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Abstract— We consider nonlinear economic model predictive
control (MPC) without terminal constraints or costs. We show
that under suitable conditions, consisting of strict dissipativity,
the turnpike property and appropriate continuity properties,
a practical Lyapunov function exists for the MPC closed loop.
This Lyapunov function is given by the optimal value function of
the optimal control problem with rotated stage costs originating
from the dissipativity condition. Alternative sufficient conditions
in terms of suitable controllability properties and finite time
optimality of the closed loop trajectories during the transient
phase are also discussed.

I. INTRODUCTION

One of the major accomplishments in economic Model
Predictive Control (MPC) was the observation that under
a strict dissipativity condition the existence of an optimal
equilibrium follows which is asymptotically stable for the
MPC closed loop. The proof of this result relies on the fact
that the optimal value function of an optimal control problem
with a rotated stage cost provides a Lyapunov function for
the closed loop. This was first proved in [4] under a linear
variant of strict dissipativity — which basically translates to
strong duality of linear programs — and then extended to
the general notion of strict dissipativity in [2]. See also [9]
for an extension of the former approach to periodic orbits.

All these results (and also stability results for alternative
economic MPC approaches approaches like, e.g., [5], [8])
have in common that terminal conditions — i.e., terminal
constraints and/or costs — on the optimal control problem
solved in each step of the MPC scheme are imposed and
crucially exploited in the stability proof. In practice, how-
ever, terminal costs are often omitted in order to simplify
the design. Moreover, terminal constraints may restrict the
operating region of the resulting controller. For these reasons,
it is of interest to analyze the behavior of economic MPC
schemes without any terminal conditions. In this paper, we
show that the same Lyapunov function construction as in [2],
[4] also works without terminal conditions if one relaxes the
stability notion to practical asymptotic stability. Essentially,
the terminal conditions are replaced by the turnpike property,
which states that optimal trajectories pass by near the optimal
equilibrium even without enforcing this by additional state
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constraints. Since the turnpike property only ensures that the
trajectories pass by near the optimal equilibrium but do not
necessarily reach this point exactly, as a second ingredient we
need a uniform continuity assumption on the optimal value
functions which ensures that the difference between exact
and approximatly reaching the equilibrium has only small
effects on the optimal value along the resulting trajectories.
Our main result in this paper, Theorem 3.6, makes this
precise. Since both, the turnpike property and the uniform
continuity cannot be checked directly in terms of the problem
data, we also derive alternative (sufficient) conditions in
terms of suitable controllability properties in Theorems 4.4
and 4.9. Moreover, using the practical Lyapunov function we
will be able to derive finite horizon approximate optimality
properties of the MPC closed loop trajectories during their
transient phase, as stated in Theorem 5.1.

In the technical parts of this paper, we heavily rely upon
preliminary results from [7]. Indeed, the proof of the main
Theorem 3.6 essentially consists in cleverly re-arranging
inequalities from this reference in order to verify the practical
Lyapunov function property. By doing so, we improve the
results from [7] by obtaining significantly stronger properties
while removing the requirement of exponential (or at least
superlinear) convergence of the error terms induced by the
turnpike property. While exponential turnpike is still dis-
cussed in this paper as a special case, it does no longer belong
to the conditions for practical stability and approximately
optimal transient performance.

The organization of this paper is as follows. After for-
mulating the problem, introducing the concept of practical
Lyapunov functions and explaining their relevance in Section
II, we formulate and prove the main practical stability
theorem in Section III. Alternative sufficient conditions are
discussed in Section IV and transient optimality in Section
V. Section VI illustrates our results by means of a numerical
example and Section VII concludes our paper.

II. PROBLEM FORMULATION

We consider nonlinear discrete time control systems given
by

x(k + 1) = f(x(k), u(k)) (1)

for f : X×U → X , with normed spaces X and U denoting
the state and control space, respectively. The solution of sys-
tem (1) for a control sequence u = (u(0), u(1), . . . , u(K −
1)) ∈ UK emanating from the initial value x is denoted
by xu(k, x), k = 0, . . . ,K − 1. The sets X and U denote
the admissible states and controls. For a given initial value
x ∈ X, a control sequence u ∈ UK is called admissible



if xu(k, x) ∈ X holds for all time instants k = 0, . . . ,K.
The set of all admissible control sequences is denoted by
UK(x). For the infinite case u = (u(0), u(1), . . . ) ∈ U∞

we define the sets U∞ and U∞(x) similarly. In order to
avoid feasibility issues we assume UK(x) 6= ∅ for all x ∈ X
and all K ∈ N ∪ {∞}.

For a given stage cost ` : X×U → R we define the finite
horizon cost functional

JN (x, u) :=
N−1∑
k=0

`(xu(k, x), u(k)), (2)

and the corresponding optimal value function

VN (x) := inf
u∈UN (x)

JN (x, u). (3)

In the sequel we assume that for all x ∈ X and all N ∈ N
there is a control sequence u?N,x ∈ UN (x), such that the
equality VN (x) = JN (x, u?N,x) holds, i.e. u?N,x solves the
optimal control problem of minimizing JN (x, u) with respect
to u ∈ UN (x). We remark that optimal control sequences
need not be unique; in this case u?N,x denotes one of the
possible optimal control sequences.

The optimal control problem just defined can be used in
order to define a feedback law using the following iterative
model predictive control (MPC) scheme. Fixing an optimiza-
tion horizon N ∈ N, at each time instant n we perform the
following steps:

1) Measure the current state x = x(n) of the system.
2) Solve the optimization problem of minimizing

JN (x, u) with respect to u ∈ UN (x) subject to
xu(0, x) = x and xu(k + 1, x) = f(xu(k, x), u(k)).
Denote the resulting optimal control sequence by u?N,x.

3) Apply the first element of u?N,x as a feedback con-
trol value until the next time instant, i.e., define the
feedback law µN (x) := u?N,x(0).

The resulting MPC closed loop system is given by x(n+1) =
f(x(n), µN (x(n))). Trajectories of this system with initial
value x ∈ X will be denoted by xµN

(n, x)
As the MPC feedback law is derived from minimizing (2),

questions about the optimality properties of the closed loop
naturally arise. Here, we will investigate the values

JclK(x, µN ) :=
K−1∑
n=0

`(xµN
(n, x), µN (xµN

(n, x))),

for arbitrary K ∈ N. Moreover, stability properties of the
closed loop are of interest and — as we will see — form an
important prerequisite for approximate optimality estimates.
In this respect, the key contribution of this paper is the proof
that essentially the same Lyapunov function which can be
used in economic MPC with terminal conditions [4], [2] can
also be used in our setting.

For the definition of stability we will make use of the

following classes of comparison functions

L :=
{
δ : R+

0 → R+
0

∣∣∣∣ δ continuous and decreasing
with limk→∞ δ(k) = 0

}
,

K :=
{
α : R+

0 → R+
0

∣∣∣∣ α continuous and strictly
increasing with α(0) = 0

}
,

K∞ := {α ∈ K |α unbounded},

KL :=
{
β : R+

0 × R+
0 → R+

0

∣∣∣∣ β continuous,
β(·, t) ∈ K, β(r, ·) ∈ L

}
.

Stability will be considered for optimal steady states defined
as follows.

Definition 2.1: A pair (xe, ue) ∈ X× U that satisfies the
condition f(xe, ue) = xe is called steady state or equilibrium
for the control system (1). A steady state is optimal, if it
solves the optimization problem

min
x∈X,u∈U

`(x, u) s.t. f(x, u)− x = 0. (4)

Definition 2.2: Let xe ∈ X be an equilibrium for the
closed loop system, i.e. xe = f(xe, µ(xe)). The equilibrium
is called practically asymptotically stable w.r.t. ε ≥ 0 on a
set S ⊆ X with xe ∈ S if there exists β ∈ KL such that

‖xµ(k, x)− xe‖ ≤ max{β(‖x− xe‖, k), ε} (5)

holds for all x ∈ S and all k ∈ N. The equilibrium is globally
practically asymptotically stable w.r.t. ε ≥ 0 if (5) holds on
S = X.

A sufficient condition for this stability property is the
existence of a practical Lyapunov function in the following
sense.

Definition 2.3: A function V : X → R is a practical
Lyapunov function w.r.t. δ > 0 for the closed loop system
on a set S ⊆ X with xe ∈ S, if there are α1, α2 ∈ K∞ and
α3 ∈ K such that

α1(‖x− xe‖) ≤ V (x) ≤ α2(‖x− xe‖) (6)

holds for all x ∈ X and

V (f(x, µ(x))) ≤ V (x)− α3(‖x− xe‖) + δ (7)

holds for all x ∈ S.
The relevance of the existence of a practical Lyapunov

function follows from the following theorem, which is stan-
dard and can be found in similar forms in various references.
The particular form given here is proved in [6].

Theorem 2.4: Let V be a practical Lyapunov function
w.r.t. some δ > 0 on a set S ⊆ X. Assume that either
S = X or S = V −1[0, L] := {x ∈ X |V (x) ≤ L} for some
L > α2(α−1

3 (δ)) + δ. Then xe is practically asymptotically
stable on S w.r.t. ε = α−1

1 (α2(α−1
3 (δ)) + δ).

III. THE BASIC STABILITY RESULT

In this section we show how to re-arrange the inequalities
proved in [7] in order to verify that ṼN is a practical
Lyapunov function for the economic MPC closed loop. The
conditions we impose for this result are
• strict dissipativity, equal to that used in [2]



• continuity and local Lipschitz or uniform continuity of
all data near xe and ue

• uniform continuity of the optimal value functions in xe

• the turnpike property
and are given in rigorous form in the following four assump-
tions.

Assumption 3.1 (Strict dissipativity): The optimal control
problem of minimizing (2) is strictly dissipative, i.e., there
is an equilibrium (xe, ue) ∈ X×U, a function α` ∈ K∞ and
a storage function λ : X → R such that

min
u∈U

˜̀(x, u) ≥ α`(‖x− xe‖) (8)

holds for all x ∈ X, where ˜̀ denotes the rotated stage costs

˜̀(x, u) := `(x, u) + λ(x)− λ(f(x, u))− `(xe, ue). (9)

In the next assumptions we use the balls Bδ(xe) := {x ∈
X | ‖x− xe‖ < δ} for δ > 0.

Assumption 3.2 (Continuity of data): The functions f , `
and λ are continuous and Lipschitz continuous with constants
Lf , L` and Lλ on balls Bδ(xe) and Bδ(ue) around xe and
ue, respectively, and ˜̀ satisfies the inequality

˜̀(x, u) ≤ α(‖x− xe‖) + α(‖u− ue‖) (10)

for all x ∈ X, u ∈ U and a suitable α ∈ K∞.
We remark that under Assumption 3.1 the function ˜̀ is

zero in (xe, ue). Hence, in the finite dimensional case with
X ⊆ Rn and U ⊆ Rm inequality (10) follows from continuity
of ˜̀.

In order to formulate the next assumptions we need the
following additional definition.

Definition 3.3: For the rotated stage cost ˜̀ from Assump-
tion 3.1, we define J̃N (x, u) and ṼN (x) similar to (2) and
(3) with ˜̀ in place of `. The corresponding optimal control
sequences are denoted by ũ?N,x.
We remark that in general the optimal trajectories for the
original and the rotated stage cost do not coincide.

Assumption 3.4 (Uniform continuity of VN and ṼN ):
There exist γV , γ̃V ∈ K such that

|VN (x)− VN (xe)| ≤ γV (‖x− xe‖) and

|ṼN (x)− ṼN (xe)| ≤ γ̃V (‖x− xe‖)

holds for all x ∈ X and all N ∈ N.
Assumption 3.5 (Turnpike property): There exists c ∈

(7/8, 1) and σ ∈ L such that for each x ∈ X and each
N ∈ N the number QN := #PN for

PN := {k ∈ {0, . . . , N − 1} : ‖xu?
N,x

(k, x)− xe‖ ≤ σ(N)}

satisfies QN ≥ cN . The same estimate holds for the optimal
trajectories xũ?

N,x
of the rotated problem.

The following theorem shows that under these conditions
the function ṼN is a practical Lyapunov function for the
economic MPC closed loop.

Theorem 3.6: Consider an economic MPC problem with-
out terminal constraints satisfying Assumptions 3.1, 3.2, 3.4

and 3.5. Then there exists N0 ∈ N and functions δ ∈ L and
αV ∈ K∞ such that the inequalities

α`(‖x− xe‖) ≤ ṼN (x) ≤ αV (‖x− xe‖) (11)

and

ṼN (f(x, µN (x))) ≤ ṼN (x)− ˜̀(x, µN (x)) + δ(N) (12)

≤ ṼN (x)− α`(‖x− xe‖) + δ(N)

hold for all N ≥ N0 and x ∈ X. In particular, the func-
tions ṼN are practical Lyapunov functions for the economic
MPC closed loop system and the closed loop is practically
asymptotically stable w.r.t. ε→ 0 as N →∞.
Proof: The lower bound on ṼN follows directly from
Assumption 3.1 and the fact that ṼN (x) ≥ minu∈U ˜̀(x, u).
The upper bound follows from Assumption 3.4 with αV =
γ̃V . From [7, Theorem 4.2] applied with K = 1 we get

`(x, µN (x)) ≤ VN (x)− VN (f(x, µN (x))) + ε(N − 1)

with ε(N) = γV (σ(N)) + γV (Lf (σ(N))) + L`(σ(N)),
implying that [7, Eq. (18)] holds with ε(N − 1) in place
of δ(N).

The fact that the set PN in Assumption 3.5 contains more
than 7N/8 elements implies that the intersection of eight
such sets contains at least one element P ∈ {0, . . . , N − 1}.
Hence, we can proceed as in the proof of Theorem 7.6 in
[7] with K = 1 in order to conclude

˜̀(x, µN (x)) ≤ ṼN (x)−ṼN (f(x, µN (x)))+ε(N−1)+R(N),

where the remainder term R(N) is a sum of six terms of the
form γV (σ(N)), γ̃V (σ(N)), Lλσ(N).

Hence, (12) follows with δ(N) = ε(N − 1) + R(N)
which is an the LN-function. The last inequality follows from
Assumption 3.1.

IV. ALTERNATIVE SUFFICIENT CONDITIONS

While Assumptions 3.1 und 3.2 are easy to check once
the data is available (and in case λ is not available there are
at least sufficient conditions guaranteeing the existence of λ,
see, e.g., [3]), Assumptions 3.4 and 3.5 involve the optimal
value functions and trajectories whose a priori computation
we would like to avoid. To this end, in this section we present
sufficient controllability and stabilizability conditions under
which these two assumptions can be concluded.

The first set of conditions applies to nonlinear systems
with compact state and control constraints.

Assumption 4.1 (Compactness): The state and control
constraint set X and U are compact.

Assumption 4.2 (Local controllability on Bε(xe)):
There is ε > 0, M ′ ∈ N, C > 0 such that
∀x ∈ Bε(xe) ∃u1 ∈ UM ′

(x), u2 ∈ UM ′
(xe) with

xu1(M
′, x) = xe, xu2(M

′, xe) = x

and

max{‖xu1(k, x)− xe‖, ‖xu2(k, x
e)− xe‖,

‖u1(k)− ue‖, ‖u2(k)− ue‖} ≤ C‖x− xe‖



for k = 0, 1, · · · ,M ′ − 1.
Assumption 4.3 (Finite time controllability into Bε(xe)):

For ε > 0 from Assumption 4.2 there is K ∈ N such that
for each x ∈ X there is k ≤ K and u ∈ Uk(x) with
xu(k, x) ∈ Bε(xe).

The following theorem shows that these assumptions can
be used in order to replace Assumptions 3.4 and 3.5.

Theorem 4.4: Consider an economic MPC problem with-
out terminal constraints satisfying Assumptions 3.1, 3.2 and
4.1 – 4.3. Then there exists N0 ∈ N and functions δ ∈ L and
αV ∈ K∞ such that the inequalities (11) and (12) hold for
all N ≥ N0 and x ∈ X. In particular, the functions ṼN are
practical Lyapunov functions for the economic MPC closed
loop system and the closed loop is practically asymptotically
stable w.r.t. ε→ 0 as N →∞.
Sketch of proof (for details see [6, Proof of Theorem 3.7]):
We prove the theorem by showing that Assumptions 3.4 and
3.5 and thus all assumptions of Theorem 3.6 are satisfied.

Assumptions 4.2 and 4.3 imply that that every initial
state x can be steered to xe in a (globally bounded) finite
number of steps with control effort linear in x − xe if x
is sufficiently close to xe. Together with (10) this implies
Assumption 3.4 for ṼN . The proof of Assumption 3.4 for
VN is more involved. It follows by [7, Theorem 6.4] from
Assumptions 3.1 and 4.2. Similar to [7, Theorem 5.3] one
sees that Assumption 3.1 and Assumption 4.3 imply the
turnpike property from Assumption 3.5 with

σ(N) = α−1
`

(
C ′

1− c
N

)
with c from Assumption 3.5 and C ′ = maxx∈X 2|λ(x)| +
maxx∈X γV (‖x− xe‖).

Remark 4.5: Note that the assumptions of Theorem 4.4
are not much more restrictive than those needed in [2] for
proving stability for terminal constrained economic MPC.
Strict dissipativity1 and continuity are also assumed in this
reference, Assumption 4.2 is slightly stronger but conceptu-
ally similar to [2, Assumption 2] and Assumption 4.3 will
hold if we restrict X to the feasible set XN from [2].

Remark 4.6: If we additionally assume the follow-
ing polynomial growth condition: There are constants
C1, C2, p, η > 0 such that

C1(‖x−xe‖p) ≤ ˜̀(x, u) ≤ C2(‖x−xe‖p+‖u−ue‖p) (13)

holds for all x ∈ Bη(xe), u ∈ Bη(ue) with xe, ue and ˜̀ from
Assumption 3.1. Then, it follows from [3, Theorem 6.5] that
σ(N) and thus also δ(N) converge to 0 exponentially fast,
i.e., there are C > 0 and θ ∈ (0, 1) with δ(N) ≤ CθN .

Our second set of conditions covers unconstrained linear
quadratic problems. In this setting, we make the following
assumptions.

Assumption 4.7 (Linear quadratic problem): The dynam-
ics and the cost functions are given by

f(x, u) = Ax+Bu+ c and

1The counterpart to the function α` in [2] is only assumed to be positive
definite and not of class K∞ as in our Assumption 3.1; however, for
compact X this does not make a difference.

`(x, u) = xTRx+ uTQu+ sTx+ vTu

with x ∈ Rn, u ∈ Rm, A,B,R,Q are matrices and s, v are
vectors of appropriate dimensions with R and Q symmetric
and positive definite.

Assumption 4.8 (No constraints): There are no state and
control constraints, i.e., X = Rn and U = Rm.

Note that in this setting there exists a unique optimal
steady state xe in the sense of Definition 2.1. Moreover, [3,
Proposition 4.5] shows that xe is strictly dissipative with ˜̀
satisfying (13) .

Theorem 4.9: Consider an economic MPC problem with-
out terminal constraints satisfying Assumptions 4.7 and 4.8
and let xe be the optimal steady state. Then xe is practically
asymptotically stable on each compact subset S ⊂ Rn w.r.t.
ε → 0 as N → ∞ if and only if the pair (A,B) is
stabilizable. In this case, the problem is strictly dissipative
and the functions ṼN are practical Lyapunov functions for
the closed loop satisfying (11) and (12), and ε converges to
0 exponentially fast in N .
Sketch of proof (for details see [6, Proof of Theorem
3.11]): “⇒”: Clearly, practical asymptotic stability implies
stabilizability of (A,B).

“⇐”: If (A,B) is stabilizable, then strict dissipativity
from Assumption 3.1 follows from [3, Proposition 4.5],
the turnpike property in Assumption 3.5 was proved in [3,
Theorem 6.2] and the uniform continuity of VN and ṼN
in Assumption 3.4 follows from the explicit representation
of these functions via the corresponding Riccati equations.
Since Assumption 3.2 is obviously satisfied, practical asymp-
totic stability and the fact that ṼN are Lyapunov functions
follow from Theorem 3.6.

Since ε in Theorem 2.4 depends on δ = δ(N) in a
polynomial way, exponential convergence follows by Remark
4.6, noting that [3, Theorem 6.2] yields exponential turnpike
and the quadratic stage cost ` satisfies the polynomial bounds
from Remark 4.6 with p = 2.

V. TRANSIENT PERFORMANCE

The fact that ṼN can be used as a practical Lyapunov
function enables us to prove an approximate finite horizon
optimality property of economic MPC without terminal con-
straints. Since the performance on finite horizons is essen-
tially determined by the transient behavior of the closed loop
trajectories, we use the notion of “transient performance”.
In order to formulate this concept in detail, assume that
the MPC closed loop is practically asymptotically stable,
implying xµN

(K,x) → xe as N → ∞ and K → ∞.
Then, transient optimality means that among all trajectories
xu(k, x) satisfying ‖xu(K,x)−xe‖ ≤ ‖xµN

(K,x)−xe‖, the
MPC closed loop trajectories are those with the smallest cost
JK(x, u) — up to an error term which vanishes as N →∞
and ‖xµN

(K,x)− xe‖ → 0. We define
UKε (x) := {u ∈ UK(x) |xu(K,x) ∈ Bε(x)}.

We remark that for arbitrary u ∈ UK(x) in general JK(x, u)
can be much smaller than JclK(x, µN ), since even under
the assumption of strict dissipativity finite horizon optimal



trajectories need not end up near xe, cf., e.g., the examples
in [3].

Theorem 5.1: Assume that xe is practically asymptoti-
cally stable on a set S ⊆ X w.r.t. ε = ε(N) for the
economic MPC closed loop with Lyapunov function ṼN
satisfying (11), (12). Assume that there exists αλ ∈ K∞
with |λ(x)| ≤ αλ(‖x − xe‖) for all x ∈ X. Let εK,N :=
‖xµN

(K,x) − xe‖ ≤ max{β(‖x − xe‖,K), ε(N)}. Then
the inequality

JclK(x, µN (x)) ≤ inf
u∈UK

εK,N
(x)
JK(x, u) + αV (εK,N )

+ 2αλ(εK,N ) +Kδ(N) (14)

holds for all K,N ∈ N and all x ∈ S.
Proof: First, by induction from (12) we obtain

K−1∑
k=0

˜̀(xµN
(k, x), µN (xµN

(k, x)))

≤ ṼN (x)− ṼN (xµN
(K)) +Kδ(N). (15)

Second, from the dynamic programming principle
ṼN (x) = infu∈UK(x){J̃K(x, u) + ṼN−K(xu(K,x))}

and (11) we obtain for all K ∈ {1, . . . , N} and u ∈ UKε (x)

J̃K(x, u)

= J̃K(x, u) + ṼN−K(xu(K,x))︸ ︷︷ ︸
≥eVN (x)

− ṼN−K(xu(K,x))︸ ︷︷ ︸
≤αV (ε)

≥ ṼN (x)− αV (ε) (16)

and we note that for K ≥ N non-negativity of ˜̀ implies the
inequality J̃K(x, u) ≥ ṼN (x) for all u ∈ UK(x), implying
again (16). Third, we have

K−1∑
k=0

˜̀(xu(k, x), u(k)) = J̃K(x, u)

= λ(x) + JK(x, u)− λ(xu(K,x)) (17)

and ṼN ≥ 0. Using these inequalities for all u ∈ UKεK,N
(x)

we obtain

JclK(x, µN (x))

(17)=
K−1∑
k=0

˜̀(xµN
(k, x), µN (xµN

(k, x)))

−λ(x) + λ(xµN
(K,x))

(15)
≤ ṼN (x)− Ṽ (xµN

(K,x)) +Kδ(N)
−λ(x) + λ(xµN

(K,x))
(16)
≤ J̃K(x, u) + αV (εK,N )− Ṽ (xµN

(K,x)) +Kδ(N)
−λ(x) + λ(xµN

(K,x))
(17)= JK(x, u) + αV (εK,N )− Ṽ (xµN

(K,x)) +Kδ(N)
−λ(xu(K,x)) + λ(xµN

(K,x))
≤ JK(x, u) + αV (εK,N ) +Kδ(N) + 2αλ(εK,N )

implying the desired inequality.

Remark 5.2: Note that all assumptions of Theorem 5.1 are
satisfied under the assumptions of one of the Theorems 3.6,
4.4 or 4.9. In the linear quadratic case of Theorem 4.9, the
existence of αλ follows because in this setting λ is either
a linear or a quadratic function, cf. [3]. Moreover, if the
condition from Remark 4.6 holds then δ(N) converges to 0
exponentially fast as N →∞, implying that the error terms
on the right hand side of (14) converge to 0 if K,N → ∞
with K ≤ cN for some c > 0. In addition, in this case ˜̀
and Ṽ have identical polynomial growth near xe, implying
that the convergences β(r, k)→ 0 as k →∞ and ε(N)→ 0
as N → ∞ are exponentially fast and thus all error terms
in (14) converge to 0 exponentially fast as K,N →∞ with
K ≤ cN for some c > 0.

VI. NUMERICAL EXAMPLE

We illustrate our findings by means of the example in
[1], [4] that models a chemical reaction in an isothermal
continuously stirred tank reactor (CSTR) of two reactants.
The state space description of the continuous model is given
by dynamics

ẋ1(t) = u(t)(c1 − x1(t))/VR − krx1(t)
ẋ2(t) = u(t)(c2 − x2(t))/VR + krx1(t),

where the states x1, x2 denote the respective concentration
of the reactants, the control u the steerable flow through the
CSTR and the constants c1, c2 the feed concentration of
the chemicals, kr the rate of the reaction (chemical 1 →
chemical 2). VR denotes the volume of the reactor.

The economic stage cost is given by

`(x, u) = −2ux2 + 0.5u+ 0.1(u− 4)2. (18)

We note that the stage cost has been regularized in order to
render the problem strictly dissipative, cf. [1]. The optimal
steady state is given by (xe1, x

e
2, u

e) = (0.5, 0.5, 4).
For our analysis we use the parameters and constraints

from [1], namely VR = 10, c1 = 1, c2 = 0, kr = 0.4 and
X = [0, 1]2, U = [0, 20]. Moreover, we use the sampling
rate T = 0.5 in order to obtain a model in discrete time that
fits our setting.

In [1] and [4] terminal costs or terminal equality con-
straints were used in the optimization problem in the MPC
algorithm for ensuring convergence to the optimal steady
state. Here, we waive all additional constraints or penalties in
the cost functional and expect practical asymptotic stability.
Indeed, Figure 1 shows that the MPC closed loop trajectories
converge into a neighborhood of xe, which is shrinking as
N increases. In order to analyse the speed of the observed
convergence, we measure the distance of the closed loop
trajectory to xe at time k = 5 in the 2-norm with respect
to different optimization horizon N . Figure 2 shows that the
normed distance of the endpoint of the closed loop to the
optimal steady state decreases exponentially fast in N .

Now, we aim to compare the performance of closed
loop trajectory to other trajectories, that converge into a
neighborhood of the optimal steady state (cf. Theorem 5.1).
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Fig. 1. Closed loop trajectories with respect to optimization horizon N =
1, 2 and 5 (from outside to inside) and x0 = (1, 0)T
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Fig. 2. Distance of the closed loop trajectories to xe at time k = 10 for
N = 1, . . . , 10 on a semi-logarithmic scale.

If we use a stabilizing stage cost instead of (18), i.e.,
`(x, u) = ‖x − (xe1, x

e
2)
T ‖22 + 0.1(u − ue)2, we see in

Figure 3, that the trajectory with respect to stabilizing stage
costs converges exactly. We are interested in the performance
of both, the feedback that stems from the original stage
costs and the ”stabilizing feedback” µstab

N in terms of the
original cost criterion. This means, we compare JclK(x, µN )
to JclK(x, µstab

N ). Figure 4 illustrates the statement of Theo-
rem 5.1.

VII. CONCLUSION

In this paper, we have shown that the existence of a
Lyapunov function for economic MPC does not necessarily
rely on appropriate terminal conditions. Indeed, we have
shown that under appropriate conditions a practical Lyapunov
function exists also without including additional terminal
constraints or costs to the MPC scheme. Like in the terminal
constrained case, the Lyapunov function is given by the value
function for the rotated stage cost obtained from a strict
dissipativity condition. The particular form of the Lyapunov
function moreover allows to prove an approximate optimality
estimate for the MPC closed loop trajectories during the
transient phase.
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Fig. 3. Closed loop trajectory w.r.t. original (black) and stabilizing (red)
stage costs and N = 3.

1 1.5 2 2.5 3 3.5 4 4.5 5
−32

−31

−30

−29

−28

−27

−26

−25

N

J K
(x

,µ
)

economic feedback
stabilizing feedback

Fig. 4. Performance of the economic (black) and the stabilizing (red)
feedback for varying N and fixed K = 20.

REFERENCES

[1] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using
model predictive control with a terminal cost,” Annual Rev. Control,
vol. 35, pp. 178–186, 2011.

[2] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance and
stability of economic model predictive control,” IEEE Trans. Autom.
Control, vol. 57, no. 7, pp. 1615–1626, 2012.
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