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Abstract: Recently, suboptimality estimates for model predictive controllers (MPC) have been
derived for the case without additional stabilizing endpoint constraints or a Lyapunov function
type endpoint weight. The proposed methods yield a posteriori and a priori estimates of the
degree of suboptimality with respect to the infinite horizon optimal control and can be evaluated
at runtime of the MPC algorithm. Our aim is to design automatic adaptation strategies of the
optimization horizon in order to guarantee stability and a predefined degree of suboptimality for
the closed loop solution. Here, we present a stability proof for an arbitrary adaptation scheme
and state a simple shortening and prolongation strategy which can be used for adapting the
optimization horizon.
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1. INTRODUCTION

Nowadays, model predictive controllers (MPC), sometimes
also called receding horizon controllers (RHC), are used in
a variety of industrial applications, cf. Badgwell and Qin
(2003). As shown in Allgöwer and Zheng (2000), Mayne
et al. (2000) and Rawlings and Mayne (2009), theory
for such controllers is also widely understood both for
linear and nonlinear systems. The control method itself
deals with the problem of approximately solving an infinite
horizon optimal control problem which is computationally
intractable in general. Reasons for its success are on the
one hand its capability to directly incorporate constraints
depending on the states and inputs of the underlying
process. On the other hand, the fundamental steps of this
method are very simple: First, a solution of a finite horizon
optimal control problem is computed for a given initial
value. In a second step, the first element of the resulting
control is implemented at the plant and in the last step, the
finite horizon is shifted forward in time. As a consequence,
the method is iteratively applicable and reveals the control
to be a static state feedback.

Unfortunately, stability of solution of the infinite hori-
zon problem may be lost due to considering only finite
horizons. Over the last two decades, several solutions
have been proposed to cope with this issue, see, e.g.,
Keerthi and Gilbert (1988), Chen and Allgöwer (1998)
and Grüne and Rantzer (2008). All these approaches re-
quire the horizon to be sufficiently long and computing
the minimal required horizon length is computationally
demanding. However, the horizon needs to be chosen as a
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worst case scenario which is usually needed to cope with
small regions of state space only. Our aim in this work
is to develop online applicable adaptation strategies for
the horizon length which guarantee stability of the closed
loop. In particular, we follow the approach of Grüne and
Pannek (2009) where different suboptimality estimates
have been developed to measure the performance of the
model predictive controller. Based on these estimates, we
propose a simple technique to locally fit the horizon to
the control task, the current state of the system and also
to the MPC internal information. Due to the change of
the structure of the controller, however, known stability
proofs and suboptimality results cannot be applied. To
cover these issues, we present a stability result for MPC
with varying optimization horizons using mild additional
conditions. To some extend adaptation strategies of the
horizon are known in the literature, see e.g. Frew et al.
(2006) and Viquerat et al. (2008), which are heuristics
based on insight of the specific problem but have shown
to be applicable in an adaptive model predictive control
setting. In contrast to that, our approach can be proven
rigorously and doesnot require any insight into the process
under consideration (note that different to our intention
the term adaptive model predictive control is also used to
incorporate model uncertainties, see, e.g., Michalska and
Mayne (1993) and Adetola et al. (2009)).

The paper is organized as follows: In Section 2 we describe
and motivate the problem setup. Section 3 deals with the
a posteriori and a priori suboptimalty estimates which will
be the foundation of our analysis. In the following Section
4, we show how the stated stability results and estimates
can be extended to the case of varying optimization hori-
zons. Thereafter, we state a simple shortening and prolon-
gation strategy based on the suboptimality estimates given



in Section 5. In order to show the applicability and effec-
tiveness of our approach, Section 6 contains a numerical
example of the adaptive MPC approach. The final Section
7 concludes the paper and points out directions of future
research.

2. SETTING

Within this work we analyze nonlinear discrete time con-
trol systems of the form

x(i+ 1) = f(x(i), u(i)), x(0) = x0 (1)

with x(i) ∈ X ⊂ X and u(i) ∈ U ⊂ U for i ∈ N0. For the
considered systems the state space X and the control value
space U are arbitrary metric spaces. Hence, all following
results also apply to the discrete time dynamics induced by
a sampled infinite dimensional system, cf. Ito and Kunisch
(2002) or Altmüller et al. (2010). Here, we denote the space
of control sequences u : N0 → U by UN0 and the solution
trajectory for given control u ∈ UN0 by xu(·). Additionally,
the sets X and U incorporate possible restrictions on the
state and control respectively.

In the following, we aim at finding a static state feedback
u = µ(x) ∈ UN0 for a given control system (1) which
minimizes the infinite horizon cost functional

J∞(x0, u) =

∞∑
i=0

l(xu(i), u(i)) (2)

with stage cost l : X × U → R+
0 . The correspond-

ing optimal value function is denoted by V∞(x0) =
infu∈UN0 J∞(x0, u) and throughout this paper we assume
that the minimum with respect to u ∈ UN0 is attained.
The optimal value function V∞(·) can be used to define
the infinite horizon feedback law

µ(xu(i)) := argmin
u∈U

{V∞(xu(i+ 1)) + l(xu(i), u)} (3)

for which one can show optimality using Bellman’s op-
timality principle. Since the computation of the desired
control law requires the solution of a Hamilton–Jacobi–
Bellman equation, we use a model predictive control ap-
proach in order to avoid the problem of solving an infinite
horizon optimal control problem. The fundamental idea of
such a model predictive controller is simple and consists
of three steps which are repeated at every discrete time
instant during the process run: First, an optimal control
for the problem on a finite horizon [0, N ] is computed given
the most recent known state of the system x0. Then, the
first control element is implemented at the plant and in the
third step the entire optimal control problem considered
in the first step is shifted forward in time by one discrete
time instant which allows for iteratively repeating this pro-
cess. In the literature this method is also termed receding
horizon, see, e.g., Mayne et al. (2000).

In contrast to the infinite horizon optimal control (3), the
problem in the second step is to minimize the truncated
cost functional on a finite horizon

JN (x0, u) =

N−1∑
k=0

l(xu(k, x0), u(k)). (4)

The truncated horizon defines the set of discrete time
instances I := {0, . . . , N − 1}. Here, we assume the first
instant to be denoted by zero for each optimal control

problem within the MPC problem. In particular, we focus
on the implementation of a constrained model predic-
tive controller without additional stabilizing endpoint con-
straints or a Lyapunov function type endpoint weight, see,
e.g., Keerthi and Gilbert (1988) and Chen and Allgöwer
(1998), respectively.

Throughout this work, we denote the closed loop solution
at time instant i by x(i) while xu(·, x0) denotes the open
loop trajectory of the prediction. Moreover, we use the
abbreviations

uN (·, x0) = argmin
u∈UN

JN (x0, u) (5)

uN (x0) = uN (0, x0)

for the minimizing open loop control sequence of the
reduced cost functional and its first element respectively.
We call VN (x0) = minu∈UN JN (x0, u) the optimal value
function of the finite cost functional (4) and, for notational
purposes, we use uN (i, x0) to represent the i-th control
value within the open loop control sequence corresponding
to the initial value x0 when it is necessary to distinguish
between two or more different open loop controls. Hence,
if the initial value xuN

(0, x0) = x0 is given, then the open
loop control (5) induces the open loop solution

xuN
(k + 1, x0) = f (xuN

(k, x0), uN (k, x0)) (6)

for all time instances k on the optimization horizon I \
{N}. Similarly to (3), the closed loop control can be
defined as

µN (x(i)) := argmin
u∈U

{VN−1(x(i+ 1)) + l(x(i), u)} (7)

and the corresponding closed loop system is given by

x(i+ 1) = f (x(i), µN (x(i))) (8)

for all i ∈ N0.

Note that due to the truncation of the infinite horizon
cost functional (2) to the finite MPC cost functional
(4), stability and optimality properties of the closed loop
solution (7), (8) induced by the infinite horizon optimal
control (3) are not preserved in general.

Here, our aim is to show that in order to guarantee stability
of the closed loop (7), (8) for any initial value x ∈ X,
the requirement of considering the worst case optimization
horizon N for all initial values x ∈ X can be weakened.
Additionally, the resulting closed loop trajectory satisfies
locally a predefined degree of suboptimality compared to
the infinite horizon solution (1), (3).

3. STABILITY FOR STANDARD NMPC

The measure of suboptimality we consider in the following
is the difference between the infinite horizon cost induced
by the MPC law µN (·), that is

V µN
∞ (x0) :=

∞∑
i=0

l (x(i), µN (x(i))) , (9)

and the finite horizon cost VN (·) or the infinite horizon
optimal value function V∞(·). In particular, the latter
give us estimates on the degree of suboptimality of the
controller µN (·) of the MPC process. For this purpose, we
make extensive use of the suboptimality estimates derived
in Grüne and Pannek (2009).



Proposition 3.1. (A posteriori Estimate). Consider a feed-
back law µN : X → U and its associated trajectory x(·)
according to (8) with initial value x(0) = x0 ∈ X. If there
exists a function VN : X→ R+

0 satisfying

VN (x(i)) ≥ VN (x(i+ 1)) + αl(x(i), µN (x(i))) (10)

for some α ∈ (0, 1] and all i ∈ N0, then

αV∞(x(i)) ≤ αV µN
∞ (x(i)) ≤ VN (x(i)) ≤ V∞(x(i)) (11)

holds for all i ∈ N0.

Since all values in (10) are computed throughout the
NMPC process, α can be easily computed online along the
closed loop trajectory. Thus, (10) yields a computationally
feasible and numerically cheap way to estimate the degree
of suboptimality of the trajectory.

Due to the fact that VN (x(i + 1)) in (10) is unknown at
runtime, Proposition (3.1) yields an a posteriori estimator.
However, we can also utilize a more conservative a priori
estimate if we assume the following:

Assumption 3.2. For given N , N0 ∈ N, N ≥ N0 ≥ 2, there
exists a constant γ > 0 such that for the open loop solution
xuN

(i, x(i)) given by (6) the inequalities

VN0
(xuN

(N −N0, x(i)))

γ + 1
≤

≤ max
j=2,...,N0

l(xuN
(N − j, x(i)), µj−1(xuN

(N − j, x(i))))

Vk(xuN
(N − k, x(i)))

γ + 1
≤

≤ l(xuN
(N − k, x(i)), µk(xuN

(N − k, x(i))))

hold for all k ∈ {N0 + 1, . . . , N} and all i ∈ N0.

Theorem 3.3. (A priori Estimate). Consider γ > 0 and N ,
N0 ∈ N, N ≥ N0 such that (γ+1)N−N0 > γN−N0+2 holds.
If Assumption 3.2 is fulfilled for these γ, N and N0, then
the estimate (11) holds for all i ∈ N0 where

α :=
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
. (12)

Note that we cannot expect the relaxed Lyapunov in-
equality (10) or Assumption 3.2 to hold in practice. In
many cases the discrete time system (1) is obtained from
a discretization of a continuous time system, e.g. sam-
pling with zero order hold, see Nešić and Teel (2004).
Hence, even if the continuous time system is stabilizable
to a setpoint x∗ and no numerical errors occur during
optimization and integration, the corresponding sampled–
data system is most likely practically stabilizable at x∗

only. However, suboptimality results can be extended to
cover the case of practical stability as well, see Grüne
and Rantzer (2008) and Grüne and Pannek (2009). Since
extending the stability results we will present now to cover
the practical case can be done analogously, see Pannek
(2009), we restrict ourselves to the case of asymptotic
stability for simplicity of exposition.

4. STABILITY UNDER ADAPTATION

As stated at the end of Section 2, we aim at weakening the
worst case nature of the optimization horizon N . Here, one
has to keep in mind that if a model predictive controller
shall be designed for a given application, then stability
of the resulting closed loop (8) needs to be guaranteed

for the entire working range X. In practice, this may lead
to very large optimization horizons N . Yet, most points
visited by the closed loop (8) we do not require such a
large optimization horizon in order to guarantee stability.

Here, we focus on locally guaranteeing a decrease of the
cost function for each step of the MPC process and modify
the horizon length N to fulfill this task. Similar to the
suboptimality results from Section 3, we want to measure
this decrease in terms of the running cost l(·, ·) such that
a given suboptimality bound α ∈ (0, 1) is locally satisfied.

Since we are now dealing with varying optimization hori-
zons, we intuitively extend our notation from Section 3
by adding the used optimization horizon as an argument,
i.e. α(N) denotes the suboptimality degree α with horizon
N . Moreover, since the resulting closed loop control now
depends on a sequence (Ni)i∈N we denote such a control
law by µ(Ni).

An abstract adaptive MPC algorithm which locally ac-
complishes the task of guaranteeing a decrease in the cost
function is the following:

(1) Given x(i) and Ni do
(1a) Compute optimal control on horizon Ni
(1b) Compute suboptimality degree α(Ni)
(1c) If α(Ni) ≥ α: Call shortening strategy for Ni

Else: Call prolongation strategy for Ni
while α(Ni) ≤ α

(2) Implement the first control component µNi
(x(i)) :=

u(0, x(i))
(3) Set i := i + 1 and shift the optimization horizon

forward in time

In this context, we distinguish the following degrees of
suboptimality:

Definition 4.1. (Suboptimality Degree). (i) Given a set X,
then we call α := max{α | (10) holds ∀x(n) = x ∈ X} the
global suboptimality degree.
(ii) Given a point x ∈ X, then we call α := max{α |
(10) holds for x(n) = x} the local suboptimality degree.
(iii) Given a closed loop trajectory x(·) we call α :=
max{α | (10) holds ∀n ∈ N0} the closed loop suboptimality
degree.

The problem which we are facing for such an adaptive
MPC algorithm is the fact that none of the existing sta-
bility proofs, see, e.g., Keerthi and Gilbert (1988), Chen
and Allgöwer (1998), Grimm et al. (2005), Jadbabaie and
Hauser (2005), Grüne and Pannek (2009) and Grüne et al.
(2010), can be applied in this context since these results
assume N to be constant while here the optimization hori-
zon Ni may change in every step of the MPC algorithm.

The major obstacle to apply the idea of Proposition 3.1 in
the context of varying optimization horizons N is the lack
of a common Lyapunov function along the closed loop. To
compensate for this deficiency, we make the following mild
assumption:

Assumption 4.2. Given an initial value x ∈ X and a
horizon length N < ∞ such that µN (·) guarantees local
suboptimality degree α(N) ≥ α, α ∈ (0, 1), we assume

that for Ñ ≥ N , Ñ <∞, there exist constants Cl, Cα > 0



such that the inequalities

Cll(x, µN (x)) ≤ l(x, µ
Ñ

(x))
V
Ñ

(x)− V
Ñ

(f(x, µN (x)))

V
Ñ

(x)− V
Ñ

(f(x, µ
Ñ

(x))

Cαα(N) ≤ α(Ñ)

hold where α(Ñ) is the local suboptimality degree of the

controller µ
Ñ

(·) corresponding to the horizon length Ñ .

Note that Assumption 4.2 is indeed very weak since
for one we allow for non–monotone developments of the
suboptimality degree α(·) if the horizon length is increased
which may occur as shown in Di Palma and Magni (2007).
Here, we only make sure that if a certain suboptimality
degree α ∈ (0, 1) holds for a horizon length N , then the

estimate α(Ñ) does not drop below zero if the horizon

length Ñ is increased.

Considering the value of l(x, µ
Ñ

(x)), we notice that it may

tend to zero if Ñ is increased, hence we have that Cl is
in general unbounded. The special case l(x, µ

Ñ
(x)) = 0,

however, states that the equilibrium of our problem has
been reached and can be neglected in this context since
this implies l(x, µN (x)) = 0 allowing for arbitrary Cl.

Given Assumption 4.2, we obtain stability and a per-
formance estimate of the closed loop in the context of
changing horizon lengths similar to Proposition 3.1.

Theorem 4.3. (Stability of Adaptive MPC). Consider α ∈
(0, 1) and a sequence (Ni)i∈N0

, Ni ∈ N, where N? =
max{Ni | i ∈ N}, such that the MPC feedback law µ(Ni)

defining the closed loop solution (8) guarantees

VNi
(x(i)) ≥ VNi

(x(i+ 1)) + αl(x(i), µNi
(x(i))) (13)

for all i ∈ N0. If additionally Assumption 4.2 is satisfied
for all pairs of initial values and horizons (x(i), Ni), i ∈ N0,
then we obtain

αCV∞(x(n)) ≤ αCV
µ(Ni)∞ (x(n)) ≤ VN?(x(n)) ≤ V∞(x(n))

to hold for all n ∈ N0 where αC := min
i∈N≥n

C
(i)
l C

(i)
α α.

Proof: Given a pair (x(i), Ni), Assumption 4.2 guarantees

α(Ni) ≤ α(Ñ)/C
(i)
α for Ñ ≥ Ni. Now we choose Ñ =

N? within this local suboptimality estimation. Hence,

we obtain α ≤ α(Ni) ≤ α(N?)/C
(i)
α using the relaxed

Lyapunov inequality (13). Multiplying by the stage cost
l(x(i), µNi

(x(i))), we can conclude

αl(x(i), µNi
(x(i))) ≤

≤ α(N?)

C
(i)
α

l(x(i), µNi(x(i)))

=
VN?(x(i))− VN?(f(x, µN?(x)))

C
(i)
α l(x(i), µN?(x(i)))

l(x(i), µNi(x(i)))

≤ VN?(x(i))− VN?(f(x, µNi(x)))

C
(i)
α C

(i)
l

using (13) and Assumption 4.2. Summing the running
costs along the closed loop trajectory reveals

αC

K∑
i=n

l(x(i), µNi(x(i))) ≤ VN?(x(n))− VN?(x(K + 1))

where we defined αC := min
i∈N≥n

C
(i)
l C

(i)
α α.

Since VN?(x(K+1)) ≥ 0 holds, taking K to infinity reveals

αCV
µ(Ni)∞ (x(n)) = αC lim

K→∞

K∑
i=n

l(x(i), µNi(x(i)))

≤ VN?(x(n))

Since the αV∞(x(n)) ≤ αCV
µ(Ni)∞ (x(n)) and VN?(x(n)) ≤

V∞(x(n)) hold by the principle of optimality, the assertion
follows. 2

Comparing Proposition 3.1 and Theorem 4.3, we see that
the closed loop estimate αC may be smaller than the
local suboptimality bound α but due to Cl, Cα > 0 we
can guarantee αC > 0. Yet, αC may become very small
depending on Cα and Cl from Assumption 4.2.

5. A SIMPLE ADAPTATION STRATEGY

Since now we have shown asymptotic stability of a MPC
closed loop trajectory with varying optimization horizon,
we show a very simple approach to guarantee the local
suboptimality requirement α(Ni) ≥ α. To this end, we
assume the system to be controllable, i.e.

Assumption 5.1. Given α ∈ (0, 1), for all x0 ∈ X there
exists a finite horizon length N = N(x0) ∈ N such that the
relaxed Lyapunov inequality (10) holds with α(N) ≥ α.

Theorem 5.2. (Shortening Strategy). Consider an optimal
control problem (5), (6) with initial value x(i), horizon
Ni ∈ N and fixed suboptimality bound α ∈ (0, 1) and
denote the optimal control sequence by u?. Suppose there
exists an integer i ∈ N0, 0 ≤ i < Ni such that

VNi−k(xuN
(k, x(i)))− VNi−k(xu?(k + 1, x(i))) ≥

≥ αl(xu?(k, x(i)), µNi−k(xu?(k, x(i)))) (14)

holds true for all 0 ≤ k ≤ i. Then, setting Ni+k = Ni − k
and µNi+k

(x(i+ k)) = u?(k) for 0 ≤ k ≤ i− 1, inequality

(13) holds for k = i, . . . , i+ i− 1 with α = α.

Proof: The proof follows directly from the fact that for
µNi+k

(x(i+k)) = u?(k) the closed loop trajectory satisfies
x(i+ k) = xu?(k, x(i)). Hence, (13) follows from (14).

With the choice Ni+k = Ni − k, due to the principle of
optimality we obtain that the optimal control problems
within the next i− 1 NMPC iterations are already solved
since µNi+k

(x(i + k)) can be obtained from the optimal

control sequence u?(·) ∈ UN (x(i)) computed at time i.
This implies that the most efficient way for the reducing
strategy is not to reduce Ni itself but rather to reduce the
horizons Ni+k by k for the subsequent sampling instants
i+1, . . . , i+i, i.e., we choose the initial guess of the horizon
Ni+1 = Ni − 1. Still, if the a posteriori estimate is used,
the evaluation of (14) requires the solution of an additional
optimal control problem in each step.
In order to to use the a priori estimate given by Theorem
3.3 the following result can be used as a shortening
strategy:

Theorem 5.3. (A priori Shortening Strategy). Consider a
optimal control problem (5), (6) with initial value x(i)

and horizon Ni, N̂ ∈ N, Ni ≥ N̂ ≥ 2 and denote the
optimal control sequence by u?. Moreover, the suboptimal-
ity bound α ∈ (0, 1) is fixed inducing some γ(·) via (12).



Suppose there exists an integer i ∈ N0, 0 ≤ i < Ni−N0−1
such that for all 0 ≤ k ≤ i there exist γi < γ(Ni − k)
satisfying

VN0(xu?(Ni − N̂ , x(i)))

γi + 1
≤ (15)

≤ max
j=2,...,N̂

l(xu?(Ni − j, x(i)), µj−1(xu?(Ni − j, x(i))))

Vki(xu?(Ni − ki, x(i)))

γi + 1
≤ (16)

≤ l(xu?(Ni − ki, x(i)), µki(xu?(N − ki, x(i))))

for all ki ∈ {N̂+1, . . . , Ni−k}. Then, settingNi+k = Ni−k
and µNi+k

(x(i+ k)) = u?(k) for 0 ≤ k ≤ i− 1, inequality

(13) holds for k = i, . . . , i+ i− 1 with α = α.

Proof: Since (15), (16) hold for k = 0, Theorem 3.3
guarantees that the local suboptimality degree is at least
as large as α. If i > 0 holds, we can make use of the fact
that for µNi+k

(x(i+k)) = u?(k) the closed loop trajectory
satisfies x(i + k) = xu?(k, x(i)). By (15), (16), we obtain
Assumption 4.2 to hold for k = i, . . . , i+i−1. Accordingly,
the assertion follows from Theorem 3.3 which concludes
the proof. 2

Note that while the a priori estimate from Theorem 3.3 is
slightly more conservative than the result from Proposition
3.1, it is also computationally less demanding if the value
N0 is small.
In contrast to this efficient and simple shortening strategy,
it is quite difficult to obtain efficient methods for prolon-
gating the optimization horizon Ni. In order to obtain a
simple prolongating strategy, we invert the approach of
Theorem 5.2, i.e. we iteratively increase the parameter N
until the requirement α(Ni) ≥ α is satisfied.

Theorem 5.4. (Prolongation Strategy). Consider an opti-
mal control problem (5), (6) with initial value x(i) and
Ni ∈ N. Moreover, for fixed α ∈ (0, 1) suppose Assump-
tion 5.1 to hold. Then, any algorithm which iteratively
increases the optimization horizon Ni terminates in finite
time and computes a horizon length Ni such that (13)
holds with local suboptimality degree α.

Proof: Follows directly from Assumption 5.1. 2

Unfortunately, if (13) does not hold, it is in general difficult
to assess by how much Ni should be increased such that
(13) holds for the increased Ni. The most simple strategy
of increasing Ni by one in each iteration shows satisfactory
results in practice, however, when starting the iteration
with Ni, in the worst case it requires us to check (13)
N −Nn + 1 times at each sampling instant. In contrast to
the shortening strategy, the principle of optimality cannot
be used here to establish a relation between the optimal
control problems for different Ni and, moreover, these
problems may exhibit different solution structures which
makes it a hard task to provide a suitable initial guess for
the optimization algorithm.

6. NUMERICAL RESULTS

To illustrate the effects of using an adaptive NMPC, we
consider a highrack warehouse

χ̈(t) = u1(t)

ϋ(t) = u2(t) (17)

φ̈(t) = −kφ̇(t)− g

υ
(t) sin(φ(t))− u1(t) cos(φ(t))

where for simplicity of exposition the rope is modeled
as a pendulum with variable length. Here, χ denotes the
position of the crab along the highrack, υ represents the
length of the rope of the crane and φ corresponds to the
angle of deflection of the rope. Moreover, g = 9.81 and
k = 0.1 denote the gravitational constant and the inertia
of the angle of the rope, respectively.

For this example, we use MPC to generate a feedback for a
representative transport action of a pallet from χ0 = −3,
υ0 = 5 to χref = 3, υref = 2 (with zero derivatives in
initial and target position) while maintaining the state and
control constraints X = [−5, 5]2×[1, 4]×[−1, 2]×[−1, 1]×R
and U = [−5, 5]× [−1, 2]. To this end, we use the running
cost

l(x, u) =

T∫
0

c1φ̇
2(t)υ2(t) + c2gυ(t)(1− cos(φ(t)))

+ c3(χ(t)− χ̂)2 + c4χ̇
2(t) + c5(υ(t)− υ̂)2

+ c6υ̇
2(t) + c7

(
u21(t) + u22(t)

)
dt

with constants c1 = 0.25, c2 = 0.5, c3 = 40, c4 = c5 =
c6 = 20 and c7 = 0.1 and the sampling period T = 0.2. To
solve the optimal control problem arising throughout the
MPC procedure, we use a direct approach, i.e. discretize
the continuous time problem and use an SQP method to
solve the resulting optimization problem. Here, we set the
tolerance levels tolODE = 10−9 and tolSQP = 10−6 for the
differential equation solver and the optimization method
respectively.

Since the adaptive MPC algorithm allows us to set the
lower bound of the degree of suboptimality α directly, we
first investigate the ᾱ–depending quality of a controlse-
quence on the closed loop cost V µN

∞ (x0). To this end, we
terminate the algorithm when the condition l(x(t), u(t)) <
10−3 is satisfied. The data we obtained for this setting is
displayed in Figure 1.

9.5

10.5

11.5

12.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ᾱ

V
µN∞ (x0) · 103

Fig. 1. Development of V µN
∞ (x0) for different suboptimality

bounds α

Here, one can nicely observe that the closed loop costs
caused by the adaptive MPC feedback µ(Ni) are decreasing
as the lower bound α is enlarged. This is right the behav-
ior one would expect from the theoretical construction.



However, using the adaptive MPC approach, larger α–
values not only provides a much better control sequence in
terms of generated costs. We also like to mention that the
total simulation time required to satisfy the termination
criterion is also decreasing as α is enlarged which is due to
the use of larger optimization horizons Ni throughout the
run of the simulation.

In Figure 2, we additionally plotted the optimization
horizon sequences (Ni) for the selected values of α. This
figure demonstrates clearly the horizon incrementations
during acceleration– and deceleration–phases. In partic-
ular, a large optimization horizon is required to satisfy the
desired decrease in the relaxed Lyapunov inequality (13)
upon start of the simulation run which is then reduced as
the crab moves towards its destination. In order to reduce
the possibly occuring overshoot, the method automatically
increases the horizon again. During the final leveling phase,
again no large horizons are needed to satisfy (13).
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Fig. 2. Horizon length N during simulation with α =
0.6(solid) and α = 0.2(dashed)

In Figure 2, one can also see that the spike in the horizon
length occurs earlier for α = 0.6. Again, this corresponds
to the MPC procedure recognizing the possible overshoot
by means of (13).

7. CONCLUSION

In this work we have shown stability and suboptimality
estimates for model predictive controllers with varying
optimization horizon. This result allows for developing
strategies to adapt the horizon length instead of using a
worst case estimate and control the quality of the feedback
directly.
Future work may concern reducing the computational
effort required to evaluate the suboptimality estimates.
Moreover, development and investigation of alternatives
to prolongate the optimization horizon will be an issue,
i.e. by combining information of several iterates.
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Nešić, D. and Teel, A. (2004). Input-output stability
properties of networked control systems. IEEE Trans.
Automat. Control, 49(10), 1650–1667.

Pannek, J. (2009). Adaptive Nonlinear Receding Horizon
Control Schemes with guaranteed Degree of Subopti-
mality. Submitted.

Rawlings, J.B. and Mayne, D.Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing,
Madison.

Viquerat, A., Blackhall, L., Reid, A., Sukkarieh, S., and
Brooker, G. (2008). Reactive Collision Avoidance for
Unmanned Aerial Vehicles using Doppler Radar. In
Field and Service Robotics: Results of the 6th Interna-
tional Conference, volume 42, 245–254. Springer Tracts
in Advanced Robotics.


