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Abstract— In this paper, we present a new approach for com-
puting Lyapunov functions for nonlinear discrete-time systems
with an asymptotically stable equilibrium at the origin. The pro-
posed method constructs a continuous piecewise affine (CPA)
function on a compact subset of the state space containing the
origin, given a suitable triangulation or partition of the compact
set and values at the vertices of the triangulation. Here, the
vertex values are fixed using a function from a classical con-
verse Lyapunov theorem originally due to Yoshizawa. Several
numerical examples are presented to illustrate the proposed
approach.

I. INTRODUCTION

The Lyapunov function is among the most useful tools
for stability analysis of dynamic systems since it allows one
to conclude (asymptotic) stability of an equilibrium without
knowledge of the explicit solution of the dynamic system.
This utility has motivated the search for Lyapunov functions
for dynamic systems for many years. In the present article,
we focus on computing Lyapunov functions for discrete-time
dynamic systems. Such systems are widely used to study
practical phenomena in many fields such as engineering,
finance, and biology.

Several methods have been proposed for computing Lya-
punov functions for discrete-time dynamic systems. For
instance, collocation methods were presented in [4] and [5],
graph algorithms are used to compute complete Lyapunov
functions in [3] and [11], and the continuous piecewise affine
(CPA) method was extended to discrete-time systems in [7].

The CPA method is of particular interest since it delivers
a true Lyapunov function for discrete-time dynamic systems
on a compact subset of the state space. This method relies
on a partitioning of the state space into simplices, called
a triangulation. Values are defined at each vertex of the
triangulation and a continuous and piecewise affine function
is then defined via a convex interpolation of these values.
In [7], the vertex values are obtained by solving a linear
programming problem that incorporates error estimates.

A similar CPA method has been developed for continuous-
time systems [15] (see also [6]) where the need to solve
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a linear programming problem results in long computation
times. As an alternative to solving a linear programming
problem, in [9] we proposed a new approach to compute
a CPA Lyapunov function for continuous-time systems us-
ing a function in a converse Lyapunov theorem originally
introduced by Yoshizawa in [18]. In this paper, we present
a similar approach for the discrete-time nonlinear system
described by

x+ = g(x), (1)

where g : Rn → Rn is locally Lipschitz continuous, and
g(0) = 0. We observe that deriving such discrete-time
results from their continuous-time counterparts is nontrivial
due to the fact that solutions in the discrete-time setting
are sequences of points rather than absolutely continuous
functions as in the continuous-time setting.

The paper is organized as follows: we present the theory
required for CPA Lyapunov functions in Section II. In
Section III we formulate the required stability estimate and
define the discrete-time Yoshizawa function. We also present
the procedure to compute a CPA Lyapunov function for
system (1) using the Yoshizawa function. In Section IV,
we present three representative examples to demonstrate the
proposed method. In Section V, we provide a brief summary.

II. CONTINUOUS AND PIECEWISE AFFINE LYAPUNOV
FUNCTIONS

We denote the nonnegative integers by N0. Let R>0,
R≥0 denote intervals (0,+∞), [0,+∞) respectively. Given
a subset Ω ⊂ Rn, we denote the interior, the closure, the
boundary, and the complement of Ω by Ω◦, Ω, ∂Ω, and ΩC ,
respectively. For δ ∈ R>0, let Bδ

.= {x ∈ Rn : |x| < δ}
denote the open ball of radius δ > 0 centered at 0. Let
dae .= min{q ∈ N0 : q ≥ a, a ∈ R≥0} denote the smallest
integer which is not less than a. The kth element of the
solution sequence of (1) with initial condition x ∈ Ω is
denoted by φ(k, x) for all k ∈ N0 with φ(0, x) = x.

In order to define CPA functions, we recall the definition
of a suitable triangulation of a compact set from [9].

Definition 1: We call a finite collection
T ={S1,S2, . . . ,SN} of n-simplices in Rn a suitable
triangulation if

i) Sν ,Sµ ∈ T , ν 6= µ, intersect in a common face or
not at all.

ii) With DT
.= ∪νSν , D◦T is a connected neighborhood

of the origin.
iii) If 0 ∈ Sν , then 0 is a vertex of Sν .



In this paper, simplices are defined as the closed convex hull
of an ordered set of vertices; i.e., for each ν ∈ {1, . . . , N},
for the ordered set of vectors xνi ∈ Rn, i = 0, . . . , n,
xν0 , . . . , x

ν
n are linearly independent, a simplex Sν is defined

by Sν = co{xν0 , . . . , xνn}. Defining simplices in this way
ensures that the shape matrix defined below in (14) is unique.

For a suitable triangulation T , we define CPA[T ] as the
set of continuous functions f : DT → R which are linearly
affine on each simplex Sν ; i.e.,

f(x) = w>ν x+ aν , x ∈ Sν , (2)

where wν ∈ Rn and aν ∈ R.
In the interior of any simplex, a function f ∈ CPA[T ]

is differentiable and we denote the gradient of a function
f ∈ CPA[T ] in the interior of simplex Sν by ∇fν . In other
words, with (2), for each x ∈ S◦ν we have

∇fν
.= ∇f(x) = wν . (3)

In the following, we present the definition of a CPA
Lyapunov function for system (1) on a closed, connected set
O ⊂ DT ⊂ Rn minus a fixed arbitrary small neighborhood
of the origin.

Definition 2: Let T be a suitable triangulation, V ∈
CPA[T ] be a positive definite function, and O ⊂ DT be
a closed, connected set such that
(i) 0 ∈ O ⊂ DT ;

(ii) there exists no Sν with x1, x2 ∈ Sν satisfying x1 ∈
O, x2 ∈ DT \ O; and

(iii) if x ∈ O, then g(x) ∈ DT .
Define the constants

α∗1
.= inf
x∈O\{0}

V (x)
|x|

, α∗2
.= sup
x∈O\{0}

V (x)
|x|

, (4)

q∗ = inf{q ∈ R≥0 : |g(x)| ≤ q|x|, x ∈ O}, (5)

and r .= minx∈∂O |x|. Let ε ∈ R>0 satisfy 0 < q∗ε < rα∗1/α
∗
2

, for q∗ ≥ 1,
Bq∗ε ⊂ O

(6)

or
0 < ε < rα∗1/α

∗
2, for q∗ < 1. (7)

If there is a constant α∗3 ∈ R>0 such that

V (g(x))− V (x) ≤ −α∗3|x| (8)

holds for all x ∈ O \ Bε, then V is called a CPA[T ]
Lyapunov function for (1) on O \ Bε.

By a slight abuse of notation we denote the set of solutions
of (1) at time k ∈ N0 from a compact set C ⊂ Rn by
φ(k, C) :=

⋃
x∈C φ(k, x). Denote the sublevel sets of V by

LV,c
.= {x ∈ DT : V (x) ≤ c}, c ∈ R>0. (9)

Theorem 1: Let T be a suitable triangulation and let
V : DT → R≥0 be a CPA[T ] Lyapunov function for (1)
on O \ Bε with appropriate α∗1, α

∗
2, q
∗, r, ε ∈ R>0 as in

Definition 2 and where O ⊂ Rn satisfies conditions (i)-(iii)
from Definition 2. Define

m
.=
{

max|x|≤q∗ε V (x), if q∗ ≥ 1,
max|x|≤ε V (x), if q∗ < 1, (10)

and M
.= minx∈∂O V (x). If for each c ∈ [m,M), LV,c is

connected, then Bε ⊂ LV,c ⊂ O and there exists a Kc ∈ N0

such that φ(k,LV,c) ⊂ LV,m for all k ≥ Kc.
Proof: We first prove Bε ⊂ LV,m. Given x ∈ Rn

satisfying |x| ≤ ε, x 6= 0, and y ∈ ∂O, then

V (x) = |x|V (x)
|x|

≤ |x| sup
x∈O\{0}

V (x)
|x|

= |x|α∗2 ≤ εα∗2,

(11)
and by (6) and (7),

V (x) < α∗1r ≤ V (y). (12)

If q∗ ≥ 1, the constraint (6) implies (12) holds for x
satisfying |x| ≤ q∗ε. Based on the definition of m, then
we obtain m < M .

It follows directly by the definitions of m and M and the
continuity of V that if LV,c is connected then Bε ⊂ LV,c ⊂
O. For x ∈ LV,c \ Bε we get by (8) that g(x) ∈ LV,c. For
x ∈ Bε we get by (5) that |g(x)| < q∗ε. Hence, by the
definition of m we get g(x) ∈ LV,m ⊂ LV,c. Thus LV,c is
positively invariant. The last assertion of the theorem now
follows from (8) with Kc ≥ (c−m)/(α3ε). �

Remark 1: The conditions of Theorem 1 are more restric-
tive than those in [9, Theorem 2.3]. These more restrictive
conditions are required because the solution of (1) is a
sequence of points rather than an absolutely continuous
function. Similar to the continuous time result in [9, Theorem
2.3] Theorem 1 provides an estimate of the domain of
attraction for the positively invariant set LV,m.

We state the criteria for verifying that a CPA function is
a CPA Lyapunov function in Theorem 2 and Corollary 1.

Theorem 2: Let T be a suitable triangulation and let a
closed, connected set O ⊂ Rn satisfy conditions (i)-(iii) from
Definition 2. Let V ∈ CPA[T ], ε ∈ R>0, and let C, Lν ∈
R≥0 satisfy

|g(x)− g(y)| ≤ Lν |x− y|, for x, y ∈ Sν ,

max
ν=1,...,N

|∇Vν | ≤ C.

If for each Sν ⊂ O, Sν ∩ BCε = ∅ the inequalities

V (g(xνi ))− V (xνi ) + CLν diam(Sν) < 0 (13)

hold for all i = 0, 1, . . . , n, then

V (g(x))− V (x) < 0

for all x ∈ O \ Bε.
Proof: Let x ∈ O \ Bε be arbitrary. Then there exists

a Sν ⊂ O such that x ∈ Sν ; i.e., x =
∑n
i=0 λix

ν
i where



∑n
i=0 λi = 1. Then

V (g(x))− V (x) = V (g(x))−
n∑
i=0

λiV (g(xνi ))

+
n∑
i=0

λiV (g(xνi ))−
n∑
i=0

λiV (xνi )

≤
n∑
i=0

λi[V (g(xνi ))− V (xνi ) + CLν diam(Sν)].

Based on (13), we conclude that V (g(x)) − V (x) < 0 for
all x ∈ O \ Bε. �

Corollary 1: Let V ∈ CPA[T ] from Theorem 2 be pos-
itive definite and the constant ε ∈ R>0 satisfy (6) or (7)
as appropriate. If the inequalities (13) are satisfied for all
Sν ⊂ O with Sν ∩ BCε 6= ∅, then V is a CPA Lyapunov
function for (1) on O \ Bε.

Remark 2: From Theorem 2 and Corollary 1, for a can-
didate Lyapunov function V ∈ CPA[T ], the verification
that V is a Lyapunov function for system (1) is done by
checking that V is positive definite and that the inequality
(13) holds for each vertex. The problem then is to find
a candidate Lyapunov function. In order to obtain a CPA
candidate Lyapunov function, [7] obtains a CPA function
by solving a linear programming problem. In the present
paper, we compute the value at each vertex by using a
particular function from a converse Lyapunov theorem, called
a Yoshizawa function (see (28) below), and then verify the
inequality (13) for each vertex.

In the following we recall the definition of CPA approxi-
mations to functions as stated in [9, Definition 2.6].

Definition 3: Let D ⊂ Rn be a domain, g : D → R be
a function, and T be a triangulation such that DT ⊂ D.
The CPA[T ] approximation f to g on DT is the function
f ∈ CPA[T ] defined by f(x) = g(x) for all vertices x of
all simplices in T .

Given a triangulation T , and simplex Sν
.=

co{xν0 , xν1 , . . . , xνn} ∈ T , the shape-matrix Xν of Sν is
defined by writing the vectors xν1−xν0 , xν2−xν0 , . . . , xνn−xν0
in its rows subsequently; i.e.,

Xν = [(xν1 − xν0), (xν2 − xν0), · · · , (xνn − xν0)]> . (14)

In order to make sure that the simplex Sν is not degenerate,
the value diam(Sν)|X−1

ν | should be bounded. Here |X−1
ν |

is the spectral norm of the inverse of Xν (see part (ii) in the
proof of [2, Theorem 4.6]).

Definition 4: Given a domain D ⊂ Rn, a continuous
function W : Rn → R≥0 is a Lyapunov function for (1) on D
if there exist positive definite functions α, α1 : R≥0 → R≥0

such that, for every x ∈ D,

α1(|x|) ≤W (x), and

W (g(x))−W (x) ≤ −α(|x|).
We now state conditions under which the CPA approxi-

mation to a Lyapunov function is also a Lyapunov function.
Theorem 3: Let O,D ⊂ Rn be simply connected compact

neighborhoods of the origin such that O◦ = O, D◦ = D,

O ⊂ D◦. Further, assume that W ∈ C1(D) is a Lyapunov
function for system (1) and there exists a constant L > 0
such that |∇W (x)| ≤ L for x ∈ D. Set r̃ .= minx∈∂O |x|
and let ε ∈ R>0 satisfy

q∗ε < r̃ · infx∈O\{0}W (x)/|x|
supx∈O\{0}W (x)/|x|

, for q∗ ≥ 1,
Bq∗ε ⊂ O

(15)

or
ε < r̃ · infx∈∂OW (x)/|x|

supx∈∂OW (x)/|x|
, for q∗ < 1, (16)

where q∗ from Definition 2.
Then for every R > 0 there exists a δR > 0 such that, for

any triangulation T satisfying
1) O ⊂ DT ⊂ D,
2) x ∈ O implies g(x) ∈ DT ,
3) there exists no Sν with x1, x2 ∈ Sν satisfying x1 ∈ O,

x2 ∈ DT \ O,
4) maxSν∈T diam(Sν) ≤ δR, and
5) maxSν∈T diam(Sν)|X−1

ν | ≤ R,
the CPA[T ] approximation V to W on DT is a CPA
Lyapunov function for (1) on O \ Bε.

Proof: Since W (x) is a Lyapunov function for (1) on
D, we get that there exists a positive definite function α :
R≥0 → R≥0 such that

W (g(x))−W (x) ≤ −α(|x|), for x ∈ D . (17)

Let
χ = max

ν=1,2,...,N
|X−1

ν | = max
ν=1,2,...,N

λ
− 1

2
min,ν (18)

where λmin,ν is the minimum eigenvalue of X>ν Xν .
For an arbitrary but fixed Sν = co{xν0 , xν1 , · · · , xνn} ⊂

DT \ Bε define

Wν :=


W (xν1)−W (xν0)
W (xν2)−W (xν0)

...
W (xνn)−W (xν0)

 . (19)

For each vertex xνi ∈ Sν ⊂ DT , let V (xνi ) = W (xνi ). It is
obvious that V (xνi ) is positive definite for xνi ∈ Sν ⊂ DT .

Choose one Sν = co{xν0 , xν1 , · · · , xνn} ⊂ DT \ Bε and
let y = xν0 and x ∈ Sν . Since V ∈ CPA[T ], V (x) =
V (y) + ∇V >ν (x − y). Then taking x = xνi ∈ Sν for all
i ∈ {1, · · · , n}, using the fact that V (xνi ) = W (xνi ), and the
definitions Wν , (19), and Xν , (14), we get

∇Vν = X−1
ν Wν . (20)

Hence
V (x) = V (y) +W>ν (X>ν )−1(x− y). (21)

There exists a constant C = RL ∈ R>0 such that

|∇Vν | = |X−1
ν Wν | ≤ |X−1

ν | max
z∈DT \Bε

|∇W (z)|δR

≤ R max
z∈DT \Bε

|∇W (z)| ≤ C (22)

holds uniformly in ν.



Let xνi be an arbitrary vertex of an arbitrary simplex
Sν ⊂ O. Since g(x) ∈ DT , there exists an Sµ

.=

co{yµ0 , y
µ
1 , . . . , y

µ
n} ∈ T such that g(xνi ) =

n∑
j=0

µjy
µ
j ∈ Sµ

with
n∑
j=0

µj = 1. We have assigned V (x) = W (x) for all

vertices x of all simplices Sν . Hence

V (g(xνi ))− V (xνi ) =
n∑
j=0

µjW (yµj )−W (xνi )

=
n∑
j=0

µjW (yµj )−W

 n∑
j=0

µjy
µ
j


+W

 n∑
j=0

µjy
µ
j

−W (xνi ). (23)

It follows that

V (g(xνi ))− V (xνi ) ≤ LδR − α(|xνi |), (24)

It is obvious that for every R > 0 there exists a suitable
δR > 0 such that

LδR − α(|xνi |) + CLνδR < 0 (25)

holds for all xνi ∈ O \ Bε. Therefore the linear constraints
(13) are fulfilled for all xνi ∈ O \ Bε.

Based on the conditions, we obtain

inf
x∈O\{0}

W (x)
|x|

≤ inf
xν∈O\{0}

V (xν)
|xν |

= inf
x∈O\{0}

V (x)
|x|

= α∗1,

sup
x∈O\{0}

W (x)
|x|

≥ sup
xν∈O\{0}

V (xν)
|xν |

= sup
x∈O\{0}

V (x)
|x|

= α∗2,

and r = r̃, where α∗1, α∗2, r ∈ R>0 from Definition 2.
Therefore ε satisfies conditions in Definition 2 and then the
theorem is proved by Corollary 1. �

Remark 3: Since a given triangulation T can be manipu-
lated to deliver a new triangulation T ∗ with smaller simplices
without increasing their degeneracy, it is always possible to
find a triangulation that admits a CPA Lyapunov function
approximating a differentiable and Lipschitz continuous Lya-
punov function.

III. YOSHIZAWA CONSTRUCTION OF LYAPUNOV
FUNCTIONS

We now address the problem of how to calculate the
vertex values for each simplex. Based on converse Lyapunov
function theorems such as [1, Theorem 5.12.5], [8], [13],
and [17, Theorem 1.7.6], if system (1) is asymptotically
stable, then there exists a Lyapunov function. Among these
results, we are interested in a particular construction of the
Lyapunov function which was originally proposed in [18]
in continuous-time and extended to the discrete-time case
in [13]. In what follows, we will make use of the common
function classes K∞ and KL. For details of these functions,
we refer to [10], [12].

Given an open compact set D with 0 ∈ D. System (1) is
said to be KL-stable on D if there exists a β ∈ KL such
that

|φ(k, x)| ≤ β(|x|, k), ∀x ∈ D, k ∈ N0. (26)

It has been proved in [14, Proposition 2.2] that the concept of
KL-stability is equivalent to the the concept of asymptotic
stability of the origin for system (1), given D is a subset
of the domain of attraction. If D = Rn, then KL-stability
is equivalent to global asymptotic stability of the origin for
system (1). The function β ∈ KL of (26) is called a stability
estimate.

In order to define our candidate Lyapunov function, we
use a version of Sontag’s lemma on KL-estimates [16,
Proposition 7].

Lemma 1: For every µ ∈ (0, 1), β ∈ KL there exist
α1, α2 ∈ K∞ such that

α1(β(s, k)) ≤ α2(s)µ2k, ∀s ∈ R≥0, ∀ k ∈ N0. (27)
Proof: Sontag’s lemma on KL-estimates [16, Proposi-

tion 7] states that, for any λ > 0 and β ∈ KL there exist
α1, α2 ∈ K∞ so that

α1(β(s, k)) ≤ α2(s)µ2k, ∀s ∈ R≥0, ∀ k ∈ N0.

Given µ ∈ (0, 1), let λ = −2 logµ which satisfies λ > 0.
Applying [16, Proposition 7] with this λ > 0 then yields
(27).

�
We now define the discrete-time Yoshizawa function.
Definition 5: Given µ ∈ (0, 1) and β ∈ KL with α1, α2 ∈

K∞ from Lemma 1, the function

V (x) .= sup
k∈N0

α1(|φ(k, x)|)µ−k (28)

is called a discrete-time Yoshizawa function.
Based on the results of [14], we summarize some prop-

erties of the discrete-time Yoshizawa function in the next
theorem.

Theorem 4: If the solution φ(k, x) of system (1) with x ∈
D satisfies (26), and α1(· ) is locally Lipschitz continuous,
then the Yoshizawa function is continuous on D \ {0} and
satisfies the bounds

α1(|x|) ≤ V (x) ≤ α2(|x|) (29)

and the decrease condition

V (φ(1, x)) ≤ V (x)µ. (30)

Further, for each x ∈ D there exists a positive integer K(x)
such that

V (x) = max
k∈{0,··· ,K(x)}

α1(|φ(k, x)|)µ−k. (31)

The properties that V (x) is continuous, bounded and
satisfies the decrease condition have been proved in [14].

Let λ = µ−1, the integer K(x) is calculated explicitly in
[14, Claim 7] as

K(x) =
⌈
−logλ

(
V (x)
α2(|x|)

)⌉
+ 1, x 6= 0 (32)



and with the upper and lower bounds on V we get that

0 ≤ K(x) ≤
⌈
−logλ

(
α1(|x|)
α2(|x|)

)⌉
+ 1

=
⌈

logλ

(
α2(|x|)
α1(|x|)

)⌉
+ 1 .= K(x). (33)

In the computations in the following section, we use K(x)
instead of K(x) in the computation of (31). This is done
since we do not need to know V (x) to calculate K(x) and,
from the relations (28) and (31), taking a longer time horizon
in (31) will not change the value of V (x). Examples of
the use of Sontag’s lemma on KL-estimates to define the
Yoshizawa function can be found in [9, Example 1, Example
2].

For system (1), our proposed approach of constructing a
CPA Lyapunov function is the following:

1: Obtain a stability estimate β ∈ KL so that (26) holds.
2: Find α1, α2 ∈ K∞ satisfying inequality (27).
3: Define a suitable triangulation on a subset of the state

space containing the equilibrium.
4: Calculate the vertex values of each simplex via

Yoshizawa function defined by (28).
5: Construct a CPA function via convex interpolation of

the vertex values of each simplex.
6: Check inequality (13) for each vertex.
Note that for computational reasons, we exclude a small

neighborhood of the equilibrium when constructing the tri-
angulation.

From Theorem 2 and Corollary 1, if (13) holds for each
vertex, then such a CPA function is a Lyapunov function.
If the Yoshizawa function (28) is a differentiable function
and Lipschitz continuous, based on Theorem 3 our method
always succeeds on each subset of the domain of attraction.
However, from Theorem 4 the Yoshizawa function (28)
is only continuous. Thus a subject of future work is to
investigate under what conditions the Yoshizawa function
(28) is differentiable.

IV. NUMERICAL EXAMPLES

In this section we present three examples to demonstrate
the effectiveness of the proposed method.

A. Example 1 - Linear System

Consider the system

x+ = Ax =
[

0.25 0.25
−0.125 −0.25

]
x (34)

Let x = (x1, x2)>. We observe that the origin is globally
exponentially stable as the eigenvalues of A are at ±

√
2

8 . We
solve the so-called discrete Lyapunov equation,

A>PA = P − 0.25Id (35)

where P is a symmetric positive definite matrix and thus
obtain that

V (x) = x>Px = x>
[

0.2815 −0.0235
−0.0235 −0.2698

]
x (36)

is a Lyapunov function as shown in Figure 2 for system (34).
We observe that

|φ(k, x)| ≤

(√
2

8

)k
|x| ≤ e−k|x| (37)

and so (34) has a stability estimate β ∈ KL given by

β(s, k) = se−k.

With α1(s) = s2 = α2(s), then K(x) = 1. Therefore

V1(x) = max
k∈{0,1}

α1(|φ(k, x)|)ek. (38)

Figure 1 shows the computed CPA Lyapunov function V1(x)
for system (34). The neighborhood of the origin Bε, ε =
0.05, is excluded.

Fig. 1. CPA Lyapunov function V1(x) for system (34).

Fig. 2. Lyapunov function V (z) for system (34).

Fig. 3. Lyapunov function V (x), V1(x) for system (34).



B. Example 2 - Simple Nonlinear System

Consider the one-dimensional system

x+ =
{

1
2x

2, if |x| ≤ 1,
1
2

√
|x|, if |x| > 1.

(39)

It is obvious that |x+| ≤ 1
2 |x|. Let µ =

√
2

2 , α1(s) = α2(s) =
s. Then K(x) = 1 and

|φ(k, x)| ≤
(

1
2

)k
|x| ≤ |x|µ2k. (40)

It follows that

V2(x) = max
k∈{0,1}

α1(|φ(k, x)|)µ−k (41)

which is shown by Figure 4 for system (39) for 5 > |x| ≥
0.025.
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Fig. 4. Lyapunov function V2(x) for system (39).

C. Example 3 - Nonlinear System

Consider the two-dimensional nonlinear system described
by

x+ = −0.125y − 0.125(1− x2 − y2)x, (42)

y+ = 0.125x− 0.125(1− x2 − y2)y. (43)

Let z .= (x, y)>. For |z| < 1, it is easy to get that |z+| ≤√
2

8 |z|. Like Example 1, the stability estimate is given by

|φ(k, z)| ≤ |z|e−k. (44)

Let α1(s) = s2 = α2(s), then K(z) = 1. Thus

V3(z) = max
k∈{0,1}

α1(|φ(k, z)|)ek. (45)

Figure 5 shows the computed CPA Lyapunov function for
system (42) for 0.8 > |z| ≥ 0.05. On any compact subset of
the unit ball, the simple quadratic

V (z) = x2 + y2 (46)

is a known Lyapunov function which is shown by Figure (6).

Fig. 5. Lyapunov function V (z) for system (42).

Fig. 6. Lyapunov function V (z) for system (42).

Fig. 7. Difference between Lyapunov functions V3(z) and V (z) for system
(42).

V. CONCLUSIONS

In this paper, we proposed a new method of computing a
CPA Lyapunov function for discrete-time dynamic system
(1). This approach replaces the linear program of [15]
and [6] with evaluation of the Yoshizawa function at the
vertices of the triangulation. We observe that in the numerical
examples presented in Section IV computing the Yoshizawa
function only requires taking the maximum between two
easily computable values, making this a very efficient method
to obtain vertex values. If (1) is KL stable, our approach
successfully delivers a CPA Lyapunov function. However, for
general discrete-time dynamic systems, there is no explicit
procedure to obtain a KL stability estimate. Even if a KL
stability estimate is known, finding suitable α1, α2 satisfying
(27) is not necessarily straightforward and the proof of [16,
Proposition 7] is not constructive.
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