrons.
Consequently, the resulting in scattering events between the electrons additionally affect
the population of the localized orbitals. As known the truncation of the hierarchy leads
to non-linear equations of motion and violates the trace relation of the RDMs.Therefore,
numerical instabilities and non physical behaviour were observed for some excitation
conditions, in particular if electrons were transferred to continuum states close above
the ionization threshold and a high degree of ionization was obtained.

The results of the present thesis provide several points of contact for further develop-
ments. In particular for the application of the TDRDM formalism on the photonionization
of atoms additional investigations suggest themselves. The design of the present ap-
proach already strongly supports a parallel numerical implementation. However, the
parallelization of the implementation only accounts for multi-core processors using a
shared memory model. The limitation on the number of basis functions results in a
system size only suitable for first testing purposes. With the extension to a distributed
memory program which enables the computation by computer cluster the calculation of
system with an increased number of basis functions becomes feasible due to the larger
accessible memory. Also the Hartree-Fock ground state is commonly used as initial state
in the TDRDM formalism, starting the propagation with correlated state might improve
the accuracy. In addition, even though first signatures of correlated processes in the
ionization dynamics obtained with the SUB(2) have been observed in the occupation of
localized single particle orbitals, a more detailed analysis referring also to the kinetic
energies of the free electrons is necessary for a strict confirmation of the shake-off
ionization and the Auger decay.

Furthermore, extending the direct numerical solution of the TDSE of one-dimensional
atoms to four electrons might prove useful for several aspects concerning the findings
of this thesis. Since the SUB(2) level of the TDRDM formalism is not applicable on a
two electron atom the comparison with an exact solution was not accomplished and the
TDHF theory was the only reference in the case of four and six electron atoms. Thus,
the TDSE for four electrons would provide a benchmark for the accuracy of the TDRDM
formalism. Besides, it can access an exact treatment of the resonant Auger decay. In the
resonant Auger decay the Rabi-assisted ionization is accompanied by a relaxation process
[116, 132, 133] and is usually described by models close to the laser driven two level
systems with additional rates modelling the photonionization and relaxation processes.
Consequently, a comparison similar to chapters III and IV between the commonly used
model and the exact results of the TDSE including four correlated electrons seems
promising.
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