
ROBUST UPDATED MPC SCHEMES

Von der Fakultät für Mathematik, Physik und
Informatik

der Universität Bayreuth

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von

M.Sc. Vryan Gil Palma
aus Caloocan, Philippinen

1. Gutachter: Prof. Dr. Lars Grüne
2. Gutachter: Prof. Dr. Matthias Gerdts

Tag der Einreichung: 23. Februar 2015
Tag des Kolloquiums: 21. Mai 2015

This research project is supported by the European Union under the 7th Frame-
work Programme FP7-PEOPLE-2010-ITN, Grant agreement number 264735-
SADCO.

ii

Abstract

We consider model predictive control (MPC) approaches to approximate the
solution of infinite horizon optimal control problems (OCPs) for perturbed
nonlinear discrete time systems. MPC provides an algorithmic synthesis of an
approximately optimal feedback law by iteratively solving finite horizon OCPs.
The optimization problem to be solved at each time step results in a high
computational expense and computational latency. As computationally costly
MPC controllers may demand implementation on highly powerful computing
systems to meet real-time requirements, we address the challenge of developing
algorithms that are less computationally demanding without sacrificing the
control performance to cater to systems with fast dynamics.
In using the multistep MPC strategy, we reduce the number of optimizations
to be performed hence considerably lowering the computational load. However,
this approach comes with the disadvantage of reduced robustness of the closed-
loop solution against perturbations. We introduce the updated multistep MPC
where an update is performed to the multistep MPC based on re-optimizations
on shrinking horizons giving a straightforward approach to provide a coping
mechanism to counteract the perturbations. Robust performance improvements
due to re-optimization are rigorously quantified. This is achieved by analyzing
the open-loop control strategy and the shrinking horizon strategy on finite horizon
OCPs for systems under perturbations where potential performance improvement
brought about by the re-optimization is quantified. This analysis of potential
benefits extends to the setting where the moving horizon MPC strategy is used
for the infinite horizon setting.
Lastly, we consider the sensitivity-based multistep MPC which is a particular
MPC variant that allows further savings in computational load by using sensitivity
analysis. The sensitivities used to update the multistep MPC can be computed
efficiently by exploiting the matrix structures resulting from the MPC problem
formulation. For this scheme, we show that the sensitivity-based control is a
linear approximation of the re-optimization-based control and therefore, the
analysis on the performance and stability properties of the updated multistep
MPC can be carried over to the sensitivity-based multistep MPC.
We compare the MPC schemes and confirm our theoretical results through
numerical examples. We also examine the control performance and computing
complexity requirements of the schemes and analyze their potential and suitability
to be implemented on embedded systems with limited computing power.

Key words: optimal control, model predictive control, robustness against pertur-
bations, nonlinear programming, sensitivity analysis

iii

Zusammenfassung

Wir untersuchen Modellprädiktive Regelungsalgorithmen (MPC Algorithmen)
zur Approximation von Optimalsteuerungsproblemen (OCPs) auf unendlichem
Zeithorizont für gestörte nichtlineare diskrete dynamische Systeme. MPC liefert
ein approximativ optimales Feedback durch die iterative Lösung von OCPs auf
endlichem Zeithorizont. Das in jedem Zeitschritt zu lösende Optimierungsproblem
ist sehr rechenaufwändig und führt zu Verzögerungen. Der hohe Rechenaufwand
von MPC Algorithmen erfordert große Rechenkapazitäten um Echtzeitanwen-
dungen gerecht zu werden. Diese Arbeit konzentriert sich auf die Entwicklung
von Algorithmen mit reduziertem Rechenaufwand, jedoch ohne die Güte der
Regelung zu beeinträchtigen, um damit die Anwendbarkeit auf Systeme mit
schneller Dynamik zu gewährleisten.
Durch die Anwendung von Mehrschritt-MPC reduzieren wir die Anzahl der zu
lösenden Optimierungsprobleme und damit den Rechenaufwand signifikant. Aller-
dings verschlechtert dieser Ansatz die Robustheit des geschlossenen Regelkreises
bezüglich Störungen. Wir präsentieren einen Aktualisierten-Mehrschritt-MPC
Algorithmus, bei dem im Gegensatz zum Mehrschritt-MPC in jedem Schritt das
zugrundeliegende Optimierungsproblem auf einem verkürzten Horizont gelöst
wird. Dies liefert einen direkten Ansatz, dem Einfluss von Störungen entgegen
zu wirken. Die Robustheit und Performanceverbesserung des Verfahrens dank
der Reoptimierung wird mathematisch bewiesen. Die Analyse erfolgt durch den
Vergleich der „Open-loop“ Strategie und der schrumpfenden Horizont Strate-
gie, angewandt auf OCPs mit endlichem Zeithorizont und gestörten Systemen.
Hierbei wird die mögliche Performancesteigerung durch die Reoptimierung her-
ausgestellt und quantifiziert. Die Analyse und die möglichen Vorteile übertragen
sich dann auf MPC Verfahren auf unendlichem Zeithorizont.
Der Sensitivitätsbasierte-Mehrschritt-MPC Algorithmus liefert eine weitere Redu-
zierung des Rechenaufwands. Die Sensitivitäten, die zum Update des Mehrschritt-
MPC notwendig sind, können effizient durch Ausnutzung der Matrixstruktur
der MPC Formulierung berechnet werden. Durch eine Analyse der Sensitivitä-
ten der zugrundeliegenden Dynamik zeigen wir, dass der sensitivitätsbasierte
Regler eine lineare Approximation des reoptimierungsbasierten Reglers darstellt.
Wir weisen nach, dass sich daher die Stabilitäts- und Performanceeigenschaften
des Aktualisierten-Mehrschritt-MPC auf den Sensitivitätsbasierten-Mehrschritt-
MPC übertragen lassen.
Die unterschiedlichen MPC Algorithmen werden anhand von Beispielen mitein-
ander verglichen und die theoretischen Resultate dadurch verifiziert. Zusätzlich
untersuchen wir die Performance der Verfahren sowie den notwendigen Rechen-
aufwand zur Umsetzung der Algorithmen. Zur Analyse des Rechenaufwands
wird insbesondere ihr Potenzial für die Anwendung für eingebettete Systeme mit
beschränkter Rechenleistung untersucht.

Stichwörter: Optimalsteuerung, Modellprädiktive Regelung, Robustheit gegen
Störungen, nichtlineare Optimierung, Sensitivitätsanalyse

v

Contents

Abstract (English/Deutsch) iii

Acronyms ix

Introduction 1

1 MPC setting and preliminaries 9
1.1 Setting . 9
1.2 Basic definitions and theorems 11
1.3 MPC algorithms . 12

2 MPC stability and performance 15
2.1 Nominal stability and performance 15
2.2 Perturbed systems, robust stability and performance 21

3 Benefits of re-optimization on finite horizon OCPs 25
3.1 Control algorithms for finite horizon OCPs 25
3.2 Nominal and perturbed trajectories 26
3.3 Re-optimizing versus not re-optimizing 28
3.4 Improvement due to re-optimization 33
3.5 Numerical example: a linear quadratic problem 36

4 Multistep and updated multistep MPC schemes 41
4.1 Properties due to perturbations and re-optimizations 41

4.1.1 Estimates involving VN (xm,m,0) and VN (xm,m,m) 42
4.1.2 Estimates involving uniform continuity 42
4.1.3 Counterpart of Proposition 2.1.7 45

4.2 The perturbed versions of Pα . 45
4.3 Asymptotic stability and performance 50
4.4 Numerical example: inverted pendulum 55

5 NLP and sensitivity analysis 59
5.1 Basic definitions and theorems 59
5.2 Unconstrained optimization . 61
5.3 Optimization methods requiring derivatives 62
5.4 Constrained optimization and SQP 64

5.4.1 Equality constrained optimization problems 69
5.4.2 Inequality constrained optimization problems 70
5.4.3 Active-set sequential quadratic programming 71

5.5 Sensitivity analysis . 71

vii

Contents

6 Sensitivity-based multistep MPC 77
6.1 Design of the scheme . 77

6.1.1 MPC OCP as a parametric NLP 77
6.1.2 Resulting matrix structures 78
6.1.3 Solving PN (p) by the active-set SQP strategy 79
6.1.4 Incorporating sensitivity updates to the m-step MPC al-

gorithm . 81
6.1.5 Computing sensitivities and exploiting matrix structures . 83

6.2 Changes in active constraints set 85
6.3 Stability and performance analysis of SBM MPC 86

7 Numerical examples 97
7.1 Case study: inverted pendulum 97
7.2 Case study: DC-DC converter . 100

7.2.1 Design of the controller 102
7.2.2 Discretization . 102
7.2.3 MPC problem formulation 103
7.2.4 Matrix structures . 103
7.2.5 Implementing m-step and SBM MPC 105
7.2.6 Numerical results . 105

Bibliography 113

viii

Acronyms

KKT Karush-Kuhn-Tucker 66

LICQ linear independence constraint qualification 65
LP linear programming 63

MPC model predictive control 1

NLP nonlinear programming 62

OCP optimal control problem 1

QP quadratic programming 63

SBM sensitivity-based m-step 80
SOSC Second-order sufficient conditions 66
SQP sequential quadratic programming 69

ix

Introduction

Model predictive control
The recent decades have seen a rapid development inmodel predictive control
(MPC) and its various aspects. It has garnered increased attention as it has
proven to be an important tool in the control of nonlinear systems in modern
technological applications. MPC is a feedback control design strategy based on
the solution, at every sampling instant, of an optimal control problem (OCP)
over a chosen horizon. In this optimization-based control technique, an OCP is
solved at each time step to determine a sequence of input moves that controls
the current and future behavior of a physical system in an optimal manner.
Typically for an MPC scheme, after applying the first element of the optimal
sequence of inputs, the fixed optimization horizon is shifted by one sampling
time into the future and the procedure is repeated.

k k + N

x0 = x(k)

sampling instant

past controls

predicted state trajectory

first element of the optimal control sequenceco
n
tr

ol
&

st
at

e
tr

a
je

ct
or

y

optimization horizon N

•

Figure 0.1: The MPC scheme where x(k) is used as the initial value of the OCP
solved at instant k. Piecewise constant control is used for the discretized system.

Conditions needed so that the MPC feedback law asymptotically stabilizes
the system have been well-understood in the literature. A clever approach in
ensuring stability of MPC schemes is based on imposing stabilizing terminal
conditions, see, e.g., survey paper Mayne et al. [47] and monographs Rawlings
and Mayne [57] and Grüne and Pannek [36, Chapter 5]. Such terminal conditions,
however, are not necessary conditions for achieving stability. In this thesis, we

1

Introduction

consider MPC schemes without terminal conditions. Stability for MPC schemes
without terminal conditions are well-studied and developed in several works, e.g.,
Alamir and Bornard [1], Primbs and Nevistić [54], Jadbabaie and Hauser [39],
Grimm et al. [31], Tuna et al. [65], Grüne [32], Grüne et al. [37] and Altmüller
et al. [3].

Perturbed systems and robust stability

The explicit model of the system used to predict its future behavior is subject to
modeling uncertainty and noise. In addition, the actual system itself is subject
to external disturbances. Due to these perturbations, the predicted states and
the measured states, obtained once the computed control actions are applied,
typically deviate from each other.

Owing to its feedback nature, MPC exhibits certain inherent robustness proper-
ties for the perturbed setting, despite performing optimization in each iteration
only for the nominal model, i.e., without taking into account perturbations.
Robust stability refers to the capability of the system to maintain stability
and performance specifications for a specified range of uncertainty (see survey
paper Bemporad and Morari [7] on robust MPC).

Real-time optimization
When the current system state is measured, a control strategy that minimizes a
certain cost must be computed instantaneously, i.e., online, while the system is
operating and evolving. Solving an OCP to determine such an optimal control
strategy can be very computationally intensive since this usually includes an
iterative scheme solved until a convergence criterion is fulfilled. The high com-
putational expense results in computational latency or delay. As depicted
in Figure 0.2, where at time k the state is measured as x(k). Suppose solving
the OCP takes δ units of time. This means we obtain the optimal control only
at time k + δ. However, in the case of a considerable delay δ, the system has
already evolved by time k + δ where the behavior of the system may have by
then changed much.

For this reason, MPC used to be a feasible option only for systems with slow
dynamics where there is sufficient time for solving the optimization problem
between sampling instants (see history and overview paper Qin and Badgwell [55,
56] on industrial MPC developments).

Hardware implementation

Computationally costly MPC algorithms used to be implemented using highly
powerful computing systems (e.g., servers, desktops, industrial PCs) in order to
meet real-time requirements.

Along with the development of sophisticated algorithms, digital electronics have
advanced during the last years. Nowadays, modern embedded systems feature
high numerical computing power (e.g., 1GFlops for each core on an ARM Cortex-
A9) with a very low power consumption (<1Watt) and cost (e). This allows the
implementation of computationally heavy control schemes for fast dynamical
systems at affordable cost (see, e.g., Jerez et al. [40] or Kerrigan [42]). This also
allows the feasibility of high performance control techniques to new application

2

k − 1 k k + 1 k + 2 k + 3

sampling instant

st
a
te

tr
a
je
ct
or
y

δ δ

•

•

•

•

•

•

•

•

•

•

Figure 0.2: The computational delay δ due to the online optimization in imple-
mentating MPC.

domains demanding tight real-time requirements.

Yet for a fixed price and size of an embedded hardware which determine its
capability and limitation, a researcher-designer still faces a trade-off decision
between low computing cost and high performance.

Existing real-time capable MPC schemes in the literature

Many invaluable advances on MPC are geared towards the suitability of MPC for
time-critical systems wherein sampling frequencies are higher. The work Binder
et al. [12] enumerates primary considerations in designing fast and real-time
capable MPC. One may need to determine whether or not the OCP can be
solved within a time requirement known a-priori. To this end, one may compute
offline or in advance certain quantities not necessarily needed to be computed
online to reduce the delay. One may also use suitable approximations for the
feedback or exploit similarities in the structures of OCPs being solved.

We briefly enumerate some of the studies from the large body of work on these
MPC developments that serve as motivation to the study we present in this
thesis.

The work Diehl [18] along with related works, e.g., [22, 21, 20, 19] presents a
real-time iteration technique based on a direct method (i.e., first discretize, then
optimize) within a multiple shooting discretization (see Bock and Plitt [14]) and
sequential quadratic programming (see optimization textbooks, e.g., [49, 15, 11])
framework. Initializing the current OCP by the state and control obtained from
the previous OCP, taking advantage of the fact that the OCPs are related by
a parameter that enters the problems linearly, results in the so-called initial
value embedding of the OCP into the manifold of perturbed OCPs. This allows
approximating the OCP in advance without the knowledge of the actual initial
value. In addition, fast solution of the OCP is provided by not iterating the
sequential quadratic programming to convergence. Furthermore, the iteration
scheme involves a preparation phase – a phase where functions and derivatives
that do not require the information of the current state are already prepared so

3

Introduction

the moment the current state is revealed, the remaining computation needed
to be undertaken becomes minimal – and a considerably shorter feedback phase
allowing to reduce the delay.

Bock et al. [13] proposes alternatives to the mentioned preparation phase by
using multilevel updates to the components of the quadratic programming.

The works Büskens and Maurer [17], Maurer and Pesch [46], Pesch [53], Büskens
and Gerdts [16] and Gerdts [25] take advantage of neighboring optimal solutions
based on parametric sensitivities. The analysis on the impact of a change in a
design parameters allows for updates on the control used in open-loop. Such
updates are then used in the context of MPC in Würth et al. [68], Zavala and
Biegler [70] and Yang and Biegler [69] to address the demands of real-time
optimization. Since the evolution of the system is affected by disturbances and
uncertainties, corrective updates of the nominal control are applied assuming
the mentioned perturbations are small enough.

The mentioned works [70, 69] also perform computation in the background
leaving the remaining tasks to be computed online inexpensive. It exploits
the predictive capabilities of the dynamic model to predict the future state
of the plant and solve a predicted problem in background between sampling
times. Once the current state becomes available at the next sampling time, the
controller responds to uncertainties through the online corrective update of the
predicted solution. The approach uses simultaneous collocation (see Biegler [10])
and interior point solver (see textbooks on optimization, e.g., [49, 15, 11]).

Another straightforward approach to cut back on computation expense is by using
the multistep MPC strategy (refer, e.g., to already mentioned works [32, 37])
the computational load can be lowered considerably by reducing the number of
optimizations performed. For time instants which are not multiple of m, the
control is immediately available.

Robust updated MPC schemes
Motivated by the prevailing themes from the discussion above, namely, main-
taining robustness and reducing computational load, we propose and analyze in
this thesis MPC variants fulfilling these objectives and present rigorous proofs
on the robust stability and performance of these schemes.

For a system subject to perturbations, the multistep feedback does not allow the
controller to respond, for an extended period of time, against the deviation of the
real state to the predicted state. Hence, multistep feedback laws are in general
considerably less robust against perturbations as opposed to the standard MPC
scheme. To accomplish the goals of robustifying the scheme while keeping the
computational cost low, we consider and investigate updating strategies on the
multistep scheme.

The first approach is the updated multistep MPC which uses re-optimizations
on shrinking horizons as a straightforward approach to provide a coping mecha-
nism to counteract the perturbations. Our analysis of this scheme builds upon
the study of finite horizon OCPs for systems under perturbations wherein we
compare the so-called nominal control strategy and the shrinking horizon strategy.
Potential performance improvement brought about by the re-optimization is
quantified using certain moduli of continuity of value functions. Switching the
attention back to the original problem, i.e., the infinite horizon OCP, we use

4

obtained expressions depending on moduli of continuity to establish improved
robust stability and performance of the updated multistep MPC compared to
the non-updated one.

Conceptually, the idea of the shrinking horizon strategy on finite horizon OCPs
has strong similarities to sensitivity-based techniques for open-loop control used
in order to cope with perturbations in the aforementioned works [17, 46, 53,
16, 25]. In the sensitivity-based techniques for open-loop control, instead of a
full re-optimization, only an approximate update of the optimal control based
on updated state information is performed. This idea can also be used in
moving horizon MPC in order to reduce the number of full optimizations to
fulfill the requirements of real-time optimization. We call the second approach
the sensitivity-based multistep MPC. The results on the stability and
performance analysis of the updated MPC can be extended to this case owing
to the fact that the re-optimizations are replaced by sensitivity-based updates
viewing the latter approach as an approximation to the former.

Various other updated MPC schemes exist in the literature aside from those
whose updates are derived from sensitivity analysis as in [68, 70, 69]. Our
approach has similarities to the abstract updates referred to in Pannek et al. [52]
in the sense that updates, in the setting of MPC without stabilizing terminal
conditions, are applied in order to cope with the nominal and real model disparity.
However, while in [52] the main result states that reasonable updates do not
negatively affect stability and performance, our main result in this thesis shows
that the shrinking horizon updates of the updated multistep MPC and the
particular updates of the sensitivity-based multistep MPC both do indeed allow
for improved stability and performance estimates compared to non-updated
MPC.

In implementing these proposed MPC variants in real-time, as implemented
in the literature mentioned above, one may take advantage of the separation
principle among the online (quantities computed immediately when the state
measurement becomes available), background (quantities computed shortly before
the state measurement becomes available) and offline (quantities computed even
before the process starts) computations. This, however, is beyond the scope of
the application we present in this thesis and will be left for future direction.

Contribution and overview of the thesis
The thesis deals with the main problem of solving infinite horizon OCPs for
perturbed nonlinear systems by MPC. MPC provides an algorithmic synthesis
of an approximately optimal feedback law by iteratively solving finite horizon
OCPs. This work is organized as follows.

Chapter 1 defines the setting and gives basic tools needed for the MPC analysis.
We introduce three MPC algorithms that serve as fundamental algorithms for
our analysis, namely, the standard MPC, the multistep MPC and the updated
multistep MPC.

We provide in Chapter 2 some existing results on the nominal stability of MPC
schemes without terminal conditions. We then introduce the perturbed system
setting and present conditions that an MPC variant needs to satisfy to yield
robust stability. Since for perturbed systems asymptotic stability is often too
strong a property to expect, in this thesis, we develop instead our results using

5

Introduction

the notion of practical asymptotic stability.

Chapter 3 brings a focus on finite horizon problems. We compare three different
settings: the open-loop controller for the nominal system, the nominal open-loop
controller applied to the perturbed system and the shrinking horizon controller, i.e.,
the controller for which at each time step wherein perturbation is experienced,
we perform re-optimization. We conduct an analysis on the benefits of re-
optimization under perturbations by comparing the three settings and discussing
concepts of controllability and stability.

♣ Despite the long existence of these methods, we are not aware of rigorous
results which quantify the benefit of the re-optimization in terms of the objective
of the optimal control problem in the presence of persisting perturbations. While
many papers address feasibility issues, results on the performance of the controller
and its potential improvement due to re-optimization are to the best of our
knowledge missing up to now. This gap is what we intend to fill in this chapter.
A preliminary version of the results we provide in Chapter 3 is published in
Grüne and Palma [34].

Chapter 4 transitions back to the infinite horizon problem whose solution is
approximated by MPC. We analyze the nominal multistep MPC, the perturbed
multistep MPC and the updated multistep MPC and use corresponding properties
from the three settings studied in Chapter 3.

♣ One of the key challenges when passing from finite to infinite horizon is
that typically asymptotic stability of the approximately optimal solution must
be established before we can talk about approximately optimal performance.
Rigorously quantifiable robust asymptotic stability and performance estimates
are presented in this chapter. As a main result, this chapter shows that the
shrinking horizon updates of the updated multistep MPC results in improved
stability and performance estimates in comparison to the non-updated MPC. A
preliminary version of the results we provide in Chapter 4 is published in Grüne
and Palma [33].

Although one can observe that the updated multistep MPC is already compu-
tationally less expensive than the standard MPC with re-optimization in full
horizon, aiming to further cut down computational cost while maintaining robust-
ness, we propose a scheme approximating the updated multistep scheme. To this
end, we first review in Chapter 5 prerequisite results on nonlinear programming
and sensitivity analysis.

In Chapter 6, we introduce the sensitivity-based multistep MPC which is an MPC
variant that provides corrective updates to the multistep MPC computed using
the magnitude of the perturbations, i.e., the deviation between the predicted
and measured current states, and the sensitivities of the solution of the OCP
with respect to current state acting as a perturbed parameter. The idea of
this scheme which allows further reduction in terms of computational load is
published in Palma and Grüne [50].

♣ Compared to existing MPC approaches that use sensitivity analysis, the
sensitivity-based scheme we consider in this thesis uses multistep control with
corrective updates yielding the resulting control to be a linear approximation of
the control obtained from re-optimization as in the updated MPC strategy. As
a consequence, we show that the performance and stability of the updated MPC
lends itself to this new variant up to some uncertainty range. Although the
updated multistep MPC still gives the best performance, the sensitivity-based

6

multistep MPC, however, has better robustness properties than the nonupdated.

Implementation examples and comparisons of the MPC variants that we tackle in
the thesis are presented in Section 4.4 and in Chapter 7 validating our theoretical
results.

♣ An implementation example in Chapter 7 shows that the sensitivity-based
multistep MPC fulfills both control performance and low computing complexity
requirements and investigates its potential for controller design on embedded
computing systems. A preliminary version of this study is published in Palma,
Suardi and Kerrigan [51].

7

1 MPC setting and
preliminaries

1.1 Setting
We consider the nonlinear discrete time control system

x(k + 1) = f(x(k), u(k)), k ∈ N (1.1)

where x is the state and u is the control value. Let the normed vector spaces
X and U be state and control spaces, respectively. For a given state constraint
set X and control constraint sets U(x), x ∈ X, we require x ∈ X ⊆ X and
u ∈ U(x) ⊆ U . The notation xu(·, x0) (or briefly xu(·)) denotes the state
trajectory when the initial state x0 is driven by the control sequence u(·). We
refer to (1.1) as the nominal model. In Section 2.2, we extend this model by
incorporating perturbations.

A time-dependent feedback law µ : X × N → U yields the feedback controlled
system

x(k + 1) = f(x(k), µ(x(k̃), k)) (1.2)

Here, the next state at time instant k + 1 depends on the current state at
time k and the feedback value µ(x(k̃), k), which enters the system as a control
value. The feedback value, in turn, depends on the system state x(k̃) at a time
k̃ = k̃(k) ≤ k which may be strictly smaller than k. We refer to (1.2) as the
closed-loop system.

MPC is motivated by the following problem. We aim to find a feedback law µ
that approximately solves the infinite horizon OCP

min
u(·)∈U∞(x0)

J∞ (x0, u(·)) P∞(x0)

where the objective function is given by

J∞ (x0, u(·)) :=

∞∑
k=0

` (xu(k, x0), u(k))

which is an infinite sum of nonnegative stage costs ` : X × U → R+
0 along

the trajectory with x0 as the initial value steered by the control sequence
u(·) ∈ U∞(x0). This type of objective is often related to feedback stabilization
problems which will be detailed in Section 2.1. The objective is minimized over

9

Chapter 1. MPC setting and preliminaries

all infinite admissible control sequences, i.e., all control sequences u(·) satisfying

U∞(x0) :=

{
u(·) ∈ U∞

∣∣∣ xu(k + 1, x0) ∈ X and
u(k) ∈ U(xu(k, x0)) for all k ∈ N0

}
where U∞ denotes the set of all infinite admissible control sequences. Its optimal
value function is given by

V∞(x0) := inf
u(·)∈U∞(x0)

J∞ (x0, u)

and the infinite horizon closed-loop performance of a given time-dependent
feedback µ is given by

Jcl
∞(x0, µ) :=

∞∑
k=0

`
(
xµ(k, x0), µ(xµ(k̃, x0), k)

)
(1.3)

which is the infinite sum of costs along the trajectory driven by the feedback law.
Given an initial state, we would like to solve the infinite horizon optimal control
problem and obtain an optimal control in feedback form, i.e., to find a feedback
µ with Jcl

∞(x0, µ) = V∞(x0). In the general nonlinear setting, however, this
problem is often computationally intractable, so we circumvent it by considering
the finite horizon minimization problem

min
u(·)∈UN (x0)

JN (x0, u(·)) PN (x0)

for the synthesis of the feedback law µ to be discussed in Section 1.3. The
objective function is given by

JN (x0, u(·)) :=

N−1∑
k=0

` (xu(k, x0), u(k)) (1.4)

representing a cost associated with an initial state x0, a control sequence u(·)
and optimization horizon N . The minimization is performed over all control
sequences u(·) ∈ UN (x0) where

UN (x0) :=

{
u(·) ∈ UN

∣∣∣∣ xu(k + 1, x0) ∈ X and
u(k) ∈ U(xu(k, x0)) for all k = 0, . . . , N − 1

}
where UN denotes the set of all finite admissible control sequences with N
elements.

We define the optimal value function associated with the initial state value x0 by

VN (x0) := inf
u(·)∈UN (x0)

JN (x0, u(·))

In this work, we assume there exists a (not necesssarily unique) control sequence
u∗(·) ∈ UN (x0) satisfying VN (x0) = JN (x0, u

∗(·)), which is called the optimal
control sequence. Alternatively, statements could be formulated using ε-optimal
control sequences, at the expense of a considerably more technical presentation.

10

1.2. Basic definitions and theorems

1.2 Basic definitions and theorems
An important concept that we will be using in our analysis is the dynamic
programming principle (introduced in Bellman [5], see also, e.g., [9, 8]). It relates
the optimal value functions of OCPs of different optimization horizon length for
different points along a trajectory.

Theorem 1.2.1. (Dynamic programming principle) Let x0 be an initial state
value. Let u∗(0), u∗(1), . . . , u∗(N − 1) be an optimal control sequence for PN (x0)
and xu∗(0) = x0, xu∗(1), . . . , xu∗(N) denote the corresponding optimal state
trajectory. Then for any i, i = 0, 1, . . . , N − 1, the control sequence u∗(i), u∗(i+
1), . . . , u∗(N − 1) is an optimal control sequence for PN−i(xu∗(i)).

Next, we define the following classes of comparison functions.

Definition 1.2.2.

i. A function ρ : R+
0 → R+

0 is a K-function if it is continuous, strictly
increasing and ρ(0) = 0.

ii. ρ is a K∞-function if it is a K-function that is unbounded.

iii. A function β : R+
0 × R+

0 → R+
0 is a KL-function if it is continuous and if,

for each r ≥ 0, β(r, ·) is decreasing and satisfies limt→∞ β(r, t) = 0, and,
for each t ≥ 0, β(·, t) ∈ K.

iv. A function β : R+
0 × R+

0 → R+
0 is a KL0-function if it is continuous and if,

for each r ≥ 0, β(r, ·) is decreasing and satisfies limt→∞ β(r, t) = 0, and,
for each t ≥ 0, either β(·, t) ∈ K or β(·, t) ≡ 0 .

We also consider the following notion of continuity.

Definition 1.2.3. Consider normed vector spaces Z and Y , a set A ⊂ Z and
an arbitrary set W

i. A function φ : Z → Y is said to be uniformly continuous on A if there
exists a K-function ω such that for all z1, z2 ∈ A

‖φ(z1)− φ(z2)‖ ≤ ω (‖z1 − z2‖)

ii. A function φ : Z × W → Y is said to be uniformly continuous on A
uniformly in v ∈ W if there exists a function ω ∈ K such that for all
z1, z2 ∈ A and all v ∈W

‖φ(z1, v)− φ(z2, v)‖ ≤ ω (‖z1 − z2‖)

The function ω is called the modulus of continuity.

Similar to that found in [57, Appendix C], the following theorem gives sufficient
conditions for which the optimal value function is a uniformly continuous function
without state constraints, i.e., X = X = Rn.

Theorem 1.2.4. (Uniform continuity of VN (·)) Consider X = X and U(x) ≡ U
and suppose that JN : X × UN → R+

0 is uniformly continuous on a set S ⊂ X
uniformly in u(·) ∈ UN . Then VN (·) is uniformly continuous on S.

11

Chapter 1. MPC setting and preliminaries

Proof. From the assumptions, there exists ωJN ∈ K such that

‖JN (x1, u(·))− JN (x2, u(·))‖ ≤ ωJN (‖x1 − x2‖) (1.5)

for all x1, x2 ∈ S and all u(·) ∈ UN . Since (1.5) holds for any choice of u(·) ∈ UN ,
let ε > 0 and suppose u2

ε(·) is an ε-optimal control for PN (x2). This implies

VN (x1)− VN (x2) ≤ JN (x1, u
2
ε(·))− VN (x2)

≤ JN (x1, u
2
ε(·))− JN (x2, u

2
ε(·)) + ε

≤ ωJN (‖x1 − x2‖) + ε.

Likewise, for an ε-optimal control u1
ε(·) we have

VN (x2)− VN (x1) ≤ JN (x2, u
1
ε(·))− VN (x1)

≤ JN (x2, u
1
ε(·))− JN (x1, u

1
ε(·)) + ε

≤ ωJN (‖x2 − x1‖) + ε.

Since ε > 0 is arbitrary,

‖VN (x1)− VN (x2)‖ ≤ ωJN (‖x1 − x2‖)

holds for all x1, x2 ∈ S which implies that VN (·) is uniformly continuous on S.

Particularly, for all x1, x2 ∈ S

‖VN (x1)− VN (x2)‖ ≤ ωVN (‖x1 − x2‖)

with ωVN ≤ ωJN .

In the presence of state constraints, conditions under which a similar result holds
become more technical, see, e.g., [36, Proposition 8.40]. We also note that the
modulus of continuity ωVN represents the sensitivity of the optimal value function
to changes in the parameter x of the problem PN (x). The proof of the theorem
shows that ωVN is less than or equal to ωJN , hence we can expect that ‖VN (x1)−
VN (x2)‖ cannot be that much larger than ‖JN (x1, u(·))− JN (x2, u(·))‖ and will
typically be smaller. We will further investigate this relation in Chapter 3.

1.3 MPC algorithms
In this section, we explain how the finite horizon OCP PN (x0) can be used in
order to construct an approximately optimal feedback law for the infinite horizon
problem P∞(x0).

The ’usual’ or ’standard’ MPC algorithm proceeds iteratively as follows.

Algorithm 1.3.1. (Standard MPC)

(1) Measure the state x(k) ∈ X of the system at time instant k

(2) Set x0 := x(k) and solve the finite horizon problem PN (x0). Let u∗(·) ∈
UN (x0) denote the optimal control sequence and define the MPC feedback
law

µN (x(k), k) := u∗(0)

12

1.3. MPC algorithms

(3) Apply the control value µN (x(k), k) to the system, set k := k + 1 and go
to (1)

This iteration, also known as a receding horizon strategy, gives rise to a non-
time-dependent feedback µN which — under appropriate conditions, see Section
2.1 — approximately solves the infinite horizon problem. It generates a nominal
closed-loop trajectory xµN (k) according to the rule

xµN (k + 1) = f(xµN (k), µN (xµN (k), k)) (1.6)

In this work, we consider two other variants of MPC controllers. First, we
consider multistep or m-step feedback MPC (see [32]), m ∈ {2, . . . , N − 1}
in which the optimization in Step (2) is performed less often, by applying the
first m elements of the optimal control sequence obtained after optimization.
Algorithm 1.3.2. (Multistep or m-step MPC)

(1) Measure the state x(k) ∈ X of the system at time instant k

(2) Set x0 := x(k) and solve the finite horizon problem PN (x0). Let u∗(·) ∈
UN (x0) denote the optimal control sequence and define the time-dependent
m-step MPC feedback

µN,m(x(k), k + j) := u∗(j), j = 0, . . . ,m− 1 (1.7)

(3) Apply the control values µN,m(x(k), k+ j), j = 0, . . . ,m−1, to the system,
set k := k +m and go to (1)

Remark 1.3.3. Observe that through the scheme, the loop is only closed every
m-steps, i.e., the system runs in open-loop within m-steps before optimization is
performed again to compute a new set of controls.

Here, the value m is called the control horizon. The resulting nominal closed-loop
system is given by

xµN,m(k + 1) = f(xµN,m(k), µN,m(xµN,m(bkcm), k)) (1.8)

with k̃(k) = bkcm for the notation introduced in (1.2) where bkcm denotes the
largest integer multiple of m less than or equal to k. The motivation behind
considering m-step MPC is that the number of optimizations is reduced by the
factor 1/m, thus the computational effort decreases accordingly.

Second, we also consider the updated multistep feedback MPC which,
similar to the usual MPC, entails performing optimization every time step, but
unlike the standard MPC, wherein we perform optimization over full horizon N ,
we re-optimize over shrinking horizons.
Algorithm 1.3.4. (Updated m-step MPC)

(1) Measure the state x(k) ∈ X of the system at time instant k

(2) Set j := k−bkcm, xj := x(k) and solve the finite horizon problem PN−j(xj).
Let u∗(·) ∈ UN−j(x0) denote the optimal control sequence and define the
updated MPC feedback

µ̂N,m(x(k), k) := u∗(0) (1.9)

13

Chapter 1. MPC setting and preliminaries

(3) Apply the control value µ̂N,m(x(k), k) to the system, set k := k + 1 and
go to (1)

The nominal updated multistep MPC closed loop is then described by

xµ̂N,m(k + 1) = f(xµ̂N,m(k), µ̂N,m(xµ̂N,m(k), k)) (1.10)

We note that due to the dynamic programming principle in Theorem 1.2.1, in the
nominal setting the closed loop generated by the multistep feedback (1.8) and
by the updated multistep feedback MPC closed-loop system (1.10) coincide. For
this reason, the use of Algorithm 1.3.4 only becomes meaningful in the presence
of perturbations. These will be formalized in Section 2.2.

In presence of perturbations, we expect the updated multistep feedback to provide
more robustness, in the sense that stability is maintained for larger perturbations
and performance degradation is less pronounced as for the non-updated case.
This will be rigorously analyzed in Chapter 4. Compared to standard MPC, the
optimal control problems on shrinking horizon needed for the updates are faster
to solve than the optimal control problems on full horizon. Moreover, for small
perturbations the updates may also be replaced by approximative updates in
which re-optimizations are approximated by a sensitivity approach, leading to
another significant reduction of the computation time. This variant is analyzed
in Chapter 6.

14

2 MPC stability and
performance

This chapter provides the fundamental theorems that will serve as the basis
of the analysis that we will conduct on various MPC schemes. In Section 2.1,
we present some established results in the analysis of nominal MPC (see e.g.,
[36, 32, 37]) consisting of statements on stability guarantees and performance in
terms of suboptimality with respect to the infinite horizon problem P∞(x0). We
aim to apply the MPC variants on real systems and for this reason, we introduce
in Section 2.2 perturbed systems, as opposed to nominal systems. After having
summarized the main steps of the analysis of the nominal MPC without terminal
constraints, we adapt the statements to the analysis of feedback laws under
perturbations.

2.1 Nominal stability and performance
Suppose x∗ is an equilibrium of (1.1). MPC determines µ : X × N → U that
approximately solves the infinite horizon OCP such that x∗ is asymptotically
stable for the feedback-controlled system (1.6) in the following sense.

Definition 2.1.1. An equilibrium x∗ ∈ X is asymptotically stable for the
closed-loop system (1.2) if there exists β ∈ KL such that

‖xµ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k)

holds for all x0 ∈ X and all k ∈ N0 where ‖x‖x∗ := ‖x− x∗‖. In this case, we
say that the feedback law µ asymptotically stabilizes x∗.

Conditions ensuring that the MPC feedback law asymptotically stabilizes the
system have been well-developed in the literature. On one hand, refer, e.g., to [57],
[36, Chapter 5] and references therein, we see that employing stabilizing terminal
constraints or adding Lyapunov function terminal costs to the objective function
ensure asymptotic stability of the MPC closed loop. On the other hand, see, e.g.,
[32], [37] and [36, Chapter 6] and references therein, we observe that imposing
such terminal constraints and costs are not necessary conditions for achieving
stability. In addition, due to the simplicity in design and implementation, MPC
without terminal constraints and costs is often preferred in practice and with this
motivation, we will be interested in analyzing the properties of MPC without
terminal conditions in this thesis.

To achieve asymptotic stability, an appropriate choice of the stage cost ` is needed

15

Chapter 2. MPC stability and performance

and is typically obtained by penalizing the distance of the state to the desired
equilibrium and the control effort. This is enforced by making the following
assumption.

Assumption 2.1.2. There exist K∞-functions α1, α2 such that the inequality

α1(‖x‖x∗) ≤ `
∗(x) ≤ α2(‖x‖x∗) (2.1)

holds for all x ∈ X, where `∗(x) := infu∈U `(x, u).

The following gives the key statement for the analysis of MPC without terminal
constraints or costs.

Proposition 2.1.3. (i) Consider a time-dependent feedback law µ : X×N→ U ,
the corresponding solution xµ(k, x0) of (1.2), and a function V : X → R+

0
satisfying the relaxed dynamic programming inequality

V (x0) ≥ V (xµ(m,x0)) + α

m−1∑
k=0

`(xµ(k, x0), µ(xµ(bkcm, x0), k)) (2.2)

for some α ∈ (0, 1], some m ≥ 1 and all x0 ∈ X. Then for all x ∈ X the estimate

V∞(x) ≤ Jcl
∞(x, µ) ≤ V (x)/α (2.3)

holds.

(ii) If, moreover, Assumption 2.1.2 holds and there exist α3, α4 ∈ K∞ such that

α3(‖x‖x∗) ≤ V (x) ≤ α4(‖x‖x∗)

for all x ∈ X, then the equilibrium x∗ is asymptotically stable for the closed-loop
system.

Proof. (i) The proof follows [32, Proof of Proposition 2.4]. Consider x0 ∈ X and
the closed-loop trajectory xµ(k, x0). Then from (2.2) we obtain for all n ∈ N0

α

m−1∑
k=0

`(xµ(nm+ k, x0), µ(xµ(bnm+ kcm, x0), nm+ k))

≤ V (xµ(nm, x0))− V (xµ((n+ 1)m,x0))

Performing a summation over n gives

α

Km−1∑
k=0

` (xµ(k, x0), µ(xµ(bkcm, x0), k))

= α

K−1∑
n=0

m−1∑
k=0

`(xµ(nm+ k, x0), µ(xµ(bnm+ kcm, x0), nm+ k))

≤ V (x0)− V (x(Km,x0)) ≤ V (x0)

The leftmost sum is bounded from above for every K ∈ N and is monotonically
increasing which implies convergence as K →∞, therefore

V∞(x) ≤ Jcl
∞(x, µ) ≤ V (x)/α

16

2.1. Nominal stability and performance

(ii) Following [32, Proof of Theorem 5.2], by standard construction (see [43,
Section 4.4]) we obtain a function ρ ∈ KL such that V (xµ(km, x0)) ≤ ρ(V (x0), k)
holds for all x0 ∈ X. Now consider k ∈ N which is not an integer multiple of m.
By (2.2) with xµ(bkcm, x0) in place of x0 and the nonnegativity of `, we have

` (xµ(k, x0), µ(xµ(bkcm, x0), k)) ≤ V (xµ(bkcm, x0))/α

Since V (x) ≤ α4 ◦ α−1
1 (`(x, u)) holds for all u, we obtain

V (xµ(k, x0)) ≤ α4 ◦ α−1
1 (V (xµ(bkcm, x0))/α)

≤ α4 ◦ α−1
1 (ρ(V (x0), bkcm)/α)

which yields

‖xµ(k, x0)‖x∗ ≤ α−1
3 ◦ α4 ◦ α−1

1 (ρ(α4(‖x0‖x∗), bkcm)/α)

Therefore, ‖xµ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k) for all k ∈ N, i.e., the desired asymptotic
stabilty with KL-function

β(r, k) := α−1
3 ◦ α4 ◦ α−1

1 (ρ(α4(r), bkcm)/α) + e−k

which is easily extended to a KL-function by linear interpolation in its second
argument.

In Proposition 2.1.3, to show asymptotic stability of a closed-loop system driven
by µN,m, we need to show existence of a function V and a value α ∈ (0, 1]
satisfying the relaxed dynamic programming inequality (2.2). The use of the
relaxed dynamic programming inequality in the form (2.2) was first introduced
for the analysis of MPC schemes in [38]. Other forms, however, were earlier used
in [60].

Proposition 2.1.3 implies that aside from providing the estimate (2.3) (on which
a so-called suboptimality estimate, discussed towards the end of the section, will
be based), showing the existence of a positive α also ensures asymptotic stability
for the closed-loop system. In the sequel, we examine the feedback law µN,m
and consider V := VN . We present in the following an approach of computing α.
One way to obtain α is by requiring the following assumption.

Assumption 2.1.4. There exists Bk ∈ K∞ such that the optimal value functions
of Pk(x0) satisfy

Vk(x) ≤ Bk(`∗(x)) for all x ∈ X and all k = 2, . . . , N

Remark 2.1.5. The existence of the functions Bk can be concluded, for instance,
by assuming certain controllability assumptions. See, e.g., [36, Assumption 6.4]
or [66, Assumption 3.2 and Lemma 3.5] wherein the system is assumed to be
asymptotically controllable with respect to `, i.e. if there exists β ∈ KL0

such that for every x ∈ X and every N ∈ N, there exists an admissible control
sequence ux ∈ UN (x) satisfying

`(xux(k, x), ux(k)) ≤ β(`∗(x), k)

for all k ∈ {0, . . . , N − 1}.

Example 2.1.6. Suppose there exist constants C > 0 and σ ∈ (0, 1) such that

17

Chapter 2. MPC stability and performance

for every x ∈ X and every N ∈ N, there is ux ∈ UN (x) such that

`(xux(k, x), ux(k)) ≤ Cσk`∗(x)

for all k ∈ {0, . . . , N − 1}. Then we take β(r, k) = Cσkr ∈ KL0 giving BN (r) =∑N−1
k=0 β(r, k) = C

∑N−1
k=0 σkr that fulfills Assumption 2.1.4. In this case, the

system is said to be exponentially controllable with respect to `.

The following proposition considers arbitrary values λn, n = 0, . . . , N − 1, and ν
and gives necessary conditions which hold if these values coincide with optimal
stage costs `(xu∗(n, x0), u∗(n)) and optimal values VN (xu∗(m,x0)), respectively.

Proposition 2.1.7. Let Assumption 2.1.4 hold and consider N ≥ 1,m ∈
{1, . . . , N − 1}, a sequence λn ≥ 0, n = 0, . . . , N − 1, a value ν ≥ 0. Consider
x0 ∈ X and assume that there exists an optimal control function u∗(·) ∈ U for
the finite horizon problem PN (x0) with horizon length N , such that

λn = `(xu∗(n, x0), u∗(n)), n = 0, . . . , N − 1

holds. Then
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (2.4)

holds. If, furthermore,
ν = VN (xu∗(m,x0))

holds, then

ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m), j = 0, . . . , N −m− 1 (2.5)

holds.

Proof. Observe that for k = 0, . . . , N − 2,

VN (x0) = Jk(x0, u
∗(·)) + JN−k(xu∗(k, x0), u∗(k + ·)) (2.6)

= Jk(x0, u
∗(·)) + VN−k(xu∗(k, x0)) (2.7)

by (2.7) and Assumption 2.1.4, we have

VN (x0) ≤ Jk(x0, u
∗(·)) +BN−k(`(xu∗(k, x0))) (2.8)

Subtracting (2.6) from (2.8) gives

JN−k(xu∗(k, x0), u∗(k + ·)) ≤ BN−k(`∗(xu∗(k, x0)))

yielding (2.4). Next we define the control function

ũ(n) =

{
u∗(m+ n), n ≤ j − 1
u∗∗(n), n ≤ j

18

2.1. Nominal stability and performance

where u∗∗(·) is the optimal control for PN−j(xu∗(m+ j)). Then we obtain

VN (xu∗(m,x0)) = JN (xu∗(m), ũ(·))
= Jj(xu∗(m,x0), u∗(m+ ·)) + JN−j(xu∗(m+ j, x0), u∗∗(·))
= Jj(xu∗(m,x0), u∗(m+ ·)) + VN−j(xu∗(m+ j, x0))

≤ Jj(xu∗(m,x0), u∗(m+ ·)) +BN−j(`
∗(xu∗(m+ j, x0)))

yielding (2.5).

By using the proposition, we arrive at the following theorem giving sufficient
conditions for suboptimality and stability of the m-step MPC feedback law µN,m
and an approach to compute the suboptimality index α.

Theorem 2.1.8. Let Assumption 2.1.4 hold and assume that the optimization
problem

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1
n=0 λn

subject to the constraints (2.4) and (2.5)

and
∑m−1
n=0 λn > 0, λ0, . . . , λN−1, ν ≥ 0

Pα

has an optimal value α ∈ (0, 1]. Then, the optimal value function VN of PN (x)
and the m-step MPC feedback law µN,m satisfy the assumptions of Proposi-
tion 2.1.3(i) and, in particular, the inequality

V∞(x) ≤ Jcl
∞(x, µN,m) ≤ VN (x)/α ≤ V∞(x)/α (2.9)

holds for all x ∈ X. If, moreover, Assumption 2.1.2 holds then the closed loop is
asymptotically stable.

Proof. From the solution u∗(·) of PN (x0) for x0 ∈ X, we construct the m-step
feedback µN,m giving the equalities

µN,m(x0, k) = u∗(k), k = 0, . . . ,m− 1
xµN,m(k, x0) = xu∗(k, x0), k = 0, . . . ,m

`(xµN,m(k, x0), µN,m(x0, k)) = `(xu∗(k, x0), u∗(k)), k = 0, . . . ,m− 1

which implies

VN (xµN,m(m,x0)) + α

m−1∑
k=0

`(xµN,m(k, x0), µN,m(xµN,m(k, x0), k))

= VN (xu∗(m,x0)) + α

m−1∑
k=0

`(xu∗(k, x0), u∗(k)) (2.10)

for any α ∈ R. Since Pα has a solution, the values λk = `(xu∗(k, x0), u∗(k)) and
ν = VN (xu∗(m,x0) satisfy (2.4), (2.5) and

N−1∑
k=0

λk − ν ≥ α
m−1∑
k=0

λk

19

Chapter 2. MPC stability and performance

Hence, we obtain

VN (xu∗(m,x0)) + α

m−1∑
k=0

`(xu∗(k, x0), u∗(k)) = ν + α

m−1∑
k=0

λk ≤
N−1∑
k=0

λk

=

N−1∑
k=0

`(xu∗(k, x0), u∗(k))

= VN (x0)

Together with (2.10), this yields (2.2) and thus the assertion. The second
assertion follows from Proposition 2.1.3(ii) setting α4 := BN .

Because of (2.9), we refer to α as an index of suboptimality which provides a
performance bound indicating how well the feedback law µN,m approximates the
solution of the infinite horizon problem P∞(x0). If α = 1, then the feedback law
is infinite horizon optimal. This implies that the closer to 1 the positive index α
is, the closer the feedback law approximates the solution of P∞(x0) while the
smaller α is, the larger the suboptimality gap becomes.

Remark 2.1.9. The proof of Theorem 2.1.8 particularly shows the relaxed
dynamic programming inequality (2.2) for V = VN and µ = µN,m, i.e.,

VN (xµN,m(m,x0)) ≤ VN (x0)− α
m−1∑
k=0

`(xµN,m(k, x0), µN,m(xµN,m(k, x0), k))

(2.11)
for all x0 ∈ X. This inequality can be seen as a Lyapunov inequality and shows
that VN is an m-step Lyapunov function indicating the descent property of the
value function along the closed-loop trajectory at every m time instants. Refer,
e.g., to [36, Section 2.3], [57, Appendix B] or [43, Chapter 4] for discussions on
Lyapunov stability theory.

The optimization problem Pα may be nonlinear depending on the nature of
Bk(r) from Assumption 2.1.2. However, Pα becomes a linear program in r if
Bk(r) is linear. An explicit formula for α can be derived in this case.

Theorem 2.1.10. Let BK , K = 2, . . . , N , be linear functions and define γK :=
BK(r)/r. Then the optimal value α of problem Pα for given optimization horizon
N , control horizon m satisfies satisfies α = 1 if and only if γm+1 ≤ 1 and

α ≥ 1−
(γm+1 − 1)

N∏
i=m+2

(γi − 1)

N∏
i=N−m+1

(γi − 1)[
N∏

i=m+1

γi − (γm+1 − 1)

N∏
i=m+2

(γi − 1)

][
N∏

i=N−m+1

γi −
N∏

i=N−m+1

(γi − 1)

]
(2.12)

otherwise. If, moreover, the BK are of the form BK(r) :=
∑K−1
k=0 β(r, k) for

some β ∈ KL0 satisfying β(r, n + m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0,
then equality holds in (2.12).

Proof. See Theorem 5.4 and Remark 5.5 of [37].

20

2.2. Perturbed systems, robust stability and performance

The analysis on [37] assesses the impact of the optimization horizon on stability
and performance of the closed loop. By closely examining (2.12), one can find that
α→ 1 asN →∞ if there exists γ̄ ∈ R with γk ≤ γ̄ for all k ∈ N [37, Corollary 6.1].
Therefore, under this condition, stability and performance arbitrarily close to
the infinite horizon optimal performance can always be achieved by choosing
N sufficiently large. In addition, the right-hand side value of (2.12) for m = 1
is always less than or equal to the value for m ≥ 2 [37, Proposition 7.3]. This
means that if Theorem 2.1.10 guarantees asymptotic stability (i.e., α > 0) of
standard MPC m = 1 (Algorithm 1.3.1), then it also guarantees stability of
m-step MPC for arbitrary m = 2, . . . , N − 1 (Algorithms 1.3.2 and 1.3.4).

Before we proceed to analyze the properties of the feedback law under perturba-
tion, we conclude the section by summarizing the presented course of reasoning.
Assumption 2.1.4 allows for the formulation of the optimization problem Pα.
If Pα has a solution α > 0, then this implies the Lyapunov inequality (2.11)
fulfilling the assumptions of Proposition 2.1.3 from which asymptotic stability
and performance estimates can be obtained. In case BK in Assumption 2.1.4
is linear, an explicit formula for the solution of Pα is provided by (2.12). We
extend this setting and approach to analyze perturbed systems in the remainder
of the thesis.

2.2 Perturbed systems, robust stability and per-
formance

The results discussed in the previous section are based on a nominal setting
wherein no perturbations are acting on the system dynamics. In this section,
we generalize Proposition 2.1.3 to the perturbed situation. A counterpart of
Theorem 2.1.8 for µN,m and µ̂N,m in the perturbed setting will be obtained in
Chapter 4.

Typically, a real world system is represented by a mathematical model that may
fail to take into account disturbance and other various sources of uncertainties.
Mathematical models are approximations of real systems where there is usually
a mismatch between the predicted states and those that are measured from the
real plant. This mismatch can be viewed as perturbations and can be taken into
account via the perturbed closed-loop model1

x̃(k + 1) = f
(
x̃(k), µ(x̃(k̃), k)

)
+ d(k) (2.13)

Here, d(k) ∈ X represents external perturbation and modeling errors.

Remark 2.2.1. For simplicity and brevity of exposition, we focus on the analysis
of the closed-loop model (2.13) instead of the more general model

x̃(k + 1) = f
(
x̃(k), µ(x̃(k̃) + e(k), k)

)
+ d(k)

where e(k) ∈ X represents state measurement errors. Stability and performance
statements for this model can be derived from respective statements for (2.13)
using the techniques from [36, Proof of Theorem 8.36] or [41, Proof of Propo-
sition 1]. Whenever the measurement error is small compared to the external
disturbance, we expect the beneficial effects of re-optimization analyzed in the
thesis to hold analogously. Otherwise, large measurement errors may lead to

1As indicated in Chapter 1, the feedback value µ(x̃(k̃), k) depends on the system state x(k̃)
at a time k̃ = k̃(k) ≤ k which may be strictly smaller than k.

21

Chapter 2. MPC stability and performance

adverse effects particularly under fast sampling as analyzed in [61]. The trade-off
analysis between the benefits of re-optimization and fast sampling is, however,
beyond the scope of this thesis.

Due to the perturbations experienced by the system, the succeeding entries of
the m-step feedback may no longer be suitable since the succeeding current
states may be different from the predicted as the loop is not closed within
m time instants. This thesis aims to investigate the benefit of updates (i.e.
re-optimization) in this situation.

In the following discussion, we use the notation x̃µ(·, x0) to denote a solution of
(2.13) in order to distinguish it from the nominal trajectory xµ(·, x0). Further-
more, we consider the set

Sd(x0) :=
{
x̃µ(·, x0) | ‖d(k)‖ ≤ d for all k ∈ N0

}
of all possible solutions steered by µ starting in x0 with perturbations bounded
by d.

Remark 2.2.2. In our discussion, we assume that for the initial values x0,
perturbation levels d and feedback laws µ under consideration, any trajectory
x̃µ(·, x0) ∈ Sd(x0) exists and satisfies x̃µ(k, x0) ∈ X for all k ∈ N. Techniques
which allow to rigorously ensure this property are discussed, e.g., in [36, Sections
8.8–8.9] and the references therein.

Asymptotic stability is in general too strong a requirement for a system to
achieve under perturbations. Nevertheless, it is often still possible to prove an
appropriate relaxation of the stability properties for the feedback law µ. To this
end, we make use of the so-called practical stability defined in the following.

Definition 2.2.3. Given d > 0. Consider sets P̂ ⊂ Y ⊆ X. A point x∗ ∈ P̂ is
called P̂ -practically uniformly asymptotically stable on Y if there exists
β ∈ KL such that

‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k)

holds for all x0 ∈ Y , all x̃µ(·, x0) ∈ Sd(x0) and all k with x̃(k, x0) /∈ P̂ .

The definition requires the system to have asymptotically stable behavior until
it reaches the set P̂ . We can interpret P̂ as the region of the state space wherein
the effects of the perturbations become dominant.

Definition 2.2.4. We say that x∗ is semi-globally practically asymptot-
ically stable with respect to perturbation d if there exists β ∈ KL such
that the following property holds: for each δ > 0 and ∆ > δ there exists d > 0
such that

‖x̃µ(k, x0)‖x∗ ≤ max{β(‖x0‖x∗ , k), δ} (2.14)

holds for all x0 ∈ X with ‖x0‖x∗ ≤ ∆, all x̃µ(·, x0) ∈ Sd(x0) and all k ∈ N0.

In words, this definition demands that for initial values within a distance of
∆ from the equilibrium, the system behaves with asymptotic stability until
the trajectory is within a distance of δ from the equilibrium. Here, ∆ and δ
determine the admissible bound d on the perturbation. In what follows, we
relate Definitions 2.2.3 and 2.2.4 via the following lemma.

22

2.2. Perturbed systems, robust stability and performance

Lemma 2.2.5. The m-step MPC closed-loop system (1.8) is semi-globally prac-
tically asymptotically stable with respect to d in the sense Definition 2.2.4 if for
every δ > 0 and every ∆ > δ there exists d > 0 and sets P̂ ⊂ Y ⊆ X with

B∆(x∗) ∩ X ⊆ Y and P̂ ⊆ Bδ(x∗)
such that for each solution x̃µ(·, x0) ∈ Sd(x0) the system is P̂ -practically uniform
asymptotically stable on Y in the sense of Definition 2.2.3 .

Proof. The proof follows from the fact that according to Definition 2.2.3 for each
k ∈ N0 either ‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k) or x̃µ(k, x0) ∈ P̂ . Since the latter
implies ‖x̃µ(k, x0)‖x∗ ≤ δ, we observe the assertion.

Now that we have defined the suitable notion of stability for our setting, we
can also define the appropriate performance measure. We have described P̂ as
the region of the state space in which the perturbations become predominant.
Hence, when considering the performance of such a solution, it only makes sense
to consider the trajectory until it first hits the set P̂ . Thus, we need to truncate
the infinite horizon closed-loop cost Jcl

∞(x0, µ) from (1.3) as follows.

Definition 2.2.6. Consider a set P̂ ⊂ X. Then the performance associated to
a perturbed solution x̃µ(·, x0) of a closed-loop system outside P̂ is defined as

Jcl
P̂

(x̃µ(·, x0), µ) :=

k∗−1∑
k=0

`
(
x̃µ(k, x0), µ(x̃µ(k̃, x0), k)

)
(2.15)

where k∗ ∈ N0 is minimal with x̃µ(k, x0) ∈ P̂ for all k ≥ k∗.

As a technical ingredient, we additionally need the following set properties.

Definition 2.2.7. Let m ∈ N.
(i) A set Y ⊆ X is said to be m-step forward invariant for (2.13) with

respect to d if for all x0 ∈ Y and all x̃µ(·, x0) ∈ Sd(x0), it holds that
x̃µ(pm, x0) ∈ Y for all p ∈ N.

(ii) For an m-step forward invariant set Y with respect to d we call Ŷ ⊇ Y an
intermediate set if x̃µ(k, x0) ∈ Ŷ for all k ∈ N and all x0 ∈ Y .

We are now in the position to state the following theorem which extends Propo-
sition 2.1.3 to the perturbed setting.

Theorem 2.2.8. (i) Consider a stage cost ` : X × U → R+
0 , an integer m ∈ N

and a function V : X → R+
0 . Let µ : X × N → U be an admissible m-step

feedback law of the form (1.7) or (1.9) and let Y ⊆ X and P ⊂ Y be m-step
forward invariant for (2.13) with respect to some d > 0. Let P̂ ⊇ P be an
intermediate set for P . Assume there exists α ∈ (0, 1] such that the relaxed
dynamic programming inequality

V (x0) ≥ V (x̃µ(m,x0)) + α

m−1∑
k=0

`(x̃µ(k, x0), µ(x̃µ(bkcm, x0), k)) (2.16)

holds for all x0 ∈ Y \ P and all x̃µ(·, x0) ∈ Sd(x0). Then the performance
estimate

Jcl
P̂

(x̃µ(·, x0), µ) ≤ V (x0)/α (2.17)

23

Chapter 2. MPC stability and performance

holds for all x0 ∈ Y \ P̂ and all x̃µ(k, x0) ∈ Sd(x0).

(ii) If, moreover, Assumption 2.1.2 holds and there exists α3, α4 ∈ K∞ with
α3(‖x‖x∗) ≤ V (x) ≤ α4(‖x‖x∗) for all x ∈ X, then the closed-loop system (2.13)
is P̂ -practically asymptotically stable on Y in the sense of Definition 2.2.3 .

Proof. (i) Similar to the proof of Proposition 2.1.3 (i), for proving (2.17), by a
straightforward induction from (2.16) we obtain

α

pm−1∑
k=0

`(x̃µ(k, x0), µ(x̃µ(bkcm, x0), k)) ≤ V (x0)− V (x̃µ(pm, x0)) ≤ V (x0)

for all p ∈ N for which x̃µ(k, x0) /∈ P for k = 0,m, 2m, . . . , (p−1)m. In particular,
since P ⊆ P̂ , this inequality holds for the smallest p satisfying pm ≥ k∗ for k∗
from Definition 2.2.6, implying

Jcl
P̂

(x̃µ(·, x0), µ) ≤
pm−1∑
k=0

`(x̃µ(k, x0), µ(x̃µ(bkcm, x0), k)) ≤ V (x0)/α

(ii) For proving practical asymptotic stability, as in first part of the proof of
Proposition 2.1.3 (ii) we find a function ρ ∈ KL such that V (xµ(pm, x0)) ≤
ρ(V (x0), p) holds for all x0 ∈ Y and all p ∈ N with pm ≤ k∗ for k∗ from
Definition 2.2.6. Now for k ∈ {1, . . . , k∗} which is not an integer multiple of m,
(2.16) with x̃µ(bkcm, x0) in place of x0 and nonnegativity of ` imply

`(x̃µ(k, x0), µ(x̃µ(bkcm, x0), k)) ≤ V (x̃µ(bkcm, x0))/α.

Using the same technique as in Proposition 2.1.3 (ii) to construct the required
β, we obtain ‖x̃µ(k, x0)‖x∗ ≤ β(‖x0‖x∗ , k) for all k = 0, . . . , k∗ with

β(r, k) := α−1
3 ◦ α4 ◦ α−1

1 (ρ(α4(r), bkcm)/α) + e−k

which is easily extended to a KL-function by linear interpolation in its second
argument. Lastly, since x̃µ(k∗, x0) ∈ P implies that for all k ≥ k∗ we have
x̃µ(k, x0) ∈ P̂ , this shows the claimed P̂ -practical asymptotic stability.

This chapter gives the essential theorems required for the analysis of the ro-
bustness of a feedback-controlled closed loop. In the same manner Proposition
2.1.3 provides the key for the nominal system, Theorem 2.2.8 provides a pivotal
theorem for the analysis of the stability rendered and performance of the feedback
law µ for a system under perturbation. The analysis relies on the evaluation of
the index α, whose positiveness indicates asymptotic stability and whose value
gives the degree of suboptimality of the closed loop.

While Theorem 2.1.8 shows that µN,m renders the nominal system asymptotically
stable, we aim to show analogous statements for µN,m and µ̂N,m (and later on,
µn,m, as defined in Chapter 6) for the perturbed system. As mentioned at
the end of Section 1.3, we will rigorously show that the shrinking horizon
update mechanism of the updated MPC algorithm (yielding µ̂N,m) enhances the
robustness of the closed loop.

24

3 Benefits of re-optimization
on finite horizon OCPs

In this chapter, we divert the attention away from MPC and approximating the
solution to the infinite horizon problem and instead focus on the finite horizon
problem PN (x0) (recall the definition in Section 1.1). In Sections 3.1 to 3.3, we
consider control algorithms for finite horizon problems and compare the so-called
nominal, perturbed and re-optimized trajectories. We compare the trajectories by
assigning each a performance measure that will allow us to quantify the benefit
of re-optimization. Section 3.4 discusses controllability and stability and reports
situations where the benefits of re-optimizations become significant. Illustrative
examples are given in Section 3.5. The results we present in this chapter give
essential tools for the analysis of the stability and performance of the feedback
laws µN,m and µ̂N,m for the perturbed setting that we will conduct in Chapter
4. A preliminary version of the said results is published in [34].

3.1 Control algorithms for finite horizon OCPs
In the rest of this chapter, we only consider the finite horizon problem with
controls u∗ and µ defined in the following algorithms.

Algorithm 3.1.1. (Open-loop control)

(1) Given x0, solve the finite horizon problem PN (x0). Let u∗(·) ∈ UN (x0)
denote the optimal control sequence.

(2) For k = 0, . . . , N − 1, apply the control value u∗(k) to the system.

This generates a nominal trajectory given by the rule

x(k + 1) = f (x(k), u∗(k)) k = 0, . . . , N − 1 (3.1)

with x(0) = x0 and the corresponding open-loop trajectory denoted by xu∗(·, x0).

Next, we design a controller that uses a shrinking horizon strategy.

Algorithm 3.1.2. (Shrinking horizon strategy)

For k = 0, . . . , N − 1,

(1) Solve PN−k(x(k), k), i.e., we perform a re-optimization giving an optimal
control sequence u∗k(j), j = 0, . . . , N − 1− k corresponding to the initial

25

Chapter 3. Benefits of re-optimization on finite horizon OCPs

value x0 = x(k) and a resulting trajectory xu∗k(j), j = 0, . . . , N − k. Note
that for each sampling time k, the control horizon shrinks.

(2) Define the time-dependent feedback

µ(x(k), k) := u∗k(0)

and apply the control value to the system.

The closed-loop controlled system is described by

x(k + 1) = f (x(k), µ(x(k), k)) k = 0, . . . , N − 1 (3.2)

Due to the dynamic programming principle in Theorem 1.2.1, in the nominal
case where no uncertainties are present, (3.1) and (3.2) coincide. But as already
mentioned in Chapter 1, this is not the case in the presence of perturbations.
Due to the perturbations described in Section 2.2, a mismatch between the
predicted states and those that are measured from the real plant is inevitable.
We write the perturbed system controlled by the same open-loop controller used
in (3.1) as

x̃(k + 1) = f (x̃(k), u∗(k)) + d(k) (3.3)

with d(k) ∈ X representing external perturbation and modeling errors. This
suggests, however, that the open-loop optimal control sequence obtained from
the OCP solved at time 0, may not give the best control strategy as the system
evolves in time.

Now we aim to scrutinize the effects of the disturbance and the advantage of
using the shrinking horizon strategy in which we perform a re-optimization in
each time step. In order to simplify the exposition, in the sequel we assume the
existence of an optimal control sequence u∗(·) for each x ∈ X with UN (x) 6= ∅
and we examine the perturbed system using a shrinking horizon control strategy
given by

x̃(k + 1) = f (x̃(k), µ(x̃(k), k)) + d(k) (3.4)

We investigate whether the re-optimization in the shrinking horizon strategy
addresses the drawbacks that the control design suffers from upon using open-loop
control. To this end, we closely examine and compare the trajectories described
above, namely, the nominal trajectory (3.1), the perturbed trajectory (3.3)
and the re-optimized trajectory (3.4).

3.2 Nominal and perturbed trajectories
To analyze the nominal, the perturbed and the re-optimized trajectories, we in-
troduce an intuitive and rigorous notation reflecting perturbations and performed
re-optimizations.

Notation 3.2.1. Let xj,p,r denote the state trajectory element at time j that
has gone through p perturbations at time instants t = 1, . . . , p where j ≥ p,
and r re-optimizations have been performed at time instants t = 1, . . . , r where
p ≥ r.

In this setting, we only put our attention to the trajectories generated by (3.1),
(3.3) and (3.4) given by xj,0,0, xj,j,0 and xj,j,j , respectively, for j = 0, . . . , N .

26

3.2. Nominal and perturbed trajectories

Notation 3.2.2. Let u∗j,p,r(·) denote the optimal control sequence obtained
by performing a re-optimization with an initial value xj,p,r−1 and optimization
horizon N − j, i.e., u∗j,p,r(·) is obtained by solving PN−j(xj,p,r−1).

Since the initial value does not change when performing a re-optimization, the
identity xj,p,r−1 = xj,p,r holds. For our purposes, we will only consider states of
the form xj,p,r with r = 0, p, p− 1.

x0,0,0

x1,0,0

x2,0,0

x3,0,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,0

x2,2,0
x3,3,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,1

x2,2,1
x2,2,2

x3,3,2

x3,3,3

u∗
1,1,1(0)

u∗
2,2,2(0)

d(1)

d(2)

d(2)

d(3)

d(3)

Figure 3.1: Trajectories through time where perturbations occur and re-
optimizations are performed

Figure 3.1 illustrates the trajectories through time where perturbations occur and
re-optimizations are performed for the control horizon m = 3. At time t = 0, by
solving P3(x0,0,0), we obtain an open-loop optimal control sequence u∗0,0,0(j) =
u∗(j), j = 0, 1, 2 for which we can generate a nominal multistep trajectory
xj,0,0, j = 0, . . . , 3 via (3.1) shown in black in the sketch. For an additive
perturbation d(·), the blue trajectory in Figure 3.1 indicates the perturbed
multistep trajectory xj,j,0, j = 0, . . . , 3 generated by (3.3). Here, each transition
(shown in solid blue) is composed of the nominal transition f(xj,j,0, u

∗
0,0,0(j))

(blue dashed) followed by the addition of the perturbation d(1), d(2), d(3) (red
dashed). Finally, the trajectory xj,j,j obtained by re-optimization in each step
and generated by (3.4) with perturbation d is shown piecewise in blue, green
and orange, with the different colors indicating the different control sequences
u∗j,j,j , j = 0, . . . , 2 whose first pieces are used in the transition. Again, the nominal
transition and the effect of the perturbation d(j) are indicated as dashed lines
and the resulting perturbed transitions from xj,j,j to xj+1,j+1,j = xj+1,j+1,j+1

as solid lines.

Similar to how xj,p,r and u∗j,p,r were defined, we define the following stage cost.

Notation 3.2.3. For time instants j ∈ {0, . . . , N −1} and for j ≥ p, p ≥ r, r =
0, p, p− 1 we define

λj,p,r := `
(
xj,p,r, u

∗
r,r,r(j − r)

)
(3.5)

27

Chapter 3. Benefits of re-optimization on finite horizon OCPs

Observe that in order to determine the control needed to evaluate the stage cost
for the state xj,p,r, we go back to the last instant of the optimization, namely to
time r and use the optimal control sequence obtained there for horizon N − r
and initial value xr,r,r.

In order to simplify the numbering in the subsequent computations, we extend
(3.5) to give meaning to the notation when j < p, p ≥ r, r = 0, p, p− 1 through

λj,p,r :=

{
λj,j,j if r 6= 0
λj,j,0 if r = 0

(3.6)

Remark 3.2.4. Although the previous discussion yields xj,j,j−1 = xj,j,j , we see
that λj,j,j−1 6= λj,j,j since λj,j,j−1 = `

(
xj,j,j−1, u

∗
j−1,j−1,j−1(1)

)
while λj,j,j =

`
(
xj,j,j , u

∗
j,j,j(0)

)
.

3.3 Re-optimizing versus not re-optimizing
In the presence of uncertainties or perturbations, we perform re-optimization
in the hope of having a coping mechanism against the differences between the
real system and the nominal model to redirect the trajectory back to the desired
behavior aiming to stay ’close’ to the nominal situation. We investigate whether
re-optimization indeed gives such an advantage.

The idea is to find quantifiable relations among the various trajectory scenarios.
More precisely, we compare the following scenarios.

Definition 3.3.1. Given an initial value x0,0,0 = x0 ∈ X, we define the following
performance measures.

i. The value of the nominal optimal trajectory

Jnmult
N (x0) :=

N−1∑
j=0

λj,0,0

ii. The value of the perturbed trajectory with nominal optimal control se-
quence

Jpmult
N (x0) :=

N−1∑
j=0

λj,j,0

iii. The value of the perturbed trajectory with re-optimized control

Jupd
N (x0) :=

N−1∑
j=0

λj,j,j

We recall that in Figure 3.1 the trajectories corresponding to these performance
indices are indicated in black (i.), blue (ii.) and piecewise in blue, green and
orange (iii.) and that they are generated by (3.1), (3.3) and (3.4), respectively.
Further, it is easily seen that Jnmult

N (x0) = VN (x0) holds. This nominal optimal
value will be our reference in the following analysis.

The following theorem provides the basis for comparing Jnmult
N (x0) to Jpmult

N (x0).
This comparison is then stated in the subsequent corollary.

28

3.3. Re-optimizing versus not re-optimizing

Theorem 3.3.2. Assume xj,j,0 ∈ X for all j = 0, . . . , N−1. For m = 1, . . . , N−
1, ∣∣∣∣∣∣VN (x0,0,0)−

N−1∑
j=0

λj,m,0

∣∣∣∣∣∣ ≤
m∑
j=1

∣∣∣JN−j(xj,j−1,0, u
∗(·+ j))

−JN−j(xj,j,0, u∗(·+ j))
∣∣∣ (3.7)

Proof. Let u∗ = u∗0,0,0. First, for each time step, we compare the total cost along
nominal trajectory to the trajectory where perturbation is introduced in the
next time step wherein optimization is performed. Using (3.5) and (3.6), we
obtain the following identities and inequalities.∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0

∣∣∣∣∣∣ =

∣∣∣∣∣∣λ0,0,0 +

N−1∑
j=1

λj,0,0 − λ0,1,0 −
N−1∑
j=1

λj,1,0

∣∣∣∣∣∣
= |JN−1(x1,0,0, u

∗(·+ 1))− JN−1(x1,1,0, u
∗(·+ 1))|

and ∣∣∣N−1∑
j=0

λj,1,0 −
N−1∑
j=0

λj,2,0

∣∣∣ =
∣∣∣λ0,1,0 + λ1,1,0 +

N−1∑
j=2

λj,1,0

−λ0,2,0 − λ1,2,0 −
N−1∑
j=2

λj,2,0

∣∣∣
=

∣∣∣JN−2(x2,1,0, u
∗(·+ 2))

−JN−2(x2,2,0, u
∗(·+ 2))

∣∣∣
Inductively, for m = 1, . . . , N − 1,∣∣∣∣∣∣

N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣ =

∣∣∣∣λ0,m−1,0 + . . . + λm−1,m−1,0

+

N−1∑
j=m

λj,m−1,0 − λ0,m,0 − . . .

− λm−1,m,0 −
N−1∑
j=m

λj,m,0

∣∣∣∣
=

∣∣∣∣JN−m(xm,m−1,0, u
∗(·+m))

− JN−m(xm,m,0, u
∗(·+m))

∣∣∣∣
29

Chapter 3. Benefits of re-optimization on finite horizon OCPs

With these above, for m = 1, . . . , N − 1,∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0 +

N−1∑
j=0

λj,1,0−

. . .+

N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,0

∣∣∣∣∣∣+

. . .+

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,0 −
N−1∑
j=0

λj,m,0

∣∣∣∣∣∣
=

∣∣∣JN−1(x1,0,0, u
∗(·+ 1))

−JN−1(x1,1,0, u
∗(·+ 1))

∣∣∣+∣∣∣JN−2(x2,1,0, u
∗(·+ 2))

−JN−2(x2,2,0, u
∗(·+ 2))

∣∣∣
+ . . .+

∣∣∣JN−m(xm,m−1,0, u
∗(·+m))

− JN−m(xm,m,0, u
∗(·+m))

∣∣∣
=

m∑
j=1

∣∣∣JN−j(xj,j−1,0, u
∗(·+ j))

− JN−j(xj,j,0, u
∗(·+ j))

∣∣∣

The theorem above estimates the difference between the nominal value and the
value corresponding to a trajectory that experiences perturbations up until time
instant m. The difference depends on the objective functions of elements xj,j−1,0

and xj,j,0 as sketched in Figure 3.1.

Using uniform continuity assumptions on the objective, the following statement
directly follows.

Corollary 3.3.3. Suppose Ji, i = 1, . . . , N , is uniformly continuous uniformly
in u on X with modulus of continuity ωJi . Consider an initial value x0 ∈ X and
a perturbation sequence d(·) such that xj,j,0 ∈ X for all j = 0, . . . , N − 1. Then

∣∣∣Jnmult
N (x0)− Jpmult

N (x0)
∣∣∣ ≤ N−1∑

j=1

ωJN−j (‖d(j)‖) (3.8)

30

3.3. Re-optimizing versus not re-optimizing

x0,0,0

x1,0,0

x2,0,0

x3,0,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,0

x2,2,0

x2,1,0

x3,3,0

x3,2,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,1

x2,2,1
x2,2,2

x3,3,2

x3,3,3

u∗
1,1,1(0)

u∗
2,2,2(0)

d(1)

d(2)

d(2)

d(3)

d(3)

Figure 3.1: Dependence on the value functions of elements xj,j−1,0 and xj,j,0

Proof. The statement follows from Theorem 3.3.2 applied with m = N − 1
observing that Jnmult

N = VN and xj,j,0 − xj,j−1,0 = d(j).

Next, we provide the analogous analysis for comparing Jnmult
N (x0) to Jupd

N (x0).

Theorem 3.3.4. Assume PN−j(xj,j,j), j = 0, . . . , N − 1 is feasible. For m =
1, . . . , N − 1,∣∣∣∣∣∣VN (x0,0,0)−

N−1∑
j=0

λj,m,m

∣∣∣∣∣∣ ≤
m∑
j=1

|VN−j(xj,j−1,j−1)− VN−j(xj,j,j)| (3.9)

Proof. Similar to the proof of Theorem 3.3.4, we obtain the following set of
identities.

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1

∣∣∣∣∣∣ =

∣∣∣∣∣∣λ0,0,0 +

N−1∑
j=1

λj,0,0 − λ0,1,1 −
N−1∑
j=1

λj,1,1

∣∣∣∣∣∣
= |VN−1(x1,0,0)− VN−1(x1,1,1)|

∣∣∣∣∣∣
N−1∑
j=0

λj,1,1 −
N−1∑
j=0

λj,2,2

∣∣∣∣∣∣ =
∣∣∣λ0,1,1 + λ1,1,1 +

N−1∑
j=2

λj,1,1

−λ0,2,2 − λ1,2,2 −
N−1∑
j=2

λj,2,2

∣∣∣
= |VN−2(x2,1,1)− VN−2(x2,2,2)|

31

Chapter 3. Benefits of re-optimization on finite horizon OCPs

Inductively, for m = 1, . . . , N − 1,

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣ =

∣∣∣∣λ0,m−1,m−1 + . . . + λm−1,m−1,m−1

+

N−1∑
j=m

λj,m−1,m−1 − λ0,m,m − . . .

− λm−1,m,m −
N−1∑
j=m

λj,m,m

∣∣∣∣
= |VN−m(xm,m−1,m−1)− VN−m(xm,m,m)|

Now with the aid of the identities above, we have the following estimate. For
m = 1, . . . , N − 1,∣∣∣∣∣∣

N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1 +

N−1∑
j=0

λj,1,1 − . . .

. . .+

N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1∑
j=0

λj,0,0 −
N−1∑
j=0

λj,1,1

∣∣∣∣∣∣+

. . .+

∣∣∣∣∣∣
N−1∑
j=0

λj,m−1,m−1 −
N−1∑
j=0

λj,m,m

∣∣∣∣∣∣
= |VN−1(x1,0,0)− VN−1(x1,1,1)| +

|VN−2(x2,1,1)− VN−2(x2,2,2)| +

. . .+
∣∣∣VN−m(xm,m−1,m−1)

−VN−m(xm,m,m)
∣∣∣

=

m∑
j=1

|VN−j(xj,j−1,j−1)− VN−j(xj,j,j)|

The preceding theorem, on the other hand, estimates the difference between the
nominal value and the value corresponding to a trajectory that have undergone
perturbations and re-optimizations up until time instant m. The difference
depends on the optimal value functions of elements xj,j−1,j−1 and xj,j,j as
sketched in Figure 3.2.

Using uniform continuity assumptions on the optimal value function we arrive

32

3.4. Improvement due to re-optimization

x0,0,0

x1,0,0

x2,0,0

x3,0,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,0

x2,2,0
x3,3,0

u∗
0,0,0(0)

u∗
0,0,0(1)

u∗
0,0,0(2)

x1,1,1

x2,2,1

x2,1,1

x2,2,2

x3,3,2

x3,2,2

x3,3,3

u∗
1,1,1(0)

u∗
2,2,2(0)

d(1)

d(2)

d(2)

d(3)

d(3)

Figure 3.2: Dependence on the optimal value functions of elements xj,j−1,j−1

and xj,j,j

at the following corollary.

Corollary 3.3.5. Suppose Vi, i = 1, . . . , N , is uniformly continuous on X with
modulus of continuity ωVi . Consider an initial value x0 ∈ X and a perturbation
sequence d(·) such that PN−j(xj,j,j), j = 0, . . . , N − 1 is feasible. Then

∣∣∣Jnmult
N (x0)− Jupd

N (x0)
∣∣∣ ≤ N−1∑

j=1

ωVN−j (‖d(j)‖) (3.10)

Proof. The statement follows immediately from Theorem 3.3.4 applied with
m = N − 1 observing that Jnmult

N = VN and xj,j,j − xj,j−1,j−1 = d(j).

Summarizing the results, the analysis reveals that the difference between re-
optimizing and not re-optimizing can be quantitatively expressed by the difference
between the moduli of continuity ωVi of the optimal value functions compared
to the moduli of continuity ωJi of the objective functions Ji. Indeed, while
the difference between Jnmult

N and Jupd
N is determined by the ωVi , the difference

between Jnmult
N and Jpmult

N depends on the ωJi . In Theorem 1.2.4, we have
already seen that ωVi ≤ ωJi holds, which implies that re-optimization should not
worsen the performance — modulo the conservatism introduced in our analysis
due to the triangle inequalities used in the proofs of Theorems 3.3.2 and 3.3.4.

3.4 Improvement due to re-optimization
The analysis so far reports that re-optimization will “not worsen” the performance
of the control design. However, in practice, we hope to determine when does
re-optimization not only “not worsen” the performance but rather when does

33

Chapter 3. Benefits of re-optimization on finite horizon OCPs

re-optimization improve the situation. For this reason, in this section, we analyze
the moduli of continuity obtained for linear quadratic problems in order to
identify situations in which an improvement due to re-optimization can indeed
be expected.

To this end, we consider linear finite dimensional systems of the form

x(k + 1) = Ax(k) +Bu(k)

with X = X = Rn, U = U = Rm and matrices A ∈ Rn×n, B ∈ Rn×m. The stage
cost is given by the quadratic function

`(x, u) = xTQx+ uTRu

with symmetric and positive definite matrices Q ∈ Rn×n and R ∈ Rm×m.

The simplifying assumptions of linear dynamics, positive definite quadratic costs
and no constraints are mainly imposed in order to simplify the presentation of
the two key properties controllability and stability in this section. Similar results
can also be obtained for nonlinear and constrained problems at the expense of
more technically involved definitions and proofs.

We first estimate the modulus of continuity ωJN .

Proposition 3.4.1. Let σ be the eigenvalue of A with maximal modulus |σ|.
Let S ⊂ Rn be a bounded set, N ∈ N and ε > 0. For a constant K > 0 consider
the set of control sequences

UNK := {u(·) ∈ UN | ‖u(k)‖ ≤ K for all k = 0, . . . , N − 1}. (3.11)

Then there exists real constants c1 > 0 and c2 = c2(ε) > 0 such that the modulus
of continuity ωJN of JN on S, uniformly in u(·) ∈ UNK satisfies

c1r
2
N−1∑
k=0

|σ|2k ≤ ωJN (r) ≤ c2
N−1∑
k=0

|σ|kr.

Proof. For any two initial values x1, x2 ∈ Rn and any control sequence u(·) ∈ UN ,
observe

e(k) := xu(k, x2)− xu(k, x1) = Akx2 −Akx1

= Ak(x2 − x1) = Ake(0)

Setting x1 := 0 and x2 := rv where v is an eigenvector for σ with ‖v‖ = 1 then
yields e(0) = rv and thus e(k) = σkrv. Since Q is positive definite there exists
c1 > 0 with vTQv = c1. Then for u(·) :≡ 0 we obtain

`(xu(k, x2), u(k))− `(xu(k, x1), u(k)) = xu(k, x2)>Qxu(k, x2)

−xu(k, x1)>Qxu(k, x1)

= e(k)TQe(k) = σkrvTQvrσk

= c1r
2(σk)2

34

3.4. Improvement due to re-optimization

Since (1.5) holds for all u(·) ∈ UN , by choosing u(·) ≡ 0, it follows that

ωJN (‖x1 − x2‖) ≥
∥∥∥∥∥
N−1∑
k=0

(`(xu(k, x2), u(k))− `(xu(k, x1), u(k)))

∥∥∥∥∥
= c1r

2
N−1∑
k=0

|σ|2k

This yields the lower bound.

To show the upper bound, we use the fact that on one hand, for ε > 0 there
exists c̃2 > 0 such that ‖Akx‖ ≤ c̃2(|σ|+ ε)k‖x‖ holds (this follows, e.g., from
[59, Satz 11.6]). On the other hand, there exists a compact set D ⊂ Rn such
that for all x0 ∈ S and all u(·) ∈ UNK the inclusion xu(k, x0) ∈ D holds for all
k = 0, . . . , N − 1. On this set D, the stage cost ` is Lipschitz continuous in x
with a constant L > 0, i.e.,

‖`(xu(k, x2), u(k))− `(xu(k, x1), u(k))‖ ≤ L (‖xu(k, x2)− xu(k, x1)‖)
= L‖e(k)‖ = L‖Ake(0)‖
= L‖Ak(x2 − x1)‖
≤ Lc̃2(|σ|+ ε)k‖x2 − x1‖

for all x1, x2 ∈ S, leading to

‖JN (x1, u(·))− JN (x2, u(·))‖ ≤
N−1∑
k=0

‖`(xu(k, x2), u(k))− `(xu(k, x1), u(k))‖

≤ c3‖x2 − x1‖

with c3 = Lc̃2
∑N−1
k=0 |σ|k. Since ωJN is the modulus of continuity of JN , it must

be that
ωJN (‖x2 − x1‖) ≤ c3‖x2 − x1‖

This yields the claimed upper bound with c2 = Lc̃2.

Observe that the lower bound on ωJN (r) is independent of the choice of S, ε, K
and N while the upper bound typically depends on these parameters.

Proposition 3.4.1 states that the modulus of continuity ωJN is large whenever
|σ| is large and small if |σ| is small. In particular, ωJN grows unboundedly in N
if the system is not open-loop asymptotically stable, i.e., if |σ| ≥ 1.

From Theorem 1.2.4, we have ωVN ≤ ωJN . Hence the upper bound on ωJN from
Proposition 3.4.1 also applies to ωVN . In addition, under suitable conditions,
ωVN can be considerably smaller than ωJN , as the following proposition shows.

Proposition 3.4.2. Assume that the pair (A,B) is controllable. Let S ⊂ Rn
be a bounded set. Then there exists a real constant c > 0 such that the modulus
of continuity ωVN on S satisfies

ωVN (r) ≤ cr

for all N ∈ N.

35

Chapter 3. Benefits of re-optimization on finite horizon OCPs

Proof. Controllability implies that there exists a constant c̃ > 0 such that for
any x0 ∈ Rn we can find a control ux0

(·) ∈ Uñ with ‖ux0
(k)‖ ≤ c̃‖x0‖ for all

k = 0, . . . , ñ− 1 and xux0
(ñ, x0) = 0. This implies that on the bounded set S

there exists a uniform upper boundM of VN which can be chosen independent of
N . Then, positive definiteness of Q and R implies that the optimal trajectories
remain in a compact set D and that the optimal control sequences lie in the set
UNK from (3.11), where D and K can also be chosen independent of N .

Now for N ≤ ñ, using Proposition 3.4.2 in conjunction with Theorem 1.2.4 we
have

‖VN (x1)− VN (x2)‖ ≤ ωVN (‖x1 − x2‖) ≤ ωJN (‖x1 − x2‖)

≤ c2

N−1∑
k=0

|σ|k‖x1 − x2‖

The assertion follows with c = c2
∑N−1
k=0 |σ|k.

For N > ñ, consider two initial values x1, x2 ∈ S and let u?(·) be the optimal
control for x1. Let x0 := x2 − x1 and pick the control sequence ux0 ∈ Uñ
from the controllability property, which we extend with ux0

(k) := 0 for all
k = ñ, . . . , N − 1, implying xux0

(k, x2 − x1) = 0 for all k = ñ, . . . , N − 1. Then
for ũ? = u? + ux0 , we get

xũ?(k, x2) = xu?(k, x1) + xux0
(k, x2 − x1) = xu?(k, x1)

for all k ≥ ñ. Since ` is Lipschitz on S × UK , we can find a constant ĉ > 0 such
that

`(xũ?(k, x2), ũ?(k))− `(xu?(k, x1), u?(k)) ≤ ĉ‖x2 − x1‖
for all k = 0, . . . , ñ− 1, while for k ≥ ñ this difference equals 0. Therefore,

‖VN (x2)− VN (x1)‖ ≤ ‖JN (x2, ũ
?(·))− JN (x1, u

?(·))‖

≤
∥∥∥∥∥
N−1∑
k=0

`(xũ?(k, x2), ũ?(k))−
N−1∑
k=0

`(xu?(k, x1), u?(k))

∥∥∥∥∥
≤

N−1∑
k=0

ĉ‖x2 − x1‖ = ñĉ‖x2 − x1‖

With c = ñĉ, this implies the desired estimate.

Remark 3.4.3. As a consequence of the results above, we expect the difference
between ωJN and ωVN to be particularly large when the system is open-loop
unstable (implying a large ωJN) and controllable (implying a small ωVN).

In the next section, we present examples which numerically illustrate the result
in Remark 3.4.3.

3.5 Numerical example: a linear quadratic prob-
lem

Here we consider an illustrative numerical example for which we compare the
nominal case Jnmult

N , the case when nominal solution is applied to perturbed

36

3.5. Numerical example: a linear quadratic problem

systems Jpmult
N and the shrinking horizon MPC Jupd

N where the re-optimization
is carried out at each time step due to the mentioned perturbation. Consider
the nominal system described by

x+ = αx+ u (3.12)

and the corresponding perturbed system

x+ = αx+ u+ d (3.13)

where d is an additive perturbation. Consider the cost function

`(x, u) = x2 + u2.

Note that the stage cost ` forces the optimal trajectory to converge to the origin
0. Hence, the distance of the perturbed trajectory from the origin can be used
to visualize the performance.

If |α| < 1, then (3.12) is asymptotically stable with 0 as the equilibrium, and for
|α| > 1, it is unstable. In both cases, the system is controllable. Taking final
time N = 7, Figure 3.1 provides a visualization of the trajectories throughout
time for a chosen α and x0 = −4. With i = 0, . . . N , xi,0,0 represents the
nominal trajectory related to Jnmult

N (x0), while xi,i,0 denotes the trajectory
corresponding to Jpmult

N (x0), i.e., when the nominal open-loop control is applied
to the perturbed system (3.13). Finally, xi,i,i represents the trajectory with
re-optimization, corresponding to Jupd

N (x0). The perturbations d(·) are randomly
generated from the interval [−0.1, 0.1].

We compare the three described trajectories in Figure 3.1. Figure 3.1(top) illus-
trates the case when α = 0.5 for which (3.12) is is open-loop stable. Therefore,
one would expect not much improvement from re-optimization, which is exactly
what is visible in the figure, as the deviation from the nominal solution is only
mildly improved by re-optimization. In contrast to this, Figure 3.1(bottom)
shows the case α = 1.5, in which the system is open-loop unstable and control-
lable. Here, our analysis predicts a large benefit of the re-optimization procedure
which is clearly visible in the simulation. The similar effect is visible in Table
3.5.1 in which the values of Jnmult

N (x0), Jpmult
N (x0) and Jupd

N (x0) for x0 = −4
are shown. In the open-loop unstable and controllable system with α = 1.5, one
can notice a better performing Jupd

N (x0) compared to Jnmult
N (x0). This is due

to the fact that the introduced random perturbations here do by chance have a
positive effect on the performance because they drive the system faster towards 0.

Figure 3.2 and Table 3.5.2 illustrate a case when re-optimization does not give
much benefit because the system is not controllable. In this example, we set
α = 1.5 and impose a control constraint u ≥ 0 which renders the system
uncontrollable. Compared to Figure 3.1(bottom), one sees that the performance
of the re-optimization significantly deteriorates, though it still provides some
improvement over using the open-loop optimal trajectory. The numerical values
in Table 3.5.2 confirm this behavior. In order to increase the visibility of this
effect, we used here the constant perturbations d(k) = 0.1, i.e., the maximum
positive additive perturbation, at each time step.

37

Chapter 3. Benefits of re-optimization on finite horizon OCPs

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

t

x

x

i,0,0

x
i,i,0

x
i,i,i

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

t

x

x

i,0,0

x
i,i,0

x
i,i,i

Figure 3.1: State trajectories for the stable and controllable system with α = 0.5
(top) and for the unstable and controllable system with α = 1.5 (bottom)

Table 3.5.1: Comparison of control scheme performance

α = 0.5 α = 1.5

Jnmult
N (x0) 18.1245 42.0829

Jpmult
N (x0) 22.6457 613.1214

Jupd
N (x0) 18.8812 24.8458

Table 3.5.2: Comparison of control scheme performance

α = 1.5

Jnmult
N (x0) 42.0829

Jpmult
N (x0) 1763.9

Jupd
N (x0) 581.7244

38

3.5. Numerical example: a linear quadratic problem

0 1 2 3 4 5 6 7
−5

0

5

10

15

20

25

30

35

t

x

x

i,0,0

x
i,i,0

x
i,i,i

Figure 3.2: State trajectories for the unstable and uncontrollable system with
α = 1.5 with constraint u ≥ 0 and maximum positive perturbation at each time
step

39

4 Multistep and updated
multistep MPC schemes

The benefits brought by re-optimization to counteract perturbations is presented
in Chapter 3 for finite horizon problems. It is shown that over the finite horizonN ,
the performance difference between the nominal and perturbed system controlled
by the nominal optimal control is determined by ωJN while the difference between
the nominal and the shrinking horizon updated feedback controller is determined
by ωVN . For open loop unstable and controllable systems, wherein ωVN is
considerably smaller than ωJN , the benefit of updates becomes significant.

This chapter builds upon the framework of Chapter 3 and extends the results to
the infinite horizon problem (approximately) solved by MPC through a moving
horizon approach. We show in this chapter that the re-optimization in shrinking
horizon update strategy performed in the updated m-step MPC does indeed
allow for improved stability and performance estimates compared to non-updated
scheme. We focus our attention to the evolution described by the perturbed
multistep MPC closed-loop system

x̃µN,m(k + 1) = f(x̃µN,m(k), µN,m(x̃µN,m(bkcm), k)) + d(k) (4.1)

and the perturbed updated multistep MPC closed-loop system

x̃µ̂N,m(k + 1) = f(x̃µ̂N,m(k), µ̂N,m(x̃µ̂N,m(k), k)) + d(k) (4.2)

where perturbation occurs and re-optimization is performed. The feedback
controls µN,m and µ̂N,m are defined in (1.7) and (1.9), respectively.

Section 4.1 and Section 4.2 give statements analogous to some properties in
Section 2.1 extended to MPC trajectories for which perturbations and possibly
re-optimizations occur. These statements serve as ingredients for the main
stability and performance results formulated and proved in Section 4.3 for the
multistep and the updated multistep MPC. Lastly, an illustrative numerical
example is given in Section 4.4. A preliminary version of the results we present
in this chapter is published in [33].

4.1 Properties resulting from perturbations and
re-optimizations

This section provides a counterpart of Proposition 2.1.7 for the perturbed closed-
loop. To this end, we again make use of the notation introduced in Section 3.2

41

Chapter 4. Multistep and updated multistep MPC schemes

and derive a number of inequalities along the different trajectories.

4.1.1 Estimates involving VN(xm,m,0) and VN(xm,m,m)

We derive in this subsection some implications of Assumption 2.1.4 on trajectories
involving occurrence of perturbation and re-optimization. The following lemmas
provide an upper bound for VN (xm,m,0) and for VN (xm,m,m) which can be viewed
as extensions of (2.5) to the perturbed setting.

Lemma 4.1.1. Let Assumption 2.1.4 hold and consider x0,0,0 = x ∈ X and
an optimal control u∗(·) ∈ UN for the finite horizon optimal control problem
PN (x) with optimization horizon N . Then for each m = 1, . . . , N − 1 and each
j = 0, . . . , N −m− 1,

VN (xm,m,0) ≤
j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0) (4.3)

VN (xm,m,m) ≤
j−1∑
n=0

λn+m,m,m +BN−j(λj+m,m,m) (4.4)

Proof. To show (4.3), we take the trajectory element xm,m,0 whose evolution is
steered by the optimal control u∗(·) along the perturbed system (4.1) within
m-steps. We consider xj+m,m,0 for some j ∈ {0, . . . , N −m− 1}.
We define

ũ(n) =

{
u∗(n+m) n ∈ {0, . . . , j − 1}
ux̌(n− j) n ∈ {j, . . . , N − 1} (4.5)

where ux̌(·) results from solving the optimization problem PN−j(x̌) with initial
value x̌ = xj+m,m,0 = xu∗(·+m)(j, xm,m,0). This yields

VN (xm,m,0) ≤ JN (xm,m,0, ũ(·))
= Jj(xm,m,0, u

∗(·+m)) + JN−j(xj+m,m,0, ux̌(·))

=

j−1∑
n=0

`(xn+m,m,0, u
∗(n+m)) +

N−j−1∑
n=0

`(xux̌(n, x̌), ux̌(n))

=

j−1∑
n=0

λn+m,m,0 + VN−j(x̌) ≤
j−1∑
n=0

λn+m,m,0 +BN−j(`
∗(x̌))

=

j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0).

To show (4.4), we proceed analogously with x̌ = xj+m,m,m = xum,m,m(j, xm,m,m).

4.1.2 Estimates involving uniform continuity
The following are generalizations of Theorems 3.3.2 and 3.3.4 allowing an arbitrary
time instant k ∈ {0, 1, . . . , N − 1} to be the reference point in place of k = 0.
These results eventually provide a basis for comparing, in the finite horizon OCP
setting, the nominal system, the perturbed system controlled by the nominal

42

4.1. Properties due to perturbations and re-optimizations

optimal control and the perturbed system under the shrinking horizon updated
feedback controller.

Theorem 4.1.2. Given k ∈ {0, . . . , N − 1}. For any p ∈ {1, . . . , N − k − 1},∣∣∣∣∣∣
N−1∑
j=k

λj,k,0 −
N−1∑
j=k

λj,k+p,0

∣∣∣∣∣∣ ≤
p∑
j=1

|JN−k−j(xk+j,k+j−1,0, u
∗(·+ k + j))

−JN−k−j(xk+j,k+j,0, u
∗(·+ k + j))| (4.6)

and ∣∣∣∣∣∣
N−1∑
j=k

λj,k,k −
N−1∑
j=k

λj,k+p,k+p

∣∣∣∣∣∣ ≤
p∑
j=1

|VN−k−j(xk+j,k+j−1,k+j−1)

−VN−k−j(xk+j,k+j,k+j)| (4.7)

Proof. The proof follows using the same technique as the proofs of Theorems
3.3.2 and 3.3.4 with the appropriate changes in the indices.

Following directly is a corollary that sizes up the differences among values
associated with the tails of the nominal trajectory, the tails of the perturbed
trajectory with nominal control and the tails of the perturbed trajectory with
re-optimized control.

Corollary 4.1.3. Let k ∈ {0, . . . , N−1}. Suppose Ji, i = 1, . . . , N , is uniformly
continuous on a set A containing xj,k,0 and xj,j,0 for j = k, . . . , N − 1 uniformly
in u on X with modulus of continuity ωJi . Suppose Vi, i = 1, . . . , N , is uniformly
continuous on a set A containing xj,k,k and xj,j,j for j = k, . . . , N − 1 with
modulus of continuity ωVi . Then∣∣∣∣∣∣

N−1∑
j=k

λj,k,0 −
N−1∑
j=k

λj,j,0

∣∣∣∣∣∣ ≤
N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖) (4.8)

and ∣∣∣∣∣∣
N−1∑
j=k

λj,k,k −
N−1∑
j=k

λj,j,j

∣∣∣∣∣∣ ≤
N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) (4.9)

Proof. Straightforward from (4.6) and (4.7) with p = N − k − 1.

Note that on the right hand side of the estimates the perturbations that occur
before time step k do not appear since in both schemes they have cancelled each
other. Also, for the special case of k = 0, we recover results of Corollaries 3.3.3
and 3.3.5.

In the next lemma, we combine the preceding results to derive an upper bound
for the values corresponding to the tails of the perturbed trajectory with nominal
control and for the tails of the perturbed trajectory with re-optimized control.
Resulting estimates can be viewed as extensions of (2.4) to the perturbed setting.

43

Chapter 4. Multistep and updated multistep MPC schemes

Lemma 4.1.4. Let the assumptions of Corollary 4.1.3 hold. Suppose further
BK , K = 1, . . . , N , is uniformly continuous on R+

0 with modulus of continuity
ωBK . Then for k = 0, . . . , N − 2, we have the inequalities

N−1∑
j=k

λj,j,0 ≤ BN−k(λk,k,0) + ωBN−k(λk,k,0 − λk,0,0) (4.10)

+ ωJN−k(xk,k,0 − xk,0,0) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

N−1∑
j=k

λj,j,j ≤ BN−k(λk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) . (4.11)

Proof. Inequality (4.10) follows since

N−1∑
j=k

λj,j,0 ≤
N−1∑
j=k

λj,k,0 +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

= JN−k(xk,k,0, u
∗
0,0,0(k + ·)) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

≤ JN−k(xk,0,0, u
∗
0,0,0(k + ·)) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

≤ BN−k(`∗(xk,0,0)) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

= BN−k(λk,0,0) + ωJN−k(xk,k,0 − xk,0,0)

+

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖)

≤ BN−k(λk,k,0) + ωBN−k(λk,k,0 − λk,0,0)

+ ωJN−k(xk,k,0 − xk,0,0) +

N−k−1∑
j=1

ωJN−k−j (‖d(k + j)‖) .

To show (4.11) we compute
N−1∑
j=k

λj,j,j ≤
N−1∑
j=k

λj,k,k +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= VN−k(xk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

≤ BN−k(`∗(xk,k,k)) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖)

= BN−k(λk,k,k) +

N−k−1∑
j=1

ωVN−k−j (‖d(k + j)‖) .

44

4.2. The perturbed versions of Pα

4.1.3 Counterpart of Proposition 2.1.7
By combining the results of Sections 4.1.1 and 4.1.2, we can now state the
following counterpart of Proposition 2.1.7. It yields necessary conditions which
hold if these values λn coincide with either λn,n,0 or λn,n,n, n = 0, . . . , N − 1,
and ν with either VN (xm,m,0) or VN (xm,m,m).

Corollary 4.1.5. Consider N ≥ 1,m ∈ {1, . . . , N − 1} and let the assump-
tions of Lemmas 4.1.1 and 4.1.4 hold. Let x = x0,0,0 ∈ X and consider a
perturbation sequence d(·) where d(k) = 0 for k ≥ m generating the trajecto-
ries x̃µN,N−1

(n, x) = xn,n,0 and x̃µ̂N,N−1
(n, x) = xn,n,n. Consider a sequence

λn ≥ 0, n = 0, . . . , N − 1 and a value ν ≥ 0 such that either

(i) λn = λn,n,0, n = 0, . . . , N − 1 and ν = VN (xm,m,0) or

(ii) λn = λn,n,n, n = 0, . . . , N − 1 and ν = VN (xm,m,m) holds.

Then the inequalities

N−1∑
n=k

λn ≤ BN−k(λk) + ξk, k = 0, . . . , N − 2 (4.12)

ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m), j = 0, . . . , N −m− 1 (4.13)

hold for

(i) ξk = ξpmult
k :=

∑N−k−1
j=1 ωJN−k−j (‖d(k + j)‖)

+ ωBN−k(λk,k,0 − λk,0,0) + ωJN−k(xk,k,0 − xk,0,0)

(ii) ξk = ξupdk :=
∑N−k−1
j=1 ωVN−k−j (‖d(k + j)‖) .

Proof. For case (i), inequality (4.13) follows immediately from (4.3) while (4.12)
follows directly from (4.10). For case (ii), (4.13) follows from (4.4), and (4.12)
from (4.11).

Remark 4.1.6. We will later use Corollary 4.1.5 in order to establish inequality
(2.16). Since all quantities in this inequality only depend on the perturbation
values d(0), . . . , d(m− 1), we could make the simplifying assumption d(k) = 0
for k ≥ m in Corollary 4.1.5.

4.2 The perturbed versions of Pα
Inequalities (2.4) and (2.5) comprise the constraints in the minimization problem
Pα for finding the suboptimality index of the nominal m-step MPC scheme with
respect to the infinite horizon problem. For the perturbed and the perturbed
updated m-step MPC, the preceding corollary yields analogous ’perturbed’
inequalities (4.12) and (4.13). In this section, we investigate how much the

45

Chapter 4. Multistep and updated multistep MPC schemes

values α resulting from the corresponding perturbed versions of Pα may differ
from the nominal case. To this end, we first state the three problems under
consideration. Here, for the subsequent analysis it turns out beneficial to include
perturbation terms in both inequalities (4.12) and (4.13).

First, the optimization problem Pα corresponding to the nominal multistep MPC
can be written in terms of the latterly introduced notation as

αnmult := inf
λn,0,0,n=0,...,N−1,νnmult

∑N−1
n=0 λn,0,0 − νnmult∑m−1

n=0 λn,0,0

subject to Pnmult
α

N−1∑
n=k

λn,0,0 ≤ BN−k(λk,0,0), k = 0, . . . , N − 2

νnmult ≤
j−1∑
n=0

λn+m,0,0 +BN−j(λj+m,0,0), j = 0, . . . , N −m− 1

m−1∑
n=0

λn,0,0 > 0, λm,0,0, . . . , λN−1,0,0, ν
nmult ≥ 0

For the perturbed multistep MPC without update, we define αpmult via

αpmult := inf
λn,n,0,n=0,...,N−1,νpmult

∑N−1
n=0 λn,n,0 − νpmult∑m−1

n=0 λn,n,0

subject to Ppmult
α

N−1∑
n=k

λn,n,0 ≤ BN−k(λk,k,0) + ξpmult, k = 0, . . . , N − 2

νpmult ≤
j−1∑
n=0

λn+m,m,0 +BN−j(λj+m,m,0) + ξpmult, j = 0, . . . , N −m− 1

m−1∑
n=0

λn,n,0 ≥ ζ, λm,m,0, . . . , λN−1,N−1,0, ν
pmult ≥ 0

where

ξpmult := max
k∈{0,...,N−2}

ξpmult
k with ξpmult

k from Corollary 4.1.5(i) (4.14)

46

4.2. The perturbed versions of Pα

Finally, for the perturbed updated multistep MPC, we define αupd by

αupd := inf
λn,n,n,n=0,...,N−1,νupd

∑N−1
n=0 λn,n,n − νupd∑m−1

n=0 λn,n,n

subject to Pupd
α

N−1∑
n=k

λn,n,n ≤ BN−k(λk,k,k) + ξupd, k = 0, . . . , N − 2

νupd ≤
j−1∑
n=0

λn+m,m,m +BN−j(λj+m,m,m) + ξupd, j = 0, . . . , N −m− 1

m−1∑
n=0

λn,n,n ≥ ζ, λm,m,m, . . . , λN−1,N−1,N−1, ν
upd ≥ 0

with

ξupd = max
k∈{0,...,N−2}

ξupd
k with ξupd

k from Corollary 4.1.5(ii) (4.15)

Remark 4.2.1. The constraint bound ζ > 0 is assigned to prevent the quotients
with denominator

∑m−1
n=0 λn,n,0 and

∑m−1
n=0 λn,n,n appearing in the analysis from

blowing up.

The subsequent lemma, inspired by of [36, Lemma 6.32], is the key technical
step to show how αnmult, αpmult and αupd are related. It provides an estimate
for the difference between the solutions to two abstract optimization problems
of the type introduced above.

Lemma 4.2.2. Consider increasing functions Bik : R+
0 → R+

0 for k ∈ N and
i = 1, 2 for which B2

k(r) is linear. Assume that these functions satisfy Bik(r) ≥ r
for all k ∈ N, r ≥ 0 and that there exists a real constant ξ > 0 with

B1
k(r) ≤ B2

k(r) + ξ (4.16)

For i = 1, 2 and a constant ζ ≥ 0 consider the optimization problems

αi := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1
n=0 λn

subject to
N−1∑
n=k

λn ≤ BiN−k(λk), k = 0, . . . , N − 2 (4.17)

ν ≤
j−1∑
n=0

λn+m +BiN−j(λj+m), j = 0, . . . , N −m− 1(4.18)

m−1∑
n=0

λn ≥ ζ, λ0, . . . , λN−1, ν ≥ 0 (4.19)

47

Chapter 4. Multistep and updated multistep MPC schemes

Then the following holds.

(i) If ζ > 0, then the inequality α2 ≤ α1 +
B2
m+1(ξ) + ξ

ζ
holds.

(ii) If ζ = 0 and α2 ≥ 0, then for all values λ0, . . . , λN−1, ν satisfying (4.17)–
(4.19) for i = 1 the inequality ν ≤∑N−1

n=0 λn +B2
m+1(ξ) + ξ holds.

Proof. (i) Fix ε > 0. Consider ε-optimal values λ1
0, . . . , λ

1
N−1, ν

1 satisfying the
constraints (4.17)–(4.19) for i = 1 and∑N−1

n=0 λ
1
n − ν1∑m−1

n=0 λ
1
n

≤ α1 + ε

Case 1: Suppose λ1
N−1 − ξ > 0. In the following we construct λ2

0, . . . , λ
2
N−1, ν

2

satisfying the constraints (4.17)–(4.19) for i = 2 and∑N−1
n=0 λ

2
n − ν2∑m−1

n=0 λ
2
n

≤ α1 + ε+
B2
m+1(ξ)

ζ

Set λ2
n := λ1

n, n = 0, . . . , N − 2, λ2
N−1 := λ1

N−1 − ξ. Set ν2 := max{0, ν1 −
B2
m+1(ξ)− ξ}. Notice that by this construction, λ2

0, . . . , λ
2
N−1, ν

2 satisfies con-
straint (4.19). For k = 0, . . . , N − 2 this implies

N−1∑
n=k

λ2
n =

N−1∑
n=k

λ1
n − ξ ≤ B1

N−k(λ1
k)− ξ ≤ B2

N−k(λ1
k) + ξ − ξ = B2

N−k(λ2
k)

where the last equality holds since k ranges only from 0 to N − 2. This implies
(4.17) for Bk = B2

k.

Next observe that for j = 0, . . . , N −m− 2

ν1 ≤
j−1∑
n=0

λ1
n+m +B1

N−j(λ
1
j+m) ≤

j−1∑
n=0

λ1
n+m +B2

N−j(λ
1
j+m) + ξ

=

j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m) + ξ

holds. Further observe that for j = N −m− 1 we have

ν1 ≤
N−m−2∑
n=0

λ1
n+m +B1

m+1(λ1
N−1) ≤

N−m−2∑
n=0

λ1
n+m +B2

m+1(λ1
N−1) + ξ

=

N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1 + ξ) + ξ

=

N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1) +B2

m+1(ξ) + ξ

48

4.2. The perturbed versions of Pα

with the last equality due to linearity of B2
N−k. In case ν2 = 0 we get

ν2 ≤
j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m), j = 0, . . . , N −m− 2

and in case ν2 = ν1 −B2
m+1(ξ)− ξ the inequalities

ν2 ≤
N−m−2∑
n=0

λ2
n+m +B2

m+1(λ2
N−1)

ν2 ≤ ν1 − ξ ≤
j−1∑
n=0

λ2
n+m +B2

N−j(λ
2
j+m), j = 0, . . . , N −m− 2

hold. Thus, for j = 0, . . . , N −m− 1, we have ν2 ≤∑j−1
n=0 λ

2
n+m+B2

N−j(λ
2
j+m).

This implies (4.18) for Bk = B2
k.

Since
∑m−1
n=0 λ

1
n =

∑m−1
n=0 λ

2
n ≥ ζ > 0 and ξ > 0, the values λ2

m, . . . , λ
2
N−1, ν

2

satisfy all constraints (4.17)–(4.19) for i = 2 and we obtain

α2 ≤

N−1∑
n=0

λ2
n − ν2

m−1∑
n=0

λ2
n

=

N−1∑
n=0

λ1
n − ξ − ν2

m−1∑
n=0

λ2
n

≤

N−1∑
n=0

λ1
n − ξ − ν1 +B2

m+1(ξ) + ξ

m−1∑
n=0

λ1
n

≤ α1 + ε+
B2
m+1(ξ)

ζ
.

Case 2: Now suppose λ1
N−1 − ξ ≤ 0. Let µ :=

∑N−m−2
n=0 λ1

n+m +B1
m+1(λ1

N−1).
Then

α1 + ε ≥
∑N−1
n=0 λ

1
n − ν1∑m−1

n=0 λ
1
n

≥
∑N−1
n=0 λ

1
n − µ∑m−1

n=0 λ
1
n

=

∑m−1
n=0 λ

1
n +

∑N−2
n=m λ

1
n + λ1

N−1 − µ∑m−1
n=0 λ

1
n

= 1 +
µ−B1

m+1(λ1
N−1) + λ1

N−1 − µ∑m−1
n=0 λ

1
n

= 1 +
B1
m+1(λ1

N−1)− λ1
N−1

−∑m−1
n=0 λ

1
n

≥ 1 +
B1
m+1(λ1

N−1)− λ1
N−1

−ζ

≥ 1− B1
m+1(λ1

N−1)

ζ
≥ 1− B1

m+1(ξ)

ζ
≥ α2 − B1

m+1(ξ)

ζ

≥ α2 − B2
m+1(ξ) + ξ

ζ
.

Hence, in both cases we obtain α2 ≤ α1 + ε +
B2
m+1(ξ)+ξ

ζ which shows the
assertion since ε > 0 was arbitrary.

49

Chapter 4. Multistep and updated multistep MPC schemes

(ii) We proceed by contradiction. Assume there are values λ1
0, . . . , λ

1
N−1, ν

1

satisfying (4.17)–(4.19) for i = 1 and ν1 >
∑N−1
n=0 λ

1
n +B2

m+1(ξ) + ξ. Then the
same construction as in (i) yields λ2

0, . . . , λ
2
N−1, ν

2 satisfying (4.17)–(4.19) for
i = 2 and

α2 ≤

N−1∑
n=0

λ2
n − ν2

m−1∑
n=0

λ2
n

≤

N−1∑
n=0

λ1
n − ν1 +B2

m+1(ξ) + ξ

m−1∑
n=0

λ1
n

< 0

which contradicts the assumption α2 ≥ 0.

The following theorem finally applies Lemma 4.2.2 to the problems Pnmult
α ,

Ppmult
α and Pupd

α .

Theorem 4.2.3. Consider problems Pnmult
α , Ppmult

α and Pupd
α , let the assump-

tions of Theorem 2.1.8 hold and assume that the Bk, k ∈ N from Pnmult
α are

linear functions. Then

αpmult ≥ αnmult − Bm+1(ξpmult) + ξpmult

ζ

αupd ≥ αnmult − Bm+1(ξupd) + ξupd

ζ

where ξpmult and ξupd are defined in (4.14) and (4.15), respectively. Here, αnmult
can be replaced by the right hand side of Equation (2.12).

Proof. We apply Lemma 4.2.2 setting α2 := αnmult, B2
k(r) := Bk(r), α1 :=

αpmult and B1
k(r) := Bk(r) + ξpmult. Then αnmult ≤ αpmult +

B2
m+1(ξpmult)+ξpmult

ζ .
Similarly, taking α2 := αnmult, B2

k(r) := Bk(r), α1 := αupd and B1
k(r) :=

Bk(r) + ξupd, we have that αnmult ≤ αupd +
B2
m+1(ξupd)+ξupd

ζ . The fact that
αnmult can be replaced by the right hand side of (2.12) follows immediately from
Theorem 2.1.10.

The preceding theorem gives lower bounds for the values αpmult and αupd of the
perturbed problems in terms of the performance index αnmult of the nominal
problem.

4.3 Asymptotic stability and performance
In this section we combine all previous results in order to prove the ’perturbed’
counterpart to Theorem 2.1.8. To this end, we start with a preparatory lemma.

Lemma 4.3.1. Let the assumptions of Corollary 4.1.5 hold. (a) Consider
a perturbation sequence d(·) with d(k) = 0 for all k ≥ m and a trajectory
x̃µN,m(·, x0) of (4.1) which corresponds to a perturbation sequence d̃(·) with
d̃(k) = d(k) for k = 0, . . . ,m− 1,

50

4.3. Asymptotic stability and performance

(i) Let αpmult be the solution of Ppmult
α for d(·) and some ζ > 0 and assume∑m−1

k=0 `(x̃µN,m(k, x0), µN,m(x0, k)) ≥ ζ. Then the inequality

VN (xµN,m(m,x0)) ≤ VN (x0)− α̃pmult
m−1∑
k=0

`(x̃µN,m(k, x0), µN,m(x0, k)) (4.20)

holds for
α̃pmult = αpmult − σ

ζ
where σ =

m−1∑
j=1

ωJN−j (‖d(j)‖) (4.21)

(ii) Assume that all values λ0, . . . , λN−1, ν
pmult satisfying the constraints from

Ppmult
α satisfy ν ≤∑N−1

n=0 λn +Bm+1(ξpmult) + ξpmult. Then the inequality

VN (xµN,m(m,x0)) ≤ VN (x0) +Bm+1(ξpmult) + ξpmult + σ

holds for σ from (i).

(b) The analogous statements hold for the trajectories x̃µ̂N,m(·, x0) of (4.2) with
Ppmult
α , α̃pmult etc. replaced by Pupd

α , α̃upd etc. and σ =
∑N−1
j=1 ωVN−j (‖d(j)‖).

Proof. (a)(i) Consider the trajectory xj,j,0 corresponding to the perturbation
d(·) starting in x0,0,0 = x0, and the corresponding values λj,j,0. Note that for
j = 0, . . . ,m the identities x̃µN,m(j, x0) = xj,j,0 and for j = 0, . . . ,m − 1 the
identities `(x̃µN,m(j, x0), µN,m(x0, j)) = λj,j,0 hold.

By Corollary 4.1.5(i), the values λn = λn,n,0 and ν = VN (xm,m,0) satisfy the
constraints of Ppmult

α . This implies

νpmult ≤
N−1∑
n=0

λn,n,0 − αpmult
m−1∑
n=0

λn,n,0

from which using (4.8) we obtain

VN (xµN,m(m,x0)) ≤
N−1∑
n=0

λn,n,0 − αpmult
m−1∑
n=0

λn,n,0

≤
N−1∑
n=0

λn,0,0︸ ︷︷ ︸
=VN (x)

+

N−1∑
n=1

ωJN−n(‖d(n)‖)︸ ︷︷ ︸
=σ≤σ ζ∑m−1

n=0 λn,n,0

−αpmult
m−1∑
n=0

λn,n,0

≤ VN (x)− α̃pmult
m−1∑
n=0

λn,n,0,

i.e., the assertion, since d(m) = . . . , d(N − 1) = 0.

(a)(ii) Similar to (i) we obtain

VN (xµN,m(m,x0)) ≤
N−1∑
n=0

λn,n,0 +Bm+1(ξpmult) + ξpmult.

51

Chapter 4. Multistep and updated multistep MPC schemes

From this the assertion follows using the same estimates as in (i).

(b) Follows by analogous arguments using xj,j,j , λj,j,j , Corollary 4.1.5(ii) and
(4.9).

The following theorem – together with the subsequent remark – comprises the
main result of this chapter. For its formulation we need an additional property
of f .

Definition 4.3.2. We say that f is uniformly bounded on each ball B∆(x∗) if
for any ∆ > 0 the value sup‖x‖x∗≤∆,u∈U(x) ‖f(x, u)‖ is finite.

Theorem 4.3.3. (i) Let N ≥ 1 and consider the MPC Algorithm 1.3.2 with
stage cost ` : X × U → R+

0 satisfying Assumption 2.1.2, yielding the m-step
feedback law µN,m. Assume that f is uniformly bounded on each ball B∆(x∗)
and that JK , K = 1, . . . , N , f and ` are uniformly continuous on each ball
A = Bη(x∗) around x∗ uniformly in u with their respective moduli of continuity
ωηJK , ω

η
f and ωη` . Let Assumption 2.1.4 hold with BK being linear and that the

optimization problem Pnmult
α has an optimal value αnmult ∈ (0, 1], implying that

the nominal closed-loop system is asymptotically stable.

Then the perturbed m-step closed-loop system (4.1) with feedback law µN,m is
semi-globally practically asymptotically stable on X with respect to d.

Moreover, for α̃pmult > 0 with α̃pmult defined in Lemma 4.3.1, the performance
estimate

Jcl
k∗(x̃µN,m(·, x), µN,m) ≤ VN (x)/α̃pmult.

holds for all x̃µN,m(·, x) ∈ Sd(x).

(ii) The same statements hold for the MPC Algorithm 1.3.4, with the feedback
law µ̂N,m and the corresponding closed-loop system (4.2) when we replace the
moduli of continuity ωηJK by ωηVK and α̃pmult, αpmult by α̃upd, αupd, respectively,
with α̃upd defined in Lemma 4.3.1.

Proof. (i) To show that µN,m is semi-globally practically asymptotically stable
on X with respect to d, via Lemma 2.2.5, for every δ > 0 and every ∆ > δ,
we need to show existence of d > 0 and sets Y and P with intermediate set P̂
satisfying P ⊆ P̂ ⊆ Y ⊆ X and

B∆(x∗) ∩ X ⊆ Y and P̂ ⊆ Bδ(x∗)

such that for each solution x̃µ(·, x0) ∈ Sd(x0) the system is P̂ -practically uni-
formly asymptotically stable on Y .

We can prove this through Theorem 2.2.8, i.e., by showing (a) the existence of
α ∈ (0, 1] such that the relaxed dynamic programming inequality (2.16) with
V = VN , µ = µN,m holds for all x0 ∈ Y \P and all x̃µ(·, x0) ∈ Sd(x0), and (b) that
(2.1) holds and there exists α3, α4 ∈ K∞ with α3(‖x‖x∗) ≤ V (x) ≤ α4(‖x‖x∗)
First, observe that by taking α3 := α1 and α4 := BN ◦α2 with α2 from (2.1) we
obtain

α3(‖x∗‖) ≤ `∗(x) ≤ VN (x) ≤ BN (`∗(x)) ≤ BN (α2(‖x‖x∗)) = α4(‖x‖x∗)
(4.22)

showing (b).

52

4.3. Asymptotic stability and performance

To show (a), fix ∆ > δ > 0 and an arbitrary κ ∈ (0, 1).

The next step consists of showing the existence of sets Y , P and P̂ and value
d > 0. We show this by the following construction.

Construction of Y : Consider first some arbitrary d̃ > 0. Due to the uniform
continuity of f on balls around x∗, there exists η1 > 0 such that f(x, u) + d ∈
Bη1(x∗) for all x ∈ B∆(x∗) and all d with ‖d‖ ≤ d̃. Then inductively for i =

2, . . . , N , with ηi−1 in place of ∆, there exists ηN such that x̃µ(k, x0) ∈ BηN (x∗)
for all k = 0, . . . , N for any solution x̃µ(·, x0) ∈ Sd̃(x0) and for any x0 ∈ B∆(x∗).

We set L := α4(ηN). Suppose x ∈ BηN (x∗). Then ‖x‖x∗ ≤ ηN which implies
α4(‖x‖x∗) ≤ L. Since VN (x) ≤ α4(‖x‖x∗) ≤ L, x ∈ Y := V −1

N ([0, L]). Thus,

B∆(x∗) ∩ X ⊆ BηN (x∗) ∩ X ⊆ Y.

Setting η := α−1
1 (L) implies Y ⊂ Bη(x∗). We let ωJK = ωηJK , K = 0, . . . , N ,

ωf = ωηf and ω` = ωη` denote the moduli of continuity of JK , f and `, respectively,
on A = Bη(x∗).

Construction of P and P̂ : We set p := α · α3 ◦ α−1
4 ◦ α3(δ) with α = καnmult

and define P := V −1
N ([0, p]). Suppose x ∈ P . Since α3(‖x‖x∗) ≤ VN (x) ≤ p,

‖x‖x∗ ≤ α−1
3 (p), i.e., x ∈ Bα−1

3 (p)(x∗). Furthermore

αα3(‖x‖x∗) ≤ α3(‖x‖x∗) ≤ VN (x) ≤ α4(‖x‖x∗) ≤ α4(α−1
3 (p))

giving ‖x‖x∗ ≤ 1
αα
−1
3 (α4(α−1

3 (p))), i.e., x ∈ Bδ(x∗). All this gives

P ⊆ Bα−1
3 (p)(x∗) ⊆ Bδ(x∗)

for which we define P̂ := Bδ(x∗). For later use, we also define q := p/2,
Q := V −1

N ([0, q]) ⊂ P and ζ := α1(α−1
4 (q)). Observe that if x /∈ Q, then

α4(‖x‖x∗) ≥ VN (x) ≥ q which yields `∗(x) ≥ α1(‖x‖x∗) ≥ α1(α−1
4 (q)). This

implies the choice of ζ ensures `∗(x) ≥ ζ.
Choice of d: We choose d ∈ (0,min{d̃, q}] maximal such that the two conditions

Bm+1(ξpmult) + ξpmult + σ ≤ q and α̃pmult ≥ καnmult

hold for ξpmult from Corollary 4.1.5(i), and σ and α̃pmult from Lemma 4.3.1(a)(i)
with ζ from above. Such d > 0 exists due to Lemma 4.3.1 and Theorem 4.2.3:
Due to the uniform continuity assumption on the JK , f and ` and the linearity of
BK , all terms in the definition of ξpmult in Corollary 4.1.5(i) vanish as d→ 0. We
note that d depends on δ via q and ζ (which depends on δ via the construction
of P) and on ∆ via the moduli of continuity ωJK , ωf and ω` (which depend on
∆ via the construction of Y). By Lemma 4.3.1, this choice of d ensures (4.20)
and thus (2.16) with V = VN , µ = µN,m and α = α̃pmult = καnmult > 0 for all
x0 ∈ Y with `∗(x0) ≥ ζ. By the choice of ζ, this includes all x0 ∈ Y \Q.

Now what remains is to verify that Y and P are m-step forward invariant with
respect to d and that P̂ is an intermediate set of P .

m-step forward invariance of Y : It suffices to show the implication x0 ∈
Y ⇒ x̃µN,m(m,x0) ∈ Y for all x̃µN,m(·, x0) ∈ Sd(x0) since x̃µN,m(rm, x0) ∈ Y

53

Chapter 4. Multistep and updated multistep MPC schemes

for r ≥ 2 then follows by induction. For x0 ∈ Y \ Q, we know that (4.20)
applies, yielding VN (x̃µN,m(m,x0)) ≤ VN (x0) which implies x̃µN,m(m,x0) ∈ Y .
For x0 ∈ Q, we know that ‖x0‖x∗ ≤ δ < ∆. By construction of Y , all perturbed
trajectories starting in B∆(x∗) remain in Y for at least N steps, which implies
x̃µN,m(m,x0) ∈ Y since m < N .

m-step forward invariance of P : It suffices, once again, to show the impli-
cation x0 ∈ P ⇒ x̃µN,m(m,x0) ∈ P for all x̃µN,m(·, x0) ∈ Sd(x0). We thus
consider arbitrary x0 ∈ P and x̃µN,m(·, x0) ∈ Sd(x0) and distinguish two cases:

Case 1: x0 /∈ Q. Then (4.20) applies, yielding VN (x̃µN,m(m,x0)) ≤ VN (x0)
which implies x̃µN,m(m,x0) ∈ P .
Case 2: x0 ∈ Q. Since αnmult > 0, Lemma 4.2.2(ii) applies and ensures that the
assumptions of Lemma 4.3.1(a)(ii) are satisfied. Then the choice of Q, q and d
yields

VN (x̃µN,m(m,x0)) ≤ VN (x0) +Bm+1(ξpmult) + ξpmult + σ ≤ q + q = p

which again implies x̃µN,m(m,x0) ∈ P .
P̂ is an intermediate set: It remains to show that x̃µN,m(k, x0) ∈ P̂ = Bδ(x∗)
for all k ≥ 0 and x0 ∈ P . To this end, we use the inequality

VN (x̃µN,m(k, x0)) ≤ α4 ◦ α−1
1 (VN (x̃µN,m(bkcm, x0))/α)

derived in the proof of Theorem 2.2.8(ii). Since P is m-step forward invariant,
we know x̃µ(bkcm, x0) ∈ P and thus

VN (x̃µN,m(k, x0)) ≤ α4 ◦ α−1
1 (p/α)

which by (4.22) and choice of p implies

‖x̃µN,m(k, x0)‖x∗ ≤ α−1
3 ◦ α4 ◦ α−1

1 (p/α) = δ

and thus shows x̃µN,m(k, x0) ∈ P̂ .
(ii) The proof is completely identical to (i), observing that throughout the proof
of (i), we have only used properties of Algorithm 1.3.2 and system (4.1) which
have also been proven for Algorithm 1.3.4 and system (4.2).

Remark 4.3.4. (a) The decisive difference between the cases (i) and (ii) in
Theorem 4.3.3 which determine both the bound for d and the suboptimality
index α lies in the error terms. For Algorithm 1.3.2 yielding index α̃pmult, the
error terms depend on ωJK and for Algorithm 1.3.4 yielding index α̃upd the error
terms depend on ωVK .

(b) The bound d depending on ∆ and δ in Definition 2.2.4 can be chosen to
satisfy the condition α̃pmult > καnmult for arbitrary κ ∈ (0, 1), with α̃pmult from
Lemma 4.3.1(a)(i). Here, the moduli of continuity ωJN involved in the estimates
for α̃pmult and αpmult are chosen as ωJN = ωηJN with η depending on ∆. The
value ζ in these estimates depends on δ. An analogous statement hold for α̃upd.

(c) Recall that a larger value of the suboptimality index α indicates better
performance of the scheme. Theorem 4.2.3 limits the performance loss of αpmult

54

4.4. Numerical example: inverted pendulum

and αupd to the values Bm+1(ξpmult)+ξpmult

ζ and Bm+1(ξupd)+ξupd

ζ , respectively with

Bm+1(ξpmult) + ξpmult

ζ
≥ Bm+1(ξupd) + ξupd

ζ

since ξpmult ≥ ξupd (recall their definitions in (4.14) and (4.15)) and ωJk ≥ ωVk .
This means that although we can not conclude that αupd > αpmult, the theorem
nevertheless guarantees that the estimated performance of the updated scheme
can not be worse than that of the non-updated scheme. In Section 4.4, we give
an example in which updated m-step indeed performs better than the m-step
scheme.

(d) Now the definition of the performance indices α̃pmult and α̃upd in Theo-
rem 4.3.3, where ωJk ≥ ωVk , with the difference being significant, e.g., in case
of open loop unstable and controllable systems (see Section 3.4, in particular,
Remark 3.4.3 and examples in Section 3.5), explains and quantifies the better
robustness properties of the updated MPC scheme.

4.4 Numerical example: inverted pendulum
In order to illustrate our results, we consider a nonlinear inverted pendulum
model consisting of a cart mounted on a track where it can move and attached
to it is a rigid pendulum that is able to rotate freely. We use the different MPC
controllers discussed in our study to swing up the pendulum to the unstable
upright or inverted position and stabilize it there. We consider the model used
in [37]

ẋ1(t) = x2(t)

ẋ2(t) = −g
`

sin(x1(t))− kL
l

arctan(1000x2(t))x2
2(t)− u(t)

l
cos(x1(t))

−kR
(

4ax2(t)

1 + 4(ax2(t))2
+

2 arctan(bx2(t))

π

)
ẋ3(t) = x4(t)
ẋ4(t) = u(t)

where xi, i = 1, . . . , 4 represents pendulum angular displacement, angular velocity,
cart position and cart velocity, respectively, with gravitational constant g = 9.81,
pendulum length l = 1.25 and friction parameters kL = 0.007 and kR = 0.197.
In order to convert the continuous time system to a discrete time model (1.1)
we sample it with zero order hold and sampling period T = 0.2. To stabilize the
upright position x∗ = ((2k + 1)π, 0, 0, 0), k ∈ N, we consider the stage cost also
used in [37]

`(x(i), u(i)) =

∫ ti+1

ti

10−4u(t)2 +
(
3.51 sin(x1(t)− π)2

+ 4.82 sin(x1(t)− π)x2(t) + 2.31x2(t)2

+ 0.1
(
(1− cos(x1(t)− π)) · (1 + cos(x2(t))2)

)2
+ 0.01x3(t)2 + 0.1x4(t)2

)2
dt

55

Chapter 4. Multistep and updated multistep MPC schemes

where ti = iT , leading to a cost functional of JN (x0, u) =
∑N−1
i=0 `(x(i), u(i)).

We aim to compare simulations resulting from the multistep and updated
multistep feedback controllers both on nominal and perturbed setting. We
set the length of the optimization horizon to N = 15, set the initial value x0 =
(−π−0.1, 0,−0.1, 0) and for the perturbed system (2.13) we use a fixed randomly
generated perturbation sequence of the form d(k) = [0, 0, d3(k), 0]>, k ∈ N, (i.e.,
perturbations occur on the cart position x3 and are identical for each simulation)
with values in the interval [−d3, 0] for d3 = 0.05. Note that for demonstration
purposes, i.e., to see clear trends, we present an example where perturbations
have uniform signs (similar results are also obtained for [0, d3]), in contrast to
arbitrarily signed perturbations which could also be chosen otherwise.

Figure 4.1 illustrates the trajectories for m = 1, where the 1-step MPC scheme
(shown in blue) renders the nominal system asymptotically stable at (−π, 0, 0, 0)
while, as expected, the 1-step perturbed solution (cyan) is only practically
asymptotically stable, i.e., only converges to a neighborhood of x∗. We remark
that for m = 1, the trajectories generated by (4.1) and (4.2) coincide, hence
only the former is shown in the figure. For m = 7, trajectories resulting from
the nominal 7-step (blue), perturbed 7-step (red), and perturbed updated 7-
step (green) are plotted in Figure 4.2. The larger m is chosen, the longer the
multistep controller does not counteract the effect of the perturbation preventing
the trajectory to arrive closer to the equilibrium which is exactly what we see in
the plots (shown in red). Improvement is manifested by applying the updates to
the multistep scheme allowing the trajectory to move towards the equilibrium
against the perturbations (shown in green). Finally, the figure also illustrates
how all the schemes mentioned compare to the 1-step scheme – the most robust
scheme (shown in cyan).

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

State x
2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

State x
3

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

State x
4

Figure 4.1: State trajectories driven by the 1-step MPC scheme for nominal
(blue) and perturbed system (cyan)

56

4.4. Numerical example: inverted pendulum

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

State x
2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

State x
3

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

State x
4

Figure 4.2: State trajectories driven by the 7-step MPC scheme for nominal
system (blue), the 1-step (cyan), 7-step (red) and updated 7-step (green) MPC
schemes for the perturbed system

Table 4.4.1 shows the comparison of time requirements in CPU time among the
multistep and the updated multistep schemes for increasing multisteps m. To
allow comparison, time instants 0 to 100 are considered for which for each scheme,
floor(100/m) optimizations with full horizon N are performed and the times
needed are recorded. As expected, since neither a control has to be computed
nor an optimization has to be performed for the multistep scheme, the larger
m is chosen, the larger the savings in time becomes. For each m, due to the
sequence of optimization with shrinking horizon that has to be performed, the
corresponding updated scheme requires more time which one can easily notice
in the table. Although optimization for each time step is still required for the
updated multistep scheme, savings in time is nevertheless achieved in contrast
to the 1-step MPC – the most expensive scheme – which performs optimization
with full horizon N at each time instant. We note that no warm-start was used
in the simulations. Otherwise, time requirements would have been lowered for all
schemes but the trend is expected to remain the same. Also, the slight difference
between the updated and the non-updated scheme for m = 1 (same schemes)
appears on the table because the simulation was run twice.

Finally, Table 4.4.2 presents performance indices α of the schemes which are
computed from the generated trajectories using the approach presented in [35].
To estimate the α values αnmult, α̃pmult and α̃upd, we use (2.11), (4.20) and its
counterpart for the perturbed updated m-step scheme, respectively. The values
in these formulas are available at runtime giving a computationally feasible and
inexpensive a posteriori α estimator. We vary m and list the values of α for the
first three iterations of each scheme. In our simulation, the values of α for the
nominal multistep scheme indicates that the feedback is ’close’ to being infinite
horizon optimal having values α > 0.9. Furthermore, along increasing m, the α

57

Chapter 4. Multistep and updated multistep MPC schemes

Table 4.4.1: Comparison of time requirements in CPU time

m multistep updated

1 11.0447 11.0967
2 5.6484 10.4687
3 3.6762 10.3646
4 2.5522 10.1046
5 2.1921 9.3766
6 1.8241 8.6125
7 1.5801 7.7765
8 1.2321 7.7845
9 1.0881 7.2405
10 1.0641 6.5404
11 0.9521 6.1124
12 0.8601 5.7884
13 0.8681 5.2243

values increase, peak and then deteriorate exemplifying the parabolic profile of
the α’s of the multistep MPC scheme reported in [37]. For the perturbed system
with d3 = 0.05, for the multistep scheme, α values are observably lower and even
worsen on the second and third iteration where negative values are also seen.
These negative values indicate that the region P̂ of practical asymptotic stability
has been reached, see [35, Section 4]. Most importantly, Table 4.4.2 shows a
noticeable improvement to the values of α for the updated multistep brought
about by the re-optimization that counteracts the effect of the perturbation
as seen in the last three columns of the table. Weighing in all benefits after
examining the time requirements and suboptimality estimates, by updating
the multistep feedback for the perturbed system, we clearly gain time savings
compared to the classical MPC scheme, and improve robustness in comparison
with the multistep feedback scheme.

Table 4.4.2: Suboptimality index α of the schemes for various m and iterations

nominal multistep perturbed multistep updated multistep
m 0 2m 3m 0 2m 3m 0 2m 3m

1 0.9908 0.9917 0.9935 0.8667 0.8699 0.6032 0.8667 0.8699 0.6032
2 0.9911 0.9937 0.9950 0.8678 0.6322 0.8479 0.8681 0.6383 0.8538
3 0.9915 0.9944 0.9948 0.7936 0.7713 0.5857 0.7955 0.7810 0.6203
4 0.9917 0.9942 0.9937 0.7672 0.6870 0.5282 0.7729 0.7139 0.5647
5 0.9916 0.9933 0.9916 0.7632 0.6898 0.4171 0.7734 0.7307 0.4882
6 0.9913 0.9916 0.9880 0.7724 0.3915 0.3810 0.7868 0.4974 0.4037
7 0.9908 0.9887 0.9829 0.7404 0.4850 -0.0954 0.7629 0.5695 -0.0251
8 0.9902 0.9843 0.9755 0.7103 0.4233 -0.0370 0.7414 0.4981 0.0228
9 0.9895 0.9778 0.9662 0.7066 0.1941 -0.0328 0.7423 0.2845 -0.0129
10 0.9888 0.9698 0.9561 0.6988 0.0840 -0.2314 0.7379 0.1718 -0.2125
11 0.9883 0.9622 0.9461 0.6477 0.1414 -0.0467 0.6953 0.1394 0.0009
12 0.9880 0.9576 0.9400 0.6183 0.1227 -0.1213 0.6688 0.0776 -0.0356
13 0.9879 0.9584 0.9372 0.6133 -0.0139 -0.1130 0.6609 -0.0474 -0.0468

58

5 NLP and sensitivity analysis

Although the updated m-step MPC already results in a noticeable reduction
in terms of computational cost compared to the standard MPC, we see that
optimization still needs to be carried out at each time step. We design in this
thesis another MPC variant that results in another significant reduction in the
computational expense where the updates (i.e., re-optimizations) in Algorithm
1.3.4 are replaced by approximative updates obtained through sensitivity analysis
(as will be detailed in the next chapter). To this end, we first present some
results of the study on sensitivity analysis by Fiacco in [23, 24] and Robinson
[58] which will serve as the foundation of the described MPC variant.

As a prerequisite, we revisit in this chapter essential concepts from nonlinear
programming found in classic optimization textbooks (e.g., [49, 11, 64]). Basic
definitions and theorems are given in Section 5.1. Sections 5.2 and 5.3 focus on
optimality conditions and solving unconstrained optimization problems using
gradient-based methods. Section 5.4 deals with constrained optimization. In this
section, we derive an algorithm to solve the constrained optimization problem and
investigate optimality conditions and additional crucial properties for sensitivity
analysis. Section 5.5 presents the sensitivity theorem on which the next chapter
will essentially be based. The theorems, along with their proofs, and formulations
taken from the classic literature are written in this chapter in nomenclature
that allows involved quantities to be easily incorporated to the MPC setting
discussion in the next chapter.

5.1 Basic definitions and theorems
Suppose z ∈ R. Consider the scalar function ϕ : R → R. Assuming the limit
given below exists, we define the (first) derivative as

dϕ

dz
(z) := lim

h→0

ϕ(z + h)− ϕ(z)

h

Suppose now z = (z1, . . . , zn)> ∈ Rn and define the unit vector

ei = (0, . . . , 1, . . . , 0)> ∈ Rn,

i.e., a vector with 0 entries except for a 1 on the ith position.

For a scalar function ϕ : Rn → R, assuming the limit given below exists, we

59

Chapter 5. NLP and sensitivity analysis

define the partial derivative as

∂ϕ

∂zi
(z) := lim

h→0

ϕ(z + hei)− ϕ(z)

h

The operator ∇ is defined as

∇ :=

(
∂

∂z1
, . . . ,

∂

∂zn

)>
giving a column vector of partial derivatives. Unless otherwise specified, ∇ is
understood to be the derivative with respect to z, i.e., ∇z.
The gradient of a scalar function ϕ : Rn → R is given by

∇ϕ :=

(
∂ϕ

∂z1
, . . . ,

∂ϕ

∂zn

)>
The gradient of a vector function ϕ : Rn → Rm with

ϕ(z) = (ϕ1(z), . . . , ϕm(z))
>

is given by

∇ϕ := (∇ϕ1 ∇ϕ2 . . . ∇ϕm) =


∂ϕ1

∂z1
. . .

∂ϕm
∂z1

...
. . .

...
∂ϕ1

∂zn
. . .

∂ϕm
∂zn


The Jacobian of a vector function ϕ : Rn → Rm is given by

∇ϕ> :=

 (∇ϕ1)>

...
(∇ϕm)>


In the case of a twice continuously differentiable scalar function ϕ : Rn → R, the
matrix

∇2ϕ := ∇∇ϕ =



∂2ϕ

∂z2
1

∂2ϕ

∂z1∂z2
. . .

∂2ϕ

∂z1∂zn
∂2ϕ

∂z2∂z1

∂2ϕ

∂z2
2

. . .
∂2ϕ

∂z2∂zn
...

...
. . .

...
∂2ϕ

∂zn∂z1

∂2ϕ

∂zn∂z2
. . .

∂2ϕ

∂z2
n


is called the Hessian matrix.

Let ε > 0. An ε-neighborhood Nε(z) of z ∈ Rn is defined as

Nε(z) = {z̃ ∈ Rn | ‖z − z̃‖ < ε}

60

5.2. Unconstrained optimization

We may also use the notation N (z) whenever ε is not specified.

A function ϕ : Rn → R is said to be convex if

αϕ(x) + (1− α)ϕ(y) ≥ ϕ(αx+ (1− α)y)

holds for all α ∈ (0, 1) and all points x, y ∈ Rn. If the strict inequality ’>’ is
imposed instead of ’≥’, then we have strict convexity.

A region Y is convex if for all points x, y ∈ Y ,

αx+ (1− α)y ∈ Y

holds for all α ∈ (0, 1).

In addition, we need the following theorems giving important tools for the
subsequent sections.

Theorem 5.1.1 (Taylor’s theorem). Suppose that ϕ(z) is continuously differen-
tiable, then we have for all z, p ∈ Rn,

ϕ(z + p) = ϕ(z) +∇ϕ(z + tp)>p for some t ∈ (0, 1)

Moreover, if f(z) is twice continuously differentiable, then we have for all
z, p ∈ Rn,

ϕ(z + p) = ϕ(z) +∇ϕ(z)>p+
1

2
p>∇2ϕ(z + tp)p for some t ∈ (0, 1)

Theorem 5.1.2 (Farkas’ lemma). Given C ∈ Rm×n, D ∈ Rm×k and b ∈ Rm.
Exactly one of the following statements is true:

(i) There exists x ∈ Rn, y ∈ Rk such that Cx+Dy = b with x ≥ 0.

(ii) There exists v ∈ Rm such that C>v ≥ 0, D>v = 0 and b>v < 0.

5.2 Unconstrained optimization
Consider an objective function f : Rn → R and the unconstrained optimization
problem

min
z∈Rn

f(z) (5.1)

In this section, we investigate necessary and sufficient conditions for the solution
of (5.1) which we first formally define in the following.

Definition 5.2.1.
A point z∗ ∈ Rn is a global minimizer of f if

f(z∗) ≤ f(z) for all z ∈ Rn

A point z∗ ∈ Rn is a local minimizer of f if there exists a neighborhood N (z∗)
of z∗ such that

f(z∗) ≤ f(z) for all z ∈ N (z∗)

A point z∗ ∈ Rn is a strict local minimizer of f if there exists a neighborhood
N (z∗) of z∗ such that

f(z∗) < f(z) for all z ∈ N (z∗), z 6= z∗

61

Chapter 5. NLP and sensitivity analysis

Theorem 5.2.2. Suppose f is convex and z∗ is local minimizer of f . Then z∗
is a global minimizer.

Proof. Suppose z∗ is not the global minimizer. Then there exists y such that
f(z∗) > f(y). Since z∗ is a local minimizer, f(z∗) ≤ f(x) for all x ∈ Nε(z∗) for
some positive ε. Since f is convex,

f(αy + (1− α)z∗) ≤ αf(y) + (1− α)f(z∗)

for all α ∈ (0, 1). Taking α such that x = αy + (1− α)z∗ ∈ Nε(z∗), then

f(x) ≤ f(z∗) + α (f(y)− f(z∗))︸ ︷︷ ︸
<0

< f(z∗)

giving a contradiction.

We provide in the following two theorems which are standard results on uncon-
strained optimization.

Theorem 5.2.3 (First and second-order necessary conditions for local optimal-
ity). Suppose f is twice continuously differentiable and z∗ is a local minimizer
of f , then ∇f(z∗) = 0 and ∇2f(z∗) is positive semidefinite.

Proof. See, e.g., proofs of [11, Theorem 2.17] or [64, Theorem 1.4.4-5] which
make use of Taylor’s theorem.

Theorem 5.2.4 (Sufficient conditions for local optimality). Suppose f(z) is
twice continuously differentiable and there exists z∗ ∈ Rn where ∇f(z∗) = 0 and
∇2f(z∗) is positive definite, then z∗ is a strict local minimizer.

Proof. See, e.g., proofs of [11, Theorem 2.18] or [64, Theorem 1.4.6].

5.3 Optimization methods requiring derivatives
To solve (5.1), for twice continuously differentiable f , we consider iterative
algorithms that generate a sequence of iterates zk that converges to z∗. Consider
f and apply Taylor’s theorem at z + p. Then we have

f(z + p) ≈ f(z) +∇f(z)>p+
1

2
p>∇2f(z)p

giving a quadratic Taylor expansion of f at z. Computing the gradient, we have

∇f(z + p) ≈ ∇f(z) +∇2f(z)p

At point z, to determine the vector p that locates the stationary point, i.e., p
that satisfies ∇f(z + p) = 0, we have

0 = ∇f(z) +∇2f(z)p (5.2)
⇔ p = −(∇2f(z))−1∇f(z)

62

5.3. Optimization methods requiring derivatives

if ∇2f(z) is nonsingular. This gives a general optimization method in the form
of an update rule

zk+1 = zk + pk where pk = −(∇2f(zk))−1∇f(zk) (5.3)

Here, pk is called the Newton direction obtained by solving the linear system
(5.2) which involves the matrix ∇2f(z) called the Hessian matrix.

The update rule (5.3) can be modified to include a step length γ to enforce a
sufficient reduction of the objective function through

zk+1 = zk + γkpk (5.4)

Techniques such as line search method (see e.g., [49, 15, 11]) are employed to
compute the step length γk indicating how far zk should move along the direction
pk.

The algorithm is formally given in the following.

Algorithm 5.3.1. (Newton’s method with line search)
Choose a starting point z0.

(1) At zk, evaluate ∇f(zk) and ∇2f(zk).

(2) Solve the linear system ∇2f(zk)pk = −∇f(zk). If pk = 0, stop.

(3) Determine a step length γk. Set zk+1 = zk + γkpk and k = k + 1. Go to
(1).

The described Newton’s method for optimization is essentially a root-finding
approach for the system ∇f(z) = 0 and hence does not distinguish among local
minimizers, local maximizers and saddle points.

From Algorithm 5.3.1 (2), one realizes that certain challenges arising from this
method come from the exact computation and storage of the Hessian matrix that
has to be done at each iteration. Calculating derivatives can be done, e.g., using
finite differences or automatic differentiation [49, Chapter 8]. In addition, the
positive definiteness of the Hessian matrix is necessary for the method to work.
A major advantage, however, in using the method is the quadratic convergence
of the scheme (see optimization textbooks, e.g., [49, 15, 11] for the convergence
proof). In addition, if f is actually a quadratic function, then the second Taylor
approximation is exact yielding z + p to be the global minimizer.

Newton-type methods refer to schemes which can be written as

zk+1 = zk −B−1
k ∇f(zk) (5.5)

Algorithm 5.3.1 uses Bk = ∇2f(zk), i.e., the exact Hessian matrix which is also
the reason the scheme is also called the exact Newton’s method. Other well-
known Newton-type methods are the steepest descent/ascent method (Bk = γkI),
Gauss-Newton and Levenberg-Marquardt method, Quasi-Newton methods and
inexact Newton methods, to name a few, each exhibiting different properties
such as order of convergence, under which setting they are most suitable, etc. See
discussions in e.g., [49, 15, 11]. These Newton-type methods serve as adaptation
techniques to Algorithm 5.3.1 allowing approximation of the Hessian matrix at
a lower cost giving substantial advantages in the case of large-scale systems.

63

Chapter 5. NLP and sensitivity analysis

5.4 Constrained optimization and SQP
We now examine the corresponding optimality conditions for the constrained
problem

min f(z)
s.t. g(z) ≤ 0

h(z) = 0
(5.6)

where f : Rn → R is the objective function, g : Rn → RNi represents the
inequality constraints while h : Rn → RNe the equality constraints. We set Nc =
Ni+Ne. The process of solving (5.6) is referred to as nonlinear programming
(NLP). Some properties arising from optimality conditions in this section turn
out to be required properties for the sensitivity analysis to be discussed afterwards.
In addition, we also present an algorithm to solve (5.6) which we use throughout
the thesis.

We call the set

Σ :=

{
z

∣∣∣∣ gj(z) ≤ 0, j = 1, . . . , Ni
hj(z) = 0, j = Ni + 1, . . . , Nc

}
the admissible set or the feasible set. Note that with the defined indexing,
no index j repeats. The function

L(z, λ, µ) := f(z) + µ>g(z) + λ>h(z)

is called the Lagrangian function and µ ∈ RNi , λ ∈ RNe are called Lagrange
multipliers corresponding to the inequality and equality constraints, respec-
tively.

Definition 5.4.1.
A point z∗ ∈ Σ is a global minimizer of (5.6) if

f(z∗) ≤ f(z) for all z ∈ Σ

A point z∗ ∈ Σ is a local minimizer of (5.6) if there exists a neighborhood
N (z∗) such that

f(z∗) ≤ f(z) for all z ∈ N (z∗) ∩ Σ

A point z∗ ∈ Σ is a strict local minimizer of (5.6) if there exists a neighbor-
hood N (z∗) such that

f(z∗) < f(z) for all z ∈ N (z∗) ∩ Σ, z 6= z∗

Consider the following set of indices associated with an optimal solution z∗ of
(5.6)

Eq := {Ni + 1, . . . , Nc}
In(z∗) := {j ∈ {1, . . . , Ni} | gj(z∗) = 0}
A(z∗) := Eq ∪ In(z∗)

I(z∗) := {j ∈ {1, . . . , Ni} | gj(z∗) < 0}

The notation A(z∗) denotes the index set of active constraints while the no-
tation {hi, gi | i ∈ A(z∗)} gives the set of active constraints for z∗ ∈ Σ. The
set I(z∗) is the index set of inactive constraints for z∗ and { gi | i ∈ I(z∗)}

64

5.4. Constrained optimization and SQP

is the set of inactive constraints for z∗ ∈ Σ.

Suppose I(z∗) 6= ∅, i.e., there exists i0 ∈ {1, . . . , Ni} such that gi0(z∗) < 0.
Deleting the i0-th inequality constraint does not change z∗ from being the local
minimizer of the problem (5.6). Thus assuming A(z∗) is the index set of active
constraints for z∗ for (5.6), then z∗ is also the local minimizer of the equality
constrained problem

min f(z)
s.t. gi(z) = 0, i ∈ A(z∗)

h(z) = 0
(5.7)

Convex problems

The optimization problem (5.6) is said to be a convex problem if it has a
convex objective function and a convex feasible region.

If g is convex and h is linear, then the feasible region Σ is convex. Indeed,
suppose Σ is not convex. Then there exist x, y ∈ Σ and α ∈ (0, 1) such that
z := αx+(1−α)y /∈ Σ which means either g(z) > 0 or h(z) 6= 0. Since g is convex,
0 < g(z) = g(αx+ (1− α))y ≤ αg(x) + (1− α)g(y) ≤ 0 giving a contradiction.
Since h is linear, 0 6= h(z) = h(αx+ (1− α)y) = αh(x) + (1− α)h(y) = 0 which
also gives a contradiction. If, in addition, f(z) is convex, then (5.6) is a convex
problem.

Linear and quadratic programming problems

Problems of the form
min
z

c>z

s.t. Az + b ≤ 0
Aeqz + beq = 0

called linear programming (LP), and

min
z

h>z +
1

2
z>Bz

s.t. Az + b ≤ 0
Aeqz + beq = 0

with positive semidefinite matrix B, called quadratic programming (QP), are
convex problems.

Nonconvex problems

For general NLP, nonlinear equality constraints render a problem nonconvex
even if f(z) is convex. A nonconvex problem may have multiple local minimizer
increasing the complexity to identify whether the problem has no solution or
has a global minimizer. In this case, one can then limit the analysis to a local
setting.

The key advantage when (5.6) is a convex problem is given in the following
theorem.

Theorem 5.4.2. If the optimization problem (5.6) is convex, then every local
minimizer in Σ is a global minimizer.

65

Chapter 5. NLP and sensitivity analysis

Proof. Similar to the proof of Theorem 5.2.2. In this case, the convexity of Σ
guarantees that the point αx+(1−α)y is feasible for feasible points x and y.

Definition 5.4.3. Let z′ ∈ Σ and d ∈ Rn. Then d is said to be a descent
direction at z′ if ∇f(z′)>d < 0. We define the set

D(z′) = {d ∈ Rn | ∇f(z′)>d < 0}

as the set of all descent directions at z′.

Definition 5.4.4. Let z′ ∈ Σ and d ∈ Rn\{0}. If there exists δ > 0 such that

z′ + td ∈ Σ for all t ∈ [0, δ]

then d is said to be a feasible direction of Σ at z′. The set

FΣ(z′) = {d ∈ Rn\{0} | ∃δ > 0 s.t. z′ + td ∈ Σ ∀t ∈ [0, δ]}

contains all feasible directions of Σ at z′.

In the following, we define certain cone conditions derived from the linearization
of the active constraints.

Definition 5.4.5. Let z′ ∈ Σ. The set of all linearized feasible directions
given by

CΣ(z′) =

{
d ∈ Rn

∣∣∣∣ ∇hi(z′)>d = 0, i ∈ Eq
∇gi(z′)>d ≤ 0, i ∈ A(z′)

}
is called the linearized feasible cone.

Definition 5.4.6. Let z′ ∈ Σ and d ∈ Rn. If there exist a sequence {dk} and a
positive sequence {δk} such that z′+ δkdk ∈ Σ for all k with dk → d and δk → 0,
then the limiting direction d is called the sequential feasible direction of Σ
at z′. The set

SΣ(z′) =

{
d ∈ Rn

∣∣∣∣ z′ + δkdk ∈ Σ ∀k
dk → d, δk → 0

}
is the set of all sequential feasible directions of Σ at z′.

From Definition 5.4.6, setting zk := z′ + δkdk, we obtain zk → z′. In addition,

setting δk := ‖zk − z′‖ gives dk =
zk − z′
‖zk − z′‖ → d. Thus, {zk} is a feasible point

sequence with limiting direction d.

Definition 5.4.7. We define the tangent cone of Σ at z′

TΣ(z′) = SΣ(z′) ∪ {0}

Lemma 5.4.8. Let z′ ∈ Σ. If g, h are differentiable at z′, then

FΣ(z′) ⊆ SΣ(z′) ⊆ CΣ(z′)

Proof. See proof in [64, Lemma 8.2.4].

66

5.4. Constrained optimization and SQP

Theorem 5.4.9. Let z∗ be a local minimizer of (5.6). If f, g, h are differentiable
at z∗, then

∇f(z∗)>d ≥ 0 for all d ∈ SΣ(z∗)

Proof. See proof in [64, Lemma 8.2.5].

Lemma 5.4.10 (Restatement of Farkas’ lemma). The equality

S :=

 d ∈ Rn
∣∣∣∣∣∣
∇f(z∗)>d < 0,
∇hi(z∗)>d = 0, i ∈ Eq
∇gi(z∗)>d ≤ 0, i ∈ A(z∗)

 = ∅

holds if and only if there exist λi ∈ R, i ∈ Eq and µi ≥ 0, i ∈ In(z∗) such that

∇f(z∗) +
∑
i∈Eq

λi∇hi(z∗) +
∑

i∈In(z∗)

µi∇gi(z∗) = 0

Proof. By using Theorem 5.1.2, with v = −d, b = −∇f(z∗), C = ∇g(z∗),
D = ∇h(z∗), x = µ and y = λ.

We next introduce a constraint qualification that ensures that the sequential
feasible direction at a solution can be represented by the linearizations of active
constraints at that point.

Definition 5.4.11. Given a local solution z∗ of (5.6) and the index set of active
constraints A(z∗), linear independence constraint qualification (LICQ)
holds if the constraint gradients

∇gi(z∗),∇hi(z∗), i ∈ A(z∗)

are linearly independent.

Lemma 5.4.12. If LICQ holds at z∗, then TΣ(z∗) = CΣ(z∗).

Proof. See proof in [49, Lemma 12.2].

Now, we are ready to state the first-order necessary condition for (5.6).

Theorem 5.4.13 (First-order necessary condition). If z∗ is a local minimizer
of (5.6) at which LICQ holds, there exists λ∗ ∈ RNe and µ∗ ∈ RNc such that

∇L(z∗, λ∗, µ∗) := ∇f(z∗) +∇g(z∗)>µ∗ +∇h(z∗)>λ∗ = 0 (5.8)
g(z∗) ≤ 0, h(z∗) = 0 (5.9)

µ∗>g(z∗) = 0, µ∗ ≥ 0 (5.10)

Proof. Since z∗ ∈ Σ, (5.9) follows. Let d ∈ TΣ(z∗). Since z∗ is a local minimizer,
by Definition 5.4.7 and Theorem 5.4.9, ∇f(z∗)>d ≥ 0. In addition, by LICQ
and Lemma 5.4.12, d ∈ CΣ(z∗). This means that the system ∇f(z∗)>d < 0

∇hi(z∗)>d = 0, i ∈ Eq
∇gi(z∗)>d ≤ 0, i ∈ In(z∗)

67

Chapter 5. NLP and sensitivity analysis

has no solution in Rn. Then by Farkas’ Lemma,

∇f(z∗) +
∑
i∈Eq

λ∗i∇hi(z∗) +
∑

i∈In(z∗)

µ∗i∇gi(z∗) = 0

where λ∗i ≥ 0, i ∈ Eq and µ∗i ≥ 0, i ∈ In(z∗). Set µ∗i = 0 for i ∈ I(z∗), then

∇f(z∗) +∇g(z∗)>µ∗ +∇h(z∗)>λ∗ = 0

which shows (5.8) and that µ∗ ≥ 0. Lastly, if i ∈ In(z∗), then gi(z∗) = 0 giving
µ∗>g(z∗) = 0 and if i ∈ I(z∗), since we set µ∗i = 0, then µ∗>g(z∗) = 0. This
shows (5.10).

Conditions (5.8)–(5.10) are called the Karush-Kuhn-Tucker (KKT) condi-
tions. This set of conditions is comprised of condition (5.8) called the stationary
point condition, (5.9) called the feasibility conditions and (5.10) giving the
nonnegativity of the multipliers and complementarity condition.

Next we examine the second-order necessary conditions. To this end, we first
refine the definition of the index set A. We define

AS(z∗) = { i ∈ In(z∗) | µ∗i > 0}

as the index set of strongly active constraints and

AW (z∗) = { i ∈ In(z∗) | µ∗i = 0}

as the index set of weakly active constraints. Given a local minimizer
z∗ of (5.6) together with multipliers λ∗, µ∗ satisfying (5.8) and (5.10), strict
complementarity is said to occur if AW (z∗) = ∅.
We now consider the critical cone

GΣ(z∗) =

 d ∈ Rn
∣∣∣∣∣∣
∇h(z∗)>d = 0,
∇gi(z∗)>d = 0, i ∈ AS(z∗)
∇gi(z∗)>d ≤ 0, i ∈ AW (z∗)

 (5.11)

We now state the following constrained optimization second-order conditions.

Theorem 5.4.14 (Second-order necessary condition). If z∗ is a local minimizer
of (5.6) at which LICQ holds together with λ∗, µ∗ satisfying the KKT conditions
(5.8)–(5.10), then

d>∇2L(z∗, λ∗, µ∗)d ≥ 0 for all d ∈ GΣ(z∗)

Proof. See, e.g., proofs of [11, Theorem 4.17] or [64, Theorem 8.3.3]

Theorem 5.4.15 (Second-order sufficient conditions (SOSC)). If z∗ and the
multipliers λ∗, µ∗ satisfy the KKT conditions (5.8)–(5.10) and

d>∇L(z∗, λ∗, µ∗)d > 0 for all nonzero d ∈ GΣ(z∗) (5.12)

then z∗ is a strict local minimizer of (5.6).

Proof. See, e.g., proofs of [11, Theorem 4.18] or [64, Theorem 8.3.4]

68

5.4. Constrained optimization and SQP

5.4.1 Equality constrained optimization problems
We now adapt the Newton-based method (see Algorithm 5.3.1) that solves
unconstrained optimization problems to the constrained setting. We first consider
the constrained problem

min f(z)
s.t. h(z) = 0

(5.13)

with only equality constraints.

Assuming LICQ, the KKT conditions for (5.13) read

∇L(z, λ) = ∇f(z) +∇h(z)>λ = 0

h(z) = 0

Let

w =

[
z
λ

]
and F (w) =

[
∇L(z, λ)
h(z)

]
=

[
∇f(z) +∇h(z)>λ

h(z)

]
We apply Newton’s method to solve F (w) = 0. At a point of interest wk, the
linearized system can be written as

F (wk) +∇wF (wk)>(w − wk) = 0[
∇L(zk, λk)
h(zk)

]
+

[
(∇wF1(wk))>

(∇wF2(wk))>

] [
z − zk
λ− λk

]
= 0[

∇L(zk, λk)
h(zk)

]
+

[
∇2L(zk, λk) ∇h(zk)
∇h(zk)> 0

] [
z − zk
λ− λk

]
= 0 (5.14)

where the coefficient matrix
[
∇2L(zk, λk) ∇h(zk)
∇h(zk)> 0

]
is called the KKT ma-

trix. Finding an update rule zk+1 = zk + ∆zk and λk+1 = λk + ∆λk, since
∇L(zk, λk) = ∇f(zk) +∇g(zk)λk, from (5.14) we obtain[

∇f(zk)
h(zk)

]
+

[
∇2L(zk, λk) ∇h(zk)
∇h(zk)> 0

] [
∆zk

λk+1

]
= 0 (5.15)

Solving the linear system (5.15) allows to compute zk+1 and λk+1. This gives us
the Newton Lagrange method [2] for solving the equality constrained problem
(5.13).

Algorithm 5.4.16. (Newton Lagrange method)
Choose a starting point z0, λ0 and tolerance ε.

(1) If
∥∥F (wk)

∥∥ < ε, stop. For zk, λk, solve the linear system (5.15).

(2) Set zk+1 = zk + ∆zk and k = k + 1.

Since the Algorithm 5.4.16 is applying the root-finding Newton’s Method to
F (w) = 0, similar to Algorithm 5.3.1, one can also employ a choice of step length
γk yielding instead an update rule zk+1 = zk + γk∆zk.

It is easy to see that
[

∆zk

λk+1

]
also happens to be the solution of the quadratic

69

Chapter 5. NLP and sensitivity analysis

programming problem

min
∆zk

∇f(zk)>∆zk +
1

2
∆zk

>∇2L(zk, λk)∆zk

s.t. ∇h(zk)>∆zk + h(zk) = 0
(5.16)

Indeed, in determining the KKT conditions for (5.16), we recover (5.15).

Remark 5.4.17. One can see that solving an arbitrary optimization problem
of the form (5.13) by the Newton Lagrange method is equivalent to solving a
sequence of quadratic programming problems (5.16) until convergence to the
solution.

Similar to Algorithm 5.3.1, Algorithm 5.4.16 can also be adapted to tackle
challenges in calculating derivatives and handling large-scale problems resulting
in large matrices in order to effectively keep the computational costs to a tolerable
level.

5.4.2 Inequality constrained optimization problems
We consider first the QP

min
z

h>z +
1

2
z>Bz

s.t. Az + b ≤ 0
(5.17)

where B is positive semidefinite making the problem convex. The corresponding

Lagrangian function is L(z, µ) = h>z +
1

2
z>Bz + µ>b + µ>Az. The KKT

conditions are

∇L(z, µ) = Bz + h+A>µ = 0

Az + b ≤ 0 (5.18)
µ ≥ 0, (Az + b)>µ = 0

Suppose z∗ is a global minimizer of (5.17). Now the left-hand side of inequality
(5.18) can be decomposed as [

AA
AI

]
z∗ +

[
bA
bI

]
where AAz∗ + bA = 0 represents the active constraints while AIz∗ + bI < 0 the
inactive.

Theorem 5.4.18. z∗ is a global minimizer of (5.17) if and only if there exist
index sets A and I and a vector µ∗A such that

Bz∗ + h+A>Aµ
∗
A = 0 (5.19)

AAz
∗ + bA = 0 (5.20)

AIz
∗ + bI < 0 (5.21)

µ∗A ≥ 0 (5.22)

with µ∗I = 0 where µ∗ =

[
µ∗A
µ∗I

]
.

70

5.5. Sensitivity analysis

Equations (5.19) and (5.20) become[
B A>A
AA 0

] [
z∗

µ∗A

]
= −

[
h
bA

]
(5.23)

We can then apply the so-called active-set strategy to solve (5.17). First we
choose an initialization of set A, we solve for the solution z∗ and µ∗A of (5.23)
and check if these satisfy (5.21) and (5.22). If (5.21) and (5.22) are satisfied, then
the correct index set A has been found. Through the process, either we have
found the correct A or we keep on modifying A until the correct one is found.
Details of the active-set strategy are presented in an MPC implementation in
Section 7.2.

5.4.3 Active-set sequential quadratic programming
We are now in the position to finally solve the NLP (5.6). The Lagrangian

function is given by L(z, λ, µ) = f(z) + µ>g(z) + λ>h(z). Let C(z) =

[
g(z)
h(z)

]
and η =

[
µ
λ

]
. As in the discussion above, the constraint g(z) ≤ 0 can also be

decomposed into its active and inactive components. From Remark 5.4.17 and
from the discussed active-set strategy, we solve the sequence of QPs

min
∆zk

∇f(zk)>∆zk +
1

2
∆zk

>∇2L(zk, ηk)∆zk

s.t. ∇g(zk)>∆zk + g(zk) ≤ 0
∇h(zk)>∆zk + h(zk) = 0

(5.24)

and similar to how we solve (5.17), the optimal solution z∗ and η∗A is obtained
by solving the system[

∇2L(zk, ηk) ∇CA(zk)
∇CA(zk)> 0

] [
∆zk

ηk+1
A

]
= −

[
∇f(zk)
CA(zk)

]
(5.25)

with the active-set strategy where

∇C(z) = (∇g(z),∇h(z)) and ∇CA(z) = ({∇gi(z)}i∈A,∇h(z))

where A is defined to be the index set of all active constraints. In (5.25), ηA
denotes the multipliers and ∇CA(zk)> the Jacobian corresponding to the active
constraints. The method results in an iterative update zk+1 = zk + ∆zk. Here,
a sequence of QPs (5.24) is solved until the iterates converge. This procedure is
the so-called sequential quadratic programming (SQP). In this work, as
detailed in the next chapter, we use SQP to solve (5.6) and exploit the matrix
structures arising from the formulation in order to design an MPC approach
based on sensitivity analysis.

5.5 Sensitivity analysis
In this section, we present some results on parametric sensitivity analysis
(studies originally conducted in [23, 24, 58]) which refers to the impact of a
change in the design parameters on the optimal solution vector and the objective

71

Chapter 5. NLP and sensitivity analysis

function. From the mentioned works, differentiability of optimal solutions as
functions of parameters are shown. The main result from these works that
we will use in our study is the explicit formula for computing the sensitivity
derivatives of the optimal solution and the corresponding Lagrange multipliers.

We now consider the parametric NLP problem

min
z

f(z, p),

such that gj(z, p) ≤ 0, j = 1, . . . , Ni,
hj(z, p) = 0, j = Ni + 1, . . . , Nc.

P (p)

with optimization variable z ∈ Rn depending on the parameter p ∈ Rq. Let the
functions f , gj , j = 1, . . . , Ni and hj , j = Ni + 1, . . . , Nc be twice continuously
differentiable on Rn × Rq.
Problem P (p) is of the form (5.6) additionally featuring the dependence of the
functions and therefore the problem, on the parameter p. Let µ and λ be the
Lagrange multipliers corresponding to the inequality and equality constraints,

respectively, with η =

[
µ
λ

]
. For a fixed parameter p, the definition of the

feasible set Σ(p), global, local and strict minimizer and index set A(z, p) of
active constraints at optimal solution z∗ ∈ Σ(p) defined in Section 5.4 still hold
for problem P (p). The theorems pertaining to the constrained optimization still
hold, namely, the first and second-order necessary conditions, Theorems 5.4.13
and 5.4.14, respectively, and the second-order sufficient conditions Theorem
5.4.15.

We now present the differential properties of the optimal solutions to the per-
turbed problems P (p). The following theorem shows that the optimal solutions
are differentiable functions of the parameter.

Theorem 5.5.1 (Sensitivity theorem, Fiacco [23, 24]). Consider the problem
P (p0) with a nominal parameter p0, optimal solution z∗ and corresponding mul-
tiplier η∗A for the active constraints. Suppose f, g and h are twice continuously
differentiable in a neighborhood of z∗ and SOSC, LICQ and strict complemen-
tarity hold at z∗. Then for a neighborhood N (p0) of p0 and a neighborhood
N (z∗, η∗) of (z∗, η∗), there exist unique, continuously differentiable functions
z : N (p0)→ Rn and η : N (p0)→ RNc with the following properties:

(i) z(p0) = z∗, η(p0) = η∗

(ii) the index set of active constraints are constant in N (p0)

(iii) LICQ holds for z(p) for all p ∈ N (p0)

(iv) for all p ∈ N (p0), (z(p), η(p)) satisfies SOSC for P (p). In particular, z(p)
is a strict local minimizer of P (p).

Proof. The proof follows the proofs presented in [27, Theorem 6.1.4] and [62,
Satz 2.5.1]. First, let

∆ := diag(µ1, . . . , µNi)

∆∗ := diag(µ∗1, . . . , µ
∗
Ni)

Γ∗ := diag(g1(z∗, p0), . . . , gNi(z
∗, p0))

72

5.5. Sensitivity analysis

The KKT conditions (5.8)–(5.10) for an arbitrary pair (z, η) = (z(p), η(p)) are
given by1

∇L(z, η, p) := ∇f(z, p) +∇g(z, p)>µ+∇h(z, p)>λ = 0 (5.26)
∆g(z, p) = 0 (5.27)
h(z, p) = 0 (5.28)

By letting w =

[
z
η

]
=

 z
µ
λ

, (5.26)–(5.28) can be written as K(w, p) = 0.

From the assumptions, K is continuously differentiable and K(w∗, p0) = 0 where

w∗ =

[
z∗

η∗

]
.

We show next that the implicit function theorem (see, e.g., [27, Theorem 2.1.14])

is applicable on K(w, p) = 0. To this end, we need to show that
∂

∂w
K(w∗, p0)

is nonsingular. First, we have

∂

∂w
K(w∗, p0) =

 ∇2L(w∗, p0) ∇g(z∗, p0) ∇h(z∗, p0)
∆∗∇g(z∗, p0)> Γ∗ 0
∇h(z∗, p0)> 0 0

 (5.29)

Without loss of generality, let {`+ 1, . . . , Ni} be the set of indices of the active
inequality constraints. Due to strict complementarity,

∆∗ =

[
0 0
0 ∆∗2

]
where ∆∗2 = diag(µ∗`+1, . . . , µ

∗
Ni) is nonsingular (5.30)

Γ∗ =

[
Γ∗1 0
0 0

]
where Γ∗1 = diag(g1(x∗, 0), . . . , g`(x

∗, 0)) is nonsingular

(5.31)

Consider

∂

∂w
K(w∗, p0)

 v1

v21

v22

v3

 = 0 (5.32)

where v1 ∈ Rn, v21 ∈ R`, v22 ∈ RNi−` and v3 ∈ RNe

Using equations (5.29)–(5.32), we obtain Γ∗1v21 = 0 which implies v21 = 0 due
to nonsingularity of Γ∗1. Hence, it suffices to consider the system

[
A N
N> 0

] v1

v22

v3

 = 0 (5.33)

⇐⇒ Av1 +N

[
v22

v3

]
= 0 (5.34)

N>v1 = 0 (5.35)

1We append p to the notation L(z, λ, µ) = L(z, η) giving the notation L(z, η, p). Whenever
we only consider the multipliers of the active constraints, we use L(z, ηA, p).

73

Chapter 5. NLP and sensitivity analysis

where A = ∇2L(w∗, p0) and

N = ∇CA(z∗, p0) = [∇g`+1(z∗, p0), . . . ,∇gNi(z∗, p0),∇h(z∗, p0)]

Due to (5.35), by strict complementarity at z∗, we have v1 ∈ GΣ(z∗) with
GΣ(z∗) defined in (5.11). Multiplying v>1 to both sides of (5.34), we obtain

v>1 Av1 + (N>v1)>
[
v22

v3

]
= 0 and by (5.35), v>1 Av1 = 0, thus by (5.12) of

SOSC, v1 must be 0. Thus, (5.34) becomes N
[
v22

v3

]
= 0 and by LICQ, i.e., N

has full column rank,
[
v22

v3

]
= 0. These show that (v1, v21, v22, v3)> in (5.32)

must be 0 which means
∂

∂w
K(w∗, p0) is nonsingular implying the applicability

of the implicit function theorem.

By the implicit function theorem, there exist neighborhoods N (p0) and N (w∗)
and a uniquely defined function w : N (p0)→ N (w∗) satisfying K(w(p), p) = 0
for all p ∈ N (p0). The total differentiation of the identity K(w(p), p) = 0 with
respect to p then yields the following linear system(

∂

∂w
K(w, p)

)
∂

∂p
w(p) +

∂

∂p
F (w, p)

∣∣∣
w=w(p)

= 0

Thus, the function w is continuously differentiable in p with

∂

∂p
w(p) = −

(
∂

∂w
K(w, p)

)−1
∂

∂p
F (w, p)

∣∣∣
w=w(p)

(5.36)

Now, we show properties (i) to (iv). Due to uniqueness of the function w, and
since w∗ is the optimal solution for p0, then w(p0) = w∗ showing (i). Since
η∗`+1, . . . , η

∗
Nc

> 0, g1(z∗, p0), . . . , g`(z
∗, p0) > 0. Then for p sufficiently close to

p0,
η`+1(p), . . . , ηNc(p) > 0 and g1(z(p), p), . . . , g`(z(p), p) > 0

and since K(w(p), p) = 0, we obtain

η1(p) = . . . = η`(p) = 0 and g`+1(z(p), p) = . . . = gm(z(p), p) = 0

implying strict complementarity at z(p), and since h(z(p), p) = 0, z(p) ∈ Σ(p)
and A(z(p)) = A showing (ii). Due to the continuity of the first derivative, for p
sufficiently close to p0, ∇CA(z, p) has full column rank giving LICQ showing (iii).
Lastly, to show (iv), since the critical cone GΣ(z(p)) varies with p, one needs to
show that for p sufficiently close to p0, d>∇2L(w(p), p)d remains positive for
nonzero d ∈ GΣ(z(p)). We refer to [27, proof of Theorem 6.1.4] for the details of
this final step.

In the proof of Theorem 5.5.1, let us examine the case where we only consider
the active constraints. The KKT conditions (5.8)–(5.10) for an arbitrary pair
(z, ηA) = (z(p), ηA(p)) along with the definition of the active constraints give

∇L(z, ηA, p) := ∇f(z, p) +∇CA(z, p)>ηA = 0 (5.37)
CA(z, p) = 0 (5.38)

74

5.5. Sensitivity analysis

Redefine w =

[
z
ηA

]
. Then (5.37)–(5.38) can be written as K(w, p) = 0. From

the assumptions, K is continuously differentiable and K(w∗, p0) = 0 where

w∗ =

[
z∗

η∗A

]
. Consider

∂

∂w
K(w∗, p0) =

[
∇2L(w∗, p0) ∇CA(z∗, p0)
∇CA(z∗, p0)> 0

]
(5.39)

Using the same technique as in the proof of Theorem 5.5.1, one shows that
∂

∂w
K(w∗, p0) is nonsingular implying the applicability of the implicit function

theorem. Thus, there exist neighborhoods N (p0) and N (w∗) and a uniquely
defined function w : N (p0)→ N (w∗) satisfying K(z(p), p) = 0 for all p ∈ N (p0).
Moreover, the function w is continuously differentiable in p with (5.36) where
∂

∂w
K(w, p) is given by (5.39). This provides an application of Theorem 5.5.1

to approximate solutions of perturbed OCPs as presented in the subsequent
remark.

We make use of the following definition of order of approximation.

Definition 5.5.2. Let D be the domain of q and r. If for every compact K ⊂ D,
there exists C > 0 such that ‖q(x)− r(x)‖ ≤ Chp+1 for every x ∈ K, then we
write

q(x) = r(x) +O(hp+1)

In this case, r(x) is called a pth order approximation of q(x) where the order
of magnitude of the error is at most hp+1, or in terms of big O notation, the
error is O(hp+1).

Remark 5.5.3. (a) Based on (5.36) with
∂

∂w
K(w, p) given in (5.39), the sen-

sitivity differentials or simply, sensitivities of the optimal solution z∗

and corresponding multiplier η∗A is given by solving the system

[
∇2L(w∗, p0) ∇CA(z∗, p0)
∇CA(z∗, p0)> 0

]
∂z

∂p
(p0)

∂ηA
∂p

(p0)

 = −
[
∇2
zpL(w∗, p0)>

∇pCA(z∗, p0)

]
(5.40)

(b) As an approach proposed in Büskens and Maurer [17], the sensitivity
∂z

∂p
(p0)

allows for a first-order approximation of the optimal solution for a perturbed
parameter via

z(p) = z∗ +
∂z

∂p
(p0) (p− p0) +O

(
‖p− p0‖2

)
(5.41)

In reference to the nominal problem P (p0), we can regard P (p) as a perturbed
problem for which the solution can be approximated by (5.41) through the
availability of the nominal solution z∗(p0), the perturbation p − p0 and the

sensitivity
∂z

∂p
(p0).

75

Chapter 5. NLP and sensitivity analysis

(c) Note that the coefficient matrix
[
∇2L(z∗, η∗A, p0) ∇CA(z∗, p0)
∇CA(z∗, p0)> 0

]
of (5.40),

also called as the KKT-matrix, coincides with the coefficient matrix of the
system (5.25) as k → ∞, i.e., zk → z∗. As a consequence, the sensitivity
∂z

∂p
(p0) can easily be obtained by solving a linear system with a coefficient

matrix obtained when the SQP converges. Due to this, [23] (as reported in
[17]) describes sensitivities as a byproduct of optimization. In other words,

the sensitivity
∂z

∂p
(p0) is obtained by taking advantage of already available

information without having to build a new coefficient matrix which, otherwise,
usually entails considerable expense. We take advantage of this result in the
subsequent chapters.

(d) The coincidence of the KKT matrix to the coefficient matrix of the SQP
system upon convergence, as pointed in (c), no longer holds if one uses a Newton-
type method (as discussed in Section 5.3) where the exact computation of the
coefficient matrix of the SQP system is replaced by an approximation in order
to reduce computational cost. In this case, the sensitivity differentials can be
accurately computed by a post-optimal analysis detailed in [17] which involves
an exact calculation of the KKT matrix and then computing the sensitivities
through either an LR-factorization of the the KKT matrix or RQ-factorization
of (5.40).

76

6 Sensitivity-based
multistep MPC

In this chapter, we construct an MPC variant that offers a considerable reduction
in the computational expense compared to the standard and the updated MPC
through NLP sensitivity analysis. Similar studies have been conducted in the
past. For instance, the works [17, 46, 53] use sensitivities to achieve real-time
approximations of the perturbed solutions based on an open-loop control obtained
from solving an OCP. In the works [70, 69], sensitivities are used to construct
a so-called advanced-step MPC controller allowing for a scheme with reduced
computational delay. In this thesis, we design a particular MPC variant wherein
we approximate the re-optimization performed in the updated m-step MPC
through using sensitivity analysis. This is detailed in Section 6.1. In Section 6.2,
we address challenges due to changes in the active constraints in order to ensure
a valid sensitivity-based control. The development of this sensitivity-based
scheme from the re-optimization-based scheme distinguishes our approach and
its analysis from the existing works on sensitivity-based MPC algorithms in the
literature. In Section 6.3, due to the approximation property of the new scheme,
we show that the stability and performance analysis for the updated m-step can
be carried over to this setting.

6.1 Design of the scheme
Our goal is to apply the sensitivity theorem in the MPC setting. Recall that we
solve an OCP at each time step of Algorithm 1.3.1. Therefore, applying (5.41) is
suitable in the case we want to approximate a perturbed solution whenever the
information on the solution of a reference (e.g. nominal) problem is available.
Recall that by the dynamic programming principle, the tails of an optimal control
are also optimal controls for succeeding time instants using shorter optimization
horizons and modified initial values. Therefore, for succeeding time instants, the
perturbed solutions can be approximated using these already available tails as
the reference nominal solutions.

6.1.1 MPC OCP as a parametric NLP
In Algorithms 1.3.1 and 1.3.4, we solve OCPs at each time step. In this section,
we first write the full details of the MPC OCP in order to determine exactly
where sensitivity analysis can enter the setting. The OCP is composed of the
objective function JN (x0, u(·)) defined in (1.4), with constraints that each control

77

Chapter 6. Sensitivity-based multistep MPC

value u must be admissible, i.e., u(·) ∈ UN (x0). Admissibility requires that
xu(k + 1, x0) ∈ X and u(k) ∈ U(xu(k, x0)) for all k. Here we lay out the details
of the formulation and write it as a parametric NLP.

Let us consider a plant with dynamics given by the discrete-time model (1.2).
Let us use the notation xj := x(j) and uj := u(j) giving

xj+1 = f(xj , uj)
We set p to be the parameter and assign it to be the initial state value. Recall
first the definition of PN (x0) in Section 1.1. We consider the OCP PN (p) given
by

min
xj ,j=0,...,N
uj ,j=0,...,N−1

JN (x0, . . . , xN , u0, . . . , uN−1) :=

N−1∑
j=0

ωN−j` (xj , uj) + F (xN)

subject to (6.1)
the initial value x0 = p,
dynamics xj+1 = f (xj , uj) , j = 0, . . . , N − 1,
additional equality constraints hj(xj , uj) = 0, j = 0, . . . , N − 1,
terminal equality constraint req(xN) = 0,
inequality constraints gj(xj , uj) ≤ 0, j = 0, . . . , N − 1,
terminal inequality constraint rin(xN) ≤ 0

In this formulation, ` : Rn × Rn → R represents the stage cost function, ωj , j =
1, . . . , N, are the weights of the stage cost function and F is the terminal cost
function. Notice that we present here a more general objective function (compare
with (1.4)) due to the included weights and terminal costs which under certain
assumptions guarantee stability (see discussion in [36, Chapter 5 and 7]). The
case (1.4) is obtained with ωj = 1, j = 1, . . . , N, and F ≡ 0.

For structural advantages that we will see later on, we arrange the optimization
variables into a vector

z :=
[
x>0 , u

>
0 , x

>
1 , u

>
1 , . . . , x

>
N−1, u

>
N−1, x

>
N , u

>
N

]>
(6.2)

and define
zj :=

[
x>j , u

>
j

]>
where uN is an auxiliary variable to complete the notation (as in [18], uN := uN−1

is introduced for notational convenience and does not affect the derivatives we
will later need due to linearity). With the parameter p, the OCP PN (p) in
(6.1) is of the form P (p) defined in Section 5.5, i.e., a parametric NLP – a
minimization problem of an objective function subject to equality and inequality
constraints – that depends on the parameter p which is, in this case, assigned to
be the current measured state of the OCP.

6.1.2 Resulting matrix structures
The Lagrangian function L for (6.1) is given by

L(z, η, p) =

N−1∑
j=0

ωN−j` (xj , uj) + F (xN) + λa(x0 − p)

+

N−1∑
j=0

λbj+1 (xj+1 − f(xj , uj)) +

N−1∑
j=0

λcjhj(xj , uj) + λdreq(xN)

+

N−1∑
j=0

µejgj(xj , uj) + µfrin(xN))

78

6.1. Design of the scheme

where η = [λ>, µ>]>, λ = [λa>, λb
>
, λc>, λd

>
]> and µ = [µe>, µf

>
]>. Observe

that the function L can be decomposed into subfunctions that each depend on
particular multipliers and only on the variable zj , i.e., the pair (xj , uj). We
obtain

L(z, η, p) =

N∑
j=0

Lj(zj , η, p) (6.3)

where

L0(z0, η, p) = ωN`(x0, u0) + λa(x0 − p)− λb1f(x0, u0)

+λc0h0(x0, u0) + µe0g0(x0, u0)

Lj(zj , η, p) = ωN−j` (xj , uj) + λbj xj − λbj+1f(xj , uj)

+λcjhj(xj , uj) + µejgj(xj , uj), j = 1, . . . , N − 1,

LN (zN , η, p) = F (xN) + λbNxN + λdreq(xN) + µfrin(xN)

Such a property is called partial separability of the Lagrangian under which

∇ziL(z, η, p) = ∇zi
N∑
j=0

Lj(zj , η, p) = ∇ziLi(zi, η, p), i = 0, . . . , N,

holds, making the gradient of the Lagrangian

∇L(z, η, p) =


∇z0L(z, η, p)
∇z1L(z, η, p)

...
∇zNL(z, η, p)

 =


∇z0L0(z0, η, p)
∇z1L1(z1, η, p)

...
∇zNLN (zN , η, p)


and the Hessian of the Lagrangian

∇2L =



∂2L
∂z2

0

∂2L
∂z0 ∂z1

· · · ∂2L
∂z0 ∂zN

∂2L
∂z1 ∂z0

∂2L
∂z2

1

· · · ∂2L
∂z1 ∂zN

...
...

. . .
...

∂2L
∂zN ∂z0

∂2L
∂zN ∂z1

· · · ∂2L
∂z2
N


=



∂2L
∂z2

1

0

∂2L
∂z2

2

. . .

0
∂2L
∂z2
n


since all derivatives

∂2L
∂zi ∂zj

(z, η, p) = 0 for any i 6= j. In addition,
∂2L
∂z2
i

(z, η, p) =

∂2Li
∂z2
i

(zi, η, p).

6.1.3 Solving PN(p) by the active-set SQP strategy
We solve (6.1) which is in the form (5.6) by the active-set SQP strategy. Using
this approach, we iteratively solve a sequence of QPs until convergence. At
current iterate (zk, ηk) i.e., in one iteration of an SQP method, a QP needs to

79

Chapter 6. Sensitivity-based multistep MPC

be solved. This QP can be written in the form of (5.24). For simplicity, we drop
the iteration index k on the variables z, η,∆z. We have

min
∆z0,...,∆zN

1

2
∆z>∇2L(z, η, p)∆z + ∇

N−1∑
j=0

ωN−j` (xj , uj) + F (xN)

>∆z

subject to
x0 − p+ ∆x0 = 0,

xj+1 − f(xj , uj) + ∆xj+1 −∇zjf(xj , uj)
>∆zj = 0, j = 0, . . . , N − 1,

h(xj , uj) +∇zjh(xj , uj)
>∆zj = 0, j = 0, . . . , N,

req(xN) +∇zN req(xN)>∆zN = 0,

g(xj , uj) +∇zjg(xj , uj)
>∆zj ≤ 0, j = 0, . . . , N,

rin(xN) +∇zN rin(xN)>∆zN ≤ 0,

∆uN −∆uN−1 = 0

The solution may be obtained by solving the corresponding system in the form
of (5.25), i.e.,[

∇2L(z, η, p) ∇CA(z, p)
∇CA(z, p)> 0

] [
∆z
ηA

]
= −

[
∇f(z, p)
CA(z, p)

]
(6.4)

where the submatrices of the coefficient matrix are constructed using

∇2L(z, η, p) =



∂2L
∂z2

0

(z0, η, p) 0

∂2L
∂z2

1

(z1, η, p)

. . .

0
∂2L
∂z2
N

(zN , η, p)


(6.5)

∇C(z, p)> =



Ix
Ψ0 Ix

. . .
ΨN−1 Ix

Φ0

. . .
ΦN−1

Λ
Θ0

. . .
ΘN−1

Υ
Iu −Iu



(6.6)

80

6.1. Design of the scheme

where Ψj = −∇zjf(xj , uj)
>, Φj = ∇zjh(xj , uj)

>, Θj = ∇zjg(xj , uj)>, j =

0, . . . , N − 1, Λ = ∇zN req(zN)>, Υ = ∇zN rin(zN)>, Ix = [I 0], Iu = [0 I]. The
right-hand side of (5.25) (or (6.4)) is composed of

∇

N−1∑
j=0

ωN−j` (xj , uj) + F (xN)

 =


∇z0ωN` (x0, u0)
∇z1ωN−1` (x1, u1)

...
∇zN−1

ω1` (xN−1, uN−1)
∇zNF (xN)


and CA(z) obtained from

C(z) =



x0 − p
x1 − f (x0, u0)

...
xN − f (xN−1, uN−1)

h(x0, u0)
...

h(xN−1, uN−1)
req(xN)
g(x0, u0)

...
g(xN−1, uN−1)

rin(xN)
uN − uN−1


We then obtain ∆z (actually, ∆zk since the superscripts were dropped). This
allows for the iterative update zk+1 = zk + ∆zk. We update until convergence.
From Remark 5.5.3, the resulting coefficient matrix of the system (6.4) coincides
with the KKT matrix needed to compute the sensitivity differentials with respect
to p for the problem PN (p).

6.1.4 Incorporating sensitivity updates to the m-step MPC
algorithm

In the nominal setting, by performing the re-optimization (as discussed in
Algorithm 1.3.2) on a shrunken horizon using the current state of the system as
the initial value, we recover as a solution a tail of the optimal solution obtained
from full horizon optimization. This is due to the fact that at the current time
instant, the current measured state coincides with the predicted state generated
by the full horizon optimal control.

In the perturbed setting, using the updated m-step MPC, the current measured
state that we use as the initial value in the re-optimization on a shrunken horizon
can be viewed as a perturbation of the predicted value that would have been the
initial value had there been no perturbations.

The setting allows for an alternative to re-optimization through the use of
sensitivity analysis. This enables the approximation of the solution of the
updated multistep MPC and the avoidance of solving all optimization problems
on shrunken horizons and hence reducing computational cost. This gives us an

81

Chapter 6. Sensitivity-based multistep MPC

MPC variant which we refer to as sensitivity-based m-step (SBM) MPC
for which the only optimizations performed are full-horizon optimizations done
only every m steps.

First, we make the following observations.

Suppose xm
0 is the current measured state. Consider PN (p) defined by (6.1) and

let the parameter p take the value xm
0 , i.e., solve PN (xm

0). Let x∗0, . . . , x∗N be the
nominal optimal trajectory and u∗0, . . . , u∗N−1 be the nominal optimal control
sequence.

Due to the structure of PN (p) (that yields properties such as separability of
the Lagrangian), we can easily construct the following problem PN−j(pj) by
discarding terms with the variables (x0, u0), . . . , (xj−1, uj−1) in the objective
function and the constraints and shortening the horizon to N − j. Consider

min
xi,i=j,...,N
ui,i=j,...,N−1

N−1∑
i=j

ωN−i` (xi, ui) + F (xN)

subject to xj = pj
xi+1 = f (xi, ui) i = j, . . . , N − 1,
hi(xi, ui) = 0 i = j, . . . , N − 1,
req(xN) = 0
gi(xi, ui) ≤ 0 i = j, . . . , N − 1,
rin(xN) ≤ 0

PN−j(pj)

for all j = 0, . . . , N − 1. We particularly indexed the parameter pj with j to
indicate that it is the parameter for PN−j(pj). In addition, note that in the
setup xj is now the first element of the trajectory and uj is now the first element
of the control sequence.

Remark 6.1.1. From PN (xm
0) (equivalently, PN (x∗0)), note that the tails

u∗j , . . . , u
∗
N−1 form the optimal control sequence for PN−j(x∗j) for all j =

1, . . . , N − 1.

Consider the optimization variable z defined in (6.2). In reference to that, define
the tails

zj :=
[
x>j , u

>
j , . . . , x

>
N−1, u

>
N−1, x

>
N , u

>
N

]>
Define zj∗ accordingly. Let Lj(zj , η, pj) denote the corresponding Lagrangian
and Aj the corresponding active set of PN−j(pj).
Note that PN−j(pj) can be written in the form P (pj) to clearly identify the
objective, equality and inequality constraint left hand side functions (denoted
as f, g and h, respectively, for P (p) defined in Section 5.5). To be able to
incorporate sensitivities in the discussion, we make the following assumption.

Assumption 6.1.2. For j = 0, . . . , N −1, the objective, equality and inequality
constraint left hand side functions of PN−j(pj) written in the form P (pj) are
twice continuously differentiable in a neighborhood of the solution zj∗ and SOSC,
LICQ and strict complementarity hold at zj∗.

This assumption is precisely the assumption of the sensitivity theorem, Theo-
rem 5.5.1, allowing the existence of a neighborhoodN (xj

∗
) for all j = 0, . . . , N−1,

where the required sensitivities are defined.

82

6.1. Design of the scheme

Let xm
j be the measured state. Let the parameter pj take this value. Consider

PN−j(xm
j) and denote the resulting optimal control sequence as u∗j,0, . . . , u∗j,N−j−1.

Remark 6.1.3. Following Remark 5.5.3, for j = 1, . . . , N − 1, the already
available information u∗j from the nominal solution of the problem PN−j(x∗j)
and the sensitivity differentials

∂uj
∂pj

(x∗j) provides u∗j,0, i.e., the first element of

the optimal control sequence of the perturbed problem PN−j(xm
j) through

u∗j,0 = u∗j +
∂uj
∂pj

(x∗j)(x
m
j − x∗j) +O

(
‖xm

j − x∗j‖2
)
, j = 0, . . . ,m− 1 (6.7)

We are now in the position to provide the SBM MPC algorithm.

Algorithm 6.1.4. (SBM MPC)

Assume that for the initial time instant k, k is a multiple of m.

(1) measure the state x(k) ∈ X of the system at time instant k

(2) set j := k − bkcm, xmj := x(k).

• If j = 0, solve PN (xm0). Store u∗0, . . . , u∗N−1 and x∗0, . . . , x∗N .
• Define the time-dependent MPC feedback

µN,m(x(k), k) := u∗j +
∂uj
∂pj

(x∗j)(x
m
j − x∗j) (6.8)

(3) apply the control values µN,m(x(k), k) to the system, set k := k + 1 and
go to (1)

Note that at j = 0, xm
0 = x∗0, thus the corrective term

∂uj
∂pj

(x∗j)(x
m
j −x∗j) vanishes,

i.e., no update is performed during the first iteration.

Remark 6.1.5. From Remark 6.1.3 and the approximation (6.7), the feedback
µN,m(x(k), k) defined in (6.8) is a first-order approximation of µ̂N,m(x(k), k)

defined in (1.9) having an error with order of magnitude of at most ‖xm
j − x∗j‖2.

A detailed analysis on the implications of this is given in Section 6.3.

To summarize, in using Algorithm 6.1.4 we first apply the obtained u∗0 and then
we apply corrections on u∗1, u∗2, . . . , u∗m−1. Hence, at time instants 1, 2, . . . ,m− 1,
instead of optimizing again (i.e., using SQP active-set strategy) as in the standard
MPC, or instead of re-optimizing using shrinking horizons as in the updated
m-step MPC, in the hopes of reducing the operation costs, we compute the
sensitivities

∂u1

∂p1
(x∗1),

∂u2

∂p2
(x∗2), . . . ,

∂um−1

∂pm−1
(x∗m−1)

from appropriate linear systems as detailed in the subsequent subsection and
use them as corrective updates.

6.1.5 Computing sensitivities and exploiting matrix structures

To illustrate, let us compute first
∂u1

∂p1
(x∗1). In words, this is the sensitivity of

the first element of the tail u1 . . . , uN−1, uN with respect to the parameter p1

83

Chapter 6. Sensitivity-based multistep MPC

of the shortened problem PN−1(p1) evaluated at the predicted state x∗1. The

sensitivity
∂u1

∂p1
(x∗1) is obtained from

∂z1

∂p1
(x∗1) =

[
∂x1

∂p1

>
,
∂u1

∂p1

>
, . . . ,

∂xN
∂p1

>
,
∂uN
∂p1

>
]>

(x∗1)

which is solved using (5.40) via

[
∇2
z1z1L1(z1∗, η∗, x1

∗) ∇z1CA1(z1∗, x1
∗)

∇z1CA1(z1∗, x1
∗)> 0

] ∂z1

∂p1
(x∗1)

∂ηA1

∂p1
(x∗1)


= −

[∇2
z1p1
L1(z1∗, η∗, x1

∗)>

∇p1
CA1(z1∗, x1

∗)>

]
(6.9)

The same applies for the sensitivities
∂u2

∂p2
(x∗2), . . . ,

∂um−1

∂pm−1
(x∗m−1), i.e., we need

to construct and solve the corresponding system analogous to (6.9) to solve

sensitivities
∂zj

∂pj
(x∗j), for all j = 2, . . . ,m− 1 from which we obtain

∂uj
∂pj

(x∗j), j =

2, . . . ,m − 1. Therefore, to generalize, computing the updating or correcting
sensitivities requires solving the sequence of linear systems

[
∇2
zjzjLj(zj

∗
, η∗, xj∗) ∇zjCAj (zj∗, xj∗)

∇zjCAj (zj∗, xj∗)> 0

]
∂zj

∂pj
(x∗j)

∂ηAj

∂pj
(x∗j)


= −

[
∇2
zjpj
Lj(zj∗, η∗, xj∗)>

∇pjCAj (zj
∗
, xj
∗)>

]
(6.10)

for j = 1, . . . ,m − 1 corresponding to OCPs PN−j(pj) of decreasing horizons
and adjusting parametric values.

Now, as pointed out in Remark 5.5.3, the coefficient matrix of the QP system
(5.25) coincides with the KKT matrix in (5.40).

Consider the Hessian ∇2
zjzjLj(zj

∗
, η∗, xj∗) of the Lagrangian function for the

problem PN−j(pj) evaluated at pj = x∗j . It has the same form but is smaller in
size as the Hessian ∇2

zzL(z∗, η∗, x0
∗) for PN (p0) evaluated at p0 = xm

0 . It can
be obtained from ∇2

zzL(z∗, η∗, x0
∗) (as in (6.5)) by discarding blocks of indices

0 to j − 1 leaving N + 1− j blocks along the diagonal.

The Jacobian ∇zjCAj (zj∗, xj∗)> of the active constraints corresponding to Aj
are obtained from (6.6) by also discarding blocks of indices 0 to j − 1.

This means that the KKT matrix of the sensitivity system corresponding to the
OCP PN−j(pj) with pj = x∗j can be constructed through the submatrices of the
coefficient matrix of the QP system obtained for PN (p0) with po = xm

0 , i.e., from
information that is already available.

What remains is to construct the right-hand side of the sensitivity system as

84

6.2. Changes in active constraints set

in the right-hand side of (5.40). The parameter pj only appears in PN−j(pj) in
the equality constraints. Hence, the second derivatives ∇2

zjpj
Lj(zj∗, η∗, xj∗)>

of the Lagrangian function is 0 since pj enters the Lagrangian Lj of PN−j(pj)
linearly through the equality constraint in xj − pj .
For ∇pjCAj (zj

∗
, xj
∗)>, we obtain a zero matrix except for the −I corresponding

to xj − pj .
In addition, the systems (6.10) are closely related to each other as the succeeding
systems differ from the previous ones by deleting rows and columns. In particular,
in solving the linear systems (6.10) by factorization, one does not need to factorize
each coefficient matrix from scratch. Instead, the matrix factorization computed
at PN (x0) is modified according to minor changes caused by deletion of rows
and columns. Exploiting matrix structures is discussed in great details in [67],
[29] and [30].

6.2 Changes in active constraints set
In applying the update (6.8), caution is necessary so that the updates due to
the perturbed parameter do not change the set of active constraints as to not
violate the assertion of the sensitivity theorem, Theorem 5.5.1. We discuss in
this section some of the existing ideas in the literature, i.e., as presented in [17]
and [6] addressing this issue.

First, we consider an approach given in [17] to determine for which values of p is
the perturbation p− p0 too large to render (5.41) a good approximation. Based
on (5.41),

ηA(p) ≈ η∗A +
∂ηA
∂p

(p0) (p− p0) (6.11)

where the sensitivity
∂ηA
∂p

(p0) is obtained by solving (5.40). A constraint will

leave the active set when its corresponding Lagrange multiplier goes to zero. If
one of the multipliers is close to zero, using (6.11) we obtain

0 = ηA,i(p) ≈ η∗A,i +
∂ηA,i
∂p

(p0) (p− p0) (6.12)

The relation (6.12) allows for an approximation of the perturbed parameter
pi = (pi1, . . . , p

i
n)> that causes a constraint Ci to leave the active set as given by

pij ≈ p0,j −
η∗A,i

∂ηA,i
∂pj

(p0)
, i ∈ A, j ∈ {1, . . . , n} (6.13)

assuming ∂ηA,i
∂pj

(p0) 6= 0. Similarly, a constraint will enter the active set when its
value goes to zero, i.e., a constraint Ci, i /∈ A, becomes zero if

0 = Ci(z(p), p) ≈ Ci(z∗, p0) +
∂Ci
∂p

(z∗, p0) (p− p0)

This yields an approximation of pi = (pi1, . . . , p
i
n)> causing a constraint Ci to

85

Chapter 6. Sensitivity-based multistep MPC

enter the active set as given by

pij ≈ p0,j −
Ci(z

∗, p0)
∂Ci
∂pj

(z∗, p0)
, i /∈ A, j ∈ {1, . . . , n} (6.14)

provided that ∂Ci
∂pj

(z∗, p0) 6= 0. The sensitivity domain P0, which gives the
range of perturbed parameter on which formula (6.8) is suitable to be applied, is
determined by the values pij in (6.13) and (6.14) closest to the nominal parameter
p0,j

P0 ≈ P 1
0 × P 2

0 × . . .× PNc0

P j0 :=

[
max
pj<p0,j

{pj ∈ P j}, min
pj>p0,j

{pj ∈ P j}
]
, j = 1, . . . , n,

P j := {pij | i = 1, . . . , Nc} ∪ {−∞,+∞}

After computing P0, an alternative approximation to (5.41) proposed in [17]
based on [6] may then be obtained. Suppose p̃ denotes a perturbed parameter
that causes a constraint to enter or leave the active set. The new first-order
approximation is given by

z(p) ≈ z0 + ∆z, ηu(p) ≈ ηu + ∆ηu, if p− p̃ ≥ 0

where
∆z :=

∂z

∂p
(p0)(p̃− p0) +

∂z

∂p
(p̃)(p− p̃0) (6.15)

∆ηu :=
∂ηu

∂p
(p0)(p̃− p0) +

∂ηu

∂p
(p̃)(p− p̃0) (6.16)

and ηu is the updated Lagrange multiplier reflected by the change in active
constraints.

In (6.15)–(6.16), observe the need for the sensitivities ∂z
∂p (p̃) and ∂ηu

∂p (p̃) which
are not directly obtainable from the information available after solving PN (p0) as
in the case when solving systems (6.10). We recall, however, in Remark 5.5.3(d)
that the sensitivity differentials can also be computed by a so-called post-optimal
analysis (as detailed in [17]) which is an approach typically used when the KKT
matrix for computing sensitivities does not coincide to the coefficient matrix of
the SQP system upon convergence (e.g., when approximations of the Hessian
matrices are used).

In our implementation, since the motivation is to analyze the reduction of cost
by taking advantage of information that are available through the SBM MPC
strategy, the post optimal analysis is not applied. A much simpler rule is used
as to not to violate the constraints when updating by sensitivities. We mention
this in Section 7.2.

6.3 Stability and performance analysis of SBM
MPC

The main motivation for considering sensitivity-based control is to have a less
costly alternative to re-optimization. Now the aim of the section is to investigate
how well the SBM MPC approximates the updated m-step MPC in terms of

86

6.3. Stability and performance analysis of SBM MPC

stability and suboptimality performance.

To meaningfully include sensitivity updates to the MPC discussion, we need to
assume Assumption 6.1.2. Aside from guaranteeing the existence of the desired
sensitivities, the assumption also implies that the active sets remain constant on
neighborhoods where updates are applied. This simplifies the exposition.

To this end, we first consider the finite horizon setting as in Chapter 3. Let xm
j

be the measured state at time instant j and consider PN−j(xm
j). We denote the

resulting optimal control sequence as

u∗j,· := {u∗j,0, u∗j,1, . . . , u∗j,N−j−1}

For time instants j = 0, . . . , N − 1, let the sequence

u∗j,· := {u∗j,0, u∗j,1, . . . , u∗j,N−j−1}

indicate the sensitivity-based approximation of the sequence u∗j,·.

As discussed in Remark 5.5.3(b) the optimal solution of a perturbed problem is
given by

u∗j,k = u∗0,j+k +
∂uj+k
∂pj

(xu∗0,·(j, x0))(xm
j − xu∗0,·(j, x0))

+ O(‖xm
j − xu∗0,·(j, x0)‖2), k = 0, . . . , N − j − 1

from which we obtain a sensitivity-based approximation (compare to (6.7) and
(6.8)) given by the definition

u∗j,k := u∗0,j+k +
∂uj+k
∂pj

(xu∗0,·(j, x0))(xm
j − xu∗0,·(j, x0)), k = 0, . . . , N − j − 1

with
u∗j,k = u∗j,k +O(‖xm

j − xu∗0,·(j, x0)‖2) (6.17)

In this definition, all quantities except xm
j are computed at time j = 0 from

PN (x0) with optimal control u∗0,j , j = 0, . . . , N − 1, and xu∗0,·(j, x0), j =
0, . . . , N − 1.

Next we define the cost
λj = `

(
xm
j , u

∗
j,0

)
which denotes the cost incurred at time j from the measured state xm

j by applying
the sensitivity-based control u∗j,0.

Similar to Jnmult
N (x0), Jpmult

N (x0) and Jupd
N (x0) defined in Definition 3.3.1, we

assign the quantity

J sens
N (x0) :=

N−1∑
j=0

λj =

N−1∑
j=0

`(xm
j , u

∗
j,0) (6.18)

to denote the value of the perturbed trajectory driven by the sensitivity-based
control we will illustrate shortly.

We first make the following assumption allowing for error estimates on generated
states and stage costs resulting from approximate optimal controls.

87

Chapter 6. Sensitivity-based multistep MPC

Assumption 6.3.1. The functions f and ` satisfy the Lipschitz condition both
on x and on u, i.e., for all compact sets K1 ∈ X,K2 ∈ U, there exist C11, C12 > 0
such that

‖f(x, u)− f(x̃, u)‖ ≤ C11‖x− x̃‖
‖`(x, u)− `(x̃, u)‖ ≤ C12‖x− x̃‖

for all x, x̃ ∈ K1, u ∈ K2, and there exist C21, C22 > 0 such that
‖f(x, u)− f(x, ũ)‖ ≤ C21‖u− ũ‖
‖`(x, u)− `(x, ũ)‖ ≤ C22‖u− ũ‖

for all u, ũ ∈ K2, x ∈ K1.

xm
1

xm
2

xm
3

x0

xu∗
0,·(1, x0)

xu∗
0,·(2, x0)

xu∗
0,·(3, x0)

u∗
0,0

u∗
0,0

u∗
0,1

u∗
0,2

u∗
1,0

u∗
1,0

u∗
2,0

u∗
2,0d(1)

d(2)
d(3)

xu∗
1,·(1, x

m
1)

xu∗
1,·(1, x

m
1)

xu∗
0,1+·(1, x

m
1)

xu∗
2,·(1, x

m
2)

xu∗
2,·(1, x

m
2)

xu∗
0,2+·(1, x

m
2)

Figure 6.1: Resulting trajectories from approximately re-optimizing (through
sensitivity-based updates) and the accumulating errors.

We illustrate the trajectories in Figure 6.1. At time j = 0, by optimization we
obtain an optimal control sequence whose first element is u∗0,0. The predicted
state is xu∗0,·(1, x0) = f(x0, u

∗
0,0) but due to perturbation d(1), the resulting

measured state is xm
1 .

Consider time j = 1 and the measured state xm
1 . There are three ways we can

proceed, namely, by applying the nominal open-loop control, by re-optimization or
by a sensitivity-based update. By applying the nominal open-loop control element
u∗0,1, the predicted state will be xu∗0,1+·(1, x

m
1) = f(xm

1 , u
∗
0,1). Alternatively, we

can also perform re-optimization to obtain and apply the control value u∗1,0
resulting in the predicted state xu∗1,·(1, x

m
1) = f(xm

1 , u
∗
1,0). Lastly, we can apply

the approximate control u∗1,0 given by

u∗1,0 = u∗0,1 +
∂u1

∂p1
(xu∗0,·(1, x0))(xm

1 − xu∗0,·(1, x0)︸ ︷︷ ︸
d(1)

) (6.19)

88

6.3. Stability and performance analysis of SBM MPC

where we have the relation

u∗1,0 = u∗1,0 +O(‖xm
1 − xu∗0,·(1, x0)‖2)

= u∗1,0 +O(d2
1) with d1 = ‖d(1)‖ (6.20)

The predicted state when u∗1,0 is applied will then be xu∗1,·(1, x
m
1) = f(xm

1 , u
∗
1,0).

Observe that by Assumption 6.3.1,∥∥∥xu∗1,·(1, xm
1)− xu∗1,·(1, x

m
1)
∥∥∥ =

∥∥f(xm
1 , u

∗
1,0)− f(xm

1 , u
∗
1,0)
∥∥

≤ C1‖u∗1,0 − u∗1,0‖
for some C1 > 0, and by (6.20) we obtain

xu∗1,·(1, x
m
1) = xu∗1,·(1, x

m
1) +O(d2

1)

Due to an additive perturbation d(2), the resulting measured state is xm
2 =

xu∗1,·(1, x
m
1) + d(2).

Consider next time j = 2 and the measured state xm
2 . We can apply the

nominal open-loop control element u∗0,2 to obtain xu∗0,2+·(1, x
m
2) = f(xm

2 , u
∗
0,2).

We can also perform re-optimization to obtain and apply the control value u∗2,0
resulting in the predicted state xu∗2,·(1, x

m
2) = f(xm

2 , u
∗
2,0). Or we can apply the

approximate control u∗2,0 given by

u∗2,0 = u∗0,2 +
∂u2

∂p2
(xu∗0,·(2, x0))(xm

2 − xu∗0,·(2, x0)) (6.21)

Observe
‖xm

2 − xu∗0,·(2, x0)‖
= ‖d(2) + xu∗1,·(1, x

m
1)− xu∗0,·(2, x0)‖

≤ ‖d(2)‖+ ‖xu∗1,·(1, x
m
1)− xu∗0,1+·(1, x

m
1)‖+ ‖xu∗0,1+·(1, x

m
1)− xu∗0,·(2, x0)‖

= ‖d(2)‖+ ‖f(xm
1 , u

∗
1,0)− f(xm

1 , u
∗
0,1)‖+ ‖f(xm

1 , u
∗
0,1)− f(xu∗0,·(1, x0), u∗0,1)‖

≤ ‖d(2)‖+ C2‖u∗1,0 − u∗0,1‖+ C3‖xm
1 − xu∗0,·(1, x0)‖

= ‖d(2)‖+ C̃2d1 + C3d1

≤ C4(‖d(2)‖+R1︸ ︷︷ ︸
=:d2

) with R1 = O(d1) (6.22)

for some C2, C̃2, C3, C4 > 0 with the last identity due to (6.19). Using (6.22),
we obtain

u∗2,0 = u∗2,0 +O(‖xm
2 − xu∗0,·(2, x0)‖2)

= u∗2,0 +O(d2
2) (6.23)

The predicted state when u∗2,0 is applied will then be xu∗2,·(1, x
m
2) = f(xm

2 , u
∗
2,0)

and by Assumption 6.3.1, we have∥∥∥xu∗2,·(1, xm
2)− xu∗2,·(1, x

m
2)
∥∥∥ =

∥∥f(xm
2 , u

∗
2,0)− f(xm

2 , u
∗
2,0)
∥∥

≤ C5‖u∗2,0 − u∗2,0‖

89

Chapter 6. Sensitivity-based multistep MPC

for some C5 > 0. We then obtain the relation

xu∗2,·(1, x
m
2) = xu∗2,·(1, x

m
2) +O(d2

2)

due to (6.23). And due to perturbation d(3), the resulting measured state is
xm

3 = xu∗2,·(1, x
m
2) + d(3).

We repeat the exact process for time j = 3 and the measured state xm
3 and

obtain the key inequalities

xm
3 ≤ xu∗0,·(3, x0) +O(‖d(3)‖+R2︸ ︷︷ ︸

=:d3

) (6.24)

where R2 = O(d2) and

xu∗3,·(1, x
m
3) = xu∗3,·(1, x

m
3) +O(d2

3)

We now formalize the results of the discussion. We begin by defining the sequence
{dk} by

d0 := 0

d1 := ‖d(1)‖
dk := ‖d(k)‖+Rk−1, k = 2, . . . , N − 1

where Rj is some term with order of magnitude dj , i.e., Rj = O(dj), j =
1, . . . , N − 2, following the way d1, d2 and d3 are constructed in (6.20), (6.22)
and (6.24), respectively.

The subsequent lemmas and corollary give a rigorous description of the preceding
discussion.

Lemma 6.3.2. Suppose that the Assumptions 6.1.2 and 6.3.1 hold. For k =
1, . . . , N − 1,

‖xm
k − xu∗0,·(k, x0)‖ = O(dk)

for some C > 0.

Proof. Let k ∈ {1, . . . , N − 1}. Recall (6.22) and (6.24). Inductively, observe
that

‖xm
k − xu∗0,·(k, x0)‖

= ‖d(k) + xu∗k−1,·(1, x
m
k−1)− xu∗0,·(k, x0)‖

≤ ‖d(k)‖+ ‖xu∗k−1,·(1, x
m
k−1)− xu∗0,k−1+·(1, x

m
1)‖

+ ‖xu∗0,k−1+·(1, x
m
k−1)− xu∗0,·(k, x0)‖

= ‖d(k)‖+ ‖f(xm
k−1, u

∗
k−1,0)− f(xm

k−1, u
∗
0,k−1)‖

+ ‖f(xm
k−1, u

∗
0,k−1)− f(xu∗0,·(k − 1, x0), u∗0,k−1)‖

≤ ‖d(k)‖+ C6‖u∗k−1,0 − u∗0,k−1‖+ C7‖xm
k−1 − xu∗0,·(k − 1, x0)‖

= ‖d(k)‖+ C̃6(dk−1) + C̃7(dk−1) ≤ C8(‖d(k)‖+O(dk−1)‖)

for some C6, C̃6, C7, C̃7, C8 > 0

90

6.3. Stability and performance analysis of SBM MPC

Corollary 6.3.3. Suppose that the Assumptions 6.1.2 and 6.3.1 hold. For
k = 1, . . . , N − 1,

`(xm
k , u

∗
k,0) = `(xm

k , u
∗
k,0) +O(d2

k)

Proof. The assertion directly follows from Lemma 6.3.2 since for some C̃, C > 0

‖`(xm
k , u

∗
k,0)− `(xm

k , u
∗
k,0)‖ = C̃‖u∗k,0 − u∗k,0‖ = C‖xm

k − xu∗0,·(k, x0)‖2

Lemma 6.3.4. Suppose that the Assumptions 6.1.2 and 6.3.1 hold. Then for
k = 1, . . . , N − 1,

‖xm
k − xu∗k−1,·(1, x

m
k−1))‖ ≤ ‖d(k)‖+O(d2

k−1)

Proof. Observe that for some C̃, C > 0

‖xm
k − xu∗k−1,·(1, x

m
k−1))‖ = ‖d(k) + xu∗k−1,·(1, x

m
k−1)− xu∗k−1,·(1, x

m
k−1))‖

≤ ‖d(k)‖+ ‖f(xm
k−1, u

∗
k−1,0)− f(xm

k−1, u
∗
k−1,0)‖

≤ ‖d(k)‖+ C̃‖u∗k−1 − u∗k−1‖
≤ ‖d(k)‖+ C‖xm

k−1 − xu∗0,·(k − 1, x0)‖2

We obtain the assertion by using Lemma 6.3.2.

We are now in the position to compare the value J sens
N (x0) of the trajectory

driven by the sensitivity-based controls u∗j,0, j = 0, . . . , N − 1 to the nominal
value

Jnmult
N (x0) =

N−1∑
j=0

`(xu∗0,·(j, x0), u∗0,j)

Based on the results above, we now provide the key theorem for the analysis in
this section.

Theorem 6.3.5. Let the Assumptions 6.1.2 and 6.3.1 hold. Suppose Vi, i =
1, . . . , N , is uniformly continuous on X with modulus of continuity ωVi . Consider
an initial value x0 ∈ X and external perturbations represented by the sequence
{d(j)} such that PN−j(xmj), j = 1, . . . , N − 1 is feasible. Then

∣∣Jnmult
N (x0)− Jsens

N (x0)
∣∣ ≤ N−1∑

j=1

ωVN−j
(
‖d(j)‖+O(d2

j−1)
)

+

N−1∑
j=1

O(d2
j) (6.25)

91

Chapter 6. Sensitivity-based multistep MPC

Proof. From the value definition (6.18) and Corollary 6.3.3, we have∣∣∣∣∣∣Jnmult
N (x0)−

N−1∑
j=0

λj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N−1∑
j=0

`(xu∗0,·(j, x
m
0), u∗0,j) −

N−1∑
j=0

`(xm
j , u

∗
j,0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
N−1∑
j=0

`(xu∗0,·(j, x
m
0), u∗0,j) −

N−1∑
j=0

`(xm
j , u

∗
j,0)

∣∣∣∣∣∣+

N−1∑
j=0

O(d2
j)

=

∣∣∣∣∣∣
N−1∑
j=0

`(xu∗0,·(j, x
m
0), u∗0,j)

− `(xu∗0,·(0, x
m
0), u∗0,0) −

N−2∑
j=0

`(xu∗1,·(j, x
m
1), u∗1,j)

+

N−2∑
j=0

`(xu∗1,·(j, x
m
1), u∗1,j)

− `(xu∗1,·(0, x
m
1), u∗1,0) −

N−3∑
j=0

`(xu∗2,·(j, x
m
2), u∗2,j) +

...

+

1∑
j=0

`(xu∗N−2,·(j, x
m
N−2), u∗N−2,j)

− `(xu∗N−2,·(0, x
m
N−2), u∗N−2,0)− `(xu∗N−1,·(0, x

m
N−1), u∗N−1,0)

+ `(xu∗N−1,·(0, x
m
N−1), u∗N−1,0)

− `(xu∗N−1,·(0, x
m
N−1), u∗N−1,0)

∣∣∣ +

N−1∑
j=1

O(d2
j)

≤
∣∣∣VN−1(xu∗0,·(1, x

m
0))− VN−1(xm

1)
∣∣∣

+
∣∣∣VN−2(xu∗1,·(1, x

m
1))− VN−2(xm

2)
∣∣∣+

+
∣∣∣VN−3(xu∗2,·(1, x

m
2))− VN−3(xm

3)
∣∣∣ + . . .

+
∣∣∣V1(xu∗N−2,·(1, x

m
N−2))− V1(xm

N−1)
∣∣∣ +

N−1∑
j=1

O(d2
j)

≤
N−1∑
j=1

ωVN−j

(
‖(xu∗j−1,·(1, x

m
j−1))− xm

j ‖
)

+

N−1∑
j=1

O(d2
j)

≤
N−1∑
j=1

ωVN−j
(
‖d(j)‖+O(d2

j−1)
)

+

N−1∑
j=1

O(d2
j)

92

6.3. Stability and performance analysis of SBM MPC

Theorem 6.3.5 allows to quantify the performance difference between approximate
re-optimizing and not re-optimizing for the finite horizon problem similar to the
results given by Corollaries 3.3.3 and 3.3.5.

Let us compare Theorem 6.3.5 to the results obtained in Section 3.3. In Sec-
tion 3.3, we established that the difference between Jnmult

N (x0) and Jpmult
N (x0) =∑N−1

j=0 λj,j,0 depends on the modulus ωJi of elements of the perturbation se-
quence d(·) and that the difference between Jnmult

N and Jupd
N (x0) =

∑N−1
j=0 λj,j,j

is determined by the ωVi of elements of d(·). In this section, we find that the
difference between Jnmult

N (x0) and J sens
N (x0) =

∑N−1
j=0 λj also depends on the

ωVi of elements of d(·) with additional error terms depending on squares of
accumulated past errors. These results quantitatively characterize the 3 schemes.
And due to the inequality ωVi ≤ ωJi , provided that the system is unstable but
controllable, for moderate perturbations d(j) where d(j) is much more dominant
than O(d2

j−1), whereas re-optimizing gives the most benefit, using sensitivity-
based updates in place of re-optimizing still offers considerable benefit compared
to not re-optimizing.

The following corollary generalizes Theorem 6.3.5 allowing an arbitrary time
instant k ∈ {0, . . . , N − 1} to be the reference point other than k = 0.

Corollary 6.3.6. Let the assumptions of Theorem 6.3.5 hold. Then∣∣∣∣∣∣Jnmult
N−k (xm

k)−
N−1∑
j=k

λj

∣∣∣∣∣∣
≤
N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(d2

k+j−1)
)

+

N−k−1∑
j=0

O(d2
k+j)

Proof. The proof follows using the same technique as in the proof of Theo-
rem 6.3.5 with the appropriate changes in the indices.

The next goal is to obtain a performance estimate for the SBM MPC feedback
µN,m similar to the analysis for the updated MPC feedback µ̂N,m in Chapter 4.
As done in Chapter 4, the idea is to construct the corresponding perturbed
version of Pα for quantities involving costs incurred along the trajectory driven
by the SBM MPC feedback µN,m. We begin with the following two lemmas.

Lemma 6.3.7. Let the Assumption 2.1.4 and the assumptions of Theorem 6.3.5
hold. Suppose further BK , K = 1, . . . , N , is uniformly continuous on R+

0
with modulus of continuity ωBK . Consider x0 = x ∈ X and an optimal control
u∗(·) ∈ UN for the finite horizon optimal control problem PN (x) with optimization
horizon N . Then for each m = 1, . . . , N − 1 and each j = 0, . . . , N −m− 1,

VN (xm
m) ≤

j−1∑
n=0

λn+m +BN−j(λj+m) + ωBN−j (O(d2
j+m))

+

N−j−1∑
n=1

ωVN−j−n
(
‖d(j + n+m)‖+O(d2

j+n−1+m)
)

+

N−1∑
n=j

O(d2
n+m)

93

Chapter 6. Sensitivity-based multistep MPC

Proof. Observe that
VN (xm

m)

≤
N−1∑
j=0

λn+m =

j−1∑
n=0

λn+m +

N−1∑
n=j

λn+m

≤
j−1∑
n=0

λn+m + Jnom
N−j(x

m
j+m)

+

N−j−1∑
n=1

ωVN−j−n
(
‖d(j + n+m)‖+O(d2

j+n−1+m)
)

+

N−1∑
n=j

O(d2
n+m)

≤
j−1∑
n=0

λn+m +BN−j(`
∗(xm

j+m))

+

N−j−1∑
n=1

ωVN−j−n
(
‖d(j + n+m)‖+O(d2

j+n−1+m)
)

+

N−1∑
n=j

O(d2
n+m)

≤
j−1∑
n=0

λn+m +BN−j(λj+m) + ωBN−j (O(d2
j+m))

+

N−j−1∑
n=1

ωVN−j−n
(
‖d(j + n+m)‖+O(d2

j+n−1+m)
)

+

N−1∑
n=j

O(d2
n+m)

where the second inequality is due to Corollary 6.3.6, the third inequality due to
Assumption 2.1.4 and the fourth due to Corollary 6.3.3.

Lemma 6.3.8. Let the assumptions of Corollary 4.1.3 and of Theorem 6.3.5
hold. Suppose further BK , K = 1, . . . , N , is uniformly continuous on R+

0 with
modulus of continuity ωBK . Then for k = 0, . . . , N − 2, we have the inequalities

N−1∑
j=k

λj ≤ BN−k(λk) + ωBN−k(O(d2
k))

+

N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(d2

k+j−1)
)

+

N−k−1∑
j=0

O(d2
k+j)

94

6.3. Stability and performance analysis of SBM MPC

Proof. From Corollary 6.3.6, we observe
N−1∑
j=k

λj ≤ VN−k(xm
k)

+

N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(d2

k+j−1)
)

+

N−k−1∑
j=0

O(d2
k+j)

≤ BN−k(`∗(xm
k))

+

N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(d2

k+j−1)
)

+

N−k−1∑
j=0

O(d2
k+j)

≤ BN−k(λk) + ωBN−k(O(d2
k))

+

N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(d2

k+j−1)
)

+

N−k−1∑
j=0

O(d2
k+j)

where the second inequality follows from to Assumption 2.1.4 and the third is
due to Corollary 6.3.3.

By combining these results, we can now state the following counterpart of
Proposition 2.1.7. The statement yields necessary conditions which hold if the
values λn coincide with λn and ν with VN (xm

m).

Corollary 6.3.9. Consider N ≥ 1,m ∈ {1, . . . , N−1} and let the assumptions of
Lemmas 6.3.7 and 6.3.8 hold. Let x = x0 ∈ X and consider external perturbations
represented by the sequence {d(k)} where d(k) = 0 for k ≥ m generating the
trajectories x̃µN,N−1

(n, x) = xm
n . Consider a sequence λn ≥ 0, n = 0, . . . , N − 1

and a value ν ≥ 0 such that λn = λn, n = 0, . . . , N − 1 and ν = VN (xm
m) holds.

Then the inequalities

N−1∑
n=k

λn ≤ BN−k(λk) + ξ1
k, k = 0, . . . , N − 2

ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m) + ξ2
j , j = 0, . . . , N −m− 1

hold for

ξ1
k =

N−k−1∑
j=1

ωVN−k−j
(
‖d(k + j)‖+O(dk+j−1)2

)
+ ωBN−j (O(d2

j+m)) +

N−k−1∑
j=0

O(d2
k+j)

ξ2
j =

N−j−1∑
n=1

ωVN−j−n
(
‖d(j + n+m)‖+O(d2

j+n−1+m)
)

+ ωBN−k(O(d2
k)) +

N−1∑
n=j

O(d2
n+m)

95

Chapter 6. Sensitivity-based multistep MPC

This corollary allows us to formulate a corresponding perturbed version of Pα
(recall Theorem 2.1.8 for the definition of Pα and Section 4.2 for the perturbed
versions).

αsens := inf
λn,n=0,...,N−1,νsens

∑N−1
n=0 λn − νsens∑m−1

n=0 λn

subject to Psens
α

N−1∑
n=k

λn ≤ BN−k(λk) + ξsens, k = 0, . . . , N − 2

νsens ≤
j−1∑
n=0

λn+m +BN−j(λj+m) + ξsens, j = 0, . . . , N −m− 1

m−1∑
n=0

λn ≥ ζ, λm, . . . , λN−1, ν
sens ≥ 0

with

ξsens = max
k ∈ {0, . . . , N − 2}

j ∈ {0, . . . , N −m− 1}

{ξ1
k, ξ

2
j } with ξ1

k and ξ2
j from Corollary 6.3.9

(6.26)

The formulation of Psens
α implies the applicability of the statements we obtained

in Sections 4.2 and 4.3, namely Theorem 4.2.3, Lemma 4.3.1 and Theorem 4.3.3,
to obtain performance and stability properties of the closed-loop system driven
by the SBM feedback µN,m.

Remark 6.3.10. (a) Lemma 4.2.2 is straightforwardly applied to obtain an
analogous statement to Theorem 4.2.3 to estimate the solution αsens in reference
to the nominal case solution αnmult, we have

αsens ≥ αnmult − Bm+1(ξsens) + ξsens

ζ

(b) An analagous statement to Lemma 4.3.1 is also obtained giving the correspond-
ing relaxed dynamic programming inequality which provides the suboptimality
index α̃sens given by

α̃sens = αsens − σ

ζ
where

σ =

m−1∑
j=1

ωVN−j
(
‖d(j)‖+O(d2

j−1)
)

+

N−1∑
j=1

O(d2
j)

Using the relation ωVk ≤ ωJk , we conclude that SBM MPC yields better robust-
ness properties than the non-updated m-step MPC.

(c) The same statement as Theorem 4.3.3 is also obtained showing that the
perturbed sensitivity-based m-step closed-loop system with feedback law µN,m
is semi-globally practically asymptotically stable on X with respect to d.

96

7 Numerical examples

In this chapter, we present examples of the implementation of the SBM MPC
and comparisons to the MPC variants discussed in the previous chapters. In
Section 7.1, we consider once again the inverted pendulum where we illustrate
how does SBM MPC compare against the schemes we discussed so far, examine
the suboptimality performance of each schemes and analyze the influence of
perturbations on approximating re-optimization. In Section 7.2, we apply MPC
schemes on an electric circuit process. We demonstrate taking advantage of
the matrix structures arising from the problem formulation, investigate the
computational expense aspect of the schemes and finally, illustrate the usually
opposing objectives of reducing computational expense and improving perfor-
mance and how SBM MPC maintains a compromise between these two objectives.
A preliminary version of the results presented in Section 7.2 is published in [51].

7.1 Case study: inverted pendulum
In order to illustrate our results, we consider once again the nonlinear inverted
pendulum model presented in Section 4.4 depicting a cart on a track to which a
rigid pendulum is attached and able to rotate freely. Recall the aim to stabilize
the pendulum to the unstable inverted position and the previously defined stage
cost as well.

We aim to compare SBM MPC to the other schemes, namely, the m-step and
updated m-step feedback controllers. As in Section 4.4, we use here the same
optimization horizon N = 15, initial value x0 = (−π− 0.1, 0,−0.1, 0) and a fixed
randomly generated perturbation sequence of the form d(k) = [0, 0, d3(k), 0]>,
k ∈ N, with values in the interval [−d3, 0] for d3 = 0.05. Aside from the system
dynamics and the initial condition, no further constraints (e.g., box contraints)
are imposed on the states and the control.

The simulations are implemented using OCPIDDAE-1 (see the user manual
[26]) which is a software package that discretizes an optimal control problem,
transforms it into a finite-dimensional NLP and solves it using SQP method.
The package uses sensitivity analysis of the discretized OCP with respect to the
so-called real-time parameter and computes sensitivity differentials which we use
for the computation of the approximate solution. Sensitivities are computed as
in Remark 5.5.3 where the use of the exact Hessian is a requirement. Updates
are performed as in Algorithm 6.1.4.

97

Chapter 7. Numerical examples

First, let us recall Figure 4.2 which shows that compared with the 7-step MPC,
improvement is manifested by applying the updates to the multistep scheme
allowing the trajectory to move towards the equilibrium against the perturbations.
This is once again shown in Figure 7.2. Now in addition, Figure 7.2 also depicts
the improvement brought about this time by SB updates to the multistep scheme
confirming the results obtained in Section 6.3. One can also observe that the
SB 7-step MPC (shown in black) behaves closely like the updated 7-step MPC
(shown in green) as pointed out in Remark 6.1.3. The figure also shows how all
the schemes discussed in the thesis compare to the 1-step scheme – the most
robust MPC scheme (shown in cyan).

Recall that the sensitivity theorem limits its assertion to some neighborhood of
the optimal solution. We next examine the effects of increasing the magnitude
of perturbation to the quality of the approximation of the optimal solution and
the robustness of the schemes. To this end, we vary the magnitude of d3(k)
in the perturbation sequence of d(k) = [0, 0, d3(k), 0]>, k ∈ N. Figures 7.1–7.4
illustrates that the bigger the magnitude of d3(k), the larger the corresponding δ
becomes in the robust stability Definition 2.2.4 where the system behaves like an
asymptotic stable system until the trajectory is within a distance of δ from the
equilibrium. We show here plots corresponding to ‖d3(k)‖ = 0.01, 0.05, 0.1, 0.5.
For ‖d3(k)‖ = 1, the perturbations become so big that no meaningful trend can be
reported for the resulting trajectories. In Figure 7.4, one can observe that despite
a considerable perturbation magnitude of 0.5, the re-optimization provides an
effective coping mechanism against the perturbation signifying robustness. This
can also be said about the SBM feedback since in this case, it approximates well
the updated scheme.

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

State x
2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

State x
3

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

State x
4

Figure 7.1: State trajectories driven by the 7-step MPC scheme for nominal
system (blue), the 1-step (cyan), 7-step (red), updated 7-step (green) and SB
7-step (black) MPC schemes for the perturbed system with ‖d3(k)‖ = 0.01.

Table 7.1.1 presents the performance index αsens of the SBM MPC computed

98

7.1. Case study: inverted pendulum

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

State x
2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

State x
3

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

State x
4

Figure 7.2: State trajectories driven by the 7-step MPC scheme for nominal
system (blue), the 1-step (cyan), 7-step (red), updated 7-step (green) and SB
7-step (black) MPC schemes for the perturbed system with ‖d3(k)‖ = 0.05.

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

State x
2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

State x
3

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

State x
4

Figure 7.3: State trajectories driven by the 7-step MPC scheme for nominal
system (blue), the 1-step (cyan), 7-step (red), updated 7-step (green) and SB
7-step (black) MPC schemes for the perturbed system with ‖d3(k)‖ = 0.1.

99

Chapter 7. Numerical examples

0 20 40 60 80 100
−3.25

−3.2

−3.15

−3.1

State x
1

0 20 40 60 80 100
−0.3

−0.2

−0.1

0

0.1

0.2

State x
2

0 20 40 60 80 100
−4

−3

−2

−1

0

1

State x
3

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

State x
4

Figure 7.4: State trajectories driven by the 7-step MPC scheme for nominal
system (blue), the 1-step (cyan), 7-step (red), updated 7-step (green) and SB
7-step (black) MPC schemes for the perturbed system with ‖d3(k)‖ = 0.5.

from the generated trajectories using the approach presented in [35] as briefly
explained in Section 4.4. We vary m and compute the values of αsens for the
first three iterations of each scheme. Recall Table 4.4.2 where the values of α
for the nominal multistep scheme are ’close’ to being infinite horizon optimal
having values α > 0.9 and that a degree improvement to the values of α due to
re-optimization are observed by comparing the m-step and the updated m-step
MPC. The values for the SBM MPC approximate very well those of the updated
MPC wherein the SBM MPC is even slightly better than the updated scheme
for m > 2. This is visible in Figure 7.2 where both the updated and SBM MPC
behave very closely to the 1-step MPC with the SBM MPC behaving more closely
to it. Here, the combination of the error in approximating the optimal control
and the additive perturbation makes the SBM, by chance, a good approximation
of the 1-step MPC. Also found in the table, the negative values indicate that the
region P̂ in the definition of P̂ -practical asymptotic stability has been reached
where the effects of the perturbations become dominant.

7.2 Case study: DC-DC converter
In this section, we examine the computational effort in implementing the MPC
schemes. We investigate the challenges in implementing an MPC scheme on an
embedded system with limited computing power alongside the aim of accelerating
the MPC procedure for fast systems applications.

We apply MPC in an electronic circuit process setting. We implement the m-step
MPC for a DC-DC converter model motivated by the goal of saving computational
costs. We examine the system under perturbation and address the reduced

100

7.2. Case study: DC-DC converter

Table 7.1.1: Suboptimality index α of the schemes for various m and iterations

SBM
m 0 2m 3m

1 0.8667 0.8699 0.6032
2 0.8681 0.6383 0.8538
3 0.7957 0.7819 0.6237
4 0.7734 0.7175 0.5705
5 0.7746 0.7380 0.5016
6 0.7888 0.5215 0.4167
7 0.7671 0.5931 -0.0041
8 0.7481 0.5264 0.0413
9 0.7508 0.3208 -0.0081
10 0.7486 0.2030 -0.2069
11 0.7099 0.1549 0.0273
12 0.6826 0.0996 -0.0004
13 0.6745 -0.0152 -0.0500

robustness by introducing updates on the controller through the SBM MPC. We
illustrate here that SBM MPC considerably reduces the computing requirements
in terms of floating point operations (FLOPs) compared to a standard MPC
formulation, while fulfilling the expectations for better performance compared to
the multistep MPC. We also show how a control-hardware designer can optimally
trade-off closed-loop performance considerations with computing requirements in
order to make the controller suitable for a tightly constrained embedded system.

A synchronous step-down converter, also referred to as a DC-DC converter, is a
switching electronic circuit that converts an input voltage level Vs to satisfy a
desired voltage requirement Vo. The circuit topology is illustrated in Figure 7.1.
We follow the modeling presented in [28].

+
−Vs

SW1 L rl

SW2

C

rc

ro

il
→

VO

+

−

Figure 7.1: A DC-DC converter.

Here, r0 denotes an ohmic output load, rc is the equivalent series resistance of
the capacitor with capacitance C and rl is the internal resistance of the inductor
with inductance L. The low-pass filter setup is comprised of two switches SW1

and SW2. In this setting, feedback control is used in order to stabilize the output
voltage with respect to load, input voltage and component variations. At each
switching period Ts, the output voltage and the current flowing in the inductor
il are measured and used to control the opening and closing time of the two
switches. When SW1 is closed (i.e., at time d(t) · Ts, where d(t) ∈ [0, 1] is the
duty cycle), SW2 is opened and the input power is transferred to the output
through the inductor. For the remaining time (1 − d(t)) · Ts of the switching
period, the status of the switch are swapped providing a path for the inductor
current il. This procedure is then repeated.

The described process leads to a set of affine time-invariant continuous-time
state-space equations representing the two operating conditions. Defining the

101

Chapter 7. Numerical examples

state vector as x(t) := [il(t), Vo(t)]
>, the system behavior is modeled by

ẋ(t) =


Acx(t) + bc, kTs ≤ t ≤ (k + d(t))Ts

(SW1 is closed)
Acx(t), (k + d(t))Ts ≤ t ≤ (k + 1)Ts

(SW2 is closed)

(7.1)

with output voltage given by Vo(t) := cTc x(t) with Ac, bc and cc given by

Ac :=

[− rlL − 1
L

1
C

ro
ro+rc

(
1− Crc rlL

)
− 1
C

1
ro+rc

(
1 + Crc

ro
L

)]
bc :=

[
1
L

ro
ro+rc

C
L

]
, cc := [0 1]>

As reported in [63], this hybrid model may not be suitable for control purposes.
To address this, a standard state-space averaging method [48] is used resulting in
an average continuous-time model that merges the laws of the hybrid model and
uses the duty cycle d(t) as an input variable. This gives a nonlinear mathematical
model to which linearization around an operating point can be carried out for
further simplification of the controller design. This then leads to the state-space
average model of the step-down converter (7.1) given by

ẋ(t) = Acx(t) + bc · d(t)
Vo(t) = cTc x(t)

(7.2)

which is a linear system for which the states can be measured straightforwardly.
Here, the input is the duty cycle d(t) and the output is the output voltage Vo(t).
In addition, constraints arise from the converter topology, e.g., the duty cycle
has to be between 0 and 1, and for safety reasons, the inductor current il be less
than its saturation value ilmax. This therefore implies the need for a controller
design that can handle constraints.

7.2.1 Design of the controller
We consider the continuous-time finite horizon LQ problem defined by the cost
function

Jc = x(T)>Pcx(T) +

∫ T

0

[
x(t)
u(t)

]> [
Qc 0
0 Rc

] [
x(t)
u(t)

]
dt (7.3)

where Qc = I,Rc = 1, Pc is the solution of continuous Ricatti equation and
T = 40 µs is the prediction horizon. We assume zero-order hold. The function
(7.3) represents the nominal closed-loop performance of the continuous-time
model (7.2).

7.2.2 Discretization
We discretize the continuous-time model (7.2) and the continuous weighting

matrices
[
Qc 0
0 Rc

]
in (7.3) using the sample time Ts and zero-order hold

approximation on the input. Let uk denote the discrete domain counterpart of

102

7.2. Case study: DC-DC converter

the input d(t) in (7.2). Due to sampling (see, e.g., [4, Chapter 5] for discussion),
(7.2) is transformed into

xk+1 = Axk + buk

where A := eAcTs , b :=
(∫ Ts

0
eAcτdτ

)
bc and uk is a constant control between

sampling instants. The corresponding sampled-data cost function is given by

JTs = x>NPxN +

N−1∑
k=0

[
xk
uk

]> [
Q M
M> R

] [
xk
uk

]
where N = dT/Tse is the number of samples for the prediction horizon T .

7.2.3 MPC problem formulation
The MPC problem is defined by the core optimization problem solved at each
time instant given by

min
xk,uk

x>NPxN +

N−1∑
k=0

[
xk
uk

]> [
Q M
M> R

] [
xk
uk

]

s.t. x0 = [α, β]>

xj+1 = Axj + buj j = 0, 1, . . . , N − 1
[0, 0]> ≤ xj+1 ≤ [ilmax, Vs]

> j = 0, 1, . . . , N − 1
0 ≤ uj ≤ 1 j = 0, 1, . . . , N − 1

(7.4)

We gauge the performance of the algorithm through the closed-loop cost function

Jcl = x>NTPxNT +

NT−1∑
k=0

[
xk

µ(xk)

]> [
Q M
M> R

] [
xk

µ(xk)

]
(7.5)

for simulation time NT = dTT /Tse where TT is the simulation time and µ is the
MPC feedback (namely, µN,m, µ̂N,m and µN,m.)

7.2.4 Matrix structures
Let us define the optimization variable

z :=
[
x

(1)
0 x

(2)
0 u0 | x(1)

1 x
(2)
1 u1 | . . . | x(1)

N−1 x
(2)
N−1 uN−1 | x(1)

N x
(2)
N

]>
It follows that the objective function has the form min

z

1

2
z>Hz given by

min
z

1

2
z>2



Q M
M> R

. . .
Q M
M> R

P

 z

103

Chapter 7. Numerical examples

for which H has N blocks of
[

Q M
M> R

]
and a block of P . The equality

constraints [
x

(1)
0

x
(2)
0

]
=

[
α
β

]
[
x

(1)
j+1

x
(2)
j+1

]
− A

[
x

(1)
j

x
(2)
j

]
− buj = 0 j = 0, 1, . . . , N − 1,

(7.6)

composed of 2 · (N + 1) equations, can be written as


I2
−A −B I2

. . .
−A −B I2

 z =


α
β
0
...
0


which is of the form Ceqz = deq. The inequality constraints

uk − 0 ≥ 0 j = 0, 1, . . . , N − 1[
x

(1)
j

x
(2)
j

]
−
[

0
0

]
≥ 0 j = 1, 2, . . . , N

−uk + uub ≥ 0 j = 0, 1, . . . , N − 1

−
[
x

(1)
j

x
(2)
j

]
+

[
x

(1)
ub
x

(2)
ub

]
≥ 0 j = 1, 2, . . . , N,

(7.7)

giving (2 + 1) · 2 ·N inequalities, can be written as



0 0 1
1

. . .
1

0 0 −1
−1

. . .
−1


z +



0
uub

x
(1)
ub
x

(2)
ub
...
uub

x
(1)
ub
x

(2)
ub


≥ 0

which we can write in the form Cz ≤ d.
This shows that the problem (7.4) can be written in the form

min
z

1

2
z>Hz (7.8)

s.t. Ceqz − deq = 0

−Cz + d ≥ 0

which is a QP wherein the constant matrix H happens to be the exact Hessian
of the Lagrangian function of (7.4). Solving the optimization problem (7.8)

104

7.2. Case study: DC-DC converter

is straightforward using quadprog in Matlab where active-set method can be
chosen to solve the problem.

7.2.5 Implementing m-step and SBM MPC
For the standard MPC, at each time instant, we solve the problem (7.4) (or
equivalently (7.8)) i.e., solve for the optimal solution z∗ wherein we obtain the
open-loop optimal control u∗. We apply u∗0 to the system and generate the next
state. For the next time instant, the current state is measured and assigned as
x0 in (7.4). Then the process is repeated.

To reduce further the computational cost, we can use the m-step MPC in which
we use the first m elements of the optimal control sequence u∗. In the hope
of maintinaing robustness, we apply corrections on u∗1, u∗2, . . . , u∗m−1 using the
sensitivity-based update rule (6.8). It is at the time instant m, where we solve
an optimization problem again.

To solve the required updating/correcting sensitivities, we need to construct and
solve the systems (6.10) for j = 1, . . . ,m− 1. Consequently, by computing the

sensitivities
∂zj

∂pj
(x∗j), j = 1, . . . ,m− 1, we obtain

∂uj

∂pj
(x∗j), j = 1, . . . ,m− 1. If

we denote the problem formulation (7.4) (or (7.8)) by PN (p0), computing the

sensitivities
∂uj

∂pj
(x∗j), j = 1, . . . ,m− 1 by (6.10) requires solving a sequence of

systems for j = 1, . . . ,m− 1, corresponding to the OCPs PN−j(pj) of decreasing
horizon and adjusting parametric value.

It is worth mentioning that in this formulation, due to the nice structure of the
matrices resulting from the OCP (7.4) (i.e., the involved Hessian and Jacobian
matrices), adding the fact that these resulting matrices are constant matrices,
the sequence of systems (6.10) can easily and immediately be constructed.

The exact Hessian ∇2
zjzjLj(zj

∗
, η, x∗j) of the Lagrangian function of PN−j(pj)

evaluated at the nominal solution has the same form but smaller in size as H
(i.e., the corresponding Hessian for PN (p0)). It has N−j blocks of

[
Q M
M> R

]
and a block of P . The submatrix ∇zjCAj (zj∗, x∗j)> denoting the Jacobian of
the active constraints are obtained appropriately from the active constraints of
PN (p0). This shows that the KKT matrix of the linear system corresponding
to the OCP PN−j(pj) can be constructed through the submatrices of the KKT
matrix solved for PN (p0) which is already available. Finally, the right-hand
side is a zero matrix except for the identity I2 appearing in ∇pjCAj (zj

∗
, xj
∗)>

corresponding to xj − pj .

7.2.6 Numerical results
We consider a low-power (2 Watt) step-down converter setup with the following
design parameters: Vs = 6 V, rl = 15.5 mΩ, Vo = 1 V, ilmax = 4 A, ro = 500
mΩ, C = 68 µF, L = 1.5 µH and rc = 1.5 mΩ.

We formulate differentm-step and SBM MPC controllers by varying the sampling
frequency fs ∈ [300kHz, 400kHz] (where fs := 1/Ts) and the number of steps
m ∈ {1, 2, ...10, 11}. Closed-loop simulations are performed in Matlab in order
to measure the controller closed-loop performance and the required computing

105

Chapter 7. Numerical examples

power in terms of floating point operations (FLOPs)1.

Closed-loop performance

For each m-step or SBM MPC scheme, we perform 103 simulations of the
plant evolution of different initial values (using a set of random and uniformly
distributed feasible initial state values) and evaluate the closed-loop performance
function (7.5). These values are then averaged and assigned to the scheme.

Figure 7.2 shows the trend of the performance of the algorithm along increasing
sampling frequency fs for varying multistep m both for m-step and SBM MPC.
Note first that from the discretization of (7.3) using sampling frequency fs ∈
[300kHz, 400kHz] resulting in sampling time length Ts of magnitude 10−6 seconds,
the entries of the resulting submatrices M,P,Q,R in (7.5) have magnitude 10−6.
With the prescribed state and control constraints of magnitudes 100 and 10−1,
respectively, we expect Jcl to be not far from magnitude 10−6 as confirmed
by the figure. In addition, the differences between values of Jcl ranging from
1.382× 10−5 to 1.402× 10−5 can be, in this case, considered significant.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

x 10
5

1.382

1.384

1.386

1.388

1.39

1.392

1.394

1.396

1.398

1.4

1.402
x 10

−5

Sampling frequency [Hz]

C
lo

s
e

d
−

lo
o

p
 p

e
rf

o
rm

a
n

c
e

 J
c
l

m=1

m=3

m=5

m=7

m=9

m=11

sm=3

sm=5

sm=7

sm=9

sm=11

Figure 7.2: Performance Jcl for varying sampling frequency fs. The symbol m
stands for the number of steps of the m-step MPC while sm for the SBM MPC.

Observe that the scheme with m = 1 gives the standard MPC where we solve an
OCP at every sampling instant. As expected, this gives the best performance
where the feedback is able to react to the disturbance at each time step. Also
shown is that higher sampling frequency yields better closed-loop performance
since faster reaction implies faster disturbance rejection.

Furthermore, the closed-loop performance worsens upon using higher value of
m (in solid lines). This is as expected since the system runs in open loop for a
longer time causing further propagation of the deviation between the measured
and the predicted states. However, improvement is achieved through the use of
the sensitivity updates. Unlike the m-step feedback law, SBM MPC uses the
perturbation magnitude and the sensitivity information to allow the controller to
react to this measured and predicted state deviation. As seen in Figure 7.2 (in

1As opposed to FLOPS which means floating-point operations per second

106

7.2. Case study: DC-DC converter

dashed lines), the performance profiles get closer to that of the standard MPC
indicating better closed-loop performance for the SBM MPC in comparison to
the m-step MPC. The graph, however, gives little information to determine
which number of steps sm gives for the best performance.

Computational complexity

We present here the details of the computational complexity of the active set
method for solving a QP which is quantified by the number of FLOPs (i.e.,
addition, multiplication and division) to be executed per iteration as investigated
in [44]. We quantify the number of FLOPs it takes for a fixed simulation time
Tsim and aim to compare the number of FLOPs we save by increasing the
multistep m and the additional operations we incur when updating the controls
through computing sensitivities.

First, we consider the active set algorithm for solving a QP in each iteration of
the SQP strategy as outlined in Algorithm 7.2.1 (given in [44]). The method
begins with an initial guess W0 of the active set which is called the working set.
The working set is then refined by adding or deleting a constraint until the exact
active set is found.

Algorithm 7.2.1. (Active Set Method for Solving a QP)

1. Compute a feasible point z0.
2. Set initial working set W0.
3. For k = 0, 1, 2, . . .

4. Solve the system
[

H ∇CWk

∇C>Wk
0

] [
∆zk
η

]
=

[
−f −Hzk

0

]
5. If ∆zk = 0, then
6. If all ηi ≥ 0, then
7. Terminate, z∗ = zk.
8. Else
9. Remove i from Wk s.t. λi = min

i∈Wk

λi and then zk+1 ← zk.

10. End if
11. Else
12. Dk ←

{
i /∈ Wk | ∇Ci∆zk > 0,

ri −∇Cizk
∇Ci∆zk

< 1

}
13. If Dk = ∅, then
14. zk+1 ← zk + ∆zk and Wk+1 ←Wk

15. Else
16. α← min

i∈Dk

{
ri −∇Cizk
∇Ci∆zk

}
and zk+1 ← zk + α∆zk

17. Construct Wk+1 by adding one element of Dk to Wk.
18. End if
19. End if
20. End for

We define the following variables

107

Chapter 7. Numerical examples

nx dimension of the state
nu dimension of the control
no = (nx + nu)N + nx number of optimization/decision variables
ne = nx(N + 1) number of equality constraints
ni = 2(nx + nu)N number of inequality constraints
nc = ne + ni total number of constraints

We first consider the worst-case scenario which pertains to solving the system in
line 4 of Algorithm 7.2.1 with the largest possible dimension, i.e., the maximum
number of inequality constraints that can become active are active. This equals
half of the box constraints in the formulation (7.4) which is ni/2. Let ξ :=
no +ne +ni/2. Since systems with banded matrices are best solved by Gaussian
elimination with pivoting as pointed in [67], we use this technique to solve the
system in line 4. It requires the following amount of operations

number of
N(·)(ξ) = (ξ − 1)ξ(ξ + 1)/2 multiplication
N(+)(ξ) = ξ2(ξ + 1)/2 addition
N(÷)(ξ) = ξ division

Let NGE(N) be the total number of FLOPs needed to perform Gauss elimination
as a function of the discrete time prediction horizon N . As ξ = ξ(N), this is
given by

NGE(N) =
(
N(·) +N(+) +N(÷)

)
(ξ)

Let us now estimate the number of operations for Algorithm 7.2.1. The following
lines require the corresponding amount of operations

line multiplication addition division
4 n2

0+ n0(n0 − 1) + n0+
N(·)(ξ) N(+)(ξ) N(÷)(ξ)

12 nc · 2no nc((no − 1) + 1) nc
+nc(no − 1)

16 no no

Therefore, letting NAS(N) be the total number of FLOPs performed in a single
iteration of the active set method which is a function of the discrete time
prediction horizon N , we obtain

NAS(N) = 2n2
o + 2no(2nc + 1) +NGE(N)

which is a polynomial in N of degree 3 (i.e. O(N3)).

This allows us to compute the number of operations for an MPC scheme over
a simulation period. If we fix prediction horizon T (from which we determine
N) and simulation time Tsim (from which we determine Ñ) and assume k̄ is the
average number of iterations it takes the active-set method to converge, for the
m-step MPC, the FLOPs amount to

Ñ

m
· k̄ · NAS(N),

108

7.2. Case study: DC-DC converter

while for SBM MPC, (m 6= 1) , the FLOPs total to

Ñ

m
· (k̄ · NAS(N) +

m−1∑
i=1

(NGE(N − i) + 2nu(nx + 1))︸ ︷︷ ︸
(∗)

)

where (∗) is additional the expense due to solving a sequence of linear systems
for smaller dimension to compute the required sensitivities.

Figure 7.3 shows the trend in the amount of FLOPs of the algorithm along
increasing sampling frequency for varying multistep m both for MF and SBM
MPC assuming k̄ = 1. The standard MPC (m = 1) requires the most number of
iterations. The number is divided by m as m increases and additional amount
is added if sensitivity updates are performed. Note that Figure 7.3 shows
the worst-case scenario FLOPs requirement, i.e., with maximum number of
active inequality constraints. In the reality, the number of active constraints is
significantly much less than the maximum possible. The SBM MPC requires
significantly less computing power compared to standard MPC, but requires
more compared to an m-step approach when m > 1. In addition, by increasing
the sampling frequency fs, the measured FLOPs increase for any controller. This
is related to the discretization step (see Section 7.2.2) in the sense that increasing
fs means increasing the prediction horizon N and therefore the problem size
and computational complexity.

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

x 10
5

0

0.5

1

1.5

2

2.5
x 10

6

Sampling frequency [Hz]

F
lo

a
ti
n

g
 p

o
in

t
o

p
e

ra
ti
o

n
s
 (

F
L

O
P

s
)

m=1

m=3

m=5

m=7

m=9

m=11

sm=3

sm=5

sm=7

sm=9

sm=11

Figure 7.3: Worst case scenario FLOPs for varying sampling frequency fs and
various m-step MPC and sm for the SBM MPC.

In implementing SBM MPC, as mentioned in Section 6.2, one has to take care
so as not to violate constraints or create changes in the active constraints when
updating by sensitivities. To simplify the analysis on the reduction of cost by
taking advantage of available information, we apply the following rule so as
not to perform further computations (e.g. the post-optimal analysis in [17] for
computing unavailable sensitivities, see Remark 5.5.3 (d)) when constraints are
violated. At a given time step, if the control is already on the bound, we do
not update in order to keep the corresponding constraint active. Otherwise, if

109

Chapter 7. Numerical examples

upon updating, the resulting updated control goes on or beyond the constraints,
we use a control with a difference of 10−6 from the concerned bound in order
to keep the corresponding constraint inactive. Similarly, we also prevent the
predicted states and perturbed states to go beyond the state constraints. This,
however, do not occur in this particular example where perturbation of 5× 10−3

is used. Figure 7.4 illustrates the state and control staying within the constraints
indicated in (7.4) for SBM MPC implementations of varying sampling frequency
fs and multistep m.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

1

1.5

2

2.5

State x
1
 (inductor current i

l
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

2

4

State x
2
 (voltage V

0
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.2

0.4

Feedback control µ (duty cycle)

Figure 7.4: Perturbed state and updated control for SBM MPC implementations
of varying sampling frequency fs and multistep m.

Pareto optimality analysis

As shown in Figures 7.2 and 7.3, the closed-loop performance and computing
power requirements are strongly correlated: (i) increasing the sampling frequency
fs and decreasing the number of multistep m lead to controllers with lower Jcl

(i.e., better closed-loop performance) and higher computing power requirement;
(ii) similarly, decreasing fs and using higher multistep m yield controllers with
worse closed-loop performance and limited computing power. This results in
a design trade-off between closed-loop performance and computing power. We
analyze these trade-offs and present them in terms of Pareto optimality and
efficiency (for a single point solution) or compromise solutions (see the tutorial
in [45]). Figure 7.5 shows the Pareto frontier, thus the design trade-off between
closed-loop performance Jcl and computing power in terms of FLOPs. On one
extreme, the points in red represent the m-step schemes with higher value of
m which we observe to be less computationally demanding algorithms, while

110

7.2. Case study: DC-DC converter

on the other extreme is the MPC scheme with m = 1 which is the one with
the highest computing requirements but with the best closed-loop performance
(indicated by the lowest Jcl). Moreover, the points in blue represent the SBM
MPC schemes which we observe to be the algorithms compromising a ’balance’
between the two opposing objectives of having a good algorithm performance and
being computationally less demanding. This suggests a great potential for the
suitability of the scheme for embedded systems with limited computing power.

0 0.5 1 1.5 2 2.5

x 10
6

1.382

1.384

1.386

1.388

1.39

1.392

1.394

1.396

1.398

1.4

1.402
x 10

−5

Floating point operations (FLOPs)

C
lo

s
e

d
−

lo
o

p
 p

e
rf

o
rm

a
n

c
e

 J
c
l

Figure 7.5: A Pareto efficiency plot (solid circles and squares forming the Pareto
frontier) on a set of feasible options for m-step (red circles) and SBM (blue
squares) MPC.

111

Bibliography

[1] Alamir, M., and Bornard, G. Stability of a truncated infinite con-
strained receding horizon scheme: the general discrete nonlinear case. Au-
tomatica 31, 9 (1995), 1353–1356.

[2] Alt, W., and Malanowski, K. The Lagrange-Newton method for nonlin-
ear optimal control problems. Computational Optimization and Applications
2, 1 (1993), 77–100.

[3] Altmüller, N., Grüne, L., and Worthmann, K. Performance of
NMPC schemes without stabilizing terminal constraints. In Recent Advances
in Optimization and its Applications in Engineering, M. Diehl, F. Glineur,
E. Jarlebring, and W. Michiels, Eds. Springer, 2010, pp. 289–298.

[4] Aström, K. J., and Murray, R. M. Feedback systems: an introduction
for scientists and engineers. Princeton University Press, 2010.

[5] Bellman, R. Dynamic Programming. Princeton University Press, Prince-
ton, 1957.

[6] Beltracchi, T., and Gabriele, G. An investigation of new methods
for estimating parameter sensitivities. NASA contractor report. National
Aeronautics and Space Administration, Office of Management, Scientific
and Technical Information Division, 1989.

[7] Bemporad, A., and Morari, M. Robust model predictive control: A
survey. In Robustness in identification and control. Springer London, 1999,
pp. 207–226.

[8] Bertsekas, D. P. Dynamic programming and optimal control, 2nd ed.,
vol. II. Athena Scientific, 2001.

[9] Bertsekas, D. P. Dynamic programming and optimal control, 3rd ed.,
vol. I. Athena Scientific, 2005.

[10] Biegler, L. T. Solution of dynamic optimization problems by successive
quadratic programming and orthogonal collocation. Computers & chemical
engineering 8, 3 (1984), 243–247.

[11] Biegler, L. T. Nonlinear Programming: Concepts, Algorithms, and
Applications to Chemical Processes. MOS-SIAM Series on Optimization.
SIAM, 2010.

113

Bibliography

[12] Binder, T., Blank, L., Bock, H., Bulirsch, R., Dahmen, W., Diehl,
M., Kronseder, T., Marquardt, W., Schlöder, J., and v. Stryk, O.
Introduction to model based optimization of chemical processes on moving
horizons. In Online Optimization of Large Scale Systems, M. Grötschel,
S. O. Krumke, and J. Rambau, Eds. Springer Berlin Heidelberg, 2001,
pp. 295–339.

[13] Bock, H., Diehl, M., Kostina, E., and Schlöder, J. Constrained
optimal feedback control of systems governed by large differential alge-
braic equations. In Real-Time and Online PDE-Constrained Optimization,
L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and B. van Bloe-
men Waanders, Eds. SIAM, 2007, pp. 3–22.

[14] Bock, H. G., and Plitt, K.-J. A multiple shooting algorithm for direct
solution of optimal control problems. In 9th IFAC World Congress Budapest
(1984), Pergamon Press, pp. 243–247.

[15] Boyd, S., and Vandenberghe, L. Convex Optimization. Cambridge
University Press, 2004.

[16] Büskens, C., and Gerdts, M. Emergency landing of a hypersonic
flight system: a corrector iteration method for admissible real-time optimal
control approximations. In Optimalsteuerungsprobleme in der Luft-und
Raumfahrt, Workshop in Greifswald des Sonderforschungsbereichs (2003),
vol. 255, pp. 51–60.

[17] Büskens, C., and Maurer, H. Sensitivity analysis and real-time optimiza-
tion of parametric nonlinear programming problems. In Online Optimization
of Large Scale Systems, M. Grötschel, S. O. Krumke, and J. Rambau, Eds.
Springer Berlin Heidelberg, 2001, pp. 3–16.

[18] Diehl, M. Real-Time Optimization for Large Scale Nonlinear Processes.
PhD thesis, University of Heidelberg, 2001.

[19] Diehl, M., Bock, H. G., Diedam, H., and Wieber, P.-B. Fast direct
multiple shooting algorithms for optimal robot control. In Fast Motions in
Biomechanics and Robotics. Springer Berlin Heidelberg, 2006, pp. 65–93.

[20] Diehl, M., Bock, H. G., and Schlöder, J. P. A real-time iteration
scheme for nonlinear optimization in optimal feedback control. SIAM
Journal on control and optimization 43, 5 (2005), 1714–1736.

[21] Diehl, M., Bock, H. G., Schlöder, J. P., Findeisen, R., Nagy, Z.,
and Allgöwer, F. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. Journal of
Process Control 12, 4 (2002), 577–585.

[22] Diehl, M., Uslu, I., Findeisen, R., Schwarzkopf, S., Allgöwer,
F., Bock, H. G., Bürner, T., Gilles, E. D., Kienle, A., Schlöder,
J. P., et al. Real-time optimization for large scale processes: Nonlinear
model predictive control of a high purity distillation column. In Online
Optimization of Large Scale Systems, M. Grötschel, S. O. Krumke, and
J. Rambau, Eds. Springer Berlin Heidelberg, 2001, pp. 363–383.

[23] Fiacco, A. Introduction to Sensitivity and Stability Analysis in Nonlinear
Programming. Mathematics in Science and Engineering. Academic Press,
1983.

114

Bibliography

[24] Fiacco, A. V. Sensitivity analysis for nonlinear programming using penalty
methods. Mathematical Programming 10, 1 (1976), 287–311.

[25] Gerdts, M. Optimal control and real-time optimization of mechanical
multi-body systems. ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik 83, 10 (2003),
705–719.

[26] Gerdts, M. OCPID-DAE1: Optimal Control and Parameter Identification
with Differential-Algebraic Equations of Index 1. Universität der Bundeswehr
München, 2011. http://www.optimal-control.de/.

[27] Gerdts, M. Optimal Control of ODEs and DAEs. De Gruyter Textbook.
De Gruyter, 2012.

[28] Geyer, T., Papafotiou, G., Frasca, R., and Morari, M. Constrained
optimal control of the step-down DC-DC converter. Power Electronics, IEEE
Transactions on 23, 5 (2008), 2454–2464.

[29] Gill, P. E., Golub, G. H., Murray, W. A., and Saunders, M. A.
Methods for modifying matrix factorizations. Mathematics of computation
28, 126 (1974), 505–535.

[30] Gondzio, J. Stable algorithm for updating dense LU factorization after row
or column exchange and row and column addition or deletion. Optimization
23, 1 (1992), 7–26.

[31] Grimm, G., Messina, M. J., Tuna, S. E., and Teel, A. R. Model
predictive control: for want of a local control Lyapunov function, all is not
lost. Automatic Control, IEEE Transactions on 50, 5 (2005), 546–558.

[32] Grüne, L. Analysis and design of unconstrained nonlinear MPC schemes
for finite and infinite dimensional systems. SIAM Journal on Control and
Optimization 48, 2 (2009), 1206–1228.

[33] Grüne, L., and Palma, V. G. Robustness of performance and stability for
multistep and updated multistep MPC schemes. Discrete and Continuous
Dynamical Systems - Series A (Special Issue on New Trends for Optimal
Control and Sensitivity Analysis) (2015), to appear.

[34] Grüne, L., and Palma, V. G. On the benefit of re-optimization in
optimal control under perturbations. In 21st International Symposium
on Mathematical Theory of Networks and Systems (MTNS 2014) (2014),
pp. 439 – 446.

[35] Grüne, L., and Pannek, J. Practical NMPC suboptimality estimates
along trajectories. Sys. & Contr. Lett. 58, 3 (2009), 161–168.

[36] Grüne, L., and Pannek, J. Nonlinear Model Predictive Control: Theory
and Algorithms. Communications and Control Engineering. Springer, 2011.

[37] Grüne, L., Pannek, J., Seehafer, M., and Worthmann, K. Analysis
of unconstrained nonlinear MPC schemes with time varying control horizon.
SIAM Journal on Control and Optimization 48, 8 (2010), 4938–4962.

[38] Grüne, L., and Rantzer, A. On the infinite horizon performance of
receding horizon controllers. Automatic Control, IEEE Transactions on 53,
9 (2008), 2100–2111.

115

Bibliography

[39] Jadbabaie, A., and Hauser, J. On the stability of receding horizon
control with a general terminal cost. Automatic Control, IEEE Transactions
on 50, 5 (2005), 674–678.

[40] Jerez, J. L., Goulart, P. J., Richter, S., Constantinides, G. A.,
Kerrigan, E. C., and Morari, M. Embedded online optimization for
model predictive control at megahertz rates. arXiv preprint arXiv:1303.1090
(2013).

[41] Kellett, C. M., Shim, H., and Teel, A. R. Further results on robustness
of (possibly discontinuous) sample and hold feedback. Automatic Control,
IEEE Transactions on 49, 7 (2004), 1081–1089.

[42] Kerrigan, E. C., Jerez, J. L., Longo, S., and Constantinides,
G. A. Number representation in predictive control. In IFAC Conference on
Nonlinear Model Predictive Control, Noordwijkerhout, NL (2012), pp. 60–67.

[43] Khalil, H. Nonlinear Systems. Prentice Hall, 2002.

[44] Lau, M., Yue, S., Ling, K., and Maciejowski, J. A comparison of
interior point and active set methods for FPGA implementation of model
predictive control. In Proc. European Control Conference (Budapest, August
2009), European Union Control Association.

[45] Marler, R., and Arora, J. Survey of multi-objective optimization
methods for engineering. Structural and Multidisciplinary Optimization 26,
6 (2004), 369–395.

[46] Maurer, H., and Pesch, H. Solution differentiability for parametric
nonlinear control problems with control-state constraints. Journal of Opti-
mization Theory and Applications 86, 2 (1995), 285–309.

[47] Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O.
Constrained model predictive control: Stability and optimality. Automatica
36, 6 (2000), 789–814.

[48] Middlebrook, R., and Cuk, S. A general unified approach to modeling
switching-converter power stages. Int. Journal of electronics 42, 6 (1977),
521–550.

[49] Nocedal, J., and Wright, S. Numerical Optimization. Springer Series
in Operations Research and Financial Engineering. Springer, 2006.

[50] Palma, V. G., and Grüne, L. Stability, performance and robustness of
sensitivity-based multistep feedback NMPC. In 20th International Sym-
posium on Mathematical Theory of Networks and Systems (MTNS 2012)
(2012). Extended Abstract, CD-ROM, Paper No. 68, 4 pages.

[51] Palma, V. G., Suardi, A., and Kerrigan, E. C. Sensitivity-based mul-
tistep MPC for embedded systems. Submitted to the 5th IFAC Conference
on Nonlinear Model Predictive Control 2015 (NMPC ’15).

[52] Pannek, J., Michael, J., and Gerdts, M. A general framework for
nonlinear model predictive control with abstract updates. arXiv preprint
arXiv:1309.1610 (2013).

116

Bibliography

[53] Pesch, H. J. Numerical computation of neighboring optimum feedback
control schemes in real-time. Applied Mathematics and Optimization 5, 1
(1979), 231–252.

[54] Primbs, J. A., and Nevistić, V. Feasibility and stability of constrained
finite receding horizon control. Automatica 36, 7 (2000), 965–971.

[55] Qin, S. J., and Badgwell, T. A. An overview of industrial model
predictive control technology. AIChE Symposium Series 93, 316 (1997),
232–256.

[56] Qin, S. J., and Badgwell, T. A. A survey of industrial model predictive
control technology. Control engineering practice 11, 7 (2003), 733–764.

[57] Rawlings, J. B., and Mayne, D. Q. Model predictive control: Theory
and design. Nob Hill Pub., 2009.

[58] Robinson, S. M. Perturbed Kuhn-Tucker points and rates of convergence
for a class of nonlinear-programming algorithms. Mathematical Programming
7, 1 (1974), 1–16.

[59] Schwarz, H., and Köckler, N. Numerische Mathematik. Lehrbuch
Mathematik. B.G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden
(GWV), 2006.

[60] Shamma, J. S., and Xiong, D. Linear nonquadratic optimal control.
Automatic Control, IEEE Transactions on 42, 6 (1997), 875–879.

[61] Sontag, E. D. Clocks and insensitivity to small measurement errors.
ESAIM: Control, Optimisation and Calculus of Variations 4 (1999), 537–
557.

[62] Spellucci, P. Numerische Verfahren der nichtlinearen Optimierung. ISNM
Lehrbuch. Birkhäuser, 1993.

[63] Suardi, A., Longo, S., Kerrigan, E. C., and Constantinides, G. A.
Energy-aware MPC co-design for DC-DC converters. In 2013 European
Control Conference (ECC) (2013), IEEE, pp. 3608–3613.

[64] Sun, W., and Yuan, Y. Optimization Theory and Methods: Nonlinear
Programming. Springer Optimization and Its Applications. Springer, 2006.

[65] Tuna, S. E., Messina, M. J., and Teel, A. R. Shorter horizons for
model predictive control. In Proceedings of the American Control Conference,
Minneapolis, Minnesota, USA (2006), pp. 863–868.

[66] Worthmann, K. Stability Analysis of Unconstrained Receding Horizon
Control Schemes. PhD thesis, University of Bayreuth, 2011.

[67] Wright, S. J. Applying new optimization algorithms to model predictive
control. In Chemical Process Control-V, AIChE Symposium Series No. 316,
vol. 93. CACHE Publications, 1997, pp. 147–155.

[68] Würth, L., Hannemann, R., and Marquardt, W. Neighboring-
extremal updates for nonlinear model-predictive control and dynamic real-
time optimization. Journal of Process Control 19, 8 (2009), 1277–1288.

117

Bibliography

[69] Yang, X., and Biegler, L. T. Advanced-multi-step nonlinear model
predictive control. Journal of Process Control 23, 8 (2013), 1116–1128.

[70] Zavala, V. M., and Biegler, L. T. The advanced-step NMPC controller:
Optimality, stability and robustness. Automatica 45, 1 (2009), 86–93.

118

Ehrenwörtliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die von mir vorgelegte Dissertation
mit dem Thema

"Robust Updated MPC Schemes"

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt habe. Zudem erkläre ich, dass

• ich diese Arbeit in gleicher oder ähnlicher Form noch keiner anderen
Prüfungsbehörde vorgelegt habe und

• Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern oder ähn-
lichen Dienstleistern weder in Anspruch genommen wurde noch künftig in
Anspruch genommen wird.

Bayreuth, den 23. Februar 2015 .
Vryan Gil Palma

119

	Abstract (English/Deutsch)
	Acronyms
	Introduction
	MPC setting and preliminaries
	Setting
	Basic definitions and theorems
	MPC algorithms

	MPC stability and performance
	Nominal stability and performance
	Perturbed systems, robust stability and performance

	Benefits of re-optimization on finite horizon OCPs
	Control algorithms for finite horizon OCPs
	Nominal and perturbed trajectories
	Re-optimizing versus not re-optimizing
	Improvement due to re-optimization
	Numerical example: a linear quadratic problem

	Multistep and updated multistep MPC schemes
	Properties due to perturbations and re-optimizations
	Estimates involving VN(xm,m,0) and VN(xm,m,m)
	Estimates involving uniform continuity
	Counterpart of Proposition 2.1.7

	The perturbed versions of P
	Asymptotic stability and performance
	Numerical example: inverted pendulum

	NLP and sensitivity analysis
	Basic definitions and theorems
	Unconstrained optimization
	Optimization methods requiring derivatives
	Constrained optimization and SQP
	Equality constrained optimization problems
	Inequality constrained optimization problems
	Active-set sequential quadratic programming

	Sensitivity analysis

	Sensitivity-based multistep MPC
	Design of the scheme
	MPC OCP as a parametric NLP
	Resulting matrix structures
	Solving PN(p) by the active-set SQP strategy
	Incorporating sensitivity updates to the m-step MPC algorithm
	Computing sensitivities and exploiting matrix structures

	Changes in active constraints set
	Stability and performance analysis of SBM MPC

	Numerical examples
	Case study: inverted pendulum
	Case study: DC-DC converter
	Design of the controller
	Discretization
	MPC problem formulation
	Matrix structures
	Implementing m-step and SBM MPC
	Numerical results

	Bibliography

