
Predictive Control of a Smart Grid: A Distributed Optimization
Algorithm with Centralized Performance Properties*

Philipp Braun1, Lars Grüne1, Christopher M. Kellett2, Steven R. Weller2, and Karl Worthmann3

Abstract— The authors recently proposed several model
predictive control (MPC) approaches to managing residential
level energy generation and storage, including centralized,
distributed, and decentralized schemes. As expected, the dis-
tributed and decentralized schemes result in a loss of perfor-
mance but are scalable and more flexible with regards to net-
work topology. In this paper we present a distributed optimiza-
tion approach which asymptotically recovers the performance
of the centralized optimization problem performed in MPC
at each time step. Simulations using data from an Australian
electricity distribution company, Ausgrid, are provided showing
the benefit of a variable step size in the algorithm and the
impact of an increasing number of participating residential
energy systems. Furthermore, when used in a receding horizon
scheme, simulations indicate that terminating the iterative
distributed optimization algorithm before convergence does not
result in a significant loss of performance.

I. INTRODUCTION

With the proliferation of residential rooftop solar pho-
tovoltaics and the increasing availability of cost-effective
residential-scale energy storage solutions (e.g., batteries
or fuel cells), there is a need to coordinate the storage
charge/discharge schedules so as to avoid large demand
peaks or troughs. In [14], [13], the authors proposed three
different model predictive control (MPC) schemes to smooth
the energy demand of a collection of residences. These
MPC schemes involved a centralized approach, requiring
full communication of all relevant system variables, a dis-
tributed approach, requiring limited communication of rele-
vant system variables, and a decentralized approach, requir-
ing no communication of system variables. While all three
approaches succeeded in smoothing the aggregate energy
demand, unsurprisingly the centralized approach achieved
better performance when compared to the distributed and
decentralized approaches, but suffered from an inability to
scale to a large number of residential systems.

In this paper, we present a distributed optimization algo-
rithm with the goal of recovering the performance of the
centralized MPC scheme whilst remaining scalable. In other

*C.M. Kellett is supported by ARC Future Fellowship FT1101000746.
L. Grüne is supported by the Deutsche Forschungsgemeinschaft, Grand GR
1569/13-1.

1P. Braun and L. Grüne are with the Mathematical Institute, Uni-
versität Bayreuth, 95440 Bayreuth, Germany, e-mail: {philipp.braun,
lars.gruene}@uni-bayreuth.de.

2C. M. Kellett and S. R. Weller are with the School of Electri-
cal Engineering and Computer Science at the University of Newcas-
tle, Callaghan, New South Wales 2308, Australia, e-mail: {chris.kellett,
steven.weller}@newcastle.edu.au.

3K. Worthmann is with the Institute for Mathematics, Technische Uni-
versität Ilmenau, 99693 Ilmenau, Germany, e-mail: karl.worthmann@tu-
ilmenau.de.

words, we focus on the solution of a single, finite time
horizon, optimization problem implemented in a distributed
fashion.

At least in the control literature, the field of distributed
optimization traces its roots to the thesis of Tsitsiklis [11]
(see also [2]). Much of the recent work in this field has
involved multi-agent systems trying to optimize a global
objective function under different conditions; see for example
[5], [7], [8], [9], [15] and the references therein. A common
feature in many of these references is the assumption that
the global cost function can be decomposed as a sum of the
cost functions for each individual agent. However, the cost
function naturally used to solve the problem of smoothing
the energy demand is not decomposable in this way.

In [4], a closely related problem is solved where an elec-
tricity retailer aims to minimize the cost due to discrepancies
between the power the retailer bids to use and what its
customers actually use. Again, this gives rise to a different
cost function to that which we propose.

The paper is organized as follows. In Section II we
introduce the mathematical model of the Residential Energy
System (RES) and define the desired performance metrics.
The centralized MPC approach is presented in Section III
and our proposed distributed computation algorithm is de-
scribed in Section IV-A. A brief comparison with primal/dual
decomposition is provided in Section IV-B. A simulation
study using data from an Australian electricity distribution
company, Ausgrid, is undertaken in Section V. In partic-
ular, we demonstrate the benefit of a varying step-size in
the distributed optimization algorithm (Section V-A), we
examine the impact of increasing the number of systems
(Section V-B), and the effect of early termination of the
distributed optimization algorithm is illustrated (Section V-
C). Concluding remarks are provided in Section VI.

II. THE RESIDENTIAL ENERGY SYSTEM

Let I ∈ N be the number of RESs connected in the local
area under consideration. We summarize a simple model of
RES i, i ∈ {1, . . . , I}, presented in [13]

xi(k + 1) = xi(k) + Tui(k), (1)
zi(k) = wi(k) + ui(k) (2)

where xi is the state of charge of the battery in [kWh], ui
is the battery charge/discharge rate in [kW], wi is the static
load minus the local generation in [kW], and zi is the power
supplied by/to the grid in [kW]. Here, T represents the length
of the sampling interval in [h] (hours); e.g., T = 0.5[h]
corresponds to 30 minutes. While the system dynamics (1)

is autonomous, the performance output (2) depends on the
time varying quantity wi(·).

The RES network is then defined by the following
discrete-time system

x(k + 1) = f(x(k), u(k)),

z(k) = h(u(k), w(k))

where x, u, w, z ∈ RI , and the definitions of f and h are
given componentwise by (1) and (2), respectively. For each
RES i ∈ {1, . . . , I}, the constraints on the battery capacity
and charge/discharge rates are described by the constants
Ci, ui ∈ R>0 and ui ∈ R<0, i.e.,

0 ≤ xi(k) ≤ Ci and ui ≤ ui(k) ≤ ui ∀k ∈ N0. (3)

Our goal is to flatten the performance output z. We
introduce two relevant performance metrics. To this end, let

Π(k) :=
1

I
I∑
i=1

zi(k)

denote the average power demand at time k and let N denote
the number of samples comprising a simulation length. The
performance metric of peak-to-peak (PTP) variation of the
average demand of all RESs is given by(

max
k∈{0,...,N−1}

Π(k)

)
−
(

min
k∈{0,...,N−1}

Π(k)

)
. (PTP)

The second performance metric of the root-mean-square
(RMS) deviation from the average is defined as√√√√ 1

N
N−1∑
k=0

(Π(k)− Υ)
2 (RMS)

with the average demand Υ := 1
NI
∑N−1
k=0

∑I
i=1 wi(k).

III. MODEL PREDICTIVE CONTROL APPROACHES

We recall a model predictive control (MPC) algorithm
for the control of a network of RESs introduced in [13]
and [14], respectively. This approach is a centralized MPC
(CMPC) scheme, in which full communication of all relevant
variables for the entire network as well as a known model
of the network are required. In Section IV-A we present a
distributed optimization algorithm which is based on local
optimization problems, keeping the flexibility of the network
topology, while maintaining optimality with respect to the
CMPC approach. A corresponding proof of convergence is
given in the Appendix.

MPC iteratively minimizes an optimization criterion with
respect to predicted trajectories and implements the first
part of the resulting optimal control sequence until the next
optimization is performed (see, e.g., [10] or [6]). To this end,
we assume that we have predictions of the residential load
and generation some time into the future that is coincident
with the horizon of the predictive controller. In other words,
given a prediction horizon N ∈ N, we assume knowledge
of wi(j) for j ∈ {k, . . . , k + N − 1}, where k ∈ N0 is the
current time.

A. Centralized Model Predictive Control (CMPC)
To implement the CMPC algorithm, we compute the

network-wide average demand at every time step k over the
prediction horizon by

ζ̄(k) :=
1

I
I∑
i=1

 1

N

k+N−1∑
j=k

wi(j)

 (4)

and then minimize the joint cost function

V (x(k); k) := min
û(·)

k+N−1∑
j=k

(
ζ̄(k)− 1

I
I∑
i=1

(wi(j) + ûi(j))︸ ︷︷ ︸
ẑi(j)

)2
(5)

with respect to the predicted control inputs û(·) =
(û1(·), û2(·), . . . , ûI(·))T with ûi(·) = (ûi(j))

k+N−1
j=k , i ∈

{1, 2, . . . , I}, subject to the system dynamics (1), the current
state x(k) = (x1(k), . . . , xI(k))T , and the constraints (3) for
i ∈ {1, . . . , I}. The vector of the predicted performance out-
put ẑ(·) is defined in the same way as the predicted control
û(·). To simplify the notation, the current time k is dropped
when it does not deliver extra information. Additionally we
use the notation u(j) = (u1(j), . . . , uI(j))T for a fixed time
j ∈ N. The same holds for the other variables x, w and z.

In Figure 1 the aggregated energy profile and the aggre-
gated battery profile for a simulation of one week (N =
336, T = 0.5[h]) for 100 RESs, initial conditions xi(0) =
0.5[kWh], constraints ui = −ui = 0.3[kW] and battery
capacity Ci = 2[kWh] for all i ∈ {1, . . . , 100} are visu-
alized. The load and generation data for this simulation was
collected by an Australian electricity distribution company,
Ausgrid, as part of their Smart Grid, Smart City project. The
figures compare the uncontrolled system dynamics with the
closed loop dynamics of CMPC.

0 24 48 72 96 120 144 168

0

0.2

0.4

0.6

0.8

1

z
 i
n

 [
K

W
]

Time in hours

Uncontrolled
CMPC

0 24 48 72 96 120 144 168

0

0.5

1

1.5

2

x
 i
n

 [
K

W
h

]

Time in hours

Fig. 1. Performance of CMPC for a simulation length of one week
and 100 RES. The left figure shows the average power demand
while the right figure shows the average state of charge of the
batteries.

IV. CENTRALIZED MPC WITH DISTRIBUTED
COMPUTATION

In this section, we propose a hierarchical distributed model
predictive control (DiMPC) approach where each RES can
communicate with a central entity to achieve the performance
of the CMPC algorithm, i.e., a network-wide objective while
keeping flexibility. The optimal value returned by the dis-
tributed optimization algorithm coincides with the optimal
value of the minimization problem (5) (cf. the Appendix for
a proof).

A. The Distributed Optimization Algorithm

The distributed optimization algorithm 1 is based on the
cost function (5) introduced in the centralized setting. Instead
of solving one minimization problem, several iterations are
performed at every time step k in which every RES mini-
mizes only over its own control variables. The central entity
communicates the aggregated performance output between
the systems and computes an appropriate step size θ in every
iteration.

At time step k, the algorithm is initialized with ζ̄ := ζ̄(k)
(cf. Equation (4)), wi(j) := wi(k + j), j = 0, . . . , N − 1,
i ∈ {1, 2, . . . , I}, and x(0) := x(k).

Algorithm 1 Distributed Optimization Algorithm
Input:
• RES i, i ∈ {1, 2, . . . , I}: initial state of charge xi(0),

prediction horizon N , energy profile (wi(j))
N−1
j=0 , and ζ̄.

• Central Entity: Number of RESs I, N , ζ̄, maximal
iteration number `max ∈ N ∪ {∞}, desired precision ε.

Initialization:
• RES i, i ∈ {1, 2, . . . , I}: define and transmit

(ẑ?1i (j))N−1j=0 and (ẑ1i (j))N−1j=0 .
• Central Entity: Set the iteration counter ` = 0 and
V 1 =∞, receive (ẑ1i (j))N−1j=0 , i ∈ {1.2. . . . , I}.

Phase 1 (Central Entity): Increment the iteration counter `.
Then, receive (ẑ?`i (j))N−1j=0 , i = 1, 2, . . . , I.
• Compute the step size θ` as

argmin
θ∈[0,1]

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

θẑ?`i (j) + (1− θ)ẑ`i (j)
)2

(6)

• Compute ẑ`+1(j) := θ`ẑ?`(j) + (1 − θ`)ẑ`(j) and the
predicted average demand Π`(j) := 1

I
∑I
i=1 ẑ

`+1
i (j)

for j ∈ {0, 1, . . . , N − 1}. Then, evaluate the perfor-
mance index

V `+1 :=

N−1∑
j=0

(
ζ̄ −Π`(j)

)2
. (7)

• If |V `+1 − V `| < ε or ` ≥ `max holds, terminate the
algorithm. Otherwise transmit θ` and (Π`(j))N−1j=0

Phase 2 (RES i, i ∈ {1, 2, . . . , I}): Receive θ` and
(Π`(j))N−1j=0

• For j = 0, 1, . . . , N − 1 compute

ẑ`+1
i (j) := θ`ẑ?`i (j) + (1− θ`)ẑ`i (j) (8)

• Solve the (local) minimization problem

min
ûi(·)

N−1∑
j=0

(
ζ̄ −Π`(j) +

ẑ`+1
i (j)

I − wi(j) + ûi(j)

I

)2

subject to the system dynamics (1), x̂i(0) = xi(0),
and the constraints (3) to obtain the unique minimizer
(ẑ
?`+1

i (j))N−1j=0 := (wi(j) + û
?`+1

i (j))N−1j=0 .
• Transmit (ẑ

?`+1

i (j))N−1j=0 .

Note that Π`(·) only depends on ẑ`+1(·). The index is
chosen in such a way that in iteration `, the predicted average
Π`(·) has to be transmitted. A feasible initialization of RES
i, i ∈ {1, . . . , I} is for example given by ẑ?1i (j) = ẑ1i (j) :=
wi(j), which corresponds to the choice u1(·) ≡ 0 and can be
replaced by any other admissible initialization. Algorithm 1
is terminated either after a fixed number of iterations `max

or if the stopping criteria |V `+1 − V `| < ε is satisfied.
The communication structure of Algorithm 1 is visualized
in Figure 2.

Iteration `, Phase 1 Iteration `, Phase 2

CE

• Compute ✓`

• Update ẑ`+1

• Compute ⇧`

✓`,⇧`
RES i

• Update ẑ`+1
i

• Compute ẑ?`+1
i

ẑ?`+1
i

✓`,⇧`

ẑ?`1 · · · ẑ?`I

Fig. 2. Communication structure of Algorithm 1.

The input u(k) is defined by the update rule of Equa-
tion (8), i.e., as a convex combination of the last two
computed inputs. Since the constraints define a convex set
it is ensured that ẑ`+1

i (·) corresponds to an admissible input
sequence in every iteration. Theorem 1.4 in the Appendix
ensures that the value V ` converges to the unique optimal
value if the iteration index ` tends to infinity. Moreover,
note that solving the minimization problem (6) is equivalent
to a simple function evaluation as proven in the following
proposition.

Proposition 4.1: If (ẑ?`(j))N−1j=0 6= (ẑ`(j))N−1j=0 , the pa-
rameter θ` in iteration ` is given by the projection of

θ̃ :=

∑N−1
j=0

(∑I
i=1

(
ζ̄ − ẑ`i (j)

))(∑I
i=1

(
ẑ?`i (j)− ẑ`i (j)

))
∑N−1
j=0

(∑I
i=1

(
ẑ?`i (j)− ẑ`i (j)

))2
to the interval [0, 1], i.e., θ = max{0,min{θ̃, 1}}.

Proof: In order to show the assertion, we define the
function

F (θ) :=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

θẑ?`i (j) + (1− θ)ẑ`i (j)
)2

=

N−1∑
j=0

(
ζ̄ − 1

I
I∑
i=1

ẑ`i (j)−
θ

I
I∑
i=1

(
ẑ?`i (j)− ẑ`i (j)

))2

Since F is strictly convex, the assertion follows by solving
F ′(θ̃) = 0 and projecting the solution on the interval [0, 1].
Hence, showing that θ̃ solves F ′(θ̂) = 0 completes the proof.

This follows by computing −I2/2 · F ′(θ):

I
N−1∑
j=0

[(
ζ̄ − 1

I
I∑
i=1

ẑ`i (j)−
θ

I
I∑
i=1

∆`
i(j)

)
·
I∑
i=1

∆`
i(j)

]

=

N−1∑
j=0

(I∑
i=1

(
ζ̄ − ẑ`i (j)

))
·
I∑
i=1

∆`
i(j)− θ

N−1∑
j=0

(I∑
i=1

∆`
i(j)

)2
with ∆`

i(j) = ẑ?`i (j)− ẑ`i (j).
Remark 4.2: Alternatively to the variable step size θ`

computed in Equation (6), the fixed step size θ` = 1/I leads
to a decrease of the optimal value V ` in every iteration and
convergence to the optimal value of the CMPC minimization
problem which is an immediate consequence of the proof of
Lemma 1.2. In Section V the impact of a fixed and a variable
step size is illustrated by simulations.

In every iteration, the central entity communicates N
values (the average consumption at each time within the
prediction window) and the parameter θ to all RESs. In
the reverse direction, each RES transmits N values in each
iteration. Hence, the amount of data transmitted by the
central entity is independent of the number of systems and
the information can be broadcast. Since the optimization
problems are solved by the RESs individually, the complexity
of the algorithm does not grow with the number of systems.
The central entity does not make use of the constraints (3).
Changing system dynamics, constraints or adding/removing
single systems can be achieved easily on a local level, mak-
ing the algorithm nicely scalable — in contrast to CMPC.

B. Comparison to primal and dual decomposition

In this section we compare Algorithm 1 with primal and
dual decomposition algorithms described in [3]. Decomposi-
tion approaches describe methods to break a single optimiza-
tion problem into several optimization problems which are
easier to solve. Primal decomposition refers to the decom-
position of the original problem while dual decomposition
manipulates the dual formulation.

Consider the minimization problem

min
v,y

f(v, y)

s.t. (v, y) ∈ P
(9)

given in [3]. Here f denotes a convex function and P a
polyhedron of suitable dimension. Assume that the function
f and the polyhedron P can be split such that the minimiza-
tion problem (9) can be equivalently written as

min
v,y

∑I
i=1 fi(vi, y)

s.t. vi ∈ Pi ∀i = 1, . . . , I
y ∈ Py

(10)

with convex functions fi and polyhedra Py and Pi for i ∈
{1, . . . , I}. Hence the objective function is decoupled with
respect to the variables vi, and for a fixed value y ∈ Py , one
can solve the minimization problems

min
vi

fi(vi, y)

s.t. vi ∈ Pi
(11)

separately. This technique of rewriting (9) as several prob-
lems of the form (11) is called primal decomposition. To
solve the problem in a distributed way, (11) is solved for
all i ∈ {1, . . . , I} and a fixed value y ∈ Py . Afterwards, the
optimization variable y is updated and the process is repeated
until an optimal solution is found.
In our case, the minimization problem (5) can be written as

min
v1,...,vI

∑I
i=1 fi(v1, . . . , vI)

s.t. vi ∈ Pi ∀i = 1, . . . , I
where vi = ui and

f(v1, . . . , vI) =

N−1∑
j=0

(
ξ(j)− 1

I
I∑
i=1

vi(j)

)2

with constant values ξ(j). Observe that due to the square,
the function f is not separable with respect to the variables
v1, . . . , vI . Additionally, an analog of the variable y does
not exist in our setting. Nevertheless, it is possible to find
similarities between primal decomposition and Algorithm 1.
We define the values

yi(j) = ξ(j)− 1

I
I∑

j=1;i6=j
ṽi(j)

for given values ṽi(j). Then we can define the functions

f(vi, yi) =
1

I
N−1∑
j=0

(
yi(j)−

1

I vi(j)
)2

and the corresponding minimization problems

min
vi

fi(vi, yi)

s.t. vi ∈ Pi
which are separated for constant values yi or constant values
ṽi, respectively. Hence, the minimization problems can be
solved in a distributed manner by iteratively updating ṽi. One
way of updating ṽi is given by Algorithm 1. In contrast to
primal decomposition, however, we point out that in our case
yi is not an optimization variable and we need an individual
yi for every fi.

In dual decomposition, the minimization problem (10) is
written in the form

min
vi,yi

∑I
i=1 fi(vi, yi)

s.t. vi ∈ Pi ∀i = 1, . . . , I
yi ∈ Py ∀i = 1, . . . , I
yi = yj ∀i, j = 1, . . . , I.

(12)

Instead of fixing the parameter y, yi is used as an additional
optimization variable. The optimization problem (12) can
be separated by looking at the Lagrangian and fixing the
Lagrange variables. In dual decomposition, the minimization
problems are solved for the unknowns (xi, yi) and fixed La-
grange variables for the next iteration, the Lagrange variables
are updated until a solution is found. As emphasized above,
the variable y does not exist in our objective function and
hence, dual decomposition is not applicable in our context.

V. A NUMERICAL CASE STUDY

A numerical case study is presented in order to show
the benefit of DiMPC compared to CMPC. This case study
is based on anonymized load and generation profiles of
residential customers provided by an Australian electricity
distribution company, Ausgrid, based in New South Wales.

The numerical experiments are conducted using the in-
terior point solver IPOPT [12] and the HSL mathematical
software library [1] to solve the underlying minimization
problems and linear systems of equations, respectively. For
all numerical experiments we fix the initial values xi(0) =
0.5[kWh] and the constraints Ci = 2[kWh], ui = −ui =
0.3[kW] for all i ∈ {1, . . . , I}.
A. Choice of the Step Size θ

In this subsection we investigate the role of the step
length θ. To this end, 20 RESs are simulated for a duration
of 3 days (N = 144, T = 0.5[h]). In Figure 3 we visualize
the number of iterations until a certain accuracy |V `(k) −
V ?(k)| ≤ 10−i, i ∈ {1, 2, . . . , 5}, is reached.

a) Variable θ b) Fixed θ = 1/I

0 24 48 72 96 120 144
0

50

100

150

200

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Time index k
0 24 48 72 96 120 144

0

50

100

150

200

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Time index k

Fig. 3. Number of iterations to obtain a certain accuracy εi = 10−i

for i = 1, . . . , 5 at time step k, i.e., |V `(k)− V ?(k)| ≤ εi where
V ? denotes the solution of the centralized MPC algorithm.

If a fixed step size θ = 1/I is used instead of a
variable θ according to Proposition 4.1 the required number
of iterations is, on average, twice as large, see Table I.

Accuracy average no. maximum no. minimum no.
θ 1/I variable 1/I variable 1/I variable
ε = 10−1 8.61 3.81 12 6 6 3
ε = 10−2 23.90 15.05 42 24 10 6
ε = 10−3 59.33 33.04 86 46 13 11
ε = 10−4 99.85 51.44 131 67 14 16
ε = 10−5 142.69 65.89 176 89 16 19

TABLE I
Average, minimum, and maximum number of iterations to achieve

a certain accuracy for variable and fixed θ.

In Figure 4 the average deviation in iteration ` from the
benchmark CMPC solution, i.e., 1

N
∑N−1
k=0 |V `(k)−V ?(k)|,

is visualized. The average is taken with respect to each sam-
pling instant k with simulation length N = 144. Hence, the
convergence speed of the distributed optimization algorithm
with step size θ in accordance with Proposition 4.1 clearly
outperforms its counterpart using constant θ = 1/I. The

constant line after approximately 120 iterations is due to the
optimization accuracy of IPOPT.

0 50 100 150 200 250 300
10

−8

10
−6

10
−4

10
−2

10
0

10
2

1 N

∑
N k
=
1
|V

ℓ
(k
)
−

V
⋆
(k
)|

Iteration ℓ

Fig. 4. Average speed of convergence of the distributed optimization
algorithm with fixed θ = 1/I (black) and variable θ (blue).

B. Impact of the Number of Systems

Next, we analyze the dependence of the (average) number
of iterations on the number of RESs. To this end, the number
of RESs, I, is varied within the set {10, 20, . . . , 300}.
Then, the number of iterations is counted until the accuracy
|V ` − V ?| ≤ 10−2 is obtained both for variable and fixed
step size θ. In Figure 5, we observe a linear growth in
the number of iterations for fixed θ while this number is
significantly smaller and seems to grow sublinearly in the
case of variable θ. In conclusion, the number of iterations
stays moderate for variable θ while it may become too large
for θ = 1/I to make the algorithm applicable for a (very)
large number of RESs.

50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

Number of RES

Fig. 5. Average number of iterations needed to ensure the accuracy
|V `−V ?| ≤ 10−2 in dependence of the number of RES with fixed
θ = 1/I (red) and with variable θ (blue). The dashed lines show
the maximal and minimal number of iterations.

C. Imperfect Optimization

Algorithm 1 needs about 42 iterations on average to
obtain an accuracy of 10−2 in the setting of 100 RESs and

variable θ, cf. Figure 5.
However, in practice, it may be necessary to terminate the

algorithm after a fixed number of iterations; e.g., due to a
fixed allowable computation time. We examine two issues.
The first is merely the performance of Algorithm 1 with
a fixed number of iterations. The second is the closed loop
performance of Algorithm 1 with a fixed number of iterations
when used in a receding horizon fashion. We first compute
the deviation |V `(k)− V ?(k)| at each time instant k within
the simulation window and, then, we analyze the MPC closed
loop performance. If the step size θ is chosen such that (6) is
solved in each iteration the total deviation is still large after
10 iterations, but the closed loop performance already looks
convincing, see Figure 6.

0 48 96 144 192 240 288 336
0

0.2

0.4

0.6

0.8

1

1.2

|V
ℓ
(k
)
−
V

⋆
(k
)|

Time index k

3 Iterations

5 Iterations

10 Iterations

0 24 48 72 96 120 144 168
0.2

0.3

0.4

0.5

0.6

0.7

0.8

z
 i
n
 [
K

W
]

Time in hours

CMPC
DiMPC

Fig. 6. Deviation and MPC closed loop evolution for 100 RESs
using variable θ and incomplete optimization (10 iterations).

On the contrary, the closed loop performance is not
satisfactory for fixed θ as seen in Figure 7.

0 48 96 144 192 240 288 336
0

0.2

0.4

0.6

0.8

1

1.2

|V
ℓ
(k
)
−
V

⋆
(k
)|

Time index k

0 24 48 72 96 120 144 168
0.2

0.3

0.4

0.5

0.6

0.7

0.8

z
 i
n
 [
K

W
]

Time in hours

Fig. 7. Deviation and MPC closed loop evolution for 100 RESs
using fixed θ and incomplete optimization (10 iterations).

The same conclusions can be drawn for even smaller
iteration numbers (see Table II).

Number of iterations variable θ θ = 1/I
DiMPC - CMPC PTP RMS PTP RMS
` = 3 0.0000 0.0212 0.2914 0.1033
` = 5 0.0000 0.0102 0.2592 0.0942
` = 10 0.0000 0.0041 0.2028 0.0759

TABLE II
Deviation of Distributed MPC with incomplete optimization and

CMPC for 100 RES — in dependence of the step size θ.

Remark 5.1: For the considered data set in this section,
i.e., the 144 samples and a variable number of RESs, the
values of V ? are in the interval [0.054, 1.850]. A large (small)

V ? corresponds to a large (small) deviation from the average
ζ. Therefore, we use the absolute error∣∣V ` − V ?∣∣ ≤ ε
instead of the relative error∣∣V ` − V ?∣∣ ≤ ε · V ?
as a qualitative measure of the results. If V ? is small the
performance with respect to our metrics is good even if the
relative error might still be large. The choice ε = 10−2 for
most of the numerical simulations seems to be reasonable
for our application, but can be replaced by any other value.

VI. CONCLUSION

In this paper we have presented a distributed optimization
algorithm for the application to the problem of smoothing en-
ergy consumption in a residential electricity network where
residences have small scale generation (e.g., rooftop solar
photovoltaic panels) and storage (e.g., a battery). This iter-
ative message-passing algorithm asymptotically recovers the
optimal value of the centralized optimization problem. Via a
simulation study, the distributed optimization algorithm has
been shown to scale well with the number of systems and,
when used in an MPC scheme, to retain good performance
when the algorithm is terminated after a fixed number of
iterations. Furthermore, we have demonstrated the benefit of
implementing a variable step size.

APPENDIX

In this section, we prove convergence of Algorithm 1 to
the optimal value of (5), i.e., we show that the limit V ? :=
lim`→∞ V ` corresponding to Algorithm 1 coincides with the
optimal value V] of the minimization problem

min
ẑ1(·),...,ẑI(·)

∑N−1
j=0

(
ζ̄ − 1

I
∑I
i=1 ẑi(j)

)2
s.t. x(0) = x̂(0)

xi(j + 1) = xi(j) + Tui(j)
zi(j) = wi(j) + ui(j)
ui ≤ ui(j) ≤ ui
0 ≤ xi(j + 1) ≤ Ci
∀(i, j) ∈ {1, . . . , I} × {0, . . . , N − 1}

(13)

which has to be solved in every time step of CMPC.
To this end, we define the functions

vi(ẑi(·); `) :=

N−1∑
j=0

(
ζ̄ −Π`(j) +

1

I
(
ẑ`i (j)− ẑi(j)

))2
(14)

and rewrite the local minimization problem from Phase 2 of

Algorithm 1

min
ẑi(·)

v(ẑi(·); `)
s.t. xi(0) = x̂i(0)

xi(j + 1) = xi(j) + Tui(j)
zi(j) = wi(j) + ui(j)
ui ≤ ui(j) ≤ ui
0 ≤ xi(j + 1) ≤ Ci
∀j ∈ {0, . . . , N − 1}

(15)

for i ∈ {1, . . . , I}. The constraints of (15) define a convex
and compact set. The function vi is strictly convex and
continuous in ẑi(·) and in the parameters ζ̄−Π`(j)+ẑ`i (j)/I,
j ∈ {0, . . . , N − 1}. Hence the optimal value vi(ẑ?i (·); `),
where ẑ?i (·) denotes the unique minimizer of the local min-
imization problem, depends continuously on the parameters
ζ̄−Π`(j) + ẑ`i (j)/I, j ∈ {0, . . . , N − 1}. Since we will use
this result in the following we will state it in a Lemma.

Lemma 1.1: The optimal value vi(ẑ
?
i (·); `) of the local

minimization problem (15) of RES i ∈ {1, . . . , I} is con-
tinuous with respect to the parameters ζ̄ −Π`(j) + ẑ`i (j)/I,
j ∈ {0, . . . , N − 1}.

Before we can prove the convergence of the sequence
(V `)`∈N0

we show the weaker result of monotonicity.
Lemma 1.2: The sequence (V `)`∈N0 generated by Al-

gorithm 1 is monotonically decreasing, i.e., V `+1 ≤ V `

holds for all ` ∈ N. If, additionally, ẑ?`(·) 6= ẑ`(·), then
V `+1 < V ` holds. Hence, the sequence (V `)`∈N0

is strictly
monotonically decreasing until Algorithm 1 stops.

Proof: Since θ ∈ [0, 1] is chosen such that F (θ) attains
its minimum, see Remark 4.1, replacing θ by I−1 yields a
larger value

V `+1 =

N−1∑
j=0

(
ζ̄ −Π`(j)

)2
=

N−1∑
j=0

(
ζ̄ − 1

I

I∑
i=1

ẑ`i (j) +
1

I

I∑
i=1

θ
(
ẑ`i (j)− ẑ?`i (j)

))2

=

N−1∑
j=0

(
ζ̄ −Π`−1(j) +

1

I

I∑
i=1

θ
(
ẑ`i (j)− ẑ?`i (j)

))2

≤
N−1∑
j=0

(
1

I

I∑
i=1

(
ζ̄ −Π`−1(j) +

1

I

(
ẑ`i (j)− ẑ?`i (j)

)))2

≤
I∑

i=1

1

I

N−1∑
j=0

(
ζ̄ −Π`−1(j) +

1

I

(
ẑ`i (j)− ẑ?`i (j)

))2

︸ ︷︷ ︸
=vi(ẑ

?`
i (·);`)

≤ 1

I

I∑
i=1

vi(ẑ
`
i (·); `) =

1

I

I∑
i=1

N−1∑
j=0

(
ζ̄ −Π`−1(j)

)2
= V `.

The first inequality follows with θ = 1/I. The second
inequality follows from the definition of convex functions
(or Jensen’s inequality), i.e.,

f

(
M∑
m=1

αixi

)
≤

M∑
m=1

αif(xi),

M∑
m=1

αi = 1, αi ≥ 0

applied to f(x) = x2. The third inequality is a direct con-
sequence of the optimality of ẑ?`i (·). Since vi(·; `) is strictly
convex we obtain

∑I
i=1 vi(ẑ

?`
i (·); `) < ∑Ii=1 vi(ẑ

`
i (·); `) if

there exists an index (i, j) ∈ {1, 2, . . . , I}×{0, 1, . . . , N−1}
such that ẑ?`i (j) 6= ẑ`i (j) holds.
The proof of Lemma 1.2 shows that 1/I is a possible, fixed,
choice for θ in Algorithm 1. Hence, the convergence also
holds if the (optimal) step size in Algorithm 1 is replaced
by the step size 1/I.

Corollary 1.3: For ` → ∞ the sequence (V `)`∈N0
⊂ R

of Algorithm 1 converges, i.e., lim`→∞ V ` = V ? ∈ R.
Proof: Since V ` ≥ 0 and (V `)`∈N0

is monotonically
decreasing by Lemma 1.3, (V `)`∈N0 converges to its infimum
V ?.

In Lemma 1.2 and Corollary 1.3 we have shown that
the sequence (V `)`∈N is converging. What is left to show,
is the convergence against the value corresponding to the
minimization problem (13) which will be done next.

Theorem 1.4: The limit V ? of the sequence (V `)`∈N0

generated by Algorithm 1 coincides with the optimal value
V] of the minimization problem (13).

Proof: Let z](·) denote the solution of Problem (13).
Since the cost function is continuous and defined on a
compact set, there exists an (admissible) accumulation point
z?(·) of the sequence (ẑ`(·))∞`=0 satisfying the equality

N−1∑
j=0

(
ζ − 1

I
I∑
i=1

z?i (j)

)2

= V ?.

We first assume that the limit ẑ?i (·) is obtained in finitely
many iterations, i.e., there exists a j? ∈ N such that ẑj

?

i (·) =
ẑ?i (·). We define the function F ? : [0, 1]I → R as

F ?(θ) :=

N−1∑
j=0

(
ζ̄ − 1

I

I∑
i=1

(
(1− θi)z?i (j) + θiz

]
i (j)

))2

=

N−1∑
j=0

(
ζ̄ − 1

I

I∑
i=1

z?i (j)− 1

I

I∑
i=1

θi(z
]
i (j)− z

?
i (j))

)2

To show the assertion, we assume

F ?(1I) = V] < V ? = F ?(0I). (16)

Since F ?(·) is convex, its directional derivative in 0I with
respect to θ = 1I is less than zero, i.e.,

0 > 〈gradF ?(0I),1I〉 =

I∑
i=1

∂F ?

∂θi
(0I). (17)

Inequality (16) implies the existence of an index i ∈
{1, . . . , I} such that z]i (·) 6= z?i (·) and, thus, 0 > ∂F?

∂θi
(0I)

holds. However, then the i-th RES updates ẑ(·), cf. (14) —
a contradiction to the assumption that V ? is the limit of
(V `)`∈N0

according to Lemma 1.2 since the update ẑj
?+1(·)

leads to a better value V j
?+1 < V ?. If the accumulation

point ẑ?(·) is not reached in finitely many steps then there
exists a subsequence (jk)k∈N such that limk→∞ ẑjk(·) =
ẑ?(·). Then, due to the continuity of the optimal value
function (c.f. Lemma 1.1) there exists a k? ∈ N such that

V jk?+1 < V ? which again contradicts the properties of V ?.

REFERENCES

[1] HSL Mathematical Software Library. A collection of Fortran codes
for large-scale scientific computation, 2004. http://hsl.rl.ac.uk/.

[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, Belmont, MA, USA,
1989.

[3] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on decom-
position methods. Technical report, Stanford University, 2007.

[4] T.-H. Chang, A. Nedić, and A. Scaglione. Distributed constrained
optimization by consensus-based primal-dual perturbation method.
IEEE Transactions on Automatic Control, 59(6):1524–1538, 2014.

[5] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for
distributed optimization: Convergence analysis and network scaling.
IEEE Transactions on Automatic Control, 57(3):592–606, 2012.

[6] L. Grüne and J. Pannek. Nonlinear Model Predictive Control. Theory
and Algorithms. Springer London, 2011.

[7] D. Jakoveticć, J. Xavier, and J. M. F. Moura. Fast distributed gradient
methods. IEEE Transactions on Automatic Control, 59(5):1131–1146,
2014.

[8] A. Nedić and A. Ozdaglar. Distributed subgradient methods for
multi-agent optimization. IEEE Transactions on Automatic Control,
54(1):48–61, 2009.

[9] A. Nedić, A. Ozdaglar, and P. A. Parillo. Constrained consensus and
optimization in multi-agent networks. IEEE Transactions on Automatic
Control, 55(4):922–938, 2010.

[10] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory
and Design. Nob Hill Publishing, 2009.

[11] J. N. Tsitsiklis. Problems in Decentralized Decision Making and
Computation. PhD thesis, MIT, Cambridge, MA, USA, 1984.

[12] A. Wächter and L. T. Biegler. On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[13] K. Worthmann, C. M. Kellett, P. Braun, L. Grüne, and S. R. Weller.
Distributed and decentralized control of residential energy systems
incorporating battery storage. IEEE Transactions on Smart Grid, 2015.
Doi: 10.1109/TSG.2015.2392081.

[14] K. Worthmann, C. M. Kellett, L. Grüne, and S. R. Weller. Distributed
control of residential energy systems using a market maker. In 19th
IFAC World Congress, South Africa, pages 11641–11646, 2014.

[15] M. Zhu and S. Martı́nez. On distributed convex optimization under
inequality and equality constraints. IEEE Transactions on Automatic
Control, 57(1):151–164, 2012.

