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Summary

The contents of organic matter and microorganisms in soils are sensitive parameters

to evaluate soil  quality.  In general,  high contents in organic and microbial  carbon

(Corg, Cmic) are related to high soil fertility. Especially in the tropics, climate and land

use have strong direct effects on basic soil parameters and soil microbial biomass.

Furthermore,  alterations  of  the  basic  soil  parameters  (e.g.  in  contents,  stocks  or

distribution) also entail changes of soil microorganisms. Although these major factors

and their  controlling effect  on  soil  microbial  biomass are  known, detailed studies

including soils of  multiple major ecosystems of a region are scarce,  especially in

Africa. Various climates can be observed on the African continent and the projected

climate change is assumed to have regionally diverging effects. Furthermore, at the

expense of  natural  ecosystems,  the  high  population growth  in  Africa leads to  an

increasing  demand  for  agricultural  land  and  high  rates  of  land-use  change.  To

evaluate  the  soils'  environmental  services  and  its  vulnerability,  it  is  crucial  to

understand  these  changes  and  their  effects  on  soil  microbial  biomass.  Africa's

highest mountain, the Kilimanjaro, offers outstanding potential to investigate Corg and

Cmic in soils of various climates, ecosystems and land-use types. Hence, the overall

purpose of this investigation was to examine factors controlling microbial biomass in

soils of Mt. Kilimanjaro.

The work was conducted on the southern slopes of Mt. Kilimanjaro and covered an

climate/elevation gradient from 950 to 3880 m a.s.l.. Up to twelve ecosystems that

developed in  different  climates were investigated,  classified into  natural  (6  plots),

semi-natural by men slightly affected habitats (3) and agriculturally managed sites

(3).  Basic  soil  parameters and soil  microbial  biomass were  measured in  multiple

depths and different spatial scales. Sampling was conducted between January 2011

and October 2013. The effects of climate and land use on basic soil parameters and

soil microbial biomass were statistically analyzed and compared.

Elevation distinctly influences temperature and precipitation along the slopes of Mt.

Kilimanjaro and thus was used to  investigate  the climatic  effect  on soil  microbial

biomass.  Along the investigated elevation gradient,  Corg and Cmic contents in soils
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were found to follow a hump-shaped distribution with a maximum in the consistently

warm and humid forest ecosystems at elevations between 2000 m and 3000 m a.s.l..

In addition, the forest belt exhibited also the strongest negative trends in C contents

with depth. Cmic stocks did not show a direct correlation to climate. However,  Corg

stocks  varied  depending  on  water  availability,  temperature  and  net  primary

production (NPP) along the elevation gradient. In ecosystems with a dry character at

low elevations, soil Corg stocks increased by 3 kg m-2 and in the consistently humid

ecosystems at higher elevations by 1 kg m-2 per 1000 m in elevation, respectively.

The variability in soil Cmic contents during the climatic transition phase from dry-to-wet

season was more pronounced at low elevations / dry climate and lead to a decrease

of Cmic when the rain season began. At similar elevations, the pronounced contrast

between climatic  seasons also resulted in  a  high increase in CO2 efflux and the

specific metabolic quotient (qsCO2) under increased precipitation.

Contents  and  stocks  of  Corg and  Cmic were  altered  by  human  influences  on  the

ecosystems, which was revealed by the investigation of two land use conversions

typical for the region and on a similar elevation/climatic level. Compared with Corg, the

contents  and  stocks  of  Cmic were  stronger  decreased  by  the  negative  effect  of

intensive  land use. This  effect  was  especially distinct  in  the  upper  soil  horizons.

Intensive agricultural management also resulted in an up to 3-fold decrease of the

substrate available for microbial growth (Cmic:Corg ratio). In addition, soil  CO2 efflux

and qsCO2 in soils of agricultural fields were up to four times higher than in the soils

of less disturbed ecosystems.

A detailed  heterogeneity  study  in  the  savannah  ecosystem  revealed  small-scale

patterns of basic soil parameters and soil microbial biomass. Corg, N, Cmic and Nmic

contents varied several-fold between and within 15   15 m plots in the same area

and climate. Basic soil  parameters  (e.g. Corg,  N)  are controlled by factors such as

climate, vegetation and relief even on a small scale.  Because of their correlation to

soil microbial biomass, such basic soil parameters provide additional information for

multivariate prediction techniques and are able to increase the calculation's accuracy.

Climate, land use and NPP were identified as the main drivers affecting the microbial

biomass in soils of Mt. Kilimanjaro. Climate and land use are independent of each

other but both distinctly influence the NPP and/or vegetation of an ecosystem. The
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consistent  humid climates in  ecosystems above 2000 m a.s.l.  supports  high NPP,

high contents and stocks of Corg and Cmic as well as increased substrate availability in

soil.  The soils of natural ecosystems in the National Park (> 2000 m a.s.l.)  and of

slightly disturbed ecosystems at low elevations are characterized by effective, closed

nutrient and C cycles in a steady-state, but are nevertheless highly vulnerable to the

negative consequences of land-use change. The agricultural land use in the densely

populated  areas  of  Mt.  Kilimanjaro  negatively  alters  important  and  sensitive

parameters  within  the  C  cycle.  The  observed reduction  in  Corg,  Cmic,  available

substrate  and  microbial  efficiency  leads  to  the  assumption  of  an  open  C  cycle

entailing a further decline in the contents and stocks of Corg and Cmic with increased

land use.
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Zusammenfassung

Die  Gehalte  an  organischer  Bodensubstanz  und  die  im  Boden  befindlichen

Mirkoorganismen sind  sensitive  Parameter  für  die  Bodenqualität.  Im  Allgemeinen

werden hohe Gehalte an organischem und mikrobiellem Kohlenstoff (Corg, Cmic) mit

hoher Bodenfruchtbarkeit in Verbindung gebracht. Vor allem in den Tropen haben

das  Klima  und  die  Landnutzung  starke  direkte  Effekte  auf  allgemeine

Bodenparameter  und  die  mikrobielle  Biomasse  in  Böden.  Weiterhin  haben

Änderungen der allgemeinen Bodenparameter (z.B. in deren Gehalte, Menge oder

Verteilung)  auch  Veränderungen  in  der  mikrobielle  Biomasse  zur  Folge.  Obwohl

diese Faktoren und ihre Wirkung auf die mikrobielle Biomasse in Böden bekannt

sind,  befassen  sich  nur  wenige  Studien  mit  den  Böden  mehrerer  wichtiger

Ökosysteme einer Region. Der afrikanische Kontinent ist durch mehrere Klimazonen

charakterisiert  und  die  Auswirkungen  des  vorhergesagten  Klimawandels  werden

vorraussichtlich  regional  unterschiedlich  ausfallen.  Weiterhin  führt  das  hohe

Bevölkerungswachstum  Afrikas,  auf  Kosten  natürlicher  Ökosysteme,  zu  einem

steigenden  Bedarf  an  landwirtschaftlicher  Nutzfläche  und  einer  hohen  Rate  an

Landnutzungsänderungen.  Um  die  ökologischen  Dienstleistungen  sowie  die

Verwundbarkeit von Böden zu bewerten ist es nötig diese Änderungen und deren

Effekt  auf  die  mikrobielle  Biomasse  zu  verstehen.  Afrikas  höchster  Berg,  der

Kilimanjaro,  bietet  außergewöhnliche  Möglichkeiten  Corg und  Cmic in  Böden

verschiedener Klimate, Ökosysteme und Landnutzungstypen zu untersuchen. Daher

war  das  Hauptziel  dieser  Dissertation  Faktoren,  die  die  mikrobielle  Biomasse  in

Böden des Kilimanjaro's beeinflussen wissenschaftlich zu untersuchen.

Die Arbeiten wurden am Südhang des Kilimanjaro zwischen 950 bis 3880 m ü. NN

durchgeführt.  Die  Untersuchungen  umfassten  bis  zu  zwölf,  in  unterschiedlichen

Klimaten  entwickelte  Ökosysteme,  eingeteilt  in  natürliche  (6  Flächen),  halb-

natürliche,  durch  den  Menschen  geringfügig  beeinflusste  Habitate  (3)  und

landwirtschaftlich  genutzte  Flächen  (3).  Allgemeine  Bodenparameter  und  die

mikrobielle Biomasse in Böden wurden in mehreren Tiefen und auf unterschiedlichen

räumlichen Skalen bestimmt. Die Beprobungen fielen in den Zeitraum von Januar
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2011  bis  Oktober  2013.  Die  Effekte  von  Klima  und  Landnutzung  auf  allgemeine

Bodenparameter  und  die  mikrobielle  Biomasse  wurden  statistisch  analysiert  und

verglichen.

Da am Berg die  Temperatur  und Niederschlagsverteilung entscheidend durch die

Höhe  beeinflusst  wird,  wurde  diese  genutzt  um  den  Effekt  des  Klimas  auf  die

mikrobielle Biomasse zu untersuchen. Entlang des untersuchten Höhengradienten

verliefen  die  Corg und  Cmic Gehalte  der  Böden  glockenförmig,  mit  den  höchsten

Werten in den konstant warm-humiden Waldökosystemen auf einer Höhe zwischen

2000 m und 3000 m ü. NN. Zusätzlich zeigten die Kohlenstoff-Gehalte dieser Böden

die stärkste Abnahme mit der Tiefe. Die Gesamtmengen an Cmic hatten keine direkte

Korrelation zum Klima. Die Gesamtmengen an Corg variierten jedoch abhängig von

der  Wasserverfügbarkeit,  Temperatur  und  Netto-Primär-Produktion  (NPP)  entlang

des Höhengradienten. In den eher trockenen Ökosystemen am Fuße des Berges

stiegen  die  Mengen  an  Corg um  3 kg m-2,  in  den  konstant  humiden  Habitaten  in

größerer Höhe um 1 kg m-2, pro 1000 m in Höhe. Die Variabilität der Cmic Gehalte der

Böden war während des klimatischen Übergangs von Trocken- zu Regenzeit in den

niedriger  gelegenen  Ökosystemen  bzw.  trockeneren  Klimaten  stärker  ausgeprägt

und eine  Abnahme an Cmic wurde  zu  Beginn  der  Regenzeit  beobachtet.  Auf  der

gleichen Höhenstufe und während erhöhtem simulierten Niederschlag resultierte der

ausgeprägte Unterschied zwischen den klimatischen Jahreszeiten in einem starken

Anstieg der CO2 Ausgasung und des spezifischen metabolischen Quotienten (qsCO2).

Die Untersuchung von zwei, für die Region typischen, Landnutzungsänderungen auf

gleicher Höhenstufe zeigte, dass die Gehalte und Gesamtmengen an Corg und Cmic

durch  die  menschlichen  Einflüsse  auf  die  Ökosysteme  verändert  wurden.  Im

Vergleich mit Corg, wurden die Gehalte und Gesamtmengen an Cmic stärker durch den

negativen Effekt  der  Landnutzung verringert.  Dieser  Effekt  war  besonders  in  den

oberen  Bodenhorizonten  ausgeprägt.  Intensive  landwirtschaftliche  Nutzung

resultierte  auch  in  einer  bis  zu  dreifachen  Verringerung  des  für  die  mikrobielle

Biomasse  verfügbaren  Substrats  (Verhältnis  Cmic:Corg).  Weiterhin  war  die  CO2

Ausgasung sowie qsCO2 in Böden landwirtschaftlicher Nutzflächen bis zu vierfach

höher als in Böden von weniger beeinflussten bzw. gestörten Ökosystemen.
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Eine detailierte Heterogenitätsstudie in der Savanne offenbarte kleinräumige Muster

der allgemeinen Bodenparameter und der mikrobiellen Biomasse. Die Gehalte von

Corg, N, Cmic und Nmic varriierten im gleichen Gebiet und Klima mehrfach zwischen

sowie innerhalb von 15 x 15 m Untersuchungsflächen. Auch auf kleinräumiger Skala

werden allgemeine Bodenparameter (z.B. Corg, N) durch das Klima, die Vegetation

und das Relief beeinflusst. Aufgrund ihrer Korrelation zur mikrobiellen Biomasse in

Böden,  bieten  diese  allgemeinen  Bodenparameter  zusätzliche  Information  für

Vorhersagen mit multivariaten Techniken und können dadurch die Genauigkeit der

Kalkulationen erhöhen.

Klima, Landnutzung und NPP wurden als die wichtigsten, die mikrobielle Biomasse in

Böden  des  Kilimanjaros,  beeinflussenden  Faktoren  identifiziert.  Klima  und

Landnutzung  sind  von  einander  unabhängig,  jedoch  beeinflussen  beide  die  NPP

und/oder  die  Vegetation  eines  Ökosystems.  Die  konstant  humiden  Klimate  der

Ökosysteme oberhalb von 2000 m ü. NN. begünstigen hohe NPP, hohe Gehalte und

Gesamtmengen an Corg und Cmic sowie eine erhöhte Substratverfügbarkeit in Böden.

Die Böden natürlicher Ökosysteme innerhalb des Nationalparks (> 2000 m ü. NN.)

und der geringfügig beeinflussten Ökosysteme niedrigerer Höhen sind durch einen

sich im Gleichgewicht befindenden, effektiven geschlossenen Kohlenstoff-Kreislauf

gekennzeichnet.  Jedoch  sind  sie  auch  deutlich  anfällig  für  die  negativen

Konsequenzen aus Landnutzungsänderungen. Die agrarwirtschaftliche Nutzung der

Böden in den bevölkerungsreichen Gebieten am Fuße des Berges wirkt sich negativ

auf  empfindliche  Parameter  innerhalb  des  Kohlenstoff-Kreislaufs  aus.  Die

beobachtete  Reduzierung  der  Gehalte  und  Mengen  an  Corg und  Cmic sowie  die

Verringerung der Substratverfügbarkeit und der mikrobiellen Effektivität lässt offene

Kohlenstoff-Kreisläufe und ein anhaltendes Sinken der Gehalte und Mengen an Corg

und Cmic in den landwirtschaftlichen Flächen vermuten.





General Introduction

Soil organic matter and microbial biomass

The sum of all organic substances in soil derived from plant, microbial and animal

detritus is referred to as soil organic matter (SOM) (Batjes & Sombroek, 1997). The

“importance of soil organic matter” has been extensively described in the eponymous

report  by  Bot  &  Benites (2005).  Summarily,  during  decomposition,  SOM  is

transformed to organic and inorganic molecules, i.e. plant-available nutrients (Juma,

1999). At steady state, the equilibrium between decomposition rate and the addition

of new organic matter keeps the level of SOM constant. A shift in this equilibrium will

result in accumulation or loss of SOM, depending whether the decomposition rate is

lower  or  higher  than the rate of  addition of  new material  (Davidson & Janssens,

2006).

The benefits of SOM for soil fertility are widely known (Johnston et al., 2009; Reddy,

1995; Sollins et al., 1996; Tiessen et al., 1994; Zech et al., 1997) . It stabilizes the soil

structure  and  thus  protects  the  soil  against  erosion,  but  also  improves  its  water

retention  and  other  hydraulic  properties  (Batjes  &  Sombroek,  1997).  SOM  is

estimated to contain on average 58% of organic C (Corg). In addition, it is a revolving

source of nutrients (e.g. N, P, S, K) for plants and microorganisms and an important

determinant of the cation exchange capacity – especially in tropical soils  (Batjes &

Sombroek, 1997).

Biological  mechanisms responsible  for  SOM turnover  are  of  major  importance in

global  C model  projections (Wieder et  al.,  2013).  Consequently,  soil  has taken a

central part in recent discussions on climate change (IPCC, 2014; Vose et al., 2004).

Soil  microbial  biomass  C  (Cmic)  is  an  important  and  sensitive  parameter  for  Corg

turnover  and  soil  fertility  (Powlson  et  al.,  2001),  adequately  described  by  Bot  &
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Benites (2005):  “By breaking down carbon structures and rebuilding new ones or

storing the C into their  own biomass,  soil  biota plays the most  important  role  in

nutrient cycling processes and, thus, in the ability of a soil to provide the crop with

sufficient nutrients to harvest a healthy product.”

To  evaluate  the  importance  of  the  soils'  environmental  services,  as  well  as  its

vulnerability and sustainability, it is crucial to understand the factors controlling soil

microbial biomass.

The influence of climate

Soil is the largest terrestrial C pool with approximately 1600 Pg of Corg (Batjes, 1996;

Eswaran  et  al.,  1993;  Lal,  2004).  Tropical  ecosystems  have  a  major  effect  on

biogeochemical element cycles  (Girardin et al., 2010; Melillo et al., 1993). Around

500 Pg, or one third of the soil C is stored in the tropics, with 30–80% found in the

topsoil to a depth of 0.4 m (Batjes, 1996; Detwiler, 1986). The net primary productivity

(NPP) and the mineralization rate of SOM are climate sensitive factors controlling the

amount of Corg in natural soils (Craine et al., 2010; Kirschbaum, 1995). In general, the

hot and humid climate conditions in the tropics support high NPP and high turnover

rates of litter and SOM (Melillo et al., 1993; Nemani et al., 2003; Zech et al., 1997).

The effect of climate on NPP and soil conditions was evident in several studies. For

example, Bruijnzeel & Veneklaas (1998) discussed the role of tropical montane cloud

forests.  Compared  to  forests  in  tropical  lowlands,  these  forests  exhibit  a  low

aboveground NPP which is attributed to limited evapotranspiration (Nullet & Juvik,

1994) and photosynthesis  (Bruijnzeel  & Veneklaas,  1998;  Ishibashi  &  Terashima,

1995).  Due  to  unfavorable  soil  conditions  like  persistently  high  water-saturation

and/or low nutrient availability, high amounts of C are put in the formation of large

root systems, further limiting the forests productivity (Bruijnzeel & Veneklaas, 1998).

Similar  to  the  NPP,  the  sensitivity  of  SOM  to  temperature  has  been  studied

extensively, but some uncertainty still remains (Fang et al., 2005; Giardina & Ryan,

2000; Knorr et al., 2005; Jobbágy & Jackson, 2000). Davidson & Janssens (2006)

reviewed literature on the temperature sensitivity of  soil  C decomposition and its

relation to the projected climate change. Gaseous efflux from soil  is an  important

source  of  the  greenhouse-gas  carbon  dioxide  (CO2)  and  is  almost  completely
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controlled  by  root  respiration  and  the  microbial  mineralization  of  SOM  (Bond-

Lamberty & Thomson, 2010; Kuzyakov, 2006).  The quotient of the amount of CO2

released by microbial respiration and the total amount of microbial biomass is related

to  the  energy demand and activity  of  soil  microorganisms.  It  can  be  used  as  a

parameter of the microbial efficiency as well as a parameter of the microbial potential

for C utilization (Anderson & Domsch, 1978). It is strongly dependent on temperature

and soil moisture. Whereas hot temperatures are known to increase the microbial

activity and therefore the mineralization rate of SOM in soils, cold temperatures are

negatively correlated with the metabolism of soil microorganisms but not with their

amount (Blume et al., 2002; Zech et al., 1997). Tropical ecosystems are subjected to

pronounced dry and wet seasons, which have distinct impacts on productivity and

nutrient  cycling.  Many  studies  dealt  with  the  positive  correlation  between  soil

moisture and CO2 efflux from soil (amongst others Reichstein et al., 2003). However,

there have been only few attempts to investigate soil properties during the transition

from dry-to-wet  or  wet-to-dry season  (e.g.  Eaton,  2001).  As  a  consequence,  the

seasonal variability of soil microbial biomass is not yet fully understood, since high

amounts have been found in dry as well as in wet seasons (Devi & Yadava, 2006;

Maithani et al., 1996; Montaño et al., 2007). Due to their importance for soil fertility,

soil  microorganisms are a major factor for the sustainability of tropical agricultural

systems  (Sanginga  et  al.,  1992).  However,  changes  in  land  use  massively  alter

(amongst others) the CO2 efflux and the Cmic content of soils (Calderón et al., 2000;

Iqbal et al., 2010).

The influence of land use

Ecosystem goods and services are the basis for human life and its development on

earth.  Anthropogenic  factors  often  influence  these  benefits  negatively.  The  high

relevance of land-use change has recently been shown, as the loss of ecosystem

goods and services has been estimated to $4.3–$20.2 trillion per year (from 1997-

2011, Costanza et al., 2014). This estimate also includes changes in soil properties

and fertility.  A conversion of natural ecosystems to croplands reduces productivity

and mineralization of SOM (Ogle et al., 2005), leading to an average decrease in C org

stocks of  25-50% (Detwiler,  1986;  Don et  al.,  2011;  Lal,  2004),  with  most  of  the
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decrease in the highly organic topsoil layers (Guo & Gifford, 2002). This decrease in

Corg contents is accompanied by a release of the greenhouse gas CO2 from soil (Lal,

2004;  Powlson  et  al.,  2001).  Because  of  their  high  NPP  (Schuur,  2003),

mineralization rates (Zech et al., 1997) and C stored in the vegetation, the negative

effect of land-use changes is especially distinct in tropical ecosystems: compared to

temperate regions on average twice as much C is lost from vegetation and soil (West

et al., 2010). Consequently, several studies focused on anthropogenic disturbances

and land-use changes in  tropical  regions (Don et  al.,  2011;  Lambin et  al.,  2003;

Walker,  2004).  An  important  factor  for  the  sustained  productivity  of  agricultural

systems is a constant level of SOM (Bot & Benites, 2005). However, during the last

century, the removal of large amounts of nutrients together with insufficient input of

fertilizers led to degradation and nutrient depletion of tropical soils (Buresh et al.,

1997; Lal & Bruce, 1999; Sanchez, 2002). Therefore, depending on climate, soil type

and  management,  mean  crop  yield  in  the  tropics  is  approximately  half  that  of

temperate  regions  (West  et  al.,  2010).  Nonetheless,  despite  their  low  rate  of  C

sequestration, tropical soils are supposed to have a high potential to act as C sink

(Lal, 2004).

The relationship between spatial environmental heterogeneity and diversity is a basic

but complex concept in ecology (Tamme et al., 2010; Wilson, 2000). Especially at a

small-scale, biological parameters, e.g. plant growth and animal species diversity are

spatially  diverse  and  strongly  affected  by  biogeochemical  soil  properties,  soil

moisture  and  temperature  (Herbst  &  Diekkrüger,  2003;  Reichstein  et  al.,  2003).

However,  these biological  parameters also contribute to  the spatial  distribution of

physical and chemical characteristics of soil  (Wiens, 2000). In natural savannahs,

soils under tree canopies are known to contain distinctly higher amounts of Corg and

Cmic (Isichei & Muoghalu, 1992). Disturbances of ecosystems often go hand in hand

with a change in vegetation structure, which may result in a distinct change of the

soils' spatial heterogeneity once the system or vegetation is disturbed (Krummel et

al.,  1987; Rossi et al.,  2009). While the amounts of C and nutrients in soils may

recover after abandonment of agriculture, land use may have had an enduring effect

on  their  spatial  distribution  (Fraterrigo  et  al.,  2005;  Schulp  &  Verburg,  2009).

Compared to natural reference sites, management practices like the mixing of soil
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horizons and the removal of plant debris reduce the spatial variability of C contents

(Fraterrigo  et  al.,  2005).  However,  the  heterogeneity  of  Corg,  Cmic and  selected

nutrients (e.g.  P, K, Mg) on agricultural  land is increased by deposition of animal

manure (Augustine & Frank, 2001; Tessier et al., 1998). Both, the nutrient enriched

as well as the infertile spots feed back on the productivity of the ecosystems and

hence also on the soil microbial biomass (Day et al., 2003). Beside the spatial effects

of land use, the projected climatic change results in spatially varying responses of

crop  yields,  implicating  the  necessity  of  localized  approaches  to  adapt  to  future

changes in climate (Thornton et al., 2009).

Soil  has always been a major  aspect  in  human development  and the  increasing

human population enhances the need for arable land and food production (McNeill &

Winiwarter,  2004).  Hereby Africa  deserves a special  focus:  A fivefold  increase in

human population from 1950 to 2013 resulted in massive land cover changes on the

African  continent  (United  Nations,  2013a).  On  cost  of  natural  vegetation,  Africa's

agriculturally managed and barren land area has increased by 57% and 15% (1975–

2000), respectively (Brink & Eva, 2009). Especially in the Southern and Eastern part

of the continent, forests diminish rapidly, resulting in the highest forest decrease rates

worldwide (FAO, 2011). Today, 15.5% or 1.1 billion of the world's 7.2 billion people

are  living  in  Africa  and this  number  is  projected  to  rise  to  25% in  2050 (United

Nations, 2013b). The provision of food and a balanced diet for the growing population

is  included in  the Millennium Development  Goals  adopted by the United Nations

(United  Nations,  2013b).  But  at  present,  low  crop  yields  in  Africa's  agricultural

systems result in high rates of malnourishment and hunger (FAO, 2013). Summed

up,  the  projected  climate  change,  the  fast  growing  population,  the  increase  in

agricultural land area and the low food production demands that an increasing part of

international  and  interdisciplinary  research  should  be  focused  on  the  African

continent.

Why Mt. Kilimanjaro?

The effect  of  land-use  changes  on  soil  properties  has  been  studied  extensively.

Nonetheless, compared to other regions, little is known about African ecosystems

and subtropical and tropical research is mostly focused on South America and Asia. A
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recent  meta-analysis  concentrated  on  land-use  changes  in  the  tropics  and  their

effects on SOC stocks (Don et al., 2011). However, publications on the changes of

soil microbial properties are scarce.  Mt. Kilimanjaro offers exceptional opportunities

to  study  East  African  habitats,  depending  on  land-use  and  elevation/climate.

Compared  to  other  regions  in  Tanzania,  huge  amounts  of  C  are  stored  in  the

vegetation and soils of Mt. Kilimanjaro (Miles et al., 2009). On average the annual

human  population  growth  rate  in  Mt.  Kilimanjaro  region  is  1.8%  and  increasing

(National Bureau of Statistics, 2013). Consequently, the increasing need for arable

land and land-use conversions threaten the SOC pools. Owing to its topography as a

high isolated mountain, various ecosystems similar to East Africa have developed

(Mayaux et al.,  2004),  ranging from hot-dry savannah on its lower slopes to cold

alpine deserts above 4500 m (Hemp, 2006a). The climate, rainfall patterns and the

hydrology  of  Africa's  highest  mountain  are  well  known  and  described  in  several

studies (Chan et al., 2008; Coutts, 1969; Duane et al., 2008; McKenzie et al., 2010;

Røhr, 2003). Also the mountain's vegetation and its distribution have been studied

extensively  and  in  detail  (amongst  others  Axmacher,  2003;  Hemp,  2002,  2006a,

2006b). Information on soils of Mt. Kilimanjaro, however, is mainly available on soil

development and paleosols (Little & Lee, 2006; Zech, 2006; Zech et al., 2011, 2014),

but  only to  a  lesser  extend on soil  nutrients,  land-use change and soil  microbial

Figure  A: Homegarden – a traditional agroforestry system of the Kilimanjaro native Chagga
tribe; Photo by J. Röder, University of Marburg
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properties (Kaihura et al.,  1999; Mganga & Kuzyakov, 2014; Misana et al.,  2003;

Schrumpf, 2004). Amongst all African habitats savannahs and native bushland have

been the  most  extensively investigated ones.  Several  studies  concentrated  on C

turnover,  soil  microorganisms  and  greenhouse  gas  exchange  (Angassa,  2007;

Hernández-Hernández & López-Hernández, 2002; Otieno et al., 2010). However, the

spatial variability of these parameters was considered only in a few studies which

were undertaken in South and West Africa (Hagos & Smit, 2005; Wang et al., 2009).

History of land use on Mt. Kilimanjaro

Mt.  Kilimanjaro  ecosystems  have  always  been  utilized  and  are  under  severe

pressure  as  a  result  of  land-use  changes.  During  the  last  2000  years,  settled

agricultural  people  widely  cleared  the  forests  below  1700 m  (Schmidt,  1989).

Traditionally,  the  Kilimanjaro  native  Chagga tribe  established  grasslands  and  an

agroforestry system in the fertile highlands, which nearly lead to the disappearance

of the native vegetation of lower montane forests (Mwasaga, 1991). This traditional

agroforestry  system is  referred  to  as  homegarden.  With  its  high  crop  diversity  it

provided food throughout the year and was seen as a form of traditional sustainable

subsistence agroforestry  (Clemm, 1964;  Fernandes et  al.,  1985).  In  the  late  19th

century,  large  scale  coffee  plantations  started  to  replace  these  traditional

homegardens  (Mbonile  et  al.,  2003).  However,  homegardens  and  plantations

reached their maximal distribution before 1960 and have not expanded since (Soini,

2005).  In  consequence of  the  continuously growing population,  land scarcity and

variations in prices of agricultural  products (e.g.  coffee), homegardens were more

recently affected by fragmentation and changes in cultivated plant species (Mbonile

et al., 2003; Soini, 2005). Based on analysis of aerial photographs from 1961, 1982

and  2000,  the  recent  major  land-use  or  land-cover  change  on  the  mountain's

southern slopes can be described as a pronounced loss of natural bushland and

savannah,  accompanied  by  a  simultaneous  extensive  increase  in  agriculturally

cultivated land (Soini, 2005).

The protection of the mountain's forest above 1700 m began with the establishment

of the Kilimanjaro Forest Reserve in 1904 (Newmark, 1991). After a strong increase

in wood harvesting during the Second World War, Wood (as cited in Schrumpf, 2004)
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reported efforts to support natural afforestation. During the same time, a half-mile

forest strip was established to lessen the pressure on the Forest Reserve and to

provide the rapidly growing population with natural resources. Nevertheless, to the

present day, this half-mile buffer zone is severely exploited and constantly changed

by land-use (William, 2003). Authorized as well as illegal logging intensified again in

the second half of the 20th century, leading to the mosaic fragmentation of the forest

found today (Lamprey et al., 1991). On the southern slopes, illegal logging focused

on the large scale exploitation of Camphor (Ocotea usambarensis), whereas on the

north-eastern slopes it concentrated on Cedar (Juniperus procera) (Lambrechts et

al.,  2002;  Lovett  &  Pócs,  1993).  In  2005,  the  Kilimanjaro  Forest  Reserve  was

included into the Kilimanjaro National Park (KINAPA), further limiting unauthorized

logging. Still, the past interferences and their consequences are still visible in forests

at elevations below 2500 m a.s.l.. In addition, it is assumed that illegal logging and

charcoal  production  persist  to  be  major  threats  to  Mt.  Kilimanjaro's  forests

(Lambrechts  et  al.,  2002;  Soini,  2005).  Also  the  function  of  the  half-mile  strip  is

carried on,  as the National  Park areas at  lower elevations are used by the local

population for collecting firewood and animal feeds. 

General objective

Although the factors controlling soil microbial biomass in tropical soils are in general

already known, detailed studies including multiple major ecosystems of a region are

scarce. Despite the high rate of land-use change, the fast growing population and the

projected climate change, Africa mostly was left out in studies concerning the quality

and  fertility  of  soils.  The  topography  of  Mt.  Kilimanjaro,  specifically  its

climate/elevation gradient, lead to the development of several ecosystems typical for

East  Africa.  Because  of  the  high  human  population  density  and  growth,  natural

ecosystems  in  the  region  are  threatened  by  land-use  change  to  agricultural

ecosystems. Therefore the aim of the present thesis was to investigate the effect of

(already known)  factors  on  soil  microbial  biomass  in  multiple  ecosystems  of  Mt.

Kilimanjaro.  Specifically,  these  factors  were  addressed  in  three  separate  studies

(Figure B):
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1. The first study focused on two specific objectives (blue, Figure B):

• The  effect  of  increasing  soil  moisture  on  soil  microbial  biomass

during the climatic transition phase from dry-to-wet season

• The effect of land use on contents of  Cmic and water-extractable C

(WOC) and their distribution with depth

2. Study 2 (orange, Figure B) addressed two objectives associated with the

topics of Study 1:

• Land use and climate as the controlling factors for changes in Corg

and Cmic stocks

• The  dependency  of  soil  CO2 efflux  and  the  specific  metabolic

quotient to increased land management intensity and precipitation.

3. The third study (yellow, Figure B) dealt with small-scale variability of basic

soil  parameters and their  usefulness to  predict  soil  microbial  biomass.

Due to the high experimental effort, this study was conducted in only one

ecosystem (savannah).

Figure B: Schematic view of the factors controlling microbial biomass in soils of Mt. Kilimanjaro.
The objectives and relationships addressed in studies 1, 2 and 3 are displayed in blue, orange
and yellow colors, respectively.
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Abstract

Microbial biomass carbon (MBC) and water-extractable organic carbon (WOC) – as

sensitive and important  parameters for  soil  fertility and C turnover  –  are strongly

affected by land-use changes all over the world. These effects are particularly distinct

upon conversion of natural to agricultural ecosystems due to very fast carbon (C) and

nutrient cycles and high vulnerability, especially in the tropics. The objective of this

study was  to  use  the  unique  advantage  of  Mt.  Kilimanjaro  –  altitudinal  gradient

leading to different tropical ecosystems but developed all  on the same soil parent

material – to investigate the effects of land-use change and elevation on MBC and

WOC contents during a transition phase from dry to wet season. Down to a soil depth

of  50 cm,  we  compared  MBC  and  WOC  contents  of  2  natural  (Ocotea and

Podocarpus forest), 3 seminatural (lower montane forest, grassland, savannah), 1

sustainably used (homegarden) and 2 intensively used (maize field, coffee plantation)

ecosystems on an elevation gradient from 950 to 2850 m a.s.l. Independent of land-

use,  both  MBC  and  WOC  strongly  increased  with  elevation  on  Mt.  Kilimanjaro

corresponding to ecosystem productivity and biodiversity.  Through the agricultural

use of ecosystems MBC and WOC contents decreased – especially in surface layers

– on average by 765 mg kg-1 for MBC and 916 mg kg-1 for WOC, compared to the

respective natural ecosystems. The decrease with depth was highest for forests >

grasslands > agroecosystems and also was positively correlated with elevation. We

conclude that MBC and WOC contents in soils of Mt. Kilimanjaro ecosystems are

highly  sensitive  to  land-use  changes,  especially  in  topsoil.  The  MBC  and  WOC

contents were considerably reduced even in sustainable agricultural systems. Since

MBC and WOC are very fast reacting and sensitive C pools, we expect a decrease in

other soil C pools accompanied by a strong decrease in fertility and productivity due

to changes in land use from natural to agricultural ecosystems.

Keywords:  Microbial  carbon  dynamics,  elevation  gradient,  tropical  ecosystems,

water-extractable carbon, land-use changes, Andosol
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Introduction

Land-use  and  climate  change,  habitat  destruction  as  well  as  other  human

perturbations strongly alter natural ecosystems. Understanding these responses is

crucial to forecast the sustainability of environmental services. Tropical ecosystems

are  known  for  high  biodiversity  and  for  important  effects  on  global  climate  and

biogeochemical  cycles,  especially on  C turnover  and sequestration (Detwiler  and

Hall, 1988; Gascon et al., 1999; Katovai et al., 2012; Malhi and Phillips, 2004). Due

to  faster  transformation  processes during  litter  decomposition,  tropical  soils  have

higher  turnover  rates than soils in  colder climates (Zech et al.,  1997).  Therefore,

tropical ecosystems are in special focus in recent studies concerning anthropogenic

disturbances  and  C  budgets  (Don  et  al.,  2011;  Houghton  and  Goodale,  2004).

Conversion from natural to agricultural ecosystems led to an average decrease in C

stocks of 25-30% (Don et al., 2011; Houghton and Goodale, 2004). Organic carbon

contents in both moist and dry soils in tropical ecosystems are especially altered by

land-use change (Ogle et al., 2005).

Several  studies  have  been  conducted  on  soil  microbial  biomass  in  tropical

ecosystems. For example, Sanginga et al. (1992) described the importance of soil

microorganisms  for  sustainability  of  agricultural  soils  in  tropical  ecosystems.

Management practices, such as tillage, also influence soil microbial activity (Calderón

et al., 2000). Singh and Yadava (2006) investigated the dynamic of microbial biomass

in soils in north-east India and found a decrease of 16% in microbial biomass within

four years after the conversion from grassland into an agroecosystem.

The increasing demand for agricultural land directly accelerates deforestation and a

decrease of up to 75% in both soil  organic carbon C and microbial  biomass was

recorded for the conversion from forest to agricultural ecosystems (Lemenih et al.,

2005; Houghton and Goodale, 2004; Waldrop et al., 2000). Although deforestation is

a common practice for the conversion of natural to agricultural managed land-use

systems, afforestation has become a much discussed topic in recent years. In a few

years after  abandoning agriculture,  soil  microbial  biomass contents are nearly as

high  as  in  the  natural  forests  (Maithani  et  al.,  1996;  Templer  et  al.,  2005).

Consequently, microbial biomass is a sensitive C (and N) pool responding to land-
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use changes much faster than total organic matter and the most other C pools in

soils (Hu et al., 1997; Powlson et al., 1987; Trumbore et al., 1996).

Most studies on land-use change effects on tropical ecosystems were conducted on

the Southern American or Asian continent. Processes, nutrient stocks and biological

diversity during land-use change in the tropical part of Africa remain widely unknown.

This is despite the fact that East Africa’s forest area has an annual decrease rate of

1.01% (2000-2010) (FAO, 2011), which is amongst the highest in the world. Due to its

unique topographical conditions as an isolated high mountain, Mt. Kilimanjaro offers

outstanding  potential  to  investigate  land-use  changes  in  African  tropical  habitats

along  an  elevation  gradient.  This  reflects  with  at  least  two  facts.  First,  tropical

ecosystems  from  dry  savannah  to  montane  rainforest  are  present  at  different

elevations of  Mt.  Kilimanjaro  (Hemp,  2006a).  Second,  most  soils  originated  from

similar  parent  material  (volcanic  ash)  and have similar  age (<400 ky)  (Schrumpf,

2004). Consequently, according to the soil forming factors concept (Jenny, 1994), the

main differences in soil properties are connected with climate and vegetation (which

is a function of climate) as well as land-use. Dry and rainy seasons are two extrema

in tropical ecosystems which have a major influence on productivity, nutrient cycling

and  microbial  biomass.  Several  studies  report  seasonal  variability  of  microbial

biomass, but depending on ecosystem, the highest contents of soil microbial biomass

were found in both, dry (Maithani et al., 1996; Montaño et al., 2007) and wet seasons

(Devi and Yadava, 2006). This was mostly explained by the general effect of soil

moisture  on  microbial  biomass  (Wardle  and  Parkinson,  1990).  Nonetheless,  the

processes  and  dynamics  during  the  transition  seasons  remain  mostly  unknown.

Eaton (2001)  detected  a  fast  and  significant  effect  of  wet-to-dry  and  dry-to-wet

transitions  on  microbial  activity  and  nutrient  cycling  in  Belize,  Central  America.

Apparently,  no attempt has been made to investigate the soil  microbial  properties

during a climatic transition phase in Eastern Africa.

The occurrence of each, two pronounced dry and wet seasons, contributes to the

high soil fertility in the Kilimanjaro region. Kaihura et al. (1999) found higher SOC

contents and nutrient use efficiency in Kilimanjaro soils compared to other regions in

Tanzania. Investigations of the montane rainforest of Mt. Kilimanjaro by Schrumpf et

al. (2006;  2007)  showed  low  inputs  of  nutrients  through  rainfall  and  due  to  the
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combination of low nutrient availability and high plant uptake, small to no losses of

base cations by leaching were assumed. Despite the studies above, little is known

about  the  biogeochemical  –  especially  the  microbial  –  properties  of  the  soils  of

Africa’s highest mountain.

Today, 1.4 Mio. people inhabit the Kilimanjaro region, with 79% of them living in rural

areas (103 persons km-2) (National Bureau of Statistics, 2006).  This has a strong

influence on the ecosystems, including land-use change due to a higher demand of

agricultural land, anthropogenically induced fires, illegal logging and the introduction

of new plant species through tourism (Hemp, 2008, 2009; Lambrechts et al., 2002;

Soini,  2005;  Torbick et al.,  2009).  The agricultural  productivity in the East  African

region varies enormously during the year and is strongly affected by climatic change

(Thornton et al., 2009). Due to the slow plant growth and nutrient uptake during dry

seasons, the reported high amounts of microbial biomass retain nutrients (Singh et

al., 1989). In the rainy seasons fast plant growth and root activity as well as drastic

changes in soil  moisture stimulate fast  turnover of  microbes (Fierer and Schimel,

2003).  This  leads  to  lower  microbial  biomass contents  and  increasing  CO2 efflux

rates (Otieno et al.,  2010; Singh et al.,  1989; Sugihara et al.,  2010). Hence, it  is

assumed that in tropical ecosystems with a bimodal climatic pattern soil microbes

represent both a sink and source of nutrients (Srivastava, 1992).

We therefore  used  the  advantages  of  Mt.  Kilimanjaro  to  simultaneously  observe

several natural and anthropogenically affected ecosystems. In the present study we

analyzed  microbial  biomass  carbon  (MBC)  and  water  extractable  organic  carbon

(WOC) in eight ecosystems at increasing altitudes on Mt. Kilimanjaro on a monthly

basis during the transition phase from March to May (dry-to-wet). We assumed that

the increasing precipitation during the transition from dry to wet season affects soil

microbial biomass.

This  study  focused  on  three  hypotheses:  (1)  land-use  changes  from  natural  to

agricultural ecosystems strongly affect the contents of MBC and WOC. (2) Temporal

changes of  MBC and WOC contents  during  the  transition  phase from dry-to-wet

season  are  affected  by  elevation  as  the  temperature  and  precipitation  patterns

change with altitude. (3) Stronger changes in MBC and WOC during the transition
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from dry to wet seasons are expected in the topsoil  as compared to deeper soil

layers.

Our objectives within this study at Mt. Kilimanjaro were (1) to assess the dynamics of

soil MBC and WOC during the transition from dry to wet season; (2) to assess the

effect of land-use on soil microbial biomass and WOC; and (3) to obtain an overview

of the effect of altitude and climate on soil microbial biomass and WOC.

Materials and methods

Study area

This  study  was  conducted  at  the  southern  slopes  of  Mt.  Kilimanjaro  (3°4'33"S

37°21'12"E),  located  in  the  northeastern  region  of  Tanzania.  Soil  sampling  was

performed in  the  Machame area  of  Kilimanjaro  National  Park,  as  well  as  in  the

southern areas Kibosho and Kilema and in the southeastern region of Lake Chala

from March to May 2012. This time period of three months marked the transition

period  from  dry  to  wet  season.  Eight  sites  in  eight  different  natural  and

anthropogenically affected ecosystems were  investigated,  i.e.,  savannah,  Chagga

homegardens,  coffee  plantation,  maize  field,  grassland,  lower  montane  forest,

Ocotea forest and Podocarpus forest. The elevation of the investigation sites varied

between 950 m and 2850 m above sea level (Table 1). The respective vegetation

was  described  in  detail  by  Axmacher (2003)  and  Hemp (2006a,b,c)  and

approximations  for  net  primary  production  (NPP)  in  tropical  ecosystems  were

presented  by  Clark  et  al. (2001)  and  Schuur (2003).  The  investigated  sites  were

classified in land-use classes, i.e. natural, seminatural, sustainably and intensively

used  (Table 1).  Natural  ecosystems  did  not  show  considerable  disturbances,

whereas seminatural plots were altered through collection of firewood and occasional

mowing. Intensively used ecosystems were characterized by mechanical cultivation,

the  use of  pesticides and relatively frequent  fertilization.  Fernandes et  al. (1985),

Fernandes  and  Nair  (1986)  and  Hemp (2006b)  described  the  sustainably  used

agroecosystem  referred  to  as  homegarden,  which  mostly  developed  through

anthropogenic influence on the lower montane forests of Mt. Kilimanjaro. To satisfy

the demand of building material, firewood and farmland, lower montane forests are
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often also converted to grasslands which subsequently could be used to establish

coffee plantations. The rising demand for farmland leads also to the clear cutting of

Acacia trees in the savannah and to ground suitable for maize cultivation. Soils from

the  Kilimanjaro  area  are  described  as  Andosols  and  the  pH  of  the  investigated

ecosystems was between 3.5 and 5.8 (Table 1). The bulk density and soil organic

carbon  contents  in  the  surface  layer  were  in  the  range  of  0.26–1.21 g cm-3 and

14.54–214.57 mg g-1, respectively (Table 1). Using the climate classification system

of Köppen–Geiger, the Mt. Kilimanjaro region is characterized by a seasonal tropical

wet and dry climate (Hess and McKnight, 2011; Peel et al., 2007) and an equatorial

rainfall regime with rainy seasons from March to May and around November (Hemp,

2006a; Sarmiento, 1986). The annual precipitation in the research areas is strongly

Table  1: Land-use, abiotic and physico-chemical properties of the investigated ecosystems on
the southern slope of Mt. Kilimanjaro at 0-10 cm depth*

Ecosystem Elevation Precipitationa Temperatureb Land-use type

(m a.s.l.) (mm yr-1) (°C)

Podocarpus forest 2850 1250 10.5 natural

Ocotea forest 2120 1850 14.0 natural

Forest lower montane 1920 1800 15.5 semi-natural

Grassland 1660 1650 16.5 semi-natural

Coffee plantation 1300 1250 19.0 agricultural

Homegarden 1260 1200 19.0 sustainably used

Maize field 1020 0775 20.5 agricultural

Savannah 0950 0770 21.0 semi-natural

Ecosystem pH
(1:2.5 KCl)

Organic C Total N C/N Bulk density

(mg g-1) (mg g-1) (g cm-3)

Podocarpus forest 3.83 205.91 10.01 20.56 0.26 ± 0.03

Ocotea forest 3.49 214.57 12.37 17.35 0.26 ± 0.03

Forest lower montane 4.34 134.84 09.22 14.63 0.34 ± 0.09

Grassland 4.59 148.56 10.05 14.79 0.51 ± 0.01

Coffee plantation 4.28 018.89 01.85 10.24 1.02 ± 0.06

Homegarden 5.79 032.05 02.78 11.55 0.77 ± 0.04

Maize field 4.56 014.54 01.25 11.67 1.21 ± 0.03

Savannah 5.38 027.53 01.99 13.84 0.83 ± 0.05
a  From Røhr and Killingtveit (2003)
b  From Hemp (2006a)
*  Table was adapted to fit page width
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dependent on elevation (Basist et al., 1994) and differs between 700 and 2000 mm,

with a maximum at an altitude of approximately 2100–2200 m (Hemp, 2006a; Røhr

and Killingtveit, 2003). The mean annual temperature of the investigation sites varied

between 10 and 21°C (Table 1).

Soil sampling

Soils  of  natural,  semi-natural  and  anthropologically  changed  ecosystems  were

sampled on a monthly basis in March, April  and May 2012 – during the transition

phase from dry to wet season. Within the exploratory design of this study, one slope-

parallel experimental plot of 50 m  50 m was established in each of the ecosystems

and to retrieve the exact position at a later sampling, ground nails (length: 0.5 m)

were used to mark the corners. Using a soil auger (2 cm diameter   60 cm depth),

samples were taken in four corners and in the center of each plot, giving a total of

five positions per sampling. For the May sampling of grassland and savannah soils,

only four positions were used, since at that the same time vegetation was recorded

(Hemp,  unpublished)  and  the  middle  position  could  not  be  accessed.  To  obtain

composite  samples  per  depth  and position,  four  augers were taken per  position,

subdivided into depths of 0–10, 10–20, 20–30 and 30–50 cm and mixed, respectively.

At one sampling this lead to a total of 20 samples per ecosystem and to 472 samples

overall.  Since  the  O  horizon  in  montane  rainforests  is  often  densely  rooted

(Schrumpf,  2004),  only  the  litter  layer  was  removed.  After  removing visible  plant

debris, replicates were sieved through a 2-mm mesh screen and stored under field

moist conditions at 4–6°C until analysis.

Soil analysis

All samples were analyzed for microbial biomass carbon (MBC), water extractable

organic carbon (WOC) and soil moisture.  The concentration of inorganic carbon in

the investigated soils is negligible and consequently no correction was conducted.

MBC  was  analyzed  by the  fumgation–extraction  method  (Vance  et  al.,  1987).

Summarily, ethanol-free CHCl3 was used to fumigate 7 - 8 g of each field-moist soil

sample for 24 h in an exsiccator at room temperature. After fumigation, CHCl3 was

removed and soluble C from fumigated and non-fumigated samples was extracted
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with  60 ml  of  0.5 M K2SO4 by  shaking  on  an  orbital  shaker  (60 min,

120 rotations min-1). C content in K2SO4 extracts from respective soil samples without

CHCl3 fumigation was accepted as WOC (Beck et al., 1997; Blagodatskaya et al.,

2009). Soluted organic C in fumigated and non-fumigated extracts was determined.

Since not  all  of  the  soil  carbon can be extracted by K2SO4, a  kEC factor  of  0.45

(Joergensen,  1996)  was  used  to  convert  microbial  C  flush  (difference  between

extractable C from fumigated and non-fumigated samples) into MBC.

Statistical analysis

The investigated ecosystems are affected differently by the start of the wet season,

which is due to the fact that the independent variable of sampling date in this study

represents  a  change  in  climatic  conditions,  which  on  the  other  hand  varies  with

topographic  location.  Therefore,  temporal  changes in  MBC,  WOC and soil  water

contents were detected using ANOVA for each ecosystem, respectively. Using data

from all three samplings, a second ANOVA was calculated to detect the effects of

ecosystems (vegetation) and soil depth on MBC and WOC. For the investigation of

land-use changes, pairs of  semi-natural and its respective anthropogenically used

ecosystem  were  compared  by  using  another,  third,  ANOVA.  All  ANOVAs  were

coupled with Bonferroni outlier and Tukey's post hoc tests. All  statistical  analyzes

were performed with R v2.15.1. All results expressed in the text for MBC and WOC

are on a dry-weight basis as the mean over sampling dates ± standard deviation.

Results

Microbial biomass carbon

Microbial  biomass carbon (MBC) varied  between sampling  dates  (Supplementary

Table 1) and also between investigation sites and soil depth (Supplementary Table 2).

It correlated positively with altitude and therefore was generally higher in the upper

ecosystems (Fig. 1). The highest portion of MBC in the 0-10 cm layer were observed

in  Podocarpus  forest,  2850 m a.s.l.  (4440 ± 416 mg kg-1),  and  the  lowest  values

(179 ± 53 mg kg-1) were under the maize field, 1009 m a.s.l. (Fig. 2).
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The investigated ecosystems homegarden,  lower montane forest,  maize field and

savannah  showed  significantly  lower  (p < .05)  microbial  C  contents  in  the  wet

(May 2012) compared to dry season (March 2012). Contrary to the before mentioned

ecosystems,  the  higher  altitude  ecosystems  of  Ocotea and  Podocarpus forest

showed significant  (p < .05)  differences between April  and  May,  but  not  between

March and May. This temporal effect was bigger on lower plots (e.g. savannah) than

in ecosystems at high elevation (e.g. Ocotea forest), probably because of the lesser

contrast between dry and wet season. For the grassland and coffee plantation the

portion  of  microbial  C  in  soil  did  not  vary  noticeably  between  sampling  dates

(p > .05).

The  ANOVA,  comparing  all  ecosystems  during  the  whole  three-month  sampling

campaign, showed significant differences (p < .01) in MBC contents (Supplementary

Table 2). Based on pairwise comparisons of the Tukey HSD-test, Podocarpus forest,

Ocotea forest  and  homegarden  were  different  from  any  other  investigated

ecosystem.  Based  on  the  same  ANOVA,  the  remaining  ecosystems  could  be

categorized into intrinsically indistinguishable groups, such as grassland and lower

montane forest as well as coffee plantation, maize field and savannah.

Fig. 1. Regression between altitude and MBC (squares, blue) or WOC (circles, red) in the 0–10
cm layer of soils at the southern slope of Mt. Kilimanjaro. Displayed values are means of the
three-month sampling campaign. Standard errors are shown as vertical bars. (For interpretation
of the references to color in this artwork, the reader is referred to the web version of the article.)
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Fig. 2. MBC in Mt. Kilimanjaro ecosystems depending on soil depth and sampling date. Ocotea
and Podocarpus forests represent natural ecosystems without a corresponding agroecosystem.
Left-hand side semi-natural  ecosystems (lower montane forest,  grassland and savannah) are
compared  with  the  respective  right-hand  side  agriculturally  used  ecosystems  (homegarden,
coffee plantation and maize field). Standard errors as black lines. Note different X scales for
ecosystems at different elevation.
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As  expected,  land-use  had  a  strong  effect  on  the  MBC.  This  was  revealed  by

analysis  of  factor-related  variance  (Supplementary  Table  3).  The  MBC  contents

(p < .01)  were  much  higher  in  all  semi-natural  compared  to  the  respective

anthropogenically used ecosystems, whereas the highest decrease was observed in

the surface soil layer (Fig. 2). In the upper 10 cm, the semi-natural ecosystems lower

montane forest and savannah (1668 ± 506 mg kg-1 and 512 ± 125 mg kg-1) contained

2.5-fold higher portions of MBC than the agriculturally used ecosystems homegarden

and  maize  field  (672 ± 121 mg kg-1  and  179 ± 53 mg kg-1).  In  contrast,  MBC  in

grassland at 0–10 cm (1221 ± 203 mg kg-1) is 5–fold higher than in the corresponding

coffee plantation (256 ± 107 mg kg-1). Except for the coffee plantation, a significant

decrease in the microbial C content with increasing depth was observed and ratios of

contents found in the 0–10 cm to 30–50 cm layer showed clear contrasts between

the semi-natural  and anthropogenically used ecosystems.  The natural  ecosystem

Ocotea forest  showed  the  strongest  negative  trend  with  depth  from

3648 ± 684 mg kg-1 at  0–10 cm  to  426 ± 360 mg kg-1 at  30–50 cm,  whereas  the

smallest decrease of microbial C content with depth was found at the sustainably

used homegarden  site  (672 ± 121 mg kg-1 at  0–10 cm to  339 ± 83 mg kg-1 at  30–

50 cm).

Water extractable organic carbon (WOC)

Significant differences of WOC contents were discovered between investigation sites

and  soil  depth  (Supplementary  Table  2)  and  also  between  sampling  dates

(Supplementary  Table  1).  In  six  of  the  eight  investigated  ecosystems  the  water

extractable organic C was several-fold higher than the respective portion of MBC.

Likewise to MBC, WOC followed a linear increase with altitude, although this trend

with  elevation  was  less  distinct  than  for  MCB (Fig.  1).  WOC contents  were  the

smallest  at  low  altitudes  receiving  lowest  precipitation,  e.g.  savannah

(180 ± 29 mg kg-1,  951 m a.s.l.),  and  highest  (3175 ± 1094 mg kg-1)  in  the

Podocarpus forest  (2850 m a.s.l.)  (Fig.  3).  In  the  ecosystems  Ocotea forest,

homegarden,  coffee  plantation  and  savannah,  WOC  levels  were  highest  at  the

second  sampling  (April 2012),  indicating  dissolution  of  organic  C  and  eventually

redistribution within the soil profile with start of the wet season. For these ecosystems
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Fig. 3. WOC contents in Mt. Kilimanjaro ecosystems depending on soil depth and sampling date.
Ocotea and  Podocarpus forests  represent  natural  ecosystems  without  a  corresponding
agroecosystem. Left-hand side semi-natural ecosystems (lower montane forest, grassland and
savannah)  are  compared  with  the  respective  right-hand  sideagriculturally  used  ecosystems
(homegarden, coffee plantation and maize field). Standard errors as black lines. Note different X
scales for ecosystems at different elevation.
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a comparison with other sampling dates revealed a specific WOC dynamic (Fig. 3):

from  March  to  April 2012,  WOC  increased  (p < .05),  followed  by  a  subsequent

decrease (p < .05) with ongoing rains (May 2012). This pattern was more distinct in

low-elevation  ecosystems.  Lower  montane  forest  had  its  highest  WOC  level  in

May 2012 and its lowest in March 2012 – whereas significant differences (p < .05)

could only be observed regarding March but not April and May.  Podocarpus forest,

grassland and maize field showed no significant temporal changes in WOC contents.

In contrast to MBC, for WOC the pairwise comparisons of ecosystems revealed only

one intrinsically  indistinguishable  group (p > .05)  –  this  group consisted  of  maize

field, homegarden and savannah. All other ecosystems showed no similarities to any

other investigated ecosystem.

Both, the variation of WOC with soil depth and total contents of water-extractable

organic C in the semi-natural and agricultural ecosystems were influenced by land-

use. Similar to MBC, significantly higher portions of WOC (p < .05) were found in

semi-natural ecosystems of lower montane forest and grassland (2245 ± 257 mg kg-1

and  1966 ± 232 mg kg-1 in  the  0-10 cm  layer),  whereas  the  corresponding

Fig.  4. WOC/MBC ratio in agriculturally used (circles, red, R2 = 0.77), semi-natural  (squares,
blue, R2 = 0.98) and natural (diamonds, green, R2 = 0.80) ecosystems. Agricultural ecosystems
represent  homegarden, coffee plantation and maize field, whereas semi-natural stands for lower
montane  forest,  grassland  and  savannah,  Podocarpus and  Ocotea forest  are  indicated  as
natural.  Means  over  all  three  sampling  dates,  standard  errors  as  horizontal  bars.  (For
interpretation of the references to color in this artwork, the reader is referred to the web version of
the article.)
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agriculturally used homegarden and coffee plantation were strongly depleted in WOC

(430 ± 66 mg kg-1 and 875 ± 160 mg kg-1 in the 0-10 cm layer). In contrast, the maize

field exhibited higher WOC contents (339 ± 87 mg kg-1)  than its respective natural

ecosystem of savannah (180 ± 29 mg kg-1) (Fig.  3). The ratio of WOC contents in

semi-natural  and  agroecosystems  increased  with  elevation  from  ~ 0.5  at  the

savannah/maize field, over ~ 2 at the grassland/coffee plantation, to ~ 5 at the lower

montane forest/homegarden. In contrast to the negative MBC trend with depth, no

significant decrease could be observed for WOC contents – except for the coffee

plantation and homegarden site (data not shown).

Soil water content

The effect of temporal change in precipitation and temperature on soil water content

was investigated and varied in all of the investigated ecosystems during the three-

month sampling campaign (Supplementary Table 1).  Four ecosystems (savannah,

maize field, coffee plantation, grassland) showed significantly increasing (p < .05) soil

water  contents  between  March and April  as  well  as  April  and  May 2012.  Lower

montane and Podocarpus forest showed increases, which were significant (p < 0.05)

between  April  and  May  2012  but  not  between  March  and  April.  For  the  above

mentioned  six  ecosystems,  soil  water  contents  were  positively  correlated  with

elevation and ranged between 3.2–13.2%, 5.4–14.7% and 7.5–18.8%, for the three

months respectively. Surprisingly, the homegarden and Ocotea forest sites exhibited

different  temporal  regimes  of  soil  water  contents,  whereas  all  changes  were

significantly different (p < .05). For the high-altitude Ocotea forest, soil water contents

decreased  from  initially  15.9 ± 2.6%  to  9.9 ± 1.9%  and  increased  back  to

18.7 ± 2.7%.  Soil  water  contents  in  the  homegarden on  the  other  hand,  strongly

increased  from  6.4 ± 0.9%  to  17.1 ± 2.4%  and  decreased  to  13.5 ± 2.7%.  Some

differences  in  soil  water  depth  distributions  were  discovered,  but  not  further

investigated since this was not part of this study.
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Discussion

Effect of elevation

Elevation was one of the two main factors affecting MBC and WOC. Both parameters

and SOC (which is source of both, MBC and WOC) strongly increased with elevation

in  (semi-)natural  and  anthropogenically  affected  ecosystems.  Schrumpf (2004)

reported high contents of C in organic (O) horizons as well as densely rooted humus

layers in the montane rainforests at Mt. Kilimanjaro, which correlates with this study

(Table 1). Depending on changing altitudes from 100 to 2700 m in Costa Rica, an

increasing  litter  layer  is  combined  with  a  decreasing  amount  of  annual  litter  fall

(Heaney and Proctor, 1989). Moreover, the decrease in temperature with increasing

altitude  has  a  strong  effect  on  soil  microbial  biomass.  In  a  study  by  Blume  et

al. (2002), hot summer temperatures increased microbial activity by more than 80%.

They also postulated that low temperature seasons negatively affect the metabolism

of soil  microorganisms but not the content of MBC. In addition, the productivity of

tropical montane cloud forests, which is connected to the activity of soil  microbial

biomass, is known to be lower than in lowland tropical rainforests (Bruijnzeel and

Veneklaas, 1998). Therefore, the very high contents of MBC and WOC we found in

the surface layer of the high-altitude  Podocarpus forest ecosystem (Figs. 2 and 3)

are very likely due to the high availability of substrate coming with above- and below-

ground litter input. Based on the vegetation records of Hemp (2006a) and the already

mentioned effects of altitude on annual litter fall and productivity (Clark et al., 2001),

we further assume a decrease of MBC and WOC in the higher sub-alpine heathland

and lower alpine zone of Mt. Kilimanjaro. In the subnival zone of the Peruvian Andes

at 5000 m a.s.l., portion of MBC decreased to 200–250 mg kg-1, because of a strong

decrease in productivity and partial absence of vegetation due to the extreme climatic

and abiotic conditions (King et al., 2008).

Effect of land-use

Confirming our hypothesis that human-induced land-use change strongly decreases

MBC and WOC, the investigated semi-natural  ecosystems had on average 3-fold

higher contents of MBC and WOC and 4-fold higher contents of SOC in the 0–10 cm
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layer than their respective agroecosystems. A decline in SOC after deforestation and

cultivation  also  reduces  MBC and  DOC  (Dinesh  et  al.,  2003).  Several  land-use

change types in the tropics and their SOC losses were reviewed by Don et al. (2011).

They reported SOC losses from primary forest to cropland or perennial crops (–25%

and  –30%,  respectively)  and  grassland  to  cropland  (–10%).  The  same  land-use

changes occur  at  Mt.  Kilimanjaro,  e.g.  lower  montane forest  to  homegarden and

grassland to coffee plantation. These losses of  relative SOC reviewed by Don et

al. (2011)  are  several-fold  smaller  than  SOC  losses  in  the  investigated  Mt.

Kilimanjaro ecosystems (in the 0-10 cm layer; –76% and –87%, respectively). But in

the  southern  highlands  of  Ethiopia  at  an  elevation  of  2100 m a.s.l.,  similar  high

decrease in SOC were observed after deforestation (Lemenih et al., 2005). The MBC

and WOC contents on the other hand, decreased by 57% and 79%, which equals the

values reported  by Waldrop et  al. (2000).  Based on the  assumptions of  Clark  et

al. (2001) and Schuur (2003), at 2100 m a.s.l. at Mt. Kilimanjaro the ecosystems with

the highest net primary production (NPP) occur (lower montane and Ocotea forest).

Due to the effect of elevation on ecosystem productivity, decomposition and climate,

the more elevated forest ecosystems at Mt. Kilimanjaro have more soluble organics

in soil (Bruijnzeel and Veneklaas 1998; Heaney and Proctor 1989). This is reflected in

the increasing difference in WOC contents between semi-natural and agriculturally

used ecosystems with higher elevations at Mt. Kilimanjaro. Therefore we concluded

that SOC, MBC and WOC contents in this mountains' ecosystems with high NPP are

more  affected  by  land-use  change  than  ecosystems  with  comparably  low  NPP.

Conclusively, elevation, topography and climate indirectly influence the magnitude of

the land-use change effect.

In mineral soils of tropical and temperate regions, dissolved organic C leaching from

O horizons is an important substrate source for microbial biomass (Fujii et al., 2009).

The investigated agroecosystems have presumably much lower C input by litter and

consequently much less WOC since in coffee plantations as well as maize fields the

available litter is normally removed. Hence, less WOC in the investigated agricultural

ecosystems are due to the absence of the litter layer and O horizons. The very strong

decrease  in  MBC  after  the  mid-altitudinal  conversion  from  grassland  to  coffee

plantation probably reflects the intensive use of pesticides and herbicides for coffee
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production.  In  coffee  plantations  at  Mt.  Kilimanjaro  plant  debris  is  removed  after

pruning of coffee bushes, which results in a decrease of SOC and low availability of

substrate  for  microbial  decomposition.  MBC  under  grassland  and  savannah

ecosystems is mostly attributed to the dense root system of the grass cover (Fall et

al., 2012; Blume et al., 2002). In the maize field, however, this permanent dense root

system is missing and the above ground litter input is strongly reduced since the

whole plant is harvested. As a result of the before mentioned, MBC in the 0-10 cm

layer (Fig. 2) is reduced. In contrast, the higher WOC content in soil under maize vs.

savannah (Fig. 3) is very likely due to organic animal manure, which is applied by

local  farmers.  Tessier  et  al. (1998)  found  several-fold  higher  DOC  contents

throughout  the  soil  profile  on  manure-treated  compared  to  unfertilized  sites.

Accordingly, MBC and WOC contents are influenced not only by the land-use change

itself, but also by agricultural management practices (Emmerling et al., 2001; Friedel

et al., 1996).

Effect of depth

The highest contents of MBC and WOC were found in the 0–10 cm layer. This is

common in most ecosystems because much of the organic input is localized on and

close  to  the  soil  surface.  In  Senegal,  MBC in  a  savannah ecosystem was  most

abundant close to the surface and near Acacia trees (Fall et al., 2012). According to

Blume et al. (2002) the upper 0–20 cm in semiarid forest soils of Spain show a much

higher microbial population than lower layers. For the humid subtropical climate in

southern Brazil, Babujia et al. (2010) reported more MBC in surface than in subsoil

samples  –  independent  of  management  practice.  In  homegardens,  the  substrate

input by plant residues such as roots and exudates decreases with depth, which is

directly reflected by MBC contents (Wichern et al., 2003). Forest ecosystems feature

the  strongest  decrease  in  SOC  with  depth,  followed  by  grass-  and  shrublands

(Jobbágy and Jackson, 2000). This agrees with the correlation between depth and

SOC, MBC or DOC found in our study. Jobbágy and Jackson (2000) also reported

that  SOC  contents  are  influenced  by  temperature  and  precipitation  (which

corresponds to elevation in our study), whereas this effect is bigger in the surface soil

layers. In their review, higher precipitation and lower temperatures lead to a stronger
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decline of SOC with depth, which is reflected in shallower SOC distribution – the

same was observed in our study for SOC, MBC and water-extractable organic C

contents. On the other hand, it should be noticed that this effect is eventually more

due to changing vegetation along precipitation gradients than the precipitation itself

(Jobbágy and Jackson, 2000).

Due to the advanced stage of weathering of Mt. Kilimanjaro soils (Schrumpf, 2004),

the mountain's ecosystems are especially prone to nutrient and C losses through

leaching. Strong rains – which also occur at Mt. Kilimanjaro – favor leaching and litter

decomposition because more precipitation leads to higher DOC contents (Salamanca

et al., 2003). Like MCB, DOC normally decreases with depth (Babujia et al., 2010;

Fall  et al.,  2012; Goberna et al.,  2006). In all  of the investigated ecosystems, no

organic fertilizer was manually mixed into the soil; in maize fields, manuring is done

solely by surface application. Nevertheless, we observed more or less equal contents

of WOC in all soil depths down to 50 cm. In contrast to the upper soil layers, sorption

at  minerals  but  not  microbial  decomposition  controls  DOC  dynamics  in  deeper

horizons  of  tropical  ecosystems  (Schwendenmann  and  Veldkamp,  2005).  This

supports the assumption that abundant WOC at greater depths originates from litter

or surface layer. The excess of dissolved organic C at the surface, translocated into

deeper horizons, will be partly adsorbed at minerals and hence is less available for

the decreasing contents of microbial biomass – especially in dry seasons with low

soil water contents (Schwendenmann and Veldkamp, 2005). As the WOC/MBC ratios

increase  with  depth  (Fig.  4),  substrate  shortage  cannot  be  a  limiting  factor  for

microbial  growth  at  greater  depths.  Therefore,  we  assume  the  possibility  of  C

leaching in the investigated, especially in the natural, ecosystems.

Effect of season

Our results on the season-transitional pattern of MBC (decreasing contents with start

of the rains) are supported by Maithani et al. (1996) and Montaño et al. (2007). They

found a similar MBC pattern between the wet and dry season in a wet subtropical

forest  in  north-east  India  and  a  tropical  deciduous  forest  in  Mexico.  Ecosystem

productivity and soil CO2 fluxes – which also reflect microbial activity – are closely

linked to precipitation and therefore to soil moisture contents as well. A decline in soil
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water content during the dry season in a Kenyan savannah reduced CO2 fluxes from

soil and lowered biomass productivity (Otieno et al., 2010). Following re-wetting of

soils  at  the  beginning  of  the  wet  season,  tropical  rain  forests  often  show higher

CO2 effluxes, mainly due to briefly increased microbial activity. During the ongoing

wet  season,  high  soil  moisture  contents  lead  to  oxygen  limitation,  which  may

decrease the microbial activity and the CO2 efflux rates from soil (Schwendenmann et

al., 2003). 

For  a  deciduous  forest  in  north-east  India,  Devi  and  Yadava (2006),  in  contrast,

reported  the  highest  contents  of  MBC  during  the  rainy  season  and  the  lowest

contents during the dry winter period. In subtropical soils of China as well, more MBC

was present in the hot-humid than in the cold-dry season (Iqbal et al., 2010). Based

on  their  successional  stage,  primary  and  secondary  forests  in  a  seasonally  dry

tropical region of Mexico are variously affected by the increased precipitation during

the wet season (Saynes et al., 2005). The vast range of results found in these studies

implies that seasonal variability of MBC in tropical ecosystems is strongly influenced

not  only by climate,  but  also  by soil  type,  land-use,  vegetation  and indirectly  by

topography.

During the three-month sampling campaign, WOC levels were highest in April 2012,

indicating dissolving of C in soil water and relocation within the soil profile with the

onset of the rains rather than in the wet season itself. The partly mineralized litter

layer formed during the past dry season represents a source of soluble C: during

strong rains  at  the beginning of  the  wet  season,  high  contents  of  WOC leached

downward. 

Ecosystems located at lower elevation were more strongly affected by the increased

rainfalls during the wet season than the Ocotea and Podocarpus forests at higher

locations. In tropical montane ecosystems, seasonal variability in temperature and

precipitation is low due to cloud cover, high humidity, frequency of fog and a more or

less  constant  level  of  solar  radiance throughout  the  year  (Buytaert  et  al.,  2011).

Sarmiento (1986)  described  precipitation  patterns  in  tropical  high  mountains,

including rain belts. These rain belts have only slight climatic variability, and rainfalls

occur in varying frequencies during the whole year. Additionally, the closed canopy

cover in forest ecosystems provides further protection against inter-annual climatic
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variations and microclimatic extremes at the soil surface (Martius et al., 2004). This,

and the fact that Ocotea and Podocarpus forest sites are located in the rain belt of

Mt. Kilimanjaro, reduce the influence of increasing rains on the portions of MBC and

WOC in soils. The result is an insignificant effect of the transition from dry to wet

season on C contents in the forest ecosystems of Mt. Kilimanjaro.

Conclusions

At Mt. Kilimanjaro the effect of climatic changes during transition periods on MBC and

WOC is more distinct in lower elevated than higher elevated ecosystems. From 900

to 2900 m a.s.l. and through different ecosystems, MBC and WOC contents in soils

of Mt. Kilimanjaro increase linearly. The mountains ecosystems are strongly affected

by land-use: especially in the upper soil  layers, soil  microbial biomass and water-

extractable C are decreased approximately three times compared to  semi-natural

ecosystems. Additionally, the magnitudes of the land-use change induced differences

in the C balance are further influenced depending on net primary production and

agricultural management practice, as well as elevation, climate and topography of the

ecosystems.

Acknowledgments

This  study  was  funded  by  the  German  Research  Foundation  (DFG)  within  the

Research-Unit 1246 (KiLi) and supported by the Tanzanian Commission for Science

and Technology (COSTECH), the Tanzania Wildlife Research Institute (TAWIRI) and

the Mount Kilimanjaro National Park (KINAPA). Additionally the authors want to thank

Dr. Andreas Hemp for selection and preparation of the research plots as well as the

local  helpers  Samuel  Augustino,  Ayubu  Mtaturu  and  George  Philipo  and  the

laboratory technicians Karin Schmidt and Martina Gebauer.

References

Axmacher,  J.C.,  2003.  Diversität  von  Geometriden  (Lepidoptera)  und  Gefäßpflanzen  entlang  von
Habitatgradienten am Südwest-Kilimanjaro. Dissertation. Universität Bayreuth, Bayreuth. Fakultät
Biologie,  Chemie  und  Geowissenschaften.  Available  online  at  http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:703-opus-352.



40 Study 1 – References

Babujia, L.C., Hungria,  M.,  Franchini,  J.C.,  Brookes, P.C.,  2010. Microbial  biomass and activity at
various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage.
Soil Biol. Biochem. 42 (12), 2174–2181.

Basist,  A.,  Bell,  G.D.,  Meentemeyer,  V.,  1994.  Statistical  relationships  between  topography  and
precipitation patterns. J. Climate 7 (9), 1305–1315.

Beck, T., Joergensen, R.G., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer, H.R., Scheu, S., 1997.
An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil
Biol. Biochem. 29 (7), 1023–1032.

Blagodatskaya, E.V., Blagodatsky, S.A., Anderson, T.-H., Kuzyakov, Y., 2009. Contrasting effects of
glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil.
Eur. J. Soil Sci. 60 (2), 186–197.

Blume, E.,  Bischoff, M., Reichert,  J.M., Moorman, T., Konopka, A.,  Turco, R.F., 2002. Surface and
subsurface microbial biomass, community structure and metabolic activity as a function of soil
depth and season. Appl. Soil Ecol. 20 (3), 171–181.

Bruijnzeel, L.A., Veneklaas, E.J., 1998. Climatic conditions and tropical montane forest productivity:
The fog has not lifted yet. Ecology 79 (1), 3–9.

Buytaert,  W.,  Cuesta-Camacho,  F.,  Tobón,  C.,  2011.  Potential  impacts  of  climate  change  on  the
environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 20 (1), 19–33.

Calderón,  F.J.,  Jackson,  L.E.,  Scow,  K.M.,  Rolston,  D.E.,  2000.  Microbial  responses to  simulated
tillage in cultivated and uncultivated soils. Soil Biol. Biochem. 32 (11-12), 1547–1559.

Clark,  D.A.,  Brown, S.,  Kicklighter,  D.W., Chambers,  J.Q.,  Thomlinson, J.R.,  Ni,  J.,  Holland,  E.A.,
2001. Net primary production in tropical forests: an evaluation and synthesis of existing field data.
Ecol. Appl. 11 (2), 371–384.

Detwiler, R.P., Hall, C.A.S., 1988. Tropical forests and the global carbon cycle. Science 239 (4835),
42–47.

Devi, N.B., Yadava, P.S., 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-
oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31 (3), 220–227.

Dinesh, R., Ghoshal Chaudhuri, S., Ganeshamurthy, A.N., Dey, C., 2003. Changes in soil microbial
indices and their relationships following deforestation and cultivation in wet tropical forests. Appl.
Soil Ecol. 24 (1), 17–26.

Don,  A.,  Schumacher,  J.,  Freibauer,  A.,  2011.  Impact  of  tropical  land-use change on soil  organic
carbon stocks – a meta-analysis. Glob. Chang. Biol. 17 (4), 1658–1670.

Eaton, W.D., 2001. Microbial and nutrient activity in soils from three different subtropical forest habitats
in Belize, Central America before and during the transition from dry to wet season. Appl. Soil Ecol.
16 (3), 219–227.

Emmerling, C., Udelhoven, T., Schröder, D., 2001. Response of soil microbial biomass and activity to
agricultural de-intensification over a 10 year period. Soil Biol. Biochem. 33 (15), 2105–2114.

Fall, D., Diouf, D., Zoubeirou, A.M., Bakhoum, N., Faye, A., Sall, S.N., 2012. Effect of distance and
depth on microbial biomass and mineral nitrogen content under Acacia senegal (L.) Willd. trees. J.
Environ. Manage. 95 (0), S260.

FAO (Ed.), 2011. State of the World's Forests 2011. Food and Agriculture Organization of the United
Nations, Rome.

Fernandes,  E.C.M.,  Nair,  P.K.R.,  1986.  An  evaluation  of  the  structure  and  function  of  tropical
homegardens. Agric. Syst. 21 (4), 279–310.

Fernandes,  E.C.M.,  Oktingati,  A.,  Maghembe,  J.,  1985.  The Chagga homegardens:  a multistoried
agroforestry cropping system on Mt. Kilimanjaro (Northern Tanzania). Agrofor. Syst. 2 (2).

Fierer,  N.,  Schimel,  J.P.,  2003. A proposed mechanism for the pulse in carbon dioxide production
commonly observed following the rapid rewetting of a dry soil. Soil Sci. Soc. Am. J. 67 (3), 798–
805.



Study 1 – References 41

Friedel,  J.K.,  Munch,  J.C.,  Fischer,  W.R.,  1996.  Soil  microbial  properties  and  the  assessment  of
available soil organic matter in a haplic Luvisol after several years of different cultivation and crop
rotation. Soil Biol. Biochem. 28 (4–5), 479–488.

Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S., Sukartiningsih, Kosaki, T., Ohta, S., 2009. Fluxes
of  dissolved organic  carbon in  two tropical  forest  ecosystems of  East  Kalimantan,  Indonesia.
Geoderma 152 (1–2), 127–136.

Gascon, C., Lovejoy, T.E., Bierregaard, R.O.[., Malcolm, J.R., Stouffer, P.C., Vasconcelos, H.L. et al.,
1999. Matrix habitat and species richness in tropical forest remnants. Biol.  Conserv. 91 (2–3),
223–229.

Goberna, M., Sánchez, J., Pascual, J.A., García, C., 2006. Surface and subsurface organic carbon,
microbial biomass and activity in a forest soil sequence. Soil Biol. Biochem. 38 (8), 2233–2243.

Heaney, A., Proctor, J., 1989. Chemical elements in litter in forests on Volcán Barva, Costa Rica. In:
Proctor,  J.  (Ed.),  Mineral  Nutrients  in  Tropical  Forest  and  Savannah  Ecosystems.  Blackwell
Scientific, Oxford.

Hemp,  A.,  2006a.  Continuum  or  zonation?  Altitudinal  gradients  in  the  forest  vegetation  of  Mt.
Kilimanjaro. Plant Ecol. 184 (1), 27–42.

Hemp, A., 2006b. The banana forests of Kilimanjaro: biodiversity and conservation of the Chagga
homegardens. Biodivers. Conserv. 15 (4), 1193–1217.

Hemp, A., 2006c. Vegetation of Kilimanjaro: hidden endemics and missing bamboo. Afr. J. Ecol. 44 (3),
305–328.

Hemp, A., 2008. Introduced plants on Kilimanjaro: tourism and its impact. Plant Ecology 197 (1), 17–
29.

Hemp, A., 2009. Climate change and its impact on the forests of Kilimanjaro. Afr. J. Ecol. 47, 3–10.

Hess, D.; McKnight, T.L., 2011. McKnight's Physical Geography. A Landscape Appreciation, 10 th ed.
Pearson Prentice Hall, Upper Saddle River, NJ/Montréal.

Houghton, R.A., Goodale, C.L., 2004. Effects of land-use change on the carbon balance of terrestrial
ecosystems.  In:  DeFries,  R.S.,  Asner,  G.P.,  Houghton,  R.A.  (Eds.),  Geophysical  Monograph
Series. American Geophysical Union, Washington, DC, pp. 85–98.

Hu, S., Coleman, D.C., Carroll,  C.R., Hendrix, P.F., Beare, M.H., 1997. Labile soil  carbon pools in
subtropical  forest  and  agricultural  ecosystems  as  influenced  by  management  practices  and
vegetation types. Agric. Ecosyst. Environ. 65 (1), 69–78.

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., Ali, I.M., 2010. Microbial biomass, and dissolved
organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at
Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 137 (3–4), 294–307.

Jenny, H., 1994. Factors of Soil Formation. A System of Quantitative Pedology. Dover Publications
Inc., New York.

Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to
climate and vegetation. Ecol. Appl. 10 (2), 423–436.

Joergensen,  R.G.,  1996.  The  fumigation–extraction  method  to  estimate  soil  microbial  biomass:
calibration of the kEC value. Soil Biol. Biochem. 28 (1), 25–31.

Kaihura, F.B.S., Kullaya, I.K., Kilasara, M., Aune, J.B., Singh, B.R., Lal, R., 1999. Soil quality effects of
accelerated erosion and management systems in three eco-regions of Tanzania. Soil Till. Res. 53
(1), 59–70.

Katovai, E., Burley, A.L., Mayfield, M.M., 2012. Understory plant species and functional diversity in the
degraded wet tropical forests of Kolombangara Island, Solomon Islands. Biol. Conserv. 145 (1),
214–224.

King,  A.J.,  Meyer,  A.F.,  Schmidt,  S.K.,  2008.  High  levels  of  microbial  biomass  and  activity  in
unvegetated tropical and temperate alpine soils. Soil Biol. Biochem. 40 (10), 2605–2610.



42 Study 1 – References

Lambrechts, C.; Woodley, B.; Hemp, A.; Hemp, C.; Nnyiti, P., 2002. Aerial Survey of the Threats to Mt.
Kilimanjaro Forests. United Nations Development Programme, Dar es Salaam, Tanzania.

Lemenih, M., Karltun, E., Olsson, M., 2005. Soil organic matter dynamics after deforestation along a
farm field chronosequence in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 109 (1–2),
9–19.

Maithani, K., Tripathi,  R.S., Arunachalam, A., Pandey, H.N., 1996. Seasonal dynamics of microbial
biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India.
Appl. Soil Ecol. 4 (1), 31–37.

Malhi, Y., Phillips, O.L., 2004. Tropical forests and global atmospheric change: a synthesis. Phil. Trans.
Biol. Sci. 359 (1443), 549–555.

Martius, C., Höfer, H., Garcia, M.V., Römbke, J., Förster, B., Hanagarth, W., 2004. Microclimate in
agroforestry systems in central Amazonia: does canopy closure matter to soil organisms? Agrofor.
Syst. 60 (3), 291–304.

Montaño,  N.,  García-Oliva,  F.,  Jaramillo,  V.,  2007. Dissolved organic  carbon affects  soil  microbial
activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295 (1), 265–277.

National Bureau of Statistics (Ed.), 2006. Population and Housing Census 2002. Analytical Report.
Ministry of Planning, Economy and Empowerment. Dar es Salaam, Tanzania.

Ogle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil organic carbon
storage  under  moist  and  dry  climatic  conditions  of  temperate  and  tropical  regions.
Biogeochemistry 72 (1), 87–121.

Otieno, D., K'Otuto, G.O., Maina, J.N., Kuzyakov, Y., Onyango, J.C., 2010. Responses of ecosystem
carbon dioxide fluxes to soil moisture fluctuations in a moist Kenyan savanna. J. Trop. Ecol. 26
(06), 605–618.

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen–Geiger climate
classification. Hydrol. Earth Syst. Sci. 11, 1633–1644.

Powlson,  D.S.,  Prookes,  P.C.,  Christensen,  B.T.,  1987.  Measurement  of  soil  microbial  biomass
provides an early indication of changes in total soil organic matter due to straw incorporation. Soil
Biol. Biochem. 19 (2), 159–164.

Røhr, P.C., Killingtveit, Å., 2003. Rainfall distribution on the slopes of Mt Kilimanjaro. Hydrol. Sci. J. 48
(1), 65–77.

Salamanca, E.F., Kaneko, N., Katagiri, S., 2003. Rainfall manipulation effects on litter decomposition
and the microbial biomass of the forest floor. Appl. Soil Ecol. 22 (3), 271–281.

Sanginga, N., Mulongoy, K., Swift, M.J., 1992. Contribution of soil organisms to the sustainability and
productivity cropping systems in the tropics. Agric. Ecosyst. Environ. 41 (2), 135–152.

Sarmiento, G., 1986. Ecologically crucial features of climate in high tropical mountains. In: Vuilleumier,
F., Monasterio, M. (Eds.), High Altitude Tropical Biogeography. Oxford University Press. American
Museum of Natural History, New York, pp. 11–45.

Saynes, V., Hidalgo, C., Etchevers, J.D., Campo, J., 2005. Soil C and N dynamics in primary and
secondary seasonally dry tropical forests in Mexico. Appl. Soil Ecol. 29 (3), 282–289.

Schrumpf,  M.,  2004.  Biogeochemical  Investigations  in  Old  Growth  and  Disturbed  Forest  Sites  at
Mount Kilimanjaro. Dissertation. Universität Bayreuth, Bayreuth. Fakultät für Biologie, Chemie und
Geowissenschaften. Available online at http://opus.ub.uni-bayreuth.de/volltexte/2005/131.

Schrumpf, M., Axmacher, J.C., Zech, W., Lehmann, J.,  Lyaruu, H.V.M., 2007. Long-term effects of
rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil
solution at Mt. Kilimanjaro. Sci. Total Environ. 376 (1-3), 241–254.

Schrumpf, M., Zech, W., Axmacher, J.C., Lyaruu, H.V.M., 2006. Biogeochemistry of an afrotropical
montane rain forest on Mt. Kilimanjaro, Tanzania. J. Trop. Ecol. 22 (01), 77.

Schuur, E.A.G., 2003. Productivity and global climate revisited: the sensitivity of tropical forest growth
to precipitation. Ecology 84 (5), 1165–1170.



Study 1 – References 43

Schwendenmann, L., Veldkamp, E.,  2005. The role of dissolved organic carbon, dissolved organic
nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8 (4),
339–351.

Schwendenmann,  L.,  Veldkamp,  E.,  Brenes,  T.,  O'Brien,  J.J.,  Mackensen,  J.,  2003.  Spatial  and
temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica.
Biogeochemistry 64 (1), 111–128.

Singh,  J.S.,  Raghubanshi,  A.S.,  Singh, R.S.,  Srivastava,  S.C.,  1989.  Microbial  biomass acts as a
source of plant nutrients in dry tropical forest and savanna. Nature 338 (6215), 499–500.

Singh, L.I.,  Yadava, P.S.,  2006. Spatial  distribution of  microbial  biomass in relation to land-use in
subtropical systems of north-east India. Trop. Ecol. 47 (1), 63–70.

Soini,  E.,  2005.  Changing livelihoods on the slopes  of  Mt.  Kilimanjaro,  Tanzania:  challenges and
opportunities in the Chagga homegarden system. Agrofor. Syst. 64 (2), 157–167.

Srivastava, S.C., 1992. Influence of soil properties on microbial C, N, and P in dry tropical ecosystems.
Biol. Fertil. Soils 13 (3), 176–180.

Sugihara, S., Funakawa, S., Kilasara, M., Kosaki, T., 2010. Effect of land management and soil texture
on seasonal variations in soil microbial biomass in dry tropical agroecosystems in Tanzania. Appl.
Soil Ecol. 44 (1), 80–88.

Templer, P.H., Groffman, P.M., Flecker, A.S., Power, A.G., 2005. Land use change and soil nutrient
transformations in the Los Haitises region of the Dominican Republic. Soil Biol. Biochem. 37 (2),
215–225.

Tessier, L., Gregorich, E.G., Topp, E., 1998. Spatial variability of soil microbial biomass measured by
the fumigation extraction method, and KEC as affected by depth and manure application. Soil
Biol. Biochem. 30 (10–11), 1369–1377.

Thornton,  P.K.,  Jones,  P.G.,  Alagarswamy,  G.,  Andresen,  J.,  2009.  Spatial  variation  of  crop  yield
response to climate change in East Africa. Glob. Environ. Change 19 (1), 54–65.

Torbick, N., Ge, J., Qi, J., 2009. Changing surface conditions at Kilimanjaro indicated from multiscale
imagery. Mt. Res. Dev. 29 (1), 5–13.

Trumbore,  S.E.,  Chadwick,  O.A.,  Amundson,  R.,  1996.  Rapid  exchange between soil  carbon and
atmospheric carbon dioxide driven by temperature change. Science 272 (5260), 393–396.

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial
biomass C. Soil Biol. Biochem. 19 (6), 703–707.

Waldrop,  M.P.,  Balser,  T.C.,  Firestone,  M.K.,  2000.  Linking  microbial  community  composition  to
function in a tropical soil. Soil Biol. Biochem. 32 (13), 1837–1846.

Wardle, D.A., Parkinson, D., 1990. Response of the soil microbial biomass to glucose, and selective
inhibitors, across a soil moisture gradient. Soil Biol. Biochem. 22 (6), 825–834.

Wichern, F., Richter, C., Joergensen, R.G., 2003. Soil fertility breakdown in a subtropical South African
vertisol site used as a home garden. Biol. Fertil. Soils 37 (5), 288–294.

Zech, W., Senesi, N., Guggenberger, G., Kaiser, K., Lehmann, J., Miano, T.M. et al., 1997. Factors
controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79 (1–
4), 117–161.



44 Study 1 – Supplementary Material

Supplementary Material

Supplementary Table 1: ANOVA results of sampling date / change in climate effect on MBC, water-
extractable organic C and soil moisture contents. Compared were the three sampling periods March,
April and May 2012.

Ecosystem Variable Df SumSq MeanSq F value Pr(>F)

Podocarpus forest MBC 2 2,559,033 1,279,517 4.642 0.015 *

WOC 2 3,589,635 1,794,818 1.982 0.149

soil moisture 2 344 172 27.037 0.000 ***

Ocotea forest MBC 2 1,852,053 926,027 2.950 0.062

WOC 2 2,814,049 1,407,024 4.672 0.014 *

soil moisture 2 806 403 75.470 0.000 ***

Lower montane forest MBC 2 1,419,211 709,605 11.665 0.000 ***

WOC 2 1,513,047 756,524 8.872 0.001 ***

soil moisture 2 72 36 5.852 0.005 **

Grassland MBC 2 8,729 4,365 0.090 0.914

WOC 2 516,537 258,268 2.529 0.091

soil moisture 2 180 90 27.219 0.000 ***

Coffee plantation MBC 2 28,573 14,286 2.467 0.096

WOC 2 383,411 191,706 6.624 0.003 **

soil moisture 2 170 85 28.259 0.000 ***

Homegarden MBC 2 168,427 84,213 6.795 0.003 **

WOC 2 96,885 48,442 11.653 0.000 ***

soil moisture 2 1,180 590 103.411 0.000 ***

Maize field MBC 2 25,309 12,654 8.174 0.001 ***

WOC 2 51,017 25,508 2.496 0.093

soil moisture 2 189 94 75.279 0.000 ***

Savannah MBC 2 39,061 19,530 4.725 0.014 *

WOC 2 8,943 4,472 13.222 0.000 ***

soil moisture 2 137 68 134.683 0.000 ***

* significant at the p < 0.05 level
** significant at the p < 0.01 level
*** significant at the p < 0.001 level
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Supplementary  Table  2:  Statistical  ANOVA results  of  the  effect  of  ecosystems,  depth  and  the

interaction ecosystem x depth on MBC and soluble organic C contents. Compared were MBC and

soluble organic C contents in eight ecosystems at four depths, respectively.

Source Variable Df SumSq MeanSq F value Pr(>F)

Ecosystem MBC 7 294,853,170 42,121,881 530.48 0.000 ***

DOC 7 699,074,476 99,867,782 731.21 0.000 ***

Depth MBC 3 85,704,142 28,568,047 359.78 0.000 ***

DOC 3 3,363,901 1,121,300 8.21 0.000 ***

Ecosystem x Depth MBC 21 97,012,378 4,619,637 58.18 0.000 ***

DOC 21 14,370,011 684,286 5.01 0.000 ***

*** significant at the p < 0.001 level

Supplementary Table  3:  Statistical  ANOVA results of  the effect of  land-use change on MBC and

soluble organic C contents. Compared were MBC and soluble organic C contents in seminatural and

the respective agroecosystem as well as the interaction of ecosystem and depth. The depth effect

alone was not significant.

Source Variable Df SumSq MeanSq F value Pr(>F)

Lower montane forest vs. homegarden

Ecosystem MBC 1 1,042,218 1,042,218 28.07 0.000 ***

DOC 1 115,190,822 115,190,822 2086.55 0.000 ***

Ecosystem x Depth MBC 3 4,523,330 1,507,777 40.61 0.000 ***

DOC 3 763,512 254,504 4.61 0.004 **

Grassland vs. coffee plantation

Ecosystem MBC 1 9,199,815 9,199,815 566.25 0.000 ***

DOC 1 41,558,090 41,558,090 639.84 0.000 ***

Ecosystem x Depth MBC 3 1,644,352 548,117 33.74 0.000 ***

DOC 3 711,418 237,139 3.65 0.015 *

Savannah vs. Maize field

Ecosystem MBC 1 713,935 713,935 171.02 0.000 ***

DOC 1 690,639 690,639 126.86 0.000 ***

Ecosystem x Depth MBC 3 304,727 101,576 24.33 0.000 ***

DOC 3 23,880 7,960 1.46 0.229

* significant at the p < 0.05 level
** significant at the p < 0.01 level
*** significant at the p < 0.001 level
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Abstract

Tropical  ecosystems are under increasing pressure of land-use changes, strongly

affecting  the  carbon cycle.  Conversion  from natural  to  agricultural  ecosystems is

often accompanied by a decrease in the stocks of organic and microbial carbon (Corg,

Cmic)  as  well  as  changes  in  microbial  activity  and  litter  decomposition.  Eleven

ecosystems along an elevation gradient on the slopes of Mt. Kilimanjaro were used

to investigate impacts of land-use changes on Corg and Cmic stocks as well as the

specific metabolic respiration quotient (qsCO2) in surface soils. Six natural, two semi-

natural and three intensively used agricultural ecosystems were investigated on an

elevation gradient from 950 to 3880 m a.s.l.. To estimate the effects of precipitation,

rainfall regimes of 3.6 and 20.0 mm were simulated.  Corg stocks were controlled by

water availability, temperature and net primary production. Agricultural management

resulted  in  decreases  of  Corg and  Cmic stocks  by  38% and  76%,  respectively.  In

addition, agricultural systems were characterized by low Cmic:Corg ratios, indicating a

decline in available substrate. Enhanced land-use intensity lead to increased q sCO2

(agricultural > semi-natural > natural). The traditional homegardens stood out as a

sustainable land-use form with  high substrate  availability and microbial  efficiency.

Soil CO2 efflux and qsCO2 generally increased with precipitation level. We conclude

that soils of Mt. Kilimanjaro's ecosystems are highly sensitive to land-use changes

and are vulnerable to changes in precipitation, especially at  low elevations. Even

though qsCO2 was measured under different water contents, it can be used as an

indicator of ecosystem disturbances caused by land-use and management practices.

Keywords: land use; soil microbes; Cmic:Corg; soil respiration; elevation; precipitation
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Introduction

Close relationships to and interactions with the atmosphere, biosphere, hydrosphere

and lithosphere make soil is a very complex but central component of all ecosystems

(Brevik et al., 2015). A particular focus on tropical ecosystems is justified since they

have a crucial effect on the global climate. In surplus, tropical ecosystems take a

central part in global C turnover and sequestration (Dixon et al., 1994; Melillo et al.,

1993). Litter and soil organic matter are decomposed faster in tropical soils than in

soils under colder climatic conditions and therefore higher C turnover rates and CO2

efflux to the atmosphere are observed (Chambers et al., 2004; Zech et al., 1997).

Worldwide,  the  anthropogenic  effect  on  soils  and  ecosystems  is  undeniable.

Especially land-use change strongly affects composition and nexus in these complex

systems and may – depending on the present type of land-use change and soil –

lead to soil and land degradation (Bruun et al., 2013; de Souza Braz et al., 2013; Don

et al., 2011). A frequently used conversion method is the burning of forests as nutrient

rich  ashes  increase  nutrient  availability  and  soil  pH  during  the  first  years  after

conversion (de Souza Braz et al., 2013). However, beside the evident change in plant

diversity, extended time of land use, mismanagement and the repeated use of fire

often leads to declines in C stocks, the loss of originally forest-derived Corg, changes

in soil physical characteristics and increases the rate of land degradation (Bruun et

al., 2013; de Souza Braz et al., 2013). In general, the conversion of natural habitats

to agriculturally managed systems in the tropics and subtropics is accompanied by

an average decrease in Corg stocks of 25-50% (Basu & Behera, 1993; Bruun et al.,

2013; Don et al., 2011). Other studies showed that the conversion of natural forests

to agriculturally used orchards may decrease water infiltration and aggregate stability,

consequently enhancing the risk of soil erosion (Bravo-Espinosa et al., 2014; Cerdà

et al., 2009). In combination with large doses of chemical fertilizers, the increased

runoff  may  lead  to  a  potential  risk  of  eutrophication  of  water  resources  (Bravo-

Espinosa et al., 2014).

Soil  microbial  biomass,  being  directly  correlated  with  soil  Corg,  is  a  sensitive

parameter for Corg turnover and soil fertility. After tropical forest conversion, Basu &

Behera (1993) reported declines of 40-46% and 52-58% in Corg and Cmic, respectively.
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Deforestation  and  cultivation  decreases  Cmic,  mainly  caused  by  a  decline  in  the

availability  of  organic  substrates  due  to  strongly  reduced  input  of  litter  and

rhizodeposits (Dinesh et al., 2003). These are crucial declines which have a major

negative impact on soil fertility in tropical ecosystems (Sanginga et al., 1992). The

ratio of Cmic:Corg in soils can be used as an eco-physiological parameter to evaluate

these changes and indicates Corg available for microbial growth (Anderson, 2003). 

Within the C cycle, soil CO2 efflux is an important and major process which is directly

linked to  mineralization and is massively altered by land-use change (Don et  al.,

2011; Iqbal et al.,  2010). Soil CO2 efflux is strongly depending on precipitation as

higher efflux rates are observed during the tropical wet season (Iqbal et al., 2010).

Lower efflux during the dry season is often related to drought stress and associated

to decrease of C mineralization (Abera, 2013).

As  microbial  parameters  are  sensitive  to  disturbance,  the  soil  metabolic  quotient

(qCO2,  CO2 efflux  to  microbial  biomass ratio)  was introduced as  an indicator  for

ecosystem succession and microbial activity (Anderson & Domsch, 1993; Insam &

Haselwandter,  1989).  This  ratio  is  related  to  the  microbial  energy  demand.  It

therefore can be used as parameter of the efficiency of present microorganisms as

well as their potential of C utilization (Anderson & Domsch, 1990; Wardle & Ghani,

1995).  It  is  assumed  that  ongoing  progressive  succession  of  an  ecosystem  is

accompanied  with  a  decrease  in  qCO2, as  the  microorganisms  change  to  more

efficient  communities  (Insam  &  Haselwandter,  1989),  indicating  an  increased

microbial stability of the system (Anderson & Domsch, 1993) and a shift from r- to K-

strategists (Blagodatskaya et al., 2014). As described above, disturbances (e.g. land-

use  change)  have  negative  impacts  on  soil  microbial  properties  and  therefore

increase qCO2. Crop fields in India exhibited approximately two times higher qCO2 if

compared  with  adjacent  tropical  forests  (Basu & Behera,  1993),  while  Behera  &

Sahani (2003) reported three times higher qCO2 in a Eucalyptus plantation compared

to a dry tropical forest.

Considering that  the  United Nations predicted  an enormous population  growth  in

Africa until  the year 2050 (United Nations, 2013), the demand for arable land will

increase and Africa's natural ecosystems are consequently particularly threatened by

land-use change to semi-natural as well as intensively used agricultural ecosystems.
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The annual deforestation rate of the African forests is among the highest worldwide

(FAO, 2011). However,  most studies on the effects of land-use change in tropical

ecosystems are  conducted  in  Southern  America  and  Asia,  thus  the  affected  soil

processes,  nutrient  stocks  and soil  biology in  tropical  African ecosystems remain

widely unknown.

The topography of Mt. Kilimanjaro as a high isolated mountain enabled development

of various ecosystems depending on elevation and therefore climatic conditions. A

bimodal rainfall pattern leads to dry and wet extremes – also affecting soil microbial

processes. Mt. Kilimanjaro ecosystems range from hot-dry savannahs at the bottom

of the mountain (~900 m a.s.l.) to the cold-wet alpine zone with Helichrysum cushion

vegetation at approximately 4000 m a.s.l. and on elevations higher 4000 m a.s.l., no

vegetation is present (Hemp, 2006). The area around Mt. Kilimanjaro is traditionally

inhabited and cultivated by the Chagga tribe, but its ecosystems are threatened and

altered by the increasing population. Thus, Mt. Kilimanjaro offers the possibility to

investigate several tropical ecosystems under different climatic conditions as well as

the alteration of these ecosystems by land-use change.

We hypothesized that: (1) intensive agriculture leads to decreased stocks of Corg and

Cmic and reduces the efficiency of the microbial community (increases CO2 efflux to

Cmic ratio) and (2) the elevation and/or precipitation gradients affect Corg, Cmic,  CO2

efflux and their ratios.

We used the  unique situation  of  Mt.  Kilimanjaro to  study surface soils  of  eleven

natural and anthropogenically altered tropical ecosystems. Particularly our objectives

were (1) to evaluate the effects of land-use changes on Corg,  Cmic and qCO2;  and

subsequently (2) to investigate the intensity of disturbances based on qCO2 as well

as (3) to determine the effects of increased precipitation on CO2 efflux and qCO2.

Materials and Methods

Study area

Mt.  Kilimanjaro  is  situated  in  northeastern  Tanzania  (3°4'33''S;  37°21'12''E).  This

study was conducted on its southern slopes and the investigation sites were located

between the Machame area in the West and the region of Lake Chala in the East. A

total of eleven sites of natural and disturbed ecosystems were investigated, whereas
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Table 1: Elevation, climatic conditions, land-use classes and disturbances of the ecosystems on
the southern slope of Mt. Kilimanjaro

Ecosystem ID Elevation MAPa MATb de Martonne
aridity index

(AdM)

(m a.s.l.) (mm yr-1) (°C)

Helichrysum HEL 3880 778 6.8 46.3

Erica forest FER 3880 1188 6.8 70.7

Podocarpus forest disturbed FPD 2990 1564 7.5 89.4

Podocarpus forest FPO 2850 1773 9.0 93.3

Ocotea forest disturbed FOD 2470 1526 13.6 64.7

Ocotea forest FOC 2120 2998 15.6 117.1

Forest lower montane FLM 1920 2378 17.9 85.2

Coffee plantation COF 1300 1485 20.3 49.0

Homegarden HOM 1260 1336 20.3 44.1

Maize field MAI 1020 693 22.5 21.3

Savannah SAV 950 536 22.3 16.6

Ecosystem Land-use class Current human-induced 
disturbances

Disturbance

Helichrysum natural no

Erica forest natural no

Podocarpus forest disturbed natural no Fire; > 20 yr ago

Podocarpus forest natural no

Ocotea forest disturbed natural no Cutting, timber; > 20 yr ago

Ocotea forest natural no

Forest lower montane semi-natural yes Timber, firewood

Coffee plantation agricultural yes Monoculture, pesticides, 
fertilizers, soil compaction

Homegarden agricultural yes Crop rotation, hand hoe, 
organic fertilizer

Maize field agricultural yes Monoculture, pesticides, 
fertilizers, soil erosion

Savannah semi-natural yes Cutting, grazing, fire
a  from Appelhans  et  al.  (Eco-climatic  and  land-cover  characteristics  across  12  land-cover  

types at Mt. Kilimanjaro, under-review)
b  from Duane et al. (2008)
*  Table was adjusted to fit page width
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the disturbances included anthropogenic (e.g. land-use change) as well as natural

effects  (e.g.  fire)  (Table 1).  These  eleven  ecosystems  are  the  most  common

ecosystems on Mt. Kilimanjaro and representative for most of East Africa. Namely,

the  ecosystems  were  savannah  (SAV),  maize  field  (MAI),  Chagga  homegarden

(HOM), coffee plantation (COF), lower montane forest (FLM),  Ocotea forest (FOC),

disturbed  Ocotea forest  (FOD),  Podocarpus forest  (FPO),  disturbed  Podocarpus

forest  (FPD),  Erica forest  (FER)  and alpine  Helichrysum (HEL).  The investigated

ecosystems covered an elevation gradient from 950 to 3880 m above sea level and

the  mean  annual  temperature  (MAT)  ranged  from  6.8  to  22.5°C  (Table 1).  Mt.

Kilimanjaro  is  characterized  by  a  bimodal  rainfall  pattern  and  the  mean  annual

precipitation (MAP) varies between 536 and 2998 mm per year (Table 1). MAT and

MAP are strongly dependent on elevation and topographic position. The de Martonne

aridity  index  (AdM)  is  commonly  used  to  express  the  ratio  of  precipitation  and

evaporation  (Botzan  et  al.,  1998).  It  uses  the  temperature  to  estimate  the  local

evaporation:  AdM = MAP [mm] · (MAT [°C]+10°C)-1.  Aridity  increases  with  lower  AdM

values  (Table  1).  Several  studies  described  the  vegetation  in  the  respective

ecosystems and the NPP in tropical ecosystems in general (e.g. Clark et al., 2001,

Hemp, 2006).  Most soils are classified as Andosols developed from volcanic ash

(< 75000 years) which have a high potential for C sequestration (Zech et al., 2014).

The mostly volcanic parent materials were described by Nonnotte et al. (2008). High

nutrient use efficiencies and Corg contents result in high soil fertility (Kaihura et al.,

1999). Despite the occurrence of high precipitation events, leaching of base cations

as  well  as  nutrient  input  via  rainwater  are  negligible  (Schrumpf,  2004).  The  Cmic

contents in Mt. Kilimanjaro soils are strongly dependent on elevation and ecosystem

(Pabst et al., 2013). However, Pabst et al. (2013) observed little to no changes in Cmic

contents between the climatic wet and dry seasons.

The investigated ecosystems were assigned to three land-use classes, i.e. natural,

semi-natural and agricultural (Table 1). Ecosystems were classified as natural if they

did not show any disturbances or if the disturbances occurred more than 20 years

ago. At elevations above 1750 m a.s.l., the logging of precious camphor trees was

limited in 2005 when the Kilimanjaro Forest Reserve was included in the National

Park.  However,  after  years  of  regeneration,  the  consequences  of  the  past
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interference are still  visible  in  the disturbed  Ocotea forest.  At  elevations between

2800 and 3500 m, lightning-caused fires promoted a vegetation change and today

the former Podocarpus forest is dominated by Erica (hereafter disturbed Podocarpus

forest,  FPD).  Under  unaltered  conditions,  Podocarpus would  still  dominate  these

areas today. The two other land-use classes were characterized by current human-

induced disturbances at different intensities (Table 1). Several types of disturbances

of  natural  ecosystems  result  in  altered  semi-natural  ecosystems.  In  the  lower

elevation areas at Mt. Kilimanjaro, low impact anthropogenic disturbances such as

occasional  mowing  and  collection  of  firewood  are  strengthened  by  population

pressure  and  characterize  savannah.  Illegal  logging  and  charcoal  production  are

major threats to Mt. Kilimanjaro's lower montane forests (Lambrechts et al., 2002;

Soini, 2005). In addition, these forests within the National Park are used by the local

population for the collection of firewood and animal feeds. During the last centuries,

the  Kilimanjaro  native  tribe  of  the  Chagga  developed  a  widely  used  form  of

agroforestry system (hereafter referred as agricultural homegarden, HOM) described

in detail by Fernandes & Nair (1986). Agriculturally-used ecosystems such as maize

fields  and  coffee  plantations  are  characterized  by  typical  management  practices,

such as the use of pesticides and mineral fertilizers in combination with intensive

mechanical  cultivation.  The  high  population  pressure  in  the  area  causes  the

conversion  of  savannahs  to  maize  fields  and  multinational  companies  convert

traditional homegardens to coffee plantations.

Sampling methodology

Experimental  plots  (50  x 50 m,  slope-parallel),  representative  of  the  respective

ecosystem, were established in 2010. Litter layer and soil horizons were identified in

soil pits of a depth of >0.75 m and soil bulk density was sampled once for each of the

investigated  ecosystems.  Bulk  density  values  for  the  litter  layer/O  horizon  were

estimated  from  literature  to  a  value  of  0.15 g cm-3 (Matthews,  2005),  since  no

volume-based sampling was possible. Starting from the first horizon of the mineral

soil, three undisturbed soil cores (100 cm-3) per horizon were taken. Samples were

dried  at  105°C until  constant  weight,  stones and bigger  roots  were  excluded  by

sieving the samples through a 2 mm mesh sieve. Using the same soil pits, separate

samples were taken per horizon (including O horizon) for determination of Corg.
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With regard to Cmic, seven of the eleven ecosystems were sampled in March 2012

and results are published in Pabst et al. (2013). Based on the same methodology the

remaining four ecosystems (Helichrysum,  Erica forest, disturbed Podocarpus forest,

disturbed  Ocotea forest)  were  sampled  during  February 2013  under  comparable

conditions as in 2012. Briefly, samples were taken in four corners of the plots and

depths of 0–10 and 10–20 cm. Hereby O horizons were included in the samples,

since these horizons of montane rainforests are densely rooted (Schrumpf,  2004)

and  contain  high  amounts  of  Cmic (Pabst  et  al.,  2013).  Visible  plant  debris  was

removed  and  soil  was  sieved  using  a  2 mm  mesh  screen.  All  samples  for

determination of Cmic were stored under field-moist conditions at 4–6°C until analysis.

In all investigated ecosystems, five undisturbed soil cores (12.5 cm inner diameter,

20 – 25 cm depth) were extracted for analysis of CO2 effluxes. Plots below 2000 m

a.s.l. were sampled during dry season in February 2011, sites at higher elevations

during March 2012. Cores were covered with a plastic lid on the bottom and on top

with Parafilm M® (Bemis Company, Inc, Oshkosh, WI, USA) to allow air exchange but

reduce moisture losses to a minimum. Soil cores were shipped to laboratory facilities

of KIT, IMK-IFU, Germany. The core samples from February 2011 were kept at room

temperature (~20°C), whereas samples from March 2012 were stored field-moist at

10°C until further analysis.

Soil analysis

Analysis of Cmic was done by the fumigation–extraction method (Vance et al., 1987).

Briefly, 7–8 g of field-moist soil  were incubated for 24 h at room temperature in a

CHCl3 (ethanol-free) atmosphere. Subsequently, CHCl3 was removed and soluble C

from all samples (fumigated and non-fumigated control samples) was extracted with

60 ml of 0.5 M K2SO4 by shaking on an orbital shaker (60 min, 120 rotations min−1).

Dissolved C in  fumigated and non-fumigated extracts  was determined (multi  N/C

2100S, Analytikjena, Jena, Germany). Since not all of the soil C can be extracted by

K2SO4, an extractability factor (kEC) of 0.45 (Vance et al., 1987) was used to convert

microbial  C  flush  (difference  between  extractable  C  from  fumigated  and  non-

fumigated  samples)  to  Cmic.  Dried  and  grinded  soil  samples  from  soil  pits  were

analyzed for Corg contents using dry combustion (vario max CN, Elementar, Hanau,

Germany).
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Undisturbed  soil  cores  were  incubated  in  three  consecutive  five-day  stages

(Lovibond incubator ET 651-8, Tintometer GmbH, Germany) with one measurement

per day. The first stage implied the preincubation during which the temperature was

set to site-specific MAT to allow stabilization of microbial activity. In the second stage,

soil was moistened with standard rain mixture according to Breuer et al.  (2002). The

solution added was equivalent to 3.6 mm precipitation, corresponding to 44 ml per

soil  core.  In  the  third  incubation  stage added water  was  equivalent  to  additional

20 mm of precipitation (= 245 ml). The achieved volumetric water contents ranged

from 13.2 to 36.0% (Table 2). Moisture levels were kept stable during each incubation

stage  and  temperature  was  continuously  at  MAT (±1°C).  Measurements  of  CO2

concentration  development  were  conducted  with  a  dual  quantum  cascade  laser

(Aerodyne Research Inc., Billerica, MA, USA, precision). From the 2 liter headspace

of  each soil  core,  50 ml  air  were  sucked per  minute through Teflon tubes to  the

measurement cell  of the laser and recirculated to the headspace for a measuring

time  of  20  minutes.  The  set  up  was  similar  to  static  chamber  measurements.

Observations  of  pressure  conditions  in  the  headspace  controlled  for  constant

conditions  avoiding  over-  or  low  pressure.  Subsequently,  CO2 effluxes  were

calculated from the linear increase of CO2 in headspace concentration over time.

Only effluxes with r2 ≥ 0.8 between time and CO2 were accepted for further analysis.

Per  ecosystem,  the  medians  across  the  single  incubation  stages  were  used  for

further calculations.

The CO2 efflux for the calculation of qCO2 is supposed to be measured at a soil water

potential of -240 kPa (Anderson & Domsch, 1993). Since the moisture level of the

soil  cores was kept constant during the incubation stages but independent of the

actual soil water potential, the specific metabolic quotient (qsCO2) was used instead

of qCO2. Hence, qsCO2 indicates qCO2 under the volumetric water contents achieved

by the simulated precipitations of 3.6 and 20 mm. However, the values of qsCO2 and

qCO2 remain comparable, since the achieved soil moisture levels were in the same

range as in the study by Anderson & Domsch (1993).

Weighted arithmetic  means were  used to  adjust  Cmic contents  to  horizon depths.

Then,  Corg and  Cmic stocks  were  calculated  per  horizon  and  square  meter  (as

mentioned  above,  the  bulk  density  of  O  horizons  was  estimated  to  0.15 g cm-3
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(Matthews,  2005)).  Subsequently,  stocks  and  CO2 effluxes  were  proportionally

attributed  to  the  minimum  cylinder  depth  of  18 cm.  Depending  on  number  of

horizons, number of CO2 effluxes with r2 ≥ 0.8 and variable (Corg, Cmic, qsCO2), this

resulted in different numbers of observations per ecosystem. The ratio of CO2 efflux

per  hour  to  total  Cmic stock  in  the  soil  package  was  calculated  as  qsCO2 (in

mg CCO2 g-1 Cmic h-1).

Statistical analysis

Since our data showed non-normally distributed characteristics (Shapiro-Wilk test,

non-normally distributed if p < 0.1), Kruskal-Wallis tests with ensuing post-hoc tests

were used to detect significant differences between the ecosystems and p-values

were adjusted according to Benjamini & Hochberg (1995). Differences were accepted

as significant if p < 0.05 and the presentation of individual p-values is omitted in the

text. Comparisons between two factors (precipitation regimes, land-use conversion)

were done by Mann-Whitney-U tests. The arithmetic mean was not appropriate, due

to the skewed distributions of the data, hence the median was used in the following

figures and text. All values are referring to the upper soil layer of 18 cm. Statistical

analysis were done using R 3.0 (R Development Core Team, 2008).

Results

Soil bulk density

The  soil  bulk  density  of  the  upper  18 cm  ranged  from  0.19 ± 0.00 g cm-3 to

1.22 ± 0.03 g cm-3. Natural and forest ecosystems showed the lowest bulk densities

with a maximum of 0.38 ± 0.03 g cm-3 in the lower alpine Helichrysum. The cultivation

of maize on savannah soil lead to an increase in bulk density from 0.86 ± 0.04 to

1.22 ± 0.03 g cm-3 and the conversion of homegarden to coffee plantation raised the

soil bulk density from 0.77 ± 0.04 to 1.05 ± 0.04 g cm-3. These soil bulk densities are

in accordance with other observations at Mt. Kilimanjaro (Schrumpf, 2004).

Corg and Cmic stocks

Corg stocks in the surface layer differed between ecosystems and ranged between 2.1

and 9.3 kg Corg m-2. Corg stocks were positively correlated with elevation (Figure 1). At
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Figure 1:  Temperature, elevation and organic carbon (Corg) stocks in surface soil (18 cm) of Mt.
Kilimanjaro  ecosystems.  Displayed  Corg values  are  medians  ±  25%  and  75%  quantiles,
temperature (MAT, red line); linear regressions of Corg vs. elevation depending on AdM value (left
side: AdM < 50; right side: AdM > 50); symbols and colors of ecosystems: agricultural (circles, dark
brown); semi-natural (diamonds, light brown); natural (squares, green); stars denote the specific
ecosystems  of  homegarden,  disturbed  Ocotea forest  and  disturbed  Podocarpus forest;  for
description of the land-use classes, please refer to Table 1

Figure  2:  Stocks  of  Cmic and  Corg in  surface  soils  (18 cm)  of  Mt.  Kilimanjaro  ecosystems.
Displayed values are medians ± 25% and 75% quantiles. Dotted lines refer to C mic:Corg ratio of
0.5%, 1% and 2%, respectively. Symbols and colors of ecosystems: agricultural (circles, dark
brown); semi-natural (diamonds, light brown); natural (squares, green); stars denote the specific
ecosystems  of  homegarden,  disturbed  Ocotea forest  and  disturbed  Podocarpus forest;  for
description of the land-use classes, please refer to Table 1
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approximately 4000 m a.s.l., the natural Helichrysum ecosystem contained about 4.5

times more Corg than the agriculturally used maize field at 950 m a.s.l.. Based on AdM

values above and below 50 (Table 1), two linear regressions between Corg stocks and

elevation were fitted. Although its AdM was below 50, the Helichrysum ecosystem at

an  elevation  of  3880 m a.s.l.  was  excluded  from  the  regressions,  since  its  cold

climate is not comparable with hot savannahs or maize fields at elevations of around

1000 m  a.s.l..  In  ecosystems  at  low  elevations  with  higher  aridity,  Corg stocks

increased by 3 kg m-2 per 1000 m in elevation (Figure 1). This increase with elevation

declined  to  one-third  in  the  soils  more  humid  ecosystems  at  higher  elevations

(Figure 1). Corg stocks were higher in natural compared to semi-natural and semi-

natural compared to agriculturally used ecosystems (Table 3).  At similar elevation

levels,  the  Corg stock  in  soil  of  the  maize  field  was  38% lower  than  in  adjacent

savannah and the soil of the coffee plantation was decreased by 23% if compared

with the traditional homegarden.

Cmic differed between the investigation sites, but was independent of elevation. High

amounts of Cmic were found in natural and semi-natural ecosystems, while highest

Cmic stocks  were  observed  in  natural  forests  (for  Ocotea forest  and  Podocarpus

Table 2: Volumetric water contents before and after the additions of standard rain mixture. The
content  before  addition  refers  to  the  water  contents  during  estimated  from  the  chloroform-
fumigation method

Ecosystem ID Volumetric water contents [%]

before addition after 44ml of 
solution

after 245ml of 
solution

Helichrysum HEL 12.3 14.3 25.4

Erica forest FER 12.3 14.3 25.4

Podocarpus forest disturbed FPD 16.8 18.8 29.9

Podocarpus forest FPO 19.3 21.3 32.4

Ocotea forest disturbed FOD 13.1 15.1 26.2

Ocotea forest FOC 22.9 24.9 36.0

Forest lower montane FLM 11.2 13.2 24.3

Coffee plantation COF 16.8 18.8 29.9

Homegarden HOM 16.4 18.4 29.5

Maize field MAI 11.8 13.8 24.9

Savannah SAV 12.9 14.9 26.0
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forest:  96 and 118 g Cmic m-2,  respectively).  A decrease in Cmic stocks by intensive

agriculture could be observed in regard of the typical land-use changes of savannah

to maize field and homegarden to coffee plantation with -60% and -76%, respectively.

The influence of temperature on Corg and Cmic was especially distinct in the natural

land-use class. In the humid-warm forests, Cmic contributed between 1 and 2% to total

Corg, whereas the cold ecosystems at an elevation of 3880 m a.s.l. exhibited ratios

below 1% (Figure 2). A similar distribution of the proportion of readily metabolized C org

was also  observed on a  topical  volcano in  Mexico (Campos et  al.,  2014).  Major

differences were observed in the agricultural land-use class, where the conversion of

homegarden  to  coffee  plantation  decreased  the  Cmic:Corg ratio  from  2.2  to  0.7%

(Figure 2).

CO2 efflux

Under  simulated  rainfall  of  3.6 mm,  CO2 efflux  from  soil  differed  between  the

ecosystems and ranged from 4.6 mg CCO2 m-2 h-1 (maize field) to 27.4 mg CCO2 m-2 h-1

(disturbed Ocotea forest) (Figure 3). No differences could be observed between the

Table  3: Results of  Kruskal-Wallis and post-hoc tests per land-use class for Corg stocks,  Cmic

stocks, soil CO2 efflux and the specific metabolic quotient (qsCO2) under two different moisture
regimes. Values are medians of surface soils (18 cm) of Mt. Kilimanjaro ecosystems. Letters “a”,
“b” and “c” indicate statistical differences (p < 0.05)*.

Land-use class Corg Cmic CO2

(3.6 mm precipitation)

N kg m-2 N g m-2 N mg CCO2 h-1

natural 150 7.82 (a) 576 96.27 (a) 172 17.98 (a)

semi-natural 36 5.44 (b) 144 72.51 (a) 54 14.83 (b)

agricultural 39 3.16 (c) 156 31.52 (b) 71 13.44 (b)

Land-use class CO2

(20 mm precipitation)
qsCO2

(3.6 mm precipitation)
qsCO2

(20 mm precipitation)

N mg CCO2 h-1 N mg CCO2 g-1 Cmic h-1 N mg CCO2 g-1 Cmic h-1

natural 163 20.26 (c) 576 0.21 (b) 576 0.22 (c)

semi-natural 70 31.85 (b) 144 0.12 (c) 144 0.39 (b)

agricultural 89 40.79 (a) 156 0.34 (a) 156 1.50 (a)

*  Table was adjusted to fit page width
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Figure  3:  Soil  CO2 efflux (mg CCO2 m-2 h-1,  surface  soil  (18 cm))  under different  simulated
precipitations of agricultural (dark brown), semi-natural (light brown) and natural ecosystems
(green)  at  Mt.  Kilimanjaro;  simulated precipitations are shown as two bars per  ecosystem:
3.6 mm (left, light color), 20.0 mm (right, dark color); medians are displayed as horizontal lines
within the colored bars; bars are limited by 25% and 75% quantiles and whiskers extend to
maximum/minimum values within 1.5 times the interquartile range; data beyond whiskers are
displayed as points; displayed medians were used for further calculations; for abbreviations of
ecosystems please refer to Table 1

Figure  4:  Specific  metabolic  quotients  (qsCO2,  surface  soil  (18 cm))  under  simulated
precipitations of agricultural (dark brown), semi-natural (light brown) and natural ecosystems
(green) at  Mt.  Kilimanjaro.  Simulated precipitations are shown as two bars per ecosystem:
3.6 mm (left,  light  color),  20.0 mm (right,  dark color);  numbers indicate factorial changes to
3.6 mm precipitation; significant differences between simulated precipitations are indicated as
p(<0.05) =  and p(<0.001) = ; d  isplayed values are medians ± 25% and 75% quantiles; for
abbreviations of ecosystems please refer to Table 1
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agricultural and semi-natural land use classes, whereas the natural ecosystems had

distinctly higher CO2 efflux rates (Table 3).

Similar to lower precipitation, soil CO2 efflux under additional 20 mm of precipitation

revealed  differences  between  the  ecosystems and  varied  between

10.5 mg CCO2 m-2 h-1 (Helichrysum)  and  46.8 mg CCO2 m-2 h-1 (coffee  plantation)

(Figure 3).  A  comparison  of  land-use  classes  at  the  higher  precipitation  but

comparable  volumetric  water  contents  (Table 2)  revealed significantly higher  CO2

effluxes in agricultural  ecosystems compared to semi-natural  and natural systems

(Table 3). Elevation had no significant effect on CO2 efflux under both precipitation

regimes.

Higher  precipitation  resulted  in  higher  CO2 efflux  rates  in  six  of  the  ecosystems

(coffee plantation, maize field, homegarden, savannah, lower montane forest,  Erica

forest).  All  other  ecosystems  showed  no  significant  changes  in  CO2 efflux  with

increased water additions.

Specific metabolic quotient

Under  low  precipitation  regime  (3.6 mm),  qsCO2 differed  fourfold  between  the

ecosystems  (0.11  (savannah)  vs.  0.44 mg CCO2 g-1 Cmic
 h-1 (coffee  plantation);

Figure 4). Soils under agriculture exhibited the highest qsCO2,  followed by natural

ecosystems (Table 3).  qsCO2 in intensive agriculturally used coffee plantation was

3.8-fold as high as in traditional homegarden and qsCO2 in agricultural maize-field

was increased 1.6-fold after the conversion from adjacent semi-natural savannah.

Additional  20 mm  of  precipitation  revealed  differences  in  qsCO2 between  the

ecosystems which  varied  up  to  15-fold  (0.13  (Helichrysum)  vs.

2.00 mg CCO2 g-1 Cmic h-1 (coffee plantation)) (Figure 4). As expected, qsCO2 increased

distinctly with  increasing  land-use  intensity,  shown  in  qsCO2(agricultural)  >

qsCO2(semi-natural)  >  qsCO2(natural)  (Table 3).  Again,  the  effect  of  intensive

agriculture  was  revealed  by  comparison  of  savannah  with  maize-field  and

homegarden with coffee plantation, respectively. At more or less similar volumetric

water contents (Table 2),  qsCO2 of intensively used agricultural soils were 2.25 to

more than 4 times higher as in less disturbed soils. The traditional cultivation used in

the homegarden is  an intermediate system between agricultural  and semi-natural

ecosystems (Figure 4).
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The ecosystem-specific  changes  in  CO2 efflux  caused  by  increased  precipitation

were evident in qsCO2 as higher precipitation lead to increases in qsCO2 (up to 4.5

times) in eight and slight decreases in two of the eleven ecosystems (Figure 4). The

variation in precipitation did not affect qsCO2 in natural  Ocotea forest, which is the

ecosystem  existing  at  elevations  where  natural  precipitation  levels  are  highest.

Hence, this sample showed the highest volumetric water content before the addition

of the rain mixture. Elevation had no relevant effect on qsCO2 under both simulated

precipitation regimes (3.6 and 20 mm).

Discussion

Corg and Cmic

Corg stocks found in soils of the investigated ecosystems were generally in the same

range as previously reported for soils of Mt. Kilimanjaro (Schrumpf, 2004). Elevation

was used as a parameter controlling temperature and precipitation, presumably the

major factors influencing Corg stocks along the investigated elevation gradient. The

two fitted linear regressions for ecosystems with low and high aridity are reminiscent

of the dry and saturated adiabatic lapse rates of air packages. The dry ecosystems at

lower elevations (AdM < 50) are characterized by a pronounced climatic seasonality

(dry and wet). Soil moisture is presumably a limiting factor for some time of the year,

indicated by the marked increase in qsCO2 at the simulated precipitation of 20 mm.

This temporal limiting effect of soil moisture decreases with increasing precipitation.

At higher elevations, air packages steadily have a higher degree of water saturation,

resulting  in  a  lesser  seasonal  variability  and  more  or  less  consistent  rainfall

throughout the year (Buytaert et al., 2011). This consistent rainfall leads to vegetation

growth and a continuous supply of litter, supporting the ecosystems with the highest

NPP between 2000 and 3000 m a.s.l. (Clark et al., 2001; Ensslin et al., 2015). The

lower temperatures and higher water contents also result in lowered turnover rates

and thick, densely rooted organic soil horizons (Zech et al., 1997). The high Cmic:Corg

ratios  indicate  high  substrate  availability,  which  is  supported  by high  amounts  of

soluble organics (Pabst et al., 2013). Our data show that Corg stocks in soils along the

slopes of Mt. Kilimanjaro are distinctly influenced by elevation dependent changes in

water availability, temperature and NPP.
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At low elevations of Mt. Kilimanjaro, the main land-use changes are conversions of

semi-natural savannahs to agricultural maize fields and traditional homegardens to

intensively  used  coffee  plantations  (Soini,  2005).  Referred  to  these  land-use

changes, we observed strong decreases of Corg as well as Cmic stocks. These findings

are similar to the reviewed land-use changes from natural to agricultural ecosystems,

all  resulting  in  lower  Corg  stocks (Don et  al.,  2011;  Bruun  et  al.,  2013).  Also  the

Cmic:Corg ratio decreased which indicates a higher litter diversity and more available

substrate in the soils of savannah and homegarden (Anderson & Domsch, 1989). A

decline  in  Cmic caused  by  land-use  change  or  land-use  intensification  has  been

reported for several  other tropical  soils (Basu & Behera, 1993; Nsabimana et al.,

2004; Barua & Haque, 2013) and is often linked to a decline or change in amount

and quality of  organic matter  input  and the mechanical  cultivation (Dinesh et  al.,

2003). In our study, maize plants are completely (except roots) harvested and mineral

fertilizers are added, if at all,  at small amounts. Nonetheless, farmyard manure is

often  used  by  small-scale  farmers  in  the  rural  parts  (e.g.  homegardens)  of  Mt.

Kilimanjaro area – but  still,  its  application is  selective and negligible.  This is e.g.

shown  by  forest-to-savannah  or  forest-to-cropland  conversion  in  India,  where,

despite the regular input of organic fertilizers, lowest Cmic content was observed in

cropland (Basu & Behera, 1993). Also erosion may contribute to lower Corg and Cmic

stocks in agriculturally used ecosystems (Kaihura et al., 1999; Debasish-Saha et al.,

2014), notably in surface soils. The surface soils of maize fields are especially prone

to wind and water  erosion,  since soil  is  often left  bare after  harvesting,  potential

seedlings of grasses are browsed by communal livestock and soil aggregates are

destroyed  by  mechanical  cultivation.  In  contrast,  permanent  vegetation  cover  of

natural  savannah  limits  wind  and  water  erosion  (Mchunu  &  Chaplot,  2012)  and

consequently results in the higher amounts of Cmic and Corg in this ecosystem. The

litterfall  in shaded coffee plantations is estimated to a maximum of 1-2 g m-2 day-1

(Glover & Beer, 1986), mainly originating from shading trees. However, in the present

coffee plantation, only some few scattered shading trees were present, hence, litter

input is assumed to be lower. Homegarden showed distinctly higher stocks of Corg

and Cmic as well as higher Cmic:Corg ratio compared to coffee plantation. Cultivation in

the traditional agroforestry system is done by hand where plant material (banana,
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beans,  maize,  etc.)  and  surface  soil  is  mixed  thoroughly  leading  to  lower  bulk

densities  and  better  aeration,  high  substrate  availability  and  quality.  In  contrast,

mechanical cultivation of coffee plantations is very limited and the massive use of

pesticides further  decreases the  litter  input  of  grasses and herbs  and may have

negative  effects  on  soil  microbial  functions  (Mganga  &  Kuzyakov,  2014).  As  a

consequence, low amounts of Cmic and Corg were found in this intensive agriculturally

used ecosystem.

CO2 efflux

CO2 efflux  from  soil  is  mainly  derived  from  respiration  of  autotrophic  and

heterotrophic organisms, whereas heterotrophs are strongly influenced by substrate

availability and climatic variables such as temperature and soil moisture (Chambers

et al., 2004; Kuzyakov, 2006). Respiration of autotrophs was absent in the soil cores,

as no living roots were present at the time of the laboratory incubations. However,

under field conditions in tropical forest ecosystems 45-50% of total soil  CO2 efflux

originates from root respiration (Chambers et al., 2004). Consequently, soil CO2 efflux

measured in the present study represents only decomposition of soil organic matter

and remaining root litter.

Air-drying may have affected the microbial activity within the cylinders as well. In soils

of semi-arid and arid ecosystems (AdM < 50, Table 1), microorganisms are adapted to

re-occurring seasonal dryness and consequently air-drying has little to no effect on

Cmic (Zornoza et al., 2007). In humid areas (AdM > 50, Table 1), however, drying poses

a  stress  situation  to  soil  microbes,  which  may  not  be  adapted  to  low  moisture

contents and consequently may die  during drying and re-wetting (Zornoza et  al.,

2007). Nonetheless, the simulated precipitation resulted in significantly different CO2

effluxes which are similar to trends observed in field measurements (Abera, 2013;

Iqbal et al., 2010) and our CO2 efflux values are in general comparable with other

studies (Nouvellon et al., 2008; Sugihara et al., 2012).

Specific microbial respiration quotient

The metabolic quotient of soil microbial biomass has been used as an indicator for

ecosystem succession and disturbance. Still, a comparison of its values and analysis

of individual influencing factors is difficult since its calculation is based on several
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ecophysiological properties (Blagodatskaya & Anderson, 1998). This is also true for

qsCO2 used in this study.

The ecosystems of coffee plantation and maize field are classical monocultures. After

harvesting, the maize field is left bare during the dry season until next planting and

therefore  can  be  considered  as  monoculture.  On  the  other  hand,  the  traditional

agricultural form of homegardens is characterized by higher diversity and continuous

crop  changes  (more  or  less  similar  to  crop  rotation  in  classical  sense  and

agroforestry)  (Fernandes & Nair,  1986).  Consequently,  the higher qsCO2 in coffee

plantation  and  maize  field  are  attributed  to  management  and  the  associated

decreases  in  Cmic stocks  and  Cmic:Corg ratios.  In  early  studies,  agricultural

monocultures exhibited higher qCO2 but lower Cmic:Corg ratios than comparable areas

under continuous crop rotation (Anderson & Domsch, 1989, 1990; Anderson, 2003).

Also the conversion of savannah to cultivated land in India resulted in an 1.4-fold

increase in qCO2 (Basu & Behera, 1993). Still, in the present study, we found more

than  4-fold  increases  in  qsCO2 due  to  intensification  in  management  practices,

indicating that the effect of land use may be underestimated in the studies above.

Also at Mt. Kilimanjaro, Mganga & Kuzyakov (2014) found that decomposition rates

of  easily available  substrates  are  up to  three times higher  in  soils  of  intensively

managed  than  in  soils  from  semi-natural  ecosystems.  In  contrast  to  intensive

agriculture, agroforestry systems and forests showed potential for C sequestration

and were therefore assumed to be more sustainable (Mganga & Kuzyakov, 2014).

These findings confirm the lower qsCO2 but higher Cmic:Corg ratio in homegarden and

forests compared to intensive agriculturally used maize fields and coffee plantations

(Figure 2, Figure 4).

The ratio of CO2 efflux to Cmic is also a sensitive indicator of stress (Killham, 1985;

Zornoza et al., 2007). A change in land use often accompanies a change in the stress

level which soil microorganisms are exposed to. Such stress-inducing factors are e.g.

pesticides in coffee plantations and maize fields, mechanical disturbance (tillage) in

maize fields and homegardens or fires in savannahs and forests. Also the watering of

dry soil may increase the stress level of microorganisms and lead to increased qsCO2

(e.g. savannah and maize field, Figure 4). Yet, a clear separation of the effects of

disturbance and stress is not possible (Wardle & Ghani, 1995).
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In  general,  intensive  agriculture  poses  unfavorable  conditions  for  soil

microorganisms, such as low substrate availability or increased disturbance through

management  practices  (Nsabimana  et  al.,  2004).  As  the  amount  of  available

substrate (Cmic:Corg ratio) decreases, so does the microbial substrate use efficiency,

resulting  in  higher  qsCO2.  The  high  qsCO2 in  agricultural  managed  ecosystems

indicates a microbial community with a high nutrient demand but small nutrient use

efficiency. Mt. Kilimanjaro ecosystems with a more natural or semi-natural character

showed higher Cmic:Corg ratio and lower qsCO2 and therefore should be dominated by

a more efficient soil  microbial community with considerably better use of available

substrate. Consequently, natural and semi-natural ecosystems have higher potential

of C sequestration. The adjustment of the management practices to the local plant

diversity  and  conditions  enabled  the  development  of  a  sustainable  agroforestry

system  with  high  substrate  availability  and  medium substrate  use  efficiency:  the

homegardens.

Metabolic quotients in a similar range were reported for dry tropical agroecosystems

in Morogoro, Tanzania (Sugihara et al., 2010). Furthermore, Sugihara et al. (2010)

found a strong correlation of soil moisture and qCO2 with significantly higher values in

the  rainy  season.  The  obtained  correlation  between  soil  moisture  and  qsCO2

represents a combinatorial effect of soil moisture and substrate limitation (Figure 2,

Figure 4).  Low substrate availability results in a large part  of  soil  microorganisms

being in the physiological state of “potentially active”, whereas this state cannot be

observed under higher substrate availabilities (Blagodatskaya & Kuzyakov,  2013).

Compared to soils of the forests, the available substrate in coffee plantation, maize

field and savannah is low (Pabst et al., 2013), likely due to the shortage of water.

Through additional precipitation of 20.0 mm this limitation is suspended as substrate

becomes more  available.  Hence,  the  “potentially  active”  microorganisms become

active within a few hours (Blagodatskaya & Kuzyakov, 2013) and increase CO2 efflux

significantly (Figure 3). Substrate availability as a factor limiting CO2 efflux can be

excluded  in  the  other  ecosystems  since  they  exhibit  high  water-extractable  C

contents throughout the climatic seasons (Pabst et al., 2013) and high Cmic:Corg ratios.

Therefore, the boost in CO2 efflux at additional precipitation of 20.0 mm is assumed

to  be  negligible.  The  effect  of  additional  precipitation  (20.0 mm)  for  ecosystems
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>2000 m a.s.l.  is also limited due to their adaption to high MAP and soil moisture

contents (e.g. in the natural  Ocotea forest). Also, in case of  Helichrysum and Erica

forest,  the low MAT is limiting microbial  mineralization (Zech et al.,  1997). Higher

precipitation showed strongest increase of CO2 efflux for soils from agriculturally used

ecosystems, clearly showing that decomposition of soil organic matter in these soils

is limited by water availability.

Conclusions

Corg and Cmic stocks in soils of Mt. Kilimanjaro ecosystems decreased significantly

with increasing management intensity. Beside the effect of land use, Corg stocks were

correlated  to  the  water  availability,  temperature  and  NPP  in  the  respective

ecosystem. The specific metabolic quotient (qsCO2) of soils was not dependent on

elevation  but  was  affected  by  land  management  and  precipitation.  We observed

pronounced  differences  of  qsCO2 between  land-use  classes.  Summarily,  in

agricultural systems of coffee plantation and maize field, soil microorganisms have a

high  energy  demand  but  low  efficiency.  The  soil  microorganisms  in  traditional

homegardens and natural ecosystems are characterized by a lower energy demand

and more efficient use of available substrate. Based on qsCO2, natural, semi-natural

ecosystems  and  the  traditional  homegardens  on  Mt.  Kilimanjaro  have  a  higher

potential  of  C  sequestration  than  agriculturally  used  ecosystems.  The  specific

metabolic  quotient  in  surface  soils  of  Mt.  Kilimanjaro  ecosystems  is  strongly

depending on soil moisture content and therefore vulnerable to changes in rainfall

patterns. Still, it was not possible to assign the change in qsCO2 to a single factor.

Hence future studies including e.g.  the in-situ  determination of  CO2 efflux,  socio-

economic properties as well as the rates of land-use change will be necessary for a

more precise view on C dynamics and the effect of climate and land-use change on

C decomposition in soils of Africa's highest mountain.
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Abstract

Knowledge of spatial distribution of soil microbial biomass is important to understand

the functioning of ecosystems. For East African savannah ecosystems such spatial

knowledge is missing. In addition, these soil biological properties are not yet included

in monitoring and evaluation plans of sustainable land management projects. This

study compares the precision of the spatial prediction techniques ordinary kriging,

regression kriging and geographically weighted regression. These techniques were

used to predict microbial biomass carbon (Cmic) and microbial biomass nitrogen (Nmic)

on two savannah sites. Predictor variables were soil attributes which are a) easy to

measure (for example with reflectance spectroscopy), and b) are correlated to the

target  variables  –  such  as  Corg,  nitrogen  and  pH.  Regression  kriging  and

geographically weighted regression performed better than ordinary kriging with R2 for

the prediction of Cmic and Nmic up to 0.71 and 0.76, respectively. Cmic and Nmic showed

diverse spatial relations to the predictors and contrasting degrees of heterogeneity on

the two plots. The use of visible to near infrared diffuse reflectance spectroscopy to

predict soil properties in combination with multivariate prediction methods is a cost-

efficient approach for monitoring changes in soil quality.
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Introduction

Tropical  ecosystems  with  their  high  biodiversity  play  an  important  role  in  global

climate  and  biogeochemical  cycles,  especially  in  carbon  (C)  turnover  and

sequestration  (Detwiler  &  Hall,  1988;  Malhi  et  al.,  2004).  This  is  also  true  for

savannah ecosystems which cover nearly 20% of the earth’s land surface and are

affected  by  global  change  (Sankaran  &  Ratnam,  2013;  D’Odorico  et  al.,  2013).

Therefore,  savannahs  have  been  the  subject  of  several  studies  focusing  on  soil

microbial  biomass, C turnover,  fire effects and greenhouse-gas exchange (Jones,

1973; Singh et al., 1989; Hagos & Smit, 2005).

Dead plant material is not only a major source of soil organic C but also delivers the

energy needed for soil microbial growth. Consequently, plant patches and/or grass

tussocks in savannah ecosystems are often hotspots of high soil quality (Garner &

Steinberger, 1989). These hotspots are negatively influenced by grazing, cultivation

and land degradation in general (Northup et al., 1999). Especially land degradation is

projected to be a major ecological as well as economical concern in the near future

and  restoration  of  degraded  land  via  the  implementation  of  sustainable  land

management  practices  is  becoming  more  relevant  (IPCC,  2014;  Bojö,  1996).  A

promising  approach  to  continuously  monitor  and  evaluate  these  practices  is  the

combination  of  large-scale  measures  at  the  landscape  level  and  fine-scaled

monitoring at the plant-microbe-soil-interface (Northup et al., 1999).

A  basic  concept  in  biology  is  that  there  is  a  positive  relationship  between

environmental heterogeneity and species diversity (Tamme et al., 2010). However,

the concept of environmental heterogeneity is not clearly defined and the relations

are  scale  dependent  (Wilson,  2000).  The  animal  species  diversity  in  savannah

ecosystem for example, is closely linked to the occurrence of large trees, as they

function  as  food  resource,  shelter  or  nesting  site  (Tews  et  al.,  2004).  Canopy

structure of savannah trees on the other hand influences throughfall, which affects

soil  moisture,  soil  fertility  (Vetaas,  1992)  and  tree  growth  (Plath  et  al.,  2011).

Therefore, detailed knowledge of the spatial distribution of different parameters and

the dependencies between them are of great concern.
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Spatial  interpolation  techniques  are  a  common  tool  for  the  estimation  of  C  and

nutrient  pools (Kumar et  al.,  2012;  Kuzyakova et  al.,  2001;  Mishra et  al.,  2012).

Spatial analyses focus on the variability of a given parameter over space and thus

the heterogeneity of this parameter at the studied scale. However, spatial analysis of

savannah soils was used in only few studies, mostly in South and West Africa (Hagos

& Smit, 2005; Wang et al., 2009). In addition and since each physical and chemical

analysis implies further costs, soil sample collection is often sparsely distributed over

space. As measuring biological soil parameters like microbial C and N (Cmic, Nmic) are

very  laborious  in  the  field  as  well  as  in  the  lab,  the  application  of  prediction

techniques might make better use of the data and might lead to precise estimations

based on only few data points.

Over the last century, soil-landscape modeling has shifted from qualitative methods,

e.g. soil classification and soil survey maps, towards quantitative methods like fuzzy

sets and multivariate geospatial models (Grunwald, 2006). Geospatial models can be

used to estimate a soil property at an unknown location and modeling is considered

more detailed and less error-prone than for example soil survey maps (Thompson &

Kolka,  2005).  One  to  several  predictor  variables  which  are  available  in  a  high

resolution within the study area are used to estimate the variability of the sparsely

sampled target variable (Thompson & Kolka, 2005; Mishra et al., 2010). However,

there is no universal single best prediction method for all targeted parameters and

therefore caution is advised when selecting the most suitable method for a certain

variable (Li & Heap, 2011). The traditional technique of ordinary kriging (OK) uses

data of the target variable, available at the observation points, to predict its value at

new  locations  (Cressie,  1988).  OK  is  widely  used  and  its  computation  is  easy

compared to the more advanced multivariate methods, like regression kriging (RK).

RK uses the available data of the dependent variable and, in addition, information

from auxiliary or co-variables (e.g. topography, data that can be derived from satellite

images, variables that are more easy to measure than the dependent variable, etc.)

(Hengl, 2009). In addition to the commonly used geostatistical methods, (Brunsdon et

al.,  1996))  introduced  the  multivariate  approach  of  the  geographically  weighted

regression  (GWR).  Compared  to  OK  and  RK,  GWR  has  the  advantage,  that  it
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considers the possibility of varying relationships between the model variables over

space (Brunsdon et al., 1996).

In order to gain information on soil parameters correlated to soil microbial biomass

(e.g. Corg, N, pH), visible to near-infrared diffuse reflectance spectroscopy (Vis-NIR-

DRS) can be used (Awiti et al., 2008; Viscarra Rossel & Behrens, 2010; Chang et al.,

2001).  It  is  an  established  method  to  predict  several  soil  physical  and  chemical

properties.  Spectral  measurements  are  mostly  non-destructive,  faster  and  less

expensive compared to  classical  physical  and chemical  soil  analysis.  One of  the

main  reasons  for  the  speed  and  cost  efficiency  of  Vis-NIR-DRS  is  that  several

different soil  properties can be derived from a single spectroscopic measurement

(Viscarra Rossel et al., 2006).

The objectives of this study were therefore a) to use Vis-NIR-DRS for the prediction

of soil attributes (Corg, N), which then can be used to derive soil biological properties

(Cmic, Nmic) and b) to use the derived soil attributes in spatial analysis and test if RK

and GWR can increase prediction quality compared to OK. Our goal is to develop an

easy and cost-efficient approach to monitor soil microbial parameters as well as their

heterogeneity – properties which are commonly not included in monitoring plans of

land restoration projects.

Materials and Methods

Study site

The study was conducted in a semi-arid savannah near Lake Chala,  East of  Mt.

Kilimanjaro,  Tanzania  (3°18’39”  S,  37°41’8”  E,  Figure  1).  Mean annual  rainfall  is

536 mm, with  a long rainy season from March to  May and a short  rainy season

between  October  and  December  (Moernaut  et  al.,  2010).  Soils  developed  on

superficial deposits from Kibo and Mawenzi peaks of Mt. Kilimanjaro and from the

various small and steep craters in the east of the mountain complex (Nonnotte et al.,

2008).  On  the  slopes  of  these  small  volcanoes  the  main  soil  type  is  Leptosol,

whereas Vertisols are dominant in the plains.

We worked on two different study sites. One site (Pslope) is situated on the outer foot

slope of the crater rim of the Lake Chala caldera at an elevation of 960 m (Figure 1).



78 Study 3 – Materials and Methods

It is north exposed with an inclination of about 10°. The soil is very shallow with a

maximum depth of 25 cm, bedrock appearing directly at the surface in some parts of

the  area.  It  was  classified  as  Rendzic  Leptosol  (Calcaric,  Tephric,  Sodic,  Eutric,

Skeletic)  according  to  WRB (FAO,  2008).  Dominating  tree  species  at  this  site  is

Combretum molle, with some Acacias in between. Dominant grass species are the

tussock grasses  Heteropogon contortus and  Sehima nervosum. The second study

site (Pplain) is situated 400 m to the north-west, in the plains surrounding Lake Chala

at  950 m a.s.l.  with  no  inclination.  The  soil  was  classified  as  Sodic  Vertisol

(Hypereutric,  Chromic).  At  this  site,  the  dominating  tree  species  are  Balanitis

aegyptiaca and different Acacias (Acacia tortilis, Acacia senegal, Acacia nilotica) with

an  undergrowth  of  Heteropogon  contortus,  Erogrostis  superba and  Botriochloa

insculpta.

At both sites, the pressure by land use was classified as low to medium since the

understorey vegetation is cut by hand and used as fodder for livestock in the nearby

villages.  A  future  increase  in  land-use  pressure  is  assumed  due  to  massive

population growth and the increased demand for arable land.

Study design and field sampling

A detailed sampling campaign was carried out in October 2012. The sampling was

conducted in a hierarchically nested grid design on two 15 m x 15 m plots, consisting

of  61  grid  points  each  (Figure  1).  A mixed  soil  sample  of  the  upper  5  cm was

collected at each grid point. The samples were sieved through a 2 mm mesh screen

and about 10-15 g of each of the thoroughly mixed samples was oven-dried at 45°C

Figure  1:  Study  area  with  the  location  of  the  study  plots  (x)  and  study  design.  Source:
commons.wikimedia and OpenStreetMap
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for spectral analysis. The remaining parts of the soil samples were stored under field

moist conditions at 4-6°C until analysis for microbial biomass and pH. On most of the

61 observation points per plot a soil sample could be taken. However, some positions

are missing because of surface adjacent bedrock.

Laboratory measurements

Soil microbial biomass

Cmic and Nmic were analyzed by the fumigation-extraction method (Vance et al., 1987).

Summarily, 7-8 g of field moist soil were fumigated in an exsiccator with ethanol-free

CHCl3. Afterwards, soluble C and N from fumigated and non-fumigated samples was

extracted with 60 ml of 0.5 M K2SO4. C and N in the solution were measured with a

C-N-analyser (multi N/C 2100S, analytikjena, Jena, Germany). Since not all of the C

and N can be extracted, a kEC factor of 0.45 (Joergensen, 1996) and a kEN factor of

0.54 (Joergensen & Mueller, 1996) was used to convert microbial C and N flush into

Cmic and Nmic, respectively.

Soil attributes

All samples were manually analyzed for pH. Therefore, 10 g of soil per sample was

mixed with 25 ml of 1 M KCl. After 10 min, pH was measured in the solution using a

pH-probe.

For  the  determination of  Corg and N,  sixteen equally distributed samples per  plot

(Figure 1) were measured with a C-N-analyzer (multi N/C 2100S, analytikjena, Jena,

Germany). 

Visible to near infrared diffuse reflectance spectroscopy

Each  soil  sample  was  scanned  with  an  AgriSpec  portable  spectrophotometer

equipped with a contact probe (PANanalytical,  Boulder,  Colorado) in the range of

350–2500 nm. Predictions of Corg and N content from the spectra were made using

an  existing  spectral  database  of  soils  from  a  larger  area  in  the  East  of  Mt.

Kilimanjaro. Partial least square regression (PLSR) was used to develop models for

each parameter and plot, as it is a common method to predict soil properties from

spectral  data  (Wold  et  al.,  2001;  Viscarra  Rossel,  2007).  The  specific  modeling
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scheme is based on an approach of Bogner et al. (2015). The models were validated

on the sixteen soil samples with known Corg and N content.

Spatial modeling

Ordinary Kriging

OK uses the  differences of  values,  depending on the  distance to  each other,  to

estimate the spatial autocorrelation structure (Krige, 1951; Matheron, 1963; Hengl,

2009). The semivariances Y(h) of these differences are calculated by:

Y (h)=
1
2
E [(O(si)−O(s i+h))

2] Eq. 1

where  O(si) is  the target variable at  the location  si and  O(si+h) is  the value at a

distance h from the location si. Subsequently, the semivariances are summarized by

their separation distance h (called lag) and a variogram model is fitted.

Variograms are interpreted via three main values: the range, the sill and the nugget.

The range is the distance at which the variances between points are more or less

equal to the variance of all observed values of the data-set and the sill is the total

variance at the range distance. The nugget is the semivariance at zero distance or in

other  words is  the  variance of  sampling points  within  distances smaller  than the

smallest sampling interval, including unknown measurement errors.

Finally, predictions are made with the formula

P (so)=∑
i=1

N

(Ωi(s0)⋅O (si)) Eq. 2

where  P(s0) stands for the predicted value at location  s0, Ω is the spatial weighting

function based on the variogram, O(si) is the observation at location si and N is the

number of observations. In other words, in OK the value at a location is calculated as

a weighted linear combination of measured values at locations si (i = 1, 2, …, N).

Regression Kriging

RK combines linear regression (LR) with a variogram analysis of the model residuals

(Hengl et al., 2004). First, a LR between the dependent and independent variables is

calculated. Then the residuals r of this model are predicted at all locations of interest
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using their respective variogram parameters. The RK model resembles an LR model,

but instead of using one constant error term, the residual variance is calculated as

the sum of the predicted residuals, weighted by distance:

P (s0)=∑
k=0

l

αk⋅V k (s0)+∑
i=1

N

ωi(s0)⋅r ( s0)

with V 0(s0)=1

Eq. 3

where k are the estimated linear model coefficients, Vk is the k-th predictor variable

and wi are weights based on the variogram analysis of the residuals.

Geographically weighted regression

GWR  also  uses  a  LR  model.  However,  instead  of  estimating  only  one  set  of

regression  parameters  for  all  sampling  positions  combined,  this  approach  allows

local  variations  in  relationships  between  response  and  explanatory  variables

(Brunsdon et al., 1996; Fotheringham et al., 2002):

P (s0)=α0(s0)+∑
i=1

l

αi(s0)⋅V i(s0)+ϵ(s0) Eq. 4

where  so stands  for  the  location  of  the  i-th  point.  Based  on  the  proximity  of  an

observation to a point i, the correlation of this observation to point  i is estimated by

weighted least squares regression.

Spatial predictions and mapping

Corg, N and pH were chosen as possible co-variables, because they can either be

easily acquired with Vis-NIR-DRS (Corg  and N) or are easy and cheap to measure

(pH) and are related to the target variables Cmic and Nmic. The approach of this study

consist of several consecutive steps:

Step 1 We used OK to predict Corg,  N, pH, Cmic and Nmic at every point in a

regular grid (15 m x 15 m, spacing 0.625 m), resulting in a grid with a total of 625 grid

points.  We tested three different variogram model types, namely exponential, linear

and  spherical.  The  variogram  model  type  for  the  respective  variable  was  then

selected based on the highest R2.

Step 2 The auxiliary information of Corg, N and pH were used in RK and GWR

to predict Cmic and Nmic on the same 625 locations as in Step 1.
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Step 3 This step consists of the validation and comparison of the used spatial

methods and is implemented within step 1 and 2. We used LOOCV to evaluate the

different prediction techniques OK, RK and GWR. Having a small data-set, we chose

to include all  points in the modeling process an not to set  aside an independent

validation data-set. LOOCV has furthermore far less bias compared to the validation

on an independent data-set (Davis,  1987).  Therefore, each grid point  with known

microbiological  values  was  left  out  once  and  predicted  on  the  data-basis  of  the

remaining observation points. This was repeated N times, where N is the number of

available  observations.  In  order  to  assess  model  accuracies  of  the  different

geostatistical  methods  we  used  R2 and  the  RMSE.  Furthermore,  to  compare

prediction  accuracies  directly,  the  RMSE was  divided  by  the  known  standard

deviation of the observed values sd(oi).  The resulting relative root  mean squared

error of prediction  RMSEr is scale independent.  R2,  RMSE and  RMSEr are directly

calculated from the LOOCV of the respective variable. Any errors in the estimation of

the co-variables are thus not relevant at this point.

R2=1−
∑
i=1

N

( pi−oi )
2

∑
i=1

N

(o i−ō)
2

Eq. 5

RMSE=√ 1N ∑
i=1

N

( pi−oi )
2

Eq. 6

RMSE r (%)=
RMSE
sd (oi)

⋅100=
√ 1N ∑

i=1

N

( pi−oi )
2

sd (oi)
⋅100 Eq. 7

pi are the predicted values, oi the observed values and ō is the mean of the observed

values, N is the number of observations.

All statistical analysis were done using R 3.0 (R Development Core Team, 2008) and

the  packages  gstat  (Pebesma,  2004),  spgwr  (Bivand  &  Yu,  2013)  and  automap

(Hiemstra et al., 2009).
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Results and Discussion

Spectroscopy

The PLSR models, that were developed based on the spectroscopic measurements,

successfully  predicted  Corg and  N  content  in  our  soil  samples  (Table  1).  The

calibration for  both plots  was satisfactory,  however,  the validation revealed better

results for Pslope than for Pplain.

Descriptive Statistics

Basic descriptive statistics of all variables are summarized in Table 2. The median is

more  robust  than  the  mean  and  was  used  to  interpret  the  data.  The  within-plot

variation of most of the variables is up to 1.8 times higher on P slope than on Pplain, most

probably due to shallow-to-no soil areas on the Pslope. Corg, N, Cmic and Nmic values on

Pslope were generally higher than on Pplain. These results are in general agreement with

previous  studies  of  savannah  ecosystems  (Jones,  1973;  Wang  et  al.,  2009;

Michelsen et al., 2004). However, the maximum Corg content of Pslope is unusually high

with 73.6 g kg-1. C/N ratios varied between 10.4 and 13.4 on Pslope and 10.7 and 13.3

on Pplain – with median values of 12.2 for both plots – which is similar to the findings of

other studies (Jones, 1973; Hernández-Hernández & López-Hernández, 2002). 

Cmic and Nmic showed overall similarities, with much higher and more variable values

for Pslope. For Eastern Kilimanjaro, Pabst et al. (Pabst et al., 2013; Pabst et al., 2014)

found Corg and N contents as well as Cmic in the same range as measured on Pplain in

this study. Other studies reported Cmic values up to 0.8 g kg-1 for the topsoil  of a

Table 1: Accuracy and error parameters for the calibration and validation of PLSR models for the 
prediction of Corg and N

Plot Parameter Calibration Validation

N RMSE R2 N RMSE R2

- mg g-1 - - mg g-1 -

Pslope N 91 0.49 0.75 16 0.40 0.85

Corg 91 6.17 0.70 16 4.79 0.83

Pplain N 91 0.31 0.76 16 0.23 0.63

Corg 91 4.48 0.72 16 2.61 0.70
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wooded grassland, but were in general lower than our findings (Singh et al., 1989;

Michelsen et al., 2004; Hernández-Hernández & López-Hernández, 2002). Cmic on

the investigated plots  is known to  decrease significantly with the start  of  the wet

season, hence would be in the same range as in the aforementioned publications

(Pabst et al., 2013; Pabst et al., 2014). A study of savannah in the Serengeti, East

Africa, reported Cmic content of up to 3.1 g kg-1 (Ruess & McNaughton, 1987) which

corresponds to the very high Cmic contents found on Pslope.

The  typical  soil  pH  in  savannah  ecosystems  is  assumed  to  vary  around  values

between 4 and 6 (Hagos & Smit, 2005; Hernández-Hernández & López-Hernández,

2002). In contrast, pH values found in this study are much higher, with values on

Pslope exceeding pH 7, probably due to the parent material.

Spatial data analysis

Predictor variables – Corg , N and pH

The best  predictive quality for  Corg on Pslope was obtained with a linear variogram

model (Figure 2). A spherical model for N content and an exponential model for pH

Table 2: Descriptive statistics for predictor and target variables

Plot Parameter Predictor variables Target variables

Corg N pH Cmic Nmic

g kg-1 g kg-1 - g kg-1 g kg-1

Pslope min 29.0 2.30 7.80 0.53 0.063

max 73.6 5.87 8.65 3.01 0.348

mean 42.0 3.46 8.29 1.40 0.157

sd 09.4 0.68 0.19 0.70 0.079

median 38.7 3.32 8.32 1.15 0.121

mad 09.8 0.60 0.21 0.63 0.061

Pplain min 18.8 1.63 6.28 0.20 0.027

max 35.7 3.05 6.96 1.00 0.103

mean 27.1 2.23 6.60 0.59 0.059

sd 03.4 0.28 0.16 0.17 0.017

median 27.0 2.22 6.58 0.58 0.058

mad 03.2 0.21 0.16 0.15 0.018
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on Pslope were selected, respectively. For Corg on Pplain we chose a linear model and for

N and pH an exponential model.

Both, Corg and N contents showed higher spatial ranges on Pplain (Figure 2),  which

were similar to ranges found in southern Africa savannahs (Wang et al., 2009). This

indicates lower heterogeneity on Pplain since points are still correlated to each other,

even  at  large  distances. We  predicted  a  very  high  range  value  for  N  on  Pplain

(3.13 km). Typically a variogram is computed up to one third of the maximal distance

between points – in our case around 7 m. In greater distances, the number of point

Figure 2: Variogram models of the predictor variables for Pslope and Pplain.
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pairs and the quality of the experimental variogram decrease rapidly. We chose the

variogram models based on the predictive quality and an exponential  model  was

selected. In contrast, the best global fit to the data would likely be a linear variogram

model  with  a  range of  6.09  m and a sill  of  0.01 m (data  not  shown).  Both,  the

exponential  as  well  as  linear  model  follow  a  seemingly  linear  shape  within  the

distance  of  7  m  and  consequently  the  differences  in  predictions  between  these

models are expected to be negligible. Wang et al. (Wang et al., 2009) assumed that a

loss of  woody vegetation and regional  drying results  in  more  heterogeneous soil

pools. This acts as a possible explanation for the rather small ranges found for Corg

and N on Pslope, since it was characterized by sparse woody vegetation, shallow soil

depth and adjacent bedrock.

With the exception of pH, all parameters showed a low range on Pslope, indicating that

values are not dependent on each other already at small distances. This is probably

because of the patchy vegetation and the high heterogeneity of  soil  thickness.  A

consequence of the clustered sampling design was that the distance classes of the

variogram models of Pslope often contained points clustered together at locations with

either low or high vegetation cover, respectively. This resulted in high variation in the

semivariances at  higher  distances and the high range (Figure 2).  Including more

points in the sampling design would probably strengthen the variogram and also lead

to a lower range for pH on Pslope.

Due to the small sample size it was not possible to account for anisotropy of the data

set  and some of  the  variogram models  showed a  clear  trend in  the  data,  partly

explaining  the  high  ranges.  The  ratio  of  nugget/sill  is  an  estimate  of  the  spatial

dependence within the investigated area. Both, low and high spatial dependencies

were observed within the smallest sampling interval, whereas it stands out that for

Corg on Pplain 65% of the total variance is explained by the nugget effect. For Corg on

Pslope and N on both plots, the nugget effect was negligible (Figure 2). Yet, we can

assume that some variability occurs within the smallest sampling interval of 0.625 m

and/or measurement errors occurred in the analysis.

The observed spatial structures vary depending on sampling density across the study

area (Mishra et al., 2010). Since we used the same sampling density/design in our

study on both plots and for all variables, this indicates that the spatial structures of
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the  investigated variables  vary not  only  depending on  sampling  density  but  also

because of local characteristics of the study sites.

Target variables – Cmic, Nmic

An exponential variogram model type was selected for Cmic on Pplain and Nmic on Pslope

(Figure 3). For Cmic on Pslope a linear model and for Nmic on Pplain a spherical model was

used, respectively. Similar to Corg and N contents, the sparse vegetation and patchy

soil cover on Pslope resulted in lower ranges for Cmic and Nmic compared to Pplain. On

both plots, Nmic showed ranges similar to the findings for savannah soil by (Wang et

al., 2009). The nugget effects were zero on Pslope, and on Pplain they did not exceed

20% of the total variance. Consequently at least 80% of the spatial variation was

explained by the chosen variogram model.

The linear regression models selected for RK and GWR are shown in Table 3. Since

Corg is the main substrate for soil microbes, there are numerous studies linking Cmic to

Corg (Singh  et  al.,  1989;  Michelsen  et  al.,  2004).  Similar,  Nmic showed  a  good

correlation  with  N  as  a  predictor  variable  (Hernández-Hernández  &  López-

Hernández, 2002). 

Figure 3: Variogram models for the target variables (Cmic, Nmic) for Pslope and Pplain.
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Comparison of geostatistical methods

OK showed high RMSE and low R2 for both plots and variables, for Cmic on Pplain even

<0.  R2 was  generally  higher  on  Pslope (Figure  4).  The  estimates  improved  when

additional information in form of explanatory variables was used. RMSE values of RK

and GWR were in a similar range and consistently lower than those of OK (Figure 4).

Accordingly,  R2 was  increased  by  the  use  of  RK  and  GWR  (Figure  4). The

improvement of prediction accuracy by using multivariate approaches – which is also

the fact in this study – has been reported in several studies (Mishra et al., 2010; Li &

Table 3: Selected regression models for RK and GWR prediction methods

Plot Target variable Predictor variables AICc F value p value R2

Pslope Cmic Corg, pH 076.1 F(2,40) 50.1 < 0.001 0.71

Nmic N, pH 068.4 F(2,40) 63.8 < 0.001 0.76

Pplain Cmic clay, N 136.7 F(2,56) 25.8 < 0.001 0.43

Nmic N 148.6 F(2,58) 33.1 < 0.001 0.36

Figure 4: Observed versus predicted data of different geostatistical methods on P plain (orange)
and Pslope (blue)
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Heap, 2011; Mishra et al., 2012). For the calculation of Corg pools in the Midwestern

United States, RK and GWR were seen as the best suited methods (Mishra et al.,

2010). However, on Pplain, R2 remained rather low even with the use of the multivariate

prediction techniques since the variability within the observed data of Pplain was low.

The ability of the presented two methods to improve the predictions, clearly showed

the usefulness of including explanatory variables.

The RMSEr indicates the variation of prediction errors within the observed range of

the sampled data. Is the variation in the observed data low, methods have to be more

accurate to obtain low RMSEr values. Similarly, high variations in the observed data

lead more easily to low RMSEr values. Compared to OK, the multivariate methods

clearly improved the RMSEr on both plots (Table 4). However, the on-plot variation of

the observed data was low on Pplain and consequently the RMSEr was still up to 86%

for RK and GWR. For all target variables and both study plots, compared to OK the

addition of explanatory variables in the models reduced the global estimation error

(RI) by 8-31% (Table 4,  RI = (RMSEOK –  RMSEN)/RMSEOK  100, where  N is the

respective new method).  Nevertheless only very small  to no differences could be

observed in the accuracy of prediction between the different multivariate interpolation

methods (Table 4). Since the prediction accuracy of RK and GWR clearly depend on

available  auxiliary  information  and  their  correlation  to  the  response  variables,  a

possible reason is that the deterministic component (LR) of RK was useful, but no

spatial variation of the residuals was found to model in the geostatistical part of RK

and to improve the prediction accuracy. In GWR it is possible to only use only a

Table 4: Error parameters for the prediction of Cmic and Nmic with methods OK, RK, GWR and the 
relative improvement (RI) by the use of RK, GWR for Pslope and Pplain.

Target variable Method Pslope Pplain

RMSEr RI RMSEr RI

% % % %

Cmic OK 77.12 - 103.28 -

RK 53.99 29.99 79.62 22.90

GWR 57.97 24.38 75.52 26.88

Nmic OK 71.11 - 87.60 -

RK 51.43 27.68 80.74 7.83

GWR 49.24 30.76 79.39 9.37
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subset of the available observations in the LR model. However, in our case, most or

all of the observation points were included for both plots and variables. Hence the LR

models of GWR are similar to the deterministic component in RK which results in

similar accuracies of the two methods.

Maps

High  levels  of  Cmic were  observed at  the  upper-left  corner  of  Pslope (Figure  5).  A

possible explanation is the presence of a mature individual of  Sclerocarya birrea.

Trees and shrubs in savannah ecosystems are known to have a great influence on

nutrients and microorganisms (Vetaas, 1992; Wang et al., 2009). In dry savannah

ecosystems, the C input through tree litter is restricted to the under canopy areas and

trees, shrubs and grasses have a strong influence on the distribution and storage of

C in soil (Wang et al., 2009; Northup et al., 1999). Compared to the remaining area of

Pslope,  different grass species occur within the tree's shading radius and a humus

Figure  5: Maps of Cmic (top) and Nmic (bottom) for Pslope (left) and Pplain (right) produced by the
method with the highest R2 (here: GWR)
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layer developed. Due to the high availability of substrate (Corg), higher amounts of Cmic

could be observed. Also the heterogeneous terrain/soil structure of Pslope is replicated

in the spatial distribution of Cmic. On this plot, rocks, shrubs and clusters of grasses

act as a protection of erosion. In addition, dead plant material and plant exudates

increase microbial growth, leading to higher microbiological activity and hotspots of

soil quality in the vicinity of grass clusters. Low Cmic values were observed close to

the areas with adjacent bedrock (Figure 5).

Cmic values of Pplain were generally lower than on Pslope, the pattern with higher values

under trees and bushes however remained the same. In the middle of the plot a

cluster of Acacia trees was observed, whereas the area in the upper right was only

scarcely  covered  with  grasses.  Spatial  distribution  of  Nmic showed  very  similar

patterns as Cmic on both plots.

Conclusions

We have demonstrated that including additional variables (Corg, N, pH) improves the

spatial prediction of soil microbial parameters such as Cmic and Nmic. The methods RK

and GWR use the specific information provided by the parameters Corg, N and soil pH

for  higher  accuracy of  local  prediction  and/or  less  prediction  errors.  This  study

suggests multivariate methods for a satisfying estimation of soil microbial parameters

and ecological interpretation of the local relationships. Corg, N and soil pH are seen as

suitable variables to predict spatial relations of soil microbial parameters in savannah

ecosystems of East Africa. The integration of soil parameters predicted with Vis-NIR-

DRS proved useful. In combination with geostatistical methods, Cmic and Nmic  can be

predicted easily and with a minimum amount of laboratory analyses.

Until now, Cmic and Nmic are seldom included in the balance of land regeneration or

sustainable land management projects. Since our approach is fast and applicable to

the small scale as well as to the landscape level, it may increase the validity of these

projects with an marginal increase of the costs and in surplus enable the detailed

monitoring of temporal changes in parameters as well as in the heterogeneity.
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General Summary

Methodology

To obtain information on soil microbial properties, detailed studies were conducted on

the  southern  slopes  of  Mt.  Kilimanjaro.  The  study  region  extended  from 950  to

3880 m a.s.l. and ranged from the Machame area in the West to Lake Chala in the

East.  A total  of  twelve ecosystems, representative for  East  Africa (Mayaux et al.,

2004), were selected. The ecosystems were classified as natural, semi-natural and

agricultural (for more detailed information, the reader is referred to Study 1 and 2).

The basic soil properties (C, N, pH and bulk density) were determined per horizon on

all plots. Cmic and Nmic was sampled in depths of 0-10, 10-20, 20-30, 30-50 cm and

analyzed with the chloroform fumigation method (Vance et al., 1987). Soil cores were

incubated  at  site-specific  mean annual  temperature  (MAT)  and  different  moisture

levels for CO2 efflux measurements. A detailed heterogeneity study on the spatial

patterns of Cmic and Nmic was conducted in a savannah ecosystem. Factors controlling

soil microbial biomass at Mt. Kilimanjaro were identified (Figure B) and their effects

on soil microorganisms were statistically evaluated.

Results

Elevation distinctly influences temperature and precipitation along the slopes of Mt.

Kilimanjaro and thus, in a way, represents climate. Elevation therefore was used to

investigate the climatic effect on soil microbial biomass. The Cmic and Corg contents in

surface  soils  of  the  investigated  ecosystems  along  the  elevation  gradient  varied

widely.  Study 1 detected a positive linear dependency of  Cmic and WOC contents

versus  elevation  on  Mt.  Kilimanjaro.  Furthermore,  a  decline  in  colder  climates

(synonymous to higher elevation) was assumed and later confirmed in the context of
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Study 2. Hence, the investigated C contents follow a hump-shaped distribution along

the climate/elevation gradient. Besides total  maxima in Corg and Cmic contents, the

warm-humid forest belt between 2000 and 3000 m a.s.l. exhibited also the strongest

negative  trends in  C contents  with  depth,  both  attributed to  the  organic  rich  soil

horizons  of  the  forests.  Cold  ecosystems  at  highest  elevations  (~4000 m  a.s.l.)

showed contents in the medium range, whereas the minima were observed in the hot

and dry ecosystem at  low elevations (Figure C).  The mathematical  product  of  C

contents and bulk densities are the stocks. The stocks of Corg in the upper soil layer

(18 cm) increased depending on water availability, temperature and NPP (Study 2).

In the elevation range of ecosystems with a more arid character, stocks increased by

3 kg m-2 per 1000 m in elevation. In soils of humid ecosystems at higher elevations,

this  increase in  Corg stocks was reduced to  1 kg m-2 per  1000 m (Figure C).  The

variability in Cmic and WOC contents during the climatic transition phase from dry-to-

wet season was addressed in Study 1. The beginning of the wet season resulted in a

decrease of Cmic and an increase in WOC. With ongoing precipitation, WOC contents

declined to levels of the dry season. This temporal variability was independent of land

use,  but  was  stronger  in  soils  at  lower  elevations.  This  was  attributed  to  the

pronounced contrast  between climatic  dry and wet  seasons and their  associated

vegetation periods. A similar pattern was observed for the soil CO2 efflux and qsCO2

Figure C:  Regressions fitted to the contents / stocks of Corg (blue, solid / blue, dashed) and the
contents of  Cmic (orange,  solid)  along the elevation/climate gradient  of  Mt.  Kilimanjaro.  Black
arrows indicate possible overestimation of  Corg stocks,  based on the assumptions by  Ellert  &
Bettany (1995).
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under  increased  precipitation  in  Study 2.  Compared  to  soils  in  the  warm-humid

climates  of  the  forests,  the  increase  of  both  parameters  was  markedly  more

pronounced in soils of the dry ecosystems at low elevations. However, this difference

is likely biased due to the high human population and land use intensity at elevations

below the boarder of the National Park.

The intensity of land-use practices decreased with increasing elevation: from maize-

fields at low elevations, via the traditional sustainable use of homegardens, to the

ecosystems protected by the National  Park at  elevations >2000 m.  Contents and

stocks  of  Corg and  Cmic were  altered  by  human  influences  on  the  ecosystems.

Throughout the studies, they were lower in soils of managed ecosystems than in

soils of presumably undisturbed habitats in the National Park. The pure effect of land

use was illustrated by two land use conversions typical for the region and on a similar

elevation/climatic level: savannahs are used for maize cultivation and homegardens

which were formerly forested land are transformed to coffee plantations. The more

intensive land use lead to a decline in the contents and stocks of Corg and Cmic and to

an increase in WOC. In relation to Corg, the more sensitive parameters of Cmic and

WOC were more strongly influenced by the negative effect of land use, which has

also been observed for other tropical soils (e.g. Waldrop et al.,  2000). Since land

management (e.g.  tillage,  harvest)  concentrates on the soil  surface,  these losses

were especially pronounced in the upper soil layers which resulted in a narrow depth

distribution.  Compared  to  the  soils  of  less  disturbed  ecosystems,  the  amount  of

available substrate (Cmic:Corg ratio) was reduced up to three times by the intensive

agricultural  management.  In  addition  and  independent  of  two  simulated  precipi-

tations, soil CO2 efflux and qsCO2 in soils of agricultural fields were up to four times

higher than in the soils of less disturbed ecosystems.

The detailed heterogeneity study in the savannah ecosystem revealed small-scale

patterns of basic soil parameters and soil microbial biomass. Despite of being only

400 m apart, contents varied several-fold between and within 15   15 m plots. The

relief had an effect on the spatial variation of Corg, N, clay content, soil pH as well as

Cmic and Nmic contents. Most of this variation occurred within a perimeter of less than

13 m in the plain and 4 m on the slope, respectively. This variation was predicted

using several geostatistical methods and visible to near-infrared diffuse reflectance
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spectroscopy enabled easy measurements  of  basic  soil  parameters (Corg,  N,  clay

content and pH). The correlations of these soil parameters to soil microbial biomass

enhanced the prediction accuracy of the geostatistical models for Cmic and Nmic.

Discussion and conclusions

The effects of land use and elevation on the investigated soil properties cannot be

fully distinguished. This is due to an overlapping of land use and elevation gradients.

The single effect of elevation could only be observed starting from the National Park

upwards (>2000 m a.s.l.). At lower elevations, land use was likely the predominant

factor for changes in soil properties.

The strong climate dependent net primary productivity (NPP) on the southern slopes

of Mt. Kilimanjaro was found to follow a hump-shaped distribution with elevation –

indicated by the biomass and structure of the vegetation (Ensslin et al., 2015; Rutten

et al., 2015). A similar distribution was observed for the contents of Corg and Cmic,

which are clearly influenced by the NPP (Figure C). In the forest belt between 2000 m

and  3000 m  a.s.l.,  climate  conditions  promote  the  highest  NPP  found  at  Mt.

Kilimanjaro. Soils of highly productive ecosystems contain high amounts of soluble

organics and microbial biomass (Bruijnzeel & Veneklaas, 1998; Heaney & Proctor,

1989) and the accumulation of litter on the forest floor leads to formation of organic

horizons (Zech et al., 1997). Schrumpf (2004) reported high Corg contents in soils of

montane forests at Mt. Kilimanjaro, which is in accordance with the maximum of the

hump-shaped distribution along the elevation gradient (Figure C). Climate and the

associated  NPP  are  decisive  factors  for  the  vegetation's  composition  on  Mt.

Kilimanjaro (Hemp, 2006a). Lower temperatures and rainfall at higher elevations lead

to a decline in plant and microbial productivity (Blume et al., 2002; Zech et al., 1997).

This  is  shown  in  the  decline  of  Corg and Cmic contents  from  Podocarpus forest

(~3000 m  a.s.l.)  to  Erica forest  and  Helichrysum (~4000 m  a.s.l.).  The  extreme

climatic conditions and very low productivity at an elevation of 5000 m a.s.l. in the

Peruvian Andes, lead to low Cmic contents (King et al., 2008) and support the Cmic

values found in the Helichrysum ecosystem at Mt. Kilimanjaro.

Due to its isolated position, Mt. Kilimanjaro decisively influences the climate in its

region.  Tropical  montane  forests  normally  have  a  low  seasonal  variability  of
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temperature and precipitation (Buytaert et al., 2011). This is also true for forests on

Mt. Kilimanjaro which are situated in an elevation range with more or less consistent

precipitation throughout  the year  (Sarmiento,  1986).  These near  constant  climatic

conditions  also  have  an  effect  on  the  soil  microbial  properties,  explaining  the

negligible  effect  of  the  climatic  transition  phase  and  the  smaller  increase  in  Corg

stocks with elevation. However, ecosystems at lower elevations (e.g. maize field and

savannah),  are  characterized  by  a  semi-arid  climate  with  strongly  seasonal

precipitation. In these highly seasonal ecosystems, changes in water-availability may

result in rapid changes in Cmic and WOC (Austin et al., 2004). The overall magnitude

of climatic variability during the year,  which is strongly depending on elevation, is

therefore assumed to be the major aspect controlling the reaction of Cmic and WOC

during climatic transition phases.

As described above, differences in climate and NPP result in low organic contents in

soils above and below the forest belt of Mt. Kilimanjaro. Similarly, the same factors

also  strongly  influence  the  soil  C  stocks  as  the  fitted  linear  regressions  were

reminiscent of the adiabatic lapse rates along the elevation gradient (Figure C). Due

to the distinct dry and wet seasons at low elevations, soil moisture presumably is a

limiting  factor  for  some  time  during  the  year  (Otieno  et  al.,  2010).  In  addition,

limitation in water availability was indicated as higher simulated precipitation resulted

in markedly higher qsCO2 in soils of dry ecosystems. An increase in elevation leads to

lower temperatures and higher water saturation of the air packages, resulting in more

or  less  consistent  rainfall  throughout  the  year  (Buytaert  et  al.,  2011;  Sarmiento,

1986). Such constant humid climate leads to high NPP, vegetation growth and the

formation of organic soil horizons (Zech et al., 1997). High Cmic:Corg ratios and WOC

contents indicate a high substrate availability in these organic horizons. However, the

observed changes in Corg stocks at Mt. Kilimanjaro are likely to be biased, since no

correction to an equivalent soil mass was conducted (Ellert & Bettany, 1995). With no

correction  done,  the  Corg stocks  might  have  been  overestimated  in  soils  of

ecosystems above and below the forest belt (Figure C).

Besides the response on increased rainfall  in  dry ecosystems, qsCO2 showed no

direct correlation to elevation/climate. In general,  the protected ecosystems of the

National  Park  showed  smaller  qsCO2 than  ecosystems  at  lower  elevations.
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Supporting  these  results,  Mganga  &  Kuzyakov (2014)  discovered  that

microorganisms  in  forest  soils  of  Mt.  Kilimanjaro  have  comparably  slow

decomposition rates of easily available substrates. This indicates microorganisms of

high efficiency with a low energy demand, compared to the ecosystems at lower

elevations. The combination of high C contents and stocks, high substrate availability

(Cmic:Corg ratio) and soil microbial efficiency further points to a closed nutrient and C

cycle and consequently a steady-state of these ecosystems.

Investigations of land-use effects were concentrated on the highly populated areas

below 2000 m a.s.l.,  since  the  National  Park  protects  the  ecosystems located at

higher elevations from most anthropogenic influences. Human-induced disturbances

of ecosystems around Mt. Kilimanjaro mainly consist in conversions of savannah to

maize fields (~1000 m a.s.l.) and homegardens to coffee plantations (~1300 m a.s.l.)

(Soini, 2005). The results show that both conversions negatively altered basic and

microbial  soil  properties  (Corg,  Cmic),  with  up  to  4-fold  decreases  in  contents  and

stocks, respectively. This is in accordance with the general knowledge that cultivation

of natural ecosystems leads to a decline of Corg contents. Losses in a similar range

have been reported in several other studies (Dinesh et al., 2003; Don et al., 2011;

Waldrop et al., 2000). The major factor for the Corg and Cmic decreases in soils of Mt.

Kilimanjaro were changes in substrate input and quality. The decline in Cmic:Corg ratio

indicates a decrease in litter diversity and substrate availability in both intensively

used ecosystems (maize field, coffee plantation). Similar to the results of this thesis,

other studies on land-use change reported lower Corg and Cmic contents, due to a

change in amount and quality of organic matter input (Burton et al., 2010; Dinesh et

al., 2003). Attention should be paid to the conversion of Chagga homegardens. This

is  a  secondary change  in  land  use,  since  the  original  natural  habitat  was  lower

montane  forest  (Mbonile  et  al.,  2003;  Mwasaga,  1991).  Currently,  no  natural

ecosystems  are  remaining  on  the  elevation  level  of  coffee  plantations  and  as  a

consequence no direct comparisons are possible. However, it is assumed that soil C

contents and stocks of the natural ecosystem originally were higher as they are in

homegardens today.
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qsCO2 has been widely applied in the assessment of cultivation practices (Yan et al.,

2003).  Higher  land  use  intensity  resulted  in  an  increase  of  qsCO2 which  was

attributed to the change in management, substrate availability and the associated

decrease in Cmic. Beside these factors, qsCO2 is determined by the decomposition

rate  of  available  substrate.  The  process  of  decomposition  of  easily  available

substrate in soils of intensively managed ecosystems is fast (Mganga & Kuzyakov,

2014). Compared to ecosystems with a more natural character, the high qsCO2 and

the  fast  decomposition  in  intensively  managed  ecosystems  suggests  a  higher

nutrient demand but lower nutrient use efficiency in soils under agricultural land use.

The low contents and stocks of Corg and Cmic, the low substrate availability (Cmic:Corg

ratio)  and low soil  microbial  efficiency,  indicate open nutrient and C cycles in the

agricultural used soils. Consequently, the contents and stocks of Corg and Cmic, as well

as  the  soil  quality  and fertility,  are  assumed to  decline  further  in  the  future  until

eventually a new lower equilibrium and a steady-state in soils is reached. The effects

of land use on soil Corg and soil microbial parameters were more pronounced for the

conversion of homegarden to coffee plantation (~1300 m a.s.l.) than for savannah to

maize field (~1000 m a.s.l.). Based on the change in climate, NPP and C cycling with

increasing  elevation,  it  can  be  concluded  that  Corg and  Cmic in  soils  at  higher

elevations are especially prone to (possible) changes in land use.

The small-scale variation and heterogeneity in soils of savannah ecosystems East of

Mt.  Kilimanjaro  could  partly  be  traced  back  to  dry  conditions  and  minor  woody

vegetation prevalent (Wang et al., 2009). The presence of trees was reported to have

a positive effect on Corg and Cmic contents of  soil  within the trees'  shading radius

(Isichei  &  Muoghalu,  1992).  A similar  relationship  was  observed  in  the  detailed

heterogeneity study (Study 3), where  distinctly higher Corg and Cmic contents were

found in soils under the canopy of trees. The relief, or more specifically the slope and

soil  depth,  were  identified  as  additional  important  factors  influencing  the  spatial

distribution of basic soil parameters and soil microbial biomass. Also, on the small-

scale, basic soil parameters (Corg, N clay content, pH) are controlled by factors such

as climate, NPP (vegetation) and relief. Furthermore, the spatial heterogeneity of soil

microbial  biomass  is  decisively  influenced  by  these  basic  soil  parameters.
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Consequently,  these variables  provide  additional  information  for  the  multivariate

spatial  prediction of  soil  microbial  parameters in  savannah soils  and improve the

calculations' accuracy.

Climate,  NPP  and  agricultural  management  were  the  main  drivers

affecting the soil  microbial biomass in soils of Mt.  Kilimanjaro. Climate

and  conversions  of  land  use  are  independent  of  each  other  but  both

distinctly influence the NPP and/or vegetation of an ecosystem.

Adjusted to the distribution of the NPP, the contents of Corg and Cmic follow

a hump-shaped form along the mountain's elevation gradient. Corg stocks

are closely linked to the water availability or aridity of the ecosystem and

are assumed to follow a sigmoid distribution. The national park protects

ecosystems above 2000 m a.s.l. from human influences and the warm and

humid climate supports high NPP, contents and stocks of Corg and Cmic as

well  as  increased  substrate  availability.  Because  of  consistent  humid

conditions, soil moisture is not a limiting factor for microbial growth and

activity  at  higher  elevations.  This  is  in  contrast  to  the  hot  and  dry

ecosystems  at  lower  elevations,  where  a  distinct  seasonality  in

precipitation affects NPP and consequently also Corg and Cmic in soils.

The intensive land use on the mountain's lower slopes negatively alters

important  and  sensitive  parameters  within  the  C  cycle.  The  lack  of

available  substrate  in  intensively  managed  surface  soils  increases  the

energy demand of soil microorganisms while decreasing their substrate

use efficiency. This further diminishes the already declined contents and

stocks of  Corg and Cmic and indicates an open nutrient  and C cycle.  In

contrast, soils of natural and less disturbed ecosystems are characterized

by  effective,  closed  nutrient  and  C  cycles  in  a  steady-state,  but  are

nevertheless highly vulnerable to the negative consequences of land-use

change.

On a small-scale, vegetation and relief are the major factors influencing

the spatial heterogeneity of basic soil parameters as well as soil microbial
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biomass. Because of their correlation to soil microbial biomass, basic soil

parameters  (e.g.  Corg,  N)  provide  additional  information  in  multivariate

prediction techniques and are able to increase the calculation's accuracy.

Future perspectives for Mt. Kilimanjaro

Based on recent projections of the expected climate change, a warmer and wetter

climate will develop in East Africa (IPCC, 2014). In this context, two major schemes

can  be  distinguished:  (1)  an  increase  in  extreme  rainfall  events  during  the  wet

seasons and (2) less severe drought events during the dry seasons (Shongwe et al.,

2010).

High elevations amplify the increase in temperature, meaning that locations at higher

elevations  will  experience  a  stronger  warming  compared  to  locations  at  low

elevations (Gutzler,  1992; Schneider et al.,  1999). In today's climate, the medium

temperatures and high water contents in Mt. Kilimanjaro's forests lead to lowered

microbial  activity  (Zech  et  al.,  1997), but  do  not  affect  the  content  of  soil

microorganisms (Blume et  al.,  2002).  The  projected  increase  in  temperature  will

influence  the  microbial  activity  in  these  systems  and  will  lead  to  an  enhanced

mineralization  and  release  of  CO2 from  soil.  In  addition,  future  higher  CO2

concentrations might enhance NPP, leading to an additional supply of new substrate.

Enhanced mineralization and substrate availability will change the extent and rate of

the C cycle and possibly affect the steady state in soils of ecosystems within the

National Park. This is of major concern, since these ecosystems are essential for the

local climate and water balance in the region (Schrumpf, 2004).

An increase in the annual mean soil moisture levels and a generally wetter climate

might be seen by the people of the Mt. Kilimanjaro area as a blessing, since the

contrast  between dry and wet  seasons will  be reduced in  the densely populated

ecosystems at lower elevations. More favorable conditions for soil microorganisms

increase microbial  activity and may lead to higher CO2 efflux rates and a loss of

SOM. Erosion-prone agricultural  land will  be further  degraded by the increase of

extreme  rainfall  events  (Våje  et  al.,  2005).  Eventually  a  new equilibrium will  be

reached in soils under agricultural management. Until then, the contents and stocks

of Corg and Cmic are assumed to decline further. To satisfy the growing population with
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enough food, the demand for mineral fertilizers is assumed to multiply. Pressure on

the boarders of the National Park will increase, but land-use conversions will mainly

concentrate on lower elevations when the habitats of bushland and savannah are lost

and used for agricultural production.

Future studies on the C as well as nutrient cycle and turnover in ecosystems of Mt.

Kilimanjaro are necessary to assess the full magnitude of these projected changes. It

is of topmost importance that, based on these studies, sustainable land management

practices are developed and adopted in the region of Mt. Kilimanjaro.
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Site specific data

In  the  following  Appendix,  specific  data  of  the  different  investigation  sites  are

provided.  This  thesis  was  prepared  in  a  research  group,  containing  several

subgroups and professional disciplines. Several data used in this thesis was provided

by members of other subprojects, as listed below.

Data Provided by Affiliation

Mean annual precipitation (MAP) Dr. Tim Appelhans1 Environmental Informatics, 
University of Marburg, Germany

Characteristics  of  soil  profiles,
soil  texture  and  soil  water
contents  at  different  matrix
potentials

Anna Kühnel Soil Physics Group, University of
Bayreuth, Germany

Soil CO2 efflux Friederike Gerschlauer Institute  of  Meteorology  and
Climate  Research,  Atmospheric
Environmental Research, 
Karlsruhe Institute of 
Technology, Germany

Vegetation details Dr. Gemma Rutten2 Institute  of  Plant  Sciences,
University of Bern, Switzerland

Vegetation details, aboveground
biomass

Dr. Andreas Ensslin3 Institute  of  Plant  Sciences,
University of Bern, Switzerland

Mean annual temperature was obtained from the publication below.

• Mean annual temperature (MAT)

Duane,  W.J.,  Pepin,  N.C.,  Losleben,  M.L.,  Hardy,  D.R.,  2008.  General

characteristics  of  temperature  and  humidity  variability  on  Kilimanjaro,

Tanzania. Arct. Antarct. Alp. Res. 40 (2), 323–334.

1 Appelhans,  T.,  Detsch,  F.,  Otte,  I.,  Mwangomo,  E.,  Nauss,  T.,  Hemp,  A.  (in  preparation).  Eco-
climatic  and  land-cover  characteristics  across  12  land-cover  types  at  Mt.  Kilimanjaro.  To  be
submitted to Erdkunde.

2 Rutten G, Ensslin A, Hemp A, Fischer M. 2015. Forest structure and composition of previously
selectively  logged  and  non-logged  montane  forests  at  Mt.  Kilimanjaro.  Forest  Ecology  and
Management 337: 61–66. DOI 10.1016/j.foreco.2014.10.036.

3 Ensslin A, Rutten G, Pommer U, Zimmermann R, Hemp A, Fischer M. 2015. Effects of elevation
and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6: 45.
DOI 10.1890/ES14-00492.1.
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Coffee plantation (COF)

Ecosystem: Coffee plantation

Land-use class: Agricultural (intensive)

Disturbance: Monoculture, pesticides, fertilization, soil compaction

Coordinates (UTM): 313226 / 9641160

Elevation: 1300 m a.s.l.

Vegetation: Coffea arabica

MAT: 20.3°C

MAP: 1485 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-4 22.7 2.1 10.5 4.24 0.99 ± 0.03

4-20 16.6 1.7 10.0 4.31 1.07 ± 0.08

20-40 15.5 1.6 09.6 4.38 1.13 ± 0.03

40-60 11.4 1.3 08.6 4.68 0.96 ± 0.06

60-80 09.9 1.2 08.2 4.86 0.92 ± 0.02

80-100 08.0 1.0 07.9 4.94 0.90 ± 0.02

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 256.41 ± 106.51 874.63 ± 159.58

10-20 166.51 ± 064.72 807.79 ± 202.42

20-30 140.31 ± 070.82 686.74 ± 194.92

30-50 108.78 ± 045.07 636.93 ± 157.54

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 46.82 35.93 61.07 2.00 1.71 2.08

Aboveground biomass type [Mg ha-1]

Herbs 0.8

Shrubs 2.5

Trees 27.6

Total standing biomass 30.9
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Depth clay silt sand water content (θ) at different matrix potentials

[cm] [%] [%] [%] θ1.0 [%] θ1.5 [%] θ1.8 [%] θ2.0 [%] θ4.2 [%]

0-4 61 33 6 50.7 43.9 39.4 36.7 24.4

4-20 62 31 7 51.0 47.0 42.8 40.1 29.5

20-40 62 33 5 52.2 49.8 45.5 42.7 31.5

40-60 63 31 6 52.0 46.3 38.7 34.8 29.7

60-80 63 32 5 53.3 48.3 42.7 39.2 23.1

80-100 60 36 4 52.5 50.3 43.5 39.2 23.8
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Erica forest (FER)

Ecosystem: Erica forest

Land-use class: Natural

Disturbance: -

Coordinates (UTM): 310164 / 9659637

Elevation: 3880 m a.s.l.

Vegetation: Erica trimera

MAT: 6.8°C

MAP: 1188 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-10 150.4 8.7 17.2 4.54 0.38 ± 0.14

10-22 118.1 6.8 17.4 4.54 0.33 ± 0.05

22-33 101.0 5.8 17.4 4.64 0.59 ± 0.09

33-45 049.2 3.1 15.9 4.81 0.71 ± 0.10

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 1571.29 ± 522.25 1390.48 ± 259.73

10-20 0393.80 ± 102.51 1388.71 ± 142.90

20-30 0394.73 ± 278.06 1790.78 ± 263.25

30-50 0346.06 ± 045.38 2027.65 ± 074.50

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 20.31 13.72 27.72 0.31 0.22 0.43

Aboveground biomass type [Mg ha-1]

Herbs 9.5

Shrubs NA

Trees NA

Total standing biomass NA

No soil texture and no soil water contents at different matrix potentials available.
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Grassland (GRA)

Ecosystem: Grassland

Land-use class: Semi-natural

Disturbance: Cutting, mowing, grazing

Coordinates (UTM): 305222 / 9648626

Elevation: 1660 m a.s.l.

Vegetation: no information available

MAT: 18.3°C

MAP: 1878 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-17 148.6 10.0 14.8 4.59 0.44 ± 0.01

17-26 096.9 07.3 13.3 4.70 0.56 ± 0.06

26-44 088.1 06.1 14.4 4.70 0.46 ± 0.02

44-59 084.5 05.9 14.4 4.77 0.45 ± 0.03

59-79 068.6 05.0 13.7 4.99 0.41 ± 0.02

79-100 070.4 04.9 14.3 5.02 0.41 ± 0.03

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 1221.40 ± 202.97 1966.24 ± 231.66

10-20 0696.82 ± 141.17 1811.87 ± 304.76

20-30 0551.09 ± 160.10 1987.30 ± 332.77

30-50 0461.00 ± 152.80 2031.91 ± 378.30

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 54.64 34.59 67.49 0.60 0.58 1.05

Aboveground biomass type [Mg ha-1]

Herbs 7.0

Shrubs 0

Trees 0

Total standing biomass 7.0

No soil texture and no soil water contents at different matrix potentials available.
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Helichrysum (HEL)

Ecosystem: Helichrysum

Land-use class: Natural

Disturbance: -

Coordinates (UTM): 308188 / 9662706

Elevation: 3880 m a.s.l.

Vegetation: Helichrysum cushion plants and tussock grasses

MAT: 6.8°C

MAP: 778 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-21 141.2 9.4 15.0 NA 0.42 ± 0.03

21-46 89.0 6.2 14.2 NA 0.46 ± 0.07

46-55 77.2* 5.5* 13.9* NA 0.50 ± 0.02

55-74 NA NA NA NA 0.52 ± 0.03

74-100 NA NA NA NA 0.62 ± 0.07

* Related to depth of 46-50 cm

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 2326.44 ± 426.19 1278.57 ± 0158.38

10-20 0725.07 ± 051.61 2008.07 ± 0400.14

20-30 0514.23 ± 100.78 2224.10 ± 0261.98

30-50 0423.84 ± 138.76 2423.49 ± 1029.03

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 10.48 6.48 14.68 0.13 0.12 0.13

Aboveground biomass type [Mg ha-1]

Herbs 13.5

Shrubs 0

Trees 0

Total standing biomass 13.5

No soil texture and no soil water contents at different matrix potentials available.
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Homegarden (HOM)

Ecosystem: Homegarden

Land-use class: Sustainable / traditional

Disturbance: Crop rotation, hand hoe, organic fertilization

Coordinates (UTM): 332480 / 9631278

Elevation: 1260 m a.s.l.

Vegetation: the reader is referred to Fernandes et al. (1985)

MAT: 20.3°C

MAP: 1336 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-23 32.1 2.8 11.5 5.79 0.77 ± 0.04

23-40 16.8 1.7 09.8 5.29 0.83 ± 0.04

40-60 09.8 1.0 09.3 5.18 1.00 ± 0.04

60-80 07.4 0.9 08.5 5.16 0.94 ± 0.02

80-100 06.4 0.7 09.2 5.22 0.96 ± 0.02

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 672.07 ± 120.94 429.59 ± 65.53

10-20 584.61 ± 164.77 380.67 ± 68.52

20-30 417.24 ± 099.83 339.98 ± 74.78

30-50 338.89 ± 083.16 326.82 ± 91.13

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 46.61 28.95 53.03 0.48 0.44 0.53

Aboveground biomass type [Mg ha-1]

Herbs 0.6

Shrubs 18.8

Trees 61.1

Total standing biomass 80.4
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Depth clay silt sand water content (θ) at different matrix potentials

[cm] [%] [%] [%] θ1.0 [%] θ1.5 [%] θ1.8 [%] θ2.0 [%] θ4.2 [%]

0-23 73 21 6 45.7 36.9 34.3 34.2 19.5

23-40 85 10 5 47.2 40.5 37.3 37.3 21.4

40-60 72 22 6 49.7 45.6 42.3 40.8 25.8

60-80 76 17 7 52.9 47.5 41.6 38.0 24.7

80-100 81 13 6 53.2 47.6 41.5 37.6 24.1
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Lower montane forest (FLM)

Ecosystem: Lower montane forest

Land-use class: Semi-natural

Disturbance: Timber, firewood

Coordinates (UTM): 303912 / 9650029

Elevation: 1920 m a.s.l.

Vegetation: Newtonia, Strombosia, Entandrophragma, Macaranga

MAT: 17.9°C

MAP: 2378 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-6 171.1 10.8 15.9 4.15 0.23 ± 0.12

6-20 080.5 06.9 11.7 4.63 0.51 ± 0.05

20-33 075.4 05.3 14.1 4.63 0.43 ± 0.01

33-65 055.2 03.9 14.3 4.93 0.58 ± 0.34

65-100 041.0 02.2 19.0 5.14 0.59 ± 0.04

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 1667.90 ± 505.54 2244.67 ± 256.95

10-20 0616.90 ± 191.84 2195.46 ± 305.44

20-30 0389.63 ± 165.15 2402.40 ± 364.52

30-50 0297.10 ± 181.92 2510.08 ± 363.49

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 28.17 21.16 45.24 0.39 0.32 0.46

Aboveground biomass type [Mg ha-1]

Herbs 1.6

Shrubs 3.8

Trees 157.1

Total standing biomass 162.5

No soil texture and no soil water contents at different matrix potentials available.
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Maize field (MAI)

Ecosystem: Maize field

Land-use class: Agricultural

Disturbance: Monoculture, pesticides, fertilization, soil erosion

Coordinates (UTM): 304818 / 9634213

Elevation: 1020 m a.s.l.

Vegetation: Zea mays, no additional information available

MAT: 22.5°C

MAP: 693 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-15 14.5 1.2 11.7 4.56 0.87 ± 0.04
* Volume 
fraction of 
stones >50%

15-35 11.0 1.0 11.2 4.38 0.57 ± 0.09*

35-65 07.5 0.7 10.2 4.32 NA

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 179.33 ± 53.09 339.14 ± 086.97

10-20 141.35 ± 37.50 382.14 ± 093.91

20-30 102.44 ± 51.51 356.88 ± 103.98

30-50 057.17 ± 40.28 303.02 ± 111.49

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 19.89 10.79 27.93 0.77 0.73 0.83

Aboveground biomass type [Mg ha-1]

Herbs 14.8

Shrubs 0

Trees 0.1

Total standing biomass 14.9

Depth clay silt sand water content (θ) at different matrix potentials

[cm] [%] [%] [%] θ1.0 [%] θ1.5 [%] θ1.8 [%] θ2.0 [%] θ4.2 [%]

0-15 31 36 33 45.2 37.5 32.0 28.6 15.4

15-35 32 28 40 45.4 36.7 32.4 30.1 16.5
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Ocotea forest (FOC)

Ecosystem: Ocotea forest

Land-use class: Natural

Disturbance: -

Coordinates (UTM): 304929 / 9653424

Elevation: 2120 m a.s.l.

Vegetation: Ocotea usambarensis

MAT: 15.6°C

MAP: 2998 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-9 224.5 13.1 17.1 3.46 0.25 ± 0.03

9-20 125.0 05.6 22.4 3.77 0.31 ± 0.01

20-40 097.5 04.1 23.6 4.20 0.37 ± 0.03

40-70 080.8 03.3 24.4 4.67 0.60 ± 0.01

70-100 038.4 01.7 23.2 4.97 0.52 ± 0.04

100-110 025.1 01.2 20.2 5.04 0.71 ± 0.01

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 3648.25 ± 684.25 2631.66 ± 520.33

10-20 1774.32 ± 710.59 3032.02 ± 546.88

20-30 1012.92 ± 483.54 3701.79 ± 671.62

30-50 0426.46 ± 359.88 3156.65 ± 543.84

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 21.26 15.40 24.29 0.22 0.13 0.24

Aboveground biomass type [Mg ha-1]

Herbs 1.3

Shrubs 7.7

Trees 376.0

Total standing biomass 385.0

No soil texture and no soil water contents at different matrix potentials available.
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Ocotea forest disturbed (FOD)

Ecosystem: Disturbed Ocotea forest

Land-use class: Natural

Disturbance: Cutting, timber; > 20 yr ago

Coordinates (UTM): 317484 / 9648259

Elevation: 2470 m a.s.l.

Vegetation: Podocarpus latifolius, (Ocotea usambarensis), Erica excelsa

MAT: 13.6°C

MAP: 1526 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-10 246.2 12.4 19.7 NA 0.22 ± 0.01

10-20 198.7 09.2 21.5 NA 0.39 ± 0.01

20-30 175.9 08.2 21.4 NA 0.35 ± 0.01

30-50 140.7 06.3 22.3 NA 0.36 ± 0.03

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 3880.15 ± 446.47 3074.36 ± 499.55

10-20 1943.32 ± 733.50 3168.86 ± 253.64

20-30 1027.61 ± 158.98 3297.33 ± 100.52

30-50 0770.26 ± 616.39 3231.06 ± 596.89

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 21.98 18.24 31.81 0.23 0.22 0.25

Aboveground biomass type [Mg ha-1]

Herbs 1.8

Shrubs 2.3

Trees 280.6

Total standing biomass 284.7

No soil texture and no soil water contents at different matrix potentials available.
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Podocarpus forest (FPO)

Ecosystem: Podocarpus forest

Land-use class: natural

Disturbance: -

Coordinates (UTM): 306582 / 9657105

Elevation: 2850 m a.s.l.

Vegetation: Podocarpus latifolius

MAT: 9.0°C

MAP: 1773 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-4 249.5 12.7 19.6 3.61 0.30 ± 0.04

4-26 176.8 08.2 21.5 3.97 0.16 ± 0.01

26-35 097.4 03.5 27.5 4.54 0.23 ± 0.03

35-60 047.5 01.6 30.4 4.81 0.72 ± 0.06

60-80 051.3 01.7 31.0 4.88 0.67 ± 0.09

80-86 042.7 01.4 30.2 4.95 0.80 ± 0.06

86-91 064.1 02.1 29.9 4.85 0.75 ± 0.05

91-98 058.1 01.9 30.3 4.90 0.88 ± 0.07

98-105 035.5 01.5 23.6 4.97 0.79 ± 0.06

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 4439.81 ± 415.87 3175.78 ± 1094.37

10-20 3013.97 ± 429.23 3507.20 ± 0963.72

20-30 1732.52 ± 643.90 3779.70 ± 0713.24

30-50 1253.25 ± 631.12 3485.25 ± 0887.24

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 15.27 12.67 23.16 0.13 0.12 0.14

No soil texture and no soil water contents at different matrix potentials available.
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Aboveground biomass type [Mg ha-1]

Herbs 3.1

Shrubs 3.6

Trees 372.0

Total standing biomass 378.7
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Podocarpus forest disturbed (FPD)

Ecosystem: Disturbed Podocarpus forest

Land-use class: Natural

Disturbance: Fire; > 20 yr ago

Coordinates (UTM): 318502 / 9650434

Elevation: 2990 m a.s.l.

Vegetation: Erica excelsa, Podocarpus latifolius

MAT: 7.5°C

MAP: 1564 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-10 276.1 14.7 18.7 3.74 0.24 ± 0.09

10-20 152.2 07.3 20.9 4.36 0.34 ± 0.03

20-30 149.0 06.9 21.6 4.46 0.36 ± 0.10

30-50 144.2 07.1 20.7 4.46 0.48 ± 0.04

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 2970.62 ± 677.79 2097.23 ± 0561.32

10-20 2059.42 ± 616.54 2046.33 ± 0463.38

20-30 1453.40 ± 450.91 2709.33 ± 0915.36

30-50 1026.67 ± 563.34 2957.82 ± 1050.16

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 17.56 12.81 24.16 0.20 0.17 0.25

Aboveground biomass type [Mg ha-1]

Herbs 3.5

Shrubs 17.2

Trees 254.5

Total standing biomass 275.3

No soil texture and no soil water contents at different matrix potentials available.
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Savannah (SAV)

Ecosystem: Savannah

Land-use class: Semi-natural

Disturbance: Cutting, grazing, fire

Coordinates (UTM): 353702 / 9634606

Elevation: 950 m a.s.l.

Vegetation: Acacia, Terminalia, Grewia, Combretum

MAT: 22.3°C

MAP: 536 mm yr-1

Depth C N C/N pH Bulk density

[cm] [mg C g-1] [mg N g-1] [-] [-] [g cm-3]

0-6 34.6 2.4 14.3 5.62 0.76 ± 0.08

6-24 17.0 1.4 12.6 5.02 0.86 ± 0.04

24-41 10.8 1.1 10.1 4.96 1.18 ± 0.08

41-54 08.7 0.9 09.3 5.09 1.07 ± 0.12

54-83 08.2 0.8 10.2 5.14 1.14 ± 0.07

83-101 07.2 0.8 08.5 5.47 1.22 ± 0.08

Depth Cmic Csol

[cm] [mg kg-1] [mg kg-1]

0-10 512.45 ± 125.17 179.75 ± 28.58

10-20 306.60 ± 064.47 190.50 ± 25.73

20-30 182.92 ± 051.30 194.81 ± 17.67

30-50 118.25 ± 031.44 192.04 ± 14.38

Depth Soil CO2 efflux Specific metabolic quotient (qsCO2)

Median Quantile25% Quantile75% Median Quantile25% Quantile75%

[cm] [mg CCO2 m-2 h-1] [mg CCO2 g-1 Cmic h-1]

0-18 22.27 10.65 42.43 0.34 0.31 0.40

Aboveground biomass type [Mg ha-1]

Herbs 5.0

Shrubs 6.4

Trees 3.6

Total standing biomass 15.0
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Depth clay silt sand water content (θ) at different matrix potentials

[cm] [%] [%] [%] θ1.0 [%] θ1.5 [%] θ1.8 [%] θ2.0 [%] θ4.2 [%]

0-6 66 32 2 55.4 44.9 36.4 31.5 17.9

6-24 74 23 2 53.7 47.9 39.1 34.0 21.3

24-41 79 19 2 54.3 49.7 40.8 35.4 22.8

41-54 81 17 2 52.1 49.6 43.3 38.6 23.9

54-83 79 19 2 57.1 52.5 43.9 38.6 24.7

83-101 80 18 2 50.9 48.6 43.5 40.3 25.0
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