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Abstract— Input-to-State Stability (ISS) and the ISS-
Lyapunov function have proved to be useful tools for the
analysis and design of nonlinear systems in a variety of
contexts. Motivated by the fact that many feedback control
laws, such as model predictive control or event-based control,
lead to discontinuous discrete-time dynamics, we investigate
ISS-Lyapunov functions for such systems. ISS-Lyapunov func-
tions were originally introduced in a so-called implication-form
and, in many cases, this has been shown to be equivalent
to an ISS-Lyapunov function of dissipation-form. However, for
discontinuous dynamics, we demonstrate via an example that
this equivalence no longer holds. We therefore propose a
stronger implication-form ISS-Lyapunov which re-establishes
the equivalence to dissipation-form ISS-Lyapunov functions and
to the ISS property for discontinuous systems.

I. INTRODUCTION

The notion of input-to-state stability (ISS) was introduced
by Sontag in [20] in order to formalize a Lyapunov type
stability property of nonlinear systems taking into account
persisting inputs. Soon after its introduction it was recog-
nized as a versatile tool for analyzing stability properties
of nonlinear systems and it has become one of the most
influential concepts in nonlinear stability theory of the last
decades.

One of the most important features of ISS is that it can be
fully characterized by means of ISS-Lyapunov functions. To
this end, two different concepts of ISS-Lyapunov functions
have been extensively used in the literature: ISS-Lyapunov
functions in dissipation-form and in implication-form, see
Section II for the respective definitions. Both formulations
have their own advantages and are useful in different con-
texts, so it is indeed useful to have both formulations
available and to be able to switch from one concept to the
other, if necessary, e.g., in proofs.

For continuous-time systems [22] as well as for contin-
uous discrete-time systems [8] these two concepts of ISS-
Lyapunov functions are indeed fully equivalent. In this paper,
we consider discrete-time nonlinear systems given by

x+ = f(x,w) (1)
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where x ∈ Rn, w ∈ Rm, and f : Rn×Rm → Rn. We take as
inputs sequences with values in Rm and denote this space by
W . We denote solutions of (1) by φ : Z≥0×Rn×W → Rn.

Contrary to [8], in this paper we do not assume any conti-
nuity properties of the dynamics f(·, ·). This is motivated by
the use of discontinuous controllers u : Rn → U leading to
a discontinuous closed loop system x+ = g(x, u(x), w) =:
f(x,w) of the form (1), even if g(·, ·, ·) is a continuous map.
Among modern controller design techniques, optimization
based techniques like model predictive control (MPC) natu-
rally lead to discontinuous feedback laws and, in the presence
of state constraints, even the corresponding Lyapunov func-
tion is typically discontinuous, cf. [3], [19] or [5, Sections
8.5–8.9]. Similarly, quantized [18], [4] or event-based [2],
[17] feedback laws naturally lead to discontinuous closed
loop dynamics.

For discontinuous discrete-time dynamics, the equivalence
between the two types of ISS-Lyapunov functions fails to
hold as the existence of an implication-form ISS-Lyapunov
function may not imply the existence of a dissipation-form
ISS Lyapunov function, which we will demonstrate by a
simple example. It was already observed in [6] that additional
regularity properties are needed in order to conclude ISS
from the existence of an implication form Lyapunov function.
More generally, it is known that discontinuities may affect
the usual inherent robustness properties of, e.g., asymptotic
[11] or exponential stability [13].

In this paper we do not introduce additional regularity
properties in order to fix this problem. Rather, we pro-
pose a new “strong” definition of an implication-form ISS-
Lyapunov function which we will prove to be fully equivalent
to its dissipation-form counterpart but which will maintain
the general implication-form structure. Thus, in proofs it can
be used like conventional implication-form ISS-Lyapunov
functions which we demonstrate in this paper by deriving
results about nonlinear scalings of ISS-Lyapunov functions.
The construction relies on the idea of including a second
implication in the implication-form ISS-Lyapunov function
formulation. This idea is not entirely new. Conditions of
a similar form have appeared in [14], [15] for hybrid
systems and in [16, Formula (7)] for continuous discrete
time systems. However, in these references the conditions are
introduced as sufficient conditions while here we introduce
and systematically study a variant which yields a necessary
and sufficient ISS characterization. Moreover, in contrast to
some of these references we will not impose any continuity
assumptions.

The paper is organized as follows. In Section II we



recall the definitions of input-to-state stability (ISS) and ISS-
Lyapunov functions and discuss the relation between these
concepts for continuous and discontinuous dynamics. In Sec-
tion III we present and analyze our new strong implication-
form ISS-Lyapunov function. We show that the existence
of such a function is equivalent to the ISS property for
discontinuous systems and that any strong implication-form
ISS-Lyapunov function is a dissipation-form ISS-Lyapunov
function and vice versa. In Section IV we illustrate the
usefulness of this concept by proving two properties for
which our newly defined Lyapunov function concepts turns
out beneficial. Conclusions are presented in Section V and
proofs of the main results can be found in Section VI.

II. ISS AND ISS-LYAPUNOV FUNCTIONS

In the sequel, we will denote the class of continuous
positive definite functions ρ : R≥0 → R≥0 by P . We will
also make use of the standard function classes K, K∞, L,
and KL (see [7] or [10]).

Definition 2.1: The system (1) is input-to-state stable
(ISS) if there exist β ∈ KL, γ ∈ K such that

|φ(k, x, w)| ≤ max

{
β(|x|, k), sup

i∈Z[0,k−1]

γ(|w(i)|)

}
(2)

for all x ∈ Rn, w ∈ W , and k ∈ Z≥0.
One of the reasons for the success of the ISS notion is that

it is fully compatible with the concept of Lyapunov functions.
To this end, both in continuous and in discrete-time two types
of ISS-Lyapunov functions are used. The first is the so called
dissipation-form ISS-Lyapunov function.

Definition 2.2: A dissipation-form ISS-Lyapunov function
for (1) is a function V : Rn → R≥0 such that there exist
α1, α2, α ∈ K∞ and σ ∈ K so that, for all x ∈ Rn and
w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

V (f(x,w))− V (x) ≤ −α(|x|) + σ(|w|). (4)

The second type of ISS-Lyapunov function is the follow-
ing implication form.

Definition 2.3: An implication-form ISS-Lyapunov func-
tion for (1) is a function V : Rn → R≥0 such that there
exist α1, α2, α̂ ∈ K∞ and χ ∈ K so that, for all x ∈ Rn and
w ∈ Rm, (3) and

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −α̂(|x|) (5)

holds.
We observe that an implicit constraint in these definitions

is α(|x|) ≤ V (x) and α̂(|x|) ≤ V (x), respectively.
For continuous dynamics f it was shown in [8] that

the existence of either type of ISS-Lyapunov function is
equivalent to system (1) being ISS. An inspection of the
proofs in this reference reveals that only the proof for the
implication “existence of a dissipation-form ISS Lyapunov
function ⇒ system (1) is ISS” can be carried over to the
discontinuous case. We state this in the following lemma.

Lemma 2.4: [8, Lemma 3.5] If there exists a dissipation-
form ISS-Lyapunov function for (1) then the system is ISS.

The proof of the converse implication in [8] relies on the
fact that the existence of a dissipation-form ISS-Lyapunov
function is equivalent to the existence of an implication-
form ISS-Lyapunov function. While the following proposi-
tion shows that one implication of this equivalence remains
true in the discontinuous setting, the subsequent example
demonstrates that the opposite implication fails to hold.

Proposition 2.5: If V : Rn → R≥0 is a dissipation-form
ISS-Lyapunov function with α1, α2, α ∈ K∞ and σ ∈ K
then V is an implication-form ISS-Lyapunov function with
χ
.= α−1 ◦ 2σ ∈ K and α̂ = 1

2α ∈ K∞.
Proof: We rewrite (4) as

V (f(x,w))− V (x) ≤ −1
2
α(|x|)− 1

2
α(|x|) + σ(|w|).

Therefore, with χ .= α−1 ◦ 2σ ∈ K and α̂ .= 1
2α ∈ K∞ we

immediately see that

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −1
2
α(|x|).

�
Remark 2.6: We observe that we can trade off the de-

crease rate, α̂ and the input-dependent level set defined by
χ. In particular, for any α̂ ∈ K∞ and ϕ ∈ K∞ such that
α̂(s)+ϕ(s) ≤ α(s), for all s ∈ R≥0, we see that V satisfies
(5) with χ .= ϕ−1 ◦ σ.

The following example shows that the converse of Propo-
sition 2.5 does not hold in general.

Example 2.7: Consider the system

x+ = f(x,w) = ν(w)κ(x) (6)

where

κ(x) .=


0 , x = 0
1
|x| , |x| ∈ (0, 1)
1

2|x| , |x| ≥ 1
(7)

and

ν(w) .=

 0 , w = 0
1
2 |w|

2 , |w| ∈ (0, 1)
1 , |w| ≥ 1.

(8)

Take V (x) .= |x| so that both the upper and lower bounds of
(3) can be trivially taken as |x|. We observe that if |x| ≥ |w|
then for |x| ∈ (0, 1)

|f(x,w)| = |w|
2

2|x|
≤ |x|

2

2|x|
=
|x|
2

and for |x| ≥ 1

|f(x,w)| = ν(w)
1

2|x|
≤ 1

2|x|
≤ |x|

2
.

Therefore, with α(s) .= 1
2s we see that

|x| ≥ |w| ⇒ V (f(x,w))− V (x) ≤ −α(|x|).



However, it is straightforward to see that the system (6)
is not ISS. Take w ≡ 1 and any initial condition x ∈ (0, 1).
Then we see that

φ(2k + 1, x) = 22k 1
x
, ∀k ∈ Z≥0.

In other words, every other time step the solution increases
so that the ISS estimate (2) can never be satisfied.

According to Lemma 2.4, this implies that a dissipation-
form ISS-Lyapunov function cannot exist for (6). Hence, the
example also shows that the existence of an implication-form
ISS-Lyapunov function does not imply the existence of a
dissipation-form ISS-Lyapunov function.

Remark 2.8: We did not require continuity of V in any
of our definitions because this yields additional flexibility
in constructing V for discontinuous systems. Note, however,
that V in Example 2.7 is continuous, hence the gap between
ISS-Lyapunov functions in implication- and dissipation-form
is not due to possible discontinuities in V but only due to
the discontinuities in f .

III. THE STRONG IMPLICATION FORM ISS-LYAPUNOV
FUNCTION

As just demonstrated, in the discontinuous setting the
existence of an ISS-Lyapunov function in the implication
form (3), (5) does not imply ISS and is not equivalent to the
existence of an ISS-Lyapunov function in dissipation form
(3), (4). In this section, we propose the following stronger
alternative to the implication (5) which fixes these problems.

Definition 3.1: A strong implication-form ISS-Lyapunov
function for (1) is a function V : Rn → R≥0 such that there
exist functions α1, α2, α̂ ∈ K∞ and ϕ, χ ∈ K, so that, for
all x ∈ Rn and w ∈ Rm, V satisfies (3) and

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −α̂(|x|) (9)
|x| < χ(|w|) ⇒ V (f(x,w)) ≤ ϕ(|w|). (10)

This definition is motivated by the ISS Lyapunov functions
in implication form in continuous time, which will always
satisfy the second implication on time intervals on which w
is constant.

Before we turn to investigating the relation between
the strong implication-form ISS-Lyapunov function and the
notions introduced in the last section, we show a useful
rescaling property of strong implication-form ISS-Lyapunov
function (which in fact can be proved analogously also for
conventional implication-form ISS-Lyapunov functions).

To this end, we observe that a weaker form of (9) is
obtained when α̂ ∈ K∞ is replaced by a merely positive
definite function ρ̂ ∈ P such that

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −ρ̂(|x|). (11)

Conversely, (9) can be strengthened to requiring the existence
of λ̂ ∈ (0, 1) such that

|x| ≥ χ(|w|) ⇒ V (f(x,w)) ≤ λ̂V (x). (12)

Note that the latter implies exponential decay of k 7→
V (φ(k, x, 0)).

Theorem 3.2: The following are equivalent:
(i) There exists a ρ̂ ∈ P and a strong implication-form ISS-

Lyapunov function V satisfying (11) instead of (9);
(ii) There exists a strong implication-form ISS-Lyapunov

function V̂ ;
(iii) For any given λ̂ ∈ (0, 1) there exists a strong

implication-form ISS-Lyapunov function Ṽ satisfying
(12).

Moreover, for V satisfying (i) there exist ᾱ and α̃ ∈ K∞
such that V̂ in (ii) and Ṽ in (iii) can be written in the form
V̂ = ᾱ(V ) and Ṽ = α̃(V ).
The proof of this theorem can be found in Section VI-A.

The next theorem shows that the strong implication-form
ISS-Lyapunov function is equivalent to the dissipative-form
ISS-Lyapunov function (4). This then overcomes the gap
observed between the dissipative-form ISS-Lyapunov func-
tion and the conventional implication-form ISS-Lyapunov
function (5) when considering discontinuous systems and
ISS-Lyapunov functions.

Theorem 3.3: Let V : Rn → R≥0 be a function satisfying
(3) for α1, α2 ∈ K∞.

(i) If V together with functions α ∈ K∞ and σ ∈ K
satisfies (4) then V also satisfies (9) with α̂

.= α/2, χ .=
α−1 ◦ 2σ and satisfies (10) with ϕ

.= γ ◦ χ + σ, where
γ ∈ K∞ is arbitrary with γ ≥ α2 − α.

(ii) If V together with functions α̂ ∈ K∞ and χ, ϕ ∈ K
satisfies (9) and (10), then V also satisfies (4) with α

.=
min{α̂, α1} and σ = ϕ.

Proof: (i) We rewrite (4) as

V (f(x,w))− V (x) ≤ −1
2
α(|x|)− 1

2
α(|x|)

+σ(|w|).

Therefore, with χ .= α−1 ◦ 2σ ∈ K and α̂ .= 1
2α ∈ K∞ we

immediately see that

|x| ≥ χ(|w|)

⇒ V (f(x,w))− V (x) ≤ −1
2
α(|x|) = −α̂(|x|)

and

|x| < χ(|w|)
⇒ V (f(x,w)) ≤ V (x)− α(|x|) + σ(|w|)

≤ α2(|x|)− α(|x|) + σ(|w|)
≤ γ(|x|) + σ(|w|)
≤ γ(χ(|w|)) + σ(|w|)
= ϕ(|w|).

(ii) If |x| ≥ χ(|w|) then we get

V (f(x,w))− V (x) ≤ −α̂(|x|) ≤ −α(|x|) + σ(|w|).

In case |x| < χ(|w|), using (3) we obtain

V (f(x,w))−V (x) ≤ ϕ(|w|)−α1(|x|) ≤ −α(|x|)+σ(|w|).



�
Hence, the stronger implication form (9) is equivalent to

the dissipation form (4). This enables us to carry over the
proof of the equivalence between ISS and the existence of
a (strong implication-form) ISS-Lyapunov function to the
discontinuous setting. This leads to the following theorem
whose proof can be found in Section VI-B.

Theorem 3.4: System (1) is ISS if and only if there exists
a strong implication-form ISS-Lyapunov function in the
sense of Definition 3.1.

IV. TWO CONSEQUENCES

In this section we illustrate the usefulness of the newly in-
troduced strong implication-form ISS-Lyapunov function by
proving two immediate consequences from the new concept.
The first states that by nonlinear rescaling of a dissipation-
form ISS-Lyapunov function one can always obtain an expo-
nentially decaying dissipation-form ISS Lyapunov function.
This means that there exists λ ∈ (0, 1) such that the
inequality

V (f(x,w)) ≤ λV (x) + σ(|w|) (13)

holds for all x ∈ Rn and w ∈ Rm.
Before formulating the actual rescaling result, we first note

that we can prove a result similar to Theorem 3.3 for the
relationship between dissipative-form and strong implication-
form ISS Lyapunov functions when we have an exponential
decrease.

Theorem 4.1: Let V : Rn → R≥0 be a function satisfying
(3) for α1, α2 ∈ K∞.

(i) If V together with λ ∈ (0, 1) and σ ∈ K satisfies (13),
then V also satisfies (10) and (12) with λ̂ .= λ+ ε satisfying
λ+ ε < 1, χ .= α−1

1 ( 1
εσ), and ϕ .= λα2 ◦ χ+ σ.

(ii) If V together with λ̂ ∈ (0, 1), χ, ϕ ∈ K satisfies (10)
and (12), then V also satisfies (13) with λ .= λ̂ and σ .= ϕ.

Proof: (i) Since λ ∈ (0, 1) there exists ε > 0 such that
λ+ ε ∈ (0, 1). We may then rewrite (13) as

V (f(x,w)) ≤ (λ+ ε)V (x)− εV (x) + σ(|w|)
≤ λ̂V (x)− εα1(|x|) + σ(|w|)

which yields the implication (12). The implication (10)
follows from the upper bound on V and the condition
|x| < χ(|w|) as

V (f(x,w)) ≤ λα2(|x|) + σ(|w|) ≤ λα2 ◦ χ(|w|) + σ(|w|).

The proof of (ii) is immediate by inspection. �
The actual rescaling result is now formulated in the

following corollary.
Corollary 4.2: For any dissipation-form ISS-Lyapunov

function V : Rn → R≥0 and any λ ∈ (0, 1), there exists
a function α̃ ∈ K∞ such that Ṽ .= α̃ ◦ V : Rn → R≥0

is a dissipation-form ISS-Lyapunov function satisfying the
exponential decay inequality (13).
Proof: Theorem 3.3 implies that V is a strong implication-
form ISS-Lyapunov function. Theorem 3.2 then implies the
existence of α̃ ∈ K∞ such that α̃ ◦ V has the exponential
decrease (12) and thus Theorem 4.1(ii) implies (13). �

The second consequence of our setting is related to
conventional implication-form ISS-Lyapunov functions as
defined in Definition 2.2. As discussed after this definition,
it was already observed in [8] that the existence of such a
Lyapunov function implies ISS if the discrete-time dynamics
f and the Lyapunov function V are continuous.

Using the framework of strong implication-form ISS-
Lyapunov functions we can now show that continuity of f
is actually only needed in w = 0, in the following uniform
sense.

Definition 4.3: We say that f is continuous in w = 0
uniformly in x, if for each r > 0 there is γr ∈ K∞ such that
for all |x| ≤ r, |w| ≤ r the inequality

|f(x,w)− f(x, 0)| ≤ γr(|w|)

holds.
Moreover, we need continuity of V in x = 0. Since the
latter is a consequence of the bounds (3), only the continuity
condition on f is explicitly demanded in the following
proposition.

Proposition 4.4: Let V be a (conventional) implication-
form ISS-Lyapunov function for appropriate α1, α2, α̂ ∈ K∞
and χ ∈ K. Assume that f is continuous in w = 0 uniformly
in x in the sense of Definition 4.3. Then there exists ϕ ∈ K so
that V is a strong implication-form ISS-Lyapunov function
and thus also a dissipation-form ISS-Lyapunov function.
Proof: First, consider w ≡ 0. Then we observe that

|f(x, 0)| ≤ α−1
1 (V (f(x, 0))) ≤ α−1

1 (V (x)− α̂(|x|))
≤ α−1

1 (α2(|x|)− α̂(|x|)) . (14)

Since by (5) α̂(|x|) ≤ V (x) ≤ α2(|x|) for all x ∈ Rn, with
equality if and only if x = 0, the function α−1

1 (α2(s)−α̂(s))
is positive definite. Define γ̄ ∈ K∞ by

γ̄(s) .= max
{
s, α−1

1 (α2(s)− α̂(s))
}
, ∀s ∈ R≥0 (15)

so that
|f(x, 0)| ≤ γ̄(|x|), ∀x ∈ Rn. (16)

Now, if for all r > 0 we define

γ̂(r) .= sup{|f(x,w)− f(x, 0)| : |x| ≤ r, |w| ≤ r},

then for all r1 ≥ r we obtain γ̂(r) ≤ γr1(r) which implies
γ̂(r) → 0 as r → 0. Moreover, γ̂(r) is finite for all r > 0.
Hence, we may overbound γ̂ with a function γ ∈ K∞.

It is now sufficient to show that there exists ϕ ∈ K∞
such that the implication in (10) holds. To this end, let |x| <
χ(|w|). Then we have

|f(x,w)| = |f(x,w)− f(x, 0) + f(x, 0)|
≤ γ(max{|w|, χ(|w|)}) + γ̄(|x|)
≤ γ(max{|w|, χ(|w|)}) + γ̄(χ(|w|)) =: γ̃(|w|)

implying

V (f(x,w)) ≤ α2(|f(x,w)|) ≤ α2(γ̃(|w|)).

This shows the desired inequality with ϕ(r) .= α2(γ̃(|w|)).
�



We note that the map f(x,w) = ν(w)κ(x) in (6) of
Example 2.7 does not satisfy the required continuity property
of Proposition 4.4. To see this, we first observe that

|f(x,w)− f(x, 0)| = |f(x,w)|.

Choose r = 1 and any γ1 ∈ K∞. Then, with w = 1, we see
that

|f(x, 1)| = 1
|x|
, ∀x ∈ (−1, 1)\{0}

so that |f(x, 1)| > γ1(1) for some x ∈ (0, 1).

V. CONCLUSIONS

We have shown that the equivalence between ISS-
Lyapunov functions in dissipation-form and in implication-
form known for continuous time systems [22] and continuous
discrete-time systems [8] fails to hold for discrete-time
discontinuous systems. More precisely, for discontinuous
dynamics the implication-form ISS-Lyapunov function turns
out to be a weaker concept and does not necessarily guaran-
tee ISS.

As a remedy, we proposed a new “strong” implication-
form ISS-Lyapunov function. This fixes the problem be-
cause any strong implication-form ISS-Lyapunov function
is also a dissipation-form ISS-Lyapunov function and vice
versa. We demonstrated that the newly defined Lyapunov
function is useful for performing nonlinear scalings of ISS-
Lyapunov functions and for deriving weakened continuity
conditions under which the conventional implication-form
ISS-Lyapunov function guarantees ISS.

VI. PROOFS

A. Proof of Theorem 3.2

We observe that the implications (iii) ⇒ (ii) ⇒ (i) are
trivial. It thus suffices to prove the converse implications.

1) Positive Definite to K∞: (i)⇒ (ii): We start from an
ISS-Lyapunov function with a positive definite decrease rate;
i.e., V : Rn → R≥0, α1, α2 ∈ K∞, χ, ϕ ∈ K, and ρ ∈ P
satisfying (3) and (11).

For ρ ∈ P , [1, Lemma IV.1] ([10, Lemma 12]) yields
α ∈ K∞ and σ ∈ L so that

ρ(s) ≥ α(s)σ(s), ∀s ∈ R≥0. (17)

Using the bounds (3) we see that for all x ∈ Rn the
inequality |x| ≥ χ(|w|) implies

V (f(x,w))− V (x) ≤ −ρ(|x|)
≤ −α(|x|)σ(|x|)
≤ −α ◦ α−1

2 (V (x))σ ◦ α−1
1 (V (x))

= −ρ̂(V (x)) (18)

where ρ̂(s) .= α ◦ α−1
2 (s)σ ◦ α−1

1 (s) for all s ∈ R≥0 is
positive definite.

From here, we follow [9, Lemma 2.8]. Let ᾱ ∈ K∞ be
such that

ᾱ
(s

2

)
ρ̂(s) ≥ s, ∀s ≥ 1 (19)

and define α̂ ∈ K∞ by

α̂(s) .= s+
∫ s

0

ᾱ(r)dr, ∀s ∈ R≥0. (20)

We observe that α̂ ∈ K∞ and

α̂′(s) = 1 + ᾱ(s), ∀s ∈ R>0 (21)

so that α̂′ is strictly increasing.
Define V̂ (x) .= α̂(V (x)) for all x ∈ Rn and observe that

with the K∞ functions α̂1
.= +α̂ ◦ α1 and α̂2

.= α̂ ◦ α2 we
have

α̂1(|x|) ≤ V̂ (x) ≤ α̂2(|x|). (22)

Additionally, let ϕ̂ ∈ K be given by ϕ̂
.= α̂ ◦ ϕ so that

(10) implies, for |x| < χ(|w|),

V̂ (f(x,w)) = α̂(V (f(x,w))) ≤ α̂ ◦ ϕ(|w|) = ϕ̂(|w|).

To simplify the notation, we use V̂ + .= V̂ (f(x,w)), V̂ .=
V̂ (x), V + .= V (f(x,w)), and V

.= V (x). In what follows
we assume |x| ≥ χ(|w|).

Since α̂ is differentiable, the mean value theorem yields
the existence of θ ∈ (0, 1) so that

α̂(V +)− α̂(V ) = α̂′(V + + θ(V − V +))(V + − V ). (23)

Note that, as a consequence of (18), V + − V ≤ 0.
We first restrict attention to V ≥ 1 and consider two cases.

First, we assume V + ≤ V
2 and note that α̂′(s) ≥ 1 for all

s ∈ R≥0. Then

V̂ + − V̂ ≤ V + − V ≤ −V
2
. (24)

Now suppose that V + ≥ V
2 . In this case, using V −V + ≥

0 and (21), we have

α̂′(V + + θ(V − V +)) ≥ α̂′(V +)

≥ α̂′
(
V

2

)
> ᾱ

(
V

2

)
. (25)

Therefore, for V ≥ 1, using (25), (18), and (19) we obtain

V̂ + − V̂ ≤ ᾱ

(
V

2

)
(V + − V )

≤ −ᾱ
(
V

2

)
ρ̂(V ) ≤ −V. (26)

Combining (24) and (26) we see that, for V ≥ 1,

V̂ + − V̂ ≤ −V
2
. (27)

For V ≤ 1, we note that by definition (20) and (18) we
have

V̂ + − V̂ = V + +
∫ V +

0

ᾱ(r)dr − V −
∫ V

0

ᾱ(r)dr

≤ V + − V ≤ −ρ̂(V ). (28)

Take α̌ ∈ K∞ so that

α̌(s) ≤ ρ̂(s), s ∈ [0, 1]

α̌(s) ≤ s

2
, s ≥ 1.



Finally, let α ∈ K∞ be defined as α .= α̌ ◦ α1 so that

|x| ≥ χ(|w|) ⇒ V̂ (f(x,w))− V̂ (x) ≤ −α̌(V (x))
≤ −α̌ ◦ α1(|x|) = −α(|x|). (29)

2) K∞ to Exponential: (ii) ⇒ (iii): Since every K∞-
function is also positive definite, we can follow the first part
of the proof to conclude (22) and (29) which imply

|x| ≥ χ(|w|) ⇒ V̂ (f(x,w))− V̂ (x) ≤ −α(|x|)
≤ −α ◦ α̂−1

2 (V̂ (x)). (30)

Define µ ∈ K∞ by

µ(s) .= min
{
α ◦ α̂−1

2 (s),
s

2

}
(31)

and note that id− µ ∈ K∞ and

|x| ≥ χ(|w|) ⇒ V̂ (f(x,w)) ≤ V̂ (x)− µ(V̂ (x))

= (id− µ)(V̂ (x)). (32)

Select any λ ∈ (0, 1). Then [10, Corollary 1] yields µ̂ ∈ K∞
so that

µ̂ ◦ (id− µ)(s) = λµ̂(s), ∀s ∈ R≥0. (33)

Define Ṽ .= µ̂(V̂ ) and note that, with K∞ functions ᾱ1
.=

µ̂ ◦ α̂1 and ᾱ2
.= µ̂ ◦ α̂2,

ᾱ1(|x|) ≤ Ṽ (x) ≤ ᾱ2(|x|). (34)

Furthermore,

|x| ≥ χ(|w|) ⇒ Ṽ (f(x,w)) = µ̂(V̂ (f(x,w)))

≤ µ̂ ◦ (id− µ)(V̂ (x)) = λµ̂(V̂ (x))

= λṼ (x).

The form Ṽ = α̃(V ) follows by combining both parts of the
proof and setting α̃ = µ̂ ◦ α̂. Finally, we define ϕ̄ ∈ K by
ϕ̄
.= µ̂ ◦ ϕ̂ so that, for |x| < χ(|w|),

Ṽ (f(x,w)) = µ̂(V̂ (f(x,w))) ≤ µ̂◦ ϕ̂(|w|) = ϕ̄(|w|). (35)

�

B. Proof of Theorem 3.4

“Existence of strong implication-form V ⇒ ISS”:
This follows immediately from Theorem 3.3(ii) followed by
Lemma 2.4.

“ISS ⇒ Existence of strong implication-form V ”:
We show the existence of a Lyapunov function in exponential
form, i.e., satisfying (12) (implying (9)) and (10). Our
proof relies on a converse Lyapunov theorem for difference
inclusions. We denote the set of solutions to the difference
inclusion

x+ ∈ F (x), x ∈ Rn (36)

defined by the set-valued mapping F : Rn ⇒ Rn and from
an initial condition x ∈ Rn by S(x). A solution φ ∈ S(x)
is a function φ : Z≥0×Rn → Rn such that φ(0, x) = x and
φ(k + 1, x) ∈ F (φ(k, x)) for all k ∈ Z≥0.

Definition 6.1: The difference inclusion (36) is said to be
KL-stable if there exists β ∈ KL so that

|φ(k, x)| ≤ β(|x|, k), ∀x ∈ Rn, φ ∈ S(x), k ∈ Z≥0.
(37)

Theorem 6.2: If the difference inclusion (36) is KL-stable
then, for any given λ ∈ (0, 1) there exists an exponential-
decrease Lyapunov function; i.e., there exist functions V :
Rn → R≥0 and α1, α2 ∈ K∞ so that

α1(|x|) ≤ V (x) ≤ α2(|x|) (38)

V (φ(1, x)) ≤ λV (x) (39)

for all x ∈ Rn and φ(1, x) ∈ F (x).
Proof: The proof follows that of [12, Theorem 2.7] where,

here, we need not worry about regularity of the Lyapunov
function.

Given β ∈ KL and λ ∈ (0, 1), Sontag’s lemma on KL-
estimates [21, Proposition 7] yields α1, α2 ∈ K∞ so that

α1(β(s, k)) ≤ α2(s)λk, ∀s ∈ R≥0, k ∈ Z≥0. (40)

For all x ∈ Rn, define

V (x) .= sup
k∈Z≥0

sup
φ∈S(x)

α1(|φ(k, x)|)λ−k. (41)

Then

V (x) ≥ sup
φ∈S(x)

α1(|φ(0, x)|)λ0 = α1(|x|)

and

V (x) ≤ sup
k∈Z≥0

α1(β(|x|, k))λ−k

≤ sup
k∈Z≥0

α2(|x|)λkλ−k = α2(|x|)

so that V (x) satisfies the desired upper and lower bounds
(38). The desired decrease condition follows as

V (φ(1, x)) = sup
k∈Z≥0

sup
ψ∈S(φ(1,x))

α1(|ψ(k, φ(1, x))|)λ−k

≤ sup
k∈Z≥1

sup
φ∈S(x)

α1(|φ(k, x)|)λ−k+1

≤ sup
k∈Z≥0

sup
φ∈S(x)

α1(|φ(k, x)|)λ−k+1

= λV (x)

for all x ∈ Rn. �
In order to demonstrate that ISS implies the existence of

an ISS-Lyapunov function, we follow the standard argument
as in [22] and [8]. Denote the closed unit ball in Rm by Bm.
We show that there exists a µ ∈ K∞ such that the differential
inclusion defined by

x(k + 1) ∈ f(x(k), µ(|x(k)|)Bm) (42)

is KL-stable, allowing us to appeal to Theorem 6.2 to obtain
an ISS-Lyapunov function. We denote the solution set of (42)
from an initial condition x ∈ Rn by Sµ(x).

Proposition 6.3: [12, Proposition 2.2.] The following are
equivalent:



1) The difference inclusion x(k+1) ∈ F (x(k)) is KL-stable.
2) The following hold:

a) (Uniform stability): There exists γ ∈ K∞ so that, for
each x ∈ Rn, all solutions φ ∈ S(x) satisfy

|φ(k, x)| ≤ γ(|x|), ∀k ∈ Z≥0.

b) (Uniform global attractivity): For each r, ε ∈ R>0,
there exists K(r, ε) > 0 so that, for each x ∈ Rn,
all solutions φ ∈ S(x) satisfy

|x| ≤ r, k ∈ Z≥K(r,ε) ⇒ |φ(k, x)| ≤ ε.
Lemma 6.4: If (1) is ISS then there exists µ ∈ K∞ such

that the difference inclusion (42) is KL-stable.
Proof: Without loss of generality, we assume that γ ∈ K

from (2) satisfies γ(r) ≥ r. Define α, µ ∈ K∞ as

α(s) .= max
{
γ(β(s, 0)), γ

(
1
2s
)}
,

µ(s) .= 1
2γ
−1
(

1
4α
−1(s)

)
for all s ∈ R≥0.

Claim 6.5: For any x ∈ Rn and φ ∈ Sµ(x) we have

γ ◦ µ(|φ(k, x)|) ≤ 1
2 |x|, ∀k ∈ Z≥0. (43)

Proof: By the definition of α we have |x| ≤ β(|x|, 0) ≤
α(|x|) so that

γ ◦ µ(|x|) ≤ 1
4α
−1(|x|) ≤ 1

4 |x|. (44)

Let

k1
.= min

{
k ∈ Z≥0 : γ ◦ µ(|φ(k, x)|) > 1

2 |x|
}

and note that (44) implies k1 ∈ Z≥1. In order to obtain
a contradiction, assume k1 < ∞. Then (43) holds for all
k ∈ Z[0,k1−1]. Therefore, γ(|µ(|φ(k, x)|)Bm|) ≤ 1

2 |x| for all
φ ∈ Sµ(x) and k ∈ Z[0,k1−1]. Applying γ ∈ K∞ to both
sides of the ISS-estimate (2) in conjunction with this fact
yields

γ(|φ(k, x)|) ≤ max
{
γ(β(|x|, 0)), γ

(
1
2 |x|

)}
= α(|x|),

(45)
for all φ ∈ Sµ(x), k ∈ Z[0,k1−1].

Then, using the definition of µ, the ISS-estimate (2), and
(45), we have

γ ◦ µ(|φ(k1, x)|) ≤ 1
4α
−1(|φ(k1, x)|)

≤ 1
4 max

{
α−1(β(|x|, k))

× max
j∈Z[0,k1−1]

α−1 ◦ γ(|φ(j, x)|)
}

≤ 1
4 max{|x|, |x|} = 1

4 |x|

which contradicts the definition of k1 and hence proves the
claim. �

We now prove KL-stability of difference inclusion (42)
by proving uniform stability and uniform global attractivity
and then appeal to Proposition 6.3.

Uniform stability follows using (2), (43), and the fact that
γ(s) ≥ s as

|φ(k, x)|

≤ max
{
β(|x|, k), max

i∈Z[0,k−1]

γ(|µ(|φ(i, x)|)Bm)
}

≤ max
{
β(|x|, 0), max

i∈Z[0,k−1]

γ(|µ(|φ(i, x)|))
}

≤ max
{
β(|x|, 0), 1

2 |x|
}

≤ max
{
β(|x|, 0), 1

2γ(|x|)
}

= α(|x|).

To establish uniform global attractivity, as above we note
that, for all x ∈ Rn, φ ∈ Sµ(x), and k ∈ Z≥0,

|φ(k, x)| ≤ max
{
β(|x|, k), 1

2 |x|
}
.

Since β ∈ KL, for each r ∈ R≥0 there exists a finite T (r) ∈
Z≥1 so that β(r, k) ≤ 1

2r for all k ∈ Z≥T (r). Therefore, for
all |x| ≤ r we have |φ(k, x)| ≤ 1

2r for all φ ∈ Sµ(x) and
k ∈ Z≥T (r).

Fix any ε ∈ R>0 and let k ∈ Z≥1 be such that 2−kr ≤ ε.
Define r1

.= r, ri
.= 1

2ri−1 for all i ∈ Z≥2, and K(r, ε) .=∑k
i=1 T (ri). Then

|φ(k, x)| ≤ 2−kr ≤ ε

holds for all |x| ≤ r, φ ∈ Sµ(x) and k ∈ Z≥K(r,ε).
Therefore, the difference inclusion (42) is KL-stable. �

We now complete the proof of Theorem 3.4. Since (1)
is ISS, the difference inclusion (42) is KL-stable, and by
Theorem 6.2, for any λ ∈ R(0,1), there exist functions V :
Rn → R≥0 and α1, α2 ∈ K∞ so that (38) and (39) hold for
the difference inclusion given by (42). This then implies

|w| ≤ µ(|x|) ⇒ V (φ(1, x, w)) ≤ λV (x) (46)

for all x ∈ Rn, w ∈ Rm, and φ(1, x, w) = f(x,w), i.e.,
(12).

For proving (10), let β ∈ KL and γ ∈ K∞ come from the
ISS-estimate (2) and α2 ∈ K∞ be the upper bound in (38).
Define ϕ ∈ K by

ϕ(s) .= α2(β(µ−1(s), 1) + γ(s)), ∀s ∈ R≥0.

Then for |w| > µ(|x|) we have

V (f(x,w)) ≤ α2(|f(x,w)|) ≤ α2 (β(|x|, 1) + γ(|w|))
≤ α2

(
β(µ−1(|w|), 1) + γ(|w|)

)
= ϕ(|w|),

i.e., (10). �
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