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Abstract— In model predictive control (MPC), an optimiza-
tion problem is solved every sampling instant to determine an
optimal control for a physical system. We aim to accelerate
this procedure for fast systems applications and address the
challenge of implementing the resulting MPC scheme on an
embedded system with limited computing power. We present the
sensitivity-based multistep MPC, a strategy which considerably
reduces the computing requirements in terms of floating point
operations (FLOPs), compared to a standard MPC formula-
tion, while fulfilling closed-loop performance expectations. We
illustrate by applying the method to a DC-DC converter model
and show how a designer can optimally trade off closed-loop
performance considerations with computing requirements in
order to fit the controller into a tightly constraint embedded
system.

I. INTRODUCTION
Over the recent decades, MPC has garnered increased

attention as it has proven to be an important tool in control of
nonlinear systems in modern technological applications. The
optimization problem needed to be solved at each time step
results in a high computational expense and computational
latency. Computationally costly MPC algorithms used to
be implemented using highly powerful computing systems
(i.e. server, desktop, industrial PCs) in order to meet real-
time requirements. Nowadays, researchers are addressing the
challenge to make MPC algorithms less computationally
demanding without sacrificing the control performance to
cater to systems with fast dynamics.

Fast schemes range from the off-line low-complexity ex-
plicit MPC [1] to the on-line strategies (see, e.g., [5], [21]). In
addition, further reduction of the computational complexity
can be achieved using strategies that uses obtained controls
for extended period of time. For instance, the move blocking
strategy [4] fixes the control inputs as constant over several
time steps while the multistep MPC (see, e.g., [8]) uses
an open-loop control for several time steps thus reducing
the number of optimizations performed. However, these ap-
proaches come with the diasadvantage of reduced robustness
of the closed-loop solution against perturbations.

An updated multistep MPC is introduced in [10] where
an update strategy to the multistep MPC based on re-
optimizations on shrinking horizons is proposed and ana-
lyzed giving a straightforward approach to provide a coping
mechanism to counteract the perturbations and enhance con-
troller performance. Robust performance improvements due
to re-optimization are rigorously quantified in [10]. Now in
this paper, we consider the sensitivity-based multistep MPC
which is a particular MPC variant that allows further savings
in terms of computational load that uses sensitivity analysis
in a specific way (see [16] and compare with other MPC
strategies that also use sensitivity approach, e.g., [23], [22]
and [17].) We show that this sensitivity-based control is
a linear approximation of the re-optimization-based control
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and therefore, the analysis of the updated multistep MPC
carries over to the sensitivity-based multistep MPC.

Along with the development of sophisticated algorithms,
digital electronics have advanced during the last years.
Nowadays, modern embedded systems feature high numeri-
cal computing power (e.g. 1GFlops for each core on an ARM
Cortex-A9) with low power consumption (<1Watt) and
cost ($). This allows the implementation of computationally
heavy control schemes for fast dynamical systems at low
cost. This provides high performance control techniques to
new application domains demanding tight real-time require-
ments. Still, for a fixed price and/or size of an embedded
hardware, which determine/s its capability and limitation, a
researcher-designer faces yet a trade-off decision between
low computing cost and high performance.

The paper aims to present an MPC controller that fulfills
both control performance and low computing complexity
requirements and highlight its potential for controller design
on embedded computing systems. Based on the setting
and basic concepts in Section II, we present various MPC
algorithms in Section III. As a case study, the MPC schemes
are tested to control a DC-DC converter in Section IV. We
show not only is the sensitivity-based control a less costly
alternative to re-optimization, we also show how matrix
structures can be exploited to obtain the sensitivities much
more efficiently. Numerical results and a trade-off analysis
on cost and performance are presented in Section V.

II. PRELIMINARY SETUP
Consider the nonlinear discrete time control system

x(k + 1) = f(x(k), u(k)) (1)

where x is the state and u is the control value. The state space
X and the control space U are vector spaces and for a given
state constraint set X and control constraint sets U, x ∈ X
we require x ∈ X ⊆ X and u ∈ U(x) ⊆ U . Let the notation
xu(·, x0) (or briefly xu(·)) denote the state trajectory steered
by control sequence u(·) having initial state x0. We refer to
(1) as the nominal system.

Given a time-dependent feedback law µ : X×N→ U, we
obtain the feedback-controlled system

x(k + 1) = f(x(k), µ(x(k̃), k)) (2)

where the state at time instant k + 1 relies on the state at
k and the feedback depending on a certain state at k̃ ≤ k,
where the feedback plays the role of a control for the system.
We refer to (2) as the nominal closed-loop system.

The following problem motivates the synthesis of the MPC
scheme: find an optimal control in feedback form for the
infinite horizon optimal control problem (OCP)

min
u(·)∈U∞(x0)

J∞ (x0, u(·))
where the objective function is given by

J∞ (x0, u(·)) :=

∞∑
k=0

` (xu(k, x0), u(k))

which is an infinite sum of stage costs ` : X × U → R+
0

along the trajectory with initial value x0 driven by the



control sequence u(·) ∈ U∞(x0). This type of objective
function is often related to feedback stabilization problems,
see, e.g., [11], [19]. The objective is minimized over all
infinite admissible control sequences u(·) ∈ U∞(x0). Let
the optimal value function be given by

V∞(x0) := inf
u(·)∈U∞(x0)

J∞ (x0, u)

and the infinite horizon closed-loop performance of a given
time-dependent feedback µ be given by

J cl
∞(x0, µ) :=

∞∑
k=0

`
(
xµ(k, x0), µ(xµ(k̃, x0), k)

)
which is the infinite sum of costs along the trajectory driven
by the feedback law. Given an initial state, we aim to find a
feedback law µ such that J cl

∞(x0, µ) = V∞(x0).
In the general nonlinear setting, however, directly solving

this problem is typically difficult. For this reason, we cir-
cumvent this problem by considering instead the following
finite-horizon minimization problem

min
u(·)∈UN (x0)

JN (x0, u(·)) PN (x0)

for an objective function

JN (x0, u(·)) :=

N−1∑
k=0

` (xu(k, x0), u(k))

representing a cost associated with an initial state x0, a con-
trol sequence u(·) and optimization horizon N . We minimize
over all finite control sequences u(·) ∈ UN (x0) with N
elements. We define the optimal value function associated
with the initial state value x0 by

VN (x0) := inf
u(·)∈UN (x0)

JN (x0, u(·))
In our discussion, we assume there exists a control sequence
u∗(·) ∈ UN (x0) for which VN (x0) = JN (x0, u

∗(·)) where
u∗(·) is called the optimal control sequence.

III. MPC ALGORITHMS
To form the feedback law µ, we consider the following

receding horizon strategies:
Algorithm 3.1: (Multistep or m-step MPC)

(1) Measure the state x(k) ∈ X of the system at time
instant k

(2) Set x0 := x(k) and solve the finite horizon problem
PN (x0). Let u∗(·) ∈ UN (x0) denote the optimal
control sequence and define the time-dependent m-step
MPC feedback

µN,m(x(k), k+ j) := u∗(j), j = 0, . . . ,m− 1 (3)

(3) Apply the control values µN,m(x(k), k + j), j =
0, . . . ,m− 1, to the system, set k := k+m and go to
(1)

If m = 1, we recover the standard MPC scheme and by
increasing m, optimization is performed less often resulting
in a lower computational cost. Algorithm 3.1 gives rise to
a feedback law µN,m which, under appropriate conditions
(see, e.g., [8] or [10]), gives a suboptimal solution to the in-
finite horizon problem and renders the system asymptotically
stable.

We may also consider the updated multistep feedback
MPC which, similar to the standard MPC, entails performing
optimization every time step, but unlike the standard MPC
wherein we perform optimization over full horizon N , we
re-optimize over shrinking horizons.

Algorithm 3.2: (Updated m-step MPC)
(1) Measure the state x(k) ∈ X of the system at time

instant k

(2) Set j := k−bkcm where bkcm denotes the largest inte-
ger multiple of m less than or equal to k, xj := x(k)
and solve the finite horizon problem PN−j(xj). Let
u∗(·) ∈ UN (x0) denote the optimal control sequence
and define the updated MPC feedback

µ̂N,m(x(k), k) := u∗(0) (4)

(3) Apply the control value µ̂N,m(x(k), k) to the system,
set k := k + 1 and go to (1)

Remark 3.3: In the nominal setting, due to the dynamic
programming principle [2], the feedback-controlled systems
(2) generated by µN,m(x(k), k) and µ̂N,m(x(k), k), respec-
tively, coincide. Hence, comparison of both schemes will
only be meaningful in the perturbed setting.

We consider the evolution described by the perturbed
closed-loop system

x̃µ(k + 1) = f(x̃µ(k), µ(x̃µ(k̃), k)) + d(k)

where d(k) represents external perturbations. The presence
of disturbance acting on the system brings adverse ef-
fects on the performance of Algorithm 3.1 since the mea-
sured states, in general, deviate from the predicted states
xµN,m

(j, x0), j = 1, . . . ,m−1 since the controller is not able
to counteract this deviation for an extended time duration.
The use of Algorithm 3.2 addresses this issue as the updates
serve as coping mechanism against the perturbations.

It is shown in [10] that the worsening of the suboptimality
performance caused by the perturbations is less prominent
when using Algorithm 3.2 compared to the nonupdated case
in Algorithm 3.1. Furthermore, a significant improvement in
suboptimality performance and stability brought about by the
updates through re-optimization becomes more pronounced
for systems that are unstable and controllable even for
larger perturbations. We refer the readers to [10] for the
technical details of the comparison between the m-step and
the updated m-step MPC schemes.

Compared to standard MPC, the optimal control problems
on shrinking horizon needed for the updates are faster to
solve than the optimal control problems on full horizon.
However, even if costs are gradually reduced at each step
via Algorithm 3.2, optimization still nevertheless needs to be
carried out at each iteration. To further save costs, for small
perturbations, the updates may also be replaced by approx-
imative updates in which re-optimizations are approximated
through sensitivity approach.

Remark 3.3 implies that in the nominal setting, by per-
forming the re-optimization on a shrunken horizon using the
current state of the system as the initial value, we recover, as
a solution, a tail of the optimal solution obtained from full
horizon optimization. The current measured state coincides
with the predicted state generated by the full horizon optimal
control. In the perturbed setting, using the updated m-step
MPC, the current measured state we use as the initial value
in the re-optimization on a shrunken horizon can be viewed
as perturbation of the predicted value that would have been
the initial value had there been no perturbations.

This setting allows for an alternative to re-optimization
through the use of sensitivity analysis. This enables the
approximation of the solution of the updated m-step MPC
with the avoidance of solving all optimization problems on
shrunken horizon and hence reducing computational cost. We
now consider the MPC variant called sensitivity-based m-
step MPC (SBM MPC) [16] (based on the sensitivity the-
orem of Fiacco [6], motivated by sensitivity-based strategies
in [3], [13], [18], [23], [22]) for which the only optimizations
performed are full-horizon optimizations done only every m
steps.



Algorithm 3.4: (SBM MPC)
. Assume for the initial time k, k is a multiple of m.

(1) measure the state x(k) ∈ X of the system at time
instant k

(2) set j := k − bkcm, xmj := x(k).
• If j = 0, solve PN (xm0 ). Store u∗0, . . . , u

∗
N−1

and x∗0, . . . , x
∗
N representing the optimal control

sequence and the optimal trajectory, respectively.
• Define the time-dependent MPC feedback

µN,m(x(k), k) := u∗j +
∂uj
∂pj

(x∗j )(x
m
j − x∗j ) (5)

(3) apply the control values µN,m(x(k), k) to the system,
set k := k + 1 and go to (1)

In using Algorithm 3.4, we first apply the obtained u∗0 and
then we apply corrections on u∗1, u

∗
2, . . . , u

∗
m−1. Hence, at

time instants 1, 2, . . . ,m− 1, instead of optimizing again
(i.e., using SQP active-set strategy) as in the standard MPC,
or instead of re-optimizing using shrinking horizons as in the
updated m-step MPC, in the hopes of reducing the operation
costs, we compute the sensitivities

∂u1
∂p1

(x∗1),
∂u2
∂p2

(x∗2), . . . ,
∂um−1
∂pm−1

(x∗m−1)

from appropriate linear systems to detailed shortly and use
them as corrective updates.

Observe that at j = 0, xm
0 = x∗0, thus the corrective

term ∂uj

∂pj
(x∗j )(x

m
j −x∗j ) vanishes, i.e., no update is performed

during the first iteration.
Note that the problem PN (xm0 ) includes an initial con-

dition constraint x0 = xm0 . Now for j = 1, . . . , N − 1,
the tail u∗j , . . . , u

∗
N−1 gives the optimal control sequence

for PN−j(x∗j ) which includes an initial condition con-
straint xj = x∗j . Let us consider the general problem
PN−j(pj), j = 0, . . . , N − 1 which includes an initial
condition constraint xj = pj and let the parameter pj take the
value of measured state xm

j . Taking PN−j(xm
j ), let us denote

the resulting optimal control sequence as u∗j,0, . . . , u
∗
j,N−j−1.

Then for j = 1, . . . , N−1, the already available information
u∗j from the nominal solution of the problem PN−j(x∗j ) and

the sensitivity differentials
∂uj
∂pj

(x∗j ) provide u∗j,0, i.e., the

first element of the optimal control sequence of the perturbed
problem PN−j(xm

j ) through

u∗j,0 = u∗j +
∂uj
∂pj

(x∗j )(x
m
j − x∗j ) +O

(
‖xm

j − x∗j‖2
)

(6)

j = 0, . . . ,m − 1. From this we observe that the feedback
µN,m(x(k), k) defined in (5) is a first-order approximation
of µ̂N,m(x(k), k) defined in (4) with an error having an order
of magnitude of at most ‖xm

j − x∗j‖2.
The analysis on the suboptimality performance and stabil-

ity of the updated m-step MPC carries over to the SBM MPC
as presented in great details in [15, Section 6.3] showing
that the enhanced robustness induced by performing the
shrinking horizon updates (reported in [10]), under certain
assumptions, is well-approximated by the sensitivity-based
updates.

IV. CASE STUDY: DC-DC CONVERTER
We apply MPC in an electronic circuit process setting. We

implement the m-step MPC for a DC-DC converter model
motivated by the goal of saving computational costs. We
examine a system under perturbation and address the deteri-
oration of performance due to the perturbation by introducing

sensitivity-based updates on the controller through the SBM
MPC.

A synchronous step-down converter, also referred to as
a DC-DC converter, (see modeling in [20] and [7]) is a
switching electronic circuit (Figure 1) that converts an input
voltage level Vs to satisfy a desired voltage requirement Vo.
The setup is comprised of two switches SW1 and SW2
cascaded by a second order LC low-pass filter and by an
output ohmic load r0 along with the capacitor C and inductor
L internal ESR (rc) and (rl).

+
−Vs

SW1 L rl

SW2

C

rc

ro

il
→

VO

+

−

Fig. 1. a DC-DC converter

In this setting, feedback control is used in order to stabilize
the output voltage with respect to load, input voltage and
component variations. At each switching period TSW , the
output voltage and the current flowing in the inductor il
are measured and used to control the opening and closing
time of the two switches. When SW1 is closed (i.e., at time
d(t) · TSW , where d(t) ∈ [0, 1] is the duty cycle), SW2
is opened and the input power is transferred to the output
through the inductor. For the remaining time (1−d(t)) ·TSW
of the switching period, the status of the switch are swapped
providing a path for the inductor current il. This procedure
is then repeated.

The described process leads to a set of affine time-invariant
continuous-time state-space equations representing the two
operating conditions. Defining the state vector as x(t) :=
[il(t), Vo(t)]

>, the system behavior is modeled by

ẋ(t) =


Acx(t) + bc, kTs ≤ t ≤ (k + d(t))Ts

(SW1 is closed)
Acx(t), (k + d(t))Ts ≤ t ≤ (k + 1)Ts

(SW2 is closed)
(7)

with output voltage given by Vo(t) := cTc x(t) and Ac, bc and
cc given by

Ac :=

[ − rlL − 1
L

1
C

ro
ro+rc

(
1− Crc rlL

)
− 1
C

1
ro+rc

(
1 + Crc

ro
L

) ]
bc :=

[
1
L

ro
ro+rc

C
L

]
, cc := [0 1]>

As reported in [20], this hybrid model may not be suitable
for control purposes. To address this, a standard state-
space averaging method [14] is used resulting in an average
continuous-time model that merges the laws of the hybrid
model and uses the duty cycle d(t) as an input variable. This
gives a nonlinear mathematical model to which linearization
around an operating point can be carried out for further
simplification of the controller design. This then leads to
the state-space average model of the step-down converter
(7) given by

ẋ(t) = Acx(t) + bc · d(t)
Vo(t) = cTc x(t)

(8)

which is a linear system for which the states can be measured
straightforwardly. Here, the input is the duty cycle d(t) and



the output is the output voltage Vo(t). In addition, constraints
arise from the converter topology, e.g., the duty cycle has
to be between 0 and 1, and for safety reasons, the inductor
current il be less than its saturation value ilmax. This therefore
implies the need for a controller design that can handle
constraints.

A. Design of the controller
We consider the continuous-time finite horizon LQ prob-

lem defined by the cost function

Jc = x(T )>Pcx(T ) (9)

+

∫ T

0

[
x(t)
u(t)

]> [
Qc 0
0 Rc

] [
x(t)
u(t)

]
dt

where Qc = I and Rc = 1 have been arbitrarily chosen, Pc
is the solution of continuous Ricatti equation and T = 40 µs
is the prediction horizon. We assume zero-order hold. The
function (9) represents the nominal closed-loop performance
of the continuous-time model (8).

B. Discretization
We discretize the continuous-time model (8) and the

continuous weighting matrices
[
Qc 0
0 Rc

]
in (9) using the

sample time Ts and zero-order hold approximation on the
input. Let uk denote the discrete domain counterpart of the
input d(t) in (8). Due to sampling, (8) is transformed into

xk+1 = Axk + buk

where A := eAcTs , b :=
(∫ Ts

0
eAcτdτ

)
bc and uk is a con-

stant control between sampling instants. The corresponding
sampled-data cost function is given by

JTs
= x>NPxN +

N−1∑
k=0

[
xk
uk

]> [
Q M
M> R

] [
xk
uk

]
where N = dT/Tse is the number of samples for the
prediction horizon T .

C. MPC problem formulation
The MPC problem is defined by the core optimization

problem solved at each time instant given by

min
xk,uk

x>NPxN +

N−1∑
k=0

[
xk
uk

]> [
Q M
M> R

] [
xk
uk

]
s.t. x0 = [α, β]>

xj+1 = Axj + buj
[0, 0]> ≤ xj+1 ≤ [ilmax, Vs]

>

0 ≤ uj ≤ 1
j = 0, 1, . . . , N − 1

(10)

We gauge the performance of the algorithm through the
closed-loop cost function

Jcl = x>NT
PxNT

(11)

+

NT−1∑
k=0

[
xk

µ(xk)

]> [
Q M
M> R

] [
xk

µ(xk)

]
for simulation time NT = dTT /Tse where TT is the
simulation time and µ is the MPC feedback (namely, µN,m
and µN,m.)

D. Matrix structures
Defining the optimization variable

z :=
[
x
(1)
0 x

(2)
0 u0 | x(1)1 x

(2)
1 u1 | x(1)2 x

(2)
2 u2 | . . .

. . . | x(1)N−1 x
(2)
N−1 uN−1 | x

(1)
N x

(2)
N

]>
the objective function has the form min

z

1

2
z>Hz where H

is block diagonal with N blocks of
[

Q M
M> R

]
and a

block of P . The equality constraints composed of 2 ·(N+1)
equations can be written as

I2
−A −B I2

. . .
−A −B I2

 z =


α
β
0
...
0


which is of the form Ceqz = deq. The inequality constraints
giving (2 + 1) · 2 ·N inequalities can be written as

0 0 1
1

. . .
1

0 0 −1
−1

. . .
−1


z +



0
uub

x
(1)
ub
x
(2)
ub
...
uub

x
(1)
ub
x
(2)
ub


≥ 0

which we can write in the form Cz ≤ d.
This shows that the problem (10) can be written in the

form
min
z

1

2
z>Hz (12)

s.t. Ceqz − deq = 0

−Cz + d ≥ 0

which is a QP wherein the constant matrix H happens to
be the exact Hessian of the Lagrangian function of (10).
Solving the optimization problem (12) is straightforward
using quadprog in Matlab where active-set method can
be chosen to solve the problem.

E. Implementing m-step and SBM MPC
For the standard MPC, at each time instant, we solve the

problem (10) (or equivalently (12)) i.e., solve for the optimal
solution z∗ wherein we obtain the open-loop optimal control
u∗. We apply u∗0 to the system and generate the next state.
For the next time instant, the current state is measured and
assigned as x0 in (10). Then the process is repeated.

To reduce further the computational cost, we can use the
m-step MPC in which we use the first m elements of the
optimal control sequence u∗.

Since longer control horizon may reduce robustness due
to external perturbations, a remedy for this issue is incorpo-
rating a sensitivity strategy through the SBM MPC wherein
updates are performed on the entries of the m-step feedback
before being injected to the system to generate the next
state and the process is repeated to the remaining succeeding
entries of the m-step feedback before finally performing the
next optimization solving the next NLP problem at time
m. In using SBM algorithm, we first apply the obtained
u∗0 and instead of optimizing again at time instants j =



1, 2, . . . ,m− 1, we apply corrections on u∗1, u
∗
2, . . . , u

∗
m−1

using the sensitivity-based update rule (5). It is at the time
instant m, where we solve an optimization problem again.

To solve the required updating/correcting sensitivities, we
need to construct and solve the systems

[
∇2

zjzjL
j(zj

∗
, η∗, xj

∗) ∇zjCAj (zj
∗
, xj
∗)

∇zjCAj (zj
∗
, xj
∗)> 0

]
∂zj

∂pj
(x∗j )

∂ηAj

∂pj
(x∗j )


= −

[
∇2
zjpj
Lj(zj∗, η∗, xj∗)>

∇pjCAj (zj
∗
, xj
∗)>

]
(13)

for j = 1, . . . ,m−1. Consequently, by computing the sensi-

tivities
∂zj

∂pj
(x∗j ), j = 1, . . . ,m− 1, we obtain

∂uj

∂pj
(x∗j ), j =

1, . . . ,m − 1. If we denote the problem formulation (10)
(or (12)) by PN (p0) where p0 = [α, β]>, computing the

sensitivities
∂uj

∂pj
(x∗j ), j = 1, . . . ,m − 1 by (13) requires

solving a sequence of systems for j = 1, . . . ,m − 1
corresponding to the OCPs PN−j(pj) of decreasing horizon
and adjusting parametric value.

It is worth mentioning that in this formulation, due to the
nice structure of the matrices resulting from the OCP (10)
(i.e., the involved Hessian and Jacobian matrices), adding
the fact that these resulting matrices are constant matrices,
the sequence of systems (13) can easily and immediately be
constructed.

The exact Hessian ∇2
zjzjLj(zj

∗
, η∗, x∗j ) of the Lagrangian

function of PN−j(pj) evaluated at pj = x∗j has the same
form but smaller in size as H (i.e., the corresponding
Hessian for PN (p0) with p0 = [α, β]>). It has N − j

blocks of
[

Q M
M> R

]
and a block of P . The subma-

trix ∇zjCAj (zj
∗
, x∗j )

> denoting the Jacobian of the active
constraints are obtained appropriately from the active con-
straints of PN (p0) with p0 = [α, β]>. This shows that the
coefficient matrix of the linear system corresponding to the
OCP PN−j(pj) at pj = x∗j can be constructed through the
submatrices of the coefficient matrix solved for PN (p0) at
p0 = [α, β]> which is already available. Finally, the right-
hand side is a zero matrix except for the identity I2 appearing
in ∇pjCAj (zj

∗
, xj
∗)> corresponding to xj − pj .

V. CASE STUDY NUMERICAL RESULTS

We consider a low-power (2 Watt) step-down converter
setup with the following design parameters: Vs = 6 V, rl =
15.5 mΩ, Vo = 1 V, ilmax = 4 A, ro = 500 mΩ, C = 68
µF, L = 1.5 µH and rc = 1.5 mΩ.

We formulate different m-step and SBM MPC controllers
by varying the sampling frequency fs ∈ [300kHz, 400kHz]
(where fs := 1/Ts) and the number of steps m ∈
{1, 2, ...10, 11}. Closed-loop simulations are performed in
Matlab in order to measure the controller closed-loop perfor-
mance and the required computing power in terms of FLOPs.

A. Closed-loop performance
For each m-step or SBM MPC scheme, we perform 103

simulations of the plant evolution of different initial values
(using a set of random and uniformly distributed feasible
initial state values) and evaluate the closed-loop function
(11). These values are then averaged and assigned to the
scheme.

Figure 2 shows the trend of the performance of the al-
gorithm along increasing sampling frequency fs for varying
multistep m both for m-step and SBM MPC. The scheme
with m = 1 gives the standard MPC where we solve an
OCP at every sampling instant. As expected, this gives the
best performance where the feedback is able to react to the
disturbance at each time step. Also shown is that higher
sampling frequency yields better closed-loop performance
since faster reaction implies faster disturbance rejection.

Furthermore, the closed-loop performance worsens upon
using higher value of m (in solid lines). This is as expected
since the system runs in open loop for a longer time causing
further propagation of the deviation between the measured
and the predicted states. However, improvement is achieved
through the use of the sensitivity updates. Unlike the m-step
feedback law, SBM MPC uses the perturbation magnitude
and the sensitivity information to allow the controller to react
to this measured and predicted state deviation. As seen in
Figure 2 (in dashed lines), the performance profiles get closer
to that of the standard MPC although it is not clear which
of the SBM schemes performs the best.
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Fig. 2. Performance Jcl for varying sampling frequency fs. The symbol
m stands for the number of steps of the m-step MPC while sm for the
SBM MPC.

B. Computing Power
Figure 3 shows the trend in the amount of FLOPs of the

algorithm along increasing sampling frequency for varying
multistep m both for MF and SBM MPC. The standard MPC
(m = 1) requires the most number of iterations. The number
is divided by m as m increases and additional amount is
added if sensitivity updates are performed. Note that Figure 3
shows the worst-case scenario FLOPs requirement, i.e., with
maximum number of active inequality constraints. In the
reality, the number of active constraints is significantly much
less than the maximum possible. This means that the FLOPs
represented in the dashed lines must be significantly much
lower than those represented in the red plot. The SBM
MPC requires significantly less computing power compared
to standard MPC, but requires more compared to an m-
step approach when m > 1. In addition, by increasing the
sampling frequency fs, the measured FLOPs increase for any
controller. This is related to the discretization step (see Sec-
tion IV-B) in the sense that increasing fs means increasing
the prediction horizon N and therefore the problem size and
computational complexity.

C. Pareto Optimality Analysis
As shown in Figures 2 and 3, the closed-loop performance

and computing power requirements are strongly correlated:
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Fig. 3. FLOP for varying sampling frequency fs and various m-step MPC
and sm for the SBM MPC

(i) increasing the sampling frequency fs and decreasing the
number of multistep m lead to controllers with lower Jcl
(i.e., better closed-loop performance) and higher computing
power requirement; (ii) similarly, decreasing fs and using
higher multistep m yield controllers with worse closed-loop
performance and limited computing power. This results in
the design trade-off between closed-loop performance and
computing power. We analyze these trade-offs and present
them in terms of Pareto optimality and efficiency (for a single
point solution) or compromise solutions (see tutorial in [12]).
Figure 4 shows the Pareto frontier, thus the design trade-
off between closed-loop performance Jcl and computing
power in terms of FLOPs. On one extreme, the points in
red represent the m-step schemes with higher value of m
which we observe to be less computationally demanding
algorithms, while on the other extreme is the MPC scheme
with m = 1 which is the one with the highest computing
requirements but with the best closed-loop performance
(indicated by the lowest Jcl). Moreover, the points in blue
represent the SBM MPC schemes which we observe to be
the algorithms compromising a ’balance’ between the two
opposing objectives of having a good algorithm performance
and being computationally less demanding. This suggests a
great potential for the suitability of the scheme for embedded
systems with limited computing power.
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Fig. 4. A Pareto efficiency plot (solid circles and squares forming the
Pareto frontier) on a set of feasible options for m-step (red circles) and
SBM (blue squares) MPC

VI. CONCLUSION
The SBM MPC, viewed as a less costly approximation

of the updated m-step feedback MPC is examined and
implemented to control a DC-DC converter. Comparing
the standard MPC, m-step (m >1) MPC and SBM MPC
schemes, a trade-off analysis, essential for designing and
implementing controller on embedded system, is conducted.
SBM MPC maintains a compromise between fulfilling con-
trol performance and low computational cost requirements.
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