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Abstract: Model Predictive Control is a controller design method which synthesizes
a sampled data feedback controller from the iterative solution of open loop optimal
control problems. We describe the basic functionality of MPC controllers, their properties
regarding feasibility, stability and performance and the assumptions needed in order to
rigorously ensure these properties in a nominal setting.

1. INTRODUCTION

Model predictive control (MPC) is a method for the
optimization based control of linear and nonlinear dy-
namical systems. While the literal meaning of “model
predictive control” applies to virtually every model
based controller design method, nowadays the term
commonly refers to control methods in which pieces
of open loop optimal control functions or sequences
are put together in order to synthesize a sampled data
feedback law. As such, it is often used synonymously
with “receding horizon control”.

The concept of MPC was first presented in Propoı̆
(1963) and was re-invented several times already in
the 1960s. Due to the lack of sufficiently fast computer
hardware, for a while these ideas did not have much of
an impact. This changed during the 1970s when MPC
was successfully used in chemical process control. At
that time, MPC was mainly applied to linear systems
with quadratic cost and linear constraints, since for
this class of problems algorithms were sufficiently
fast for real time implementation — at least for the
typically relatively slow dynamics of process control
systems. The 1980s have then seen the development
of theory and increasingly sophisticated concepts for
linear MPC, while in the 1990s nonlinear MPC (often
abbreviated as NMPC) attracted the attention of the
MPC community. After the year 2000 several gaps
in the analysis of nonlinear MPC without terminal
constraints and costs were closed and increasingly
faster algorithms were developed. Together with the
progress in hardware, this has considerably broadened
the possible applications of both linear and nonlinear
MPC.

In this article we explain the functionality of nominal
MPC along with its most important properties and the
assumptions needed to rigorously ensure these proper-

ties. We also give some hints on the underlying proofs.
The term nominal MPC refers to the assumption that
the mismatch between our model and the real plant
is sufficiently small to be neglected in the following
considerations. If this is not the case, methods from
robust MPC must be used [reference to robust MPC].
We describe all concepts for nonlinear discrete time
systems, noting that the basic results outlined in this
article are conceptually similar for linear and for con-
tinuous time systems.

2. MODEL PREDICTIVE CONTROL

In this article we discuss MPC for discrete time con-
trol systems of the form
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with state x

u

( j) 2 X , initial condition x0 2X and con-
trol input sequence u = (u(0),u(1), . . .) with u(k)2U ,
where the state space X and the control value space U

are normed spaces. For control systems in continuous
time, one may either apply the discrete time approach
to a sampled data model of the system. Alternatively,
continuous time versions of the concepts and results
from this article are available in the literature, see,
e.g., Findeisen and Allgöwer (2002) or Mayne et al.
(2000).

The core of any MPC scheme is an optimal control
problem of the form
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for control constraint set U ✓ U , state constraint set
X ✓ X and terminal constraint set X0 ✓ X . The func-
tion ` : X⇥U ! R is called stage cost or running
cost, the function F : X! R is referred to as terminal
cost. We assume that for each initial value x0 2 X the
optimal control problem (2) has a solution and de-
note the corresponding minimizing control sequence
by u

?. Algorithms for computing u

? are discussed in
[reference to Optimization Algorithms for MPC and
Explicit MPC].

The key idea of MPC is to compute the values µ
N

(x)
of the MPC feedback law µ

N

from the open loop
optimal control sequences u

?. To formalize this idea,
consider the closed loop system
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In order to evaluate µ
N

along the closed loop solution,
given an initial value xµ

N

(0) 2 X we iteratively per-
form the following steps.

Basic MPC loop:

(i) set k := 0
(ii) solve (2)–(4) for x0 = xµ

N

(k); denote the optimal
control sequence by u

? = (u?(0), . . . ,u?(N�1))
(iii) set µ

N

(xµ
N

(k)) := u

?(0), compute xµ
N

(k + 1)
according to (5), set k := k +1 and go to (1)

Due to its ability to handle constraints and possibly
nonlinear dynamics, MPC has become one of the most
popular modern control method in industry [reference
to MPC in Practice]. While in the literature various
variants of this basic scheme are discussed, here we
restrict ourselves to this most widely used basic MPC
scheme.

When analyzing an MPC scheme, three properties are
important:

• Recursive Feasibility, i.e., the property that the
constraints (4) can be satisfied in Step (ii) in each
sampling instant

• Stability, i.e., in particular convergence of the
closed loop solutions xµ

N

(k) to a desired equi-
librium x⇤ as k! •

• Performance, i.e., appropriate quantitative prop-
erties of xµ

N

(k)

Here we discuss these three issues for two widely used
MPC variants:

(a) MPC with terminal constraints and costs
(b) MPC with neither terminal constraints nor costs

In (a), F and X0 in (3)–(4) are specifically designed in
order to guarantee proper performance of the closed
loop. In (b), we set F ⌘ 0 and X0 = X. Thus, the

choice of ` and N in (3) is the most important part
of the design procedure.

3. RECURSIVE FEASIBILITY

Since the ability to handle constraints is one of the key
features of MPC, it is important to ensure that the con-
straints xµ

N

(k) 2 X and µ
N

(xµ
N

(k)) 2 U are satisfied
for all k� 0. However, beyond constraint satisfaction,
the stronger property xµ

N

(k) 2 X
N

is required, where
X

N

denotes the feasible set for horizon N,

X
N

:= {x 2 X | there exists u such that (4) holds}.
The property x 2 X

N

is called feasibility of x. Fea-
sibility of x = xµ

N

(k) is a prerequisite for the MPC
feedback µ

N

being well defined, because the non-
existence of such an admissible control sequence u

would imply that solving (2) under the constraints (4)
in Step (ii) of the MPC iteration is impossible.

Since for k� 0 the state xµ
N

(k+1) = f (xµ
N

(k),u?(0))
is determined by the solution of the previous opti-
mal control problem, the usual way to address this
problem is via the notion of recursive feasibility. This
property demands the existence of a set A ✓ X such
that

• for each x0 2 A the problem (2)–(4) is feasible
• for each x0 2 A and the optimal control u

? from
(2)–(4) the relation f (x0,u?(0)) 2 A holds.

It is not too difficult to see that this property implies
xµ

N

(k) 2 A for all k � 1 if xµ
N

(0) 2 A.

For terminal constrained problems, recursive feasi-
bility is usually established by demanding that the
terminal constraint set X0 is viable or controlled for-

ward invariant. This means that for each x 2 X0 there
exists u 2U with f (x,u) 2X0. Under this assumption
it is quite straightforward to prove that the feasible
set A = X

N

is also recursively feasible (Grüne and
Pannek, 2011, Lemma 5.11). Note that viability of X0
is immediate if X0 = {x⇤} and x⇤ 2 X is an equilib-
rium, i.e., a point for which there exists u⇤ 2 U with
f (x⇤,u⇤) = x⇤. This setting is referred to as equilib-

rium terminal constraint.

For MPC without terminal constraints, the most
straightforward way to ensure recursive feasibility is
to assume that the state constraint set X is viable
(Grüne and Pannek, 2011, Theorem 3.5). However,
checking viability and even more constructing a vi-
able state constraint set is in general a very difficult
task. Hence, other methods for establishing recursive
feasibility are needed. One method is to assume that
the sequence of feasible sets X

N

, N 2 N becomes sta-

tionary for some N0, i.e., that X
N+1 = X

N

holds for all



N � N0. Under this assumption, recursive feasibility
of X

N0 follows (Kerrigan, 2000, Theorem 5.3). How-
ever, like viability, stationarity is difficult to verify.

For this reason, a conceptually different approach to
ensure recursive feasibility was presented in (Grüne
and Pannek, 2011, Theorem 8.20); a similar approach
for linear systems can be found in Primbs and Nevistić
(2000). The approach is suitable for stabilizing MPC
problems in which the stage cost ` penalizes the
distance to a desired equilibrium x⇤ (cf. Section 4).
Assuming the existence — but not the knowledge —
of a viable neighborhood N of x⇤, one can show that
any initial point x0 for which the corresponding open
loop optimal solution satisfies x

u

?( j) 2N for some
j  N is contained in a recursively feasible set. The
fact that ` penalizes the distance to x⇤ then implies
x

u

?( j) 2N for suitable initial values. Together, these
properties yield the existence of recursively feasible
sets A

N

which become arbitrarily large as N increases.

4. STABILITY

Stability in the sense of this article refers to the fact
that a prespecified equilibrium x⇤ 2 X — typically a
desired operating point — is asymptotically stable for
the MPC closed loop for all initial values in some set
S . This means that the solutions xµ

N

(k) starting in
S converge to x⇤ as k!• and that solutions starting
close to x⇤ remain close to x⇤ for all k � 0. Note that
this setting can be extending to time varying reference
solutions, see [reference to Tracking MPC].

In order to enforce this property, we assume that the
stage cost ` penalizes the distance to the equilibrium
x⇤ in the following sense: ` satisfies

`(x⇤,u⇤) = 0 and a1(|x|) `(x,u) (6)

for all x 2 X and u 2 U. Here a1 is a K• function,
i.e., a continuous function a1 : [0,•)! [0,•) which is
strictly increasing, unbounded and satisfies a1(0) = 0.
With |x| we denote the norm on X . In this article
we exclusively discuss stage costs ` satisfying (6).
More general settings using appropriate detectabil-
ity conditions are discussed, e.g., in (Rawlings and
Mayne, 2009, Section 2.7) or Grimm et al. (2005) in
the context of stabilizing MPC. Even more general
` are allowed in the context of economic MPC, see
[reference to the economic MPC article].

In case of terminal constraints and terminal costs, a
compatibility condition between ` and F is needed
on X0 in order to ensure stability. More precisely, we
demand that for each x 2 X0 there exists a control
value u 2 U such that f (x,u) 2 X0 and

F( f (x,u))�F(x)�`(x,u) (7)

holds. Observe that the condition f (x,u)2X0 is again
the viability condition which we already imposed for
ensuring recursive feasibility. Note that (7) is trivially
satisfied for F ⌘ 0 in case of X0 = {x⇤} by choosing
u = u⇤.

Stability is now concluded by using the optimal value
function

V

N

(x0) := inf
u s.t. (4)

J

N

(x0,u)

as a Lyapunov function. This will yield stability on
S = X

N

, as X
N

is exactly the set on which V

N

is
defined. In order to prove that V

N

is a Lyapunov
function, we need to check that V

N

is bounded from
below and above by K• functions a1 and a2 and that
V

N

is strictly decaying along the closed loop solution.

The first amounts to checking

a1(|x|)V

N

(x) a2(|x|) (8)

for all x 2 X
N

. The lower bound follows immediately
from (6) (with the same a1), the upper bound can be
ensured by conditions on the problem data, see, e.g.,
(Rawlings and Mayne, 2009, Section 2.4.5) or (Grüne
and Pannek, 2011, Section 5.3).

For ensuring that V

N

is strictly decreasing along the
closed loop solutions we need to prove

V

N

( f (x,µ
N

(x)))V

N

(x)� `(x,µ
N

(x)). (9)

In order to prove this inequality, one uses on the one
hand the dynamic programming principle stating that

V

N�1( f (x,µ
N

(x))) = V

N

(x)� `(x,µ
N

(x)). (10)

On the other hand, one shows that (7) implies

V

N�1(x)�V

N

(x) (11)

for all x2X
N

. Inserting (11) with f (x,µ
N

(x)) in place
of x into (10) then immediately yields (9). Details of
this proof can be found, e.g., in Mayne et al. (2000),
Rawlings and Mayne (2009) or Grüne and Pannek
(2011). The survey Mayne et al. (2000) is probably
the first paper which develops the conditions needed
for this proof in a systematic way, a continuous time
version of these results can be found in Fontes (2001).

Summarizing, for MPC with terminal constraints and
costs, under the conditions (6)–(8) we obtain asymp-
totic stability of x⇤ on S = X

N

.

For MPC without terminal constraints and costs, i.e.,
with X0 = X and F ⌘ 0, these conditions can never
be satisfied, as (7) will immediately imply `(x,u) = 0
for all x 2 X, contradicting (6). Moreover, without
terminal constraints and costs one cannot expect (9)
to be true. This is because without terminal constraints
the inequality V

N�1(x)V

N

(x) holds, which together
with the dynamic programming principle implies that
if (9) holds then it holds with equality. This, however,



would imply that µ
N

is the infinite horizon optimal
feedback law, which — though not impossible — is
very unlikely to hold.

Thus, we need to relax (9). In order to do so, instead
of (9) we assume the relaxed inequality

V

N

( f (x,µ
N

(x)))V

N

(x)�a`(x,µ
N

(x)) (12)

for some a > 0 and all x 2 X, which is still enough
to conclude asymptotic stability of x⇤ if (6) and (8)
holds. The existence of such an a can be concluded
from bounds on the optimal value function V

N

. As-
suming the existence of constants g

K

� 0 such that the
inequality

V

K

(x) g
K

min
u2U

`(x,u) (13)

holds for all K = 1, . . . ,N and x 2X, there are various
ways to compute a from g1, . . . ,gN

(Grüne, 2012,
Section 3). The best possible estimate for a , whose
derivation is explained in detail in (Grüne and Pannek,
2011, Chapter 6), yields

a = 1� (g
N

�1)’N

i=2(gi

�1)
’N

i=2 g
i

�’N

i=2(gi

�1)
. (14)

Though not immediately obvious, a closer look at this
term reveals a ! 1 as N ! • if the g

K

are bounded.
Hence, a > 0 for sufficiently large N.

Summarizing the second part of this section, for MPC
without terminal constraints and costs, under the con-
ditions (6), (8) and (13) asymptotic stability follows
on S = X for all optimization horizons N for which
a > 0 holds in (14). Note that the condition (13)
implicitly depends on the choice of `. A judicious
choice of ` can considerably reduce the size of the
horizon N for which a > 0 holds (Grüne and Pannek,
2011, Section 6.6) and thus the computational effort
for solving (2)–(4).

5. PERFORMANCE

Performance of MPC controllers can be measured in
many different ways. As the MPC controller is derived
from successive solutions of (2), a natural quantitative
way to measure its performance is to evaluate the
infinite horizon functional corresponding to (3) along
the closed loop, i.e.,

J

cl

• (x0,µ
N

) :=
•

Â
k=0

`(xµ
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(k),µ
N

(xµ
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(k)))

with xµ
N

(0) = x0. This value can then be compared
with the optimal infinite horizon value

V•(x0) := inf
u:u(k)2U,x

u

(k)2X
J•(x0,u)

where

J•(x0,u) :=
•

Â
k=0

`(x
u

(k),u(k)).

To this end, for MPC with terminal constraints and
costs, by induction over (9) and using nonnegativity
of ` it is fairly easy to conclude the inequality

J

cl

• (x0,µ
N

)V

N

(x0)
for all x 2 X

N

. However, due to the conditions on the
terminal cost in (7), V

N

may be considerably larger
than V• and an estimate relating these two functions is
in general not easy to derive (Grüne and Pannek, 2011,
Examples 5.18 and 5.19). However, it is possible to
show that under the same assumptions guaranteeing
stability the convergence

V

N

(x)!V•(x)
holds for N ! • (Grüne and Pannek, 2011, Theorem
5.21). Hence, we recover approximately optimal infi-
nite horizon performance for sufficiently large horizon
N.

For MPC without terminal constraints and costs, the
inequality V

N

(x0)V•(x0) is immediate, however, (9)
will typically not hold. As a remedy, we can use (12)
in order to derive an estimate. Using induction over
(12) we arrive at the estimate

J

cl

• (x0,µ
N

)V

N

(x0)/a V•(x0)/a.

Since a ! 1 as N ! •, also in this case we obtain
approximately optimal infinite horizon performance
for sufficiently large horizon N.

6. SUMMARY AND FUTURE DIRECTIONS

MPC is a controller design method which uses the
iterative solution of open loop optimal control prob-
lems in order to synthesize a sampled data feedback
controller µ

N

. The advantages of MPC are its ability
to handle constraints, the rigorously provable stabil-
ity properties of the closed loop and its approximate
optimality properties. Assumptions needed in order
to rigorously ensure these properties together with
the corresponding mathematical arguments have been
outlined in this article, both for MPC with terminal
constraints and costs and without. Among the disad-
vantages of MPC are the computational effort and the
fact that the resulting feedback is a full state feedback,
thus necessitating the use of a state estimator to recon-
struct the state from output data [reference to Moving
Horizon Estimation].

Future directions include the application of MPC to
more general problems than set point stabilization or
tracking, the development of efficient algorithms for
large scale problems including those originating from
discretized infinite dimensional control problems and
the understanding of the opportunities and limitations
of MPC in increasingly complex environments, see
also [reference to distributed MPC].
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Grüne, L. and Pannek, J. (2011). Nonlinear

Model Predictive Control. Theory and Algorithms.
Springer-Verlag, London.

Kerrigan, E.C. (2000). Robust constraint satisfaction:
Invariant sets and predictive control. PhD Thesis,
University of Cambridge.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and
Scokaert, P.O.M. (2000). Constrained model pre-
dictive control: stability and optimality. Automat-

ica, 36, 789–814.
Primbs, J.A. and Nevistić, V. (2000). Feasibility
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