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ISS-Lyapunov Functions for Discontinuous

Discrete-Time Systems

Lars Grüne and Christopher M. Kellett

Abstract

Input-to-State Stability (ISS) and the ISS-Lyapunov function are useful tools for the analysis and

design of nonlinear systems. Motivated by the fact that many feedback control laws, such as model

predictive or event-based control, lead to discontinuous discrete-time dynamics, we investigate ISS-

Lyapunov functions for such systems. ISS-Lyapunov functions were originally introduced in a so-called

implication-form and, in many cases, this has been shown to be equivalent to an ISS-Lyapunov function

of dissipative form. However, for discontinuous dynamics, we demonstrate via an example that this

equivalence no longer holds. We therefore propose a stronger implication-form ISS-Lyapunov function

and provide a complete characterization of ISS-Lyapunov functions for discrete-time systems with

discontinuous dynamics.

Index Terms

Input-to-State Stability (ISS), Lyapunov Methods, Discrete-Time Systems

I. INTRODUCTION

Originally formulated in continuous time, the notion of input-to-state stability (ISS) introduced

by Sontag in [20] was soon adapted to discrete time systems. In this paper, we consider ISS-

Lyapunov functions, first introduced in [23], for discrete-time nonlinear systems given by

x+ = f(x,w) (1)
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where x ∈ Rn, w ∈ Rm, and f : Rn × Rm → Rn. We take as inputs sequences with values in

Rm and we denote this space by W . We denote solutions of (1) by φ : Z≥0 × Rn ×W → Rn.

Many continuous-time ISS results carry over to the discrete-time setting if the discrete time

dynamics are continuous, see [7]. However, this statement is no longer true when discontinuous

dynamics are considered and in this paper we will not impose any regularity assumptions

on f(·, ·). Besides the fact that certain models naturally lead to discontinuous dynamics, our

main motivation for considering discontinuous f are controller design techniques that lead to

discontinuous dynamics. Indeed, even if the controlled dynamics x+ = g(x, u, w) with control

input u ∈ U is continuous, the use of a discontinuous controller u : Rn → U leads to a

discontinuous closed loop system x+ = g(x, u(x), w) =: f(x,w) of the form (1). Among modern

controller design techniques, optimization based techniques such as model predictive control

(MPC) naturally lead to discontinuous feedback laws and, in the presence of state constraints,

even the corresponding Lyapunov function is typically discontinuous, cf. [3], [18] or [5, Sections

8.5–8.9]. Similarly, quantized [4], [16] or event-based [2], [14] feedback laws naturally lead to

discontinuous closed loop dynamics.

It was observed before that additional assumptions are required in order to make the usual

ISS-Lyapunov function arguments work for discontinuous discrete time systems, see, e.g., [6,

Assumptions 7 and 8]. Also, it is known that discontinuities may affect the usual inherent

robustness properties of, e.g., asymptotic [11] or exponential stability [13]. It is the goal of this

paper to give a comprehensive and rigorous collection of results on ISS-Lyapunov functions

for discontinuous systems. Particularly, we present necessary and sufficient Lyapunov function

characterizations of ISS, discuss the equivalence of different types of decay estimates for ISS

Lyapunov functions, and introduce a stronger variant of an implication-form Lyapunov function

that is demonstrated to be better suited to the discontinuous setting.

The paper is organized as follows. In Section II we recall the definitions of input-to-state

stability (ISS) and dissipative-form ISS-Lyapunov functions and discuss the relation between

these concepts as well as different decay properties of the Lyapunov functions in the discontinu-

ous setting. In Section III we recall the standard definition of an implication-form ISS-Lyapunov

function and show that in the presence of discontinuities additional conditions are needed in order

to conclude ISS from the existence of these Lyapunov functions. In Section IV we present and

analyze our new stronger implication-form ISS-Lyapunov function. We show that the existence of
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such a function is indeed equivalent to the ISS property for discontinuous systems and illustrate

the usefulness of this concept by proving two propositions yielding sufficient conditions for ISS.

Conclusions are presented in Section V and proofs of the main results can be found in Section

VI.

II. ISS AND DISSIPATIVE-FORM ISS-LYAPUNOV FUNCTIONS

In the sequel, we will denote the class of continuous positive definite functions ρ : R≥0 → R≥0

by P . We will also make use of the standard function classes K, K∞, L, and KL (see [9]).

Definition 2.1: The system (1) is input-to-state stable (ISS) if there exist β ∈ KL, γ ∈ K such

that

|φ(k, x, w)| ≤ max

{
β(|x|, k), max

i∈Z[0,k−1]

γ(|w(i)|)
}

(2)

for all x ∈ Rn, w ∈ W , and k ∈ Z≥0.

Definition 2.2: A dissipative ISS-Lyapunov function for (1) is a function V : Rn → R≥0 such

that there exist α1, α2, α ∈ K∞ and σ ∈ K so that, for all x ∈ Rn and w ∈ Rm

α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

V (f(x,w))− V (x) ≤ −α(|x|) + σ(|w|). (4)

A dissipative ISS-Lyapunov function is called exponential if there exists λ ∈ (0, 1) such that (4)

can be written in the form

V (f(x,w)) ≤ λV (x) + σ(|w|). (5)

An implicit constraint in (4) is that α(|x|) ≤ V (x) for all x ∈ Rn.

Despite the lack of any regularity assumptions on either the system dynamics (1) or the

ISS-Lyapunov function (3)–(4), we may prove the following theorem.

Theorem 2.3: The following statements are equivalent.

(i) The system (1) is ISS;

(ii) There exists a dissipative ISS-Lyapunov function V ;

(iii) For any λ ∈ (0, 1) there exists an exponential dissipative ISS-Lyapunov function V̂ .

Proof: “(iii)⇒ (ii)” follows immediately from Definition 2.2 and “(ii)⇒ (i)” is [7, Lemma 3.5],

noting that the continuity assumptions on the dynamics and the Lyapunov function imposed in
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[7] play no part in the proof of [7, Lemma 3.5]. The proof of “(i) ⇒ (iii)” can be found in

Section VI-A. �

We note that the existence of an exponentially decaying Lyapunov function does not imply

anything about the decay rate of the system trajectories.

Remark 2.4: The equivalence (ii) ⇔ (iii) in Theorem 2.3 provides a discrete time and discon-

tinuous version of [19, Proposition 8]. We will show in Remark 4.5 that the Lyapunov function

V̂ in (iii) can be explicitly derived from V in (ii) as V̂ = α̂(V ) for some α̂ ∈ K∞.

The implication “(ii) ⇒ (i)” in Theorem 2.3 may not hold when relaxing the assumption

α ∈ K∞ in Definition 2.2. We end this section by observing that this assumption can be weakened

to α ∈ K if an additional compatibility condition between α and σ holds.

Proposition 2.5: Suppose V : Rn → R≥0, α1, α2 ∈ K∞ and α, σ ∈ K satisfy (3) and (4). If

supα > supσ, then (1) is ISS.

This follows from results on changing supply functions for ISS systems presented in [22] for

continuous time and in [17] for discrete-time. We provide the proof in Section VI-B.

III. IMPLICATION-FORM ISS-LYAPUNOV FUNCTIONS

As an alternate to the dissipative decrease condition (4), the following “implication-form”

ISS-Lyapunov function has frequently been used in the literature:

Definition 3.1: An implication-form ISS-Lyapunov function for (1) is a function V : Rn → R≥0

such that there exist α1, α2 ∈ K∞, χ ∈ K, and ρ ∈ P so that, for all x ∈ Rn and w ∈ Rm, (3)

holds and

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −ρ(|x|). (6)

As before, there is an implicit constraint that ρ(|x|) ≤ V (x).

Having a merely positive definite decrease rate ρ as in (6) is not necessarily convenient for

calculations. In many cases, rather than (6) it is useful to have the following class-K∞ decrease

rate: let V : Rn → R≥0 and α1, α2, ᾱ ∈ K∞ and χ ∈ K satisfy (3) and

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −ᾱ(|x|). (7)
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A further potentially useful refinement is the following exponential decrease rate: let V :

Rn → R≥0 and α1, α2 ∈ K∞, λ̂ ∈ (0, 1), and χ ∈ K satisfy (3) and

|x| ≥ χ(|w|) ⇒ V (f(x,w)) ≤ λ̂V (x). (8)

We can demonstrate the following relationship between these three implication-form ISS-

Lyapunov functions.

Proposition 3.2: The following are equivalent:

(i) There exist a ρ ∈ P and an implication-form ISS-Lyapunov function V satisfying (6);

(ii) There exist an ᾱ ∈ K∞ and an implication-form ISS-Lyapunov function V̂ satisfying (7);

(iii) For any given λ̂ ∈ (0, 1) there exists an implication-form ISS-Lyapunov function Ṽ satis-

fying (8).

Moreover, for V satisfying (i) there exist α̂, α̃ ∈ K∞ such that V̂ in (ii) and Ṽ in (iii) can be

written in the form V̂ = α̂(V ) and Ṽ = α̃(V ).

The equivalence of (i) and (ii) was stated in [7, Remark 3.3] and the proof follows as in [8,

Lemma 2.8]. The equivalence of (ii) and (iii) follows an argument in the proof of [10, Theorem

6]. The complete proof is provided in Section VI-C.

Theorem 2.3 states that the existence of a dissipative ISS-Lyapunov function implies ISS. By

contrast, the following example shows that an implication-form ISS-Lyapunov function does not

necessarily imply ISS.

Example 3.3: Consider the system

x+ = f(x,w) = ν(w)κ(x) (9)

where

κ(x)
.
=


0, x = 0

1
|x| , |x| ∈ (0, 1),

1
2|x| , |x| ≥ 1

ν(w)
.
=


0, w = 0

1
2
|w|2, |w| ∈ (0, 1)

1, |w| ≥ 1.

Take V (x)
.
= |x| so that both the upper and lower bounds of (3) can be trivially taken as |x|.

We observe that if |x| ≥ |w| then for |x| ∈ (0, 1)

|f(x,w)| = |w|
2

2|x|
≤ |x|

2

2|x|
=
|x|
2

while for |x| ≥ 1 we have |f(x,w)| = ν(w) 1
2|x| ≤

1
2|x| ≤

|x|
2

.
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Therefore, with α(s)
.
= 1

2
s we see that

|x| ≥ |w| ⇒ V (f(x,w))− V (x) ≤ −α(|x|).

However, it is straightforward to see that the system (9) is not ISS. Take w ≡ 1 and any initial

condition x ∈ (0, 1). Then φ(2k + 1, x) = 22k/x for all k ∈ Z≥0. In other words, every other

time step the solution increases so that the ISS estimate (2) can never be satisfied.

This example shows that the existence of an implication-form ISS-Lyapunov function does

not imply the existence of a dissipative ISS-Lyapunov functions, since according to Theorem

2.3 the latter would be equivalent to the system being ISS. This motivates the need for addi-

tional conditions which enable us to construct dissipative ISS-Lyapunov functions from those in

implication-form. The following two propositions provide sufficient conditions for this purpose.

Proposition 3.4: Assume that system (1) satisfies the ISS-estimate (2) and that V : Rn → R≥0,

α1, α2, ᾱ ∈ K∞ and χ ∈ K satisfy (3) and (7). Then V also satisfies (4) with α
.
= min{ᾱ, α1}

and σ(s)
.
= α2(β(χ(s), 1) + γ(s)) for all s ∈ R≥0.

The proof makes explicit use of the ISS-estimate to ensure that the potential increase in the

ISS-Lyapunov function is bounded for states below the level set defined by χ(|w|). This is similar

to the final argument at the end of the proof of “(i) ⇒ (iii)” in Theorem 2.3 and we thus omit

the details.

The assumption of ISS immediately yields a dissipative form ISS-Lyapunov function (by

Theorem 2.3) and consequently, the only novelty of Proposition 3.4 is that for ISS systems any

implication-form ISS-Lyapunov function is also a dissipative ISS-Lyapunov function. Note that

Proposition 3.4 does not rely on the regularity of either the system dynamics or the ISS-Lyapunov

functions.

Rather than assuming that system (1) is ISS to show the result of Proposition 3.4, we may

assume continuity of both the ISS-Lyapunov function and the system dynamics. This was already

stated in [7, Remark 3.3] without proof.

Proposition 3.5: Assume f(·, ·) is continuous. If there exist a continuous function V : Rn →

R≥0 and functions α1, α2 ∈ K∞ and ᾱ, χ ∈ K satisfying (3) and (7), then V satisfies (4) with

α
.
= ᾱ and

σ(r)
.
= max

 V (f(x,w))− V (x)

+α ◦ χ(|w|)

∣∣∣∣∣∣ |w| ≤ r,

|x| ≤ χ(r)

 . (10)
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Proof: The proof follows the same argument as in [23, Remark 2.4]. That the maximum in

(10) is well-defined follows from the fact that the function being maximized is a continuous

function by the assumptions on V (·) and f(·, ·) and the fact that the domain being maximized

over is compact. It is then straightforward to see that

σ(|w|) ≥ V (f(x,w))− V (x) + α(|x|),

yielding the desired result. �

The converse of Proposition 3.5 holds without any continuity properties:

Proposition 3.6: If there exist a function V : Rn → R≥0 and functions α1, α2, α ∈ K∞ and

σ ∈ K satisfying (3) and (4) then V satisfies (7) with χ .
= α−1 ◦ 2σ ∈ K and ᾱ = 1

2
α ∈ K∞.

Proof: We rewrite (4) as V (f(x,w)) − V (x) ≤ −α(|x|)/2 − α(|x|)/2 + σ(|w|). Then, with

χ
.
= α−1◦2σ ∈ K and ᾱ .

= 1
2
α ∈ K∞ we immediately see |x| ≥ χ(|w|) ⇒ V (f(x,w))−V (x) ≤

−1
2
α(|x|) = ᾱ(|x|). �

Remark 3.7: We observe that we can trade off the decrease rate, ᾱ and the input-dependent

level set defined by χ. In particular, for any ρ ∈ P and ϕ ∈ K∞ such that ρ(s) + ϕ(s) ≤ α(s),

for all s ∈ R≥0 we see that V satisfies (6) with ρ̂ .
= ρ and χ .

= ϕ−1 ◦ σ.

We note that, as an interim step in the proof of “(i) ⇒ (iii)” in Theorem 2.3, we demonstrate

that ISS implies the existence of an implication-form ISS-Lyapunov function satisfying (3) and

(8). However, the above example demonstrates that the converse is not true. Hence, this indicates

that neither the implication-form of (8), nor the equivalent forms demonstrated by Proposition 3.2,

are useful when one allows discontinuous system dynamics since (3) and (7) do not imply ISS

of (1). This motivates a new definition for implication-form ISS-Lyapunov functions in the

following section.

IV. AN ALTERNATIVE IMPLICATION-FORM ISS-LYAPUNOV FUNCTION

As we have seen, in the discontinuous setting the existence of an ISS-Lyapunov function in

the implication-form (3), (7) does not imply ISS and is not equivalent to the existence of an

ISS-Lyapunov function in dissipation form (3), (4). We propose the following stronger alternative

to the implication (6) which fixes these problems.

Definition 4.1: A strong implication-form ISS-Lyapunov function for (1) is a function V :

Rn → R≥0 such that there exist functions α1, α2 ∈ K∞, ϕ̂, χ ∈ K, and ρ̂ ∈ P so that, for all
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x ∈ Rn and w ∈ Rm, V satisfies (3) and

|x| ≥ χ(|w|) ⇒ V (f(x,w))− V (x) ≤ −ρ̂(|x|) (11)

|x| < χ(|w|) ⇒ V (f(x,w)) ≤ ϕ̂(|w|). (12)

This definition is motivated by the ISS Lyapunov functions in implication-form in continuous

time, which will always satisfy the second implication on time intervals on which w is constant.

Remark 4.2: Regional or local ISS on some subset Θ ⊂ Rn is of particular importance in

MPC [15]. To extend the results of this paper to the regional ISS setting, in addition to the

modifications required as described in [15], ϕ̂ ∈ K of Definition 4.1 would need to ensure that

possible jumps from the set |x| < χ(|w|) do not result in trajectories outside of the region of

interest, Θ.

Remark 4.3: Proposition 3.2 applies analogously to the strong implication-form, cf. its proof

in Section VI-C. This means that by rescaling V to α̂(V ) and α̃(V ) we can pass from (11) to

(7) or (8), respectively.

In the particular case of a V satisfying (3), (8), and (12) we call V an exponential strong

implication-form ISS-Lyapunov function.

The next theorem shows that the concept of strong implication-form ISS-Lyapunov function

overcomes the gap observed between a dissipative ISS-Lyapunov function and the classical

implication-form ISS-Lyapunov function from Definition 3.1 when considering discontinuous

systems and ISS-Lyapunov functions.

Theorem 4.4: The following statements are equivalent.

(i) The system (1) is ISS;

(ii) There exists a strong implication-form ISS-Lyapunov function V ;

(iii) For any λ ∈ (0, 1) there exists an exponential strong implication-form ISS-Lyapunov

function V̂ .

Moreover,

(a) V is a strong implication-form ISS-Lyapunov function satisfying (7) and (12) if and only

if V is a dissipative ISS-Lyapunov function;

(b) V is an exponential strong implication-form ISS-Lyapunov function if and only if V is an

exponential dissipative ISS-Lyapunov.
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Proof: We first prove (a) and (b).

(a), “⇒”: Let V together with functions ᾱ ∈ K∞ and χ, ϕ̂ ∈ K satisfy (7) and (12). We

claim that V satisfies (4) with α
.
= min{ᾱ, α1} and σ = ϕ̂: If |x| ≥ χ(|w|) then we get

V (f(x,w)) − V (x) ≤ −ᾱ(|x|) ≤ −α(|x|) + σ(|w|). In case |x| < χ(|w|), using (3) we obtain

V (f(x,w))− V (x) ≤ ϕ̂(|w|)− α1(|x|) ≤ −α(|x|) + σ(|w|).

(a), “⇐”: Let V together with functions α ∈ K∞ and σ ∈ K satisfy (4). Then V also satisfies

(7) with ᾱ .
= α/2, χ .

= α−1 ◦ 2σ and (12) with ϕ̂ .
= γ ◦ χ+ σ, where γ ∈ K∞ is arbitrary with

γ ≥ α2−α. To see this, we rewrite (4) as V (f(x,w))−V (x) ≤ −α(|x|)/2−α(|x|)/2 +σ(|w|).

Then, with χ .
= α−1 ◦2σ ∈ K and ᾱ .

= 1
2
α ∈ K∞ we see that |x| ≥ χ(|w|) implies V (f(x,w))−

V (x) ≤ −α(|x|)/2 = −ᾱ(|x|) and |x| < χ(|w|) implies

V (f(x,w)) ≤ V (x)− α(|x|) + σ(|w|)

≤ α2(|x|)− α(|x|) + σ(|w|) ≤ γ(|x|) + σ(|w|)

≤ γ(χ(|w|)) + σ(|w|) = ϕ̂(|w|).

(b), “⇒”: We prove that if V together with λ ∈ (0, 1) and σ ∈ K satisfies (5), then V also

satisfies (12) and (8) with λ̂ .
= λ+ ε satisfying λ+ ε < 1, χ .

= α−1
1 (1

ε
σ), and ϕ̂ .

= λα2 ◦ χ+ σ.

To this end, we may then rewrite (5) as

V (f(x,w)) ≤ (λ+ ε)V (x)− εV (x) + σ(|w|)

≤ λ̂V (x)− εα1(|x|) + σ(|w|)

which yields the implication (8). The implication (12) follows from the upper bound on V and

the condition |x| < χ(|w|) as V (f(x,w)) ≤ λα2(|x|) + σ(|w|) ≤ λα2 ◦ χ(|w|) + σ(|w|).

(b), “⇐”: A straightforward calculation shows that if V satisfies (12) and (8), then V also

satisfies (5) with σ .
= ϕ̂.

Now, the equivalences (i)⇔(ii)⇔(iii) follow immediately from (a), (b) and Theorem 2.3. �

Remark 4.5: Theorem 4.4 reveals that we can explicitly choose V̂ in Theorem 2.3 in the form

V̂ = α̂(V ) for some α̂ ∈ K∞. Indeed, by Theorem 4.4(a) the dissipative ISS-Lyapunov function

V in Theorem 2.3 is also a strong implication-form ISS-Lyapunov function. Proposition 3.2 and

Remark 4.3 then show that rescaling V with α̃ ∈ K∞ yields an exponential strong implication-

form ISS-Lyapunov function which, by Theorem 4.4(b), is also an exponential ISS-Lyapunov

function in dissipative form.

April 11, 2014 DRAFT



10

Theorem 4.4 can be used in order to pass from the (weak) implication-form (7) to the

dissipation form (4) under a weaker continuity assumption than in Proposition 3.5. Particularly,

we only require continuity of f at w = 0 (uniformly in x).

Proposition 4.6: Let V be a function satisfying (3) and (7) for appropriate α1, α2, ᾱ ∈ K∞
and χ ∈ K. Assume that f is continuous in w = 0 uniformly in x in the following sense:

For each r > 0 there is γr ∈ K∞ such that for all |x| ≤ r, |w| ≤ r the map f satisfies the

inequality |f(x,w)− f(x, 0)| ≤ γr(|w|).

Then there exists ϕ̂ ∈ K so that V satisfies (12) and thus also (4).

Proof: First, consider w ≡ 0. Then we observe that

|f(x, 0)| ≤ α−1
1 (V (f(x, 0))) ≤ α−1

1 (V (x)− ᾱ(|x|))

≤ α−1
1 (α2(|x|)− ᾱ(|x|)) . (13)

Since by (7) ᾱ(|x|) ≤ V (x) ≤ α2(|x|) for all x ∈ Rn, with equality if and only if x = 0, the func-

tion α−1
1 (α2(s)−ᾱ(s)) is positive definite. Define γ̄ ∈ K∞ by γ̄(s)

.
= max

{
s, α−1

1 (α2(s)− ᾱ(s))
}

for all s ∈ R≥0 so that |f(x, 0)| ≤ γ̄(|x|) for all x ∈ Rn.

Now, if for all r > 0 we define

γ̂(r)
.
= sup{|f(x,w)− f(x, 0)| : |x| ≤ r, |w| ≤ r},

then for all r1 ≥ r we obtain γ̂(r) ≤ γr1(r) which implies γ̂(r)→ 0 as r → 0. Moreover, γ̂(r)

is finite for all r > 0. Hence, we may overbound γ̂ with a function γ ∈ K∞.

It is now sufficient to show that there exists ϕ ∈ K such that the implication in (12) holds.

To this end, let |x| < χ(|w|). Then

|f(x,w)| = |f(x,w)− f(x, 0) + f(x, 0)|

≤ γ(max{|w|, χ(|w|)}) + γ̄(|x|)

≤ γ(max{|w|, χ(|w|)}) + γ̄(χ(|w|)) =: γ̃(|w|)

implying V (f(x,w)) ≤ α2(|f(x,w)|) ≤ α2(γ̃(|w|)). This shows the desired inequality with

ϕ(r)
.
= α2(γ̃(|w|)). �

We note that the map f(x,w) = ν(w)κ(x) in (9) of Example 3.3 does not satisfy the required

continuity property of Proposition 4.6. To see this, we first observe that |f(x,w) − f(x, 0)| =
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|f(x,w)|. Choose r = 1 and any γ1 ∈ K∞. Then, with w = 1, we see that

|f(x, 1)| = 1
|x| , ∀x ∈ (−1, 1)\{0}

so that |f(x, 1)| > γ1(1) for some x ∈ (0, 1).

Using the strong implication-form ISS-Lyapunov function allows us to prove a variant of

Proposition 2.5.

Proposition 4.7: Suppose V : Rn → R≥0, α1, α2 ∈ K∞ and α, σ ∈ K satisfy (3) and (4). If

there exists ρ ∈ P such that α(s) = ρ(s) + σ(s) for all s ∈ R≥0 then V satisfies (11) and (12)

with χ .
= id, ρ̂ .

= ρ, and ϕ̂ .
= γ + σ where γ ∈ K is such that γ > α2−α, and hence (1) is ISS.

Proof: By assumption, we have V (f(x,w)) − V (x) ≤ −ρ(|x|) − σ(|x|) + σ(|w|). Therefore

|x| ≥ |w| implies V (f(x,w))− V (x) ≤ −ρ(|x|) and |x| < |w| implies

V (f(x,w)) ≤ V (x)− α(|x|) + σ(|w|)

≤ α2(|x|)− α(|x|) + σ(|w|) ≤ γ(|w|) + σ(|w|).

Thus, V is a strong implication-form ISS-Lyapunov function and by Theorem 4.4 the system is

ISS. �

We note that the assumptions of Propositions 2.5 and 4.7 do not imply each other. Clearly,

supα > supσ does not imply α(r) > σ(r) for all r > 0. Conversely, one checks that the

functions σ(s) = s/(1 + s) and α(s) = σ(s) + ρ(s) with ρ(s) = min {s, 1/(2 + 2s)} satisfy the

assumption of Proposition 4.7 although supα = 1 = supσ. From a quantitative point of view,

Proposition 4.7 provides a stronger statement than Proposition 2.5, as it maintains the functions

of the given ISS-Lyapunov function without requiring a rescaling.

V. CONCLUSIONS

In this paper we have provided a complete characterization of ISS-Lyapunov functions for

discrete-time systems with discontinuous dynamics. In contrast to the original definition of

an ISS-Lyapunov function in [23], we here observed that an implication-form ISS-Lyapunov

function does not necessarily imply ISS of the system (1). In order to counter this difficulty,

we proposed an alternative strong implication-form ISS-Lyapunov function and demonstrated

that this ISS-Lyapunov function satisfies many of the desirable properties that hold in a more

classical setting such as equivalence to an ISS-Lyapunov function in dissipative form and that
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this strong implication-form ISS-Lyapunov function is both necessary and sufficient for ISS of

discrete-time systems with discontinuous dynamics.

In addition, we have presented results on the nonlinear scaling of such strong implication-

form ISS-Lyapunov functions and have demonstrated that it is always possible to move between

decrease rates that are given by positive definite functions, functions of class-K∞, or even an

exponential decrease. In all cases, we have explicitly shown how these various functions are

related to each other in a quantitative manner.

VI. PROOFS

In what follows, when it improves readability and causes no confusion, we drop the arguments

for ISS-Lyapunov functions and simply write V + .
= V (f(x,w)) and V .

= V (x).

A. Proof of “(i) ⇒ (iii)” in Theorem 2.3

Our proof relies on a converse Lyapunov theorem for difference inclusions. We denote the set

of solutions to the difference inclusion

x+ ∈ F (x), x ∈ Rn (14)

defined by the set-valued mapping F : Rn ⇒ Rn and from an initial condition x ∈ Rn by

S(x). A solution φ ∈ S(x) is a function φ : Z≥0 × Rn → Rn such that φ(0, x) = x and

φ(k + 1, x) ∈ F (φ(k, x)) for all k ∈ Z≥0.

Definition 6.1: The difference inclusion (14) is said to be KL-stable if there exists β ∈ KL

so that

|φ(k, x)| ≤ β(|x|, k), ∀x ∈ Rn, φ ∈ S(x), k ∈ Z≥0. (15)

Theorem 6.2: If the difference inclusion (14) is KL-stable then, for any given λ ∈ (0, 1) there

exists an exponential-decrease Lyapunov function; i.e., there exist functions V : Rn → R≥0 and

α1, α2 ∈ K∞ so that

α1(|x|) ≤ V (x) ≤ α2(|x|) (16)

V (φ(1, x)) ≤ λV (x) (17)

for all x ∈ Rn and φ(1, x) ∈ F (x).
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Proof: The proof follows that of [12, Theorem 2.7] where, here, we need not worry about

regularity of the Lyapunov function.

Given β ∈ KL and λ ∈ (0, 1), Sontag’s lemma on KL-estimates [21, Proposition 7] yields

α1, α2 ∈ K∞ so that

α1(β(s, k)) ≤ α2(s)λ
k, ∀s ∈ R≥0, k ∈ Z≥0. (18)

Define V (x)
.
= supk∈Z≥0

supφ∈S(x) α1(|φ(k, x)|)λ−k for all x ∈ Rn. Then, for all x ∈ Rn,

V (x) ≥ supφ∈S(x) α1(|φ(0, x)|)λ0 = α1(|x|) and

V (x) ≤ sup
k∈Z≥0

α1(β(|x|, k))λ−k ≤ sup
k∈Z≥0

α2(|x|)λkλ−k = α2(|x|)

so that V (x) satisfies the desired upper and lower bounds (16). The desired decrease condition

follows as

V (φ(1, x)) = sup
k∈Z≥0

sup
ψ∈S(φ(1,x))

α1(|ψ(k, φ(1, x))|)λ−k

≤ sup
k∈Z≥1

sup
φ∈S(x)

α1(|φ(k, x)|)λ−k+1

≤ sup
k∈Z≥0

sup
φ∈S(x)

α1(|φ(k, x)|)λ−k+1 = λV (x)

for all x ∈ Rn. �

In order to demonstrate that ISS implies the existence of an ISS-Lyapunov function, we follow

the standard argument as in [23] and [7]. Denote the closed unit ball in Rm by Bm. We show

that there exists a µ ∈ K∞ such that the differential inclusion defined by

x(k + 1) ∈ f(x(k), µ(|x(k)|)Bm) (19)

is KL-stable, allowing us to appeal to Theorem 6.2 to obtain an ISS-Lyapunov function. We

denote the solution set of (19) from an initial condition x ∈ Rn by Sµ(x).

Proposition 6.3: [12, Proposition 2.2.] The difference inclusion (14) is KL-stable if and only

if the following hold:

1) (Uniform stability): There exists γ ∈ K∞ so that, for each x ∈ Rn, all solutions φ ∈ S(x)

satisfy

|φ(k, x)| ≤ γ(|x|), ∀k ∈ Z≥0.
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2) (Uniform global attractivity): For each r, ε ∈ R>0, there exists K(r, ε) > 0 so that, for

each x ∈ Rn, all solutions φ ∈ S(x) satisfy

|x| ≤ r, k ∈ Z≥K(r,ε) ⇒ |φ(k, x)| ≤ ε.

Lemma 6.4: If (1) is ISS then there exists µ ∈ K∞ such that the difference inclusion (19) is

KL-stable.

Proof: Without loss of generality, we assume that γ ∈ K from (2) satisfies γ(r) ≥ r. For all

s ∈ R≥0, define α, µ ∈ K∞ as

α(s)
.
= max

{
γ(β(s, 0)), γ

(
1
2
s
)}
, µ(s)

.
= 1

2
γ−1

(
1
4
α−1(s)

)
.

Claim 6.5: For any x ∈ Rn and φ ∈ Sµ(x) we have

γ ◦ µ(|φ(k, x)|) ≤ 1
2
|x|, ∀k ∈ Z≥0. (20)

Proof: The definition of α implies |x| ≤ β(|x|, 0) ≤ α(|x|) so that

γ ◦ µ(|x|) ≤ 1
4
α−1(|x|) ≤ 1

4
|x|. (21)

Let k1
.
= min

{
k ∈ Z≥0 : γ ◦ µ(|φ(k, x)|) > 1

2
|x|
}

and note that (21) implies k1 ∈ Z≥1. In order

to obtain a contradiction, assume k1 < ∞. Then (20) holds for all k ∈ Z[0,k1−1]. Therefore,

γ(|µ(|φ(k, x)|)Bm|) ≤ 1
2
|x| for all φ ∈ Sµ(x) and k ∈ Z[0,k1−1]. Applying γ ∈ K∞ to both sides

of the ISS-estimate (2) in conjunction with this fact yields

γ(|φ(k, x)|) ≤ max
{
γ(β(|x|, 0)), γ

(
1
2
|x|
)}

= α(|x|), (22)

for all φ ∈ Sµ(x), k ∈ Z[0,k1−1]. Then, using the definition of µ, the ISS-estimate (2), and (22),

we have

γ ◦ µ(|φ(k1, x)|) ≤ 1
4
α−1(|φ(k1, x)|)

≤ 1
4

max

{
α−1(β(|x|, k)) max

j∈Z[0,k1−1]

α−1 ◦ γ(|φ(j, x)|)
}

≤ 1
4

max{|x|, |x|} = 1
4
|x|

which contradicts the definition of k1 and hence proves the claim. �

We now prove KL-stability of difference inclusion (19) by proving uniform stability and

uniform global attractivity and then appeal to Proposition 6.3.
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Uniform stability follows from (2), (20), and γ(s) ≥ s as

|φ(k, x)| ≤ max

{
β(|x|, k), max

i∈Z[0,k−1]

γ(|µ(|φ(i, x)|)Bm)

}
≤ max

{
β(|x|, k), 1

2
|x|
}
≤ α(|x|). (23)

To establish uniform global attractivity, we use (23). Since β ∈ KL, for each r ∈ R≥0 there

exists a finite T (r) ∈ Z≥1 so that β(r, k) ≤ 1
2
r for all k ∈ Z≥T (r). Therefore, for all |x| ≤ r we

have |φ(k, x)| ≤ 1
2
r for all φ ∈ Sµ(x) and k ∈ Z≥T (r).

Fix any ε ∈ R>0 and let k ∈ Z≥1 be such that 2−kr ≤ ε. Define r1
.
= r, ri

.
= 1

2
ri−1 for all

i ∈ Z≥2, and K(r, ε)
.
=
∑k

i=1 T (ri). Then |φ(k, x)| ≤ 2−kr ≤ ε for all |x| ≤ r, φ ∈ Sµ(x), and

k ∈ Z≥K(r,ε). Therefore, the difference inclusion (19) is KL-stable. �

We now complete the proof of “(i) ⇒ (iii)” in Theorem 2.3. Since (1) is ISS, the difference

inclusion (19) is KL-stable, and by Theorem 6.2, for any λ ∈ (0, 1), there exist functions

V : Rn → R≥0 and α1, α2 ∈ K∞ so that (16) and (17) hold for the difference inclusion given

by (19). This then implies that

|w| ≤ µ(|x|) ⇒ V (φ(1, x, w)) ≤ λV (x) (24)

for all x ∈ Rn, w ∈ Rm, and φ(1, x, w) = f(x,w).

It remains to show that the function V satisfies (5). Let β ∈ KL and γ ∈ K∞ come

from the ISS-estimate (2) and α2 ∈ K∞ the upper bound in (16). Define σ ∈ K by σ(s)
.
=

α2(β(µ−1(s), 1) + γ(s)) for all s ∈ R≥0. For |w| > µ(|x|) we have

V (f(x,w)) ≤ α2(|f(x,w)|) ≤ α2 (β(|x|, 1) + γ(|w|))

≤ α2

(
β(µ−1(|w|), 1) + γ(|w|)

)
= σ(|w|).

Together with (24) we then have V (f(x,w)) ≤ λV (x) + σ(|w|) for all x ∈ Rn and w ∈ Rm. �

B. Proof of Proposition 2.5

The proof closely follows [17, Lemma 1]. The condition supα > supσ implies there exists

c > 1 so that supα > c supσ.
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Define ϕ ∈ K∞ by ϕ(s)
.
=
∫ s

0
α(r)dr for all s ∈ R≥0 and V̂ .

= ϕ(V ). For V + ≤ V
2

we have

ϕ(V +)− ϕ(V ) ≤ ϕ

(
V

2

)
− ϕ(V )

≤ α

(
V

2

)(
V

2
− V

)
≤ −α

(
V

2

)
V

2
+ σ(|w|). (25)

For V + > V
2

, the mean value theorem yields ϕ(V +)−ϕ(V ) = α(V +− θ(V +−V ))(V +−V )

for some θ ∈ (0, 1) and consequently

ϕ(V +)− ϕ(V ) ≤ α(V +)(V + − V ). (26)

For V + > V
2

consider two cases. The first is when 1
c
α(V ) > σ(|w|). Then

α(V +)(V + − V ) ≤ α(V +)
(
−α(V ) + 1

c
α(V )

)
(27)

≤ −α
(
V
2

) (
1− 1

c

)
α(V ) ≤ −α

(
V
2

) (
1− 1

c

)
α(V ) + σ(|w|).

The second is V + > V
2

and 1
c
α(V ) ≤ σ(|w|). Since c supσ < supα, we see that α−1(s) exists

for all s ∈ [0, c supσ] and hence we have that α(V +) ≤ α(V+σ(|w|)) ≤ α (α−1(cσ(|w|)) + σ(|w|)).

Define γ(s)
.
= α (α−1(cσ(s)) + σ(s)). Then

α(V +)(V + − V ) ≤ α(V +)(−α(V ) + σ(|w|))

≤ −α(V +)α(V ) + γ(|w|)σ(|w|)

≤ −α
(
V
2

)
α(V ) + γ(|w|)σ(|w|). (28)

Therefore, with ᾱ ∈ K∞ and σ̄ ∈ K defined by

ᾱ(s)
.
= min

{
α
(
s
2

)
s
2
, α

(
s
2

) (
1− 1

c

)
α(s), α

(
s
2

)
α(s)

}
σ̄(s)

.
= max {σ(s), γ(s)σ(s)}

combining (25)–(28) yields V̂ + − V̂ ≤ −ᾱ(V ) + σ̄(|w|) ≤ −ᾱ ◦ α1(|x|) + σ̄(|w|) so that (1) is

ISS.

C. Proof of Proposition 3.2 and Remark 4.3

Following Remark 4.3 we prove Proposition 3.2 both for the weak and for the strong implication-

form. We include the necessary computations for (12) in remarks in what follows. We first observe

that the implications (iii) ⇒ (ii) ⇒ (i) are trivial.
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1) Positive Definite to K∞: (i) ⇒ (ii): We start from an ISS-Lyapunov function with a

positive definite decrease rate; i.e., V : Rn → R≥0, α1, α2 ∈ K∞, χ ∈ K, ρ ∈ P satisfying (3)

and (6).

For ρ ∈ P , [1, Lemma IV.1] ([9, Lemma 12]) yields κ ∈ K∞ and σ ∈ L so that ρ(s) ≥

κ(s)σ(s) for all s ∈ R≥0. Using (3) we see that, for all x ∈ Rn, |x| ≥ χ(|w|) implies

V (f(x,w))− V (x) ≤ −ρ(|x|) ≤ −κ(|x|)σ(|x|)

≤ −
(
κ ◦ α−1

2 (V (x))
) (
σ ◦ α−1

1 (V (x))
)

= −ρ̂(V (x)) (29)

where ρ̂(s)
.
=
(
κ ◦ α−1

2 (s)
) (
σ ◦ α−1

1 (s)
)

for all s ∈ R≥0 is positive definite.

From here, we follow [8, Lemma 2.8]. Let κ̄ ∈ K∞ be such that

κ̄
(
s
2

)
ρ̂(s) ≥ s, ∀s ≥ 1 (30)

and define α̂ ∈ K∞ by

α̂(s)
.
= s+

∫ s

0

κ̄(r)dr, so that α̂′(s) = 1 + κ̄(s) (31)

for all s ∈ R>0. Therefore, α̂′ is strictly increasing.

Define V̂ (x)
.
= α̂(V (x)) for all x ∈ Rn and observe that with the K∞ functions α̂1

.
= α̂ ◦ α1

and α̂2
.
= α̂ ◦ α2 we have α̂1(|x|) ≤ V̂ (x) ≤ α̂2(|x|).

Remark 6.6: In order to prove that (12) is maintained under this scaling, let ϕ̂ ∈ K be given

by ϕ̂ .
= α̂ ◦ ϕ so that (12) implies, for |x| < χ(|w|), V̂ + = α̂(V +) ≤ α̂ ◦ ϕ(|w|) = ϕ̂(|w|).

In what follows we assume |x| ≥ χ(|w|). Since α̂ is differentiable, the mean value theorem

yields the existence of θ ∈ (0, 1) so that

α̂(V +)− α̂(V ) = α̂′(V + + θ(V − V +))(V + − V ). (32)

Note that, as a consequence of (29), V + − V ≤ 0.

We first restrict attention to V ≥ 1 and consider two cases. First, we assume V + ≤ V
2

and

note that α̂′(s) ≥ 1 for all s ∈ R≥0. Then

V̂ + − V̂ ≤ V + − V ≤ −V
2
. (33)

Now suppose V + ≥ V
2

. In this case, using V − V + ≥ 0 and (31), we have α̂′(V + + θ(V −

V +)) ≥ α̂′(V +) ≥ α̂′
(
V
2

)
> κ̄

(
V
2

)
.
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Combining this with (29) and (30), for V ≥ 1 we obtain

V̂ + − V̂ ≤ κ̄
(
V
2

)
(V + − V ) ≤ −κ̄

(
V
2

)
ρ̂(V ) ≤ −V. (34)

Combining (33) and (34) we see that, for V ≥ 1, V̂ + − V̂ ≤ −V
2

holds. For V ≤ 1, we note

that by definition (31) and (29) we have

V̂ + − V̂ = V + +

∫ V +

0

κ̄(r)dr − V −
∫ V

0

κ̄(r)dr

≤ V + − V ≤ −ρ̂(V ). (35)

Take α̌ ∈ K∞ so that α̌(s) ≤ ρ̂(s) for all s ∈ [0, 1] and α̌(s) ≤ s
2

for all s ≥ 1. Finally, let

ᾱ ∈ K∞ be defined as ᾱ .
= α̌ ◦ α1 so that |x| ≥ χ(|w|) implies

V̂ (f(x,w))− V̂ (x) ≤ −α̌(V (x)) ≤ −α̌ ◦ α1(|x|) = −ᾱ(|x|). (36)

2) K∞ to Exponential: (ii) ⇒ (iii): Define µ ∈ K∞ by µ(s)
.
= min

{
ᾱ ◦ α̂−1

2 (s), s
2

}
and

note that id− µ ∈ K∞. Therefore, |x| ≥ χ(|w|) implies V̂ + ≤ V̂ − µ(V̂ ) = (id− µ)(V̂ ).

Select any λ̂ ∈ (0, 1). Then [9, Corollary 1] yields α̃ ∈ K∞ so that α̃ ◦ (id− µ)(s) = λ̂µ̂(s)

for all s ∈ R≥0.

Define Ṽ .
= α̃(V̂ ) and note that, with K∞ functions α̃1

.
= α̃◦α̂1 and α̃2

.
= α̃◦α̂2 the inequality

α̃1(|x|) ≤ Ṽ (x) ≤ α̃2(|x|) holds. Furthermore, |x| ≥ χ(|w|) implies

Ṽ + = α̃(V̂ +) ≤ α̃ ◦ (id− µ)(V̂ ) = λ̂α̃(V̂ ) = λ̂Ṽ .

Remark 6.7: To additionally demonstrate that (12) persists, take ϕ̂ from Remark 6.6 and define

ϕ̃
.
= α̃ ◦ ϕ̂ ∈ K so that, for |x| < χ(|w|) we obtain Ṽ + = α̃(V̂ +) ≤ α̃ ◦ ϕ̂(|w|) = ϕ̃(|w|).
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