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Abstract— The numerical construction of Lyapunov functions
provides useful information on system behavior. In the Continu-
ous and Piecewise Affine (CPA) method, linear programming is
used to parameterize a CPA Lyapunov function for continuous
nonlinear systems. This method is relatively slow due to the
linear program that has to be solved. A recent proposal was to
parameterize the CPA Lyapunov function based on a Lyapunov
function in a converse Lyapunov theorem by Yoshizawa. In
this paper we propose parameterizing CPA Lyapunov functions
using a Lyapunov function construction in a classic converse
Lyapunov theorem by Massera. We provide the theory for such
a parameterization and present several examples to illustrate
the utility of this approach.

I. INTRODUCTION

Let K ⊂ Rn be a compact neighborhood of the origin
and consider a C2 vector field f : K → Rn. We consider a
dynamical system

ẋ = f(x) (I.1)

where the origin is an asymptotically stable equilibrium
point. As the general reader is well aware of, it can be
difficult to find a particular solution to such a system, that
is for a given x ∈ K and an interval I ⊂ R≥0 find
a function φ : I × Rn → Rn such that d

dtφ(t,x) =
f(φ(t,x)), φ(0,x) = x. Our goal then instead is to construct
a continuous Lyapunov function for the system, that is a
positive definite continuous function V : K → R such
that for every solution φ of d

dtφ(t,x) = f(φ(t,x)) on
K \ {0} we have for every t0, t1 ∈ I that t0 < t1 implies
V (φ(t0)) < V (φ(t1)). It is well known that this condition
follows from a Lipschitz V such that

V +(x) := lim sup
h→0+

V (x + hf(x))− V (x)
h

is negative definite on K◦. Note that V +(x) is sometimes
referred to as the orbital derivative of V at x with respect to
f ; or simply the orbital derivative of V .

In general, constructing a Lyapunov function for (I.1) is as
difficult as finding solutions to system (I.1). However, once
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constructed on a specific domain, a Lyapunov function gives
a good idea of the behavior of all solutions in that domain.

There have been numerous proposals of how to compute
Lyapunov functions numerically for nonlinear systems. For
example, collocation methods were proposed in [11], [3],
[21], graph theoretic methods in [2], [12], semidefinite
optimization for sum-of-squares polynomials (SOS method)
[17], [18], [19], as well as automated algebraic methods [20],
[22].

In [15] a method was proposed for constructing a Lya-
punov function by solving linear inequalities on a finite
set of points in K, called a vertex set for K, which in
turn determine a unique continuous piecewise affine (CPA)
Lyapunov function on the whole of K. This method is
referred to as the CPA method. The CPA method has been
improved [7] and extended to different kinds of systems [9],
[1], [5], [6].

The method presented here is a simple modification of the
CPA method where, instead of using linear programming to
determine the values at the points of the vertex set, we use
a function construction from a classical converse Lyapunov
theorem developed by Massera [16] to determine the values.
This is similar to the procedure in [10] where a construction
due to Yoshizawa [24] was used.

This paper is organized as follows. In Section II we give a
brief summary of the CPA method and describe the converse
Lyapunov theorem that provides the function we use to define
a CPA function. In Section III we present four numerical
examples illustrating the utility of our proposed construction.

We denote the positive integers by N and the strictly posi-
tive real numbers by R>0. For a vector x = [x1, . . . , xn]T ∈
Rn we define the norms ‖x‖p = (

∑n
i=1 |xi|p)

1
p for p ≥ 1

as is usual, and denote for a set A ⊆ Rn its diameter by
diam2(A) := supx,y∈A ‖x − y‖2. We denote the open ball
in Rn of radius r > 0 centered at the origin by

Br := {x ∈ Rn : ‖x‖2 < r}.

II. THEORY

We start by giving a summary of the CPA method as
presented in [9]. We define a grid on K ⊂ Rn and calculate
for each point x in the grid the value that V is to take at
x. The values for V on the grid can then be used to extend
V to all of K such that V is a continuous piecewise affine
Lyapunov function on K. In this section we shall provide
the details of this construction.

Let x0, . . . ,xk be a collection of linearly affine inde-
pendent points in Rn, that is

∑k
i=0 ci(xi − x0) = 0



implies that ci = 0 for i = 1, . . . , k. The convex com-
bination of x0, . . . ,xk, that is the set co{x0, . . . ,xk} :=
{
∑k
i=0 cixi | all ci ≥ 0 and

∑k
i=0 ci = 1}, is a k-simplex

in Rn.
Let T = {T1, . . . , Tm} be a set of k-simplices such that

K = ∪mi=1Ti. Suppose further that for every i, j such that i 6=
j we have that Ti∩Tj = ∅ or that Ti∩Tj is a h-simplex with
h < k. We then say that T is a triangulation of K. We further
define VT := {x ∈ Rn |x is a vertex of a simplex in T }
and call VT the vertex set for the triangulation.

For a given triangulation T = {T1, . . . , Tm} and a
function V0 : VT → R we can now uniquely extend V0

to a continuous piecewise affine function V : K → R that
is C∞ in the interior of each simplex Ti. More specifically:

i) If x ∈ VT then V (x) = V0(x).
ii) For every Ti ∈ T there exists a linear mapping Ai :

Rn → R and bi ∈ R such that V (x) = Ai(x) + bi for
all x ∈ Ti and such that V is continuous on K.

We are interested in systems with an asymptotically stable
equilibrium at the origin and consequently in Lyapunov
functions with a minimum at the origin. Since a local
minimum for a CPA function can only be attained at a vertex,
we insist that the origin be a vertex of our triangulation.
For a given triangulation T of K we denote the collection
of all continuous piecewise affine functions as described
above by CPA[T ] and identify each such function with the
corresponding function V0 : VT → R by V ∼ (V0(x))x∈VT .

The following theorem from [9] states that in order to
construct a Lyapunov function for (I.1) it is sufficient to
determine a function V0 : VT → R which satisfies certain
inequalities at each vertex x ∈ VT , for then the CPA
interpolation of V0 on K is a CPA Lyapunov function for
(I.1) on the whole of K.

Theorem 2.1: Consider the system (I.1) with triangulation
T = {T1, . . . , Tm}. Let V ∼ (V0(x))x∈VT ∈ CPA[T ]. For
each Ti ∈ T define the constants hi := diam2(Ti) and

Ei :=
nMi

2
h2
i , where (II.1)

Mi ≥ max
m,r,s=1,2,...,n

max
z∈Ti

∣∣∣∣ ∂2fm
∂xr∂xs

(z)
∣∣∣∣ .

Assume that for a simplex Ti = co{x0,x1, . . . ,xk} ∈ T the
inequality

∇Vi · f(xj) + Ei‖∇Vi‖1 < 0 (II.2)

holds true for every vertex xj ∈ Ti. Then

∇Vi · f(x) < 0 for all x ∈ Ti.

If the inequality (II.2) holds true for Ti1 , Ti2 , . . . , Tim , we
have V +(x) < 0 for all x ∈ (∪mj=1Tij )◦.

In [9] the values of V0 at the vertex points are determined
by linear programming. Here we will propose a different
and a much faster method to calculate the vertex values
similar to the one in [10]. In [16] Massera proved a con-
verse Lyapunov theorem for systems with an asymptotically
stable equilibrium at the origin by constructing a Lyapunov
function based on the integral of a nonlinear scaling of the

norm of the state trajectory. While Massera’s construction
is applicable to asymptotic stability, for simplicity we here
assume exponential stability. The following formulation is a
slightly simplified version of the one contained in [14].

Theorem 2.2: Consider a dynamical system ẋ = f(x)
where f is C2 on Br ⊂ Rn for some r ∈ R>0 and suppose
that 0 is an exponentially stable equilibrium point for the
system, that is there exist constants c, λ ∈ R>0 such that
‖φ(t,x)‖ ≤ c‖x‖e−λt for all t ≥ 0 such that x ∈ Br. Then
there exists a constant N such that

V (x) :=
∫ N

0

‖φ(τ,x)‖2dτ. (II.3)

is a Lyapunov function for the system on Br.
As indicated in [14] the constant N can be taken to

be N = ln(2k2)
2λ . However, since it can be difficult to

determine λ and k for specific systems this equation is
of limited practical value. It is also worth noting that the
function constructed in Theorem 2.2 inherits the smoothness
attributes of f , essentially because φ does, so we have
V ∈ C2(Br \ {0}).

To generalize the above to asymptotically stable systems
we can take a nonlinear scaling of the norm of the state
trajectory obtained from a class-KL asymptotic stability esti-
mate and Sontag’s Lemma on KL-estimates [23, Proposition
7] which provides an exponentially decreasing in time upper
bound for the asymptotic stability estimate (see [13] for the
definition of class-KL).

Our modification of the CPA method is now the following:
1) For a given compact neighborhood K ⊂ Rn of the

origin, define a sequence (Tj)j∈N of triangulations of
K that have uniformly bounded degeneracy (for details,
cf. [1], [10]) and such that

lim
j→∞

(
max
T∈Tj

diam2(T )
)

= 0.

2) Fix an increasing function g : N → R>0 with
limj→∞ g(j) =∞.

3) Set j = 1.
4) Compute

V j0 (x) =
∫ g(j)

0

‖φ(τ,x)‖2dτ (II.4)

at the vertices VTj
and by a convex interpolation con-

struct a CPA function V j(x) on K.
5) Check inequality (II.2) at each vertex to determine

where the CPA function V j(x) is a true Lyapunov
function for (I.1). If a finer result is required, increment
j and return to Step 4. Otherwise stop.

By our choice of g it is obvious that g(j) > ln(2k2)
2λ in the

long run, and in [8] and [10] it is demonstrated that there
exists a value δ > 0 such that if max

T∈T
diam2(T ) < δ then the

Lyapunov function constructed by the CPA method in fact
satisfies inequality (II.2) at every vertex point. Therefore,
if K is in the basin of attraction of the equilibrium and
given a priori an arbitrary small ε-ball Bε centered at the



origin, the functions V j will be true Lyapunov functions for
the system on K \ Bε for all large enough j. For all but
the most simple systems one has to approximate the values
of V0 numerically. It is a matter of ongoing research how
this affects the inequalities at the vertices, but our numerical
examples are promising.

III. EXAMPLES

In this section we shall present numerical examples that
demonstrate the effectiveness of our modified CPA method.
In what follows we use the classical Runge-Kutta method
RK4 to estimate φ(t,x). Across the examples, various step-
sizes ∆t for RK4 were used and for Examples 1-3 ∆t = 0.01
was found to be sufficiently small. For Example 4 we used
a smaller step-size of ∆t = 0.001 for better results.

In the following examples we set g(1) = 100 ·∆t, S1 =
800 and define recursively g(j + 1) = 2 · g(j), Sj+1 =
4 · Sj , where Sj denotes the number of simplices in our
triangulation in the j-th step of the algorithm. In other words,
at each iteration of the algorithm we double the upper limit
of integration in (II.4) and have a fourfold increase in the
number of simplices.

In the following figures we plot the calculated CPA
function at a specific iteration of the algorithm and mark with
∗ the simplices in which the computed CPA function fails to
have a negative orbital derivative. It is also worth noting that
all the functions we have calculated have been normalized
such that the maximum value of the CPA Lyapunov function
on its domain of definition is 1.

Example 1

Our first example is the linear system

ẋ = Ax =
[

1 1
−5 −3

]
x.

Since the eigenvalues of A are −1 + i and −1 − i this
system has an exponentially stable equilibrium at the origin.
We now utilize the proposed modified CPA method above
to calculate a Lyapunov function for the system on the unit
disc, that is on B1. We plot the function given by the first
two iterations of the algorithm in Figures 1 and 2. Note the
rapid convergence towards a true Lyapunov function in the
whole domain for the system. In Figure 3 we plot some level
curves for the CPA Lyapunov function obtained on the third
iteration. In Table I we give two measures for the quality
of the CPA Lyapunov functions computed in the different
iterations.

Example 2

Our next example is the non-linear system

ẋ1 = −x2 − (1− x2
1 − x2

2)x1

ẋ2 = x1 − (1− x2
1 − x2

2)x2.

By using polar coordinates or by linearizing one can
demonstrate that the origin is exponentially stable. It is also
simple to show that the unit circle is a recurrent set in
this example, therefore it is wise to utilize our method on

Iteration Percentage of Simplices Radius (R) Outside
with D+V (x) < 0 Which D+V < 0

1 91.750% 1
2 98.813% 6.25 · 10−2

3 99.719% 1.563 · 10−2

4 99.930% 3.91 · 10−3

5 99.982% 9.8 · 10−4

6 99.996% 2.4 · 10−4

TABLE I
TWO DIFFERENT MEASURES FOR THE QUALITY OF THE COMPUTED CPA
LYAPUNOV FUNCTIONS FOR THE DIFFERENT ITERATIONS. IN COLUMN 2
WE GIVE THE PERCENT OF THE NUMBER OF TRIANGLES Ti ∈ T , WHERE

THE ORBITAL DERIVATIVE D+V IS NEGATIVE AND IN COLUMN 3 WE

GIVE THE RADIUS R OF A BALL BR , OUTSIDE OF WHICH THE ORBITAL

DERIVATIVE IS NEGATIVE.

Fig. 1.
First iteration of the algorithm for the system in Example

1. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 734 of the 800 simplices in

the triangulation.

Fig. 2.
Second iteration of the algorithm for the system in

Example 1. We obtain a CPA Lyapunov function for the
system with negative orbital derivative in 3162 of the 3200

simplices in the triangulation.



Fig. 3.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 1.

Fig. 4.
First iteration of the algorithm for the system in Example

2. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in all of the simplices in the

triangulation. Therefore no further iterations are required.

a set slightly smaller than B1. We choose the set B0.95.
In this case we obtain a Lyapunov function on the first
iteration, so further iterations are unnecessary. The resulting
CPA Lyapunov function is displayed in Figure 4. By using
a slightly stricter version of Theorem 2.1 (cf. [4, Theorem
2.6]), we can even assure that the CPA Lyapunov function
has a negative orbital derivative on its entire domain, even
in a neighborhood of the origin.

In Figure 5 we plot some of its level curves.

Example 3

Next up is a torture test for the method. We consider the
following non-linear system which we examine on the unit
disc.

ẋ1 = −x2 − 2x1(x2
1 + x2

2)

ẋ2 = x1 − 2x2(x2
1 + x2

2).

Note the equilibrium at the origin is asymptotically stable
but not exponentially stable. Further, solutions in its domain
of attraction spiral around the equilibrium and converge very
slowly to the equilibrium. As expected, the convergence of

Fig. 5.
Some level curves of the CPA Lyapunov function from the

3. iteration for Example 2.

Fig. 6.
First iteration of the algorithm for the system in Example

3. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 632 of the 800 simplices in

the triangulation.

our method is noticeably slower than in the previous exam-
ples. We need for example six iterations of the algorithm to
obtain a Lyapunov function with a negative orbital derivative
on roughly 95% of the simplices, in which case the number
of simplices has grown to a rather overwhelming 819, 200.
A smaller step-size for the RK4 integrator of the system
does not improve the results. This slow convergence can be
explained by the almost recurrent behavior of the system
close to the origin. We plot the CPA Lyapunov function
computed by the first two iterations of the algorithm in
Figures 6 and 7. In Figure 8 we plot some level curves for
the CPA Lyapunov function from the third iteration. In Table
II we give two measures for the quality of the CPA Lyapunov
functions computed in the different iterations.



Fig. 7.
Second iteration of the algorithm for the system in

Example 3. We obtain a CPA Lyapunov function for the
system with negative orbital derivative in 2680 of the 3200

simplices in the triangulation.

Fig. 8.
Some level curves of the CPA Lyapunov function from the

third iteration for Example 3.

Iteration Percentage of Simplices Radius (R) Outside
with D+V (x) < 0 Which D+V < 0

1 79.000% 0.25000
2 83.750% 0.20250
3 88.031% 0.14063
4 90.930% 0.10563
5 93.205% 0.07563
6 94.833% 0.05790

TABLE II
TWO DIFFERENT MEASURES FOR THE QUALITY OF THE COMPUTED CPA
LYAPUNOV FUNCTIONS FOR THE DIFFERENT ITERATIONS. IN COLUMN 2
WE GIVE THE PERCENT OF THE NUMBER OF TRIANGLES Ti ∈ T , WHERE

THE ORBITAL DERIVATIVE D+V IS NEGATIVE AND IN COLUMN 3 WE

GIVE THE RADIUS R OF A BALL BR , OUTSIDE OF WHICH THE ORBITAL

DERIVATIVE IS NEGATIVE.

Fig. 9.
First iteration of the algorithm for the system in Example

4. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 644 of the 800 simplices in

the triangulation.

Example 4

Our last example is the following non-linear equation
which we explore on the square [−3, 3]2.

ẋ1 = x2

ẋ2 = −x1 +
1
3
x3

1 − x2.

In this example the origin is a stable equilibrium point,
and we also have equilibrium points at (

√
3, 0) and (−

√
3, 0)

that are unstable. Therefore we cannot expect to obtain a true
Lyapunov function on the whole square, but as an interesting
application we note that the domain in which we obtain a true
Lyapunov function for the system gives a rough estimate on
the basin of attraction for the stable equilibrium point at the
origin. We plot the CPA Lyapunov function computed by the
first two iterations of the algorithm in Figures 9 and 10. In
Figure 11 we plot some level curves for the CPA Lyapunov
function from the third iteration.

IV. CONCLUSIONS

We have proposed a modified CPA method for the con-
struction of Lyapunov functions on compact regions con-
taining the origin using a classical Lyapunov function con-
struction due to Massera. This modification has the benefit
that computation of the vertex values for the candidate
CPA Lyapunov function is much faster than the solving the
linear program necessary for the original CPA method [15].
We presented several numerical examples demonstrating the
utility of this modified CPA method.

While (II.3) provides a true Lyapunov function, the system
trajectories obtained via the Runge–Kutta RK4 method are
obviously an approximation. This causes no difficulty as we
may, in fact, choose any values for the vertices to then
define the candidate CPA Lyapunov function and then use
Theorem 2.1 to determine whether or not those particular
vertex values do, in fact, yield a negative orbital derivative



Fig. 10.
Second iteration of the algorithm for the system in example
4. We obtain a CPA Lyapunov function for the system with
negative orbital derivative in 2598 of the 3200 simplices in

the triangulation.

Fig. 11.
Some level curves of the CPA Lyapunov function from the

3. iteration for Example 4.

on each simplex. Using approximate values of (II.3) to fix
the vertex values is then, in some sense, a principled guess
since the results of [8] and [10] guarantee that, by a process
of iteratively refining the triangulation, using exact values of
(II.3) will eventually yield a CPA Lyapunov function.
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