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Abstract

This paper shows how an optimization-based approach to calculate reachable sets can be
improved by using a subdivision-algorithm.

1 Optimization-based algorithm for reachable sets

The reachable setR (sometimes also called attainable set) at a given time T of a nonlinear control
system

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, u(t) ∈ U, t ∈ [t0, T ]

is the union of the endpoints of all feasible solutions.
This set can be approximated using an optimization-based approach (e.g. [1]). The basic idea

behind this algorithm is, that we choose an initial bounding box B = [a1, b1] × [a2, b2] × ...,
discretize this box into a grid G (e.g. an eqidistant grid) and solve the optimal control problem
(OCP)

min ||g − x(T )||2 subject to ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U and x(t0) = x0 (1)

using direct discretization for every gridpoint g ∈ G. The union of the endpoints of the calculated
solutions now approximates the reachable set.

2 Grid construction via subdivision

The biggest performance problem of the optimization-based algorithm is, that we have to solve
many optimization problems, which can be very expensive. To address this issue we use some
ideas from subdivision algorithms (e.g. [3], [4]) to reduce the number of gridpoints and therefore
the number of optimization problems.

Definition 1.

F : Rn → Rn, F (g) = x(T ; g) where x is the solution of the OCP (1).

With this definition we can show that the reachable set R is the global attractor since F (R) =
R and F (g) ∈ R for every g ∈ Rn.

Algorithm 1. Given: Initial collection B0 = {B}
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1. Subdivision: Construct a new collection B̂k such that⋃
B∈B̂k

B =
⋃

B∈Bk−1

B

and

max
B∈B̂k

diam(B) = θk · max
B∈Bk−1

diam(B) with 0 < θmin ≤ θ ≤ θmax < 1

2. Selection: Define the new collection Bk by

Bk = {B̂ ∈ B̂k : ∃B ∈ Bk−1,∃g ∈ B such that F (g) ∈ B̂}

In the two-dimensional case, we subdivide our initial bounding box into four smaller boxes
(i.e. θ = 0.5) by solving the OCP on an equidistant 3× 3 grid. In the next step we drop all boxes
that do not contain at least one endpoint of the nine calculated solutions and we subdivide the
remaining boxes in the same way as before. This will be repeated until the grid is dense enough.

Figure 1: First step of the al-
gorithm.
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Figure 2: Second step of the
algorithm.
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Figure 3: Third step of the al-
gorithm.
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3 Numerical example

The Rayleigh-problem (e.g. [2]) with initial bounding box [−10, 10]2 can be used as an example
to illustrate the improvements of the subdivision algorithm:

ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + x2(t) ·
(
1.4− 0.14 · x2(t)2

)
+ 4 · u(t),

u(t) ∈ [−1, 1], t ∈ [0, 2.5] and x1(0) = x2(0) = −5. Figure 4 shows the results using the
optimization-based algorithm on a 33×33 grid and Figure 5 the result of the subdivision with the
same density of gridpoints near the set. Table 1 compares the cpu-times to calculate the reachable
set using the optimization-based algorithm and the subdivision algorithm and Table 2 shows the
number of needed gridpoints for both versions.

2



Figure 4: Example using a full grid.
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Figure 5: Example using subdivision.
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Table 1: CPU-times
grid full grid subdivision speedup

33 x 33 1m 27.933s 14.109s 6.2
49 x 49 3m 21.253s 25.206s 8.0
65 x 65 5m 48.130s 31.794s 10.9
97 x 97 13m 05.713s 54.335s 14.5

129 x 129 22m 53.810s 1m 06.836s 20.6
193 x 193 51m 11.260s 1m 58.871s 25.8
257 x 257 1h 30m 49.837s 2m 23.577s 38.0

Table 2: Number of gridpoints
grid full grid subdivision speedup

33 x 33 1089 150 7.3
49 x 49 2401 310 7.7
65 x 65 4225 354 11.9
97 x 97 9409 755 12.5

129 x 129 16641 995 16.7
193 x 193 37249 2353 15.8
257 x 257 66049 3201 20.6
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