
Asymptotic stability and transient optimality of
economic MPC without terminal conditions
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Abstract

We consider an economic nonlinear model predictive control scheme without

terminal constraints or costs. We give conditions based on dissipativity and con-

trollability properties under which the closed loop is practically asymptotically

stable. Under the same conditions we prove approximate transient optimality

of the closed loop on finite time intervals. Two numerical examples illustrate

our theoretical findings.
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1. Introduction

Economic Model Predictive Control (MPC) has attracted considerable at-

tention during the last couple of years. Due to the availability of fast and

reliable solution algorithms for the underlying optimal control problems and

an increasing demand for efficiency, e.g., in terms of consumptions of resources

and energy or regarding a reduction of the environmental impact, the idea to

use more sophisticated “economic” objectives directly in an MPC formulation

is both natural and appealing. The hope is that by solving an optimal control
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problem in each sampling instant, the resulting closed loop will also be optimal

with respect to the chosen economic criterion, at least in an approximate sense.

Results which show that this is indeed the case were given, e.g., in [1, 3] in an

averaged infinite horizon sense. Besides optimality, stability of the closed loop

with respect to a given optimal equilibrium is often of interest. Stability results

for economic MPC schemes can be found, e.g., in [3, 7, 10].

In all of the references just cited, terminal conditions – i.e., terminal con-

straints and/or costs – or other modifications of the “plain” finite horizon eco-

nomic optimal control problem are used in order to ensure stability and perfor-

mance estimates. While such mechanisms are able to improve the performance

of MPC schemes, they are often avoided in practice. Reasons for this are that

terminal constraints limit the operating region of the controller and may pose

problems in numerically solving the optimal control problem in each step of the

MPC scheme. Terminal costs, on the other hand, may be complicated to design

particularly in time variant settings. Moreover, although terminal costs may

in principle be used without terminal constraints, they typically provide only a

local approximation to the true cost-to-go and thus require terminal constraints

in order to ensure that the optimized trajectories end up in a region where the

terminal cost attains meaningful values. Finally, and most importantly, stability

like behaviour and good performance are often observed without any terminal

conditions. Thus, the purpose of this paper is to explain why and under which

conditions this is the case.

Like in many of the references, above, in this paper we assume a strict

dissipativity condition which in particular implies the existence of an optimal

steady state xe, cf. [11]. For this setting, it is already known that — under

appropriate conditions, for details see [8] — Economic MPC without terminal

constraints yields closed loop trajectories which are approximately optimal in

an averaged infinite horizon sense. Moreover, under an exponential turnpike

assumption, cf. [5, 12], the trajectories converge to a neighborhood of xe and

there exists at least one time horizon for which the closed loop trajectory is also

approximately optimal in a finite horizon sense. Since (approximate) optimality
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in an infinite horizon averaged sense is in fact a rather weak optimality concept

(as the trajectory may be far from optimal on any finite time interval) the

latter is important because it tells us that the closed loop trajectory when

initialized away form the optimal steady state approaches this equilibrium in an

approximately optimal way. In other words, the closed loop is not only optimal

on average in the long run but also shows near optimal performance during its

transient phase.

The present paper builds upon the results of [8] and improves them in several

directions. First of all, due to a refined error analysis we will be able to remove

the exponential turnpike property from the list of assumptions. Although nu-

merical results indicate that exponential turnpike is a widely spread property,

this nevertheless simplifies the assumptions and extends the applicability of our

results. Second, we will prove practical asymptotic stability (instead of mere

convergence as in [8]) and provide a corresponding practical Lyapunov function.

The particular form of this function will then enable us to prove near optimal

transient performance for arbitrary finite time intervals (instead of for only a

single one as in [8]). Last but not least, we present our results under less tech-

nical assumptions. This is achieved by restricting ourselves to two particular —

and in a sense opposing — settings: on the one hand, we consider fully nonlin-

ear systems with compact state constraints sets which are locally controllable

around xe. For this setting we present sufficient conditions for practical asymp-

totic stability and approximately optimal transient performance. On the other

hand, we consider strictly convex affine-linear-quadratic problems without any

state constraints for which we show that practical asymptotic stability of the

MPC closed loop holds if and only if the system is stabilizable. While there are

certainly various intermediate settings which are of interest, we consider these

two cases as prototypical and hope that their treatment enables the interested

reader to carry over our results to his or her favourite setting.

The remainder of this paper is organized as follows. In Section 2 we de-

fine our notation and formulate the underlying optimal control problem. We

introduce the concept of model predictive control and give a sufficient condition
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for practical asymptotic stability, namely the existence of a practical Lyapunov

function. In Section 3 two settings of optimal control problems are given for

which we derive the existence of a practical Lyapunov function. By using this

Lyapunov function, approximate optimal behaviour of the closed loop during

the transient phase is proven in Section 4. In Section 5 we present two examples

with numerical tests that illustrate the theoretical results of Section 3 and 4.

Section 6 gives an conclusion of the paper and an outlook to future research.

Since the proofs of our main theorems are quite technical they are moved to the

separate Section 7.

2. Problem formulation and preliminary results

We consider nonlinear discrete time control systems given by

x(k + 1) = f(x(k), u(k)) (1)

for some f : X × U → X, with X and U normed spaces that denote the state

space and the control space. The solution of system (1) for a control sequence

u = (u(0), u(1), . . . , u(K − 1)) ∈ UK emanating from the initial value x is

denoted by xu(k, x), k = 0, . . . ,K − 1. The sets X and U denote the admissible

states and controls. For a given initial value x ∈ X, a control sequence u ∈ UK

is called admissible if xu(k, x) ∈ X holds for all time instants k = 0, . . . ,K. The

set of all admissible control sequences is denoted by UK(x). For the infinite case

u = (u(0), u(1), . . . ) ∈ U∞ we define the sets U∞ and U∞(x) similarly.

For a given stage cost ` : X × U → R we define the finite horizon cost

functional

JN (x, u) :=

N−1∑
k=0

`(xu(k, x), u(k)), (2)

and the corresponding optimal value function

VN (x) := inf
u∈UN (x)

JN (x, u). (3)

In the sequel we assume that for all x ∈ X and all N ∈ N there is a control

sequence u?N,x ∈ UN (x), such that the equality VN (x) = JN (x, u?N,x) holds, i.e.

4



u?N,x solves the optimal control problem of minimizing JN (x, u) with respect

to u ∈ UN (x). This particularly includes the assumption UN (x) 6= ∅ for all

x ∈ X which holds if and only if X is a viable set. Note that we do not require

uniqueness of the optimal control sequences. In case of non-uniqueness, u?N,x

denotes one of the minimizing control sequences.

The optimal control problem just defined can be used in order to define

a feedback law using the following model predictive control (MPC) iteration.

Fixing an optimization horizon N ∈ N, at each time instant n we perform the

following steps:

1. Measure the current state x = x(n) of the system.

2. Solve the optimization problem of minimizing JN (x, u) with respect to

u ∈ UN (x) subject to xu(0, x) = x and xu(k + 1, x) = f(xu(k, x), u(k)).

Denote the resulting optimal control sequence by u?N,x.

3. Apply the first element of u?N,x as a feedback control value until the next

time instant, i.e., define the feedback law µN (x) := u?N,x(0).

The resulting MPC closed loop system is given by x(n+1) = f(x(n), µN (x(n))).

Trajectories of this system with initial value x ∈ X will be denoted by xµN
(n, x)

As the MPC feedback law is derived from minimizing (2), questions about the

optimality properties of the closed loop naturally arise. Here, we will investigate

the values

JclK(x, µN ) :=

K−1∑
n=0

`(xµN
(n, x), µN (xµN

(n, x))),

for arbitrary K ∈ N. Moreover, stability properties of the closed loop are of

interest and — as we will see — form an important prerequisite for approximate

optimality estimates. Both issues have been addressed in [8] which forms the

basis for this paper. However, instead of stability only convergence was estab-

lished, see [8, Theorems 7.1 and 7.6] and approximate optimality could only

be established for certain K ∈ N but not for arbitrary K, cf. [8, Remark 7.7].

Moreover, these properties could only be proved under the condition that cer-

tain error terms converge sufficiently fast as N →∞, cf. the discussion after [8,
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Theorem 7.1]. All these limitations will be overcome in this paper. Another con-

tribution is the observation that essentially the same Lyapunov function which

can be used in economic MPC with terminal conditions [6, 3] can also be used

in our setting without terminal constraints.

For the definition of stability we will make use of the following classes of

comparison functions

L := {δ : R+
0 → R+

0 | δ continuous and decreasing with lim
k→∞

δ(k) = 0},

K := {α : R+
0 → R+

0 |α continuous, strictly increasing with α(0) = 0},

K∞ := {α ∈ K |α unbounded},

KL := {β : R+
0 × R+

0 → R+
0 |β continuous, β(·, t) ∈ K, β(r, ·) ∈ L},

Stability will be considered for optimal steady states defined as follows.

Definition 2.1. A pair (xe, ue) ∈ X×U that satisfies the condition f(xe, ue) =

xe is called steady state or equilibrium for the control system (1). A steady

state is optimal, if it solves the optimization problem

min
x∈X,u∈U

`(x, u) s.t. f(x, u)− x = 0. (4)

Definition 2.2. Let xe ∈ X be an equilibrium for the closed loop system, i.e.

xe = f(xe, µ(xe)). The equilibrium is called practically asymptotically stable

w.r.t. ε ≥ 0 on a set S ⊆ X with xe ∈ S if there exists β ∈ KL such that

‖xµ(k, x)− xe‖ ≤ max{β(‖x− xe‖, k), ε} (5)

holds for all x ∈ S and all k ∈ N. The equilibrium is globally practically

asymptotically stable w.r.t. ε ≥ 0 if (5) holds on S = X.

A sufficient condition for this stability property is the existence of a practical

Lyapunov function in the following sense.

Definition 2.3. A function V : X→ R is a practical Lyapunov function w.r.t.

δ > 0 for the closed loop system on a set S ⊆ X with xe ∈ S, if there are
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α1, α2 ∈ K∞ and α3 ∈ K such that

α1(‖x− xe‖) ≤ V (x) ≤ α2(‖x− xe‖) (6)

holds for all x ∈ X and

V (f(x, µ(x))) ≤ V (x)− α3(‖x− xe‖) + δ (7)

holds for all x ∈ S.

The proof of the following theorem is standard but we provide some details

for the convenience of the reader.

Theorem 2.4. Let V be a practical Lyapunov function w.r.t. some δ > 0 on a

set S ⊆ X. Assume that either S = X or S = V −1[0, L] := {x ∈ X |V (x) ≤ L}

for some L > α2(α−1
3 (δ)) + δ. Then xe is practically asymptotically stable on S

w.r.t. ε = α−1
1 (α2(α−1

3 (δ)) + δ).

Proof: Inequality (7) and the assumption on S implies f(x, µ(x)) ∈ S for all

x ∈ S, i.e., forward invariance of S. Define η := α2(α−1
3 (δ)) + δ and P :=

V −1[0, η]. We claim that P is also forward invariant. To this end, we pick

x ∈ P , i.e., V (x) ≤ η, and distinguish two cases:

Case 1: α3(‖x− xe‖) ≥ δ. In this case we get

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xe‖) + δ ≤ V (x)− δ + δ = V (x) ≤ η

implying f(x, µ(x)) ∈ P .

Case 2: α3(‖x− xe‖) < δ. In this case we get ‖x− xe‖ < α−1
3 (δ), implying

V (x) < α2(α−1
3 (δ)) and thus

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xe‖) + δ < α2(α−1
3 (δ)) + δ = η

which again yields f(x, µ(x)) ∈ P .

Now by continuity there exists c > 1 with α2(α−1
3 (cδ)) ≤ η. For x ∈ S\P we

have V (x) ≥ η and consequently α3(‖x−xe‖) ≥ α3(α−1
2 (V (x))) ≥ α3(α−1

2 (η)) ≥
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cδ for all x ∈ S \P . This implies α3(‖x− xe‖)− δ ≥ (1− 1/c)α3(‖x− xe‖) and

thus

V (f(x, µ(x))) ≤ V (x)−
(

1− 1

c

)
α3(‖x− xe‖)

for all x ∈ S \ P . Hence, V is a Lyapunov function on S \ P in the sense of

[9, Definition 2.18] and [9, Theorem 2.20] yields practical asymptotic stability

w.r.t. the exceptional set P . Since x ∈ P implies V (x) ≤ η and thus ‖x−xe‖ ≤

α−1
1 (η) = ε, this proves the assertion.

3. Stability results

In this section we formulate our main results on practical stability of the

economic MPC closed loop system under two different sets of assumptions. The

first applies to general nonlinear dynamics and costs. The respective assump-

tions read as follows.

Assumption 3.1 (Strict dissipativity). The optimal control problem of min-

imizing (2) is strictly dissipative, i.e., there is an equilibrium (xe, ue) ∈ X×U,

a function α` ∈ K∞ and a storage function λ : X → R such that

min
u∈U

˜̀(x, u) ≥ α`(‖x− xe‖) (8)

holds for all x ∈ X, where ˜̀ denotes the rotated stage costs

˜̀(x, u) := `(x, u) + λ(x)− λ(f(x, u))− `(xe, ue). (9)

In the next assumptions we use the balls Bδ(xe) := {x ∈ X | ‖x − xe‖ < δ}

for δ > 0.

Assumption 3.2 (Continuity and compactness). The state and control con-

straint set X and U are compact, the functions f , ` and λ are continuous, λ is

Lipschitz continuous on a ball Bδ(xe) around xe and ˜̀ satisfies the inequality

˜̀(x, u) ≤ α(‖x− xe‖) + α(‖u− ue‖) (10)

for all x ∈ X, u ∈ U and a suitable α ∈ K∞.
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We remark that under Assumption 3.1 the function ˜̀ is zero in (xe, ue).

Hence, in the finite dimensional case with X ⊆ Rn and U ⊆ Rm inequality (10)

follows from continuity of ˜̀.

Assumption 3.3 (Local controllability on Bε(xe)). There is ε > 0, M ′ ∈

N, C > 0 such that ∀x ∈ Bε(xe) ∃u1 ∈ UM ′
(x), u2 ∈ UM ′

(xe) with

xu1(M ′, x) = xe, xu2(M ′, xe) = x

and

max {‖xu1
(k, x)− xe‖, ‖xu2

(k, xe)− xe‖, ‖u1(k)− ue‖,

‖u2(k)− ue‖} ≤ C‖x− xe‖

for k = 0, 1, · · · ,M ′ − 1.

Assumption 3.4 (Finite time controllability into Bε(xe)). For ε > 0 from

Assumption 3.3 there is K ∈ N such that for each x ∈ X there is k ≤ K and

u ∈ Uk(x) with

xu(k, x) ∈ Bε(xe).

Assumption 3.5 (Polynomial bounds). There are constants C1, C2, p, η >

0 such that

C1(‖x− xe‖p) ≤ ˜̀(x, u) ≤ C2(‖x− xe‖p + ‖u− ue‖p) (11)

holds for all x ∈ Bη(xe), u ∈ Bη(ue) with xe, ue and ˜̀ from Assumption 3.1.

In order to formulate our first main stability theorem, we need the following

additional definition.

Definition 3.6. For the rotated stage cost ˜̀ from Assumption 3.1, we define

J̃N (x, u) and ṼN (x) similar to (2) and (3) with ˜̀ in place of `.
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We remark that the optimal trajectories minimizing the original cost func-

tional JN (x, u) are in general different from those minimizing J̃N (x, u). Hence,

MPC closed loop trajectories w.r.t. both stage costs are not expected to coincide,

either. Indeed, we will see in Section 5 that they may differ considerably.

Theorem 3.7. Consider an economic MPC problem without terminal constraints

satisfying Assumptions 3.1–3.4. Then there exists N0 ∈ N and functions δ ∈ L

and αV ∈ K∞ such that the inequalities

α`(‖x− xe‖) ≤ ṼN (x) ≤ αV (‖x− xe‖) (12)

and

ṼN (f(x, µN (x))) ≤ ṼN (x)− α`(‖x− xe‖) + δ(N) (13)

hold for all N ≥ N0 and x ∈ X. In particular, the functions ṼN are practical

Lyapunov functions for the economic MPC closed loop system and the closed

loop is practically asymptotically stable w.r.t. ε → 0 as N → ∞. If, moreover,

Assumption 3.5 holds, then the function δ(N) converges to 0 exponentially fast

as N →∞, i.e., there are C > 0 and θ ∈ (0, 1) with δ(N) ≤ CθN .

The proof of this theorem can be found in Section 7.

Remark 3.8. Note that our assumptions are not much more restrictive than

those needed in [3] for proving stability for terminal constrained economic MPC.

Strict dissipativity3 and continuity are also assumed in this reference, Assump-

tion 3.3 is slightly stronger but conceptually similar to Assumption 2 in [3] and

Assumption 3.4 will hold if we restrict X to the feasible set XN from [3].

Our second set of assumption covers unconstrained linear quadratic prob-

lems. In this setting, we make the following assumptions.

3Strict dissipativity in [3] is defined by means of a merely positive definite function α`

while here we require α` in Assumption 3.1 to be of class K∞. However, since we assumed X

to be compact, this does not make a difference.
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Assumption 3.9 (Linear quadratic problem). The dynamics and the cost

functions are given by

f(x, u) = Ax+Bu+ c and `(x, u) = xTRx+ uTQu+ sTx+ vTu

with x ∈ Rn, u ∈ Rm, A,B,R,Q are matrices and s, v are vectors of appropriate

dimensions with R and Q symmetric and positive definite.

Assumption 3.10 (No constraints). There are no state and control con-

straints, i.e., X = Rn and U = Rm.

Note that in this setting there exists a unique optimal steady state xe in the

sense of Definition 2.1. Moreover, [5, Proposition 4.5] shows that xe is strictly

dissipative with ˜̀ satisfying Assumption 3.5.

Theorem 3.11. Consider an economic MPC problem without terminal con-

straints satisfying Assumptions 3.9 and 3.10 and let xe be the optimal steady

state. Then xe is practically asymptotically stable on each compact subset S ⊂

Rn w.r.t. ε→ 0 as N →∞ if and only if the pair (A,B) is stabilizable.

In this case, the problem is strictly dissipative and the functions ṼN are prac-

tical Lyapunov functions for the closed loop and ε converges to 0 exponentially

fast in N .

Again, the proof is found in Section 7.

4. Transient performance

In this section we use the results from the last section in order to prove

an approximate transient optimality property of economic MPC without ter-

minal constraints. In order to formulate the concept of transient optimality,

assume that the MPC closed loop is practically asymptotically stable, implying

xµN
(K,x)→ xe as N →∞ and K →∞. Then transient optimality means that

among all trajectories xu(k, x) satisfying ‖xu(K,x)− xe‖ ≤ ‖xµN
(K,x)− xe‖,

the MPC closed loop trajectories are those with the smallest cost JK(x, u) —

up to an error term which vanishes as N →∞ and ‖xµN
(K,x)− xe‖ → 0.
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We define

UKε (x) := {u ∈ UK(x) |xu(K,x) ∈ Bε(x)}.

Theorem 4.1. Assume that xe is practically asymptotically stable on a set S ⊆

X w.r.t. ε = ε(N) for the economic MPC closed loop with Lyapunov function ṼN

satisfying (12), (13). Assume that there exists αλ ∈ K∞ with |λ(x)| ≤ αλ(‖x−

xe‖) for all x ∈ X. Let εK,N := ‖xµN
(K,x)−xe‖ ≤ max{β(‖x−xe‖,K), ε(N)}.

Then the inequality

JclK(x, µN (x)) ≤ inf
u∈UK

εK,N
(x)
JK(x, u) + αV (εK,N ) + 2αλ(εK,N ) +Kδ(N) (14)

holds for all K,N ∈ N and all x ∈ S.

Proof: First, by induction from (13) we obtain

K−1∑
k=0

˜̀(xµN
(k, x), µN (xµN

(k, x))) ≤ ṼN (x)− ṼN (xµN
(K)) +Kδ(N). (15)

Second, from the dynamic programming principle

ṼN (x) = inf
u∈UK(x)

{
J̃K(x, u) + ṼN−K(xu(K,x))

}
and (12) we obtain for all K ∈ {1, . . . , N} and u ∈ UKε (x)

J̃K(x, u) = J̃K(x, u) + ṼN−K(xu(K,x))︸ ︷︷ ︸
≥ṼN (x)

− ṼN−K(xu(K,x))︸ ︷︷ ︸
≤αV (ε)

≥ ṼN (x)− αV (ε) (16)

and we note that forK ≥ N non-negativity of ˜̀implies the inequality J̃K(x, u) ≥

ṼN (x) for all u ∈ UK(x), implying again (16). Third, we have

K−1∑
k=0

˜̀(xu(k, x), u(k)) = J̃K(x, u) = λ(x) + JK(x, u)− λ(xu(K,x)) (17)
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and ṼN (x) ≥ 0. Using these inequalities for all u ∈ UKεK,N
(x) we obtain

JclK(x, µN (x))
(17)
=

K−1∑
k=0

˜̀(xµN
(k, x), µN (xµN

(k, x)))

− λ(x) + λ(xµN
(K,x))

(15)

≤ ṼN (x)− Ṽ (xµN
(K,x)) +Kδ(N)

− λ(x) + λ(xµN
(K,x))

(16)

≤ J̃K(x, u) + αV (εK,N )− Ṽ (xµN
(K,x)) +Kδ(N)

− λ(x) + λ(xµN
(K,x))

(17)
= JK(x, u) + αV (εK,N )− Ṽ (xµN

(K,x)) +Kδ(N)

− λ(xu(K,x)) + λ(xµN
(K,x))

≤ JK(x, u) + αV (εK,N ) +Kδ(N) + 2αλ(εK,N )

implying the desired inequality.

Remark 4.2. i) Note that all assumptions of Theorem 4.1 are satisfied if

either Assumptions 3.1–3.4 or Assumptions 3.9–3.10 are satisfied. In the

latter case the existence of αλ follows because in the linear quadratic setting

λ is either a linear or a quadratic function, cf. [5]. Moreover, if Assump-

tion 3.5 holds then δ(N) converges to 0 exponentially fast as N → ∞,

implying that the error terms on the right hand side of (14) converge to

0 if K,N → ∞ with K ≤ cN for some c > 0. In addition, in this case ˜̀

and Ṽ have identical polynomial growth near xe, implying that the conver-

gences β(r, k)→ 0 as k →∞ and ε(N)→ 0 as N →∞ are exponentially

fast and thus all error terms in (14) converge to 0 exponentially fast as

K,N →∞ with K ≤ cN for some c > 0.

ii) Optimal trajectories minimizing (2) in general do not end up near xe, see,

e.g., the examples in [5]. Hence, for u ∈ UK(x) the value JK(x, u) can

be much smaller than JclK(x, µN ) and thus estimate (14) can only hold if

we restrict the control sequences to u ∈ UKεK,N
(x). In words, the estimate
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states that among all trajectories converging to a neighborhood of xe, the

ones generated by MPC are — up to the error terms — the ones with the

lowest cost JK(x, u).

5. Numerical example

Example 5.1. Consider the one-dimensional economic growth model from [4]

with dynamics

x(k + 1) = u(k)

and stage cost

`(x, u) = − ln(Axα − u)

with A = 5 and α = 0.34. We impose state constraints X = [0, 10] and control

constraints U = [0.1, 5]. The optimal steady state of the control system is given

by (xe, ue) = (xe, xe) with xe ≈ 2.23 and related stage cost `(xe, ue) ≈ −1.467.

The problem is strictly dissipative with storage function4 λ(x) = σx, σ = 0.2306.

Figure 1 shows that the closed loop trajectories converge into a neighborhood of

the optimal equilibrium, which is getting smaller as N increases. As Figure

2 shows the neighborhood is shrinking exponentially fast. This confirms our

theoretical results since all Assumptions of Theorem 3.7 are fulfilled by this

example.

Next we illustrate the approximate optimal behaviour of the MPC closed loop

during the transient phase. To this end, we compare the MPC controllers µN

computed using four different cost functions:

4For linear control systems with strictly convex cost the storage function can always be

chosen linear, see [6] or [5]. In this case, strict dissipativity translates to strong duality which

can be used in order to compute the storage function λ. For linear systems with non-strictly

convex cost functions, a constructive approach to compute λ can be found in [5]. For nonlinear

systems, computing λ is in general a difficult task. We note, however, that the knowledge of

λ is not needed for implementing our economic MPC controller but only for its analysis.
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Figure 1: Closed loop for N = 2, . . . , 5 (bot-

tom to top) and x = 0.1.

2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

N

|x
µ N

(K
,x

)−
xe |

Figure 2: Distance from the closed loop to xe

at final time for N = 2, . . . , 10, x = 0.1.

• the original economic stage cost `  µeco
N

• the rotated stage cost ˜̀ from (9)  µrot
N

• the stabilizing quadratic stage cost `stab(x, u) = (x− xe)2 + (u− ue)2

 µstab
N

• the stabilizing quadratic stage cost

`tayl(x, u) = `(xe, ue) +
1

2
0.12125(x− xe)2

−0.05315(x− xe)(u− ue) +
1

2
0.05315(u− ue)2

whose weights were derived from a 2nd order Taylor approximation of `

in (xe, ue)  µtayl
N

Figure 3 shows the closed loop trajectories for µN ∈
{
µeco
N , µrot

N , µstab
N , µtayl

N

}
for

N = 5. One sees that the feedback µstab
N yields the fastest convergence towards

xe, followed by µtayl
N and µrot

N . The trajectory for the original economic costs `

controlled by µeco
N behaves similarly to the rotated problem but only converges to

a neighborhood of xe.

Now, in order to investigate approximate optimal transient performance, for
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Figure 3: Closed loop trajectories for N =

5, x = 0.1 with respect to different stage

costs.
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Figure 4: Jcl
K(x, µN ) for N = 5, x = 0.1

and varying K subject to different feedbacks

µN .

given N and K we calculate JclK(x, µN ) for the different MPC controllers5. In

Figure 4 we show the values for fixed N = 5 and varying K = 1, . . . , 20. One

sees that the values of the cost functionals are almost parallel, which is due to

the fact that the difference is mainly accumulated in the first few time steps.

The value of JclK(x, µeco
N ) is almost identical to JclK(x, µrot

N ) and both are better

than the other feedbacks. Observe that the merely practical stability of µeco
N does

not have a visible effect in this comparison.

Next we investigate two fixed values for K and varying optimization horizons

N in Figures 5 and 6. While in Figure 5 µecon yields the best performance for

all N , Figure 6 reveals that JclK(x, µeco
N ) might not yield the best performance for

very small N , but converges to JclK(x, µrot
N ) as N increases and is slightly better

than µrot
N and considerably better than µtayl

N and µstab
N for most values of N .

Example 5.2. The second example is a two-dimensional tank reactor model

(Example 3.2 in [8]) with affine linear dynamics

x(k + 1) =

0.8353 0

0.1065 0.9418

x(k) +

 0.00457

−0.00457

u(k) +

0.5559

0.5033


5In this comparison Jcl

K(x, µN ) is always evaluated using the economic cost `. The different

cost functions only refer to the computation of µN (x) in Step 2 of the MPC algorithm.
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Figure 5: Jcl
K(x, µN ) for K = 5, x = 0.1 and

varying N with different feedbacks µN .
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Figure 6: Jcl
K(x, µN ) for K = 20, x = 0.1

and varying N with different feedbacks µN .

and quadratic stage costs `(x, u) = ‖x‖2 + 0.05u2. State and control constraints

are given by X = [−100, 100]2, U = [−10, 10]. The optimal steady state of this

problem is xe ≈ (3.546, 14.653)T , ue ≈ 6.163 with cost `(xe, ue) ≈ 229.1876. As

in the previous example, we observe that the closed loop trajectories converge

into a neighborhood of xe which is shrinking as N increases. This confirms the

result in Theorem 3.11, since the pair (A,B) in the dynamics is stabilizable and

the stage costs are striclty convex.

The problem is strictly dissipative with respect to the storage function λ(x) =

(−368.6684,−503.5415)x, and the comparison of the closed loop trajectories sub-

ject to the original and the rotated stage costs in Figure 7 shows that the tra-

jectory based on the rotated stage costs converges exactly to the optimal steady

state. For this example we only compare µeco
N and µrot

N since by [5, Proposi-

tion 4.5] the rotated costs ˜̀ of this problem are quadratic, i.e., ˜̀ coincides with

the “canonical” choice of stabilizing quadratic costs `stab and with its 2nd order

Taylor approximation `tayl. Our simulations show that for fixed N = 10 and

varying K = 1, . . . , 100 the closed loop values for µeco
N and µrot

N are virtually

indistinguishable, cf. Figure 8. For fixed K and varying N , Figures 9 and 10

show (again) that even though the performance of µeco
N might not be the best for

small N , JclK(x, µeco
N ) converges to JclK(x, µrot

N ) as N increases and µeco
N (at least

slightly) outperforms µrot
N for sufficiently large N .
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Figure 8: Jcl
K(x, µN ) for N = 10, x =

(4, 20)T and varying K subject to different

feedbacks µN .
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Figure 9: Jcl
K(x, µN ) for K = 4, x0 =

(4, 20)T and varying N subject to different

feedbacks µN .
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Figure 10: Jcl
K(x, µN ) for K = 60, x0 =

(4, 20)T and varying N subject to different

feedbacks µN .

6. Conclusions

We have presented conditions that yield a practical Lyapunov function and,

hence, practical asymptotic stability for the MPC without terminal conditions.

The conditions are given for two types of discrete time finite horizon optimal

control problems. It was shown that a Lyapunov function for these control sys-

tems is given by the optimal value function with respect to the rotated stage

costs. Compared to previous results for economic MPC with terminal condi-

tions, our analysis shows that the price to pay for the simplifications gained

from avoiding terminal conditions is that we only obtain practical instead of
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true asymptotic stability of the optimal steady state. However, our results also

allow to conclude approximate transient optimality on arbitrary finite time in-

tervals, a result which currently has no counterpart in economic MPC with

terminal conditions.

The numerical simulations confirmed our theoretical results and have more-

over shown that for sufficiently large N economic MPC exhibits the best tran-

sient performance among the MPC variants we tested. Nevertheless, the sim-

ulations also revealed that MPC based on the rotated stage costs can be an

interesting alternative, since in more involved problems it may be computation-

ally infeasible to use these sufficiently large N . For small N , however, MPC

based on the rotated cost can be advantageous since it is superior in terms of

stability and the transient performance converges faster for increasing N , see,

e.g., Figures 9 and 10. A rigorous investigation of this topic will be subject of fu-

ture research, along with the attempt to compute quantitative estimates for the

optimization horizon N needed in order to ensure given error bounds. Moreover,

we intend to investigate transient performance also for economic MPC schemes

with terminal conditions.

7. Proof of stability results

Proof of Theorem 3.7: The proof of the theorem is split into three steps.

In step one we show how to obtain inequality (12), in step two we deal with

inequality (13). Finally, in step three the exponential convergence of δ in (13)

is deduced. In what follows we will make use of the results in [8]. We mention

that the formulas taken from [8] look slightly different here since all the cost

functionals in [8] are averaged, i.e., JN (x, u) is divided by N .

Step 1: proof of (12). Strict dissipativity (Assumption 3.1) yields ṼN (x) ≥

α`(‖x− xe‖) ∀x ∈ X. The upper bound in (12) can be deduced from Assump-

tions 3.2 – 3.4 as follows.

In case x /∈ Bε(xe) with ε from Assumptions 3.3, 3.4, there is a control se-

quence u that steers x into the equilibrium in at most M ′ + K steps (M ′, K
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independent of x) and stays there for an arbitrary number of time steps. There-

fore, for each N ∈ N it holds

ṼN (x) ≤ J̃N (x, u) ≤ J̃M ′+K(x, u) ≤ (M ′ +K) · max
x∈X,u∈U

˜̀(x, u) =: C̄.

In case x ∈ Bε(xe), there is a control sequence u ∈ UM ′
(x) with xu1

(M ′, x) = xe

and ‖xu1
(k, x) − xe‖ ≤ C‖x − xe‖, ‖u1(k) − ue‖ ≤ C‖x − xe‖ for all k =

0, . . . ,M ′ − 1. Together with (10) this yields

ṼN (x) ≤ J̃N (x, u1) ≤ J̃M ′(x, u1)

≤
M ′−1∑
k=0

α(‖xu1
(k, x)− xe‖) + α(‖u1(k)− ue‖)

≤ 2M ′α(C‖x− xe‖) =: α̃(‖x− xe‖).

Clearly, α̃ ∈ K∞. If α̃(‖x−xe‖) ≥ C̄ for x /∈ Bε(xe), we get ṼN (x) ≤ α̃(‖x−xe‖)

for all x ∈ X. Otherwise, we multply α̃(‖x − xe‖) by a constant K̄ such that

K̄α̃(‖x− xe‖) ≥ C̄ for x /∈ Bε(xe). Combining these considerations yields

ṼN (x) ≤ αV (‖x− xe‖) for αV (r) := max{1, K̄}α̃(r)

and, hence, (12).

Step 2: proof of (13). Under the assumptions of [8, Theorem 7.6] (for

details see below) the last formula in the proof of this theorem shows that there

is δ̃ ∈ L such that for all x ∈ X, K ∈ N and N sufficiently large we get

J̃clK(x, µN (x)) ≤ ṼN (x)− ṼN (xµN
(K,x)) + δ̃(N). (18)

for a function δ̃ ∈ L (a precise upper bound for δ̃ is given in Step 3 of this proof,

below).

Now, inserting K = 1 to (18) and observing xµN
(1, x) = f(x, µN (x)) yields

ṼN (f(x, µN (x))) ≤ ṼN (x)− ˜̀(x, µN (x)) + δ̃(N)

(8)

≤ ṼN (x)− α`(‖x− xe‖) + δ̃(N),

which is equivalent to inequality (13) in Theorem 3.7 if we set δ(N) = δ̃(N).

It remains to show that the assumptions of Theorem 3.7, i.e., Assumptions

3.1–3.4 imply the relevant assumptions of [8, Theorem 7.6]. These are:

20



1. Strict dissipativity and λ bounded on X.

2. (a) There is C ′ ≥ 0 such that ∀x ∈ X,∀ε > 0 the quantity

Qε := #{k ∈ {0, . . . , N − 1} : ‖xu?
N,x

(k, x)− xe‖ ≤ ε}

satisfies Qε ≥ N − C′

α`(ε) , with α` from Assumption 3.1 and u?N,x

denoting the optimal control for JN (x, u).

(b) There is C̃ ′ ≥ 0 such that ∀x ∈ X,∀ε > 0 the quantity

Q̃ε := #{k ∈ {0, . . . , N − 1} : ‖xũ?
N,x

(k, x)− xe‖ ≤ ε}

satisfies Q̃ε ≥ N − C̃′

α`(ε) , with u?N,x denoting the optimal control for

J̃N (x, u).

3. There are δ̄ > 0, N0 ∈ N, γV ∈ K∞ such that for all ρ ∈ (0, δ̄], all N ∈

N≥N0
and all x ∈ Bρ(xe) it holds

|VN (x)− VN (xe)| ≤ γV (ρ), (19)

|ṼN (x)− ṼN (xe)| ≤ γV (ρ). (20)

4. There are N1 ∈ N,∆ ∈ L such that

JclK(x, µN (x)) ≤ VN (x)− VN (xµN
(K,x)) + ∆(N) (21)

holds for all x ∈ X, N ≥ N1 + 1,K = 1.6

5. The function λ from Assumption 3.1 is Lipschitz continuous on Bδ̄(xe).

We check the five points above.

1. Strict dissipativity holds due to Assumption 3.1, boundedness of λ on X

follows from continuity of λ and compactness of X which is Assumption

3.2.

6This is [8, Formula (18)] which in [8] is assumed to hold for all K ∈ N. However, since

here we only need (18) for K = 1 it is sufficient to require (21) only for K = 1.
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2. (a) Here, we can use [8, Theorem 5.3] (adapted to the non-averaged

case), since JN (x, u?N,x) ≤ VN (x) ≤ N`(xe, ue) + ṼN (x) − λ(x) +

λ(xu?
N,x

(N)). Compactness of X, continuity of λ and the upper bound

on ṼN from Step 1 imply the existence of C1 > 0 with JN (x, u?N,x) ≤

N`(xe, ue)+C1. Hence, [8, Theorem 5.3] delivers the desired estimate

with C ′ = C1 + max
x∈X

2|λ(x)|.

(b) Proceeding analogously as in [8, Theorem 5.3] and with the help of

(12), the desired property holds for

C̃ ′ = max
x∈X

αV (‖x− xe‖).

3. Estimate (19) has been shown to hold in [8, Theorem 6.4] under dissipativ-

ity, a local controllability condition and boundedness of the rotated stage

costs. A closer look at the proof of the theorem reveals that the latter two

conditions can be substituted by (10), Assumption 3.3 and local Lipschitz

continuity of λ.

Estimate (20) can be deduced the following way: By (12), for each x ∈ X

and N ∈ N the inequalities

α`(‖x− xe‖) ≤ ṼN (x) ≤ αV (‖x− xe‖) (22)

hold and we conclude ṼN (xe) = 0 and thus

|ṼN (x)− ṼN (xe)| = ṼN (x) ≤ αV (‖x− xe‖). (23)

4. Inequality (21) for K = 1 has been shown to hold for ∆(N) = ε(N − 1)

in [8, Theorem 4.2]. For the sake of completeness we check that the as-

sumptions of Therorem 3.7 include those of [8, Theorem 4.2]: Condition

(a) follows from continuity of ` and f , condition (b) is estimate (19) which

we have shown to hold above. Condition (c) can be concluded as in [8,

Theorem 5.6]. To this end, we conclude [8, Assumption 5.5] from As-

sumptions 3.2–3.4 as follows: Similiar to Step 1 we construct an upper

bound for J̃N (x, u). This yields an upper bound for JN (x, u), too, since
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both functionals only differ by λ(x), λ(xu(N, x)) and N`(xe, ue). Due to

continuity of λ and compactness of X the λ–terms can be bounded and

we can proceed as in the proof of [8, Theorem 5.6].

5. This is Assumption 3.2.

Step 3: exponential decay of δ. In order to show that δ(N) in (13) converges

to 0 exponentially fast we shall look at the construction of δ̃ in [8, Theorem 7.6],

cf. the derivation of (18). It holds that δ̃(N) ≤ ε(N) + 12γV (ε̃(N)) + Lλε̃(N)

with ε(N) from [8, Theorem 4.2], γV from (19), ε̃ ∈ L and Lλ the Lipschitz

constant of λ.

Exponential convergence of ε(N) holds due to [5, Theorem 6.5] if the func-

tions γV in (19),(20) and γ`, γf in [8, Theorem 4.2] are polynomial. This holds

for γ` and γf due to the Assumptions 3.2, 3.3 and 3.5. Inspection of the proofs

of (19) and (20) in Step 2 of this proof reveals that γV is polynomial if ` satis-

fies Assumption 3.5. This yields exponential convergence of ε(N). To prove the

assertion it is thus sufficient to show that also ε̃(N) can be chosen to converge

to 0 exponentially fast.

In the proof of [8, Theorem 7.6], ε̃(N) must be chosen such that Qε̃(N) ≥ cN

holds for some c ∈ (7/8, 1) for Qε̃(N) from Step 2. In [5, Theorem 6.5] is was

proven that the exponential turnpike property holds under the Assumptions

of Theorem 3.7 including Assumption 3.5. More precisely, for each P ∈ N it

was shown that for ε̄P (N) = K̃η(N−P )/(2p), K̃ > 0, η ∈ (0, 1), p > 0, the

inequality Qε̃P (N) ≥ P holds. We claim that ε̃(N) := ε̄dcNe(N) satisfies the

desired properties, where dcNe denotes the smallest integer ≥ cN : on the one

hand, we have ε̃(N) = K̃η(N−dcNe)/(2p) ≤ K̃η1/(2p)η(1−c)N/(2p), implying that

ε̃ indeed decays exponentially. On the other hand, Qε̃P (N) ≥ P directly implies

the desired inequality Qε̃(N) ≥ dcNe ≥ cN

Proof of Theorem 3.11: “⇐”: We first show the implication “Assumptions

3.9 and 3.10 and (A,B) stabilizable ⇒ practical asymptotic stability on each

compact subset S ⊂ Rn” via the existence of a practical Lyapunov function.
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We proceed as in the proof of Theorem 3.7:

Step 1: proof of (12). According to [5, Proposition 4.3] the affine linear

quadratic problem is strictly dissipative with storage function λ(x) = νTx and

α`(r) = C1r
2 for some vector ν ∈ Rn and some constant C1 > 0. This implies

the lower bound in (12). The upper bound can be concluded as follows. In the

proof of [5, Proposition 4.3] it was shown, that the rotated stage costs are of

the form

˜̀(x, u) = (x− xe)TR(x− xe) + (u− ue)TQ(u− ue),

hence there is C2 > 0 such that ˜̀(x, u) ≤ C2(‖x − xe‖2 + ‖u − ue‖2). Since

(A,B) is stabilizable, for each x ∈ Rn there exists a control sequence u of infinite

length and constants C3 > 0, σ ∈ (0, 1) independent of x, such that

‖xu(k, x)− xe‖ ≤ C3σ
k‖x− xe‖, ‖u(k)− ue‖ ≤ C3σ

k‖x− xe‖

holds for all k ≥ 0. Combining all estimates implies

˜̀(xu(k, x), u(k)) ≤ 2C2C
2
3σ

2k‖x− xe‖2.

We obtain

ṼN (x) ≤
∞∑
k=0

˜̀(xu(k, x), u(k)) ≤ 2C2C
2
3/(1− σ2)‖x− xe‖2 =: αV (‖x− xe‖).

Step 2: proof of (13) We show that the assumptions of Theorem 3.11 include

those of [8, Theorem 7.6] on any compact subset S of Rn. To this end, we check

the five properties listed in the proof of Step 2 of Theorem 3.7.

1. According to [5, Proposition 4.3] the affine linear quadratic problem is

strictly dissipative with storage function λ(x) = νTx and α`(r) = C1r
2

for some vector ν ∈ Rn and some constant C1 > 0. This structure of the

storage function yields boundedness of λ on S.

2. Both estimates, (a) and (b), can be concluded as in the previous proof as

we restrict the initial state to the compact set S.
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3. In order to obtain (19) we have a closer look at the optimal value function

VN (x). We first remark, that we can eliminate the additive constant c in

the system dynamics through a coordinate transformation. This does not

change the structure of the stage costs, and, without loss of generality, we

can assume that the system is given by dynamics x(k+1) = Ax(k)+Bu(k)

and stage costs `(x, u) = xTQx+uTRu+sTx+vTu with R, Q symmetric

and positive definite. It follows from the dynamic programming principle

that for each N ∈ N the optimal value function has the form

VN (x) = xTPNx+ bTNx+ dN (24)

with PN symmetric and positive definite. We remark, that the proof is

completely analogue (but computationally more complex) to the standard

linear quadratic case (cf. [2, Section 2.4] for the LQR) and that PN is the

solution of the backward Riccati iteration for the LQR.

As shown in the proof of [5, Theorem 6.2], VN is bounded uniformly in

N on the compact set S. This yields existence of constants CS , DS such

that

CS ≤ VN (x) ≤ DS (25)

holds for all x ∈ S and all N ∈ N. This yields boundedness of the

vector dN . Now consider sequences (xi)i∈N in S and (Ni)i∈N in N with

xTi PNi
xi → ∞. By (25) this is only possible if bTNi

xi → −∞. Then,

(−xi)TPNi(−xi) → ∞ and bTNi
(−xi) → ∞, too, which contradicts (25).

Hence, there is K > 0 independent of N such that 0 ≤ xTPNx ≤ K‖x‖2

for all x ∈ S, and with the same argument there is M > 0 independent of

N such that |bTNx| ≤M‖x‖ on S.

The bounds on bTNx immediately imply that the entries of bN are bounded

on S. Since PN is symmetric and positive definite its spectral norm is given

by7 ‖PN‖2 = max
‖x‖=1

xTPNx ≤ max
‖x‖=1

K‖x‖2 = K. Therefore, the entries of

7As in the proof of [13, Lemma 8.2.1].
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PN are bounded on S. Now, it follows from the uniformity of the deduced

bounds that for all N ∈ N, x ∈ S it holds

|VN (x)− VN (xe)| ≤
∣∣xTPNx− (xe)TPNx

e
∣∣+
∣∣bTN (x− xe)

∣∣
≤ K

∣∣‖x‖2 − ‖xe‖2∣∣+M‖x− xe‖

= K |(‖x‖+ ‖xe‖)(‖x‖ − ‖xe‖)|+M‖x− xe‖

≤ 2K max{‖x‖ : x ∈ S} |‖x‖ − ‖xe‖|+M‖x− xe‖

≤ C‖x− xe‖, C > 0.

This concludes the proof of (19).

Inequality (20) can be concluded as in the proof of Theorem 3.7.

4. Again, for this property we use [8, Theorem 4.2] whose conditions are

fulfilled.

5. Since λ is a linear function (cf. Step 1 of this proof) it is Lipschitz contin-

uous on every neighborhood of the equilibrium.

Step 3: exponential decay of δ. Completely analogous to Step 3 of the proof

of Theorem 3.7 using [5, Theorem 6.2] instead of [5, Theorem 6.5].

“⇐”: Let the closed loop system be practically asymptotically stable on some

compact subset S ⊂ Rn with ε → 0 as N → ∞. Then, for each x ∈ S

we can choose N large enough such that the feedback steers the closed loop

into an arbitrarily small neighborhood of xe. This implies stabilizability of

(A,B).
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