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Summary

Productivity in agricultural ecosystems is important to understand in terms of their role as

a strong modifier of regional carbon balance, but also in their intended role of capturing carbon

(energy) in the form of food products, e.g. agricultural yield. Gross primary production (GPP)

of agricultural ecosystems is the amount of total carbon assimilated by the planted crops and

the driver of useful biomass production. To assess the GPP of croplands, this study combines

information from flux determinations with eddy covariance (EC) methodology, process-based

modeling of carbon gain, and satellite remotely-sensed vegetation indices (VIs). The data is

brought together synthetically for major crops found in agricultural landscapes of Gwangwon

Province, South Korea, e.g., rice, soybean, maize, potato, and sugar beet as a surrogate for

radish. The long term goal (beyond the current effort) is to utilize the results to assess carbon

balances, agricultural production and yields in the landscape of Haean Catchment, South Korea,

which has been the focus of research in the TERRECO project (see acknowledgement).

This study focuses on relating two major variables determining GPP; leaf area index (LAI) of

the crop and carboxylation capacity of the crop canopy (Vcuptake - as first defined by Owen et al.

2007), to MODIS remotely sensed vegetation indices (VIs). Success in deriving such relationships

will allow GPP to be remotely determined over the seasonal course of crop development. The

relationship to VIs of both LAI and Vcuptake were considered first by using the general regression

approaches commonly applied in remote sensing studies, i.e., simple linear models or other

statistical regression models. The results of GPP estimation from these general models were

not adequate and led overall to underestimations. Therefore, a new alternative approach was

developed to estimate LAI and Vcuptake that used consistent development curves for each crop, i.e.,

relies on consistent biological regulation of plant development. In this case, the remote sensing

maximum in VIs is used to identify timing of phenological development at the observed location.

Depending on the maximum in VIs, seasonal change in the critical variables for structure and

crop physiology may be estimated by synthesizing data from EC studies at multiple sites for

each crop.

The relationship between observed GPP and modeled GPP based on the consistent devel-

opment curves for LAI is remarkably improved over regression based values with R2 from 0.79

to 0.93. Modeled GPP based on the consistent development curve for both LAI and Vcuptake
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agreed with R2 from 0.76 to 0.92 (within the 95% confidence interval) at the rice paddy sites.

In the case of dry-land crops, the relationship between measured and modeled GPP based on

the consistent development curve for LAI showed significantly improved results with R2 from

0.61 to 0.93 (within the 95% confidence interval), while measured vs. modeled GPP based on

the consistent development curve for both LAI and Vcuptake exhibited an R2 from 0.60 to 0.91

(within the 95% confidence interval).

Several unsolved problems remain with respect to GPP estimation that are associated with

uncertainties in vegetation indices, unmatched scale for field size and remote sensing pixels,

infrequent sampling of LAI at EC sites, and uncertainties whether LAI measurements correctly

represent average crop structure within EC measurement footprints. Nevertheless, the results

in this study demonstrate that improved linkages between the ground-based survey data, eddy

flux measurements, process-based models, and remote sensing can be constructed to estimate

GPP in agricultural ecosystems. This study suggests further that the consistent development

curve concept and approach has potential for predicting GPP better than simple linear models,

and therefore, to estimate critical parameters influencing carbon gain and agricultural yields

with various crop types. Further and more detailed studies are required with accurately sam-

pled spatial data in agricultural ecosystems in order to better calibrate LAI and physiological

parameters such as Vcuptake for use in models for GPP.



iii

Zusammenfassung

Es ist wichtig, die Produktivität von Agrarökosystemen zu verstehen, einerseits in ihrer

Rolle als bedeutender Modifikator des regionalen Kohlenstoffhaushalts, zum anderen auch in der

Bindung von Kohlenstoff (Energie) in Form von Lebensmitteln, z.B. dem landwirtschaftlichen

Ertrag. Die Bruttoprimärproduktion (GPP) von Agrarökosystemen ist die Menge des gesamten,

von den gepflanzten Feldfrüchten fixierten Kohlenstoffs und der Hauptparameter für die nutzbare

Biomasseproduktion. Um die GPP von landwirtschaftlich genutzten Flächen zu messen, kom-

biniert die vorgelegte Studie Informationen aus Flux-Messungen mit der Eddy-Covarianz (EC)-

Methode, prozess-basierter Modellierung des Kohlenstoffgewinns und satellitengesteuerter Er-

fassung von Vegetationsindizes (VIs). Die Daten wurden für die Hauptanbaufrüchte in den

Agrarlandschaften der Gangwon Provinz in Südkorea, insbesondere für Reis, Sojabohnen, Mais,

Kartoffeln und Zuckerrüben (als Surrogat für Rettich), zusammengetragen und ausgewertet.

Langfristiges Ziel (über die hier vorliegende Arbeit hinaus) ist es, die Ergebnisse für die Bes-

timmung des Kohlenstoffhaushalts, der Agrarproduktion und der Ernteerträge im Gebiet des

Haean Wassereinzugsgebiets in Südkorea zu nutzen (Hauptuntersuchungsgebiet des TERRECO-

Projekts s. Danksagung).

Die vorliegende Studie konzentriert sich darauf, zwei Hauptvariablen zur Bestimmung der

GPP: den Blattflächenindex (LAI) der Feldfrüchte und die Carboxilierungskapazität der Feld-

fruchtbestände (Vcuptake- wie zuerst von Owen et al. 2007 definiert) mit den durch MODIS-

Fernerkundung ermittelten Vegetationsindizes (VIs) in Verbindung zu setzen. Eine erfolgreiche

Ableitung derartiger Abhängigkeiten wird es ermöglichen, mit Hilfe der Satelliten-Fernerkundung

die GPP der verschiedenen Ackerkulturen im Laufe ihrer jahreszeitlichen Entwicklung zu bestim-

men. Die Beziehung sowohl von LAI als auch Vcuptake zu VIs wurde zuerst mit Hilfe allgemeiner

Regressionsmethoden betrachtet, die gemeinhin bei Fernerkundungsstudien angewandt werden,

insbesondere einfache lineare Modelle oder andere statistische Regressionsmodelle. Die Ergeb-

nisse auf Basis der allgemeinen Modelle für die GPP-Bestimmung waren nicht adäquat und

führten durchweg zu Unterschätzungen. Daher wurde ein alternativer Ansatz zur Abschätzung

von LAI and Vcuptake entwickelt, der konsistente Entwicklungskurven für jede Feldfrucht be-

nutzt, d.h. der auf der konsistenten biologischen Regulation der Pflanzenentwicklung beruht. In

diesem Fall wird das Maximum des VI der Fernerkundungsdaten benutzt, um das Stadium der
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phänologischen Entwicklung an der beobachteten Lokalität zu identifizieren. In Abhängigkeit

von den Maxima der VIs kann die saisonale Änderung der kritischen Variablen für Struktur und

Physiologie der Ackerfrüchte durch die Synthese der Daten von EC-Studien für jede Feldfrucht

an verschiedenen Standorten ermittelt werden.

Die Beziehung zwischen beobachteter GPP und modellierter GPP basierend auf den konsis-

tenten Entwicklungskurven für LAI ist gegenüber regressionsbasierten Werten mit R2 zwischen

0.79 und 0.93 deutlich verbessert. Die modellierte GPP basierend auf den konsistenten Entwick-

lungskurven sowohl für LAI als auch für Vcuptake stimmte mit der gemessenen GPP mit R2 von

0.76 bis 0.92 (innerhalb des 95% Vertrauensbereichs) für die feuchten Reisstandorte überein. Im

Falle der Trockenfeldfrüchte, zeigte die Beziehung zwischen modellierter und gemessener GPP

basierend auf den konsistenten Entwicklungskurven für LAI signifikant verbesserte Ergebnisse

mit R2 von 0.61 bis 0.93 (innerhalb des 95% Vertrauensbereichs), während der Zusammenhang

zwischen gemessener und modellierter GPP basierend auf den konsistenten Entwicklungskurven

sowohl für LAI and Vcuptake ein R2 von 0.60 bis 0.91 (innerhalb des 95% Vertrauensbereichs)

ergab.

Hinsichtlich der GPP-Bestimmung bleiben einige ungelöste Probleme bestehen, die auf Un-

sicherheiten bei den Vegetationsindizes, nicht abgestimmten Skalen für die Fernerkundungs-

Pixel für Ackerflächengrößen, lückenhafte Beprobung von LAI an EC-Standorten und der

Frage, ob LAI-Messungen die durchschnittliche Struktur der Ackerkulturen innerhalb der EC-

Fußabdrucke korrekt repräsentieren, beruhen. Dennoch zeigen die Ergebnisse dieser Studie,

dass eine verbesserte Kopplung zwischen den Datenerhebungen im Feld, Eddy-Flux-Messungen,

prozess-basierten Modellen und Fernerkundung erreicht werden kann, um die GPP in Agrarökosys-

temen zu bestimmen. Die vorgelegte Arbeit deutet außerdem darauf hin, dass Konzept und

Ansatz der konsistenten Entwicklungskurven ein besseres Potential für die Vorhersage von GPP

bietet als einfache statistische Modelle und damit auch für die Bestimmung kritischer Parameter,

die Kohlenstoffgewinn und landwirtschaftliche Erträge bei verschiedenen Feldfrüchten beein-

flussen. Für eine genauere Kalibrierung des LAI und physiologischer Parameter wie Vcuptake

zur prozessbasierten Modellierung der GPP sind weitere und detailliertere Untersuchungenmit

sorgfälltig erhobenen räumlichen Daten aus Agrarökosystemen erforderlich.
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Chapter 1

Introduction

1.1 General Introduction

Among greenhouse gases, increasing atmospheric CO2 is known to have the largest influence

on global energy balance, and as such is the main driver of global warming, which in turn

feeds back on global carbon balance (IPCC, 2014). The carbon balances of different terrestrial

ecosystems have become increasingly important to understand in detail due to their significant

role in climate change by regulation of CO2 fluxes between the biosphere and the atmosphere

(Christensen et al, 2007; Jonsson et al., 2007). In recent decades, the development and application

of eddy covariance (EC) methods for monitoring carbon exchange between ecosystems and the

atmosphere has revolutionized our understanding of the regulation of ecosystem carbon fluxes.

As currently applied in FLUXNET (http://fluxnet.ornl.gov), the EC methodology measures

net ecosystem CO2 exchange (NEE) directly for a large ”representative” area of a particular

ecosystem type at high frequency and over long periods, along with meteorological conditions

(Houghton and Woodwell, 1980; Baldocchi et al., 1988; Wang et al., 1995; Baldocchi et al., 1996).

Observation of NEE have allowed us to identify environmental factors determining uptake (net

photosynthesis, gross primary production or GPP) and losses of CO2 (ecosystem respiration,

carbon dioxide emissions or Reco) at tower footprint scale, typically ranging from hundreds of

meters to several kilometers (Running et al., 1999; Valentini et al., 2003; Xiao et al., 2004). Flux

measurements of CO2 by the EC methodology provide us with reasonably accurate estimates

of carbon exchange in response to local environmental conditions.

Combining EC flux measurements with process-based modeling allows the simulation of

carbon uptake and losses over large spatial areas, in response to long-term climate records, and

in the context of scenarios for future climate (Baldocchi et al., 2003). To support estimation of

1
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global level CO2 exchange between ecosystems and atmosphere, a network of EC tower stations

has been established by the international FLUXNET project and now includes more than 500

towers across five continents (Baldocchi et al., 2001; Falge et al., 2001; Saigusa et al., 2002;

Reichstein et al., 2005; Owen et al., 2007). FLUXNET covers a large range of climate and

biome types at the local ecosystem level. The data from these monitoring studies allows us to

improve carbon flux modeling along natural ecosystem and climatic gradients (Baldocchi et al.,

2001). Satellite remote sensing is often used together with process-based models to accomplish

this up-scaling of carbon fluxes to landscape, regional, continental and global levels, since eddy

covariance measurements are spatially limited and detailed maps of ecosystem types are required

(Goetz et al., 1999; Li et al., 2007; Wu et al., 2009; Oguto et al., 2013).

Agricultural land cover makes up 38% of terrestrial ecosystem extent, and approximately 24%

of the Earth’s land surface is cultivated cropland. Agroecosytems are important to understand

not only in their role as a strong modifier of regional carbon balance, but also in their intended

role of capturing carbon (energy) in the form of food products, e.g. agricultural yield (Cassman

& Wood, 2005; Wilby et al., 2005; Smith et al., 2008). Gross primary production (GPP) of an

agroecosystem is the amount of total carbon assimilated by vegetation in gross carbon uptake

or photosynthesis of chlorophyll containing organs (Running et al., 1999; Smith et al., 2010).

GPP is the driver of useful biomass production of crops, and is therefore closely related to

crop yield as well as in calculating carbon balance (Reeves et al., 2005; Moureaux et al., 2008).

In previous studies, quantifying crop yield based on primary production information has been

demonstrated (Hicke et al., 2004; Ciais et al., 2010; Ruidisch et al., 2014).

Estimating the spatial distribution of GPP in agricultural landscapes is a necessary step

for evaluating the influences of climate variation on crop yields and carrying out analyses

related to food security (Tao et al., 2004). Determining the spatial variation of GPP, especially

in agroecosystems, remains a significant challenge because is it influenced not only by local

seasonal change in climate and water availability, but by varied management practices resulting

from individual farmer’s decision-making (Wattenbach et al., 2010). For example, the timing

and characteristics of tillage, fertilizer and herbicide applications, and irrigation just to name a

few factors, affect annual decomposition, carbon storage and soil nutrients, and CO2 emissions

in any particular crop field (Moors et al., 2010; Revill et al., 2013). The different crop-planting

schedules for each crop field also play a major role in determining the seasonal course of GPP

at landscape scale.

The agricultural landscape level of CO2 exchange, including GPP and Reco, is strongly related

to carbon and water balances as well as agricultural production as crop yield. The landscape
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balances are determined by complex temporal and spatial variations in terrestrial ecosystem

response along topographic and climate gradients (Tenhunen et al., 2009). As in the case of

global level assessments, process-based models are often applied to many different ecosystem

types (Adiku et al., 2006) in order to characterize CO2 exchange at landscape scale (Ruidisch

et al., 2014). Process-based models will only simulate balances and agricultural production

with acceptable accuracy if they are supported by and adjusted to field observations, e.g., eddy

covariance flux measurements, observations of biomass accumulation, and the information which

explains land use and farming operations. Nevertheless, the extent to which direct observation

may be carried out is limited. Thus, the work described here attempts to determine how the

parameterization of process-based models, particularly with respect to carbon input to the

system as GPP, can be aided via the use of remotely sensed vegetation indices.

The vegetation indices (VIs), especially Normalized Difference Vegetation Index (NDVI) and

Enhanced Vegetation Index (EVI), depend strongly on the amount of chlorophyll and vegetation

canopy structure that is viewed by the remote sensor, e.g., in the case of this thesis the sensor on

the MODIS satellite platform. Utilized effectively, VIs allow us to monitor phenological events

and seasonal changes in vegetation development (Huete et al., 1997; Myneni et al., 1997). In this

study, I have investigated patterns found in NDVI and EVI evaluated at the greatest spatial

resolution provided by MODIS (ca. 250 m x 250 m pixels). The work focuses on relatively high

temporal resolution (daily) to examine phenological change in GPP and biomass accumulation

in agricultural crop fields. New relationships between VIs and GPP and biomass are established,

and will eventually be used to aid in parameterization of a process-based model at landscape

scale (PIXGRO; cf. Ruidisch et al. 2014). The landscape of interest is located in the Haean

Catchment in Yanggu Gun, Gangwon-Do, South Korea where the dominant agricultural land

use includes the dry-land crops potato, radish, beans and cabbage together with irrigated paddy

rice (Fig. 1.1). The detailed information on landscape structure is described in section 3.1.1.1

and Seo et al. (2014).

While the overall interest in this study relates to spatial differentiation and climate influences

on response and carbon balances at landscape level, the landscape level analysis is beyond the

scope of the current work. As the first preliminary step in this analysis, relationships between

VIs and vegetation development is studied at other field sites that have the same or similar

crops as found in the Haean Catchment. I have attempted to determine whether NDVI and

EVI from MODIS at high spatio-temporal resolution can be related to canopy photosynthetic

capacity, carbon uptake as GPP, and accumulation of the aboveground biomass of the crops. The

work described below focuses on the one hand on seasonal timing in vegetation activity (crop
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Fig. 1.1 The location of Haean Catchment in South Korea (a), and in relation to the watershed
of Soyang Reservoir where crop cultivation in highland area (including Haean) lead to "hotspots"
of non-point pollution (b), (c) provides an overview of agricultural land use in Haean Catchment
(see also Seo et al., 2014).

canopy phenology), and secondly on whether remote sensing may be used to help estimate the

magnitude of land surface exchange fluxes. Both aspects are extremely important for improving

the performance of the spatial simulation models.

As the process-based model, I have focused on the physiologically process-based canopy sub-

model of PIXGRO (Tenhunen et al., 2009) that links flux observation from the eddy covariance

studies with ecosystem physiology described as capacity for CO2 exchange (i.e., canopy content

and activity of Rubisco) and plant phenology (i.e., leaf area index). PIXGRO is designed as a

tool for bridging between measured gas exchange fluxes, derived parameters for carboxylation

capacity, seasonal changes in biomass and structure in the case of herbaceous and crop plants,

and crop yields, taking into account specific ecophysiological behavior of individual species

(Adiku et al., 2006). The canopy sub-model of PIXGRO (named hereafter ‘canopy model’)

calculates the dynamics of whole ecosystem CO2 and H2O exchange (Reichstein, 2001). The

canopy model includes the leaf photosynthesis model according to Farquhar and Caemmerer

(1982) and stomatal conductance model according to Ball and Berry (1987). The equations as
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modified for field applications as well as the evaluation of EC data are reported in detail by

Harley and Tenhunen (1991), Adiku et al. (2006), Owen et al. (2007), and Ruidisch et al. (2014)

and are summarized in Chapter 3.

Therefore, in this study, the main goal is to assess GPP at crop field sites, achieving critical

parameterization of the PIXGRO model via a linkage of directly measured carbon exchange

and increases in canopy biomass with remote sensing VIs from MODIS. Fig. 1.2 showed the

research flow chart of this study. This study is a first step in the determination of parameters for

a landscape model applied to agroecosystems that can be used to estimate carbon balance and

emission of greenhouse gases by crops over the entire Haean Catchment as aided via satellite

remote sensing.

1.2 Objectives

The goal of this study is to quantitatively estimate the seasonal course of daily gross primary

production (GPP) of crops with the model PIXGRO, achieving critical parameterization via a

linkage between remote sensing VIs from MODIS and directly measured carbon exchange with

eddy covariance methodology as well as measured increases in canopy biomass: and considering

sites in Asia (Haean Catchment, Haenam, and Mase), Europe (El Saler-Sueca, Lonzee, and

Klingenberg) and North America (Nebraska-Mead) in order to develop information that will

subsequently allow a landscape scale evaluation of carbon balances in the Haean Catchment.

The stepwise objectives are:

• to organize a data base with half hourly information from the EC measurements that

allow a parallel analysis of GPP of the major crops found in the Haean Catchment (i.e.,

rice, soybean, maize, potato, and sugar beet as a surrogate for radish) in response to

meteorological conditions

• to estimate for crop species from EC daily values the critical PIXGRO parameter Vcuptake
(cf. Owen et al., 2007) which together with leaf area index (LAI) controls canopy carbon

fixation in response to multiple environmental factors

• to obtain daily vegetation indices (NDVI and EVI) from MODIS at 250 m resolution and

to use them to examine crop phenology, e.g., the relationship between the observed LAI

and VIs with approaches generally used by the remote sensing community as well as newly

developed approaches
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• to define the relationship between the daily VIs and modeling parameter Vcuptake, that

permits description of GPP in various crop types with approaches generally used by the

remote sensing community as well as newly developed approaches

• to establish best-fit models to estimate GPP from VIs and ground observations of climate

when essential observations of CO2 exchange and LAI are non-existent

• to consider a strategy based on the results from selected EC sites for linking VIs to GPP

in regional and landscape studies

Fig. 1.2 illustrates the stepwise methodology of this study. Step 1 is carried out to obtain a

statistically-based regression model to estimate the seasonal course of LAI. This is obtained by

relating the observed LAI and VIs. Linear and exponential relationships were considered, as well

as a new model based on consistent phenological development of individual crops. The seasonal

course of LAI obtained as dependent on VIs, as well as the actual measured course of change in

LAI and a constant LAI at maximum measured, were used to estimate the seasonal course of

the parameter Vcuptake along with meteorological information from eddy covariance method and

assuming that the PIXGRO algorithm correctly describe the photosynthetic process (Step 2).

The critical parameter Vcuptake is estimated for observed data via fitting of the PIXGRO model

to observed GPP. Differing results with the alternative methods for inputting LAI are described

in the results section. The relationship between Vcuptake and the daily VIs are considered in Step

3. Again alternative descriptions have been examined. Step 4 provides an overall examination

of the efficiency of the procedure, inputting LAI and Vcuptake from the best-fit models and

estimating GPP to compare with measurements. Finally, the results in estimating GPP are used

to consider a strategy for linking VIs to GPP in regional and landscape studies of agricultural

ecosystems.

1.3 Hypotheses

• Fitting of the physiologically-based PIXGRO canopy model to GPP obtained from EC

crop sites allows definition of the seasonal course of the critical parameter Vcuptake.

• The seasonal course of the parameter Vcuptake along with meteorological information allows

efficient description of GPP (e.g., reproduces the observed data efficiently).

• Vcuptake, which is estimated using seasonal observation of LAI development together with

observed GPP and meteorology, performs better in estimating GPP than Vcuptake using a
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constant LAI.

• Estimating GPP by best-fit model for Vcuptake and LAI in dependence on VIs from MODIS

allows accurate GPP predictions with PIXGRO.

• Despite differences in climate across geographical regions, general relationships between

VIs and Vcuptake or LAI can be establish for the same crop species and can be used to

estimate GPP in agriculture ecosystems.
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Fig. 1.2 Flowchart illustrating the stepwise methodology implemented in this study. Step 1 relates
to the estimation of a seasonal course for LAI based on either linear, exponential or “consistent
seasonal development” relationship between the LAI observations and MODIS remotely sensed
VIs (see text). Step 2 relates to the estimation of a seasonal course of Vcuptake obtained by
best-fit procedures using the seasonal LAI. Vcuptake is along with meteorological information
from eddy covariance sites and assuming that the PIXGRO algorithm correctly describe that
photosynthetic process. The resulting time courses for Vcuptake are examined in Step 3 in terms
of potential linear or exponential relationship to MODIS remotely sensed VIs or as described
by consistent seasonal development. Step 4 evaluates overall the efficiency of predicting GPP
when both LAI and Vcuptake are determined in dependence on MODIS VIs. These final results in
estimating GPP are used to consider a strategy for linking VIs to GPP in regional and landscape
studies of agricultural ecosystems.



Chapter 2

State of the art

2.1 Process-based CO2 exchange models

The carbon balance of terrestrial ecosystems is determined by the long-term differences

in gross primary production (GPP) and ecosystem respiration fluxes and in some cases the

additional transport of carbon into or out of the system (Schulze, 2006). GPP refer to the total

uptake of carbon dioxide in photosynthesis or CO2 assimilation, which is the main driver of

subsequent ecosystem processes, including plant growth and agricultural yields. GPP depends

momentarily on continual change in environmental factors, e.g., light, temperature, air humidity,

air turbulence and CO2 concentration, and on ecosystem physiology, e.g., nitrogen and proteins

supporting leaf carboxylation capacity, structure that exposes photosynthetically active materials

to light, and stomatal restrictions on CO2 diffusion (Farquhar and Sharkey, 1982; H. Muraoka

and H. Koizumi, 2005; Schulze, 2006). To quantify and predict the overall response of plant stand

GPP and ecosystem respiration to time dependent changes in physiological and environmental

factors, process-based CO2 exchange models have been widely implemented at different scales

(Tenhunen et al., 1976; Farquhar et al., 1980; Falge et al., 1996; Muraoka et al., 2005). The

importance of using process-based models relates to a desire to 1) understand better the processes

which change over time, and 2) to best build a potential for extrapolating modeling results to

other locations and for use under altered climate conditions.

Farquhar et al. (1980) described a model for the fundamental processes influencing photosyn-

thesis at leaf level, assuming that either ribulose bisphosphate carboxylase-oxygenase kinetics

or RuBP regeneration determine CO2 uptake rate. The influence of temperature on the enzy-

matic components of the Calvin cycle is also taken into consideration. The “Farquhar Model”

is widely accepted as theoretically sound, and the respective equations are generally included

9
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into all process-based models for GPP in current use. Nevertheless, GPP is simultaneously

determined by additional physiological processes and by physical diffusion of CO2 to the chloro-

plasts. While practical physiologically-based descriptions for stomatal conductance (determining

CO2 diffusion) have not been achieved, the close coupling of conductance to net photosynthesis

rate (Schulze and Hall, 1982) has allowed stomatal responses to be described with correlation

equations both at leaf and plant canopy levels (Ball et al., 1987; Tenhunen et al. 1990; Leuning,

1995, Falge et al. 1996; Owen et al. 2007). At plant stand or ecosystem level, such models

treat the canopy as one big leaf (Sellers et al., 1992) where the integrated response can be

determined experimentally via eddy covariance measurements. On the other hand, such a "big

leaf" has a certain mass, or represents a finite amount of leaf area, which changes over time.

Different parts of this leaf area are exposed to very different radiation over the course of the day.

As a compromise between simplicity (big leaf) and spatial distribution of response (gradients

influencing different leaf clusters), the sunlit and shaded leaf areas have been estimated and

have been treated separately in almost all models (Pury and Farquhar, 1997; Wang and Leuning,

1998; Chen et al., 1999; Owen et al. 2007).

Harley and Tenhunen (1991) modified the leaf CO2 exchange model of Farquhar (1980) to

emphasize practical field applications and field-based parameterization via chamber gas exchange

measurements (Harley et al., 1989; Harley and Tenhunen, 1991). Considering the plant canopy

as a big leaf, Li et al. (2008) applied the same equations to measurements obtained with large

plant chambers. Development of eddy covariance methodology provides CO2 gas exchange data

sets for larger spatial areas, in various ecosystem types and over long-term periods (Baldocchi

et al., 1996). In relation to these data, the single leaf models have been extended to describe

ecosystem level GPP (Baldocchi and Meyers, 1998, Owen et al. 2007).

The process-based models require reliable input parameters related to physiology and phe-

nology of vegetation. Carboxylation capacity is the most important parameter and there have

been many studies emphasizing the importance of accurate estimates of carboxylation capacity

(Farquhar and Sharkey, 1982; Tenhunen et al., 1990; Leuning, 1995; Falge et al., 1996; Owen

et al., 2007). Maximum carboxylation capacity (Vcmax) at canopy level depends on the amount

of photosynthetically active biomass present, the physical arrangement of this biomass with

respect to light interception, and the investment by plants in enzymatic components of the

carbon fixation cycle, (Falge et al., 1996; Wilson et al., 2000; Wang et al., 2001; Baldocchi et al.,

2001; Kumagai et al., 2006; Owen et al., 2007; Wang et al., 2007; Wang et al., 2008; Tenhunen

et al., 2009; Muraoka et al., 2012). Reichstein et al. (2003) and Wang et al. (2007) estimated the

Vcmax and the maximum electron transport rate at canopy level using inverse modeling methods.
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Owen et al. (2007) described GPP based on eddy covariance observations and modeling. A

single “physiological parameter” (Vcuptake*1 in the terminology of Owen et al. 2007, while this

study simply uses Vcuptake) describing canopy carboxylation capacity was identified to allow

comparison of CO2 uptake by many different ecosystem types. Instead of using the notation of

Vcmax at the leaf level, Vcuptake describes the maximum rate of carboxylation capacity at the

canopy level as determined from EC data. Vcuptake has to date been studied in only a few crop-

lands (Owen et al., 2007). In these determinations, a constant maximum LAI was assumed due

to lack of measured seasonal changes in LAI. The current work attempts to provide new insight

on seasonal changes in Vcuptake within various agricultural ecosystem types, and it includes the

important influences of seasonal changes in LAI.

2.2 Eddy covariance methodology

Assessments of CO2 exchange of plant parts, of ecosystem compartments and even of small

ecosystem monoliths has been a primary focus of biosphere ecological studies since the Inter-

national Biological Program (1964). In IBP, energy flows as represented in carbon compounds

and biogeochemical cycles were estimated for various types of ecosystems of the terrestrial

biosphere at different temporal and spatial scales. To appropriately accomplish such goals, it

was required that carbon flux measurement should be carried out on hourly, daily, seasonal, and

yearly time scales and across plot-, regional, and global scales (Baldocchi, 2003). Despite the

ability of traditional chamber methods to examine instant and diurnal variations of NEE, and

to determine environmental controls on NEE for a particular object under study (Keller et al.,

1986; Harley and Sharkey, 1991; Li et al., 2008), the chamber method has inherent limitations

due to alteration of the local environment and lack of spatial representation (Baldocchi, 1988;

Long et al., 1996). Furthermore, it is impossible to conduct continuous measurements at the

ecosystem level (Long et al., 1996).

In recent years, the eddy covariance (EC) method has been developed as a widely used-

technique to measure overall ecosystem carbon exchange (Baldocchi et al., 1988; Moncrieff

et al., 1997a; Papale et al., 2006). The EC method is based on micrometeorological theory

and interprets observations of the covariance between vertical wind velocity and scalar gas

concentration fluctuations (cf. Baldocchi et al., 1988). Advantages of the EC method, e.g. the

ability to continuously measure carbon exchange across a spectrum of time scales from hours

to years and to obtain spatially-integrated data at ecosystem level without disturbing natural

conditions (Baldocchi et al., 1988; Wofsy et al., 1993; Schmid, 1994; Foken and Wichura, 1996;
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Baldocchi, 2003), have led to their wide use. The increasing numbers of EC flux tower sites

has produced flux observation networks at regional (e.g., AmeriFlux, EuroFlux, and AsiaFlux)

and global (i.e., FLUXNET) scales, which coordinate the flux observational data and provide

an organized and standardized flux data resource, along with the micrometeorological drivers

(www.fluxdata.org), to the research community.

Currently, over 500 tower sites are operated on a long-term and continuous basis, covering

deciduous and coniferous forests, tropical and boreal forests, crops, grasslands, chaparral, wet-

lands, tundra, etc. Establishment of regional and global databases of the EC measurements of

carbon, water, and energy fluxes provide opportunities to examine terrestrial carbon, water, and

energy cycles. Nevertheless, it is still the case that most tower sites observe fluxes from forests

and grasslands. Only a few sites study croplands in part due to the difficulties and uncertainties

related to calculating the cropland carbon budget (see Osborne et al., 2010). Among those sites,

rice (Saito et al., 2005; Kwon et al., 2010), sugar beet (Moureaux et al., 2006), winter wheat

and triticale (Ammann et al., 1996; Anthoni et al., 2004; Baldocchi, 1994; Moureaux et al.,

2008; Béziat et al., 2009), and sunflower, rapeseed or maize for silage (Béziat et al., 2009) have

been investigated. Maize/soybean rotations in North America have also received great attention

(Baker and Griffis, 2005; Bernacchi et al., 2005; Hollinger et al., 2005; Pattey et al., 2002; Suyker

et al., 2005; Suyker et al., 2004; Verma et al., 2005). Data from these cropland sites provide

important input to the current work.

2.3 Vegetation indices from remote sensing

Satellite remote sensing is often used together with process-based models and detailed maps

of ecosystem distribution to accomplish the up-scaling of carbon fluxes to landscape, regional,

continental and global scales (Goetz et al., 1999; Xiao et al., 2008; Wu et al., 2009; Oguto et

al., 2013). Since the first earth observation satellites were launched in the mid-1970s, surface

reflectance data and information on vegetation cover has been compiled in order to advance our

understanding of ecosystems (NASA Langley Research Center Atmospheric Science Data Center

([LaRC ASDC] http://eosweb.larc.nasa.gov). Vegetation indices were first used by Rouse

et al. (1973) at the Remote Sensing Center of Texas A& M University. Vegetation indices are

mathematical relationships obtained by combining spectral reflectance values from the spectral

bands measured by sensors on board satellites (Bannari et al., 1995). Generally, vegetation

indices (VIs) have been related to the ratio between red and near infrared (NIR) reflectance.

Visible radiation in the red (620-670 nm) is absorbed by chlorophyll while the mesophyll leaf

http://eosweb.larc.nasa.gov
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cellular structures reflect NIR (841-876 nm) (Pettorelli et al., 2005).

The remotely sensed vegetation indices of ecosystem canopies allow monitoring of phenolog-

ical events and seasonal change in vegetation development (Sellers 1985; Running et al., 1988;

Myneni et al., 1995) from regional (Chen et al., 1999; Kimball et al., 1999; Kang et al., 2003)

to global scale (Running et al., 1999; Huete et al., 2002). The Normalized Difference Vegetation

Index (NDVI) is most widely used (Rouse et al., 1974; Myneni et al., 1995), which depends

strongly on the amount of chlorophyll and other pigments exposed to the view of the satellite

(Huete et al., 1997). NDVI is calculated using red and near-infra-red wavelengths as

NDV I = (ρNIR − ρred)/(ρNIR + ρred) (2.1)

ρis surface reflectance in near infrared and red sensor bands, respectively (Running SW et

al., 2004). NDVI is tightly correlated with LAI development over the growing season (Xiao et al.,

2002), allowing the monitoring of phenology (R. Lee st al., 2002; Vina et al., 2004), validation

of production models (White and Running, 2009; Peng et al., 2012), and determination of

vegetation cover density (Jiang et al., 2006). NDVI has been reported to correlate directly with

vegetation productivity in a number of studies (Garmon et al., 1995; Nemani et al., 2003; Wang

et al., 2004) and with phenology in many ecosystem types (Lee et al., 2002; Zhang et al., 2003;

Wang et al., 2005; Sakamoto et al., 2005; Zhang et al., 2005; Soudani et al., 2012).

The enhanced vegetation index (EVI) was developed by Huete et al. (1999) at the University

of Arizona. EVI has improved sensitivity to vegetation canopy structure and exhibits high

correlation with vegetation cover in areas with dense vegetation (Huete et al., 2002; Wardlow and

Egbert, 2010), calculated using the blue, red, and NIR reflectance values and canopy background

adjustment factor (L) (Huete et al., 1997).

EV I = G(ρNIR − ρred)/(ρNIR + C1ρred − C2ρblue + L) (2.2)

L is the canopy background adjustment factor that accounts for differential red and NIR

radiant transfer through the canopy, C1 and C2 are the coefficients of the aerosol resistance

term, which uses the blue band to correct for aerosol influences in the red band. EVI attempts

to de-couple canopy reflectance from background reflectance (L) and reduce atmosphere influ-

ences by including blue band reflectance, which is more sensitive to atmosphere aerosols than

red reflectance (Huete et al., 2002). Including the factor L and blue reflectance reduces soil

background effect and residual atmospheric contamination which has often been shown to limit

the use of NDVI (Huete et al., 1994). EVI has been used to monitor vegetation phenology in
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forested areas (Zhang et al., 2003) and to estimate vegetation photosynthesis together with

process-based models (Xiao et al., 2004).

VIs in addition to NDVI and EVI have been suggested. The best known are the follow-

ing: Huete (1988) suggested the soil adjusted vegetation index (SAVI) which was modified

by Chehbouni et al. (1994; MSAVI). SAVI allows the minimization of soil brightness effects

(Huete, 1988; Huete and Liu, 1994). SAVI has been used to determine LAI where soil back-

ground reflectance is a major problem (Darvishzadeh et al., 2008; Li et al., 2008). The ratio

vegetation index (RVI) uses the simple ratio between red and NIR (Pearson and Miller, 1972), a

“perpendicular vegetation index” (PVI) has been used to distinguish vegetation from soil back-

ground (Richardson and Wiegand, 1977), the green NDVI (GNDVI) attempts improvements by

including green band information (Gitelson et al., 1996), and the global environment monitoring

index (GEMI) was developed to obtain a global scale index without soil effects (Pinty and

Verstraete, 1992). Many additional indices have been proposed by researchers of the remote

sensing community. In this study, NDVI and EVI were used to describe plant phenology and

carboxylation capacity due to their broad application in other studies, i.e., to possibly allow for

comparisons. As discussed in Chapter 6, however, extension of the studies may be possible with

the use of additional VIs.

2.4 Modeling GPP in agricultural ecosystems

Modeling GPP in agroecosystems is a necessary step in evaluating the influences of climate

variation on crop yield and understanding potentials to meet the growing demand for food

(Tao et al., 2004; Dorigo et al., 2007). Previous studies of carbon balances in croplands have

examined GPP with the EC method as described above, have sampled LAI and biomass over

the course of the growing season (Suyker et al., 2005), have attempted to consider crop history

and crop rotation (Aubinet et al., 2009), and have examined managements effects (Kutsch et

al., 2010, Ceschia et al., 2010). Various models have been developed in order to scale up carbon

assimilation, and these have been validated via EC measurements (Hoyaux et al., 2008; Peng et

al., 2012; Gitelson et al., 2012). Yan et al. (2009) used a satellite-based photosynthesis model

to estimate crop GPP with EVI derived model parameters, comparing the results with EC

data. Revill et al. (2013) established a technique of combining flux measurements with earth

observation data to simulate LAI, carbon fluxes, and the yield of European cropland.

The studies of quantifying GPP in agroecosystems have aimed at accurate estimations with

the inclusion of various information related to direct field data sampling, use of inventory data,
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application of the EC methodology, utilizing different types of remote sensing, and synthesizing

results with process-based models at different spatial and temporal resolutions. However, GPP

estimation in agroecosystems is often limited due to incompatibility in the spatial scales of flux

measurements and resolution of satellite data. Therefore, quantifying GPP in agroecosystems

at landscape scale remains a challenge due to gradients in local climate, fragmentation of land

cover dependent on field structure and management effects.
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Chapter 3

Materials and Method

3.1 Site descriptions

Study sites were selected where the crops were the same or similar to those grown in Haean

Catchment, South Korea. Using available data, the collected data came from various climate

zones. These included South Korea (Haean Catchment and Haenam) and Japan (Mase) in

Asia, Spain (El Saler-Sueca), Belgium (Lonzee), and Germany (Klingenberg) in Europe, and

Nebraska, U.S.A. (Mead) in North America. Meteorological conditions and site characteristics

are summarized in Table 3.1. The flux data for GPP recorded in the databases provide the

material for analysis in this thesis (see further section 3.1.1, 3.1.2, and 3.1.3).

3.1.1 Asian sites

All the Asian sites are under the influence of monsoon climate resulting in more than 50% of

annual precipitation occurred during a summer monsoon period. The summer monsoon period

is followed by a subsequent typhoon season, mainly in September and October.

3.1.1.1 Haean, South Korea (HK)

Haean Catchment is a typical erosion mountain basin in South Korea located northeast

of Chuncheon, Gwangwon Province in Yanggu County (38◦ 17’ N, 128◦ 08’ E, 450 - 1200 m

a.s.l.). Total area of the catchment is 64 km2, which consists of 58% forested mountain area, 30%

agricultural area, and 12% as residential, riparian, field margins, and farm road area according

to land surveys (Fig. 1.1, Arnhold et al., 2012). The agricultural area is characterized as a

mosaic patchwork of fields, with a dominance of dry-land fields (22% of the total area) and the

remaining as rice paddy fields (8%). Rice paddies (Oryza sativa L., cv. Odae) are cultivated at

17
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less than 500 m a.s.l. in the catchment, whereas the main dry-land crops (e.g, potato, radish,

beans and cabbage) are planted from 500 to 750 m a.s.l. (Choi et al., 2010). Annual mean

temperature is ca. 8.5 ◦C and annual precipitation is 1577 mm (Table 3.1; Choi et al., 2010;

Kettering et al., 2012).

Measurements of CO2 exchange with the eddy covariance (EC) method were conducted in

2010 at rice paddy and potato (Solanum tuberosum L.) sites. Rice was transplanted on day

of year (DOY) 144 and harvested on DOY 290, whereas potato was sown on DOY 116. The

aboveground plant parts of potato had died by DOY 240, while the tubers were harvested on

DOY 273. The EC system ran during three time periods at the rice paddy site and the potato

site, respectively (i.e., DOY 177-186, 203-223, and 242-274 at the rice paddy site and DOY

152-175, 187-203, and 225-240 at the potato site; Zhao et al., 2012). Leaf area index (LAI) as

an indicator of phenological plant stage was measured by plot harvests and using a leaf area

meter (LI-3000A, LI-COR Inc., USA) throughout the measurement period at the rice paddy

site of EC measurements. LAI for potato was measured in a potato field directly adjacent to

the EC measurement site during the biomass growth period (DOY120 - 243).

3.1.1.2 Haenam, South Korea (HFK)

The Haenam site is located in the southwestern part of the Korean Penisula within Haenam-

gun, Jeollanamdo (34◦ 33’ 18” N, 126◦ 34’ 7” E,14 m a.s.l.). Haenam is a typical rice (Oryza

sativa L.) farming region and one of the largest rice cultivating areas in Korea (Kim et al.,

2011; Statistics Korea, 2010). The study site was covered the mixture of rice paddies and

various seasonal crops such as beans, sweet potato, Indian millet, and sesame (Lee et al., 2003).

Annual mean temperature is ca. 13.3 ◦C and annual precipitation is ca. 130 mm. The EC

measurements have been conducted since 2002 as one of the main KoFlux sites (http://

asiaflux.net/?page_id=13). In this study, the EC flux and meteorological data in 2008 were

used. For further information on the EC measurement, see Kwon et al., 2010. Seasonal LAI at

the Haenam site was unavailable.

3.1.1.3 Mase, Japan (MSE)

The Mase site is located in a rural area (36◦ 03’ 14” N, 140◦ 01’ 38” E, 15 m a.s.l.) of

Tsukuba City in central Japan, which is about 50 km northeast of Tokyo. The size of rice

(Oryza sativa L.) paddy was ca. 2 km2, and the rice paddy was managed as a single rice-

cropping field following practices common in the area (Saito et al., 2005). The transplanting

http://asiaflux.net/?page_id=13
http://asiaflux.net/?page_id=13
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and harvesting dates of the rice were shown in Table 3.1. Annual mean temperature is ca. 13.7
◦C and and annual precipitation is ca. 1200 mm (http://www.asiaflux.net/network/) were

included. In this study, the EC flux and meteorological data from 2002 to 2005 obtained from

AsiaFlux (https://db.cger.nies.go.jp/asiafluxdb/) were included. LAI was measured

with an optical area meter (AAM-7, Hayashi Denkoh, Tokyo, Japan). Further information of

EC and LAI measurements are described in Saito et al. (2005).

3.1.2 European sites

The sites in European occur under different climate conditions. El Saler, which is under

sub-arid Mediterranean climate, has a hot summer with almost no rain and cold winter with sub-

stantial rain. Lonzee occurs under a temperate maritime climate dominated all year around by the

polar front and often with overcast weather, while Klingenberg is subjected to continental/sub-

continental climate with a warm summer and cold winter.

3.1.2.1 El Saler-Sueca, Spain (ESES2)

The El Saler Sueca site is located in the protected wetland area of La Albufera Natural Park

in the Valencia region of Spain (39◦ 16’ 32” N, 0◦ 18’ 55” E, 10 m a.s.l.). The rice paddy at

El Saler Sueca is within a large rice paddy field (ca. 15 km2) where the management of rice

farming has not changed for over 200 years (Kutsch et al., 2010; Moors et al., 2010). The sowing

and harvesting dates of the rice are shown in Table 3.1. Annual mean temperature is 17.9 ◦C

and annual precipitation is 550 mm (Kutsch et al. 2010). The EC flux, meteorological data, and

LAI of El Saler Sueca in 2007 and 2008 were obtained from CarboEurope cropland network

(http://www.carboeurope.org/; Table 3.1). LAI was measured using sampled plants. Further

details about the site, agricultural management, and measurements including EC methodology

are described in Kutsch et al. (2010) and Moors et al. (2010).

3.1.2.2 Lonzee, Belgium (BE-Lon)

The Lonzee site is located about 45 km southeast of Brussels, Belgium (50◦ 33’ 08" N, 4◦ 44’

42" E, 165 m a.s.l) on a flat plateau. Annual mean temperature is about 10.8 ◦C and annual

precipitation is about 800 mm (Moureaux et al., 2006). The site has been cultivated more

than 70 years primarily with cereals, potato, and sugar beet. In 2004, sugar beet (Beta vulgaris

L.) was sown on DOY 121 and harvested on DOY 273 (Table 3.1; Moureaux et al., 2006). In

the context of analysis of the Haean landscape in South Korea, sugar beet is considered as

http://www.asiaflux.net/network/
https://db.cger.nies.go.jp/asiafluxdb/
http://www.carboeurope.org/
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a surrogate for the important crop radish, since the growth form is similar and radish data

are non-existent. We used the EC flux, meteorological data, and LAI in 2004 obtained from

CarboEurope-IP ecosystem network (http://www.carboeurope.org/). LAI of sampled plants

was estimated using a camera and a picture analyser (Windias, Delta-T Devices, Cambridge,

UK). For detailed information on the Lonzee site, see Moureaux et al., 2006 and Aubinet at al.,

2009.

3.1.2.3 Klingenberg, Germany (DE-Kli)

The Klingenberg site is located in Saxonia, Germany (50◦ 53’ 34” N, 13◦ 31’ 21” E, 468 m

a.s.l). Annual mean temperature is ca. 7.3 ◦C and annual precipitation is ca. 850 mm (Kutsch

et al., 2010). The site has been cultivated since 1975, mainly with barley, rapeseed, and maize

(Ceschia et al., 2010). In 2007, maize (Zea mays, L ), which is C4 crop, was sown on DOY 143

and harvested on DOY 268 (Table 3.1). Maize is cultivated in Gwangwon Province, which is

includes Haean Catchment, and it account for 40% of total maize cultivated in South Korea. LAI

was measured by plot harvests and with a leaf area meter (LI-3000A, LI-COR Inc., USA). The

EC system was utilized at the site since 2004. The EC flux data and meteorological data from

2007 from the CarboEurope-IP ecosystem network (http://www.carboeurope.org/) were used

in this study.

3.1.3 American site

3.1.3.1 Mead, Nebraska, U.S.A. (US-Ne3)

Nebraska site is located in the Agricultural Research and Development Center, University

of Nebraska in USA (41◦ 10’ 46” N, 96◦ 26’ 22” W, 362 m a.s.l.). It is a rainfed agricultural

area and planted with rotation of maize (Zea mays, L ) and soybean (Glycine max [L] Merr.)

over two year periods. The data from the years of 2002 and 2004 at the Nebraska site were

selected for analysis of soybean GPP. In the case of maize, the data from the years of 2003

and 2005 were used. The planting days in study years of soybean or maize differed by 14 to

17 days, but the harvest dates were similar (Table 3.1). The Nebraska site is subjected to a

humid continental climate; annual mean temperature is ca. 10.1 ◦C and annual precipitation

is ca. 784 mm (http://www.fluxdata.org:8080/SitePages/). The EC flux data used in this

study were those obtained with natural rainfall as Haean Catchment. LAI was determined using

a leaf area meter (Model LI3100C: Li-Cor Inc., Lincoln, NE) at 10- to 14-day intervals until

harvest (Suyker et al., 2010). The EC flux, meteorological data, and LAI were downloaded

http://www.carboeurope.org/
http://www.carboeurope.org/
http://www.fluxdata.org:8080/SitePages/
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from AmeriFlux (http://ameriflux.ornl.gov/). Additional information about the site can

be found on the web site, but see also Suyker et al. (2010).

http://ameriflux.ornl.gov/
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3.2 Algorithms of physiological process-based canopy gas

exchange model

The canopy model for predicting GPP in comparison to data from EC sites is designed to

calculate short-term ecosystem CO2 exchange (Tenhunen et al., 1994; Reichstein et al., 2003a;

Wang et al., 2003). The model is single-layered model. It estimates light interception and CO2

exchange rates of canopy foliage for sun and shaded light classes half-hourly which is then

compared to EC measurements (Owen et al., 2007). The model is driven by meteorological data,

e.g., global radiation (Rg), air temperature (Ta), vapor pressure deficit (VPD), wind speed, air

pressure, and atmospheric CO2 concentration, and requires estimated values for LAI.

Total shortwave radiation on the sunlit leaves is the sum of direct, sky diffuse and multiple

scattered radiation, whereas on the shaded leaves, it is only the sum of sky diffuse, and multiple

scattered radiation (see Eq. 2, 3, 4, and 5 in Owen et al., 2007). The foliage orientation function

(G) was set at 0.5 and the influence of clumping (Ω) at 0.9 for croplands in these equations. In

order to account for the effect of the canopy on light interception, we expanded LAI to plant

area index (PAI), which is the sum of LAI and stem area index (SAI) (i.e., PAI = LAI + SAI).

SAI of the crop is calculated as 14% of LAI, whereas SAI of the rice is set at 0.01 (see details

in Owen et al., 2007).

Simulation of gross photosynthesis follows Farquhar and von Caemmerer (1982), as modified

for practical field applications by Harley and Tenhunen (1991). It is based on Ribulose-1,5-

bisphosphate-carboxylase-oxygenase (Rubisco) enzyme reactions, where the rate of CO2 fixation

is limited by either the regeneration of Ribulose-1,5-biphosphate (RuBP) at low light intensity

and/or high internal CO2 concentration or by Rubisco activity and CO2/O2 concentration at

saturated light and low internal CO2 concentration. The key parameter of the model is Rubisco

maximum carboxylation rate (Vcmax) at 25 ◦C, while all temperature dependencies are fixed

in relation to this rate. When comparing predicted GPP to EC measured values, a best fit

is obtained for this key parameter. RuBP reduction capacity, dark respiration capacity, and

light utilization efficiency of the canopy are assumed to be proportional to Vcmax. Given that

fixed temperature dependencies and process proportionalities are used, and that assumptions

are made about canopy structure and light interceptions, a lumped parameter, Vcuptake, that is
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assumed to control overall carbon fixation rather than direct enzyme related parameter Vcmax

is obtained from the statistical fitting procedure.

The model formulation follows Farquhar and Von Cammerer (1982) further, net photosyn-

thesis (Pnet) is obtained using

Pnet = (1− Γ∗

ci

)min(wc : wj)− 0.5Rd (3.1)

where Γ∗ is CO2 compensation point in the absence of mitochondrial respiration, wc is the

carboxylation rate suppoerted by Rubisco enzyme, wj is the carboxylation rate supportted by

the actual electron transport rate, Rd is the repiration occuring in mitochondria without light.

ci is the internal CO2 concentration based on Fick’s Law for molecular diffusion of CO2 through

the stomata and boundary layer, and is calculated from the following equation.

ci = cs −
1.6Pnet

gs

(3.2)

where cs is the CO2 concentration at the surface of the leaf and gs is the stomatal conductance

according to modified Ball-Berry equation (Ball et al.,1987; Harley and Tenhunen, 1991).

gs = gs,min + gfac
(PnetRd)rH)

cs
(3.3)

where gs,min is the minimum stomatal conductance, rH is relative humidity, gfac is a constant

representing stomatal sensitivity in relation to CO2 assimilation. It has been evaluated for

different species from chamber experiments (Tenhunen, 1990; Sala and Tenhunen, 1994, 1996).

wc is the carboxylation rate supported by Rubisco enzyme, calculated as:

wc = Vc ci

ci +Kc(1 +O/KO) (3.4)

where Vc is the maximum rate of carboxylation, Kc is the Michaelis constant for carboxyla-

tion, Ko is the Michaelis constant for oxygenation, and O is the oxygen concentration of the air

[210 cm3 O2 (L air)−1]. As the dependency of temperature, Vc is calculated as:

V c = V cmaxe∆Ha(Tk−298/298RTk)

1 + e(∆STk−∆Hd)/RTk
(1 + e298∆S−∆Hd)/298R) (3.5)
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where Vcmax is the maximum rate of carboxylation capacity at 25 ◦C, ∆Ha is the activation

enthalpy of carboxylation, Tk is the estimated the leaf temperature in the current model iteration

step, R is the universal gas constant, S is an enthalpy term for deactivation, and ∆Ha is the

deactivation enthalpy of carboxylation. wj is calculated as:

wj = Pmci

ci + 2.0Γ∗ (3.6)

where Pm is the maximum potential rate of RuBP production. Pm is calculated following

the Smith equation (cf. Tenhunen et al., 1976):

Pm = alphaI√
1 + (alpha2I2/P 2

ml)
(3.7)

where alpha is the average leaf light utilization efficiency without photorespiration, I is the

incident PPFD, and Pml is the CO2 and light saturated temperature dependent potential RuBP

regeneration rate as described in Falge (1997).

As indicated above, rather than using the notation of Vcmax at the leaf level, Vcuptake is

referred to as the estimate of the maximum rate of carboxylation capacity at the canopy level

when fitting the model to EC data. Estimated Vcuptake is extracted by minimizing the sum

of residual least squares i.e., the Levenberg-Marquardt algorithms of the PV-WAVE routine

in the comparison of model predictions with EC observations at half hour intervals. The light

utilication efficiency, alpha, can also be estimated from the EC data as an additional fitting

parameter. In this study, however, we assumed alpha to be proportional to Vcuptake following

Owen et al. (2007). The relationship of alpha and Vcuptake is

alpha = min(0.0008V cuptake, 0.06) (3.8)

Vcuptake estimation was carried out on a daily basis over the course of the growing season for

each crop data set. We determined that the predicted Vcuptake was occasionally unrealistically

high during the early growing season (>200 µmol m-2 leaf area s-1) when LAI was low (<1) but

GPP was positive (>50 µmol m-2 leaf area s-1). This results from errors in the flux determination

or in LAI estimation; values that are critical in the analysis of CO2 uptake (it may occur, for

example, if the flux footprint is different from the area used in LAI estimation). In order to
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eliminate artificially high estimates of Vcuptake, the current work includes only flux data where

LAI is > 1 in the model fitting procedure. More information on the physiologically-based model

can be found in Owen et al. (2007).

The photosynthesis sub-model has been developed based on C3 plant photosynthesis. C4

plants are known to have less photorespiration than C3 plant due to the CO2 concentration

mechanism of the C4 cycle (Edwards and Walker, 1983; Taiz and Zeiger, 1991). In these plants,

atmospheric CO2 is initially fixed into C4 acids in the mesophyll cells. The acids are transported

to the bundle sheath cells where they are decarboxylated. Decarboxylation of the C4 acids

increases CO2 concentration in the chloroplasts to levels much higher than in the external atmo-

sphere (Edwards and Walker, 1983). Dai et al. (1993) reported intercelluler CO2 concentration

for maize that was about 3.2-fold higher than in the C3 plant wheat. Based on this experiment,

atmospheric CO2 concentration in Eq. 3.2 was set 3 times higher (1000 ppm) for analysis of the

EC data from the C4 plant maize.

3.3 Physiological parameters of the canopy model and

GPP estimation

The leaf physiological parameters applied as constants and those controlling temperature

dependencies were obtained in previous studies on leaf physiology. These values are indentified

and shown in Table 3.2 (from Tenhunen et al., 1990; Harley and Tenhunen, 1991; Falge et al.,

1996; Sala and Tenhunen, 1996). These parameters describe temperature and light dependencies

and response of stomata (Tenhunen et al., 1990). Gross primary production (GPP) is calculated

with the single-layered canopy sub-model as described in 3.2.1. Inputs to the model are half-

hourly global radiation, air temperature, relative humidity and precipitation. Matrices for all

meteorological drivers are prepared previous to analysis runs (estimated in separate routines and

stored outside of the model) and are input to the model according to the half-hourly simulation

time step. Of primary concern in this study was estimation of a single key parameter, Vcuptake,

that describes change in overall canopy CO2 uptake capacity.

Seasonal variation of Vcuptake was estimated via model fitting with the detailed canopy sub-

model and EC GPP data (Owen et al., 2007). The method was performed using the functions
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NLINLSA and NONLINREGRESS of PV-WAVE statistical program package. These functions

used a modified Levenberg-Marquardt algorithm that is a method for minimizing a sum of

weighted squared residuals to solve nonlinear parameter problems, such as estimation of Vcuptake

(PV-WAVE IMSL Mathematics Reference, 2010; Transtrum and Sethna, 2012). A common

least-squares minimizaiton is expressed as:

C(θ) = 1
2

M∑
m=1

rm(θ)2 (3.9)

where N ≤ M, r: RN->RM is an M-dimensional nonlinear vector function of N parameters

θ. Function rm(θ) followed the form

rm(θ) = (y(tm, θ)− ym)
σm

(3.10)

θ is the parameter, y(tm, θ) is a model of the observed data, ym, that depends on unkown

parameters θ , one or more independent variables t, and uncertainty in observed data, σ. The

terms in Eq. 3.10 are known as the residuals, the parameter values that minimize C(θ) are

known as the best fit parameters. Consistent seasonal trends in the key physiological parameter

describing CO2 uptake capacity, Vcuptake, are found for functional crop types, e.g., root crops

and rice as a grain crop (Li et al., 2010), which aids in parameterization according to the land

use.

3.4 Vegetation indices from remote sensing

Remote sensing vegetation indices (NDVI and EVI) are determined by light reflected from

the crop surface. NDVI and EVI depend on properties, which are determined on the one hand

via change in crop canopy structure (leaf area index) but also via physiological factors, i.e.,

the pigmentation change that may be correlated with the levels of investment in photosyn-

thesis metabolism. NDVI and EVI from 2001 to 2011 were obtained from daily gridded L3G

(level-3) composite data at 250 m resolution that is embedded in the MODIS/terra surface

reflectance products (MOD13G1) obtained from the Warehouse Inventory Search Tool (WIST,

https://wist.echo.nasa.gov/). MOD13Q1 provides 16-day composite vegetation condition

derived from blue (459-479 nm), red (620-670 nm), and near-infra-red (NIR, 841-876 nm) surface

https://wist.echo.nasa.gov/
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Table 3.2. Parameters for physiologically based canopy model. Parameter values are generalized
from Harley and Tenhunen (1991), Falge et al. (1996), and Owen et al. (2007).

Parameter Description Crops

Veg.typ Vegetation type 3

Ω Modified to consider the influence of clumping 0.9

alpha Initial slope of the light response curve (leaf level light-use efficiency)

[mol CO2 m −2 Leaf surface (mol Photonen m−2 horizontal area)−1] 0.045

∆Ha(Jmax) Activation enthalpy for maximum rate of electron transport 40000

∆Hd(Jmax) Deactivation enthalpy for maximum rate of electron transport 200000

∆S(Jmax) ) Entropy factor for maximum rate of electron transport 655

∆Ha(Vcmax) Activation enthalpy for maximum rate of carboxylation 69000

∆Hd(Vcmax) Deactivation enthalpy for maximum rate of carboxylation 198000

∆S(Vcmax) Entropy factor for maximum rate of carboxylation 660

Ea(Rd) Activation energy for mitochondrial (dark) respiration 58000

Ea(τ) Activation energy for enzyme specificity factor -28990

f(τ) Scaling factor for enzyme specificity factor 2339.53

Ea(KO) Activation energy for Michaelis-Menten constant for oxygenation 35900

f(KO) Scaling factor for Michaelis-Menten constant for oxygenation 248

Ea(KC) Activation energy for Michaelis-Menten constant for carboxylation 59500

f(KC) Scaling factor for Michaelis-Menten constant for carboxylation 404

gfac Bell-Berry stomatal conductance factor 12
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reflectance in the sinusoidal projection. The normalized difference vegetation index (NDVI) is

calculated using red and near-infra-red wavelengths as in Eq. 2.1. NDVI depends strongly on

the mount of chlorophyll and other pigments exposed to the view of the satellite (Huete et al.,

1997).

Enhanced Vegetation Index (EVI) (Huete et al., 2002), is calculated using the blue, red,

and NIR reflectance values and canopy background adjustment factor (L) (Huete et al., 1997).

L and blue reflectance value for EVI reduce soil background effect and residual atmospheric

contamination that has known to the limit applications of NDVI (Huete et al., 1994). EVI

can be calculated as in Eq. 2.2. I adopted L=1, C1=6, C2=7.5, and G (gain factor)=2.5 as

recommended by Huete et al. (2002).

The original values of VIs include frequency noise components due to clouds, water, snow,

shadow, bidirectional effects, high solar or scan angles and transmission errors which are identified

in a series of quality control indicators. In the initial studies reported here, the TIMESAT

program developed by Jonsson and Eklundh (2004) for smoothing VIs was applied. TIMESAT

is an open source software, which provides three different smoothing functions: asymmetric

Gaussian, double logistic, and adaptive Savitzky-Golay filtering, to fit the time-series satellite

sensor data. VIs were smoothed as final NDVI and EVI by the adaptive Savitzky-Golay filtering

method at rice paddy sites and dry land crop sites. The adaptive Savitzky-Golay filtering is

calculated locally to achieve the smallest estimated mean square error; it is able to follow complex

fluctuations that occur with rapid increase and decreases in the reflectance data (Jonsson and

Eklundh, 2004). Agricultural crops are able to change their physical and physiological condition

over short time intervals. In this study, VIs at a daily time step, which was same temporal

resolution as modeled GPP, was calculated using a spline as a polynomial interpolation.

3.5 Leaf area index estimates

The measurement of leaf area index (LAI) was conducted during the growing season at most

of the EC measurement sites, Haean (rice and potato), Mase, El Saler, Lonzee, Klingenberg, and

Nebraska. LAI measurement was not conducted at Haenam. Since measured LAI has in previous

studies been shown to be correlated with spectral reflectance (Xiao et al., 2002; Pontailler et al.,

2003; Stenberg et al., 2004; Fan et al., 2008), two VIs were applied to estimate LAI, e.g., NDVI
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and EVI. It was also tested whether features of reflectance at the beginning of the growing

season are different than during at the senescence period. Therefore, two correlation models

for LAI were developed at each site and for the growing season of the crop. The first model

equation considered the relationship between measured LAI and VIs over the entire course of

the season (incicated as E in the results tables), and the second model combined two equations,

including the relationship between measured LAI and before and after maximum VIs (indicated

as BA in the results tables). The relationships are shown for rice at the individual sites (HK,

MSE, and ESES2) in Fig. 4.4 and Fig. 4.5, the continental sites (HK and MSE) and entire rice

paddy in Fig. 4.7 and Fig. 4.8 (Chapter 4). Dry-land crop results are shown according to crop

type (soybean, maize, potato, and sugar beet) in Chapter 5. Additionally, a new method for

estimation of the seasonal course in LAI was developed which focuses on and requires only the

identification of the time at which maximum NDVI and EVI is attained (see results).

3.6 Outlier removal

Outlier values for Vcuptake may be indicative of errors in observation or in model-based

analyses (Loo, 2010). Estimated Vcuptake occasionally was extremely large (e.g., ≤ 500 µmol m-2

leaf area s-1), much larger than most values determined for Vcuptake (ranging from 0 to 100 µmol

m-2 leaf area s-1). In order to remove the Vcuptake outliers, we applied two statistical methods

based on 1) the generalized additive model (GAM) and 2) detecting extreme value methods.

GAM, which has been widely used in ecological research, is based on the backfitting algorithm

by combining different smoothing and fitting functions to find the best fit for the generalized

data. Using a local regression and smoothing splines (Hastie and Tibshirani, 1990; Yee et al.,

1991; Liu et al., 2008), the smoothed Vcuptake (Vcuptake_gam, Fig. 3.1, thick solid line) was

obtained where the values of the estimated Vcuptake are determined from the 99 % confidence

intervals (Fig. 3.1, dashed line) . The confidence intervals are determined by standard deviation

(STD) of Vcuptake_gam. The upper level of the confidence intervals is set by STD of Vcuptake_gam

add Vcuptake_gam, whereas lower level is set by STD of Vcuptake_gam minus Vcuptake_gam (Fig. 3.1,

thin solid line). The data outside of the confidence range, are considered as outliers and are

removed.

The method of detecting extreme value determines outliers with reference to the approximant
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(ρ) of the distribution of the observation, which is computed by probability plot (Quantile-Quantil

plot) positions using a cumulative distribution function (Loo, 2010). After generating a model

distribution of Vcuptake with cumulative density, F (Y|θ) (where Y is a random variable and θ is

a vector of parameter specifying F), a criterium of outlier detection limit is determined and ρ of

Vcuptake is calculated. When Vcuptake is either above or below with respect to ρ, it is categorized

as an outlier (see Loo, 2010 for more detail information).

The two methods were applied to Vcuptake data using R (Version 2.15.2), and the results from

both methods were in good agreement (Fig. 3.1). The detected outliers by GAM, which lay

above the upper level of confidence intervals, matched well with those by the detecitng extreme

values method in different years and at different measurement sites. Based on the concurring

results and the complexity in the algorithms of GAM, it was decideded to use the method of

the detecting extreme values.

3.7 Statistical analysis

3.7.1 Model evaluation statistic

Several statistics are used to evaluate the accuracy of GPP estimation. Coefficient of de-

termination (R2) is used to measure correlation between the modeled and the observed, and

root mean squared error (RMSE) is used to measure the difference between the modeled and

observed:

RMSE =

√√√√1/N
N∑

i=1
(ŷi − yi)2 (3.11)

where ŷi is the modeled and yi is the observed. Coefficient of variation of the RMSE, CV

(RMSE) is defined as the RMSE normalized to the mean of observation and is calculated as:

CV (RMSE) = RMSE/ȳ (3.12)

where ȳ is the mean of the observed. Assessment of modeling efficiency (ME) was conducted

to evaluate the model performance by comparing model simulation and observation (Janssen

and Hauberger, 1995). ME measures correlation between the modeled and the observed as well
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Fig. 3.1 Detection of the outliers by two statistical methods as described in the text, i.e.,
generalized additive model (GAM) and detecting extreme value methods. Black closed circle
are Vcuptake, red closed circle are the extreme values, thick solid line is GAM, dashed line is the
99% confidence intervals, and thin solid line is standard deviation line.

as their agreement and systematic deviation. ME is calculated as:

ME = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2 (3.13)

Although R2 is 1 as perfect agreement, the modeled and the observed are in disagreement

when ME is less than 0 (Smith et al., 1996). Only positive values of ME, therefore, are considered

to assess the model performance, and the model performance becomes better as ME approaches

1.
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3.7.2 Sensitivity of variables

Estimation of GPP is determined by the compounding interaction of the meteorological,

physiological, and phenological conditions. To assess the relative influence of controlling variables

such as Ta, VPD, Rg, and LAI have on GPP, a one-way sensitivity analysis (SA) was conducted.

One variable was changed in an incremental increase of 5% (ranging from 5 to 80%) while other

variables were held constant. The results of SA arranged the variables by the significance of

their impact on GPP estimation.
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Chapter 4

Results: estimation of GPP for rice

paddy sites

4.1 Meteorological conditions at the study sites

Weather conditions of 10-day intervals during the rice growth period are presented in Fig.

4.1. Weather data were obtained every half hour from the meteorological sensors installed

on eddy covariance towers. Daily global radiation (Rg) among the sites ranged from 7 to 30

MJm-2d-1. Rg in Haean during 2010 increased rapidly with the start of growing season, reached

the maximum value of 25.2 MJm-2d-1 and, decreased in June (DOY 152 – 181). Rg showed a

fluctuation around 10 MJm-2d-1 with a large decrease (9 MJm-2d-1) in August (DOY 213 – 243).

At Haean during 2011, Rg decreased continually to about 7 MJm-2d-1 in May, June, and July,

fluctuated around 10 MJm-2d-1 in August, and decreased to about 1.3 MJm-2d-1 at the time

of the harvest. At the Haenam site in 2008, Rg decreased ( 8.6 MJm-2d-1) in May and June,

but increased rapidly to the maximum of about 20 MJm-2d-1 during July. In Mase, Rg showed

similar seasonal change among the study years (2002 – 2005), decreasing with the start of the

growing season and with large fluctuations during June to September (DOY 152 – 270); the

maximum value of about 22 MJm-2d-1 occurred in June and July. During 2007 and 2008 at El

Saler, the highest Rg compared to other rice paddy sites was recorded; it ranged from about 14

to 29 MJm-2d-1. The maximum Rg between 24 MJm-2d-1 to 29 MJm-2d-1 occurred in May and

June, followed by a gradual decline to about 14 MJm-2d-1 until the end of the growing season.

The average air temperatures (Ta) generally increased after the start of growing season and

35
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decreased again at the time of senescence, ranging from 13 to 29 ◦C on average for the 10-day

intervals (Fig. 4.1). Mean Ta of the growing season was about 20 ◦C at HK, about 25 ◦C at
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Fig. 4.1 Seasonal time courses for meteorological variables measured at rice paddy sites that
potentially influence GPP, i.e., can be considered driver variables for plant response as it affects
carbon uptake, crop growth and primary production. Total global radiation (Rg), mean air
temperature (Ta), mean maximum vapor pressure deficit (VPD), and total rainfall are given
for 10-day intervals during the growth period for all rice paddy study sites. General site charac-
teristics are given in Table 3.1. HK = Haean (S. Korea), HFK = Haenam (S.Korea), MSE =
Mase (Japan), and ESES2 = El Saler-Sueca (Spain).

HFK, ca. 22 ◦C at MSE, and about 22 ◦C at ESES2.

The patterns and magnitudes of daily maximum VPD over the 10-day period were different

among the sites. VPD of HK during 2010 reached a maximum of about 2.2 kPa in the early

growing season, gradually declined until July around DOY 200, and remained constant (1 kPa)

until the end of the growing season. VPD of HFK fluctuated during May, June, and July,

increased to the maximum of 1.2 kPa in August, and decreased to 0.8 kPa at the end of the
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measurement period. Unlike HK and HFK, VPD of MSE fluctuated during the growing season,

ranging from 0.7 to 2.1 kPa. VPD of ESES2 during 2007 was large (about 1.7 kPa) at the

beginning of the growing season, and decreased to about 1 kPa in July and remained relatively

constant until the end of the growing season. VPD in ESES2 during 2008 rose from 0.6 to 1.2

in the early growing season in May and remained around 1.2 kPa throughout the measurement

period. In the case of rice paddies, the sensitivity of GPP to VPD variation was not high due

to the rice paddy fields maintaining relatively humid conditions. Water vapor deficit did not

appear to be a limiting factor for gas exchange.

Total precipitation during the growing season varied from 121 to 1351 mm among the sites

(Table 3.1, Fig. 4.1). The sites in Asia (HK, HFK, and MSE) recorded total precipitation from 545

mm up to 1351 mm associated with the summer monsoon, which was much greater precipitation

than at the European site, ESES2 (121 – 437 mm). Especially, HK and HFK showed the largest

total precipitation among the sites due to the intensive rainfall and typhoons associated with

changma (see Kwon et al., 2010), i.e., 1165 mm of which 36% occurred in August (HK in 2010)

and 706 mm of which 30% occurred in June (HFK in 2008). The total precipitation of MSE in

2002 – 2005 ranged from 545 to 647 mm during the growing season. The total precipitation at

ESES2 was 437 mm in 2007 and 121 mm in 2008. The major portion of the total precipitation in

2007 was contributed by two precipitation events in September (DOY 260 – 273) which resulted

in 184 mm and 171 mm of rainfall.

4.2 LAI development

Fig. 4.2 shows the seasonal change in LAI. LAI of rice paddies showed a similar seasonal

change among all sites, i.e., increasing rapidly at the beginning of the growing season to a peak

in mid-summer (DOY 200 – 224) and decreasing from the peak until the end of the growing

season.

The maximum LAI observed at the rice paddies ranged from 4.4 to 6.1 in July and August

(DOY 200 – 224). In the case of MSE, the magnitude of maximum LAI ranged from 4.4 to

5.5, but differences in the time of achieving maximum were apparent, i.e., the maximum LAI

occurred on DOY 204 in 2002, 224 in 2003, 209 in 2004, and 207 in 2005. Canopy development as

viewed from the changes in LAI of ESES2 during 2008 was about 10 days later than during 2007.
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Fig. 4.2 Seasonal time courses in the years indicated for change in leaf area index (LAI) of
the studied rice paddies. HK = Haean (S. Korea), HFK = Haenam (S.Korea), MSE = Mase
(Japan), and ESES2 = El Saler-Sueca (Spain).

Considering from Fig. 4.1 the factors possibly responsible for the observed variation in canopy

development, the level of radiation input and temperature during the early growing season may

be important in determining the time course of plant growth and canopy gas exchange.

4.3 Dynamics of vegetation indices

Fig. 4.3 illustrates both the annual and the seasonal patterns from planting to harvest of

rice paddy site downloaded VIs from the MODIS data base, the smoothed VIs (i.e., TIMESAT

processed), and the interpolated daily VIs. The arrows in the figure identify the period from

the planting to harvest time at the specific location where eddy covariance data were obtained.

Nevertheless, it should be remembered that the footprint of the measured fluxes changes, and

that field observations of growth can be at times be better or worse in terms of linkage with

the fluxes. The VI values as well may vary with respect to their ability to accurately reflect

changes at the eddy covariance sites (cf. section 3.1.1.1 for details with respect to measurements

at Haean).

Nevertheless, the growth period patterns in downloaded NDVI and EVI of rice paddy sites

were similar, increased in April and May as growing season began, and decreased in September

and October as senescence, maturation of the rice, and harvests occurred. An exception is found

for HFK during 2008 where the VIs increased before rice planting and decreased primarily after

harvest. As a result, NDVI during the growth period at this site was relatively constant, while

EVI exhibited a slow decrease.
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Due to this clear difference, the information obtained from HFK during 2008 must be treated

with care or must be eliminated from the analysis. HFK is followed further here because it

is important in terms of Korean national rice production, and similarities or differences in

comparison to other EC sites are of interest.

The NDVI from Asia rice paddy sites (HK, HFK, and MSE) were more scattered than those

of ESES2 during the summer monsoon season (DOY 152 – 243) due to the influence of frequent

cloud cover and dense water vapor in the air. This scatter has an influence on subsequent

analyses that define the smoothed curves and the estimated daily VIs. It must be kept in mind

that the statistical methods to obtain the seasonal curves does not necessarily provide correct

data for the crops and that processing of the scattered observations may negatively affect the

sought after relationship between VIs and LAI or Vcuptake. For example, the scattering of data

for MSE during 2003 results in a double peak in mid-summer which is an artifact. Deviations

occurred in the magnitude of VI change during the growth season. Similar values of VIs occurred

early in the year (DOY 1 – 100) at all sites except HFK. NDVI at planting varied between 0.2

and 0.4, while EVI varied between 0.1 and 0.2. The maxima for NDVI varied between 0.8 and

0.9, while maxima for EVI were between 0.6 and 0.8.
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4.4 LAI estimation

4.4.1 Estimating LAI from the seasonal course of VIs

4.4.1.1 Relationship between ground-measured LAI and VIs

To link time dependent change in ground-based LAI measurements to VIs, linear and expo-

nential relationships between the measured LAI and VIs were examined. The linear relationship

is not included in the results presented, since the exponential model in general provided better

explanation. The statistical results of both the linear and exponential relationships are provided

in the Appendix A (Table A.1 and Table A.2). The utility of the exponential model was studied

further, since it has been often used to describe time dependent change in LAI (e.g., Pontailler

et al., 2003; Lu et al., 2004 and 2005; Fan et al., 2008).

Leaf area development was considered with respect to two phases: the vegetative phase with

increasing LAI from the beginning of the growing season (DOY 120 – 144) to the maximum

leaf expansion in mid-summer (DOY 180 – 220) and the flowering and reproductive phase with

decreasing LAI from midsummer to the harvest period (DOY 250 – 290). This was undertaken

in order to adjust for the biochemical and physiological changes in leaf function during these

phases (Muraoka and Koizumi, 2005 and 2007), and with the expectation that regulation of

protein and pigment synthesis is most likely altered when the growth of rice grains compete

for plant resources. In order to assess these changes, two analyses, i.e., one that considers data

obtained over the entire growing season (E) and another one that considers partial data from

the two seasonal periods, i.e., the increasing phase in LAI (B) and the decreasing phase for LAI

(A).

Fig. 4.4 shows the relationships between measured LAI and VIs for the entire growing season

(E) at the respective rice paddy sites, HK (in 2010), MSE (from 2002 to 2005), and ESES2 (from

2007 to 2008). In all cases, the measured LAI was exponentially and positively correlated with

NDVI and EVI. Overall, the relationship between LAI and NDVI was stronger than EVI with

R2 > 0.6 and RMSE < 1.63. At MSE and ESES2, where multiple years of data are included,

greater scatter is found in the relationship than when individual years are analyzed (cf. HK

for 2010). Additional factors influence the relationship between measured LAI and the VIs,

reducing the goodness of fit and modifying the shape of the predicted relationship. One factor
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Fig. 4.4 The relationship between measured LAI and NDVI or EVI for the years indicated
and utilizing data from the entire growing season. HK = Haean (S. Korea), MSE = Mase
(Japan), and ESES2 = El Saler-Sueca (Spain). The solid line indicates the exponential equation
established for the relationship as described in the text. The coefficients, R2 of the regression,
and root mean square error (RMSE) are given.

that possibly could play a role is the seasonal phenological development which could vary from

year to year. This is tested by separating the season into two phases as described above.

Fig. 4.5 shows the relationship between LAI and NDVI for the two respective growth phases

before (B, left panel) and after (A, right panel) maximum NDVI. It is quite apparent that a

different correlation is found during the increasing versus the decreasing phase of LAI changes.

The increasing phase represents the most active vegetative/growth period, which was associated

with LAI increase from 0 to 6, and NDVI changes between 0.3 and 0.9. The decreasing phase

describes the reproductive stage associated with panicle initiation and flowering (Xiao et al.,

2002). During this phase, LAI changed from 6 to 2, while most of the points of NDVI ranged

between 0.9 and 0.6. Among the sites, the relationship between LAI and NDVI in the increasing

phase exhibited much higher R2 between 0.84 and 0.90 and lower RMSE between 0.84 and

1.21 in comparison to results with data over the entire season. In the decreasing phase, the few

observations at the HK site do not support statistical analysis or further conclusions. However,
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Fig. 4.5 The relationship between measured LAI and NDVI for the years indicated where the
data are separated into two phases, e.g., until maximum VIs are reached (Before) and after
maximum VIs are attained (After). HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2
= El Saler-Sueca (Spain). The solid line indicates the exponential equation established for the
relationship as described in the text. The coefficients, R2 of the regression, and root mean square
error (RMSE) are given.

the regression for MSE and ESES2 are quite similar and demonstrate how late season phenology

influences the analyses shown in Fig. 4.4.

LAI and EVI relationships for the period before (B) and after (A) peak EVI are shown in

Fig. 4.6. There was large data scatter in the relationship between measured LAI and EVI, hence

weaker explanation than obtained with the LAI vs. NDVI relationship. LAI vs. EVI was a good

predictor for the HK site, however, there was no significant improvement. Considering the late

season relationship with NDVI or EVI, less exponential tendency was found than during the

increasing phase and a linear relationship may even be acceptable. It is concluded that NDVI

is a better predictor of season changes in rice LAI than EVI.
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Fig. 4.6 The relationship between measured LAI and EVI for the years indicated where the
data are separated into two phases, e.g., until maximum VIs are reached (Before) and after
maximum VIs are attained (After). HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2
= El Saler-Sueca (Spain). The solid line indicates the exponential equation established for the
relationship as described in the text. The coefficients, R2 of the regression, and root mean square
error (RMSE) are given.

Since it is desirable to establish relationship between VIs and LAI that are generally ap-

plicable or “universal” rather than site specific, the conclusions reached above with respect to

individual sites were examined further by pooling the data for Asian sites and all sites (including

the Mediterranean site in Spain).

During the summer monsoon in the Asian region, the remotely sensed vegetation indices

were influenced by frequent cloud cover and high water vapor density in the air. For this reason,

Asian rice paddy sites were first treated separately. Fig. 4.7 shows the relationship between LAI

and VIs for the Asian sites (HK and MSE) and for all rice paddy study sites combined (HK,

MSE, and ESES2) and for years with data acquired over the entire growing season. The LAI –
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Fig. 4.7 The pooled relationships between measured LAI and NDVI or EVI utilizing data from
the entire growing season. The regression for Asian sites includes the data from HK and MSE
shown in previous figures, while the regression for the entire compliment of sites adds in the
observations from ESES2. The solid line indicates the exponential relationship established for
the relationships as described in the text. The coefficients, R2 of the regression, and root mean
square error (RMSE) are given.

NDVI relationship for the Asia rice paddies was very strong, with an R2 of 0.62 and RMSE of

1.45. The combined rice paddy sites also showed reasonably strong correlation, with R2 of 0.60

and RMSE of 1.45. The LAI-NDVI relationships exhibited better correlations than the LAI-EVI

relationships. Fig. 4.8 shows the BA relationships for separate Asia and combined rice paddy

study sites, respectively. The LAI-NDVI relationship showed good agreements in the increasing

phase (R2 above 0.76 and RMSE below 1.03), but a relatively poor exponential tendency in

the decreasing phase (R2 above 0.27 and RMSE below 0.93). The general conclusions are the

same as for individual sites. Separating the seasonal phases provides a better explanation of

LAI changes.
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Fig. 4.8 The pooled relationships between measured LAI and NDVI or EVI where the data are
separated into two phases, e.g., until maximum VIs are reached (Before) and after maximum
VIs are attained (After). The regression for Asian sites includes the data from HK and MSE
shown in previous figures, while the regression for the entire compliment of sites adds in the
observations from ESES2. The solid line indicates the exponential relationship established for
the relationships as described in the text. The coefficients, R2 of the regression, and root mean
square error (RMSE) are given.

The LAI-EVI relationship was relatively scattered, overall NDVI was a better and more

accurate predictor for LAI than EVI. There was no convincing reason to consider results from



CHAPTER 4. RESULTS: ESTIMATION OF GPP FOR RICE PADDY SITES 47

the Asian sites as different from the case where all available data were pooled.

4.4.1.2 Estimation of seasonal LAI

The LAI-NDVI relationships from Figs. 4.7 and 4.8 were next tested to determine their

utility in reproducing the measured seasonal changes in LAI. Separating the season into two

phases, led to the result that abrupt changes in LAI occurred during the transition from B to

A in mid-season. Additionally, the performance of these equations with respect to reproducing

measured time courses was not better than obtained with the exponential relationship using

data over the entire season (Fig. 4.7).
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Fig. 4.9 Daily measured LAI (closed circle with solid line) and estimated LAI (dashed line) at
rice paddies for the years indicated. HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2
= El Saler-Sueca (Spain). Estimates are calculated with an exponential fit to pooled data from
all rice paddy sites, using observations over the entire season (upper right panel in Fig. 4.7)

Daily LAI over the growing season was best estimated by the exponential relationship

between LAI and NDVI for the pooled rice paddy sites (hereafter referred to as LAI _EN _exp;
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Fig. 4.9). There were no observation data for LAI in HFK during 2008, hence the data shown

in Fig. 4.9 are only estimated LAI. Estimated LAI ranged from 0 to 8.6. As shown in the figure,

LAI was underestimated for HK during 2010 and MSE during 2002, and overestimated for MSE

during 2004, ESES2 during 2007 and 2008. LAI was overestimated at the beginning of the

growing season and underestimated at the end of the growing season for MSE during 2003. LAI

was accurately estimated for MSE during 2005. The timing of the peak in LAI was acceptable

in comparison to the peak of the measured LAI (within +/- 3 to 6 days). There were bi-annual

peaks for MSE during 2003 (DOY 183 and 215), the second peak occurring 9 days after the

peak of measured LAI.

The large deviations between measured and predicted LAI that occur over the season indicate

that the scatter in data shown in Fig. 4.7 make it extremely difficult to use the seasonal

exponential relationship to predict LAI across rice paddy sites. The different seasonal patterns

in the deviations mean that further use of LAI values together with the PIXGRO model will

lead to unpredictable influences in the estimation of GPP. According to Haboudane et al. (2002),

Fan et al. (2008), Potithep et al. (2010), the relationship between LAI and NDVI assumes an

exponential tendency in most cases. However, most of these previous studies focus on single or

more localized sites. In cases where the study locations are spread geographically in different

climate regions and where year to year climate variation occurs such simple relationships may

not apply. Therefore, an attempt to identify a better approach was undertaken that is based

on similarities or consistencies in the developmental processes of the rice crop.

4.4.2 Estimation of LAI according to consistent phenological devel-

opment

A general growth curve for rice across the study sites was established with the general

addictive model (GAM: Hastie, T. J. and Tibshirani, R. J., 1990), which explains the LAI

change in relation to the maximum LAI, as determined for the sites via the maximum in NDVI

(Fig. 4.10). After determining NDVI maximum, observed LAI values were plotted on a time

scale in terms of days before the maximum (negative values) or after maximum (positive values).

The function is scaled from 0 to 1 by dividing all observation values for LAI by the maximum

value measured.
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Fig. 4.10 A scaled general growth scale curve utilizing data from all rice paddy sites. The scaling
results by dividing LAI observations by maximum LAI. The black closed circles indicate the
relationship between the scaled LAI and DOY based on time shifts according to maximum NDVI.
The solid line indicates the general growth curve determined with the generalized addictive
model (GAM).

As shown in Fig. 4.10, the rice LAI at all sites slowly increased about 80 days before the

maximum NDVI (Day 0) and rose rapidly from 40 days before Day 0 to Day 0. The maximum

in scaled of rice LAI occurred between Day 0 and 10 days after Day 0. A relatively slow decrease

occurred after this peak. A general seasonal change in LAI may be estimated for each site by

multiplying daily values of the curve in Fig. 4.10 by the average maximum LAI observed at all

sites. The timing depends on planting and management of the rice crop. LAI development at

specific sites is obtained by shifting the daily values according to DOY of the maximum NDVI

at the site (Fig. 4.11). The estimated LAI obtained with this method ranged from 0 to 5.3 and

the seasonal patterns in LAI were reproduced relatively well across all rice paddy sites.

The method using the LAI consistent development curve to estimate LAI has a limitation
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Table 4.1. Statistics for the correlation between measured LAI and estimated LAI comparing
the exponential model (Fig. 4.9) and the LAI consistent development curve method (Fig. 4.11).
R2 is the determination of coefficient, RMSE is root mean square error, and CV is coefficient of
variation.

LAI by consistent development curve LAI by the exponential model

Site Year R2 RMSE CV (%) R2 RMSE CV (%)

HK 2010 0.70 1.02 71.38 0.82 0.87 53.85

MSE 2002 0.90 0.29 30.01 0.73 1.09 60.79

MSE 2003 0.71 0.41 47.80 0.54 0.59 62.40

MSE 2004 0.87 0.17 31.25 0.71 0.50 70.37

MSE 2005 0.90 0.70 57.02 0.91 0.32 31.83

ESES2 2007 0.96 0.40 46.33 0.79 0.20 87.12

ESES2 2008 0.97 0.38 40.80 0.83 0.15 85.42

due to use of the average maximum LAI value. However, the estimated LAI was much better

than obtained with the exponential model as shown in Table 4.1. Therefore, this method was

used in further analysis of the eddy covariance flux data from the rice sites. Despite deviations

from measurement, the curve in Fig. 4.10 and time courses in Fig. 4.11 were assumed applicable.

This step is important in working toward a method for predicting GPP universally across the

rice paddy sites.
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Fig. 4.11 Daily measured LAI (closed circle with solid line) and estimated LAI (dashed line)
obtained with the consistent phenological development approach (see text for stepwise procedure)
at rice paddy sites for the years indicated. HK = Haean (S. Korea), HFK = Haenam (S. Korea),
MSE = Mase (Japan), and ESES2 = El Saler-Sueca (Spain).

4.5 Vcuptake estimation by NDVI

Having established a reliable that allows estimation of the seasonal course of LAI across sites,

the influence of differences between measured vs. predicted LAI on estimation of carboxylation

capacity was tested. The seasonal change of carboxylation capacity (Vcuptake) is illustrated

in Fig. 4.12 as determined by both the measured LAI (Vcuptake_org) and the estimated LAI

(Vcuptake). The seasonal pattern of Vcuptake_org increased rapidly and in a characteristic manner

after planting, reached a maximum in most cases at ca. DOY 170 to 180 and then decreased

slowly during further development and later senescence of the rice crop. It should be noted that

the results apply only during the period where LAI > 1.0 and where Vcuptake) can be determined

with relatively high certainty as discussed under methods (Section 3.2).
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Table 4.2. Statistics for the linear correlation between Vcuptake_org and Vcuptake. a is a slope, b
is a intercept, R2 is the coefficient of determination, RMSE is root mean square error, and CV
is coefficient of variation.

Vcuptake by consistent phenological development Vcuptake by the exponential model

Site Year a b R2 RMSE CV (%) a b R2 RMSE CV (%)

HK 2010 0.87 -0.92 0.82 7.33 15.97 0.95 0.74 0.85 1.75 3.94

MSE 2002 0.96 0.74 0.95 1.24 2.93 1.08 0.85 0.89 4.58 10.82

MSE 2003 0.95 -0.06 0.86 2.14 5.63 0.90 2.83 0.83 2.20 5.40

MSE 2004 1.01 0.07 0.99 0.51 1.29 1.05 5.35 0.75 6.96 22.45

MSE 2005 0.87 0.74 0.94 5.83 13.18 1.14 0.37 0.93 6.41 17.06

ESES2 2007 1.30 -4.98 0.93 9.93 24.63 1.31 1.71 0.74 17.37 39.53

ESES2 2008 1.09 0.03 0.96 3.20 11.10 1.15 3.13 0.84 8.59 27.00

Approximate maximum values based on measured LAI was 88 µmol CO2 m-2 leaf area s-1

at HK during 2010; 78 in 2002, 70 in 2003, 83 in 2004, and 83 in 2005 at MSE; and difficult

to determine for ESES2 due to the high degree of scatter in the data. Theses results are

influenced by the consistency of measurements or homogeneity at the measurement sites. The

most homogeneous results were obtained form MSE, where it appeared that carboxylation

capacity in 2004 and 2005 was slightly higher than during 2002 and 2003. The values for

Vcuptake_org also depend on the exact determination of LAI, e.g., the methods that each research

group uses during their measurements. Since these influences are impossible to remove, one

must conclude that the maximum for Vcuptake_org may be ca. 80 to 85 µmol CO2 m-2 leaf area

s-1. The consistent results at MSE demonstrate that Vcuptake_org after maximum may decrease

differently depending on climate or other factors. Data from MSE in 2004 and 2005 exhibited a

more rapid decrease than in 2002 and 2003 during the senescence period. The scattered data

from ESES2 must occur due to day to day changes in the measured fluxes, since LAI changes

from day to day were essentially zero. The cause of such changes is unclear.

Comparisons of Vcuptake obtained with LAI from the consistent phenology development model

as well as the commonly used exponential-curve based model are given in Table 4.3. Vcuptake
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Fig. 4.12 Seasonal change of Vcuptake obtained with measured LAI (’Original’, black closed circle)
and with the consistent development LAI-NDVI model, (’estimated LAI’, gray closed circle) of
rice paddy sites for years indicated. HK = Haean (S. Korea), HFK = Haenam (S.Korea), MSE
= Mase (Japan), and ESES2 = El Saler-Sueca (Spain).

obtained with the consistent development model agreed better with the calues obtained with

measured LAI with respect to R2, RMSE and the correspondence with the 1:1 relationship,

except at the HK site. Results at HK were, however, also quite good with R2 of 0.82, RMSE of

7.33, and CV was 16%. The high values of R2 (above 0.82), low RMSE (below 9.93), and low

CV (3-25%) reflect the agreement illustrated in Fig. 4.12 and further demonstrate that LAI

obtained by the consistent development method is useful in the estimation of GPP at the study

sites.

The remaining question is whether or how well estimated Vcuptake can be determined from

remote sensing in order to provide values along with LAI over the seasonal course of rice plant

development to the PIXGRO model. As in the case of measured LAI, correlations of estimated
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Fig. 4.13 The relationship between Vcuptake and NDVI of rice paddies for the years indicated.
HK = Haean (S. Korea), MSE = Mase (Japan), and ESES2 = El Saler-Sueca (Spain). The cor-
relations may be examined according to each month during the rice growing period, considering
the order May (black closed circle), June (open square), July (closed triangle), August (open
circle), and September (star). The coefficients and R2 of the regressions are given.

Vcuptake with NDVI and EVI were examined, considering individual sites, Asian sites, and all

sites, and using data from entire season or before and after the VI maximum. The tabulated

results of these correlations are presented in Appendix A3. It can be concluded that NDVI was

in general a better predictor of Vcuptake and, therefore, only there results are discussed here.

Correlation between Vcuptake and NDVI found at individual sites are presented in Fig. 4.13,

where different symbols indicate Vcuptake determinations made during different months of the

growing season. As seen from the figure, relatively good explanation of the variation was obtained

for HK in 2010 and MSE in 2002 and 2003 with either a linear or exponential fit to the data.

In the remaining cases, the exponential equation does not appear to approximate the overall

scatter that is observed. In all cases (except ESES2 in 2007 where the values are essentially

equal), the R2 values obtained with the linear model are much higher. Thus, a linear model is
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Table 4.3. Statistics for the linear correlation between Vcuptake_org and Vcuptake obtained with
the best-fit linear model (Fig. 4.14) with the coefficient of determination (R2), root mean square
error (RMSE), and coefficient of variation (CV).

Site Year R2 RMSE CV (%)

HK 2010 0.75 8.90 22.77

MSE 2002 0.81 7.17 22.24

MSE 2003 0.67 9.53 28.86

MSE 2004 0.72 5.63 27.98

MSE 2005 0.80 8.88 26.60

ESES2 2007 0.46 21.33 49.06

ESES2 2008 0.72 8.27 33.82

used below in determinations of GPP.

However, it is also apparent from Fig. 4.13 that hysteresis occurs. This is relatively small

in HK during 2010 and MSE during 2002 and 2003, but it quite pronounced in the remaining

years of MSE observation and at ESES2. Thus, the linear models for prediction of Vcuptake may

be expected overall to over- and under-estimate GPP during particular periods of the season,

even through seasonal sums during the period with LAI > 1.0 may agree well between observed

and modeled data. Proceeding on the basis of a linear interpretation of the relationship between

Vcuptake and NDVI, the best-fit model for the pooled rice data is illustrated in Fig. 4.14 with

R2 of 0.38 and RMSE of 14.47.

The predicted values of Vcuptake using this linear model and seasonal changes in NDVI

are shown in Fig. 4.15. Mid- and late season changes in observed and modeled Vcuptake are in

relatively good agreement. Rapid changes during the early season and the peak values for Vcuptake

are less well reproduced. From the overall comparison in Fig. 4.15, it can be hypothesized that

seasonal GPP will be underestimated except for MSE during 2002 and 2003. The predicted time

dependent changes at HFK are uncharacteristic when considering all other sites. This difference

most likely results from the mosaic nature of the site, where the flux footprint and flux data

are influenced by other crops or vegetation. This indicates that the results of the study must

be applied where large relatively homogeneous locations with rice planting occur.

An alternative approach to describing Vcuptake is illustrated in Fig. 4.16. As in the case of
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Fig. 4.14 Relationship between Vcuptake and NDVI utilizing data from the entire growing season.
Vcuptake calculated using estimated LAI from the relationship shown in previous figures. The solid
lines indicate the linear equation (black line) and exponential equation (gray line) established
for the relationship as described in the text. The coefficients, R2 of the regression, and root
mean square error (RMSE) are given.

LAI (Fig. 4.10), a seasonal development curve may be determined and adjusted for different

planting time by shifting the curve according to the maximum in NDVI. Including data from

all sites demonstrates that the seasonal change defined in the manner for Vcuptake is in fact

very consistent. Use of this method assumes that the NDVI maximum is more reliable that

seasonal changes in NDVI which may be complicated by non-homogeneity within the relatively

large 250 x 250 m best resolution MODIS pixels. In other words, the signal at maximum is

clearly recognizable, and rice crop development is recognized at a characteristic stage despite

disturbance effects from the surroundings. The GAM curve shown in Fig. 4.16 may have the

potential to reproduce the early peak in Vcuptake obtained from the measured eddy covariance

data. However, the curve obtained with the GAM method may not be adequate, since the

highest values for scaled Vcuptake are only 0.8.
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Fig. 4.15 Seasonal time courses in Vcuptake estimated using the best-fit linear model (Fig. 4.14 -
gray closed circle) and Vcuptake estimated using observed data (black closed circle) for the years
indicated. HK = Haean (S. Korea), HFK = Haenam (S.Korea), MSE = Mase (Japan), and
ESES2 = El Saler-Sueca (Spain).

4.6 GPP estimation with the best-fit model

Daily GPP as reproduced by two models (LAI from the consistent development and Vcuptake

linearly dependent on NDVI; and LAI and Vcuptake both dependent on consistent development

curves) are compared to observation for all sites in Figs. 4.17 and 4.18. Accumulated observed

GPP during the growing season varied from 672 gC m-2 d-1 to 1294 gC m-2 d-1, although the

period for comparison varied slightly (see Table 3.1). Carbon uptake appeared to increase from

Korea, to Japan and to Spain due to different climate conditions. Modeled values ranged from

670 gC m-2 d-1 to 1020 gC m-2 d-1 with R2 above 0.79, RMSE below 3.48, CV above 38.02% and

modeling efficiency (MF) between 0.92 and 0.72 (Table 4.4). There was little difference found

between the two methods in determining the seasonal course of Vcuptake. Simulated GPP was
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Fig. 4.16 A scaled general seasonal curve for Vcuptake utilizing data from all rice paddy sites.
The scaling results by dividing estimated Vcuptake by maximum Vcuptake for each site and year.
The black closed circle indicates the relationship between the scaled Vcuptake and DOY based
on time shifts according to maximum NDVI. The solid line indicates the general seasonal curve
determined by generalized addictive model (GAM).

in general under-estimated as expected due to the remaining difficulties in estimating Vcuptake

in dependence on NDVI. Deviations from observation over the course of the season at each site

reflect the differences found for observed and predicted Vcuptake as represented in Fig. 4.18 or

in Table 4.3. Although the alternative method based on consistent phenological development

did not lead to an improvement in GPP prediction, further development of the response curve

shown in Fig. 4.16 may lead to better success as discussed in Chapter 6.
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Table 4.4. Summary of observed GPP and modeled GPP obtained with the linear regression
model for Vcuptake from NDVI at all rice paddy sites with mean, standard deviation (STD),
accumulated GPP (acc.GPP), difference between simulated GPP and observed GPP (%), slope
(a), intercept (b), determination coefficients (R2), root mean square error (RMSE), coefficient
of variation (CV),and modeling efficiency (MF).

Summary of observed GPP and modeled GPP

Observed GPP Modeled GPP Period Difference

Site Year Mean STD acc.GPP Mean STD acc.GPP (DOY) (%)

HK 2010 6.01 8.60 672 5.99 8.70 670 114 0

HFK 2008 7.11 9.15 780 7.84 10.41 860 96 10

MSE 2002 7.21 9.73 897 6.57 9.43 817 109 -9

MSE 2003 7.12 9.40 749 7.26 10.20 763 92 2

MSE 2004 9.19 11.82 987 7.94 11.18 852 94 -14

MSE 2005 8.03 10.50 908 7.31 10.08 826 99 -9

ESES2 2007 10.41 12.89 1294 7.81 11.32 971 109 -25

ESES2 2008 9.22 11.95 1157 8.12 11.40 1020 110 -12

Statistic for the correlation between observed GPP and modeled GPP

Site Year a b R2 RMSE CV (%) MF

HK 2010 0.91 0.54 0.80 0.77 65.40 0.79

HFK 2008 1.01 0.67 0.79 0.75 68.25 0.72

MSE 2002 0.93 -0.15 0.93 0.94 38.02 0.92

MSE 2003 1.03 -0.08 0.90 0.31 44.91 0.88

MSE 2004 0.87 -0.09 0.85 2.00 51.21 0.84

MSE 2005 0.91 -0.01 0.90 1.20 42.32 0.90

ESES2 2007 0.82 -0.72 0.87 3.48 51.48 0.83

ESES2 2008 0.88 -0.02 0.86 1.82 50.50 0.85
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Table 4.5. Summary of observed GPP and modeled GPP with the general seasonal curve model
for Vcuptake from NDVI at all rice paddy sites with mean, standard deviation (STD), accumulated
GPP (acc.GPP), difference between simulated GPP and observed GPP (%), slope (a), intercept
(b), determination coefficients (R2), root mean square error (RMSE), coefficient of variation
(CV),and modeling efficiency (MF).

Summary of observed GPP and modeled GPP

Observed GPP Modeled GPP Period Difference

Site Year Mean STD acc.GPP Mean STD acc.GPP (DOY) (%)

HK 2010 6.01 8.60 672 6.20 9.28 694 114 3

HFK 2008 7.11 9.15 780 7.23 10.13 793 96 2

MSE 2002 7.21 9.73 897 7.30 10.63 908 109 1

MSE 2003 7.12 9.40 749 6.77 9.75 712 92 -5

MSE 2004 9.19 11.82 987 8.61 11.57 925 94 -6

MSE 2005 8.03 10.50 908 8.08 11.18 913 99 1

ESES2 2007 10.41 12.89 1294 8.12 11.37 1010 109 -22

ESES2 2008 9.22 11.95 1157 7.93 11.03 995 110 -14

Statistic for the correlation between observed GPP and modeled GPP

Site Year a b R2 RMSE CV (%) MF

HK 2010 0.97 0.36 0.81 0.31 66.93 0.78

HFK 2008 0.96 0.38 0.76 0.38 70.31 0.70

MSE 2002 1.05 -0.25 0.92 0.50 42.54 0.90

MSE 2003 0.98 -0.21 0.89 0.40 44.97 0.88

MSE 2004 0.89 0.44 0.82 1.42 54.96 0.82

MSE 2005 1.01 -0.01 0.90 0.13 45.04 0.88

ESES2 2007 0.81 -0.31 0.84 3.35 53.96 0.81

ESES2 2008 0.83 0.24 0.82 2.43 57.42 0.80



CHAPTER 4. RESULTS: ESTIMATION OF GPP FOR RICE PADDY SITES 61

HK2010DOY

G
P

P
.H

K
2

0
1

0

0
5

1
5

2
5

HK (2010)  

G
P

P
 (

g
C

 m
−2

 d
−1

)

DNE.DOY

D
N

E
.V

c

Observed
Best−fit

HFK2008DOY

G
P

P
.H

F
K

2
0

0
8

HFK (2008)  

DNE.DOY

D
N

E
.V

c

MSE2002DOY

G
P

P
.M

S
E

2
0

0
2

MSE (2002)  

DNE.DOY

D
N

E
.V

c

MSE2003DOY

G
P

P
.M

S
E

2
0

0
3

0
5

1
5

2
5

G
P

P
 (

g
C

 m
−2

 d
−1

) MSE (2003)  

DNE.DOY

D
N

E
.V

c

MSE2004DOY

G
P

P
.M

S
E

2
0

0
4

MSE (2004)  

DNE.DOY

D
N

E
.V

c

MSE2005DOY

G
P

P
.M

S
E

2
0

0
5

100 150 200 250 300

MSE (2005)  

DOY
DNE.DOY

D
N

E
.V

c

ES2007DOY

G
P

P
.E

S
2

0
0

7

0
5

1
5

2
5

100 150 200 250 300

ESES2 (2007)  

DOY

G
P

P
 (

g
C

 m
−2

 d
−1

)

DNE.DOY

D
N

E
.V

c

ES2008DOY

G
P

P
.E

S
2

0
0

8

100 150 200 250 300

ESES2 (2008)  

DOY
DNE.DOY

D
N

E
.V

c

Fig. 4.17 Daily GPP estimation obtained with the linear regression model for Vcuptake (gray solid
line) and observed GPP (black solid line) of rice paddy sites for the years indicated. HK = Haean
(S. Korea), HFK = Haenam (S.Korea), MSE = Mase (Japan), and ESES2 = El Saler-Sueca
(Spain).
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Chapter 5

Results: GPP from dry-land crops

5.1 Meteorological condition

Meteorological conditions of 10-day intervals are illustrated in Fig 5.1 for the dry-land crops

soybean, maize, potato, and sugar beet indicating the growth period in study years. Weather

data were obtained every half hour from the meteorological sensors installed on eddy covariance

towers. A data gap occurred for maize at US-Ne3 in 2003 from DOY 250 to the harvest.

Global radiation (Rg) among the dry-land crop sites ranged from about 10 to 30 MJ m-2d-1.

At the potato field in Haean in 2010 (HK 2010), a rapid early increase of Rg to ca. 26 MJ m-2d-1

was followed by a rapid decrease to ca. 18 MJ m-2d-1 in June (DOY 152 – 170). Rg at HK during

2010 decreased with fluctuations from late June to August when the aboveground plant parts

died. Rg at Lonzee in 2004 (BE-Lon 2004) with sugar beet increased to the maximum of about

23 MJ m-2d-1 in late May and early June (DOY 140 – 155), and a sudden decrease occurred

( 14 MJ m-2d-1) in July (DOY 190 – 200). Rg at BE-Lon in 2004 decreased rapidly in July

when precipitation was increasing. In Nebraska-Mead (US-Ne3), soybean was planted in 2002

and 2004. Rg reached the maximum of about 26 MJ m-2d-1 in 2002 (US-Ne3 2002) and about

22 MJ m-2d-1 in 2004 (US-Ne3 2004) in June around DOY 160. Rg from US-Ne3 in 2002 was

somewhat higher than during 2004. Rg at US-Ne3 in 2002 decreased in June and August, while

the decrease occurred in July in 2004. Maize was grown at US-Ne3 in 2003 and 2005 (US-Ne3

2003 and US-Ne3 2005). Rg at US-Ne3 in 2003 and 2005 fluctuated throughout the growing

season at ca. 20 MJ m-2d-1. Rg at the maize field achieved a maximum of about 27 MJ m-2d-1

in July around DOY 195 during both study years. At Klingenberg in 2007 (DE-Kli 2007)

63
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Fig. 5.1 Seasonal time courses for meteorological variables at dry-land crop sites that influence
GPP, e.g., can be considered driver variables for plant response as it affects carbon uptake,
crop growth, and primary production. Total global radiation (Rg), mean air temperature (Ta),
mean maximum vapor pressure deficit (VPD), and total rainfall are given for 10-day intervals
during the growth period. General site characteristics are given in Table 3.1. HK = Haean (S.
Korea) for potato, BE-Lon = Lonzee (Belgium) for sugar beet (2004), DE-Kli = Klingenberg
(Germany) for maize, and US-Ne3 = Nebraska-Mead (USA) for soybean (2002 and 2004) and
maize (2003 and 2005).

with maize, Rg reached the maximum of about 23 MJ m-2d-1 in May (around DOY 140) and then

gradually decreased to 10 MJ m-2d-1 until the end of the growing season. Overall, the seasonal

patterns and range of fluctuation in Rg was similar at all sites. Due to the monsoon season,

the period (DOY 150 – 190) with high radiation input was very short at Haean Catchment

(HK) The 10-day average air temperature (Ta) during the plant growth period ranged from

10 to 27 ◦C among the sites. Similar seasonal patterns were reported to those that occurred

with global radiation except at HK. Ta at HK during 2010 increased while Rg was decreasing

due to monsoon weather conditions. The 10-day average Ta at HK during 2010 increased to 24
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◦C and maintained constant (23 ◦C) until the end of the growing season. Ta at DE-Kli during

2007 increased to a peak of 18.1 ◦C in the early growing season in June (around DOY 170) and

then slowly decreased until the end of the growing season. In general, temperature was higher

at HK and US-Ne3 which may have an effect on canopy development and GPP. The 10-day

averaged daily maximum vapor pressure deficit (VPD) was ranged from 0.3 to 3.3 kPa among

the dry-land crop sites. At HK in 2010, the seasonal VPD pattern was the same as shown for

HK paddy rice (Fig. 4.1). In case of dry-land crops, only HK was subjected to Asian monsoon

climate that is generally characterized by hot and humid condition and low radiation input

(Jung et al., 2013). VPD at BE-Lon during 2004 with sugar beet was also relatively low (0.7-1.6

kPa). Daily maximum VPD averaged over 10-day intervals from about 1 to 2.8 kPa at US-Ne3

during 2002, which was planted with soybean. VPD at US-Ne3 during 2002 showed a large

decrease in late August (1 kPa). VPD at US-Ne3 during 2004 was relatively constant (0.6 – 0.8

kPa) until late summer (around DOY 250) and increased until the harvest (1.1 kPa). Maize

was planted in 2003 and 2005 at the US-Ne3 site. Maximum average VPD values were recorded

from 1 to 2.9 kPa. VPD gradually increased and decreased over the course of the growing season

in US-Ne3 during 2003 and 2005. VPD was relatively low from 0.4 to 0.8 and constant during

the growing season at DE-Kli during 2007. VPD at DE-Kli during 2007 showed a decreasing

tendency over the whole growing season. The variation of VPD was relatively large among

the dry-land crop sites. The driest sites from the standpoint of atmospheric humidity were HK

during early season, DE-Geb, and US-Ne3. While the influences on GPP of these differences may

not be dramatic, it may be that they cannot be neglected. The total precipitation during the

growth period ranged at the observation sites from 178 mm (US-Ne3 during 2003) to 660 mm

of (HK during 2010) (Table 3.1). The 10-day period total precipitation pattern is presented in

Fig 5.1 (lowest panel). HK during 2010 showed the highest precipitation of 660 mm during the

growing season which was ca. 40 % higher than at the other sites due to intensive rainfall during

the summer monsoon. At BE-Lon in 2004 with sugar beet, 411 mm of total precipitation was

recorded during the growing season, while low precipitation occurred in in April and September.

The total precipitation with soybean at US-Ne3 during 2002 and 2004 was 372 and 311 mm,

respectively. US-Ne3 during 2003 recorded the lowest total precipitation of 178 mm during the

growing period. Except at HK during 2010, DE-Geb in 2006, and US-Ne3 in 2003, the total
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measured precipitation was similar among the dry-land crop sites (from 311 mm to 411 mm). At

all sites, precipitation events were frequent. Thus, initially we hypothesize that drought stress

influences on plant development and GPP did not occur, however this must be re-examined

later in review of the overall results.

5.2 LAI development

The observed seasonal change in LAI of dry-land crops is illustrated in Fig. 5.2. Different
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Fig. 5.2 Seasonal time courses in the years indicated for change in leaf area index (LAI) of
the studied dry-land crop sites. US-Ne3 = Nebraska (USA) for soybean (2002 and 2004) and
maize (2003 and 2005), DE-Kli = Klingenberg (Germany) for maize, HK = Haean (S. Korea)
for potato, BE-Lon = Lonzee (Belgium) for sugar beet (2004).

planting dates for soybean at US-Ne3 in 2002 and 2004 resulted in different rates of development

of LAI, although the overall seasonal pattern was quite similar. Maximum LAI of 3.0 and 4.5

occurred on almost same day during both years (DOY 221 and DOY 223, respectively). LAI for

maize developed with a similar seasonal pattern at all sites. LAI increased slowly until ca. 20
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days after planting, followed by a rapid increase until the peak LAI was reached. Subsequently

LAI decreased until harvest at the maize sites. Only maize LAI from US-Ne3 in 2005 exhibited

a longer period with relatively constant LAI during summer (DOY 195 – 229). Maximum LAI

was 4.3 on DOY 195 for US-Ne3 in 2003 and 2005, and 4.7 at DE-Kli in 2007 on DOY 198.

LAI development in potato exhibited a rapid increase to maturity after which the above-

ground plant parts rapidly died before the potato harvest. The growing period was relatively

short, although LAI was not measured after DOY 209, making it difficult to define the decreasing

phase. Maximum LAI of 4.0 occurred on DOY 186 at HK in 2010, which is in reasonable agree-

ment with other maximum values published in the literature (indicating for potato maximum

LAI of ca. 3 to 3.5). LAI of sugar beet at BE-Lon in 2004 increased as the sugar beets grew

during June and July. When LAI of sugar beet reached the maximum of 4.0 (DOY 222), LAI

remained constant until the harvest. The measured LAI from dry-land crops was interpolated

by spline to estimate a daily value, which could be used together with daily observations of

GPP and carboxylation capacity.

5.3 Dynamics of vegetation indices

Fig. 5.3 shows both the annual and the seasonal patterns from planting to harvest of dry-

land crop site downloaded VIs from the MODIS data base, the smoothed VIs using TIMESAT

processing, and interpolated daily VIs. The arrows in the figure identify the period between

planting and harvest time at the specific location where eddy covariance data were obtained.

The growth period patterns in downloaded NDVI and EVI of dry-land crops varied according

to the crop examined. Furthermore, NDVI and EVI from dry-land crops were more scattered

than from rice paddy sites. This scatter has influence on the subsequent analyses of smoothing

and estimating daily VIs. It should be kept in mind that this influence may negatively affect

the relationships determined between VIs and LAI or Vcuptake. For example, at HK during 2010

VIs increased in April and decreased in September while the aboveground parts of the potato

plants died in August before NDVI decreased. The irregularities in the seasonal pattern shift or

modify the established relationship between VIs and LAI or Vcuptake for potato. As an initial

explanation, we can assume that the added scatter is due to the much less homogeneous and

smaller areas covered by
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Fig. 5.3 MODIS vegetation indices for (a) NDVI and (b) EVI for the years indicated. US-Ne3 =
Nebraska (USA) for soybean (2002 and 2004) and maize (2003 and 2005), DE-Kli = Klingenberg
(Germany) for maize, HK = Haean (S. Korea) for potato, BE-Lon = Lonzee (Belgium) for sugar
beet (2004). Symbols indicate original VI data downloaded from the database (open circles), VI
smoothed by TIMESAT method (closed circle), and estimated daily VI (solid line) from spline
interpolation. The arrows below the NDVI/EVI values indicate the period of crop growth at
each site.
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the fields as compared to rice paddies and greater interference by reflection from surrounding

landscape elements.

The interpolated daily VIs were derived from the smoothed VIs which removed unreasonable

values (i.e., due to clouds, snow, shadows, bidirectional effects, high solar or scan angles and

transmission errors). TIMESAT procedures compensate for the absence of data and allow

determination of a continual seasonal course in VIs. Daily VIs increased with the onset of

the dry-land crops growing season, however, decreases began and continued during different

growth phases for each crop site. For example, daily NDVI of potato at the HK site during

2010 continued to decreased after harvest until the pre-planting NDVI of 0.2 was reached. Sugar

beet for BE-Lon during 2004 remained relatively constant after NDVI reached a peak and

until the harvest. Daily NDVI for US-Ne3 during 2002 and 2004 followed the same pattern as

soybean growth. Daily NDVI of maize for DE-Kli during 2007, and US-Ne3 during 2003 and

2005 increased with onset of the growing season, and decreased with senescence and harvest.

However, DE-Kli during 2007 fluctuated strongly both before planting and after harvest. The

seasonal patterns in NDVI and EVI were in general similar, although the relative levels at

different times of the season differed (Fig. 5.3). The maxima for NDVI varied between 0.8 and

0.9, while maxima for EVI varied between 0.6 and 0.9.

5.4 GPP estimation of individual crop types

As a result of eddy covariance data being available from multiple sites and multiple years

for rice, as well as the relatively high homogeneity of the crop over large paddy areas, the

results obtained with rice provide guidelines that can be further used in the analysis of dry-

land crop CO2 uptake. For the four dry-land crops focused on here as important landscape

elements in Haean Catchment in Korea, limited data are available, especially with respect to

site providing both flux data and seasonal determinations of LAI development. Thus, for each

of the crops, soybean, maize, potato, and sugar beet, the following analysis steps were carried

out: 1) establishment of a consistent development curve for LAI, 2) testing of potential of the

curve to reproduce LAI observations, 3) examination of the predicted Vcuptake curve obtained

with predicted versus observed LAI, 4) determination of the best linear relationship obtained

between NDVI or EVI and predicted Vcuptake, 5) determination of a consistent development
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Table 5.1. Statistics for the correlation between measured LAI and estimated LAI, where the
LAI estimates are obtained with a general growth curve, R2 is the coefficient of determination,
RMSE is root mean square error, and CV is coefficient of variation.

Site Year R2 RMSE CV (%)

US-NE3 2002 0.98 0.06 33.27

US-NE3 2004 0.96 0.30 57.68

US-NE3 2003 0.82 0.28 107.56

US-NE3 2005 0.96 0.18 36.06

DE-Kli 2007 0.87 0.15 71.30

HK 2010 0.94 0.72 27.86

BE-Lon 2004 0.98 0.10 22.82

curve for Vcuptake, 6) estimation of GPP using LAI from the consistent development and Vcuptake

linearly dependent on vegetation index, and 7) estimation of GPP using LAI and Vcuptake both

dependent on consistent development curves.

5.4.1 LAI estimation

General growth curve for the four crops were established with GAM as described previously

for the LAI estimation of the rice paddy sites. As shown in Fig. 5.4, the scaled maximum for

both soybean and maize LAI is on Day from maximum = 0, e.g., coincided with maximum in

VI as also used in the case of rice. For soybean, NDVI was again applicable as predictor of LAI,

but in the case of maize, NDVI provided poor results, whereas EVI was useful. The statistical

results of NDVI versus EVI are provided in Appendix B (Table B.4). The general growth curves

obtained for the root crops potato and sugar beet differed greatly from those of soybean and

maize. In the case of potato, the maximum in NDVI occurred much later than maximum LAI,

which was achieved very rapidly. With sugar beet from Lonzee, maximum NDVI occurred when

LAI was only 50% of maximum. It remains unclear whether these patterns have been strongly

influenced by disturbance of the NDVI signal by surrounding vegetation. Nevertheless, since

data were only available from single sites, the relationships shown can be used to estimate LAI

over the course of the growing season.

The general seasonal change in LAI for each crop may be estimated for each site and year
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by multiplying daily values of the curve in Fig. 5.4 by the average maximum LAI observed at

the crop sites. For soybean and maize, the maximum is obtained from multiple years,
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Fig. 5.4 General growth curves scaled from 0 to 1, utilizing data from each crop site and dividing
by maximum observed LAI (black closed circle). The black closed circles indicate the relationship
between the scaled LAI and DOY based on time shifts according to maximum VIs. The solid
line indicates the general growth curve determined with the generalized addictive model (GAM).
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obtained with the consistent phenological development approach (see text for stepwise procedure)
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2004) and maize (2003 and 2005), DE-Kli = Klingenberg (Germany) for maize, HK = Haean
(S. Korea) for potato, BE-Lon = Lonzee (Belgium) for sugar beet (2004).

but in the case of potato and sugar beet LAI maximum is from one year of observation. The
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specific LAI seasonal course depends on the time at which the maximum in the appropriate

vegetation index occurs. Thus, the predicted LAI change is obtained according to DOY of the

maximum VI at the site and in a particular year (Fig. 5.5). The estimated LAI for soybean

ranged from 0 to 3.78. LAI for US-Ne3 during 2002 was overestimated at the middle of the

growing season but still with a high R2 of 0.98 and low RMSE of 0.06. The seasonal pattern

during 2004 was well reproduced with R2 of 0.96 and RMSE of 0.30 (Table 5.1). The estimated

LAI for maize ranged from 0 to 4.06. LAI for KL during 2007 was overestimated at the beginning

of the growing season and underestimated at peak LAI development with R2 of 0.87 and RMSE

of 0.15. LAI for US-Ne3 during 2003 was overestimated during the early growing season with R2

of 0.82 and RMSE of 0.28. The seasonal pattern for US-Ne3 during 2005 was underestimated

from ca. DOY 170 to 200 and accurately estimated after DOY 200 with R2 of 0.96 and RMSE of

0.18. The estimated LAI for potato ranged from 0 to 3.64. LAI for HK during 2010 was slightly

underestimated during the growing season with R2 of 0.94 and RMSE of 0.72. LAI estimation

of sugar beet for BE-Lon during 2004 ranged from 0 to 4.08. Estimated LAI for BE-Lon during

2004 was overestimated during the early growing season and then followed well the observed

with R2 of 0.98 and RMSE of 0.10 (Table 5.1).

5.4.2 Vcuptake estimation

5.4.2.1 Seasonal changes of Vcuptake

The seasonal change of Vcuptake is illustrated in Fig. 5.6 as determined by both the measured

LAI (Vcuptake_org) and the estimated LAI (Vcuptake). The seasonal patterns of Vcuptake_org for

dry-land crops changed seasonally in a characteristic manner for each crop. In the case of

soybean, both study years are similar with increase after planting and a decline occurring with

senescence. Vcuptake_org reached a maximum of ca.90 µmol CO2 m-2 leaf area s-1 at DOY 190

during 2002, remained around 75 µmol CO2 m-2 leaf area s-1 during summer (- DOY 243), and

decreased until the harvest. Approximate maximum values based on measured LAI was 100

µmol CO2 m-2 leaf area s-1 at DOY 199 in 2004, fluctuated between ca. 100 and 60 µmol CO2

m-2 leaf area s-1 during the summer time (DOY 246), and decreased until the harvest. The

seasonal pattern of Vcuptake_org for maize at US-Ne3 during 2003 and 2005 increased from 20

to 30 days after planting until ca. DOY 180 to 190 and then remained constant at ca.80 µmol
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Table 5.2. Statistics for the linear relationship between Vcuptake_org and Vcuptake obtained with
the linear model from VIs (Fig. 5.7). a is a slope, b is a intercept, R2 is the determination of
coefficient, RMSE is root mean square error.

Site Year a b R2 RMSE CV (%)

US-NE3 2002 0.69 22.81 0.39 2.17 7.57

US-NE3 2004 1.07 -0.64 0.81 4.26 14.52

US-NE3 2003 0.81 -2.18 0.85 9.16 43.44

US-NE3 2005 1.37 -17.10 0.90 5.02 14.29

DE-Kli 2007 1.15 -10.90 0.81 3.80 16.49

HK 2010 1.31 -18.40 0.62 5.14 27.24

BE-Lon 2004 1.16 -18.38 0.73 8.72 20.30

CO2 m-2 leaf area s-1 during mid-season and then decreased in late season. There was no eddy

covariance data available after DOY 243 in US-Ne3 during 2003. Therefore the further steps in

analysis in following sections are carried out only until DOY 243. The seasonal Vcuptake_org of

maize for DE-Kli during 2007 increased slowly from the beginning of the growing season to a

peak around DOY 220, and then remained relatively constant until the harvest. The maximum

values of Vcuptake_org were 80 µmol CO2 m-2 leaf area s-1 at DE-Kli during 2007; 78 in 2003 and

75 in 2005 at US-Ne3.

Vcuptake_org for HK during 2010 increased rapidly after the planting, reached a peak of 67

µmol CO2 m-2 leaf area s-1 and declined in July (- DOY 206). A second increase in Vcuptake_org

was also obtained for HK in 2010 from ca. 39 to 55 µmol CO2 m-2 leaf area s-1 in late July

and August thereafter decreased until the above ground biomass died. Seasonal Vcuptake_org for

sugar beet at BE-Lon during 2004 increased to a peak of about 80 µmol CO2 m-2 leaf area s-1

in June (DOY 157) and remained subsequently near 70 µmol CO2 m-2 leaf area s-1 until the

harvest. Vcuptake obtained with estimated LAI from the consistent phenological development

curves showed a good agreement with Vcuptake_org. In the case of soybean, R2 was above 0.97 and

RMSE below 1.95 (Table 5.2). Vcuptake of maize also showed a good agreement with Vcuptake_org,

with R2 above 0.82 and RMSE below 7.44 (Table 5.2). In the case of US-Ne3 during 2003 and

KL during 2007, underestimation occurred during the early growing season, whereas Vcuptake

agreed well during mid- to late growing season. However, there is some scatter during the middle
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of the season for all maize sites. Vcuptake for HK during 2010 followed a similar seasonal pattern
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Fig. 5.6 Seasonal change of Vcuptake obtained with measured LAI (’Original’, black closed circles)
and with the consistent development LAI-NDVI model (’estimated LAI’, gray closed circle) of
dry-land crop sites for the years indicated. US-Ne3 = Nebraska (USA), DE-Kli = Klingenberg
(Germany), HK = Haean (S. Korea), BE-Lon = Lonzee (Belgium).
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Table 5.3. Statistics for the linear correlation between Vcuptake_org and Vcuptake obtained with
the seasonal development curve from VIs (Fig. 5.8). a is a slope, b is a intercept, R2 is the
determination of coefficient, RMSE is root mean square error.

Site Year a b R2 RMSE CV (%)

US-Ne3 2002 0.89 3.32 0.69 3.43 42.72

US-Ne3 2004 0.95 4.32 0.81 2.70 34.53

US-Ne3 2003 0.51 15.65 0.55 14.44 53.58

US-Ne3 2005 0.80 10.62 0.77 5.41 28.51

DE-Kli 2007 1.08 -1.81 0.58 2.62 24.79

HK 2010 0.92 0.13 0.29 3.80 35.39

BE-Lon 2004 1.04 -18.80 0.82 17.09 48.08

to Vcuptake_org from spring to midsummer (- DOY 206) with R2 of 0.49 and RMSE of 2.77.

However, Vcuptake for HK did not capture the fluctuations that occurred in August. Vcuptake for

BE-Lon during 2004 estimated in general a similar seasonal pattern as Vcuptake_org with the

R2 above 0.90. Vcuptake was slightly underestimated during the increasing phase in May and

early June (DOY 135 – 157). During mid-season, unrealistic values were obtained (eliminated

outliers) for Vcuptake_org whereas on a small number of days, reasonable values for Vcuptake were

estimated.

5.4.2.2 Vcuptake by two approaches

As described in Chapter 4, an important question is whether the Vcuptake values described

in Fig. 5.6 can be determined from remote sensing over the seasonal course for use with the

PIXGRO model. Thus, correlations of estimated Vcuptake were examined in relation to NDVI

and EVI, considering linear, exponential, and logarithm relationships, using data from the entire

season or before (B) and after (A) the VI maxima. The tabulated results of these correlations

are presented in Appendix B1. It can be concluded that the relationship from the entire season

was in general a better predictor of Vcuptake and, therefore, only these results are presented here.

Based on the analysis with rice (section 4.5) as well as the statistical data in Appendix B, only

linear relationships are considered (although the exponential regressions are also illustrated for

comparison in Fig. 5.7). For soybean, potato, and sugar beet, useful correlations were obtained
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with NDVI (as also found with rice), but for maize only EVI provided useful results. Additionally,

as has been shown for rice, an alternative approach to describing Vcuptake with a seasonal curve
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Fig. 5.7 Relationships obtained between Vcuptake and VIs for the years indicated and where the
data are from the entire growing season. The lines indicate the linear equation (black line) and
exponential equation (gray line) established for the relationship as described in the text. The
coefficients and R2 of the regressions are shown.

relative to the maximum in VIs is discussed below. The relationship between Vcuptake and VIs

examines only the period with LAI greater than 1 (see method section 3.2). Therefore, the



78 CHAPTER 5. RESULTS: GPP FROM DRY-LAND CROPS

values of Vcuptake coincide with NDVI values between 0.4 and 1.0, or in the case of maize, EVI

values between 0.2 and 0.8. Fig. 5.7 shows the linear and exponential relationships between

Vcuptake and VIs for the four dry-land crops. The relationship for soybean between Vcuptake and

NDVI showed a weak linear relationship with R2 of 0.24. In the case of maize, the relationship

obtained with EVI from the entire growing season provided a stronger linear relationship than

exponential with R2 of 0.57. Vcuptake and NDVI for potato showed strong linear correlation with

R2 of 0.80, although with a negative slope. In the case of sugar beet, the exponential correlation

(R2=0.50) was slightly better than the linear relationships (R2=0.38). However, the exponential

relationships in general amplify Vcuptake during the middle of the season, e.g. small increases in

NDVI lead to high and totally unrealistic values for Vcuptake and underestimate Vcuptake during

the early and late growing season. Therefore, the linear relationships shown were considered

further to estimate Vcuptake in the descriptions of GPP (section 5.4.3). An alternative approach

to describing Vcuptake is with a seasonal development curve as in the case of LAI (cf. Fig. 5.5).

The seasonal development curve is based on the determinations of Vcuptake in Fig. 5.6 shifted in

time (i.e., adjusted for different planting time) according to the maximum in VIs as illustrated

in Fig. 5.8. In the case of dry-land crops, the Vcuptake data are unfortunately limited in quantity

due to the limited number of study years for replication. The results in Fig. 5.8 illustrate the

best seasonal development Vcuptake curve obtainable for each crop. The seasonal development

curve has been characterized for daily application with GAM (solid line in Fig. 5.8). However,

initial testing of the GAM function resulted in many cases where GPP was underestimated (see

section 5.4.3) The initial curve obtained with the GAM method may not be adequate, since

the highest values for scaled Vcuptake are only 0.8 (Fig. 5.8, solid line). Therefore, the curve was

rescaled with a multiplier in order that maximum values for Vcuptake were reproduced (Fig. 5.8,

dashed line). In the case of rice, this rescaling was not carried out, but it should be remembered

that the rice curve is based on many more year of observation and represents the average values

for Vcuptake across sites.
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Fig. 5.8 Seasonal development curves for Vcuptake scaled from 0 to 1 by dividing daily values
by the maximum in Vcuptake and utilizing data from each dry-land crop sites. The time of each
observation is shown in relation to maximum in recorded VI. The solid line indicates the general
growth curve determined by generalized addictive model (GAM). The dashed line indicates an
upward adjustment to reproduce the observed maxima in Vcuptake.
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5.4.3 GPP estimation with two models

Daily GPP as reproduced by two models (LAI from the consistent development and Vcuptake

linearly dependent on VIs; and LAI and Vcuptake both dependent on consistent development

curves) are compared to observations for all dry-land crop sites in Fig. 5.9, Fig. 5.10 and 5.11.

Table 5.4. Summary of observed GPP and modeled GPP with the best-fit linear model for
Vcuptake from VIs for dry-land crop sites with mean, standard deviation (STD), accumulated
GPP (acc.GPP), difference between simulated GPP and observed GPP (%), slope (a), intercept
(b), determination coefficients (R2), root mean square error (RMSE), coefficient of variation
(CV), and modeling efficiency (MF).

Summary of observed GPP and modeled GPP

Observed GPP Modeled GPP Period Difference

Site Year Mean STD acc.GPP Mean STD acc.GPP (DOY) (%)

US-Ne3 2002 10.30 3.63 813 8.81 3.56 696 78 -14

US-Ne3 2004 11.25 4.09 889 10.73 4.12 847 78 -5

US-Ne3 2003 12.84 9.01 1323 12.80 6.74 1319 107 0

US-Ne3 2005 14.72 6.30 1575 10.49 4.19 1122 107 -29

DE-Kli 2007 8.98 4.63 970 7.22 4.41 780 107 -20

HK 2010 6.56 3.81 486 5.72 3.06 423 73 -13

BE-Lon 2004 12.03 4.73 1612 8.35 2.44 1119 133 -31

Statistic for the correlation between observed GPP and modeled GPP

Site Year a b R2 RMSE CV (%) MF

US-Ne3 2002 0.87 -0.14 0.78 1.55 22.00 0.60

US-Ne3 2004 0.95 0.00 0.90 0.60 12.60 0.88

US-Ne3 2003 0.72 3.56 0.93 2.51 24.15 0.88

US-Ne3 2005 0.58 1.90 0.77 5.03 36.40 0.27

DE-Kli 2007 0.91 -0.95 0.91 1.81 24.62 0.77

HK 2010 0.77 0.67 0.92 1.21 22.82 0.84

BE-Lon 2004 0.40 3.52 0.61 4.66 40.54 -0.07

Accumulated observed GPP during the growing season varied from 486 gC m-2 d-1 to 1612 gC

m-2 d-1 according to the crop type; from 846 to 909 gC m-2 d-1 for soybean, 972 to 1582 gC m-2
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d-1 for maize, 486 gC m-2 d-1 for potato, and 1612 gC m-2 d-1 for sugar beet. Modeled values

by LAI from the consistent development and Vcuptake linearly dependent on VIs ranged from

423 gC m-2 d-1 to 1319 gC m-2 d-1 with R2 above 0.61, RMSE below 5.03, CV above 12.60%

and modeling efficiency (MF) between -0.06 and 0.88 (Table 5.4). Modeled values for GPP with

LAI and Vcuptake both dependent on consistent development curves ranged from 296 gC m-2

d-1 to 1184 gC m-2 d-1 with R2 above 0.60, RMSE below 8.17, CV above 27.96% and modeling

efficiency (MF) between -0.15 and 0.52 (Table 5.5). Significant differences were found between

the two methods in determining the seasonal course of Vcuptake. Simulated GPP from Vcuptake

linearly dependent on VIs was largely under-estimated at US-Ne3 during 2005 and BE-Lon

during 2004, little underestimated during the early growing season for US-Ne3 in 2002, and

overestimated during the early growing season at the US-Ne3 in 2003. Limited study years may

currently influence out ability to determine adequately the phenological curves as discussed

in Chapter 6. However, modeled values for GPP with LAI and Vcuptake both dependent on

consistent development re-scaled curves ranged from 362 gC m-2 d-1 to 1196 gC m-2 d-1 with R2

above 0.60, RMSE below 6.54, CV above 22.10% and modeling efficiency (MF) between -0.28

and 0.82 (Table 5.6). GPP simulated with Vcuptake considered consistent development re-scaled

curves was better at the US-Ne3 in 2002 and 2005, DE-Kli in 2007, and BE-Lon in 2004 than

Vcuptake dependent on linear model. Simulated GPP from both LAI and Vcuptake dependent on

the development curves was in general underestimated, however, this method improved GPP

estimation during the late growing season. Deviations from observation over the course of the

season at each site reflect the differences found for observed and predicted Vcuptake as represented

in Table 5.3. Although the alternative method based on consistent phenological development

led to an improvement in GPP prediction at the half of the study sites, the possibilities using

this alternative method discussed in Chapter 6.
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Table 5.5. Summary of observed GPP and modeled GPP with the general seasonal curve
model Vcuptake for dry-land crop sites with mean, standard deviation (STD), accumulated GPP
(acc.GPP), difference between simulated GPP and observed GPP (%), slope (a), intercept (b),
determination coefficients (R2), root mean square error (RMSE), coefficient of variation (CV),
and modeling efficiency (MF).

Summary of observed GPP and modeled GPP

Observed GPP Modeled GPP Period Difference

Site Year Mean STD acc.GPP Mean STD acc.GPP (DOY) (%)

US-Ne3 2002 10.30 3.63 813 8.16 3.48 644 78 -21

US-Ne3 2004 11.25 4.09 889 7.91 3.35 625 78 -30

US-Ne3 2003 12.84 9.01 1323 7.24 3.97 746 107 -44

US-Ne3 2005 14.72 6.30 1575 9.12 4.04 976 107 -38

DE-Kli 2007 8.98 4.63 970 6.33 3.49 684 107 -29

HK 2010 6.56 3.81 486 4.00 2.34 296 73 -39

BE-Lon 2004 12.03 4.73 1612 8.84 3.87 1184 133 -27

Statistic for the correlation between observed GPP and modeled GPP

Site Year a b R2 RMSE CV (%) MF

US-Ne3 2002 0.82 -0.26 0.72 2.21 27.96 0.36

US-Ne3 2004 0.75 -0.49 0.83 3.46 33.37 0.15

US-Ne3 2003 0.34 2.84 0.60 8.17 66.20 0.10

US-Ne3 2005 0.53 1.32 0.68 6.33 45.62 -0.15

DE-Kli 2007 0.71 -0.03 0.88 2.95 35.60 0.52

HK 2010 0.59 0.16 0.91 2.97 46.90 0.34

BE-Lon 2004 0.71 0.25 0.76 3.52 32.81 0.30
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Table 5.6. Summary of observed GPP and modeled GPP with the general seasonal re-scaled curve
model for Vcuptake for dry-land crop sites with mean, standard deviation (STD), accumulated
GPP (acc.GPP), difference between simulated GPP and observed GPP (%), slope (a), intercept
(b), determination coefficients (R2), root mean square error (RMSE), coefficient of variation
(CV), and modeling efficiency (MF).

Summary of observed GPP and modeled GPP

Observed GPP Modeled GPP Period Difference

Site Year Mean STD acc.GPP Mean STD acc.GPP (DOY) (%)

US-Ne3 2002 10.30 3.63 813 9.10 3.7 719 78 -12

US-Ne3 2004 11.25 4.09 889 8.89 3.59 702 78 -21

US-Ne3 2003 12.84 9.01 1323 8.89 4.87 916 107 -31

US-Ne3 2005 14.72 6.3 1575 11.18 4.94 1196 107 -24

DE-Kli 2007 8.98 4.63 970 7.77 4.28 839 107 -14

HK 2010 6.56 3.81 486 4.89 2.85 362 73 -26

BE-Lon 2004 12.03 4.73 1612 8.76 3.85 1174 133 -27

Statistic for the correlation between observed GPP and modeled GPP

Site Year a b R2 RMSE CV (%) MF

US-Ne3 2002 0.87 0.10 0.73 1.32 22.10 0.60

US-Ne3 2004 0.81 -0.27 0.86 2.53 25.03 0.52

US-Ne3 2003 0.42 3.48 0.60 6.54 56.05 0.36

US-Ne3 2005 0.65 1.62 0.68 4.16 33.94 0.37

DE-Kli 2007 0.87 -0.03 0.88 1.34 22.05 0.82

HK 2010 0.72 0.20 0.91 1.95 32.85 0.68

BE-Lon 2004 0.71 0.21 0.76 3.55 33.29 0.28
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Fig. 5.9 Daily GPP estimation obtained with the linear regression model for Vcuptake (gray solid
line) and observed GPP (black solid line) of dry-land crop sites for the years indicated. US-Ne3
= Nebraska (USA), DE-Kli = Klingenberg (Germany), HK = Haean (S. Korea), BE-Lon =
Lonzee (Belgium).
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Fig. 5.10 Daily GPP estimation with the general seasonal curve model for Vcuptake (gray solid
line) and observed GPP (black solid line) of dry-land crop sites for the years indicated. US-Ne3
= Nebraska (USA), DE-Kli = Klingenberg (Germany), HK = Haean (S. Korea), BE-Lon =
Lonzee (Belgium).
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Fig. 5.11 Daily GPP estimation with the general seasonal re-scaled curve model for Vcuptake
(gray solid line) and observed GPP (black solid line) of dry-land crop sites for the years indicated.
US-Ne3 = Nebraska (USA), DE-Kli = Klingenberg (Germany), HK = Haean (S. Korea), BE-Lon
= Lonzee (Belgium).



Chapter 6

Discussion

In order to estimate GPP at large scales, inputting remotely sensed information to vegetation

canopy models offers the required methodology. However, the reflectance observed by remote

sensing is influenced by both physiological parameters and vegetation phenological development,

i.e., changing canopy structure. The relative importance of these in determining vegetation

indices is largely unkown. While in this study separation of there effects is not attempted, an

approach is used to relate VIs stepwise both to LAI change and to physiological change over

the course of the season. Seasonal changes in LAI and in the key physiological model parameter,

Vcuptake which reflects canopy carboxylation capacity at a given LAI are described in dependence

on the vegetation indices NDVI and/or EVI. The relative successes and failures in the effort

are discussed below.

6.1 Use of vegetation indices to estimate LAI of five

crops

In the case of rice paddy sites, LAI showed a good correlation with NDVI. The reflectance

of rice paddies is influenced little by varying background effects, since the fields are flooded for

long time periods (Xiao et al., 2002). Furthermore, the vegetation is not extremely dense and

LAI has been shown to correlate with NDVI (Xiao et al., 2002; Pontailler et al., 2003; Lu et al.,

2005; Fan et al., 2008). In this sense, rice which grows with predominant vertical leaf orientation

provides a good reference case for the work conducted here with other crops.

It was hypothesized in Chapter 1 that the physiological features of crops at the beginning of
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the growing season are different than during senescence period, e.g., that LAI would show two

different phases in relation to NDVI: 1) from the time of planting to the time of maturation of the

canopy, and 2) from maturation throughout senescence and until harvest. While hysteresis effects

of this type were apparent at some sites and during some years, the exponential relationship

between NDVI and LAI over the entire season avoided over- and under-estimation at the

beginning and end of the season as well as a major discontinuity in mid-season. However, the

relationship between NDVI and LAI differed greatly between the various climate regions and

across the study sites. Therefore, a general formulation for LAI exponentially correlated with

NDVI resulted in very unsatisfactory predictions of the seasonal courses in LAI. The high

sensitivity of LAI to small changes in LAI produce large deviations between predictions and

measurements in mid-season.

An alternative approach was developed to identify the seasonal course of LAI for rice where

the study locations are spread geographically in different climate regions and where year to

year climate variation occurs. A consistent development curve for rice in the sense of LAI

changes over time was described with GAM in relation to the maximum in NDVI, assuming

that despite interference from surrounding features, the maximum in LAI and NDVI correspond.

The consistent development curve resulted in significant improvements in prediction of the

seasonal course for LAI. It allowed a generalized method to obtain estimates of rice paddy LAI

across the study sites. The seasonal course of LAI followed the measured patterns in LAI much

better than that obtained with an exponential model.

For the dry-land crops soybean, maize, potato, and sugar beet, LAI was also correlated with

NDVI, although in the case of maize, EVI was a much better predictor. Yan et al. (2009) carried

out estimations of GPP with a remote-sensing-based model for a double cropping system with

winter wheat and maize, EVI was also found in their study to provide more accuracy. NDVI

exhibited no sensitivity (the response was saturated) during the period of mature vegetation,

whereas EVI remained more responsive to small changes. LAI of maize shows relatively rapid

increase and decrease during the growth period (Fig. 5.2). EVI seems better suited to following

these changes, resulting in a better correlation with EVI than NDVI in the case of maize. The

linear and exponential relationships at the dry-land crops were compared from the entire season

and by separating the season before and after maximum VIs. Overall, the linear relationships
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using BV combinations (separation of the season into two time periods) were stronger, but the

results still were inadequate for explaining or predicting the seasonal course of LAI.

As in the case of rice, consistent development curves were established for LAI with each crop.

However, it was not possible to evaluate whether the seasonal courses are generally valid, since

the years available for study were extremely limited. In the case of soybean and maize, there were

multiple years upon which to base the development curve. For potato and sugar beet, the single

years evaluated may lead to a highly biased and unsatisfying growth curve. It seems reasonable

to suggest (hypothesize) that the consistent development curve will be improved with multiple

years of data for the various crop types in further studies. We can conclude, however, that

for the data sets under study this new approach worked as well as more traditional regression

approaches. Further testing will demonstrate whether this “biologically-based” approach, as in

the case of rice, is potentially better in estimation of the critical values for LAI needed in spatial

models for GPP.

6.2 Use of vegetation indecis to estimate Vcuptake for five

crops

The eddy covariance methodology (EC) applied at rice paddy sites quantifies seasonal changes

in GPP in relation to prevailing meteorological conditions (Kwon et al., 2010). By fitting the

PIXGRO canopy model routine to flux data and with known LAI and meteorological conditions

on a daily basis, an estimated seasonal time course for the key physiological parameter Vcuptake,

i.e., canopy carboxylation capacity, is obtained. Owen et al. (2007) obtained such estimates for

many EC monitoring sites by assuming a constant LAI at the level of the maximum observed.

They carried out their analysis with constant LAI, because measured time courses for LAI

(periodic measurements) did not exist from many of the study sites. While assumption of a

constant LAI at maximum level may allow a more complete use of data from EC study sites, and

in the way lead to reasonable spatial models for GPP, the objective of the current study is to use

remote sensing first to determine structural change (the seasonal course of LAI) and, therefore,

to compare patterns for changes in canopy physiology for different crops, i.e., accurate seasonal

patterns for Vcuptake. At the beginning of this study (results is not shown) use of constant LAI
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was also examined, but seasonal LAI gave significantly better predictions for GPP. A further

consideration is that Vcuptake patterns should be related to seasonal change in leaf carboxylation

capacity as determined by other methods such as with leaf cuvette experimentation. The use of a

seasonal course in LAI should help to bring information form EC and leaf level ecophysiological

studies together.

Wang et al. (2008) and Muraoka et al. (2012) have demonstrated from cuvette experiments

that leaf level carboxylation capacity is correlated with NDVI and/or EVI. Similarly, NDVI

correlated with Vcuptake in linear regression at rice paddy sites (Fig. 4.13 and Fig. 4.14). The HK

site in 2010 and the ESES2 site in 2008 exhibited strong linear relationships. MSE also exhibited

linear correlation during 2002 2003, 2004, and 2005, although as yet unexplained hysteresis phe-

nomena were also observed. Similar hysteresis phenomena with respect to vegetation indices and

photosynthetic capacity (i.e., LAI, maximum carboxylation rate) were demonstrated in previous

studies by Muraoka et al. (2012) in deciduous forest at Takayama, Japan. Leaf photosynthetic

capacity during leaf expansion, with mature leaves in mid-season, and during senescence shifted

with respect to reflectance properties, causing hysteresis. The hysteresis phenomenon observed

here for agricultural crops was not strong as found for forest, however, it remains a problem

with respect to the use of remote sensing for determination of GPP.

Vcuptake of dry-land crops was examined with respect to possible linear, exponential, logarith-

mic, and logistic curve dependency in relation to NDVI and EVI, because of the difficulties to

establish a general relationship among all of the crops, partly due to the limited data. Overall,

a linear relationship provided the best prediction of Vcuptake (Fig. 5.7) for soybean, maize, and

potato. Vcuptake of sugar beet was better described statistically with an exponential relation-

ship, but the exponential model amplified Vcuptake during the middle of the growing season.

Therefore, seasonal development of Vcuptake was again based on the linear relationship. However,

Vcuptake estimated by a linear relationship resulted in underestimation of GPP. An alternative

approach attempted to calculate the seasonal course of Vcuptake based on a development curve.

The development curve of Vcuptake predicted GPP with no significant improvement (only at HK

and HFK were there a slightly better statistical result). Since the chosen method for defining

the development curve did not allow the maximum in Vcuptake to be reached, underestimation

of GPP occurred. The methods used by GAM to obtain the desired development curve do not
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allow maximum values to be achieved due to the smoothing algorithm employed. Generalized

addictive models (GAMs) have been used to understand non-linear ecological responses to a

wide range of environmental variables (Hastie et al., 1990; Yee et al., 1991; Liu, 2008). GAMs

are an extension of generalized linear models (GLMs), a linear function of GLMs (Eq. 6.1,∑p
j=1 βjXj ) replaces to an unspecified smooth functions (Eq. 6.2, ∑p

j=1 fj(Xj), Hastie et al.,

1986; Yee et al., 1991; Liu, 2008).

g(µ) = β0 +
p∑

j=1
βjXj (6.1)

g(µ) = f0 +
p∑

j=1
fj(Xj) (6.2)

where the f j are unspecified smooth function or non-parametric function. In this non-

parametric function, there are many different types of smoothers, e.g., running lines, running

means, cubic splines, etc., using the algorithms called back fitting, local scoring, likelihood, and

etc. Therefore, GAMs can be more general and flexible to allow a wide range of response curves

to the non-linear relationships. GAMs were proposed to provide the alternative approach for

limitation of linear function, since it is an appropriate tool for data with complex dependencies.

However, GAMs are based on assumption that all variables are independent and without error,

and they never provide the exact regression values of the fitting curve (Hastie et al., 1986). The

smoothing routines are not able to analyze the real physiological or phenological phenomenon,

so the seasonal development curve from GAM did not reach the maximum estimated for each

crop.

In the case of dry-land crops, the development curve for Vcuptake was rescaled with a multiplier

in order to reproduce the maximum values of Vcuptake (Fig. 5.8). Predicted GPP for sugar beet

was then significantly improved, but with the other crop sites showed underestimation of GPP

still occurred over entire growing season (Fig. 5.10). On the other hand, rescaled development

curve did lead to improvements at US-Ne3 during 2002 for soybean and 2005 for maize, DE-Kli

during 2007 for maize, and BE-Lon during 2004 for sugar beet. Further research is required in

order to established and validate seasonal curves for photosynthetic capacity across different

location and the different climate conditions for the various crop types.
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6.3 Limitations due to the remotely sensed vegetation

indices

A number of shortcomings in the use of satellite vegetation indices to estimate GPP still

remain. First, the uncertainties in VIs may be caused by missing or bad data or systemic error

in obtaining the daily smoothed VIs. Secondly, VIs are not sensitive enough to capture rapid

changes in the crop development during initial growth period (Wang et al., 2005). Similar results

were found in this study for HK in 2010, MSE in 2003, and 2004, BE-Lon in 2004, and US-Ne3

in 2003 and 2005. Thirdly, VIs are relatively insensitive when LAI is over 4 (Brantley et al.,

2011) leading to large predicted changes in LAI in derived regressions when VIs change during

mid-season. Most of the rice sites, DE-Kli in 2007, and US-Ne3 in 2005 exhibited over- and/or

underestimation of LAI predicted with the VIs regression. Since accurate LAI estimation is

a key factor to calculate GPP (Bantley et al., 2010), continued research focus on improving

such estimates is essential in future studies, and the consistent development approach must be

explored further. Fourth, the patch sizes between MODIS satellite reflectance data and field

size remains to date unmatched in many regions of the world. This is certainly the case at

the Asian sites studied. Therefore, VIs could not capture the specific signal of crops studies.

While rice paddy and soybean from US-Ne3 have more than 80% homogeneity, potato from HK

and sugar beet from BE-Lon occupied much less of the MODIS patch size. For example, the

resolution of MODIS is ca. 250 m by 250 m whereas the potato field size was ca. 158 m by 158

m, which also included the field margins. Homogeneity between the potato field and MODIS

pixel was only ca. 60%. Although also influenced by the frequency and time of harvests and the

smoothing routine, the estimated maximum in LAI occurred on DOY 186, while the maximum

NDVI occurred around DOY 230 at the HK potato site (Fig. 6.1). It is possible that influences

from the surrounding vegetation are responsible for this difference, whereas it may also be case

that NDVI continues to change as a result of leaf properties and arrangement. Clarification

requires detailed ground level studies of crop growth and remote sensing of VIs. Finally, LAI

measurements were carried out every 2 or 3 weeks at eddy covariance sites. This infrequent

sampling of LAI results in the tendency to miss important phenological events during the early

growing season, which is critical to predicting the total growth season GPP.
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Fig. 6.1 NDVI and EVI by TIMESAT (closed circle), daily NDVI by spline (solid line), and
measured LAI (cloased red circle with solid line) at dry-land crop sites for the years indicated.
US-Ne3 = Nebraska (USA), DE-Kli = Klingenberg (Germany), HK = Haean (S. Korea), BE-Lon
= Lonzee (Belgium).

Further studies are required in more detail and with accurately sampled spatial data in

agricultural ecosystems with various crop types in order to calibrate LAI and physiological

parameters such as Vcuptake for use in models for GPP. With such studies, the restriction here

that eddy covariance data, GPP and Vcuptake could only be evaluated for situations with LAI >

1.0 can be improved.
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6.4 GPP estimation for agricultural ecosystems

Despite the obvious importance of such studies, most EC measurements carried out to

characterize agricultural ecosystem started only during the last decade. As a result, only few

method have been applied to date to estimate or model GPP. These can be put into several

categories: 1) GPP is estimated directly by eddy covariance measurement and interpreted with

respect to the supplemental field data (Moureaux et al., 2008; Aubinet et al., 2009; Suyker et

al., 2005; Suyker et al., 2010); 2) parameters are estimated to directly relate GPP to remote-

sensing-based vegetation indices (Zhang et al., 2008; Yan et al., 2009; Wang et al., 2010); 3)

observations have been used to estimate a key parameter of light use efficiency and GPP is

evaluated by MODIS algorithm (Li et al., 2007; Chen et al., 2011), and 4) empirical approaches

have attempted to use VIs and PAR estimates to calculate the seasonal course of GPP (Wu et

al., 2009; Xiao et al., 2010; Gitelson et al., 2012; Peng et al., 2011; Peng et al., 2012). The current

study differs from these first by focusing on the efficient gas exchange parameter Vcuptake as

first defined by Owen et al. (2007) and secondly by attempting to define consistent development

curves for LAI and Vcuptake and to reference these to the maximum observed VIs.

Previous studies reported the relationship between modeled GPP and observed GPP with

R2 from 0.68 to 0.95 on and 8-day or daily interval at the soybean and maize sites (Yan et

al., 2009; Wang et al., 2010; Gitelson et al., 2012; Peng et al., 2011; Peng et al., 2012), R2

of 0.86 at the crop sites in U.S.A. (Xiao et al., 2010). Harazono et al. (2009) reported an

empirically estimated GPP using the remote sensed greenery ratio (GR) and PAR. Overall

GPP was underestimation at MSE during 2003. In this study, the relationship between observed

GPP and modeled GPP based on the consistent development curve for LAI shows remarkably

improved results over regression based values with R2 from 0.79 to 0.93. Modeled GPP based

on the consistent development curve for both LAI and Vcuptake agreed with R2 from 0.76 to

0.92 (within the 95% confidence interval) at the rice paddy sites. In the case of dry-land crops,

the relationship between modeled GPP based on the consistent development curve for LAI

showed significantly improved results with R2 from 0.61 to 0.93 (within the 95% confidence

interval), while modeled GPP based on the consistent development curve for both LAI and

Vcuptake exhibited an R2 from 0.60 to 0.91 (within the 95% confidence interval). Further study is

in order because the development curve based approach seems to have potential to predict GPP
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better than simple linear models or other statistical models to estimate the critical parameters in

agricultural ecosystems (Fig. 5.10 and 5.11, Table 5.5 and 5.6). The modeled GPP at dry-land

sites obtained with re-scaled curves for Vcuptake showed a 1.4% improvement in R2, 40% in

RMSE, and 13% in total GPP.

Previous studies have been limited to only a few different crop types, and the results are not

yet generalized adequately. Clearly, larger spatial and longer time series of data, e.g., longer time

scales, must be investigated. From this study, it is suggested that remote sensing can be applied

with consistent development curve for two major components of GPP modeling, i.e., LAI and

carboxylation capacity. The method is sensitive to differences in management and adjustments

can be made for differences in planting time at differences locations. Of course, it is critical to

know what crop is being planted in the landscapes that are viewed.
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Chapter 7

Conclusion

This study provides insight with respect to achieving improved methods for assessing GPP

in agricultural ecosystems through the use of process-based models and remote sensing. The

MODIS product provided by NASA underestimates and poorly represents GPP, especially in

croplands (Zhang et al., 2008; Yan et al., 2009; Gilteson et al., 2012). By following a different

methodology, MODIS vegetation indices are shown to be effective in estimating crop phenology,

LAI, and the simplified physiological parameter Vcuptake at local site-specific scale. In the case of

paddy rice, a generalized model was developed to estimate GPP under various climate conditions

and at geographically widely separated locations. Dry-land crops, since they differ genetically

in terms of developmental controls, require multiple parameterizations of PIXGRO model in

order to obtain GPP for various crop types. However, it is currently difficult to complete the

evaluation of characteristic parameters for dry-land crops, due to lack of data from multiple

sites and geographical locations for each, i.e., there is not adequate replicative studies as with

the case of rice.

The study suggests methods for development of a “best-fit model” to estimate GPP by

bridging satellite information on VIs and ground observations. The best-fit model constructed

here, which used VIs to estimate phenology (LAI) and physiological parameter (Vcuptake) based

on consistent development curves, provided accurate seasonal values for GPP with acceptable

statistical values (Table 4.4 and Table 4.5), although limited so far to the period where LAI

> 1.0. Photosynthetic capacity in relation to VIs changes over the course of growing season

together with the carbon to nitrogen ratio of leaves in the plant canopy. Nitrogen in foliage

determines investments in chlorophyll and rubisco (Bonan, 2002), i.e., the machinery for the

97
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photosynthetic process. This may decrease over the course of the season with little influence

on reflectance properties. Where data was available, this study found that carbon to nitrogen

ratio did accompany in some cases change in vegetation indices. There types of physiological

changes (reflecting the relationship between Vcuptake and VIs) may account for the hysteresis

effects that were observed in particular data sets (section 4.5).

Improvements in the modeling approach require that more detailed biological supplementary

information should accompany EC studies in the future, e.g., frequent and spatial sampling of

crop canopy structure, local on the ground measurements of VIs, monitoring of physiological

characteristics such as C/N ratio, chlorophyll content, etc. On the one hand, there detailed studies

must be designed to support an extension of the approach describe here, moving away from

empiricism and linking remote sensing to the biological processes being observed. Ultimately,

however, the estimation of the crop GPP should be possible and should be undertaken without

the need for additional field surveys, since these cannot be conducted at large scales.
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Appendix A: A case study of rice

paddy

Table A.1 Statistics for the linear and exponential relationship between estimated LAI and

NDVI with slope (a), intercept (b), determination coefficients (R2), and root mean square

error (RMSE).

Linear model Exponential model

Site Year a b R2 RMSE a b R2 RMSE

HK 2010 14.27 -8.52 0.38 2.15 16.53 -12.24 0.83 0.83

MSE 2002-2005 9.38 -4.06 0.59 2.36 10.26 -7.01 0.60 1.63

ESES2 2007-2008 11.27 -4.87 0.76 3.16 6.39 -3.87 0.67 1.27

HK-before 2010 13.86 -8.24 0.28 2.34 16.52 -12.51 0.90 1.21

HK-after 2010 20.47 -13.06 NA 1.54 10.62 -7.22 NA 0.01

MSE-before 2002-2005 7.43 -3.45 0.72 1.39 11.18 -7.99 0.80 0.93

MSE-after 2002-2005 8.59 -2.78 0.53 3.07 6.37 -3.75 0.23 1.30

ESES2-before 2007-2008 11.36 -5.41 0.8 2.66 7.30 -4.82 0.84 0.84

ESES2-after 2007-2008 7.87 -1.58 0.9 3.77 1.81 0.08 0.93 0.24

Asia 9.52 -4.31 0.53 2.33 10.57 -7.34 0.61 1.50

Entire 10.3 -4.66 0.6 2.6 9.21 -6.25 0.59 1.52

Asia-before 8.10 -3.93 0.56 1.65 11.43 -8.3 0.78 0.97

Asia-after 8.78 -3.04 0.47 2.95 6.42 -3.82 0.24 1.25

Entire-before 9.50 -4.64 0.64 2.01 10.01 -7.15 0.75 1.02

Entire-after 8.79 -2.87 0.53 3.19 5.18 -2.80 0.23 1.14
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Table A.2. Statistics for the linear and exponential relationship between estimated LAI and

EVI with slope (a), intercept (b), determination coefficients (R2), and root mean square error

(RMSE).

Linear model Exponential model

Site Year a b R2 RMSE a b R2 RMSE

HK 2010 16.65 -6.99 0.38 2.26 18.28 -9.93 0.72 1.06

MSE 2002-2005 7.94 -1.24 0.59 2.53 8.36 -3.77 0.55 4.38

ESES2 2007-2008 11.87 -2.81 0.82 3.33 6.72 -2.70 0.72 1.98

HK-before 2010 7.74 -3.20 0.34 0.87 17.81 -10.31 0.96 0.32

HK-after 2010 29.98 -13.28 0.78 3.31 10.72 -4.93 0.97 0.30

MSE-before 2002-2005 8.28 -1.59 0.77 1.99 9.73 -4.37 0.72 6.63

MSE-after 2002-2005 4.64 0.86 0.10 3.17 4.62 -1.69 0.08 2.13

ESES2-before 2007-2008 12.26 -3.38 0.89 2.80 7.68 -3.42 0.88 1.22

ESES2-after 2007-2008 7.39 0.25 0.70 3.96 1.70 0.50 0.73 0.53

Asia 7.88 -1.40 0.49 2.48 8.43 -3.96 0.52 3.53

Entire 9.18 -1.85 0.59 2.76 8.07 -3.67 0.55 3.19

Asia-before 7.22 -1.44 0.57 1.85 9.13 -4.40 0.61 3.43

Asia-after 5.72 0.25 0.15 3.19 4.90 -1.82 0.12 2.15

Entire-before 8.88 -2.04 0.67 2.17 8.81 -4.18 0.66 2.88

Entire-after 6.45 0.12 0.24 3.44 4.14 -1.25 0.12 1.82
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Table A.3. Parameter sets between Vcuptake and VIs for rice paddy sites with slope (a), intercept

(b), determination coefficients (R2), root mean square error (RMSE), akaike information crite-

rion (AIC), difference (Diff., %) between simulated GPP (s.GPP) and observed GPP (o.GPP).

’Version’ indicates either estimated LAI (estLAI) or constant LAI (Constant). Mode 1 is LAI

estimation model, N is NDVI, E is entire, BA is before and after maximum VIs, V is Vcuptake,

N is NDVI, E is 1) located next to ’V’ then EVI 2) located on third position then Entire, and

BA is before and after maximum VIs. Eq. is an equation of linear (Lm) or exponential (Exp)

model.

Site Year Version Mode1 Mode2 Eq. a b R2 RMSE AIC s.GPP o.GPP Diff. (%)

HK 2010 estLAI NBA VNBA Exp 0.89 1.17 0.86 3.12 30793 648 745 -15

HK 2010 estLAI NBA VNE Lm 0.96 0.90 0.84 3.23 31736 641 745 -16

HK 2010 estLAI NBA VNBA Lm 0.94 0.97 0.86 3.07 30967 645 745 -16

HK 2010 estLAI NBA VEE Lm 0.96 0.90 0.84 3.18 31504 641 745 -16

HK 2010 estLAI NBA VEBA Lm 0.94 0.96 0.86 3.07 30991 644 745 -16

HK 2010 estLAI NBA VEBA Exp 0.90 1.16 0.86 3.12 30889 642 745 -16

HK 2010 estLAI E VNE Lm 0.94 1.00 0.84 3.21 31574 640 745 -16

HK 2010 estLAI NBA VNE Lm 0.96 0.92 0.83 3.33 32126 639 745 -17

HK 2010 estLAI NBA VEE Lm 0.96 0.92 0.83 3.26 31848 638 745 -17

HK 2010 estLAI NBA VNBA Exp 0.93 1.08 0.87 3.01 30575 633 745 -18

HK 2010 estLAI NBA VNBA Lm 0.97 0.92 0.86 3.04 30868 632 745 -18

HK 2010 estLAI NBA VEE Exp 0.95 0.99 0.85 3.12 31168 631 745 -18

HK 2010 estLAI E VNE Exp 0.93 1.10 0.85 3.17 31283 629 745 -18

HK 2010 estLAI E VEE Lm 0.94 1.01 0.83 3.29 31876 634 745 -18

HK 2010 estLAI NBA VEBA Lm 0.98 0.90 0.86 3.05 30917 627 745 -19

HK 2010 estLAI E VNBA Lm 0.96 0.97 0.86 3.07 30944 626 745 -19

HK 2010 estLAI E VEE Exp 0.93 1.14 0.84 3.31 31813 625 745 -19

HK 2010 estLAI NBA VNE Exp 0.98 0.95 0.85 3.11 31115 622 745 -20

HK 2010 estLAI NBA VEE Exp 0.96 1.00 0.85 3.18 31385 622 745 -20

HK 2010 estLAI NBA VEBA Exp 0.95 1.06 0.86 3.02 30658 622 745 -20

HK 2010 estLAI E VNBA Exp 0.93 1.13 0.86 3.06 30763 623 745 -20

HK 2010 estLAI E VEBA Lm 0.97 0.97 0.86 3.08 31009 622 745 -20

MSE 2003 estLAI NBA VEBA Lm 0.67 0.96 0.90 4.83 31930 1090 883 19

MSE 2002 estLAI E VEBA Exp 0.59 1.84 0.80 6.88 38070 1087 938 14

MSE 2003 estLAI NBA VNBA Lm 0.35 3.36 0.41 11.73 44317 991 883 11

MSE 2002 estLAI NBA VNE Lm 0.08 5.37 0.07 28.35 48461 1039 938 10

MSE 2003 estLAI E VEBA Exp 0.67 1.43 0.85 4.93 34914 973 883 9

MSE 2002 estLAI E VNBA Exp 0.71 1.60 0.83 4.99 36752 966 938 3

MSE 2002 estLAI E VEBA Lm 0.77 1.27 0.87 4.09 35027 956 938 2

MSE 2004 estLAI NBA VEBA Exp 0.68 2.20 0.79 6.61 38133 1069 1056 1

MSE 2004 estLAI NBA VNBA Exp 0.71 2.08 0.80 6.11 37672 1048 1056 -1
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Site Year Version Mode1 Mode2 eq. a b R2 RMSE AIC s.GPP o.GPP Diff. ( %)

MSE 2004 estLAI NBA VEBA Exp 0.68 2.32 0.77 6.77 38765 1044 1056 -1

MSE 2003 estLAI E VNBA Exp 0.80 1.13 0.88 3.48 33727 873 883 -1

MSE 2003 estLAI E VEBA Lm 0.83 0.98 0.90 3.05 32143 875 883 -1

MSE 2004 estLAI NBA VNBA Exp 0.71 2.21 0.78 6.31 38389 1023 1056 -3

MSE 2003 estLAI NBA VNE Exp 0.83 1.11 0.88 3.28 33550 846 883 -4

MSE 2002 estLAI E VNBA Lm 0.50 3.04 0.51 8.93 44041 901 938 -4

MSE 2005 estLAI E VNBA Lm 0.19 5.14 0.17 19.19 46398 916 957 -4

MSE 2003 estLAI E VEE Exp 0.80 1.28 0.87 3.59 33995 853 883 -4

MSE 2005 estLAI E VEBA Exp 0.77 1.62 0.83 4.69 35980 922 957 -4

MSE 2003 estLAI NBA VEE Lm 0.93 0.65 0.92 2.41 30617 838 883 -5

MSE 2003 estLAI NBA VEE Exp 0.87 0.92 0.90 2.82 31986 842 883 -5

MSE 2003 estLAI E VEE Lm 0.87 0.96 0.90 2.89 32195 842 883 -5

MSE 2003 estLAI NBA VNE Lm 0.92 0.74 0.92 2.48 30785 832 883 -6

MSE 2003 estLAI E VNE Exp 0.80 1.36 0.84 3.85 35548 830 883 -6

MSE 2005 estLAI E VNBA Exp 0.81 1.49 0.85 4.20 35159 899 957 -6

MSE 2005 estLAI NBA VNBA Exp 0.81 1.50 0.84 4.33 35702 896 957 -7

MSE 2005 estLAI NBA VNBA Lm 0.18 5.21 0.16 19.26 46531 893 957 -7

MSE 2005 estLAI NBA VEBA Exp 0.80 1.57 0.83 4.54 36230 897 957 -7

MSE 2003 estLAI E VNE Lm 0.88 0.99 0.87 3.15 33781 828 883 -7

MSE 2003 estLAI E VNBA Lm 0.92 0.80 0.91 2.59 31465 818 883 -8

MSE 2002 estLAI NBA VNBA Exp 0.88 1.17 0.88 3.30 34343 851 938 -10

MSE 2002 estLAI NBA VEBA Lm 0.93 0.91 0.90 2.94 33219 852 938 -10

MSE 2002 estLAI NBA VNE Exp 0.89 1.16 0.88 3.30 34423 847 938 -11

MSE 2002 estLAI NBA VNBA Exp 0.89 1.20 0.87 3.43 34927 843 938 -11

MSE 2002 estLAI NBA VNBA Lm 0.95 0.86 0.91 2.79 32601 845 938 -11

MSE 2002 estLAI NBA VEBA Exp 0.88 1.24 0.88 3.42 34799 843 938 -11

MSE 2004 estLAI NBA VEBA Lm 0.84 1.75 0.81 5.01 37307 949 1056 -11

MSE 2002 estLAI E VNE Exp 0.83 1.48 0.86 3.84 35726 848 938 -11

MSE 2002 estLAI E VEE Exp 0.83 1.48 0.86 3.78 35519 844 938 -11

MSE 2002 estLAI NBA VNE Exp 0.89 1.22 0.87 3.47 35093 839 938 -12

MSE 2002 estLAI NBA VEE Lm 0.95 0.89 0.89 3.13 34241 834 938 -12

MSE 2002 estLAI NBA VEBA Lm 0.94 0.95 0.89 3.12 34083 841 938 -12

MSE 2002 estLAI NBA VEBA Exp 0.88 1.27 0.87 3.55 35350 837 938 -12

MSE 2002 estLAI E VNE Lm 0.91 1.11 0.89 3.16 33972 837 938 -12

MSE 2004 estLAI E VNBA Exp 0.79 2.06 0.81 5.37 37586 944 1056 -12

MSE 2002 estLAI E VEE Lm 0.90 1.12 0.89 3.18 34002 841 938 -12

MSE 2002 estLAI NBA VNBA Lm 0.95 0.90 0.90 3.00 33609 832 938 -13

MSE 2004 estLAI NBA VNBA Lm 0.86 1.69 0.82 4.84 37095 930 1056 -14

MSE 2002 estLAI NBA VEE Exp 0.90 1.23 0.87 3.49 35303 825 938 -14

MSE 2004 estLAI NBA VEBA Lm 0.84 1.88 0.79 5.33 38174 927 1056 -14

MSE 2002 estLAI NBA VEE Lm 0.97 0.94 0.88 3.26 34777 816 938 -15

MSE 2002 estLAI NBA VEE Exp 0.90 1.29 0.85 3.63 35857 817 938 -15

MSE 2004 estLAI NBA VNBA Lm 0.86 1.83 0.79 5.20 38038 909 1056 -16

MSE 2004 estLAI E VEBA Exp 0.80 2.18 0.78 5.55 38246 908 1056 -16
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Site Year Version Mode1 Mode2 eq. a b R2 RMSE AIC s.GPP o.GPP Diff. ( %)

MSE 2004 estLAI E VNE Exp 0.80 2.23 0.77 5.66 38574 899 1056 -17

MSE 2005 estLAI E VNE Exp 0.84 1.77 0.79 4.76 37538 817 957 -17

MSE 2004 estLAI E VNBA Lm 0.89 1.71 0.83 4.64 36606 904 1056 -17

MSE 2004 estLAI E VEBA Lm 0.89 1.79 0.82 4.80 37070 888 1056 -19

ESES2 2008 estLAI E VEBA Exp 0.62 2.04 0.87 7.46 39195 1400 1208 14

ESES2 2008 estLAI E VNBA Lm 0.52 2.91 0.62 10.50 47033 1391 1208 13

ESES2 2008 estLAI E VNBA Exp 0.63 2.04 0.87 7.26 39276 1380 1208 12

ESES2 2007 estLAI E VEBA Lm 0.63 2.51 0.81 8.38 40672 1546 1364 12

ESES2 2008 estLAI NBA VEBA Exp 0.67 1.83 0.88 6.43 38997 1353 1208 11

ESES2 2008 estLAI NBA VNBA Exp 0.68 1.81 0.88 6.26 39061 1337 1208 10

ESES2 2007 estLAI E VNBA Lm 0.64 2.51 0.80 8.10 40734 1514 1364 10

ESES2 2008 estLAI NBA VNBA Exp 0.68 1.89 0.86 6.31 39846 1312 1208 8

ESES2 2008 estLAI NBA VEBA Exp 0.67 1.92 0.86 6.41 39883 1318 1208 8

ESES2 2008 estLAI E VNE Exp 0.66 2.11 0.85 6.69 40241 1296 1208 7

ESES2 2008 estLAI E VEE Exp 0.66 2.14 0.85 6.72 40467 1289 1208 6

ESES2 2008 estLAI E VEBA Lm 0.70 1.83 0.87 5.88 39190 1291 1208 6

ESES2 2008 estLAI NBA VNE Exp 0.70 1.88 0.85 6.04 40449 1274 1208 5

ESES2 2008 estLAI NBA VNE Exp 0.72 1.79 0.86 5.73 40042 1266 1208 5

ESES2 2008 estLAI NBA VEE Exp 0.70 1.91 0.84 6.08 40725 1266 1208 5

ESES2 2008 estLAI NBA VEE Exp 0.72 1.81 0.85 5.75 40376 1255 1208 4

ESES2 2008 estLAI E VNE Lm 0.72 1.81 0.87 5.63 39506 1260 1208 4

ESES2 2008 estLAI E VEE Lm 0.72 1.82 0.87 5.67 39616 1260 1208 4

ESES2 2008 estLAI NBA VEBA Lm 0.77 1.53 0.86 5.07 39950 1233 1208 2

ESES2 2008 estLAI NBA VNBA Lm 0.78 1.51 0.86 4.99 40002 1223 1208 1

ESES2 2008 estLAI NBA VEE Lm 0.78 1.54 0.85 5.09 40475 1215 1208 1

ESES2 2008 estLAI NBA VEBA Lm 0.79 1.44 0.87 4.74 39333 1219 1208 1

ESES2 2008 estLAI NBA VNE Lm 0.79 1.52 0.85 5.02 40325 1213 1208 0

ESES2 2008 estLAI NBA VNBA Lm 0.81 1.42 0.87 4.64 39435 1203 1208 0

ESES2 2008 estLAI NBA VNE Lm 0.82 1.44 0.86 4.69 40022 1182 1208 -2

ESES2 2008 estLAI NBA VEE Lm 0.82 1.45 0.85 4.77 40237 1184 1208 -2

ESES2 2007 estLAI NBA VEBA Lm 0.75 2.50 0.78 6.75 41521 1308 1364 -4

ESES2 2007 estLAI NBA VNE Lm 0.75 2.53 0.77 6.84 41808 1300 1364 -5

ESES2 2007 estLAI NBA VNBA Lm 0.75 2.50 0.78 6.74 41565 1303 1364 -5

ESES2 2007 estLAI NBA VEE Lm 0.74 2.56 0.76 6.94 42032 1298 1364 -5

ESES2 2007 estLAI NBA VEBA Exp 0.73 2.73 0.77 6.97 41649 1286 1364 -6

ESES2 2007 estLAI NBA VNBA Exp 0.74 2.72 0.77 6.91 41634 1280 1364 -7

ESES2 2007 estLAI NBA VNE Exp 0.73 2.84 0.76 7.11 41993 1267 1364 -8

ESES2 2007 estLAI NBA VEE Exp 0.73 2.89 0.75 7.23 42293 1259 1364 -8

ESES2 2007 estLAI E VNE Lm 0.75 3.09 0.78 6.78 41398 1183 1364 -15

ESES2 2007 estLAI E VEE Lm 0.75 3.10 0.78 6.84 41533 1181 1364 -15

ESES2 2007 estLAI E VNE Exp 0.72 3.41 0.76 7.31 42086 1157 1364 -18

ESES2 2007 estLAI E VEE Exp 0.72 3.45 0.75 7.40 42295 1150 1364 -19

HFK 2008 estLAI E VNBA Lm 0.04 5.64 0.03 40.65 43654 871 854 2

HFK 2008 estLAI NBA VNE Lm 0.94 0.76 0.79 3.90 34262 795 854 -7
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Site Year Version Mode1 Mode2 eq. a b R2 RMSE AIC s.GPP o.GPP Diff. ( %)

HFK 2008 estLAI E VNE Lm 0.92 0.80 0.78 3.97 34422 800 854 -7

HFK 2008 estLAI NBA VNBA Lm 0.94 0.74 0.81 3.68 33516 794 854 -8

HFK 2008 estLAI E VEBA Lm 0.92 0.89 0.72 4.48 35964 784 854 -9

HFK 2008 estLAI NBA VNBA Exp 0.95 0.76 0.82 3.57 33147 778 854 -10

HFK 2008 estLAI E VNBA Exp 0.95 0.79 0.82 3.58 33172 776 854 -10

HFK 2008 estLAI E VEE Lm 0.94 0.86 0.61 5.27 38067 776 854 -10

HFK 2008 estLAI NBA VNE Exp 0.93 0.97 0.78 3.96 34344 767 854 -11

HFK 2008 estLAI NBA VEE Lm 0.96 0.78 0.61 5.23 37965 771 854 -11

HFK 2008 estLAI NBA VEBA Lm 0.94 0.90 0.72 4.46 35911 769 854 -11

HFK 2008 estLAI E VNE Exp 0.92 1.03 0.78 4.02 34496 769 854 -11

HFK 2008 estLAI E VEBA Exp 0.95 1.10 0.71 4.58 36149 727 854 -17

HFK 2008 estLAI NBA VEBA Exp 0.96 1.11 0.71 4.59 36162 719 854 -19

HK 2010 Constant E VEE Exp 0.91 0.93 0.82 3.45 32518 670 745 -11

HK 2010 Constant E VNE Exp 0.94 0.82 0.85 3.12 31323 664 745 -12

HK 2010 Constant E VNBA Lm 0.96 0.81 0.82 3.39 32436 652 745 -14

HK 2010 Constant E VNBA Exp 0.95 0.91 0.86 3.04 30942 648 745 -15

HK 2010 Constant E VEBA Exp 0.97 0.89 0.85 3.12 31247 634 745 -18

MSE 2005 Constant E VNBA Lm 0.01 6.19 0.01 93.22 47571 1137 957 16

MSE 2003 Constant E VEBA Exp 0.76 1.11 0.87 3.87 33920 932 883 5

MSE 2005 Constant E VEBA Exp 0.75 1.31 0.88 4.45 34089 1004 957 5

MSE 2003 Constant E VNBA Lm 0.12 4.85 0.12 21.64 47018 897 883 2

MSE 2005 Constant E VNBA Exp 0.78 1.27 0.88 4.15 33995 973 957 2

MSE 2002 Constant E VNE Exp 0.85 0.86 0.91 3.06 32369 945 938 1

MSE 2002 Constant E VEE Exp 0.83 0.96 0.91 3.24 32751 947 938 1

MSE 2002 Constant E VNE Lm 0.96 0.26 0.93 2.36 30690 935 938 0

MSE 2002 Constant E VNBA Exp 0.87 0.76 0.92 2.80 31654 934 938 0

MSE 2002 Constant E VEBA Exp 0.84 0.95 0.91 3.22 32896 941 938 0

MSE 2003 Constant E VEBA Lm 0.91 0.47 0.93 2.31 29701 887 883 0

MSE 2003 Constant E VNE Exp 0.82 1.05 0.85 3.60 34833 875 883 -1

MSE 2002 Constant E VNBA Lm 0.96 0.27 0.93 2.37 30711 933 938 -1

MSE 2003 Constant E VEE Exp 0.84 0.92 0.89 3.14 33007 874 883 -1

MSE 2002 Constant E VEBA Lm 0.95 0.33 0.95 2.14 29183 933 938 -1

MSE 2004 Constant E VEBA Lm 0.96 0.45 0.92 3.04 31933 1030 1056 -3

MSE 2004 Constant E VNBA Exp 0.87 1.19 0.87 4.10 34884 1014 1056 -4

MSE 2003 Constant E VNBA Exp 0.93 0.67 0.91 2.62 31745 837 883 -5

MSE 2004 Constant E VEBA Exp 0.85 1.35 0.85 4.48 35944 1004 1056 -5

MSE 2004 Constant E VNE Exp 0.87 1.25 0.86 4.32 35672 1000 1056 -6

MSE 2004 Constant E VEE Lm 1.03 0.28 0.86 3.99 35399 985 1056 -7

MSE 2005 Constant E VNE Exp 0.90 1.12 0.86 3.80 35088 874 957 -9

MSE 2005 Constant E VEE Lm 1.01 0.45 0.87 3.52 34559 876 957 -9

MSE 2004 Constant E VEE Exp 0.89 1.36 0.78 5.11 38223 956 1056 -10

MSE 2005 Constant E VEE Exp 0.88 1.37 0.79 4.55 37405 852 957 -12

ESES2 2008 Constant E VNE Exp 0.67 1.18 0.90 6.41 37268 1510 1208 20

ESES2 2008 Constant E VEE Exp 0.66 1.23 0.90 6.59 37430 1517 1208 20
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Site Year Version Mode1 Mode2 eq. a b R2 RMSE AIC s.GPP o.GPP Diff. ( %)

ESES2 2007 Constant E VNE Lm 0.77 0.87 0.85 5.97 39049 1597 1364 15

ESES2 2007 Constant E VEE Lm 0.78 0.87 0.85 5.83 38928 1581 1364 14

ESES2 2007 Constant E VEBA Lm 0.78 0.87 0.85 5.83 38938 1581 1364 14

ESES2 2007 Constant E VEBA Exp 0.72 1.35 0.88 6.20 37474 1594 1364 14

ESES2 2007 Constant E VNBA Lm 0.80 0.87 0.84 5.68 39359 1537 1364 11

ESES2 2007 Constant E VNE Exp 0.76 1.35 0.87 5.61 37812 1510 1364 10

ESES2 2007 Constant E VNBA Exp 0.77 1.26 0.88 5.51 37585 1519 1364 10

ESES2 2007 Constant E VEE Exp 0.76 1.47 0.86 5.78 38402 1495 1364 9

HFK 2008 Constant E VNE Lm 0.93 0.79 0.78 4.00 34569 793 854 -8

HFK 2008 Constant E VNBA Lm 0.94 0.76 0.80 3.75 33755 791 854 -8

HFK 2008 Constant E VEE Lm 0.89 1.12 0.55 5.69 38933 781 854 -9

HFK 2008 Constant E VNBA Exp 0.96 0.77 0.82 3.60 33244 775 854 -10

HFK 2008 Constant E VEBA Lm 0.92 0.96 0.70 4.60 36292 773 854 -10

HFK 2008 Constant E VNE Exp 0.92 1.01 0.78 4.05 34596 766 854 -11

HFK 2008 Constant E VEBA Exp 0.95 1.17 0.70 4.71 36470 717 854 -19
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Appendix B: A case study of dry-land

crops

Table B.1. Parameter sets between Vcuptake and VIs, NDVI and EVI for soybean with slope (a),

intercept (b), determination coefficients (R2), root mean square error (RMSE), akaike informa-

tion criterion (AIC), difference (Diff., %) between simulated GPP (s.GPP) and observed GPP

(o.GPP). ’Version’ indicates which estimation model used, in detail, B is soybean, N is NDVI,

E is EVI, Lm is linear model, Exp is exponential model, Log is logarithm model, Logi is logistic

model, nls is nonlinear least squares model. ’Version’ is a combination of crop type-NDVI or

EVI-entire or BA-model-crop type-NDVI or EVI-entire or BA-model. The combination until

the statistical model (Lm, Exp, Log, Logi, and nls) indicates the LAI estimation model, the

next combination indicates the Vcuptake estimation model.

Site Year Version a b R2 RMSE AIC sim.GPP obs.GPP Diff. (%)

US-Ne3 2002 BNELmBNBAExp 1.03 1.67 0.83 4.01 36205 637 922 -31

US-Ne3 2002 BNELmBNBALm 1.08 0.86 0.89 3.19 33300 728 922 -21

US-Ne3 2002 BNELmBNEExp 1.12 1.51 0.85 3.98 35267 609 922 -34

US-Ne3 2002 BNELmBNELm 1.09 0.90 0.89 3.30 33650 715 922 -22

US-Ne3 2002 BNELogi 1.07 0.86 0.88 3.23 34389 735 924 -20

US-Ne3 2002 BNEnls 1.07 0.87 0.88 3.23 34359 733 924 -21

US-Ne3 2002 BNEBNBALog 1.08 0.82 0.89 3.11 33715 736 924 -20

US-Ne3 2002 BNEBNBLogAExp 1.10 1.16 0.88 3.52 34843 670 924 -27

US-Ne3 2002 BNEBNBLogALm 1.08 0.84 0.90 3.06 33392 732 924 -21

US-Ne3 2002 BNEBNELog 0.84 1.71 0.66 5.35 41817 772 924 -16

US-Ne3 2002 BEELmBEBAExp 1.49 1.76 0.77 5.80 38395 432 922 -53

US-Ne3 2002 BEELmBEBALm 1.40 0.75 0.88 4.44 34044 573 922 -38
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Site Year Version a b R2 RMSE AIC sim.GPP obs.GPP Diff. ( %)

US-Ne3 2002 BEELmBEEExp 1.68 1.26 0.86 5.56 34887 431 922 -53

US-Ne3 2002 BEELmBEELm 1.41 0.70 0.89 4.37 33514 576 922 -38

US-Ne3 2004 BNELmBNBAExp 0.99 1.12 0.92 2.99 31002 801 959 -16

US-Ne3 2004 BNELmBNBALm 1.08 0.43 0.93 2.86 30236 829 959 -14

US-Ne3 2004 BNELmBNEExp 1.05 1.02 0.91 3.31 31958 768 959 -20

US-Ne3 2004 BNELmBNELm 1.08 0.48 0.91 3.21 31814 819 959 -15

US-Ne3 2004 BNELogi 1.08 0.45 0.91 3.26 32131 825 959 -14

US-Ne3 2004 BNEnls 1.08 0.45 0.91 3.26 32105 824 959 -14

US-Ne3 2004 BNEBNBALog 1.09 0.38 0.93 2.97 30709 829 959 -14

US-Ne3 2004 BNEBNBLogAExp 1.08 0.68 0.94 2.82 29451 792 959 -17

US-Ne3 2004 BNEBNBLogALm 1.09 0.40 0.93 2.85 30071 828 959 -14

US-Ne3 2004 BNEBNELog 1.11 0.43 0.91 3.34 32103 808 959 -16

US-Ne3 2004 BEELmBEBAExp 0.89 1.08 0.92 3.10 31199 894 959 -7

US-Ne3 2004 BEELmBEBALm 0.99 0.40 0.93 2.73 30610 910 959 -5

US-Ne3 2004 BEELmBEEExp 0.91 0.97 0.92 3.03 31211 895 959 -7

US-Ne3 2004 BEELmBEELm 0.99 0.41 0.92 2.93 31496 909 959 -5

Table B.2. The parameter sets between Vcuptake and VIs, NDVI and EVI for sugar beet with

slope (a), intercept (b), determination coefficients (R2), root mean square error (RMSE), akaike

information criterion (AIC), difference (Diff., %) between simulated GPP (s.GPP) and observed

GPP (o.GPP). ’Version’ indicates which estimation model used, in detail, S is sugar beet, N is

NDVI, E is EVI, Lm is linear model, Exp is exponential model, and Log is logarithm model.

’Version’ is a combination of crop type-NDVI or EVI-entire or BA-model-crop type-NDVI or

EVI-entire or BA-model. The combination until the statistical model (Lm, Exp, Log, Logi, and

nls) indicates the LAI estimation model, the next combination indicates the Vcuptake estimation

model.

Site Year Version a b R2 RMSE AIC sim.GPP obs.GPP Diff. (%)

BE-Lon 2004 SNELmSNBAExp 1.09 1.09 0.91 3.87 46492 1341 1689 -21

BE-Lon 2004 SNELmSNBALm 1.08 0.97 0.91 3.76 46508 1383 1689 -18
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Site Year Version a b R2 RMSE AIC sim.GPP obs.GPP Diff. ( %)

BE-Lon 2004 SNELmSNEExp 1.95 0.89 0.83 8.23 52506 770 1689 -54

BE-Lon 2004 SNELmSNELm 1.59 0.83 0.83 7.04 52331 953 1689 -44

BE-Lon 2004 SNEnls 1.41 0.96 0.84 6.32 52013 1054 1689 -38

BE-Lon 2004 SNESNBALog 2.1 1.31 0.73 9.24 56515 674 1689 -60

BE-Lon 2004 SNESNBLogAExp 1.08 0.91 0.91 3.78 46557 1384 1689 -18

BE-Lon 2004 SNESNBLogALm 1.07 0.93 0.91 3.76 46677 1394 1689 -17

BE-Lon 2004 SNESNELog 1.51 0.84 0.83 6.71 52269 1005 1689 -40

BE-Lon 2004 SEELmSEBAExp 1.2 1.8 0.77 6.43 55201 1093 1689 -35

BE-Lon 2004 SEELmSEBALm 1.04 1.72 0.78 5.75 54768 1275 1689 -25

BE-Lon 2004 SEELmSEEExp 1.86 0.75 0.87 7.69 50328 823 1689 -51

BE-Lon 2004 SEELmSEELm 1.53 0.72 0.86 6.5 50636 1008 1689 -40

Table B.3. The parameter sets between Vcuptake and VIs, NDVI and EVI for potato with

slope (a), intercept (b), determination coefficients (R2), root mean square error (RMSE), akaike

information criterion (AIC), difference (Diff., %) between simulated GPP (s.GPP) and observed

GPP (o.GPP). ’Version’ is indicated which estimation model used, in detail, P is potato, N is

NDVI, E is EVI, Lm is linear model, and Exp is exponential model. ’Version’ is a combination

of crop type-NDVI or EVI-entire or BA-model-crop type-NDVI or EVI-entire or BA-model.

The combination until the statistical model (Lm, Exp, Log, Logi, and nls) indicates the LAI

estimation model, the next combination indicates the Vcuptake estimation model.

Site Year Version a b R2 RMSE AIC sim.GPP obs.GPP Diff. (%)

HKP 2010 PNELmPNBAExp 1.72 0.77 0.58 6.48 28193 275 555 -50

HKP 2010 PNELmPNBALm 1.46 0.3 0.64 5.64 27449 358 555 -35

HKP 2010 PNELmPNEExp 1.68 0.95 0.55 6.59 28487 270 555 -51

HKP 2010 PNELmPNELm 1.37 0.68 0.59 5.81 27992 351 555 -37

HKP 2010 PEELmPEBAExp 2.82 1.88 0.36 8.31 30074 125 555 -77

HKP 2010 PEELmPEBALm 2.12 1.23 0.46 7.48 29327 200 555 -64

HKP 2010 PEELmPEEExp 1.95 0.78 0.57 6.82 28277 242 555 -56

HKP 2010 PEELmPEELm 1.56 0.58 0.6 6.05 27876 317 555 -43
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Table B.4. The parameter sets between Vcuptake and VIs, NDVI and EVI for maize with slope

(a), intercept (b), determination coefficients (R2), root mean square error (RMSE), akaike in-

formation criterion (AIC), difference (Diff., %) between simulated GPP (s.GPP) and observed

GPP (o.GPP). ’Version’ indicates which estimation model used, in detail M is maize, N is NDVI,

E is EVI, Lm is linear model, Exp is exponential model, and Log is logarithm model. ’Version’ is

a combination of crop type-NDVI or EVI-entire or BA-model-crop type-NDVI or EVI-entire or

BA-model. The combination until the statistical model (Lm, Exp, Log, Logi, and nls) indicates

the LAI estimation model, the next combination indicates the Vcuptake estimation model.

Site Year Version a b R2 RMSE AIC s.GPP o.GPP Diff (%)

US-Ne3 2003 MEELmMEBAExp 0.96 0.08 0.94 4.32 28067 1364 1322 3

US-Ne3 2003 MEELmMEBALm 1.09 -0.58 0.93 4.91 29075 1279 1322 -3

US-Ne3 2003 MEELmMEEExp 0.94 0.23 0.93 4.7 28781 1373 1322 4

US-Ne3 2003 MEELmMEELm 1.07 -0.5 0.92 5.04 29467 1287 1322 -3

US-Ne3 2003 MNELmMNBAExp 1.3 0.11 0.9 7.12 30295 1005 1322 -24

US-Ne3 2003 MNELmMNBALm 1.41 -0.52 0.88 8.17 31400 981 1322 -26

US-Ne3 2003 MNELmMNEExp 1.31 -0.18 0.93 6.58 28818 1025 1322 -22

US-Ne3 2003 MNELmMNELm 1.42 -0.78 0.9 7.74 30325 998 1322 -25

US-Ne3 2003 MNEMNBALog 1.45 -0.69 0.88 8.45 31540.71 967 1322 -27

US-Ne3 2003 MNEMNBLogAExp 1.39 -0.43 0.89 8.01 31206.78 984 1322 -26

US-Ne3 2003 MNEMNBLogALm 1.45 -0.67 0.88 8.43 31496.32 967 1322 -27

US-Ne3 2003 MNEMNELog 1.46 -0.87 0.89 8.22 30859.34 975 1322 -26

US-Ne3 2003 MEEMEBALog 1.13 -0.71 0.92 5.31 29506.3 1246 1322 -6

US-Ne3 2003 MEEMEBLogAExp 1.04 -0.32 0.91 5.15 29838.98 1301 1322 -2

US-Ne3 2003 MEEMEBLogALm 1.12 -0.68 0.92 5.27 29479.06 1249 1322 -6

US-Ne3 2003 MEEMEELog 1.12 -0.66 0.91 5.39 29785.17 1251 1322 -5

US-Ne3 2003 MEELmMEBAnoNE2003 1.02 -0.53 0.9 5.37 30322 1356 1322 3

US-Ne3 2005 MEELmMEBAExp 1.41 0.97 0.84 7.82 49045 1010 1602 -37

US-Ne3 2005 MEELmMEBALm 1.47 -0.04 0.89 7.22 46233 1092 1602 -32

US-Ne3 2005 MEELmMEEExp 1.44 0.95 0.87 7.52 47293 996 1602 -38

US-Ne3 2005 MEELmMEELm 1.49 -0.05 0.92 6.93 43987 1081 1602 -33

US-Ne3 2005 MNELmMNBAExp 1.24 1.09 0.88 6.4 47090 1133 1602 -29

US-Ne3 2005 MNELmMNBALm 1.39 0.14 0.92 6.28 43450 1134 1602 -29
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Continued from previous page

Site Year Version a b R2 RMSE AIC s.GPP o.GPP Diff (%)

US-Ne3 2005 MNELmMNEExp 1.23 1.08 0.86 6.6 48034 1143 1602 -29

US-Ne3 2005 MNELmMNELm 1.37 0.14 0.91 6.45 45057 1149 1602 -28

US-Ne3 2005 MNEMNBALog 1.27 0.88 0.82 7.4 50118.77 1135 1602 -29

US-Ne3 2005 MNEMNBLogAExp 1.34 0.36 0.92 6.07 43999.96 1151 1602 -28

US-Ne3 2005 MNEMNBLogALm 1.43 -0.02 0.93 6.39 42809.26 1123 1602 -30

US-Ne3 2005 MNEMNELog 1.44 -0.09 0.91 6.68 44458.39 1125 1602 -30

US-Ne3 2005 MEEMEBALog 1.49 -0.14 0.9 7.19 45804.52 1094 1602 -32

US-Ne3 2005 MEEMEBLogAExp 1.46 0.15 0.9 7.04 45426.66 1080 1602 -33

US-Ne3 2005 MEEMEBLogALm 1.49 -0.17 0.9 7.2 45808.69 1095 1602 -32

US-Ne3 2005 MEEMEELog 1.52 -0.23 0.92 6.96 43334.57 1081 1602 -33

US-Ne3 2005 MEELmMEBAnoNE2003 1.36 -0.23 0.92 6.01 43622 1207 1602 -25

DE-Kli 2007 MEELmMEBAExp 1.12 2.14 0.85 4.76 33235 661 1048 -37

DE-Kli 2007 MEELmMEBALm 1.22 1.43 0.9 4.26 30575 692 1048 -34

DE-Kli 2007 MEELmMEEExp 1.13 2.31 0.83 5.03 33904 636 1048 -39

DE-Kli 2007 MEELmMEELm 1.23 1.55 0.9 4.45 31067 674 1048 -36

DE-Kli 2007 MNELmMNBAExp 1 1.8 0.83 4.41 34039 795 1048 -24

DE-Kli 2007 MNELmMNBALm 1.15 1.03 0.9 3.82 30886 783 1048 -25

DE-Kli 2007 MNELmMNEExp 0.99 1.82 0.81 4.62 34697 793 1048 -24

DE-Kli 2007 MNELmMNELm 1.15 1.06 0.88 4.06 31971 782 1048 -25

DE-Kli 2007 MNEMNBALog 1.19 0.88 0.91 3.87 30401.92 772 1048 -26

DE-Kli 2007 MNEMNBLogAExp 1.1 1.23 0.87 4.02 32347.09 794 1048 -24

DE-Kli 2007 MNEMNBLogALm 1.19 0.9 0.9 3.87 30505.69 773 1048 -26

DE-Kli 2007 MNEMNELog 1.2 0.89 0.89 4.08 31313.04 766 1048 -27

DE-Kli 2007 MEEMEBALog 1.23 1.34 0.91 4.26 30389.66 695 1048 -34

DE-Kli 2007 MEEMEBLogAExp 1.17 1.74 0.87 4.55 32362.6 683 1048 -35

DE-Kli 2007 MEEMEBLogALm 1.24 1.35 0.91 4.28 30438.72 692 1048 -34

DE-Kli 2007 MEEMEELog 1.26 1.37 0.91 4.41 30315.59 675 1048 -36

DE-Kli 2007 MEELmMEBAnoNE2003 1.13 1.41 0.91 3.79 30338 750 1048 -28
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