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Abstract— We present a numerical design method for an
input-to-state practically stabilizing (ISpS) feedback controller
for perturbed discrete time nonlinear control systems. By
appropriately scaling the system, the problem of ISpS controller
design can be converted into a uniform practical stabilization
problem under perturbations which can be solved by a nu-
merical dynamic game approach. We present and analyze this
approach with a particular focus on a quantitative analysis of
the resulting gain and the size of the exceptional region for
practical stability.

I. INTRODUCTION

Since its introduction by Sontag in [22], the concept of
input-to-state stability has become one of the most influential
concepts in nonlinear stability under perturbations. Besides
yielding a theoretically sound concept for the quantitative
and qualitative analysis of stability of nonlinear systems
under perturbations, one of its particular features is the
possibility to analyze the stability of interconnected systems
by means of analyzing low dimensional subsystems via ISS
small gain arguments, see, e.g., [16], [2], [3]. The latter
particularly allows for a rigorous approach to decentralized
controller design by designing input-to-state stabilizing con-
trollers. Hence, a systematic way to design ISS controllers
can in particular serve as a building block for decentralized
stabilizing feedback design for large networks of nonlinear
systems.

Similar to stabilizing controllers for nonlinear systems,
ISS controllers can in principle be derived from correspond-
ing ISS Lyapunov functions via a universal or Sontag type
formula [20]. However, applying this formula requires the
analytic knowledge of an ISS Lyapunov function which
may not always be available. An alternative are dynamic
programming type design methods relying on optimal control
formulations whichrequire much less a priory analytical
knowledge. The main drawback of this approach is the curse
of dimensionality which means that it is only computa-
tionally feasible for systems of moderate space dimension.
However, in a small gain based decentralized setting in
which the controller design is to be carried out for a set
of low dimensional subsystems the approach may provide
an attractive and feasible alternative, which is why we
investigate it in this paper.

A dynamic programming based ISS controller design was
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proposed in [15]1. However, the approach in this paper has
the drawback that by converting the problem into an auxiliary
`∞ control problem the state variable needs to be augmented
by 2 additional scalar states which considerably increases
the computational complexity of the controller design. In
order to avoid this problem, in this paper we propose an
approach which consists of converting the ISS controller
design problem into a uniform stabilization problem for
a perturbed system which can be accomplished without
increasing the dimension. The equivalence between ISS and
robust stability was already exploited in a theoretical context
in [17] (for a continuous time version of this result see
[23]) and thus our approach can be seen as a constructive
numerical interpretation of the results in [17]. In order to
solve the auxiliary stabilization problem under perturbations
we use the game theoretic algorithmic approach from [8]
which in turn relies on [9], [19].

Like in most nonlinear numerical approaches relying on
Lyapunov functions, cf. e.g., [4], [14], [5], a neighborhood of
the equilibrium (in this paper always chosen as the origin)
needs to be treated in a different way. In our setting this
means that the resulting nonlinear controller will in general
only yield input-to-state practical stability (ISpS), i.e., the
closed loop system will have the ISS property only outside
a neighborhood of the origin. For this reason, a substantial
part of the analysis in this paper is devoted to keeping
track of the size of this exceptional neighborhood in order
to control the errors introduced by the numerical solution
of the dynamic game problem. This allows us to identify
conditions under which this neighborhood is small. Hence, a
linearization based design could be used if desired in order
to define an ISS controller also near the origin. Moreover,
we note that both the Lyapunov function as well as the
resulting optimal feedback law are piecewise constant and
thus discontinuous in our approach, which is why we provide
an analysis entirely avoiding continuity assumptions.

II. SETTING

Our goal is to construct an input-to-state practically sta-
bilizing (ISpS) controller for the controlled and perturbed
discrete-time system

xk+1 = f (xk,uk,wk), k = 0,1, . . . (1)

For simplicity of exposition, in this paper we consider a
compact state space X ⊂ Rd . Extensions to hybrid systems
with state spaces containing discrete state components and

1This reference treats various different robust controller design objectives,
among them ISS.



more general set stabilization problems can be addressed
similarly to [7]. The discrete time model under consideration
can, of course, be the discrete time representation of a
sampled continuous time model.

The values uk and wk denote the control and perturbation
acting on the system which are taken from sets U ⊂ Rm an
W ⊂ Rq, respectively, which again for simplicity of exposi-
tion are supposed to be compact. Infinite sequences of control
and perturbation values are denoted by u = (u0,u1, . . .)
and w = (w0,w1, . . .) and the corresponding spaces of such
sequences with values uk ∈U and wk ∈W are denoted by
U and W , respectively.

The control objective of designing an ISpS controller
means that we intend to find a static state feedback controller
uk = uP(xk) such that the closed loop system

xk+1 = f (xk,uP(xk),wk) =: h(xk,wk), k = 0,1, . . . (2)

is input-to-state practically stable in the following sense.
Definition 1: System (2) is called input-to-state practically

stable (ISpS) with respect to δ ,∆w ∈ R≥0 on a set Y ⊂ X if
there exist β ∈K L and γ ∈K , such that the solutions of
the system satisfy

‖xk‖ ≤max{β (‖x0‖,k), γ(‖w‖∞), δ } , (3)

for all x0 ∈ Y , all w ∈W with ‖w‖∞ ≤ ∆w and all k ∈ N0.
The approach we present in this paper relies on the conver-

sion of the ISpS controller design method into a uniformly
practically stabilizing controller design method. To this end,
in the next section we first sketch the dynamic game based
uniformly practically stabilizing controller design method
from [8]. Afterwards, we explain how to use this approach
for the ISpS controller design problem at hand.

III. GAME THEORETIC STABILIZING CONTROLLER
DESIGN FOR PERTURBED SYSTEMS

In this section we consider the perturbed control system

xk+1 = f̃ (xk,uk,dk), k = 0,1, . . . (4)

Except for changing the notation, this model has the same
structure as (1). Moreover, xk, uk and the respective sets and
spaces remain unchanged. The perturbation values dk are
now taken from a set D⊂ Rq, the corresponding sequences
are denoted as d = (d0,d1, . . .) and the space of such se-
quences with dk ∈ D is denoted by D .

The control objective for System (4) is to design a prac-
tically uniformly stabilizing state feedback controller, i.e., a
controller uk = uP(xk) such that the closed loop system

xk+1 = f̃ (xk,uP(xk),dk) =: h̃(xk,dk), k = 0,1, . . . (5)

satisfies the following definition.
Definition 2: System (5) is called uniformly (w.r.t. d∈D)

practically (w.r.t. δ ) asymptotically stable on a set Y ⊂ X if
there exist β ∈K L such that the solutions of the system
satisfy

‖xk‖ ≤max{β (‖x0‖,k), δ } , (6)

for all x0 ∈ Y , all d ∈D and all k ∈ N0.

In order to design a controller we employ the dynamic
game approach from [8] which in turn relies on ideas from
[9], [19]. For a given initial state x ∈ X , a given control
sequence u = (uk)k∈N ∈U and a given perturbation sequence
d = (dk)k∈N ∈D , we denote the solution trajectory of (4) by
(xk(x,u,d))k∈N.

Specifying a target set T (typically a small neighborhood
of the origin) and a stage cost g(x,u), we define the accu-
mulated cost as

J(x,u,w) =
k(T,x,u,d)

∑
k=0

g(xk(x,u,d),uk),

with k(T,x,u,d) := inf{k ≥ 0 |xk(x,u,d) ∈ T}. Here we
assume that the stage cost satisfies the following assumption.

Assumption 3: The stage cost g penalizes the distance to
0, i.e., there exists α ∈K∞ such that

g(x,u)≥ α(‖x‖) (7)

holds for all x ∈ X , u ∈U .
Using the accumulated cost we now define a dynamic

game by means of its upper value function

V (x) = sup
β∈B

inf
u∈U

J(x,u,β (u)), x ∈ X , (8)

Here, B denotes the set of all nonanticipating strategies β :
U →D , i.e. all strategies β satisfying uk = u′k ∀k≤K ⇒
β (u)k = β (u′)k ∀k≤ K for any two control sequences u =
(uk)k,u′ = (u′k)k ∈ U . By standard dynamic programming
arguments [1] one sees that this function fulfills and is
uniquely determined by the optimality principle

V (x) = inf
u∈U

sup
d∈D

{
g(x,u)+V ( f̃ (x,u,d))

}
(9)

for x /∈ T together with the boundary condition V |T ≡ 0. This
equation can also be written as

V (x) = inf
u∈U

{
g(x,u)+ sup

x′∈ f̃ (x,u,D)
V (x′)

}
. (10)

Note that in (10) the parameterization of f̃ by d is not needed
any more since it is sufficient to know the set valued image
f̃ (x,u,D).

This fact is exploited in the discretization proposed in [8].
In this discretization, the set X is decomposed into a finite
partition P of boxes or cells P with pairwise disjoint interior
and

⋃
P∈P P = X . Then, a graph theoretic representation

of the dynamics on P is constructed. Since the model
includes both control and perturbation, the resulting graph
theoretic approximation takes the form of a hypergraph.
Solving a generalized min-max shortest path problem on this
hypergraph then yields an approximation VP of V which is
constant on each element P of the partition P .

The central trick introduced in [8] in terms of stabilization
is to interpret the discretization error introduced by the
partition P as a perturbation and explicitly include it in the
computation. This way, one can prove that the approximation
VP is not an arbitrary approximation to V but that VP is
in fact a practical control Lyapunov function. While in [8]



the discretization error is the only perturbation acting on
the system, here we extend the setting by considering both
the original perturbation d and the discretization error as
perturbations. The necessary changes in the statements and
proofs of the results in [8] are straightforward and are hence
omitted due to space constraints. The resulting theorem then
reads as follows.

Theorem 4: ([8, Theorem 1]) Let V denote the optimal
value function of the dynamic game (8) and let VP denote the
approximate optimal value function constructed according to
the algorithm presented in [8] on a given partition P with
target set T ⊂P and 0 ∈ T . Then,

V (x)−max
y∈T

V (y)≤VP(x), (11)

i.e. VP is an upper bound for V −maxV |T . Furthermore, VP

satisfies

VP(x)≥min
u∈U

{
g(x,u)+ sup

x′∈ f̃ (x,u,D)
VP(x′)

}
(12)

for all x ∈ X \T .
Note that VP may assume the value +∞ on some parts

of X , in which case inequality (12) does not yield valuable
information. We define the stabilizable set w.r.t. VP by

SP := {x ∈ X |VP(x) < ∞}.

Theorem 4 now motivates the definition of the controller

uP(x) := argmin
u∈U

{
g(x,u)+ sup

x′∈ f̃ (x,u,D)
VP(x′)

}
(13)

for x∈ SP \T . For x∈ T we may either use Formula (13) or
we may define uP in a different way, e.g., constantly equal
to 0 or by using linearization at the origin, as, e.g., proposed
in [6] in an event based context. For x∈X \SP , our approach
does not allow for a meaningful definition of uP .

The following theorem from [8] summarizes the properties
of uP .

Theorem 5: ([8, Theorem 2]) Consider system (4), a tar-
get set T ⊂ P with 0 ∈ T and the approximate optimal
value function VP constructed according to the algorithm
presented in [8] on a given partition P . For x0 ∈ SP denote
the trajectory of the closed loop system (5) with feedback
u = uP from (13) by xk.

Then there exists k∗ ∈ N such that

VP(xk)≥ g(xk,uP(xk))+VP(xk+1), k ∈ {0, . . . ,k∗−1},

xk∗ ∈ T and xk ∈ N, k > k∗

where N := {x ∈ X : VP(x) ≤ ν} and ν :=
maxx∈T,d∈D VP( f (x,uP(x),d)), i.e., the closed loop
trajectory enters the target set T at time k∗ and stays in the
sublevel set N, afterwards.

Remark 6: Note that it is in general not possible to use the
target set T = {0} unless we are willing to assume that the
system can be controlled to the origin on finitely many steps
(and even then using T = {0} is likely to cause numerical
problems). Similar problems in small neighborhoods of the

equilibrium occur in many other numerical approaches for
computing Lyapunov functions for nonlinear systems, even
for non-controlled systems, see [4], [14], [5]. This means
that on a small neighborhood around the origin VP is not a
Lyapunov function and consequently the exceptional set N
cannot be avoided. The size of this set then determines the
size of the parameter δ on the practical stability definition.

In control problems, the usual way to work around this
problem is to use linearization techniques in order to solve
the feedback stabilization problem locally near 0. For this
purpose it is of utmost importance to keep the size of the
exceptional set N and thus of δ small. Consequently, one of
the central tasks in the following section will be to carefully
estimate this value in the ISpS context.

IV. ISPS CONTROLLER DESIGN

In order to apply the algorithm from the previous section
to practical ISS controller design we make use of one of
the central results in [17], which states that System (2) is
ISS if and only if it is robustly stable, i.e., if there exists
e : Rn×Rq→ Rq and η ∈K∞ such that System (5) with

f̃ (x,u,d) = f (x,u,e(x,d)) and D = B1(0) (14)

is uniformly asymptotically stable, where e is such that for
each w ∈ W with ‖w‖ ≤ η(‖x‖) there exists d ∈ D with
e(x,d) = w. For instance, e could be defined as e(x,d) :=
η(‖x‖)d which is also the choice in [17]. The proof of
the equivalence between ISS and robust stability relies on
Lyapunov function arguments.

In order to carry over the proof to our setting of practical
stability, in this section we first provide a characterization
of ISpS by means of an appropriate Lyapunov function V .
In contrast to the analogous non-practical statements in [17],
here we give a direct proof which allows to determine the
resulting gains and the size of the practical stability region.
Afterwards we then show that V = VP is an ISpS Lyapunov
function in our sense for the non-scaled system.

A particular difficulty in this derivation is the fact that in
general neither VP nor uP are continuous. Hence, we will
need to avoid all arguments in the proof which require con-
tinuity of VP or uP . We begin by introducing a continuity
condition on f and a boundedness condition on h.

Assumption 7: The map f : X ×U ×W → Rn in (1) is
uniformly continuous in w in the following sense: there exist
γw ∈K∞, such that for all x ∈ X , u ∈U and w ∈W

‖ f (x,u,w)− f (x,u,0)‖ ≤ γw(‖w‖). (15)

Since we assume X and U to be compact it is not very
restrictive to assume that γw is independent of x and u. If
needed, the inequality could be suitably generalized.

Assumption 8: The map h : X×W →Rn in (2) is bounded
for w = 0 on T in the following sense: there exists γx ∈K∞

such that for all sufficiently small sets T ⊂ X with 0∈ T and
each x ∈ T we have

‖h(x,0)‖ ≤ γx(‖x‖). (16)



Observe that Assumption 8 is satisfied, e.g., if uP ≡ 0 on
T and f (x,0,0) is Lipschitz on T with constant L. In this
case, since h(0,0) = f (0,0,0) = 0, we may choose γx(r) =
Lr.

Definition 9: A continuous function V : X→R≥0 is called
an ISpS Lyapunov function for system (2) on a sublevel set
Y = {x∈ X |V (x)≤ `} for some ` > 0 if there exist functions
α, α ∈K∞, α,ρ ∈K , a value w ∈ R>0, and a set T ⊂ Y
such that for all x ∈ Y \T the inequalities and implications

α(‖x‖)≤V (x)≤ α(‖x‖) (17)

and

V (x)≥ ρ(‖w‖) ⇒ V (h(x,w))−V (x)≤−α(‖x‖) (18)

hold for all w ∈W with ‖w‖ ≤ w.
The next theorem now shows that the existence of an ISpS

Lyapunov function implies ISpS and specifies the resulting
gain γ and the size δ in the practical stability definition.

Theorem 10: Consider system (2) satisfying Assumptions
7 and 8 and assume that the system admits an ISpS Lyapunov
function V . Let a = supx∈T ‖x‖. Then the system is ISpS on
Y with

δ = α
−1 ◦α

(
max{2γx(a),a}

)
,

γ(r) = α
−1 ◦α

(
max{2γw(r),α−1(ρ(r))+ γw(r)}

)
and ∆w = γ−1(α−1(`)) provided δ ≤ α−1(`) holds.

Proof: We fix x0 ∈ Y , w ∈ W and denote the corre-
sponding trajectory of (2) by xk. We begin the proof by
deriving estimates for V (xk) under different assumptions. To
this end, we distinguish four different cases.

Case 1: Let k′ ∈ N be such that V (xk) ≥ ρ(‖w‖∞) and
xk ∈ Y \T for all k = 0, ...,k′−1. Then (17) yields

‖x(k)‖ ≥ α
−1(V (x(k))) (19)

and from (18) we obtain

V (xk+1)−V (xk)
(18)
≤ −α(‖xk‖) (20)

(19)
≤ −α

(
α
−1 (V (xk))

)
. (21)

Note that x0 ∈ Y and the definition of Y implies xk ∈ Y for
all k = 0, . . . ,k′− 1, hence (18) may indeed be used for all
these k. Setting α̃ := α ◦α

−1, Lemma 4.3 from [18] then
yields the existence of β̃ ∈K L such that

V (x(k))≤ β̃ (V (x0),k) for all k = 0, . . . ,k′. (22)

Case 2: Let k ∈ N be such that V (xk) < ρ(‖w‖∞) and
xk ∈ Y \T . This implies

α(‖xk‖) ≤ V (x(k)) < ρ(‖w‖∞). (23)

and since (18) implies V (h(xk,0))≤V (xk) we get

‖h(xk,0)‖ ≤ α
−1(ρ(‖w‖∞).

Then Assumption 7 implies

‖xk+1‖ ≤ ‖h(xk,0)‖+ γw(‖w‖∞)
≤ α

−1(ρ(‖w‖))+ γw(‖w‖∞) =: γ̂(‖w‖∞).

This yields

V (xk+1)≤ α(xk+1)≤ α(γ̂(‖w‖∞)) =: γ̃(‖w‖∞).

Case 3: Let k ∈ N be such that V (xk) < γ̃(‖w‖∞) and
xk ∈ Y \T . Then we either have V (xk) < ρ(‖w‖∞) and thus
Case 2 implies V (xk+1)≤ γ̃(‖w‖∞).

Otherwise, we have V (xk)≥ ρ(‖w‖) and (18) yields

V (xk+1)≤V (xk)≤ γ̃(‖w‖∞).

Thus, in either case we get V (xk+1)≤ γ̃(‖w‖∞).
Case 4: Let k ∈ N be such that xk ∈ T . Then, from

Assumptions 7 and 8 we get

‖xk+1‖ = ‖h(xk,wk)‖
≤ ‖h(xk,0)‖+‖h(xk,wk)−h(xk,0)‖
≤ γx(‖xk‖)+ γw(‖w‖∞).

Defining a := supx∈T ‖x‖ we can continue

‖xk+1‖ ≤ γx(a)+ γw(‖w‖∞)≤max{2γx(a),2γw(‖w‖∞)}

and using (17) we get

V (xk+1) ≤ α(max{2γx(a),2γw(‖w‖∞)})
= max{α(2γx(a)),α(2γw(‖w‖∞))}.

Combining these four cases we can now prove the desired
inequality (3):

Let k′ ∈N be maximal such that the condition from Case
1 is satisfied. Then, for all k = 0, . . . ,k′ we get

‖xk‖
(17)
≤ α

−1(V (xk))
(22)
≤ α

−1(βα̃(V (x0),k))
(17)
≤ α

−1(βα̃(α(‖x0‖),k))
=: β (‖x0‖,k) (24)

Now, for all k ≥ k′ by induction we show the inequality

V (xk)≤max{α(2γx(a)),α(a),α(2γw(‖w‖∞)), γ̃(‖w‖∞)}.
(25)

Note that the bounds on δ and ∆w in the assertion ensure
that (25) implies V (xk) ≤ ` and thus xk ∈ Y for all w ∈ W
with ‖w‖∞ ≤ ∆w. Hence, (25) implies that one of the Cases
1–4 must hold for xk. Consequently, if we know that (25)
holds we can use the estimates in the Cases 1–4 in order to
conclude an inequality for xk+1.

To start the induction at k = k′, one checks that by
definition γ̃(r) ≥ ρ(r) holds, hence (25) follows from the
condition in Case 1 and the maximality of k′.

For the induction step k→ k + 1, assume that (25) holds
for xk. Then, either Case 1 holds implying V (xk+1)≤V (xk)
and thus (25) for xk+1. Otherwise, one of the Cases 2–4 must
hold for xk which also implies (25) for xk+1.

Together, (24) and (25) show that either ‖xk‖ ≤ β (‖x0‖,k)
or ‖xk‖ ≤max{γ(‖w‖∞),δ} holds, which shows the desired
ISpS inequality (3).

The following proposition shows that VP when computed
from (4), (14) is an ISpS Lyapunov function for (2).

Proposition 11: Consider the system (1), the function VP

satisfying Theorem 4 for system (4) with f̃ from (14) and



the corresponding feedback uP from (13). Then VP is an
ISpS Lyapunov function for the closed loop system (2) for
any ` > 0.

Proof: Proof of (17): Obviously, VP(x)≥ infu∈U g(x,u)
if x /∈ T . Hence the lower bound in (17) follows directly
from Assumption 3. The existence of an upper bound follows
since VP ≡ 0 holds on T and VP is piecewise constant and
bounded by ` on Y . Hence, supx∈Y,‖x‖≤r VP(x) is piecewise
constant, finite for each r > 0 and equal to 0 for all sufficently
small r > 0. Thus, it can be overbounded by a function α ∈
K∞ (which could, e.g., be constructed by piecewise linear
interpolation).

Proof of (18): From (12) and the definition of uP via
(13) it follows that VP(x)≥ g(x,uP(x))+VP(h̃(x,d)) holds
for all x ∈ Y \T and all d ∈ D. Since by assumption on e
in (14) for all w ∈W with ‖w‖ ≤ η(‖x‖) we find d ∈ D
with w = e(x,d), this implies that for all such w we obtain
the right inequality in (18). This shows that (18) holds with
ρ = η .

Note that since VP assumes only finitely many different
values and is finite on SP , choosing ` := maxx∈SP

VP(x)
yields the maximal possible domain Y = SP on which VP

is an ISpS Lyapunov function.
Our final and main result now summarizes the conditions

under which the feedback uP indeed renders System (1)
ISpS.

Theorem 12: Consider a system (1) satisfying Assump-
tions 7 and 8, the function VP satisfying Theorem 4 for sys-
tem (4) with f̃ from (14) and the corresponding feedback uP

from (13). Let `≤maxx∈SP
VP(x) and let α , α ∈K∞ denote

functions such that (17) holds2 on Y = {x ∈ X |VP(x)≤ `}.
(i) If the value ` > 0 is such that the inequality

`≥ α
(

max{2γx(a),a}
)

(26)

for a = supx∈T ‖x‖ holds, then the system is ISpS on Y
w.r.t δ = α−1 ◦α

(
max{2γx(a),a}

)
and ∆w as specified in

Theorem 10.
(ii) If for each target T which forms a neighborhood of 0

there exists a partition P such that α in (17) can be chosen
independently of T , then for each δ > 0 there exists T and
P such that uP is ISpS on Y w.r.t. this δ and ∆w as specified
in Theorem 10.

Proof: (i) By Proposition 11 the function VP is an ISpS
Lyapunov function. Since (26) ensures that Theorem 10 is
applicable, this yields the ISpS property.

(ii) By choosing T to be a sufficiently small neighborhood
around 0 we can choose a = supx∈T ‖x‖ arbitrarily close to 0.
Since, moreover, α is independent of the choice of T (and by
the first part of the proof of Proposition 11 α is independent
of T , too) we can always ensure that (26) holds and that δ as
specified in (i) can be chosen arbitrarily small. This shows
the assertion.

Remark 13: Under suitable conditions it is reasonable to
expect that the condition on α from Theorem 12(ii) holds

2These functions exist according to the first part of the proof of Propo-
sition 11.

provided the partition P is — at least near the target T —
sufficiently fine. This is due to the fact that with similar
arguments as in the proofs of [13, Theorem 4.3] or [12,
Theorem 5.4] we can first ensure that such a bound holds
for V . In the next step, using similar arguments as in [9], by
choosing the partition P sufficiently fine one can ensure that
VP is close to V from which the assertion follows. Note that
the smaller the target T is the smaller the error and thus the
finer the partition P must be in order to make this argument
work. Details about this construction will be investigated in
future research.

Remark 14: Since the computational part of our approach
entirely relies on computing a uniformly practically asymp-
totically stabilizing feedback law for the scaled system (4) by
means of (a slight generalization of) the approach from [8],
all the extensions developed for this algorithm can be readily
applied to our proposed approach. Particularly, this concerns
the approach to implement the computation of feedback laws
depending not only on the current but also on past values of
the state [10] and an event based computation of uP [11].
Both extensions together allow for a significant reduction
of the number of partition elements representing uP . They
have thus been used in the computations of our numerical
example in the next section.

V. NUMERICAL EXAMPLE

In order to illustrate our approach we show numerical
results for a thermofluid process. The process consists of
the fill level x1 and the temperature x2 of a liquid in a tank.
The inflow of liquid can be controlled by u1 and the liquid
in the tank can be cooled using u2. The perturbations of the
water level w1 and the temperature w2 model the unknown
inflow of liquid from a second tank. For a description of the
full model see [21, Appendix]. After some simplifications of
the equations, the behavior of the tank system is described
by the state-space model

ẋ1(t) =
1

0.065

(
161 ·10−6u1(t)+129 ·10−6

√
w1(t)+0.34

−270 ·10−6
√

x1(t)
)

ẋ2(t) =
1

0.065x1(t)

(
129 ·10−6

√
w1(t)+0.34

×(w2(t)+300− x2(t))

+97 ·10−6u2(t)(287− x2(t))
)

with X = [0.25, 0.4 ]× [290, 320 ], w1 ∈ [−0.09, 0.09 ], w2 ∈
[−20, 20 ] and ui ∈ [0, 1 ], i = 1,2. For u? =
(0.481465,0.48466)T , the equation exhibits the equilibrium
x? = (0.32,295)T . Note that x? is asymptotically stable,
hence the goal of our ISpS controller is not to stabilize the
system at x? but to increase the robustness of the stability
against perturbations.

As the system has a cascaded (or triangular) structure —
i.e., the first equation does not depend on x2 — it has turned
out beneficial to choose e in (14) to reflect this structure, i.e.,
to have the first component independent of x2. Note that this



way the assumption needed in the second part of the proof
of Proposition 11 is not satisfied; however, the proof can be
adapted to the cascaded situation. Hence we chose e in (14)
as

e(x,d) =
( √

1.25297(x1− x?
1)2d1√

618.75(x1− x?
1)2 +0.6273(x2− x?

2)2d2

)
We computed the controller using the stage cost g(x,u) =

4 ·104(x1− x?
1)

2 +(x2− x?
2)

2 on a partition P consisting of
32×32 equally sized elements where the target T was chosen
as the partition element containing x?. The sampling time
was chosen as 2s, and the control and perturbation value
sets U = [0,1]2 and D = [−1,1]2 were discretized with grids
of 9×5 and 3×3 equidistant nodes, respectively.

For the trajectory simulations a randomly generated se-
quence w of perturbations was used, using uniformly dis-
tributed random numbers in [0,0.09] and [0,20], respectively,
for the components of each vector wk ∈ R2. The resulting
trajectories with and without control (both for the same
sequence w) are shown in Figure 1. One clearly sees that
the controller is able to bring the system considerably closer
to the desired equilibrium. However, the practical nature of
the controller is also clearly visible by the zig-zagging effect
of the x1-component. This effect could probably be reduced
by using a local robust controller near x? instead of the
constant equilibrium control value u? we have employed in
our simulation.
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Fig. 1. Trajectories with control (solid) and without control (dashed), x1-
component (left) and x2-component (right)

VI. CONCLUSIONS AND OUTLOOK

We have shown that the equivalence between ISS and
robust stability proved in [17] for discrete time systems
can be used as the basis for a numerical approach for
computing ISS feedback laws. As the underlying algorithm
for calculating uniformly stabilizing feedback laws from [8]
yields only practically stabilizing controllers, the resulting
feedback law will be input-to-state practically stabilizing
w.r.t. some δ > 0. In order to obtain a meaningful stability
property, a careful analysis of the size δ of the practical
stability region is provided in this paper. As Theorem 12
reveals, the existence of an upper bound α on VP which
is independent of the target set T is a crucial property for
bounding δ .

The rigorous derivation of such upper bounds will be
investigated in future research, cf. Remark 13. Moreover,
we intend to address the extension of our analysis to event
based ISpS feedback laws and the proposed computational

approach for ISpS controllers will be used as a building
block for a distributed feedback design for large networks
of systems based on the small gain arguments from [2], [3].
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