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Chapter 1
Introduction

Low-dimensional systems exhibit a wide range of physical behaviors, among which
magnetic properties have attracted huge interest (Hone and Richards, 1974; Kimura
and Tokura, 2000; Landee and Turnbull, 2013). This thesis reports on the struc-
tural and magnetic properties of the low-dimensional transition-metal oxychlorides
MOCI (M = Ti, Cr, Fe), the doped compound Sc,Ti;_,OCl (x = 0.005) and the
intercalated compound Na,TiOCl (z = 0.01). The transition-metal atoms are re-
sponsible for the magnetic properties. Single-crystal x-ray diffraction experiments,
which were performed with synchrotron radiation at DESY (Hamburg), have been
used to study these compounds.

The magnetic order in substances can be investigated by many techniques, such
as Mossbauer spectroscopy (for compounds that contain Fe atoms) (Maddock, 1997),
neutron diffraction (Chatterji, 2006), magnetic susceptibility (Gregson, 1974) and
so on. In the transition-metal oxychlorides, the change of the magnetic state (mag-
netic transition) is often accompanied by a structural distortion (Shaz et al., 2005;
Angelkort et al., 2009), which is typically small. However, x-ray diffraction is a very
sensitive technique to reveal these weak lattice distortions (Lovesey and Collins,
1996). Furthermore, the structure refinement against single-crystal synchrotron x-
ray radiation data can disclose the atomic coordinates and the site occupancies of
atoms, as well as the displacive modulation of the atoms. All of these informa-
tion can be used to develop an understanding of the interactions responsible for the

magnetic behavior.
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Layered isostructural compounds M OCI reveal different magnetic behaviors, re-
sulting from orbital order of the different numbers of 3d electrons of the M3* ions.
Ti* possesses a single 3d electron, that is responsible for the quasi-one-dimensional
magnetic character of TiOCI. Upon cooling, TiOCIl develops an incommensurate
state at T.o = 90 K, and then transforms into a spin-Peierls state at T,; = 67 K
(Seidel et al., 2003). Both phases have been found to be monoclinic (Shaz et al.,
2005; Schonleber et al., 2006). The other metal ions possess more than one 3d elec-
tron, forming two-dimensional magnetic systems and revealing antiferromagnetic
behavior at low temperatures. VOCI is in a two-fold magnetic superstructure at low
temperatures (Wiedenmann et al., 1983), exhibiting monoclinic symmetry with a
monoclinic angle of v (Schénleber et al., 2009). CrOCI possesses a four-fold magnetic
superstructure with a-—unique monoclinic symmetry at low temperatures (Angelkort
et al., 2009). FeOCI develops into an antiferromagnetic phase at 82.0(2) K, accom-
panied by a temperature-dependent c—unique monoclinic lattice distortion (Chapter
5 of the present thesis).

Additional electrons or holes play an important role in the superconductors with
low-dimensional structures (Hong and Hirsch, 1992; Yamanaka et al., 1996). Ti-
OCl, a layered Mott insulator at room temperature, is a suitable candidate for
the study of insulator-metal transitions by the doping of electrons or holes. The
quasi-one-dimensional structure of TiOCI favors the transport of electrons or holes.
Experimentally, the doping of electrons could be achieved by intercalating alkali
metal atoms (Kuntscher et al., 2010); and the doping of holes have been carried out
by replacing Ti by Sc (Beynon and Wilson, 1993).

A description of the origin of magnetism in materials is given in Chapter 2,
followed by a discussion of 3d orbitals in an octahedral crystal field. At the end a
definition of the spin-Peierls transition and the relation between nuclear structure
and magnetic structure are presented.

Chapter 3 focuses on x-ray diffraction experimental techniques, which have been
employed in this thesis. The criterion for determining the size of the crystal and
the technique of crystal holder are discussed. The properties of conventional and
synchrotron radiation as well as the setup of the used diffractometers and equipments

for cooling the crystals are described. The method for integrating the intensities of



synchrotron x-ray radiation reflections is explained.

Chapter 4 is dedicated to the crystal-chemical description of structural proper-
ties of the transition-metal oxyhalides MOX (M = Ti, V, Cr and Fe; X = Br, Cl).
The spin-Peierls state and phase transitions of TiOCI are reviewed. Furthermore,
an overview is given of the literatures on doped TiOCl compounds. The commen-
surate magnetic structures of VOCI and CrOCI and the incommensurate magnetic
structure of FeOCl are described.

FeOCl was the first compound synthesized among MOCI compounds. Chap-
ter 5 reports the magnetoelastic coupling in the incommensurate antiferromagnetic
phase of FeOCl. Temperature-dependent x-ray diffraction experiments reveal the
antiferromagnetic phase transition is accompanied by a monoclinic lattice distor-
tion. The temperature-dependent behavior of superlattice reflections indicates an
incommensurate character of the magnetic order.

Chapter 6 reports the behavior of Sc,Ti;—,OCl (z = 0.005). Different from the
absence of spin-Peierls phase in the other Sc,Ti;_,OCI (z > 0.01), a spin-Peierls-like
phase is revealed by the presence of commensurate superlattice reflections. However,
both the low temperature phases in Sc,Ti;_,OCl (x = 0.005) lack long-range order.

Chapter 7 reports the influence to the spin-Peierls state in TiOCl caused by
intercalating Na. Temperature-dependent synchrotron x-ray diffraction experiments
reveal that the phase transition temperatures of Na,TiOCl (z = 0.01) are changed
comparing to pure TiOCl, resulting in a larger temperature range of incommensurate
phase.

In chapter 8 the structural refinement of CrOCI at 8 K against the integrated
intensities of synchrotron x-ray radiation reflections is reported. Furthermore, the
magnetic structure of CrOCI at 8 K is refined with introducing the atomic modula-

tion parameters those are derived from nuclear modulated structure.
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Chapter 2

Theoretical background

2.1 Magnetism in materials

Magnetism is a character of materials in which there is a force of repulsion or attrac-
tion between like or unlike poles. An electronic current loop can generate a magnetic
dipole with the direction perpendicular to the plane of the current loop. The right-
hand-rule provides the direction of the north pole; the other direction is the south
pole. Within this model, atomic electrons in circular orbits around the nuclei will
produce magnetic moments, which are called orbital magnetic moments. In the year
1925, G. E. Uhlenbeck and S. Goudsmit proposed that the electron is not a simple
point charge, but rotating around itself. It can not only produce orbital magnetic
moment but also contribute a spin magnetic moment to the magnetic system. Both
of these kinds of magnetic moments contribute to the magnetism in materials. So
far we know from many experiments that electrons carry spin S = 1/2, which is
important to help us to understand the magnetic behavior of materials. Substances
can be classified according to their distribution of magnetic moment, m(r). If m(r)
= 0 at every point T, the substance can be either diamagnet or paramagnet. If m(r)
# 0, the substance possesses a magnetic structure. These magnetic materials can
be divided in two categories, ferromagnets and antiferromagnets (Borovik-Romanov
and Grimmer, 2006). Here we shall give a short review of disordered magnetics and

ordered magnetics.
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Paramagnet and diamagnet can be distinguished by the sign of the magnetic
susceptibility x.,,. The concept of magnetic susceptibility comes from the following
equation:

M = xnH (2.1)

In this equation M is the magnetization of the material, and H is the strength of
the applied magnetic field. Both of them are measured in amperes per meter (SI
units).

Diamagnetism is an intrinsic property of all materials, which is the tendency
of a material to oppose an applied magnetic field. The diamagnetic susceptibil-
ity is negative. For most materials it is very small, around -107% and isotropic
(Borovik-Romanov and Grimmer, 2006). Diamagnetism can only be observed in a
purely diamagnetic material. If any other magnetism is present, the diamagnetism
is too weak to be observed directly. There are no electrons with unpaired spins in

diamagnetic materials.

Most paramagnetic materials include ions or atoms with a partly filled inner
electronic shell, such as the 3d shell of transition metals, the 4f shell of rare earths,
and the 5f shell of actinides. In 3d ions the orbital magnetic moments are quenched,
therefore only the spin-magnetic moments should be considered. There are unpaired
electrons in a paramagnetic material. The paired electrons must point their spin
magnetic moments in opposite directions, resulting in counteracting each other’s
moments. The unpaired electrons produce a spin magnetic moment pointing in any
direction. Under an external magnetic field, the magnetic moment originated in

unpaired electrons will tend to align with the external magnetic field.

Ordered magnetic materials can be either ferromagnets or antiferromagnets. In
ferromagnetic materials, magnetic moments of different atoms line up parallel with
each other in a region called a magnetic domain. The magnetic field is intense
within the domain, but the material will show a non-magnetized state due to differ-
ent orientations of the magnetization of different domains. When a ferromagnetic
material is put into an external magnetic field, the magnetic domains will tend to
align parallel to the field. After the external magnetic field being removed, these

magnetic domains still maintain a parallel orientation. All ferromagnetic materials
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will lose the ferromagnetic property above the Curie temperature 7,.. Above this
temperature, the materials are paramagnetic.

In antiferromagnetic materials, the magnetic moment, which is generated by
the spins of electrons of one atom, align with neighboring atoms, with magnetic
moments pointing in opposite directions. Therefore, antiferromagnets have zero
magnetization. Most of antiferromagnetic order may exist at low temperatures and
disappear above the Néel temperature T. The material is paramagnetic above the
Néel temperature. Most transitions from a paramagnetic into an ordered magnetic
state are second-order phase transitions (Borovik-Romanov and Grimmer, 2006).

Another special magnetic state is ferrimagnetism. In ferrimagnets, as antiferro-
magnets, neighboring magnetic moments from different sublattices align in opposite
directions. But the magnitudes of opposing magnetic moments in different sublat-
tices are not equal to each other and hence a spontaneous magnetization remains

(Spaldin, 2010). Their macroscopic behavior is similar to that of ferromagnets.

2.2 Interactions between electrons

Strongly correlated electronic materials are a wide category of electronic materials,
which show unusual electronic and magnetic properties. In simple solid state theory,
the electrostatic interactions between electrons are ignored. There each electron is
regarded as an individual electron, without interacting with other electrons. But in
many materials, the interactions between electrons cannot be neglected. In strongly
correlated electronic systems, many novel physical phenomena appear due to the
strong interactions between electrons. Examples are high-temperature supercon-
ductors, charge-density waves in one-dimensional conductors. In transition-metal
materials MOX (M = Ti, V, Cr and Fe; X = Br, Cl), the magnetic moments arise
from the spins of the d electrons of the transition-metal atoms M. The d electrons
interact with each other through orbital coupling.

In an octahedral crystal fields, the XYZ coordinate system is defined by the six
anion ligands that surround the cation. There are five 3d orbtials, which are labeled
3dyy, 3dy., 3dy., 3d.2 and 3d.» (Fig. 2.1 a). 3dyy, 3d,. and 3d,, belong to ts,
group, 3dz2_,2 and 3d.> belong to e, group. Owing to the repulsions between the d

—y2,
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Figure 2.1:  (a) The shapes and orientations of the d orbitals. Graphic was taken
from http://chem.wisc.edu/deptfiles/genchem/sstutorial/Text5/Tr53/tx53.html. (b) The
energy of the five 3d orbitals in an octahedral crystal fields.

orbital electrons and the surrounding negative charge, the energies of the d orbitals

will be influenced depending on the geometry of the surrounding anions. The energy
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of t9, is lower than that of e, (Fig. 2.1 b). In this thesis, a different XYZ coordinate
system has been employed, which relates to the site symmetry of M and the lattice
symmetry of MOCIL Here, x is along b, y is along ¢, and z is along a (Fig. 2.2
a). Thus the energy of 3d,,, 3d,., and 3d,>
orbitals in this setting (Fig. 2.2 b).

_y2 is lower than that of the other two

y O\ / o \ / o z//a
M M
/ \ / \ ¢
Cl Cl Cl
> X b
(a)
E dxy dz2 eg
A /——
// dy2.y2dyz dxz tog
/ /———
arid
s -
Z
—
(b)

Figure 2.2: (a) The setting of XYZ coordinate system in M OCIl (M = Ti, V, Cr and Fe)
crystal. (b) The energies of the five 3d orbitals in an octahedral crystal field in the setting
of (a). 3dyz, 3dy., and 3d,2_,2 possess lower energy.

The behavior of transition-metal oxyhalides M OCI depends on the numbers of
d electrons of the transition-metal atom, and the 3d orbitals they occupy. The
trivalent cations of the transition-metal atoms Ti, V, Cr and Fe possess 1, 2, 3 and

5 d electrons, respectively. Detailed discussion will be given in the Chapter 4.
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2.3 Spin-Peierls transition

The name ”spin-Peierls transition” originates from the fact that this transition is
the magnetic analogue of the Peierls transition, which is a metal-insulator transition
occurring in quasi-one-dimensional metals. The Peierls transition is accompanied by
static displacements of ions according to a wave with wave vector () = 2kp, where
kr is the Fermi wave vector in a 1-D crystal. The transition gives rise to a splitting
of the conduction band at k = kp, and a reduction in the energy of electrons (Buzdin
and Bulaevskii, 1980).

The spin-Peierls transition was predicted by Chesnut (1966) in the general con-
text of physical chemistry and the properties of certain organic free radicals in par-
ticular (Miller, 1983). The initial experimental studies of this transition were limited
to a few organic compounds, TTF-MS,C4(CF3)y (M=Cu,Au; TTF is tetrathiaful-
valene) (Bray et al., 1975; Jacobs et al., 1976), MEM(TCNQ)s (MEM is N-methyl-
N-ethyl-morpholinium, TCNQ is ditetracyanoquinodimethanide) (Huizinga et al.,
1979), M-TCNQ (M=Li,K) (Holz et al., 1977; Lépine et al., 1978; Takaoka and Mo-
tizuki, 1979). CuGeO3 was the first inorganic spin-Peierls transition compound, at-
tracting widespread attention due to its high magnetic moment densities (Hase et al.,
1993). Transition-metal oxyhalides TiOCl and TiOBr were found to be spin-Peierls
compounds in spite of some unconventional features, for instance the existence of
two phase transitions (Seidel et al., 2003; van Smaalen et al., 2005).

The spin-Peierls transition occurs in a crystal that possesses quasi-one-dimensional
antiferromagnetic spin chains of spin 1/2 and a finite magneto-elastic coupling. A
material with S > 1/2 is not favorable for a spin-Peierls transition, since the quan-
tum fluctuations decrease rapidly with increasing magnetic moment (Hoinkis, 2006).
The spin-Peierls transition is a kind of magneto-elastic transition, which can be de-
scribed as follows: a substance contains a series of quantum spin chains which can
be described by a spin 1/2 Heisenberg Hamiltonian with nearest neighbor exchange
coupling of antiferromagnetic type (Miller, 1983). The interchain magnetic coupling
is small and can be neglected in first approximation. The exchange energy of the
spin chains (J) is a function of distance (a) between neighboring spins. Above a

phase transition temperature 7y, the magnitude of J is constant (Fig. 2.3 b). Below
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Figure 2.3: Schematic representation of (a) paramagnetic, (b) Antiferromagnetic states,
and (c) spin singlet pairs in spin-Peierls compounds. The exchange coupling constants
Ji1>Js.

Ty, these distances are not uniform anymore, resulting in a spin-Peierls dimerized
ground state. The cations move alternately closer and further apart. Hence, the
exchange energy of the spins J; and Jo are not equal to each other (Fig. 2.3 ¢). In
the meanwhile, the lattice (unit cell) is doubled, resulting in the existence of a two-
fold superstructure. Unlike the long-range magnetic order of the antiferromagnetic
state, there is no long-range magnetic order in spin-Peierls state. The superlat-
tice magnetic reflection is absent in the neutron diffraction. Another characteristic
property of spin-Peierls materials is a drop of the magnetic susceptibility below the
phase-transition temperature due to the formation of spin singlets. The magnetic
free energy decreases due to the formation of singlet spin pairs outweighs the in-
crease in lattice free energy occurring as a result of the dimerization of the regular

array. The role of the electron-phonon coupling is taken over by the spin-phonon
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coupling (Hoinkis, 2006).

2.4 Relations between nuclear structure and mag-

netic structure

Although x-ray diffraction experiments cannot measure the magnetic moments di-
rectly, the magnetic induced displacement modulation can be linked to the magnetic
modulation (spin wave). A long-period magnetic modulation wave vector q,, will
often induce a lattice modulation of q = 2q,,. This period halving arises because
the atomic displacements are sensitive mainly to the magnitude of the orientational
changes from ion to ion (Lovesey and Collins, 1996). The magnetic modulation and

the induced displacement in a simple lattice are shown in Fig. 2.4.

Nominal lattice

X —>

Magnetic modulation

Displacement
modulation

P e

<

Figure 2.4: The magnetic modulation and induced displacement modulation in a simple
lattice. Graphic was replotted from Non-resonant magnetic diffraction from antiferromag-
netis (Lovesey and Collins, 1996).



Chapter 3

X-ray experimental techniques

3.1 Sample preparation

3.1.1 Criterion for determining the size of crystal

All oxyhalide crystals, which are investigated in the course of this thesis have been
grown in the Lab of Crystallography, University of Bayreuth by Alfred Suttner. The
chemical vapor transport method was employed for the synthesis of the compounds
(Schéfer et al., 1956; Schéfer et al., 1958; Schéfer and Wartenpfuhl, 1961; Binnewies

et al., 2012). Considering the beam sizes of 0.5 x 0.5 mm?

at the synchrotron,
the longest length of a crystal should be less than 0.5 mm, otherwise during the
experiment parts of the crystal will be out of the beam, which results in the wrong
intensities of the reflections. Another criterion is a practical rule about the linear
absorption coefficient, .

Topt = s (3.1)
where 7,,; stands for the optimum thickness of crystal and p is the linear absorption
coefficient. In the synchrotron experiments, x-rays with a wavelength of 0.5600
A was employed, which is involved in the determination of the linear absorption
coefficients. According to the linear absorption coefficient in Table 3.1, the optimum

size of crystal should be smaller than 0.4 mm.

Furthermore, larger crystals increase the possibilities of large mosaic spreads and

13
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Table 3.1: The linear absorption coefficient of transition-metal oxychlorides. Values were
calculated by the computer program JANA2006.

Linear absorption coefficient (mm™!)

Compound Mo K, radiation 0.56 A
TiOCl 5.084 2.549
VOCI 5.900 2.905
CrOCl 7.002 3.483
FeOCl 8.503 4.186

defects. This makes the reflection peaks broader, which is unfavorable for diffraction
studies. But the rule for selecting the crystal is not the smaller the better, because
a too small crystal cannot provide enough scattering power. Some reflections will
be too weak to be recognized from background, especially for the weak satellite
reflections. Optimal dimensions of a crystal are 0.1 x 0.1 x 0.1 mm?. The layered
character of the structure of M OCl is responsible for a highly anisotropic morphology
of the crystals. The longest length of the sample can be extended to 0.3 mm, from

which the intensity of reflections can benefit.

3.1.2 Technique of crystal holder

Crystals are carefully chosen under an optical microscope by a very thin metal pin.
There are two kinds of materials for mounting crystals: glass fibers and carbon
fibers, with the properties of low and high thermal conductivity, respectively. At
room temperature both of these fibers can be used. But at low temperature, the
most suitable candidate of fibers is based on the cooling technique. Glass fibers
should be employed with open-flow cryostats, while carbon fiber is utilized with
closed-cycle cryostats, which is the choice of our experiments. Carbon fiber is glued
together as a piece of hair by two-component glue, and then stuck to a copper holder
with the help of thermal conducting silver lacquer.

The sample is glued to the end of carbon fiber, where a sharp corner should be
made by cutting the fiber. The optimal length of the fiber is about 2.5 mm above
the copper pin (Fig. 3.1).

FeOCl and CrOCI crystals are stable in an atmospheric environment, therefore
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(a)

Figure 3.1: Schematic diagram of how to mount crystal. (a) crystal, (b) carbon fiber, (c)
copper holder.

it is not difficult to attach the samples to the carbon fiber. TiOCI and its doped
samples by Sc or Na are moderately air-sensitive, for the reason of that we should

finish preparing our sample in about 5 minutes and put it back into glove box.

3.2 X-ray diffraction experiments

X-rays were discovered by Wilhelm Conrad Rontgen in 1895. X-rays are electromag-
netic wave with the wavelength in the range from 0.1 to 100 A, between gamma ray
and ultraviolet, corresponding to energies in the range 100 eV to 100 keV. Generally,
x-rays can be generated by two methods. The first method is employing high-energy
electrons to hit an anode metal target in vacuum, which can be tungsten, molybde-
num, copper, and others. The generated radiation includes bremsstrahlung with a
continuous spectrum. The wavelength of the much more intense characteristic radi-
ation depends on the anode metal. Another method of generating x-ray radiation is
synchrotron radiation that is provided by particle accelerators. It is emitted from
fast electrons, which are accelerated in magnetic fields, with the velocity almost
equal to light velocity.

The single-crystal diffractometer is an instrument used to measure Bragg reflec-
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tions of crystals. In this thesis a Mar345 dtb diffractometer and a Nonius Mach3
diffractometer were employed for testing the crystal quality at the University of
Bayreuth. The diffractometers contain x-ray sources, goniometers and detectors as
the three main components. The difference between them is that the Mar345 dtb
diffractometer was equipped with an area detector but the Mach3 diffractometer
was equipped with a point detector. Further experiments were performed at the
synchrotron radiation station Hasylab beamline D3, where a 4-circle difffractometer

with a point detector was used.

3.2.1 Experiments by the radiation of sealed tube
Experiments on the Mar345 dtb diffractometer

It is difficult to prepare excellent crystals of MOX, because of the fragile property,
especially for sodium- and scandium-doped TiOCl. So we need to test hundreds
of crystals, which is a time consuming work. Compared to a point detector, a
diffractometer equipped with an area detector has several advantages, for instance,
collecting data without determining the orientation of the crystal. According to
this benefit, a diffractometer with an area detector is an efficient instrument for a
preliminary test of crystal quality.

The experiments were performed with a Mar345 dtb desktop diffractometer in
the Laboratory of Crystallography, University of Bayreuth (Fig. 3.2). The mounted
crystals ware placed on a goniometer head, with the help of which the crystals can
be centered easily. The sample can be rotated around the ¢-axis, perpendicular to
the incident beam. The Mar345 dtb software was used to control the diffractometer
and collect data automatically (Klein, 2010).

The quality of crystal is judged by the shapes of the scattering points that are
collected on the area detector. Without considering the different wavelengths of the
Ka; and Koy radiation, the reflections from a good crystal should show single dots,
while those from not good ones have other shapes. Actually, double peaks appear
very often. The Mar345 dtb diffractometer was equipped with molybdenum as the
anode, and the incident beam is composed of two wavelengths due to the radiations

of Ka;y and Kay. If double peaks resulting from the effect of Koy and Koy are
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Figure 3.2: Setup of a mar345 dtb imageplate diffractometer (installed at the Laboratory
of Crystallography, University of Bayreuth). (a) ¢-axis, (b) 2-dimensional detector, (c)
cooling system, (d) crystal, (e) monochromator, (f) rotating anode x-ray source.

arranged in the radial direction, the crystal quality is good. Otherwise, it means
bad crystal quality (Fig. 3.3).

Experiments on Nonius Mach3 diffractometer

Further experiments for testing the quality of crystals were performed on a Nonius
Mach3 diffractometer, which is equipped with a scintillation counter (point detector)
and a rotating anode generator of molybdenum target (Fig. 3.4). The acceleration
voltage and electric current of this diffractometer were set to be 55 kV and 75 mA
respectively, corresponding to a generating power of 4.125 kV. It is installed at the
Laboratory of Crystallography, University of Bayreuth. The Mach3 diffractometer
is a four-circle diffractometer in k-geometry, controlled by a software CADA4.

The quality of crystals can be examined by the following two stages. First of all,

The orientation of the crystals should be determined. In principle, the orientation



18 CHAPTER 3. X-RAY EXPERIMENTAL TECHNIQUES

(a)

(b)

’

Figure 3.3: Sections of Mar345-image plate frames exposed over a ¢-range of 1 deg.
(a) The frame is obtained from FeOCI (code: foc031), the reflections spots in the left
rectangular box indicate the good quality of this crystal, the two reflections in the right
rectangular box arranged in the radial direction is the result of the two wavelengths of
incident beam. (b) The frame is obtained from FeOCI (code: foc044), the reflections spots
in the rectangular box shows the bad quality of this crystal. C marks the position of the
primary beam.

matrix can be calculated from the setting angles of about 10 reflections (at least 3
reflections). The speed for searching reflections should not be too fast, otherwise
some reflections can be missed. Considering the inorganic nature of our sample, a
maximum speed of (12 x 16.48) deg/min was used in the reflections searching stage.
Discrimination factor of 2.5 was chosen to reduce the time spent in trying to center
weak peaks or noise. However, the preliminary orientation matrix was not so accu-
rate, a further procedure was necessary to obtain more precise orientation matrix.
Thus, a list of 25 reflections having considerable intensities and scattering angle 20°
< 260 < 25° was prepared for refining the orientation matrix. After centering these

25 reflections, the final orientation matrix can be determined.
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Figure 3.4: Setup of a Mach3 four-circle diffractometer with k-geometry (installed at the
Laboratory of Crystallography, University of Bayreuth). (a) goniometer head with crystal,
(b) ¢-axis, (c) k-axis, (d) w-axis, (e) 20 arm, (f) detector collimator, (g) scintillation
counter, (h) incident beam collimator, (i) rotating anode, (j) open-flow cooling system,
(k) beam stop.

In order to examine the quality of crystal, w scans were performed on strong
reflections that are distributed over the three reciprocal lattice directions of the
crystal. The quality of the crystal can be determined by inspecting the shape and
FWHM of the profiles of the reflection peaks. An ideal shape should only contain
a single sharp peak, and the FWHM should not exceed the lowest experimentally
reachable value of about 0.1°. Thus the profiles with peak splitting or with large
FWHM are not suitable for synchrotron experiments. In the experiments the rota-
tion angles of w scans are 1°. Gaussian or pseudo-Voigt functions were employed to
fit the profile of peaks, from which the FWHM are determined. Here several profiles
of w scans on different FeOCI crystals are presented (Fig. 3.5 ).
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Figure 3.5: (a) w scan of (0 2 0) on crystal FOC013; the FWHM is 0.088(1) deg. The
single peak indicates the good quality of this crystal. (b) and (c) w scans of (0 2 0) and (0
0 4) on crystal FOCO015; the FWHM is 0.109(1) deg. The split on peak (0 0 4) indicates
the insufficient quality of this crystal. (d) w scan of (0 2 0) on crystal FOC041; the FWHM
is 0.239(5). Large FWHM indicates the insufficient quality of this crystal. All FWHM
were derived from the fitting of Gauss functions.

Technique to protect the air sensitive crystal

The quality of TiOCl, and TiOCl doped by sodium or scandium, will become worse
upon prolonged exposure to air. For this reason, we can apply the nitrogen open-
flow cryostat during the measurements both on Mar345 dtb diffractometer and on
Nonius Mach3 diffractometer. In contrast to low-temperature experiments, we set
the temperature of the cryostat to room temperature. This operation avoids the
crystal to come in contact with air. In the experiment with synchrotron radiation

the crystals were in vacuum in a beryllium cylinder, therefore no additional action
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was necessary to protect the samples from air.

3.2.2 Experiments by synchrotron radiation
Generation of synchrotron radiation

The name of synchrotron radiation arise from a specific type of particle accelera-
tor. Synchrotron radiation is widely used in many fields, such as materials science,
medicine, condensed matter physics and biology. Among these fields, structure
analysis is an important application. Synchrotron radiation is produced in parti-
cle accelerator storage rings, in which bending magnets redirect the propagation
direction of the particles and keep them in a closed orbit. The frequencies of radia-
tion, which is generated in this way, can cover the entire electromagnetic spectrum.
The typical range of spectrum lies between infrared and hard x-ray radiation (Jens
Als-Nielsen, 2011). Many x-ray optical devices are equipped in a beamline, for ex-
ample attenuators, slits, crystal monochromators, and mirrors. They are responsible
for adjusting the bandwidth, focus, photon flux, beam dimensions, collimation of
the rays and so on. Most of the experiments in this thesis were performed at beam-
line D3 of the Hamburger Synchrotronstrahlunglabor (HASYLAB) at the Deutsches
Electronen-Synchrotron (DESY) in Hamburg, Germany. The beamline was equiped

with a Huber four-circle diffractometer.

Advantages of synchrotron radiation

Compared to the conventional x-ray radiation generated by rotating anode, syn-
chrotron radiation has many advantages in single-crystal x-ray diffraction experi-
ments. First of all, the wavelength of synchrotron x-ray radiation is adjustable. In
an analysis of structure by x-ray diffraction, the x-ray absorption by a crystal is an
unavoidable effect. It can reduce the intensity of outgoing radiation, resulting in an
inaccurate structure solution. Both the crystal size and the absorption coefficient
can affect the magnitude of the x-ray absorption. The linear absorption coefficient
is related both to the compound forming the crystal and to the energy of the radia-

tion. Generally, employing x-ray with shorter wavelength can reduce the absorption.
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However, shorter wavelength corresponds to lower 260 angle of Bragg’s Law. Then
too many reflections are located in the low 26 shell, which is not conducive to accu-
rate structure refinement. All the synchrotron experiments in this thesis employed
a wavelength of 0.5600 A, corresponding to the linear absorption coefficient in Table
3.1.

The effective intensity of the x-ray synchrotron radiation beam is determined by
the number of photons produced per second, the angular divergence of the photons,
the cross-sectional area of the beam, and the a relative energy bandwidth (BW) of
the monochromator crystal. These aspects can be combined into a single quantity,

called the brilliance. Then, one defines the figure-of-merit for the source as:

Photons/second
(mrad)?(mm? source area)(0.1% BW)’

Brilliance = (3.2)
The intensity in photons per second after the monochromator crystal is the prod-
uct of the brilliance, angular divergences set by the horizontal and vertical aper-
tures (in milli-radian), the source area (in mm?), and the relative bandwidth of the
monochromator crystal relative to 0.1% of the central wavelength or frequency (Jens
Als-Nielsen, 2011).

The maximum brilliance of the third generation synchrotrons is about 10 orders
of magnitude higher than that of a conventional rotating anode at the K, line (Jens
Als-Nielsen, 2011). The higher magnitude of brilliance, the more photons that can
be concentrated on a spot. It gives support to observe very weak satellite reflections
of the modulated crystal structure, which is hard to find by conventional x-ray
radiation sources. For this reason, the experiments presented in this thesis were
performed with synchrotron x-ray radiation. An important aspect of determining
the full width of half maximum (FWHM) of Bragg reflections is the divergence
of synchrotron radiation beam. The lower beam divergence respects to narrower
FWHM. On account of the excellent properties of beam divergence, the FWHM of
the reflections by synchrotron x-ray diffraction is mainly determined by the crystal
mosaic, which can reach as low as 0.01°. On the other hand, the minimal FWHM of
the reflection measured on Nonius Mach3 diffractometer is about 0.1°, dominated

by the properties of the x-ray beam (Fig. 3.6). Therefore a crystal that was tested
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Figure 3.6: Diffracted instensity as a function of the scattering angle w for the reflections
(200) of CrOCI1 (Code:CROCI17). (a) data was collected by diffractometer Nonius Mach3
in University of Bayeruth, FWHM was derived from the fitting of Gauss function. (b) data
was collected at Hasylab beamline D3, FWHM was derived from the fitting of Lorentz
function.

to be a good crystal on Mach3 diffractoemeter may show split peaks by the w scans

at synchrotron station.

3.2.3 Control of the temperature of the crystal

All the phase transitions and lattice distortions of transition-metal oxyhalides M OCI
occur at low temperatures, hence a cooling system is required that can provide
precise and stable temperatures of the crystal. Considering both the temperature
range of the experiments from room temperature down to 8 K and the boiling
point of nitrogen of 77.35 K at the ambient pressure, helium was selected as cooling
transport medium. Two different cryostats, open-flow and closed-cycle cryostat,
were employed in the experiments of this thesis.

On Nonius Mach3 and Mar345 dtb diffractometer, open-flow cryostats is an op-
tional components. The experiments of preliminary test of crystals at University
Bayreuth were performed at room temperature, therefore low temperature circum-
stance is not needed. But during the experiments on TiOCl and TiOCI doped by
sodium & scandium, open-flow cryostat was applied to generate nitrogen stream to

protect crystals from air. Both open-flow cryostat and closed-cycle cryostat can be
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used on Huber four-circle diffractometer, as well as on beamline D3 at Hasylab. The
model of closed-cycle cryostat is DE-202G, specially designed to fit into the Huber
512, 4 circle goniometer by APD Cryogenics Inc.. The temperature can be adjusted
between room temperature and 6.5 K.

The closed-cycle cryostat operates on a pneumatically driven Gifford-McMahon
refrigeration cycle (GM Cycle). First of all, helium gas compressed by a compressor
is transported into an evacuated chamber, and then the pressure differential drives
the displacer to open a path allowing the gas at the bottom of chamber to expand
and cool. Second, the rotation of the valve disk opens the low pressure path to the
compressor allowing the gas to flow back, and then the pressure differential returns
the displacer to its original position. The whole procedure can run continuously for
an indefinite period, without refilling the helium gas but consuming large amounts
of electrical power.

The crystal is mounted at the end of the cold finger of the cryostat, connected
to an oxygen-free copper cylinder that is cooled by compressed helium vapour. An
electrical heater is attached to the copper cylinder to regulate the crystal temper-
ature up to 325 K. As discussed in section 3.1.2, carbon fibers are used to connect
crystal to the copper holder. The end of cryostat including crystal is covered by two
beryllium caps, enclosing an evacuated volume. This part can produce a thermal
isolation and prevent icing of the cooled crystal.

The beryllium caps also generate three unfavorable effects. With the temperature
decreasing, not only the copper cylinder but also the other parts of cryostat will
shrink, resulting in the change of crystal position. The beryllium caps prevent
recentering the crystal optically, which is the first disadvantage. The height of crystal
was adjusted by the knowledge from previous experiments (Angelkort, 2009), and
examined by intensity measurements of reflections and the help of the primary beam.
The second disadvantage is the powder diffraction rings generated by beryllium
caps. The intensity of reflections of the samples, that are located on these rings
cannot be correctly determined. To reduce this effect, a detector collimator was
employed. The last and the most serious effect is the limitation of the movement
of the diffractometer axes, which is caused by the cryostat and compressor hoses.

Due to the restrictions in 26, w, y, and w, not all octants of reflections (h k )
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can be reached. This makes many reflections unreachable, which may include those

required for observing the monoclinic distortion by w-26 maps.

3.3 Integration of synchrotron x-ray radiation re-

flections

In contrast with that of the conventional laboratory diffractometer, the intensity of
the primary beam of the synchrotron is gradually decreasing in time, because of the
energy loss in the particle storage ring. The initial beam current at DORIS III is
about 120 mA at the beginning of each run cycle, then it gradually reduced to about
90 mA. For this reason, the diffracted intensities measured by the detector not only
depend on the orientation of the crystal but also on the intensity of incident beam.
Hence, it is important to scale the measured intensities according to the intensity of
incident beam. The data collection at beamline D3, Hasylab, Desy, was performed
in a step-scan-measured way. The integrated intensities of reflections were obtained
by processing the raw data with the computer program REDUCE (Eichhorn, 1991).
REDUCE includes routines that perform a profile analysis, combined with auto-
matic search algorithms to separate peak from background; routines for background
subtraction and calculation of the integrated intensity and its standard deviation;
segments for treatment of bad’ profiles, of weak reflections, and of counts from
beam-monitors; plot and analysis standard reflections (Eichhorn, 1991).

During the data collection, the vertical monitor counts CNT1 and horizontal
monitor counts CNT2 were measured at the same time and stored in data files. A
monitor count rate for scaling CMON was used in REDUCE. Data were multiplied
by the factor CMON /(< CNT1 >+ < CNT2>), < CNT1 > and < CNT2 >
being the countrates of the two beam-monitors (Eichhorn, 1991). Generally, it is
recommended to set CMON equal to the average monitor count rates. The quality
of integrated and scaled intensities can be inspected via checking the intensities of
standard reflections, which were measured periodically. Fig 3.7 shows the intensities
of standard reflection (0 -1 -3), during the data collection of scandium-doped TiOCI,
before and after being scaled by program REDUCE. It is obvious that the intensities
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Diffracted intensity as a function of time for the standard reflection (0 -1

-3) during the data collection of Sc-doped TiOCIL. Open circles indicate the intensity
before correction; and closed circles indicate those after correction for variation of the

primary-beam intensity..

of (0 -1-3) tend to be constant after scaling, indicating all the reflections measured

between these standard reflections were also scaled properly.



Chapter 4

Transition-metal oxyhalides M OX

4.1 Crystal structure of the transition-metal oxy-

halides

FeOCl was the first compound, which was synthesized among the transition-metal
oxyhalides MOX (M = Ti, V, Cr and Fe; X = Br, Cl). These compounds have been
widely studied because of their quasi-two-dimensional crystal structures, which pro-
vide strongly anisotropic properties, for instance electrical and magnetic properties.
Compounds MOX crystallize in layered FeOCl-type structure at room temperature
(Goldstaub, 1935). The symmetry is orthorhombic with spacegroup Pmmn (No.
59) and Z = 2 formula units per unit cell. Metal atoms and oxygen atoms form
a double layer, which is sandwiched between layers of halogen atoms. These slabs
stack along the lattice direction c, metal-oxygen double layer is separated by two
halogen layers. The halogen layers between adjacent bilayers along ¢ were connected
to each other by a weak van der Waals force. In the lattice direction b, every kind of
atoms forms a chain (Fig. 4.1). The ionic bonding inside the metal-oxygen double
layers is expected to possess a partial covalent character, while the halogens are
expected to have pure ionic characters (Macovez et al., 2007). The metal ion is sur-
rounded by a distorted octahedron defined by two halogen and four oxygen atoms,
with mm2 point group symmetry. These octahedral groups share edges along the b

axis and corners along the a axis. The lattice parameters of MOX (M = Ti, V, Cr

27
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Figure 4.1: MOX crystal structure at room temperature. The labels M ; O and X are
referring to metal, oxygen and halogen atoms, respectively.

and Fe; X = Cl and Br) are listed in Table 4.1.

4.2 Spin Peierls phase transition of TiOCIl and
TiOBr

TiOCI has been confirmed to possess the spin-Peierls ground state below 67 K (Sei-
del et al., 2003; Shaz et al., 2005). It is the third inorganic spin-Peierls compound
after GuGeO3 and NaV,0;5 (Hase et al., 1993; Fujii et al., 1997). Recently another
compound TiPO, was proposed to be a spin-Peierls compound (Law et al., 2011;
Bykov et al., 2013). In contrast to a single phase transition occurring in canonical
spin-Peierls compounds, TiOCl and TiOBr undergo two phase transitions on cooling,
which were evidenced by temperature dependencies of the magnetic susceptibilities,
heat capacities, ESR data, NMR spectra and synchrotron x-ray diffraction exper-
iments (Seidel et al., 2003; Kataev et al., 2003; Imai and Chou, 2003; Hemberger
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Table 4.1: Lattice parameters of MOX (M = Ti, V, Cr and Fe; X = Br and Ti.) at
room temperature.

a (A) b (A) c (A) V(A

TiOCl® 3.7826(1) 3.3662(1) 8.0519(1) 102.41
VOCIb 3.7691(12) 3.3004(10) 7.9219(30) 98.54
CrOCI° 3.8525(7) 3.1714(5) 7.6932(19) 93.99
FeOCI® 3.7773(6) 3.3046(7) 7.9156(16) 98.80
Sc,Tiy_, OCI¢ 3.7794(11) 3.3385(7) 8.0440(15) 102.11
Na, TiOCI¢ 3.8115(48) 3.3875(40) 8.1070(104) 104.67
TiOBr* 3.78458(2) 3.48528(2) 8.52520(5) 112.45

“Powder diffraction on Spodi by A. Schéenleber.
®Schénleber et al. (2009).

“Present work; z = 0.005 and y = 0.01.

dSasaki et al. (2005).

et al., 2005; Shaz et al., 2005; van Smaalen et al., 2005; Schonleber et al., 2006). As
the temperature is lowered, the room temperature phase transforms into a so called
incommensurately modulated intermediate phase at T,.o (91 K for TiOCI; 48 K for
TiOBr). A following phase transition appears at T.; (67 K for TiOCI; 28 K for
TiOBr), transforming the incommensurate modulated structure into a commensu-
rate modulated structure which is a twofold superstructure of the room temperature

structure.

In TiOCl, the phase transition at about 67 K was confirmed by magnetic sus-
ceptibility experiments as a first-order phase transition, which was also in clear
contrast with canonical spin-Peierls transition of second order (Hoinkis et al., 2005).
The character of the phase transition at about 91 K was considered of second-order.
However, this character was questioned by Schonleber et al. (2008), and a first-order
character was proposed. The magnetic susceptibility above T., can be explained by
a Bonner-Fisher model of a one-dimensional Heisenberg spin chain (Seidel et al.,
2003).

The nature of the intermediate phase between T, and T, is very difficult to
establish. The formation of incommensurate order in this phase was first realized
from NMR experiments (Imai and Chou, 2003). The incommensurate modulated

structure was first proved by x-ray experiments on TiOBr (van Smaalen et al.,
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2005), and then confirmed also by x-ray diffraction on TiOCl (Krimmel et al., 2006).
Detailed structure refinements of the intermediate phase of TiOCl was carried out by
Schénleber et al. (2006). Compared to the high temperature orthorhombic phase,
the space group symmetry was lowered to a monoclinic c-unique (v = 90.023°)
superspace group P2/n(oq,09,0)00 (Schonleber et al., 2008). Fig. 4.2 shows the

temperature dependence of the modulation wave vector q=(q¢1, %—1—5, 0).

0.08} (c) 10.02
._q1
0.06 |
o o
0.04 L 410.01
0.02 |
0.00 - o0o | 10.00

65 70 75 80 85 90 95
Temperature (K)

Figure 4.2: Temperature dependence of the modulation wave vector q = (q¢1, %—1—(5, 0).
Lines represent fits to the data: ¢; = ¢)(T — T.1)" with ¢ = 0.044(1), v = 0.18(1), and
T = 67.4(2) K; 6 = -0.0222(8) + 0.00040(1)T. Error bars are indicated. Reproduced
from Schonleber et al. (2006).

In spite of differences to canonical spin-Peierls systems, the anomaly at T, was
interpreted as a spin-Peierls transition according to x-ray diffraction studies (Shaz
et al., 2005). Below the spin-Peierls phase transition temperature, the appearance
of a superlattice reflection indicates a doubling of the unit cell along b (Fig. 4.3),
which is also the evidence of an accompanying dimerization of Ti chains along b in a
spin-Peierls scenario. Respecting to orthorhombic symmetry at room temperature,
structure refinements of the low-temperature phase of TiOCI showed a lower symme-
try with superspace group Pmmn(050)000, corresponding to supercell space group

P2;/m (a unique) when t,=1/8. According to the structure analysis two symmetry
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Figure 4.3: ¢ Scans along a* centered on (-2, -1.5, -1), below and above the lock-in
transition at 67 K. Lines represent Gauss functions fitted to the data. Reproduced from
Schonleber et al. (2006).

independent Ti and O sites were concluded, consistent with NMR experiments by

(Imai and Chou, 2003).

As mentioned in section 2.2, only one d electron exists in a 3d orbital in TiOCI.
A conventional complete active space self-consistent field (CASSCF) calculation
concluded to a ground state with one electron in a Ti 3d,2_,2 orbital with some O
2p character mixed in (for z along b, y along ¢, and z along a. Section 2.2) (Macovez
et al., 2007), confirming previous results (Fausti et al., 2007). The occupied orbital
is oriented in the b and c directions that favor the direct exchange interaction
between Ti atoms along the b direction, resulting in a spin-Peierls pairing of the
magnetic moments at low temperatures. In addition to the spin-Peierls interaction,
a superexchange interaction generated by a hybridization of the d,2_,2 orbitals with

the 2p orbitals of oxygen was concluded (Macovez et al., 2007).
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4.3 Behavior of doped TiOCI

In order to understand the ordering mechanism in spin-Peierls compounds, both
theoretical and experimental investigations of doped spin-Peierls compound have
been performed. In CuGeOjs, nonmagnetic Zn?* (Hase et al., 1993; Oseroff et al.,
1995; Kojima et al., 1997; Manabe et al., 1998), Mg?" (Grenier et al., 1999), Cd**
(Haravifard et al., 2007; Lumsden et al., 1998) and magnetic Ni**, Mn?* (Oseroff
et al., 1995), Co** (Anderson et al., 1997) can be doped into the Cu®** sites . With
Cu;_,7Zn,GeO3 as an example, the dimerized order of the spin-Peierls state was
maintained for low doping concentrations. Once the doping concentration reaches
a critical value of . = 0.02, the spin-Peierls order was lost and a uniform antifer-
romagnetic ground state occurred (Uchinokura, 2002). The spin-Peierls transition

temperature Tsp was depressed under the influence of doping.

Similar studies were performed on TiOCl with substituting nonmagnetic Sc>*
(3d%) for Ti** (3d'), a analogue of Zn?* doping in CuGeO3. One expects that
the lack of d electrons of Sc** (3d°) results in the destruction of some dimers and
release free 1/2 spins. The first study on Sc,Ti;_,OCl was focused on magnetic
susceptibility of compounds with relatively high level of doping (x = 0.06 and 0.15)
(Seidel et al., 2003). It was concluded that the doped compound did not undergo a
spin-Peierls transition. Detailed x-ray scattering measurements were performed on
single crystals of the doped compound Sc,Ti;_,OCI (z = 0, 0.01, 0.03) by Clancy
et al. (2008). The Sc doping prevents the formation of a long-range spin-Peierls
state down to 7K at both doping concentrations. Instead, an incommensurate short-
range ordered state is present from 7., down to 7 K. The temperature dependence
of integrated scattering intensity of Sc,Ti;_,OCl (x = 0.01) at the (2+dy, 1.5, 1)
superlattice peak positions can be fitted by a power-law function consistent with
mean-field-like behavior, while the pure TiOCl data can be well described by a
straight power-law fit which is consistent with conventional 3D universality class.
This fundamental change might originate in the presence of local lattice strains which
result from the larger ionic radius of S¢** ions (Clancy et al., 2010). Zero-field (ZF)
and longitudinal-field (LF) pSR study did not provide any evidence for magnetic
order down to 1.7 K in compound Sc,Ti;_,OCl (z = 0.01, 0.03), in contrast to
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doped CuGeOj (Aczel et al., 2011). Very recently, we studied Sc,Ti;_,OCl (x =
0.005) by synchrotron x-ray radiation. Novel behavior has been observed, which is
presented in Chapter 6.

Apart from doping electron holes, doping electrons into titanium oxyhalides was
also studied by various groups (Craco et al., 2006; Kuntscher et al., 2010; Zhang
et al., 2010). In section 4.1, we pointed out that the X sandwiched M-O bilayers
of MOX (M = Ti, V, Cr and Fe; X = Br, Cl) are only coupled via van der Waals
forces. Due to this character, it is possible to intercalate alkali metal atoms between
the layers. The initial idea was to make the alkali metal atoms donate their outer
electrons to Ti-3d states in the context of driving a layered compound into a uncon-
ventional superconducting state by introducing additional electrons or holes (Tokura
et al., 1989; Rotter et al., 2008), moreover the dopant should not induce structural
or chemical modification (Kuntscher et al., 2010). A study of the spectral weight
evolution upon alkali metal doping proved that the outer electrons of alkali metal
(Na, K) were doped into the Ti3d states. Nevertheless, a soft Coulomb gap persists
(Kuntscher et al., 2010). According to a series of density functional theory (DFT)
calculations that have been performed on several commensurate Na doping TiOCI,
Zhang et al. (2010) predicted that the Na ion enters an individual cage consisting
of 1 O and 5 Cl ions. The Na doping strongly modifies the crystal field splitting
of Ti d states by Nat ion and causes a coexistence of stabilized Ti** and Ti** ions

(Zhang et al., 2010). The insulating state remains for all studied Na concentrations.

4.4 Commensurate magnetic structure of VOCI

and CrOCl

V3* and Cr®* possess two and three 3d electrons, respectively. This brings out more
complicate orbital interactions in VOCI and CrOCI, which influence the magnetic
order.

VOCI was reported crystallizing in the FeOCl structure type by Haase and
Brauer (1975). A phase transition has been observed at Néel temperature Ty =

80.5 K by the temperature-dependent magnetic susceptibility (Wiedenmann et al.,
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1983). Above Ty, the magnetic susceptibility x along the three crystallographic axes
is equivalent, revealing an isotropic character. Below Ty, x along a departs from
those along b and c. The ordered magnetic moments in the low temperature phase
are oriented along a axis (Wiedenmann et al., 1983). Powder neutron diffraction
study demonstrates that VOCI possesses a collinear antiferromagnetic order with
a wavevector ky, = (1/2, 1/2, 1/2) below T (Schonleber et al., 2009). The oc-
currence of antiferromagnetic order is accompanied by a monoclinic distortion with
space group P2/n of nuclear structure and monoclinic angle v = 90.211° (Komarek
et al., 2009; Schonleber et al., 2009).

The magnetic susceptibilities of CrOCI in the temperature range 150 K to 300 K
follow the Curie-Weiss law (Schéfer and Wartenpfuhl, 1961). Instead of the two-fold
magnetic superstructure in the low temperature phase of VOCI, a four-fold mag-
netic superstructure of the room temperature structure was reported. The magnetic
structure is collinear with the spins in the direction of the crystallographic axis c
(Christensen et al., 1975). On cooling, CrOCI undergoes an antiferromagnetic tran-
sition at Ty = 13.5 K, being accompanied by a lattice distortion from orthorhombic
symmetry to a-axis unique monoclinic symmetry. The monoclinic angle a is 90.071°
determined by synchrotron x-ray diffraction experiments (Angelkort et al., 2009).
A second phase transition was observed at T, = 27.2 K in temperature dependent
specific heat (), experiments. However, there was no signature of this transition in
x-ray diffraction experiments, suggesting a purely magnetic character of the transi-
tion (Angelkort et al., 2009). The modulated nuclear and magnetic structures have

been studied, respectively (Chapter 8).

In VOCI the two valence electrons of V3 occupy the 3dy2_,2 and 3d,, orbitals
(Fausti et al., 2007), and in CrOCI the three valence electrons of Cr*™ occupy the
3dy2_,2, 3d,, and 3d,, orbitals (Angelkort et al., 2009). The different symmetries of
the filled 3d orbtials offer an explanation for the different lattice distortions of VOCI
and CrOCl. On the MO bilayers, the degeneracy of exchange interactions involving
the 3d,, orbtials of V are lifted by the c-axis unique monoclinic lattice distortion in
VOCL
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4.5 Incommensurate magnetic structure of FeOCl

Compared to the early transition metal ions, Fe3* has more electrons in the 3d or-
bitals. The distribution of the five valence electrons of Fe3* is still not resolved. The
magnetic characters of FeOCl were first studied by Grant (1971) using Mdssbauer
spectroscopy, and a magnetic phase transition from the paramagnetic state to a
state with antiferromagnetic order occurs at the Néel temperature Ty of 92 K. This
character has been studied by several other techniques and values of Ty between
80 and 92 K have been reported. An incommensurate magnetic modulation wave
vector of qu = (0.5, 0.275, 0.5) at 4.4 K and a commensurate magnetic modulation
wave vector of (1/2,2/7,1/2) at 10 K were proposed based on neutron diffraction
measurements by two different research groups, respectively (Adam and Buisson,
1975; Hwang et al., 2000). Considering the amplitude of a structural modulation
wave vector is twice as large as that of magnetic modulation wave vector (Section
2.4), our synchrotron x-ray experiments confirm the former value. Furthermore, we
have discovered a monoclinic lattice distortion with v = 90.10° a low temperature,

sindicating strong magnetoelastic coupling (Chapter 5).
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Chapter 5

Magnetoelastic coupling in the

incommensurate antiferromagnetic
phase of FeOCl !

5.1 Abstract

The antiferromagnetic phase transition of FeOCIl has been studied by temperature-
dependent x-ray diffraction experiments and magnetic susceptibility, heat capacity
and dielectric measurements. The magnetic phase transition is found to be accompa-
nied by a monoclinic lattice distortion, affecting the angle v between crystallographic
axes parallel to the layers comprising the quasi-two-dimensional magnetic system.
The temperature-dependent magnitude of v shows the phase transition to be of sec-
ond order. Satellite reflections occur in x-ray diffraction with twice the magnetic
modulation wave vector. These positions are temperature dependent, providing ev-
idence for an incommensurate character of the magnetic order. The observed Néel
temperature is Ty = 82.0 (2) K.

'Published as: J. Zhang, A. Wélfel, L. Li, S. van Smaalen, H. L. Williamson, and R. K. Kremer,
Phys. Rev. B 86, 134428 (2012).
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5.2 Introduction

Layered compounds MOCI (M = Ti, Cr, V and Fe) have recently been studied
because of their low-dimensional magnetic properties (Seidel et al., 2003; Saha-
Dasgupta et al., 2004; Shaz et al., 2005). Different magnetic behavior of these
isostructural compounds has its origin in orbital order of the various number of 3d
electrons of the M3" ions (Saha-Dasgupta et al., 2004; Fausti et al., 2007; Zhang
et al., 2008; Glawion et al., 2009; Bogdanov et al., 2011). Ti** possesses a single 3d
electron. Orbital order makes TiOCl a quasi-one-dimensional (1D) magnetic systemn,
which develops a spin-Peierls state at low temperatures (Seidel et al., 2003; Saha-
Dasgupta et al., 2004; Shaz et al., 2005). The other compounds have transition-metal
ions with two or more 3d electrons. They form 2D magnetic systems, and exhibit
antiferromagnetic order at low temperatures (Adam and Buisson, 1975; Christensen
et al., 1975; Wiedenmann et al., 1983).

Magnetic order is geometrically frustrated on the arrangement of M3+ ions within
the orthorhombic crystal structure of MOCI. Accordingly, the low-temperature
phases of TiOCI have been found to be monoclinic (Shaz et al., 2005; Fausti et al.,
2007; Schonleber et al., 2008). Despite earlier reports of magnetic order with or-
thorhombic symmetry (Christensen et al., 1975; Wiedenmann et al., 1983), VOCI
has a twofold magnetic superstructure with monoclinic symmetry and strong mag-
netoelastic coupling as expressed by a monoclinic angle of v = 90.211 deg and
Tn = 80.3 K (Komarek et al., 2009; Schonleber et al., 2009). CrOCI has a four-
fold magnetic superstructure, which is again monoclinic, but with an apparent less
strong magnetoelastic coupling than in VOCI, as expressed by a significantly smaller
monoclinic angle of « = 90.071 deg and Ty = 13.5 K (Angelkort et al., 2009).

FeOCl was the first compound to be synthesized among the MOCI compounds
(Goldstaub, 1935). The antiferromagnetic phase transition was discovered in 1971
by Mossbauer spectroscopy and since then has been characterized by several other
techniques (Table 5.1). Values between 80 and 92 K have been reported for the Néel
temperature. Neutron powder diffraction has shown the appearance of incommen-
surate superlattice reflections with an incommensurate magnetic modulation wave
vector of qy = (0.5, 0.275, 0.5) at T = 4.4 K (Adam and Buisson, 1975). More
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Table 5.1: Transition temperature Ty of FeOCl

Method Tx [K] Reference

Mossbauer spectroscopy 92 (3) Grant, 1971

Neutron diffraction 89 (4) Adam and Buisson, 1975
Magnetic susceptibility 84 (1) Bannwart et al., 1987
Neutron diffraction ~ 80 Hwang et al., 2000
Mossbauer spectroscopy 85 (1) Dai et al., 2002
Magnetic susceptibility ~ 82 this work

Heat capacity 82.1(2) this work

X-ray diffraction 77.4(1.7) this work

recent work has suggested a commensurate modulation wave vector of (0.5, %, 0.5)
(Hwang et al., 2000). Models for the magnetic superstructure were proposed, that
are based on the assumption of orthorhombic symmetry of the crystal structure
(Adam and Buisson, 1975; Hwang et al., 2000).

Here, we present the results of temperature-dependent single-crystal x-ray diffrac-
tion, which show that the magnetic phase transition of FeOCl is accompanied by
the development of a monoclinic lattice distortion at low temperatures. This finding
puts the magnetic order in FeOCl on equal footing with that in the other MOCI
compounds. We furthermore present the temperature dependencies of the specific
heat, the anisotropic magnetic susceptibility and the dielectric properties. These in-
vestigations evidence a second-order phase transition and provide a consistent value

of the Néel temperature of 82.0 (2) K (Table 5.1).

5.3 Experimental

5.3.1 Crystal growth

Thin platelet single crystals of FeOCl were grown by vapor phase transport in evac-
uated quartz-glass ampoules according to procedures described elsewhere (Schéfer
et al., 1956). Starting materials were a stoichiometric mixture of Fe;O3 (purity
99.999%) and FeCls (Purity 99.99%). Small single crystals were selected for x-ray
diffraction experiments and larger single crystals were used for the measurements of

the magnetic, dielectric and thermal properties.
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5.3.2 Magnetic and thermal measurements

The magnetic susceptibilities of two crystals of mass 0.510 mg and 1.3 mg, selected
from batch 1 and 2, respectively, were measured in a Quantum Design Squid magne-
tometer (MPMS, Quantum Design) between 3 and 300 K in magnetic fields between
0.1 and 7 Tesla. The magnetic fields were applied along the c direction, which is per-
pendicular to the surface of the plate-like crystals, and in the a, b-plane, respectively
[Fig. 5.1(a),(b)].

The same crystals were subsequently used for measurements of the heat capacity,
using a Quantum Design Physical Properties Measurement System (PPMS, Quan-
tum Design) employing the relaxation method. The crystals were attached with a
minute amount of Apiezon N grease to the platform. To enable a reliable correc-
tion for the heat capacities of the empty sample platform and the Apiezon grease
their heat capacities had been determined in preceding empty runs and were subse-
quently subtracted from the total heat capacities in order to obtain the samplesj”
heat capacities [Fig. 5.1(c)].

The dielectric capacitances at 1kHz of the samples were measured as a function
of temperature with an Andeen and Hagerling 2500A ultra precision capacitance
bridge with an excitation voltage of 0.75 V [Fig. 5.1(d)]. Thin (~ 0.1 mm) optically
perfect crystals with large lateral extension (several mm?) were selected from batch
1 and electrodes were affixed by using a silver conductive paint to either side of the

crystal plates.

Antiferromagnetic ordering below ~ 82 K with the c-axis as easy axis is indi-
cated by the magnetic susceptibility and the heat capacity. The latter show small
A-type anomalies at 81.6(2) K and 82.6(2) K for the crystals taken from batch 1 and
2, respectively. The entropy contained in the anomaly amounts to ~0.12 J/mol K,
which covers only about 1% of RIn(2 x 5/2 + 1) expected for the ordering of a
S = 5/2 spin system. The anomaly of the sample taken from the second batch is
somewhat smaller and slightly broadened as compared to that of the crystal taken
from the first batch. The magnetic susceptibility shows a broad hump with its maxi-
mum occurring at ~350 K indicating pronounced short range ordering characteristic

for a low-dimensional antiferromagnetic system. Antiferromagnetic ordering is not
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Figure 5.1: (a) Magnetic susceptibility of a crystal of FeOCl from batch 1. The inset
shows the derivative with respect to temperature of the quantity xme X 7. (b) Magnetic
susceptibility of a crystal of FeOCI from batch 2. (c¢) Heat capacities of the same crystals
measured in zero external magnetic field. The inset displays an enlargement of the tem-
perature range where a A-type anomaly is seen. (d) Relative dielectric constant of FeOCl
at 1 kHz measured perpendicular to the crystal plate.
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Figure 5.2: The crystal structure of FeOCl

reflected in the dielectric constant which monotonously drops starting from a room
temperature value of about 35. A broad bump centered at about 150 K precedes
antiferromagnetic long-range ordering. Slight wiggles are seen in the temperature

derivative of €., but no distinct anomaly is detected.

5.3.3 Single-crystal x-ray diffraction

Single-crystal x-ray diffraction was measured at beamline D3 of Hasylab at DESY
(Hamburg, Germany), employing synchrotron radiation of a wavelength of 0.5600
A. Two crystals were selected for diffraction experiments. They were glued to car-
bon fibers and mounted on a closed-cycle helium cryostat on the Huber four-circle
diffractometer at beamline D3. Crystal A was of dimensions 0.25 x 0.13 x 0.005
mm?, and Crystal B was of dimensions 0.1 x 0.06 x 0.005 mm?.

At each selected temperature the setting angles of 18 reflections were determined,
from which the lattice parameters were calculated. For Crystal A at room tempera-
ture values of a = 3.7773 (6), b = 3.3046(7) and ¢ = 7.9156 (16) A were obtained for
the orthorhombic lattice parameters, in agreement with the lattice of FeOCl (Gold-
staub, 1935; Lind, 1970). Similar results were obtained for crystal B. In this setting
with space group Pmmn, layers FeOCl are stacked along c (Fig. 5.2).

Possible lattice distortions can be obtained from peak splittings in the direction
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Reflection220
93 K (a)

Figure 5.3: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (2 2 0) of crystal A (d) and crystal B (a,b,c) at selected
temperatures. A260 and Aw indicate the deviation from the center of the scan in units of
0.01 deg.

of the scattering angle 20. A splitting of (A k£ 0) would indicate a deviation from
90 deg of the angle . Splittings of (A 0 [) and (0 k ) allow the angles  and «,
respectively, to be calculated. Accordingly, w—26 maps have been measured on both
crystals at selected temperatures for the reflections (2 2 0), (2 0 4) and (0 2 5).
Detector slits were set to 6 x 0.02 mm?, which corresponds to an acceptance angle
of 0.0031 deg in the direction of 26. Step sizes of 0.002 deg were chosen for both the

directions w and 26.

w—20 maps of the (2 2 0) reflection show single peaks at temperatures above Ty,
while they show a double peak for T' < 75 K (Fig. 5.3). The reflections (2 0 4)
and (0 2 4) do not exhibit peak splittings at any temperature, although they do
have a broadened appearance into the direction of w at low temperatures [data
not shown; compare to Fig. 5.3(d)]. Broadening into the direction of w may be

explained by internal strain due to the phase transition as well as by damage to the
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Figure 5.4: Diffracted intensity as a function of the scattering angle 26 for the reflec-
tion (2 2 0) for both crystals at different temperatures. All peaks were fitted by Gauss
functions.

crystal originating in external strain due to different thermal expansions of sample
and glue. These results show that the lattice of FeOCl is c-unique monoclinic in the

antiferromagnetic phase.

The magnitude of the splitting in 20 can be obtained from the 26 dependence
of the diffracted intensity that is obtained by collecting all intensity measured at
a single value of 20 (integration over w). The plot of the diffracted intensity vs
20 at T = 145 K reveals that crystal A consists of two domains with orientations
differing by a few hundredth of a degree, while crystal B was of much better quality
[Fig. 5.4(a),(c)]. The broadened peak of crystal A is well described by two over-

lapping Gaussian functions, while the peak of crystal B can be fitted with a single
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Figure 5.5: Temperature dependence of the monoclinic angle v. The (red) solid line
represents a fit of Eq. (5.1) to the five data points at T > 40 K. The (green) dashed line
is a fit to all eight data points.

Gaussian. At low temperatures, crystal A displays two broadened peaks of similar
intensities for (2 2 0), while crystal B exhibits two peaks of different intensities
[Fig. 5.4(b),(d)]. These results indicate that crystal A consisted of two monoclinic

domains of comparable volumes, while crystal B was almost a single domain crystal.

The peak splitting depends on temperature and it was too small to be determined
close to Ty. The peak splitting in 26 of (2 2 0) directly gives the angle v of the
monoclinic lattice. We have obtained peak-splittings at six temperatures for crystal
A and at two temperatures for crystal B. Limited beam-time at the synchrotron
did not allow experiments at more temperatures on crystal B. Nevertheless, the
monoclinic angles for crystals A and B match very well (Fig. 5.5). The deviation

from 90 deg of the monoclinic angle can be considered as order parameter, and the
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temperature dependence of its value can by described by the function

T B
v —90 deg = A~ (1 — m) : (5.1)
Critical behavior according to Eq. (5.1) is only expected close to Ty. An excellent
fit of Eq. (5.1) to the five data points at 7" > 40 K has been obtained (Fig. 5.5),
resulting in an estimate for the transition temperature of Ty (Xray) = 77.4 (1.7) K
and a critical exponent of 8 = 0.32(9). The latter values is close to the critical
exponent of the 3D Ising model, but the large standard uncertainty prevents a
meaningful interpretation of this parameter.

The fitted function clearly underestimates the values of v at low temperatures,
thus demonstrating deviations from critical behavior below T ~ 40 K. A fit of
reasonable quality has also been obtained for all eight data points (dashed line in
Fig. 5.5). This fit resulted in somewhat different values for the two fit parameters,
T (Xray) = 79.8(2.0) K and f’ = 0.46(5). The second fit function allows the
determination of the extrapolated value of the monoclinic angle at 7" = 0 K as
Yo = 90.100 deg.

In another experiment superlattice reflections were searched by g-scans along b*
for selected reflection pairs (h k1) — (h k+ 11). A total of 43 g-scans were
measured on crystal A at temperatures of 10 and 13.3 K. Superlattice reflections
were found in two scans, at (1 1.45 0) (weak) and at (2 0.55 — 2) (very weak). The
values of the component ¢, as obtained from the two reflections are in agreement
with each other (Fig. 5.6). The strong satellite reflection could be measured at
selected temperatures up to 58 K. The results of the g-scans show that the length

of the incommensurate modulation wave vector depends on temperature.

5.4 Discussion

The crystals of FeOCl presently studied undergo an antiferromagnetic phase tran-
sition as evidenced by the temperature dependence of the magnetic susceptibility

(Fig. 5.1), in agreement with the literature (Bannwart et al., 1987). The ordered
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Figure 5.6: Incommensurate component g, of the modulation wave vector gx = (0, g, 0),
as determined by g-scans along b*. The dashed line indicates value 0.550 = 2 x 0.275.

magnetic moments possess a component along c, but it cannot be excluded that
there also is a component along b (Adam and Buisson, 1975).

Values for the Néel temperature have been reported between 80 and 92 K (Table
5.1). We have obtained a consistent value of Ty = 82.0 (2) K from the temperature
dependencies of x-ray diffraction, specific heat and magnetic susceptibility. This
value is in accordance with the more recent values in the literature and thus will be
close to the true transition temperature of pure FeOCI.

The major finding of the present experiments is the monoclinic lattice distortion,
whose development accompanies the magnetic transition (Fig. 5.5). The thermal
evolution of the monoclinic angle indicates the second-order character of the phase
transition, and extrapolation of the measured values allows an accurate estimate of
the Néel temperature (Table 5.1). The value of v = 90.10 deg at low temperatures
suggests strong magnetoelastic coupling, in agreement with the observations on
VOCI and CrOCI (Komarek et al., 2009; Schonleber et al., 2009; Angelkort et al.,
2009). Satellite reflections in x-ray diffraction are much weaker for FeOCl than

for CrOCI or TiOCI, indicating that relative atomic coordinates deviate from their
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orthorhombic values by a small amount only, and that the major structural distortion
is the monoclinic lattice distortion.

Another point of debate was the precise value of the modulation wave vector
of the magnetic superstructure. For a structure with antiferromagnetic order de-
scribed by modulation wavevector q,; one can expect a structural distortion with
modulation wave vector 2q,;, which may give rise to satellite reflections in x-ray
diffraction (Lovesey and Collins, 1996). Since 2 x 0.5 = 1, we have here employed
ax = 2qy —a* —c* = (0, g, 0).

Below T ~ 30 K we have found that the incommensurate component of qx
is equal to 0.550 (Fig. 5.6). This value is exactly two times the value of 0.275
as reported for qy; at T = 4.2 K, and the present x-ray diffraction experiment
confirms the observations by neutron diffraction by Adam and Buisson (Adam and
Buisson, 1975). Above 40 K the modulation wave vector depends on temperature,
proving that the modulation is incommensurate. Hwang et al. (2000) proposed a
commensurate magnetic modulation wave vector of 2/7. The value of 2 x 2/7 =
0.5714 is not observed at any temperature.

The present results open the possibility of a lock-in transition with a transition
temperature between 30 and 45 K, at which the magnetic modulation wave vector
attains the value of 0.275 = 11/40. However, none of the other experiments show

evidence for an additional phase transition at these temperatures.

5.5 Conclusions

X-ray diffraction has shown that the antiferromagnetic phase transition of FeOCl is
accompanied by a monoclinic lattice distortion, in agreement with the distortions
observed for CrOCI and VOCI. The need for this distortion lies in the perfect
frustration for antiferromagnetic order of the arrangement of magnetic M3* ions
on the orthorhombic lattice. The temperature dependence of the magnitude of
the monoclinic angle has shown that the phase transition is a second-order phase
transition.

The magnetic superstructure has been found to be incommensurate as evidenced

by the temperature dependence of the positions of satellite reflections in x-ray
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diffraction at qx = 2qyy.
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Chapter 6

Transformation between
spin-Peierls and incommensurate

Huctuating phases of Sc-doped
TiOCl !

6.1 Abstract

Single crystals of Sc,Ti;_,OCl (z = 0.005) have been grown by the vapor phase
transport technique. Specific heat measurements prove the absence of phase transi-
tions for 4-200 K. Instead, an excess entropy is observed over a range of temperatures
that encompasses the incommensurate phase transition at 90 K and the spin-Peierls
transition at 67 K of pure TiOCl. Temperature-dependent X-ray diffraction on
Sc,Ti;_,OCI gives broadened diffraction maxima at incommensurate positions be-
tween T,y = 61.5(3) and ~90 K, and at commensurate positions below 61.5 K.
These results are interpreted as due to the presence of an incommensurate phase
without long-range order at intermediate temperatures, and of a highly disturbed

commensurate phase without long-range order at low temperatures. The commen-

!Accepted as: J. Zhang, A. Wolfel, M. Bykov, A. Schonleber, S. van Smaalen, R. K. Kremer,
and H. L. Williamson, Phys. Rev. B (2014).
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surate phase is attributed to a fluctuating spin-Peierls state on an orthorhombic
lattice. The monoclinic symmetry and local structure of the fluctuations are equal
to the symmetry and structure of the ordered spin-Peierls state of TiOClL. A novel
feature of Sc,Ti;_,OCI (z = 0.005) is a transformation from one fluctuating phase
(the incommensurate phase at intermediate temperatures) to another fluctuating
phase (the spin-Peierls-like phase). This transformation is not a phase transition
occurring at a critical temperature, but it proceeds gradually over a temperature
range of ~10 K wide. The destruction of long-range order requires much lower levels
of doping in TiOCI than in other low-dimensional electronic crystals, like the canon-
ical spin-Peierls compound CuGeOs. An explanation for the higher sensitivity to
doping has not been found, but it is noticed that it may be the result of an increased
two-dimensional character of the doped magnetic system. The latter would support
the formation of phases with quasi-long-range order, described in the literature as

Kosterlitz—Thouless phases.

6.2 Introduction

Materials supporting low-dimensional electronic systems are known for their ex-
otic properties, including phase transitions towards charge-density wave (CDW) or
spin-density wave (SDW) states (Gruner, 1994). Specific to compounds containing
quasi-one-dimensional (1D) magnetic chains is the possibility of a first-order phase
transition to a spin-Peierls state at low temperatures (Bray et al., 1983). The spin-
Peierls state is characterized by the presence of spin-singlet pairs and a finite energy
gap for magnetic excitations, resulting in vanishing magnetic response at low tem-
peratures. The singlet pairs are a consequence of a distortion of the crystal structure
leading to a dimerization along the chains that enhances the spin exchange within
each dimer. Spin-Peierls distortions can be measured by x-ray diffraction, and the
magnitude of the dimerization can be taken as order parameter for the spin-Peierls
state.

Theoretically it has been shown that 1D systems exhibit fluctuations of the order
parameter of substantial magnitude up to temperatures well above the transition

temperature T, (Gruner, 1994). Correlation lengths are anisotropic and the largest
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value can be found for the direction along the 1D system. Structural fluctuations
can be traced by x-ray diffraction experiments. They are typically indicated by
diffuse scattering which is concentrated in one, two or three directions in reciprocal
space. In case of long correlation lengths, reflections can be observed of a width
that is related to the inverse correlation length. Domain size effects or imperfections
(e.g. stacking faults, internal strain and impurities) of a real specimen may lead to
additional broadening of the Bragg reflections, rendering it difficult to disentangle
dynamical fluctuation regimes from the effects of imperfections in real crystals.
Ideal one-dimensional magnetic systems do not show long-range ordering. The
unavoidable interchain coupling, even though much weaker than the intrachain cou-
pling, drives the systems to long-range magnetic ordering at low temperatures. One
way of suppressing long-range order is the substitution of magnetic atoms by non-
magnetic impurities. For example, CuGeO3 undergoes a canonical spin-Peierls tran-
sition at a temperature of Tsp = 14 K (Hase et al., 1993). Replacement of as little
as 3% of the Cu?* ions by non-magnetic Zn** atoms is sufficient to completely
suppress the spin-Peierls transition (Hase et al., 1993). Instead, antiferromagnetic
order develops below T' = 4 K for dopings up to 8% (Hase et al., 1993; Oseroff et al.,
1995; Kojima et al., 1997; Grenier et al., 1998). At larger doping levels long-range
magnetic order does not develop at any finite temperature. Suppression of the spin-
Peierls state by a few percent of non-magnetic doping is the magnetic counterpart
of the suppression of a charge-density-wave (CDW) state in 1D electronic materials
induced by doping into the metallic chains (Schneemeyer et al., 1984; Gruner, 1994).
Due to larger magnetic exchange interactions along the chains (Seidel et al.,
2003; Hase et al., 1993), the spin-Peierls systems TiOCl, TiOBr and TiPO, exhibit
significantly higher transition temperatures than Tsp = 14 K of CuGeOs. However,
the phase diagrams of these systems are more complicated than the phase diagram
of CuGeOs, since the spin-Peierls state is preceded by an incommensurate magnetic
state at intermediate temperatures (Beynon and Wilson, 1993; Seidel et al., 2003; van
Smaalen et al., 2005; Law et al., 2011). Several studies have recently been published
on the effects of doping on the properties of TiOCI (Beynon and Wilson, 1993; Seidel
et al., 2003; Clancy et al., 2008; 2010; Zhang et al., 2010; Aczel et al., 2011). Zhang
et al. (2010) reported band-structure calculations that indicate that TiOCI remains
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insulating upon doping with either non-magnetic, isovalent Sc®* or monovalent Na™
or other ions. The most interesting finding was the complete suppression of the spin-
Peierls state in Sc,Ti;_,OCI for doping levels of = 0.01 and 0.03, while long-range
magnetic order does not appear down to very low temperatures either (Clancy et al.,
2008; 2010; Aczel et al., 2011). This behaviour is qualitatively different from that of
other spin-Peierls compounds like CuGeQOg3. There, the spin-Peierls state persists up
to 3% doping, and is then replaced by antiferromagnetic order (Aczel et al., 2011).

Here we present the results of a study by single-crystal x-ray diffraction per-
formed on samples of TiOCI in which 0.5% of the Ti atoms has been replaced by
isovalent Sc atoms. Our temperature-dependent x-ray diffraction data reveal that
Sc,Ti;_,OCl (z = 0.005) undergoes a transition to an incommensurate phase at
approximately the same temperature as is observed for TiOCl. A spin-Peierls-like
transition occurs at T,; = 61.5(3) K, somewhat lower than the transition tempera-
ture of 67 K found in pure TiOCI (Seidel et al., 2003; Shaz et al., 2005; Hemberger
et al., 2005). Structure refinements against the integrated intensities of the broad-
ened Bragg reflections at T' = 8 K show that the structural distortions are similar
to the distortions in the spin-Peierls state of non-substituted TiOCIl. Based on
measurements of the specific heat we conclude that both the incommensurate and
spin-Peierls-like phases lack true long-range order. The observed apparent transition
between these two states is interpreted as a novel type of phase transition between

crystalline states supporting different kinds of fluctuations.

6.3 Experimental and results

6.3.1 Crystal growth

A mixture of TiO,, Ti, TiCly and ScCl; corresponding to x = 0.005 was used to
grow single crystals of Sc,Ti;_,OCI by chemical vapor phase transport in evacuated
quartz-glass ampoules according to the procedure described in detail by (Schéfer
et al., 1958). Transparent crystals of red-brown color were obtained that showed
less well developed facets than the yellow-brown crystals of TiOCl do. Initial x-

ray diffraction experiments on several specimens confirmed the lattice parameters
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to be those of TiOCl. w Scans of selected Bragg reflections were used for testing
several crystals at room temperature. Most of the specimens revealed broadened
Bragg reflections, indicating a large mosaic spread and poor crystal quality. Such
crystals were discarded for the temperature-dependent x-ray diffraction experiments.
Finally, a crystal of dimensions 0.22 x 0.06 x 0.008 mm? was identified and selected

for the diffraction experiments reported in the following.

6.3.2 Specific heat

The heat capacities were determined on a collection (~ 2 mg) of well shaped crys-
tals of Sc,Ti;_,OCl (z = 0.005) with a Physical Properties Measurement System
(PPMS, Quantum Design), employing the relaxation method. The crystals were
attached to the calorimeter platform with a minute amount of Apiezon N grease.
The heat capacity of the platform and the Apiezon grease were measured in a pre-
ceding run and subtracted from the total heat capacities. A reference sample of
TiOCl was measured in the same manner. Figure 6.1 displays the heat capacities of
Sc,; Ti1—,OCl (z = 0.005) and TiOCl in a C),/T representation. The specific heat C,,
of Sc, Ti;_,OCI (z = 0.005) does not exhibit the characteristic anomalies associated
with the phase transitions as they are clearly revealed for the TiOCI sample. For
Sc,Ti;_,OCI (x = 0.005) the anomalies rather appear to be smeared out, rendering
an excess heat capacity over a broad temperature regime embracing the area where
the anomalies occurred for TiOCIl. The entropies contained in the anomalies in
TiOCl and in the broad smeared excess heat capacity of Sc,Ti;_,OCl (x = 0.005)
are about the same, indicating that the sharp transitions seen for TiOCIl have been
replaced by a broad fluctuation regime, which extends over a large temperature
range of more than ~50 K, i.e. more than twice the temperature regime where the

incommensurate intermediate phase is seen.

6.3.3 Temperature-dependent x-ray diffraction

X-ray diffraction experiments were performed on the Huber four-circle diffractome-
ter at beamline D3 of Hasylab at DESY (Hamburg, Germany), employing radiation

of a wavelength of 0.5600 A. Diffracted intensities were measured by a scintillation
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Figure 6.1: (Color online) Temperature dependence of the heat capacity C, plotted as
Cy/T of Sc;Tii—,OCl (z = 0.005) (red squares) and of TiOCI (black circles). The latter
data are in agreement with Ref. (Hemberger et al., 2005).

detector. The single crystal of Sc,Ti;_,OCl (z = 0.005) (Section 6.3.1) was glued
onto a carbon fiber attached to a copper pin and mounted on a closed-cycle helium
cryostat, allowing cooling of the sample down to below 8 K. At each selected temper-
ature the orientation matrix was determined from the accurately measured setting
angles of 20 Bragg reflections. Lattice parameters obtained from the orientation
matrices are in agreement with those of TiOCl.

Limitation of crystal orientations as imposed by the closed-cycle cryostat allowed
only about 1/8 of all possible Bragg reflections to be measured. For the present sam-
ple this implied that many (0 & [) and (h 0 ) reflections were accessible. Reflections
in the [ = 0 plane [(h k 0) reflections] of reciprocal space were not available. Ti-
OCI has monoclinic symmetries in its incommensurate and spin-Peierls phases (Shaz
et al., 2005; Schonleber et al., 2008). Therefore, monoclinic lattice distortions were
investigated by searching for splittings of the (0 2 —4), (2 0 —=5) and (2 —2 —4)
reflections. A splitting of these reflections in the direction of the scattering angle

260 implies a deviation from 90 deg of the angles «, § and +, respectively. Employ-
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ing procedures described elsewhere (Angelkort et al., 2009), the diffracted intensity
around these three reflections was measured as a function of 20 and the crystal ori-

entation w, resulting in so-called w—26 maps (Fig. 6.2). Such maps were collected

8 K (02 -4) 80K |, (02-4)

Figure 6.2: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for several Bragg reflections at temperatures of 8 and 80 K. A26 and Aw
indicate the deviation from the center of scan in units of 0.01 deg.

at temperatures of 8, 80, 100 and 298 K, thus covering the spin-Peierls, incommen-
surate and normal phases. None of the peaks appeared to be split at any of the
four temperatures (see supplementary Figs. B.1-B.4). This finding indicates that

the lattice remains orthorhombic down to 7' = 8 K. Integrating the diffracted in-
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Figure 6.3: Diffracted intensity versus the scattering angle 26 at T' = 80 K. Data points
have been obtained by integration along w in the w—260 maps (see Fig. 6.2). The solid
curves represent fits by pseudo-Voigt functions.

tensities over the direction w results in the dependence of diffracted intensity on the
scattering angle 20. These plots even more clearly prove the absence of a splitting

of reflections (see Fig. 6.3 and supplementary Figs. B.5-B.8).

Superlattice reflections were investigated at selected temperatures between 52.5
and 90 K by ¢ scans along a* centered at (1 —0.5 —9), (0 —2.5 =3), (0 —1.5 —1)
and (0 —1.5 —2). A single superlattice peak was observed at (h k+ 0.5 1) in each
scan between 52.5 and 60 K. These superlattice reflections indicate a commensurate
modulation with a propagation vector qsp = (0, 0.5, 0). They are found at the
same positions as the superlattice reflections of pristine TiOCI in the spin-Peierls
phase below T = 67 K. Between 62.5 K and 87.5 K the scans reveal two superlat-
tice peaks at incommensurate positions described by (h£¢ k+ 0.5 1) (Fig. 6.4
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and supplementary Figs. B.9-B.17). The magnitudes of the incommensurate com-

250 ! ! ! 150 ! ! !

Intensity (count)
Intensity (count)

150 : : . 100

Intensity (count)
Intensity (count)

Figure 6.4: ¢ Scans along a* centered at (0 —2.5 —3) at selected temperatures as indicated.
Solid curves represent pseudo-Voigt functions fitted to the data.

ponent ¢; have been determined from the separations within pairs of superlattice
reflections observed in each ¢ scan. The positions of the superlattice reflections were
determined from fits of pseudo-Voigt profile functions to the data, employing an in-
dividual function for each reflection (Fig. 6.4). The values of ¢; as obtained from the
four different ¢ scans are in excellent agreement with each other. The temperature

dependence of ¢; is well described by a critical power law
@ =q (T —Ta)". (6.1)

The fit to the data resulted in an accurate estimate of the critical temperature T,q

marking the transition between the states with incommensurate and commensurate
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superlattice reflections, respectively (Fig. 6.5). The value of T,y = 61.5(3) K is
5.5 K lower than the value of the spin-Peierls transition temperature in TiOCI.

The resolution of our experiment was insufficient to resolve a possibly very small

0.08 - ' - '
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0.02 -
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0.00 - . . . .
60 70 80 90
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Figure 6.5: Temperature dependence of the incommensurate component g; of the modu-
lation wave vector q = (¢q1, 1/2, 0), as determined from ¢ scans. The solid line represents
a fit of Eq. 6.1 to the data, resulting in ¢ = 0.026 (2), T.; = 61.5(3) K and 23 = 0.32 (3).

incommensurate component of the modulation wave vector along b*, as it has been
established for TiOCI (Schonleber et al., 2006; Krimmel et al., 2006).

w Scans were performed at the commensurate positions (1 —0.5 —9), (0 —2.5 —3)
and (0 —1.5 —1) and at the positions of 27 main reflections for selected temperatures
between 8 and 87.5 K (see supplementary Figs. B.18— B.29). Integrated intensities
of the main reflections are nearly independent of temperature. Generally, the main
reflections are much narrower than the commensurate satellite reflections. However,
the width of some reflections varied with temperature. For example, between 8
and 87.5 K the FWHM of the reflection (1 —1 —8) varies between 0.0278 and
0.0132 deg (Fig. 6.6). Contributions to the observed variation may come from the

fluctuations discussed below. However, other contributions cannot be excluded, like
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a temperature-dependent uniaxial stress induced by the glue used to fix the crystal.
At low temperatures the commensurate superlattice reflections are considerably

broader than the main reflections (Fig. 6.6). The FWHMSs pass through a minimum
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Figure 6.6: Temperature dependence of the full width at half maximum (FWHM) of
the commensurate superlattice reflections and the main reflection (1 —1 —8), as they
have been derived from fits of Lorentzians to the w scans centered at the indicated po-
sitions. FError bars are given. w Scans of +0.5 deg wide correspond to directions in
reciprocal space of £(0.0020 —0.0335 0.0120) ~ (0 —3 1) for reflection (1 —0.5 —9);
+(—0.0275 —0.0006 0.0034) ~ (=8 0 1) for (0 —1.5 —1); and +(—0.0154 —0.0002 0.0018)
~ (=80 1) for (0 —2.5 —3). The vertical dashed line indicates the critical temperature
Te1 = 61.5 K (see Fig. 6.5).

at 50 K and steeply increase for temperatures above 50 K. This rapid growth of the
FWHM above 50 K does not allow the (0 —1.5 —1) and (0 —2.5 —3) reflections to
be observed at temperatures above 57.5 K. For the (1 —0.5 —9) position, a broad
diffraction ridge remains visible up to 80 K.

The different FWHM of the three measured superlattice reflections can be related
to the directions of the w scans in reciprocal space (see caption of Fig. 6.6). They

indicate that both at low temperatures and in the transition region between 50 and
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61.5 K, the largest correlation length is along a direction with a large component
along b, i.e. along the magnetic chains, while the correlation length along a rapidly
decreases above 50 K. Unfortunately, the restrictions imposed by the closed-cycle
cryostat did not allow scattering experiments significantly outside bisecting position
(w = ), so that w scans along c* or other special directions could not be performed.
Therefore, conclusive information concerning the loss of correlations along ¢ could
not be obtained.

The directions of the w scans on the reflections (0 —1.5 —1) and (0 —2.5 —3)
are close to a*, but their widths are clearly insufficient to reach w values of the in-
commensurate positions as found at temperatures above 61.5 K (Figs. 6.5 and 6.6).
Accordingly, diffracted intensity is not found in these scans for temperatures above
Te1. The w scans on (1 —0.5 —9) have component zero into the incommensurate
direction (Fig. 6.6). Instead, the incommensurate positions will have been in diffrac-
tion position outside the principal diffraction plane, but still into a direction within
the opening angle of the detector, because the difference (¢; 0 0) between commen-
surate and incommensurate scattering vectors is small as compared to the length of
the scattering vector (1 —0.5 —9) itself. This explains the observed intensity above
T, of this reflection.

At a temperature of 8 K the intensities of a set of main and commensurate
satellite reflections have been measured up to [sin(6)/Amee = 0.75 A~', using a
wider scan window for the broader superlattice reflections. Integrated intensities
were obtained from the w scans by the software REDUCE (Eichhorn, 1991), resulting
in a total of 490 reliable satellite reflections. A total of 567 main reflections were
obtained. However, inspection of the w scans revealed that 141 reflections had moved
out of the scan window, possibly due to a slight misalignment of the crystal. These
141 reflections were removed from the data set.

Subsequently, an absorption correction was applied using the software JANA2006
(Petricek et al., 2006), based on a crystal shape determined by inspection through
an optical microscope. JANA2006 was also used for structure refinements against
the integrated intensities of the reflections, following procedures applied previously
for TiIOCl at 10 K (Shaz et al., 2005).

The twofold superstructure has been described as a commensurately modulated
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structure with g = (0, 1/2, 0) and superspace group Pmmn(0 o5 0)000 [No. 59.1.9.4
with standard setting Pmnm(0 0 03)000] (Stokes et al., 2011). Distortions out of
the basic structure of Pmmn symmetry have been modeled by a single harmonic
for the displacement modulation functions. Initial structure refinements lead to
small negative values for the component U;; of the anisotropic displacement param-
eters (ADPs) of the Ti and O atoms. Therefore, values of these parameters were
constrained to Uy[Ti] = Uy1[0] = 0.0009 A2, The final refinement resulted in an
excellent fit, with reliability parameter Rr = 0.026 and partial agreement factors of
R7@m = (.025 and R5* = 0.032. Different sections t, of superspace imply different
symmetries of the twofold, a x 2b X c superstructure. The section ty = é gave the
best fit to the data. The corresponding structure model with the a-unique mono-
clinic space group P2;/m is similar to the twofold superstructure of TiOCl in all
aspects (see Fig. 6.7) (Shaz et al., 2005). In this monoclinic structure model all

Ti—Ti chains along b are dimerized, evidencing a spin-Peierls-type distortion.

6.4 Discussion

Sc,Ti;_,OCI does not develop long-range magnetic order for doping levels of x =
0.01 and 0.03 (Clancy et al., 2008; 2010; Aczel et al., 2011). Clancy et al. (2008; 2010)
have reported x-ray diffraction experiments with a pair of non-resolved superlattice
peaks at (2 £ ¢, 1/2, 1) in ¢ scans along a*. The increased width of the scattering
maxima in those experiments indicated short correlation lengths of ~12 A. This
incommensurate scattering has been reported to be present at all temperatures
below ~ 93 K, thus indicating absence of long-range order and absence of the lock-
in transition to a possible spin-Peierls state.

Here, the temperature dependence of the specific heat provides evidence for
the absence of phase transitions of a sample of doping level x = 0.005 (Fig. 6.1).
Contrary to compounds with higher doping levels reported elsewhere, a resolved
pair of incommensurate superlattice peaks is observed below T = 90 K with a
temperature-dependent incommensurability (Fig. 6.4), which is similar to that of
TiOCI (Schonleber et al., 2006; Krimmel et al., 2006). However, the incommensu-
rate propagation vector vanishes at a temperature of T,y = 61.5(3) K (Fig. 6.5),
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(a)

Figure 6.7: (a) Crystal structure of Sc,Ti;_,OCI, and (b) modulation of one ribbon along
b. Arrows indicate displacements out of the basic structure with magnitudes 20 x their
true values.

about 10% lower than the transition temperature of TiIOCI (67 K). This observation
confirms the successful substitution of Ti by Sc. Replacement of Ti by non-magnetic
Sc atoms suppresses the transition, a finding which is in general agreement with ob-
servations on other low-dimensional electronic crystals. At the same time it shows
that an incommensurate-to-commensurate transition persists for the = = 0.005
compound, even though the thermal properties display only a broad, smeared out
excess heat capacity in this temperature regime.

The widths of the superlattice reflections in the ¢ scans is found to be consid-

erably larger than that observed for similar scans on TiOCl (compare Fig. 6.4 to
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Fig. 2 of Ref. Schonleber et al. (2006) and Fig. 2 of Ref. Krimmel et al. (2006)).
w Scans centered at the positions of selected commensurate superlattice reflections
show them to be substantially broader than the main reflections (Fig. 6.6). These re-
sults strongly suggest the absence of long-range order in both the incommensurate
and spin-Peierls-like phases, although correlation lengths are considerably longer
than of the samples reported in Refs. Clancy et al. (2008; 2010).

The major difference to previous experiments on the system Sc,Ti;_,OCl is that
we do detect the spin-Peierls dimerized state at low temperatures. The present
x-ray diffraction experiments can only be reconciled with the absence of anoma-
lies in the heat capacity, if we assume that thermodynamic phase transitions are
suppressed by structural fluctuations, most likely of static nature. However, the
correlation lengths of the fluctuations are found to be much larger than previously
concluded from investigations on higher-doped samples. The refinement against the
integrated intensities of the reflection maxima collected at T' = 8 K resulted in a
structure model largely equal to the dimerized structure of the spin-Peierls state of
TiOCI. Within the present interpretation, the structure refinements imply that the
fluctuating phase indeed is the spin-Peierls state known from TiOCI, albeit without
long-range order. The interpretation as a phase without long-range order is sup-
ported by the orthorhombic lattice of Sc,Ti;_,OCI (z = 0.005) at all temperatures,
despite the monoclinic symmetry of the fluctuating spin-Peierls distortions.

q Scans along a* have indicated an incommensurate-to—commensurate transfor-
mation on cooling through T, = 61.5 K (Figs. 6.4 and 6.5). w Scans on selected
commensurate superlattice positions then have shown that correlation lengths of the
fluctuations are relatively short just below T, and increase until they reach their
maximum value at 7" = 50 K and remain approximately constant below this tem-
perature (Fig. 6.6). Instead of a sharp critical transition temperature between two
thermodynamic phases, a novel aspect of the observed behavior is the gradual di-
minishment of the correlation length of the spin-Peierls-like fluctuations over a range
of temperatures of ~ 10 K, until they are replaced by a state with incommensurate
fluctuations above T;.

The absence of long-range order in both low-temperature regimes can be at-

tributed to the presence of a small amount of non-magnetic Sc3* ions replacing the
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Ti** ions. Each non-magnetic site locally disrupts the magnetic order or spin-Peierls
order. Since they represent point defects, long-range order should not necessarily
be destroyed, if the level of doping is sufficiently small. Instead, doping would
lead to a lowering of the transition temperatures. This behavior has been observed
in the spin-Peierls compound CuGeO3 and in 1D electronic materials exhibiting a
CDW transtions, whereby the state of long-range order persists up to a few per-
cent of doping (Gruner, 1994; Hase et al., 1993). The loss of long-range order in
Sc,Ti;_,OCI at a doping level of x = 0.5% appears to be atypical. We have not
been able to find an entirely satisfactory explanation for the singular behavior of
Sc,Ti;_,OCI. Although at present we were not able to determine the character of
the spatial correlation functions, we notice that a state without true long-range or-
der but with long correlation lengths is reminiscent of a Kosterlitz—Thouless phase

with quasi-long-range order (Nishimori and Ortiz, 2011).

6.5 Conclusions

Sc,Ti;_,OCI with z = 0.005 on cooling transforms into an incommensurate phase
below ~90 K and then into a commensurate phase below T,; = 61.5(3) K. The
shift of the spin-Peierls-like transition toward temperatures lower than observed
for TiOCl is in line with the effects of doping on other low-dimensional electronic
crystals. However, both phases lack true long-range order. Instead, they should
be considered as crystalline phases of orthorhombic TiOCl-type structures support-
ing incommensurate and commensurate fluctuations of particularly large correlation
lengths. Temperature-dependent x-ray diffraction has shown that the commensurate
fluctuations are those of a local spin-Peierls structure with monoclinic symmetry,
despite the overall orthorhombic lattice symmetry.

The loss of long-range order upon Sc doping of TiOCIl occurs at much lower
doping levels than the destruction of long-range magnetic or CDW order in other
1D electronic crystals. Although we do not have a completely satisfactory expla-
nation for this difference, we do like to mention the possibility that doping might
be responsible for an increased 2D character of the magnetic system. The observed

fluctuating states with long correlation lengths then are reminiscent of Kosterlitz—
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Thouless phases in 2D systems (Nishimori and Ortiz, 2011), i.e existing on the
TiOCl layers building the structure.

A novel feature is the transformation of one fluctuating regime to another. In
agreement with the absence of long-range order, the transformation is not a phase
transition occurring at a definite temperature, but it proceeds gradually over a

temperature range of at least 10 K wide.
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Chapter 7

Enlargement of incommensurate

phase in TiOCI by intercalating
Na

7.1 Introduction

The physical properties of materials are closely related to their structures. In con-
trast to conventional superconductors, the unconventional superconductors provide
much higher transition temperatures (high-7.), resulting in great interest in this
field. Most of the unconventional superconductors possess layered two-dimensional
structures (Korshunov and Eremin, 2008; Mizuguchi et al., 2012). The electronic
properties of crystals with a layered structure can be modified by intercalation, re-
sulting in the donation of electrons or holes to the valence bands, possibly inducing
insulator-metal transitions or superconducting transitions (Lévy, 1979; Dresselhaus
and Dresselhaus, 1994). a-TiNCI crystallizes in the layered FeOCl-structure type
(Yamanaka et al., 2009). Pyridine and alkali metals can be intercalated in a-TiNCL
These compounds have been described as superconductors (Yamanaka et al., 1996;
2009). The transition-metal oxychloride TiOCl, a Mott insulator at room tem-
perature, has a structure as similar as o-TiNCI (Fig. 7.1). Upon cooling, TiOCl

undergoes two phase transitions. A second-order phase transition into an incommen-

69
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surate phase proceeds at T, = 90 K (Shaz et al., 2005). Furthermore, a first order
phase transition towards a commensurate spin-Peierls phase occurs at T,; = 67 K
(Seidel et al., 2003; Shaz et al., 2005; Schonleber et al., 2006). Both low-temperature

phases are characterized by monoclinic distortions of the lattice.

TiOCI crystallizes in the FeOCI structure type with space group Pmmn. Ti-O
double layers and two layers of Cl atoms stack along the crystallographic direction

c alternately (Fig. 7.1). The adjacent layers of Cl atoms are connected to each

Figure 7.1: Crystal structure of TiOCl at room temperature and the schematic diagram
shows where Na atoms go. The distances between atoms are calculated in terms of the
structure model of TiOCl at room temperature (Shaz et al., 2005). The unit of the
distances marked is A.
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other via van der Waals interactions. Therefore it appears feasible to intercalate
atoms between these layers. Theoretical studies based on density functional the-
ory (DFT) have been performed to explore intercalation in TiOCl and TiOBr. A
study with ab initio local-density approximation combined with multi-orbital dy-
namical mean field theory (LDA+DMFT) for TiOCI reveals a possible first-order
Mott-Hubbard transition to a correlated metallic state (Craco et al., 2006). Within
the Parrinello-Rahman scheme, ab initio molecular dynamics studies with the Car-
Parrinello projector-augmented wave (CP-PAW) method were performed in order
to study the Na intercalated TiOCl (Zhang et al., 2010). The intercalation of Na in
TiOCl strongly modifies the crystal field splitting of Ti 3d states and causes a coex-
istence of stabilized Ti*™ and Ti*" ions (Zhang et al., 2010). Since the spin-Peierls
state in TiOCl is caused by dimerization of Ti** ions, the influence of electron doping
on spin-Peierls phase should be large, but the compound remains insulating. Exper-
imentally, the samples of Na and K intercalated TiOCl and TiOBr were prepared by
Kuntscher et al. (2010), following the procedure of electron doping in YBayCuzO7_s
(Hossain et al., 2008). The intercalation leads to drastic changes in the electronic
properties of TiOCl and TiOBr, but the Coulomb gap remains (Kuntscher et al.,
2010).

Studies of doping Sc atoms into TiOCl have demonstrated different behav-
iors in dependence on the concentration of dopant. Long-range magnetic order
in Sc,Ti;_,OCI (z = 0.01 and 0.03) were not observed (Clancy et al., 2008; 2010;
Aczel et al., 2011). The spin-Peierls phase was suppressed and incommensurate
phase was present at all temperature below about 93 K. At the doping level of
x = 0.005, Sc,Ti;_,OCI transformed from an incommensurate phase into a com-
mensurate phase below T.; = 61.5(3) K. The phase transition was defined as a
spin-Peierls-like transition, the temperature of which is about 10% lower than that
of undoped TiOCl (67 K) (Chapter 6).

Here we present the experimental studies of Na intercalated TiOCl. Synchrotron
radiation was employed to investigate Na,TiOCl (z = 0.01) single crystals. It is
found that the introduction of Na into TiOCI enlarges the temperature range of the
incommensurate phase. The temperature T,; of phase transition from incommensu-

rate to commensurate phase is 64.86(2) K, about 2 K lower than that of undoped
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TiOCIL. The role of Na intercalation is discussed.

7.2 Experimental and results

Single crystals have been grown by chemical-vapor transport (Schéfer et al., 1958;
Shaz et al., 2005). A stoichiometric mixture of NaN3, TiCl, and TiOy was put in
evacuated quartz-glass ampoules as the starting materials. Crystals of dimensions
of approximately 0.2 x 0.1 x 0.005 mm? were selected for pre-testing the quality.
Crystals with a FWHM of the peaks in the w scans that was smaller than 0.1° were
kept for the temperature-dependent experiments.

A single crystal of dimensions of 0.18 x 0.05 x 0.005 mm?® was glued to a carbon
fiber which was attached to a closed-cycle helium cryostat mounted on a Huber
four-circle diffractometer at beamline D3 of Hasylab at the Deutsches Elektronen-
Synchrotron (Hamburg, Germany). Single-crystal x-ray diffraction experiments were
performed from room temperature down to 8 K, employing monochromatic x-rays
of a wavelength of 0.5600 A. A point detector were used in the expeirments.

The orthorhombic lattice parameters were determined at each selected temper-
ature from the setting angles of 17 reflections. At T'= 8 K they are a = 3.820(12),
b = 3.383(8), c = 8.089(18) A. Possible lattice distortions can be determined from
the splitting of reflections in the direction of the scattering angle 26, if the crystal is
twinned. A splitting of (h k 0), (h 01), and (0 k 1) would imply a deviation from 90°
of the angle v, 8 and «, respectively. In a first experiment, so-called w-26 maps have
been measured for three reflections, (22 0), (2 0-4), and (0 2 -5) at both 298 K and
8 K. As for the previous experiments on M OCI] compounds, the detector slits were
set to 6x0.02 mm?, corresponding to an acceptance angle of 0.0031° in the direction
of 260. w Scans of 121 steps with step sizes of 0.002° were performed for a series of
81 26 values. The interval of adjacent 260 values was 0.002° (Angelkort et al., 2009).

Only single maximum was observed in each w-20 map of all three reflections at
both 298 K and 8 K (Fig. 7.2). The 26 dependence of the diffracted intensity is
obtained by collecting all intensity measured at a single value of 26. The profiles of
the diffracted intensity as a function of the scattering angle 26 for all three reflections

at both 298 K and 8 K reveal only single maxima (Fig. 7.3). These results suggest
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Figure 7.2: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflections (2 2 0), (2 0 -4) and (0 2 -5) at selected temperatures. A26
and Aw indicate the deviation from the center of the scan in units of 0.01°.

that the angles of o, 5 and v are 90°, indicating that the lattice is orthorhombic at
both low and high temperatures.

A series of w scans on superlattice reflections with q vector (0, 1/2, 0) were
performed at 8 K to search for commensurate superlattice reflections as they exist
in the low-temperature phase of TiOCl. A number of 41 peaks were found after

scanning 53 positions of commensurate superlattice reflections. ¢ Scans performed
on reflections (2 3.5 -1), (0 2.5 -3), (0 1.5 -2), and (1 0.5 -9) show single and sharp
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Figure 7.3: Diffracted intensity as a function of scattering angle 26 for the reflection (2 2
0), (2 0-4) and (0 2 -5) at 8 and 298 K. All peaks were fitted by pseudo-Voigt functions.
The FWHM of these three reflections are 0.014°, 0.011° and 0.013° at 8K; 0.014°, 0.011°

and 0.012° at 298K;

peaks which indicate the commensurate phase remains after intercalating 1% Na in
TiOCl, similar to 0.5% Sc doped TiOCI in our previous study (Chapter 6).

In a next experiment ¢ scans along a* were performed on (2 3.5 £+ 1) at selected
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temperatures between 8 K and 95 K to search whether the incommensurate phase
remains or would be suppressed by the intercalation of Na. Up to 65 K only one
maximum can be observed. At higher temperatures split peaks are observed until
91 K. Above 92 K, no obvious maxima appear. For the reflection (2 3.5 1), the
FWHM at 64.5 K is almost double of that at 64 K (Fig. 7.4). Three maxima

800 | | |
- i | 300l 645K |
2
>
5
<
0 EEeade

300 o 65K
: 200
;
>
g

o

s . s o SseRe . . .
190 195 200 205 210 190 195 200 205 210
H H

Figure 7.4: ¢ Scans along a* centered at (2 3.5 1) at selected temperatures as indicated.
solid curves represent pseudo-Voigt functions fitted to the data.

can be observed at 65 K, indicating the beginning of the phase transition. For the
reflections (2 3.5 -1), a single maxima persists until 65 K and peak splitting occurs
at 66 K. These behaviors indicate that the phase transition from incommensurate
phase to commensurate phase occurs at T,y = 65(1) K, which is slightly lower than
the transition at 67 K of undoped TiOCI (Shaz et al., 2005; Schonleber et al., 2006).
Above T,;, the scans reveal two superlattice peaks at incommensurate positions

described by (h + ¢, k£ + 0.5 7). The magnitudes of the incommensurate component
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q1 is half of the separations within pairs of superlattice reflections that observed
in each ¢ scan. To determine the positions of superlattice reflections, pesudo-Voigt
profile functions were fitted to the data by individual functions for each reflection.
The temperature-dependent magnitude of the incommensurate component ¢; is well

described by a critical power law
¢ =q) (T —Ta)". (7.1)

An accurate estimate of the critical temperature T.; = 64.86(2) K is derived from
the fit to the data up to 80 K (Fig. 7.5). The fit to all data up to 91 K results in a

0.10
O 235 1
e 235-1
0.05 -
o
0.00 . . . . . .
60 70 80 90
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Figure 7.5: Temperature dependence of the incommensurate component g; of the modu-
lation wave vector q = (g1, 1/2, 0), as determined from ¢ scans. The solid line represents a
fit of Eq. 7.1 to the data, resulting in ¢ = 0.0409 (7), T.; = 64.86 (2) K and 23 = 0.22 (1).

T, of 64.91(3) K, which is less accurate.
w Scans were performed both at the commensurate position (2 3.5 1) between 63
and 65 K and at the incommensurate position (2-¢; 3.5 1) above 66 K for selected

temperatures. Intensities of these commensurate and incommensurate superlattice
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reflections were derived from Lorentz fits. The integrated intensities above T, are

well described by a function

I(T) = Ip\/1 = T/T,. (7.2)

The fit to this function results in an estimate of T.o = 92.8(7) K for the temperature
of transition to the normal phase (Fig. 7.6), higher than 90 K of undoped TiOCl
(Schonleber et al., 2006).
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Figure 7.6: Temperature dependence of the intensities of the incommensurate superlattice
reflections (2 — ¢ 3.5 1). Error bars are indicated. The line represents a fit with Eq. 7.2

with T, = 92.8(7) K.

Between 63 K and 65 K the FWHM of commensurate superlattice reflections is
constant at 0.068(2)°, while that of incommensurate superlattice reflections above 66
K gradually decreases from 0.084(3)° down to 0.033(3)° upon increasing temperature
(Fig. 7.7).
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Figure 7.7: Temperature dependence of the full width at half maximum (FWHM) derived
from fits of Lorentzians to the w scans centered at the commensurate superlattice reflec-
tions (2 3.5 1) (open circles) and incommensurate superlattice reflections (2 +¢; 3.5 1)
(points). Error bars are indicated.

7.3 Discussion

In the room temperature structure of TiOCl, the distance between a Cl atom and
the nearest O atom of the next TiOCI layer is 4.921 A. The distance between two
neighboring Cl atoms along lattice direction a is 3.778 A, and along b is 3.355
A (Fig. 7.1). The effective ionic radii of Na* and Ti** are 1.02 and 0.67 A,
respectively (Shannon, 1976). Thus comparing to substitute Na for Ti, it is easier
to intercalate Na into the gap of neighboring layers. This intercalation model has also
been employed to investigate the effect of Na intercalation within the framework of
density functional theory (Zhang et al., 2010). Same to the Sc,Ti;_,OCI (z = 0.005),
Na, TiOCI (z = 0.01) possesses an orthorhombic lattice at 8 K, which was confirmed
by the measurement of w-26 maps. This result is different from the monoclinic lattice
in undoped TiOCI at 8 K. The incommensurate propagation vector is present below
a temperature of T, = 92.8(7) K until a temperature of T,y = 64.86(2) K. This
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behavior is similar to spin-Peierls transition in undoped TiOCI but different from
the spin-Peierls-like transformation in Sc,Ti;_,OCl (x = 0.005) (Chapter 6). This
phenomenon may provide evidence of intercalation but not doping. The temperature
of spin-Peierls phase transition is about 2 K lower than that of undoped TiOCI, while
the temperature of phase transition into incommensurate is about 3 K higher than
that of 90 K of undoped TiOCI (Shaz et al., 2005; Schonleber et al., 2006; Schonleber
et al., 2008). The temperature range of incommensurate phase is enlarged under
the intercalation of Na, which indicates the successful intercalation.

The formation of spin-Peierls phase results from the dimerization of Ti** ions
along the crystallographic direction b, in which procedure the 3d electron of Ti3*
plays an important role. The lack of 3d electron of a dopant of Sc3™ modifies the
spin-Peierls state (Clancy et al., 2008; 2010; Aczel et al., 2011 and Chapter 6).
The Na atoms offers their outer s electron to the Ti-O double layers, inducing a
coexistence of Ti*T and Ti?" (Zhang et al., 2010). This may influence the formation
of dimerization of Ti-Ti pairs. With the increasing concentration of Na, the Ti-Ti
pairs may vanish completely due to the increasing amount of Ti** . The similar
spin-Peierls behavior of Na,TiOCl (z = 0.01) and undoped TiOCl suggests that
Na,TiOCl (z = 0.01) remains an insulator, in line with theoretical studies (Craco
et al., 2006; Zhang et al., 2010).

Due to the limitation of beamtime, w scans were not performed on the main
reflections. Here a similar method as that used in Fig. 7.3 was employed to obtain
the profiles of w scans by reprocessing the data of w-20 maps: the w dependence of
the diffracted intensity is obtained by collecting all intensity measured at a single
value of w. The resulting reflection profiles show very sharp peaks but with shoul-
ders. (supplementary Fig. C.1). As the intensities of the shoulders are much lower
than those of the single peaks, one may calculate the FWHM without counting the
contribution of the shoulders. Therefore, the FWHM of the three main reflections
is between 0.009(1)° and 0.014(1)° at both 298 and 8 K (supplementary Table C.2).
The FWHM is even smaller than that of main reflections in Sc,Ti;_,OCI (z = 0.005)
(Chapter 6) and TiOCl (Schonleber et al., 2008). The higher value at 8 K than at
298 K can be explained by anisotropic stress due to different thermal expansion of

the crystal and the glue that was used to fix the crystal (Chapter 6).
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Below T.;, the FWHM of the commensurate superlattice reflection (2 3.5 1) in
the w scans is a constant value of 0.068(2)° (Fig. 7.7). The FWHM is at least 5 times
lager than that of the main reflections, indicating the large width relate not with
the mosaic spread of the crystal but with the atomic modulations. In addition, it is
about 3 times larger than 0.02° of (-2 -3.5 -1) in undoped TiOCI (Schonleber et al.,
2006). These results may imply the absence of long-range order in the commensurate
phase. Above T,;, the FWHM of incommensurate superlattice reflections (Fig. 7.7)
and that of undoped TiOCI (Schonleber et al., 2006, Fig. 2b) is comparable, which

suggests the existence of the long-range order in the incommensurate phase.

The FWHM of the commensurate superlattice reflections (2 3.5 1) and (2 3.5
-1) in ¢ scans at 64K (below T,;) are determined to be 0.0045(1)° and 0.0066(2)°,
respectively. These values are even smaller than 0.025(3)° of (-2 -1.5 -1) at 66 K
(Schonleber et al., 2006), as well as smaller than 0.022(4)° of (0 1.5 0) at 66.84
K (Krimmel et al., 2006) in undoped TiOCl. Same behavior is also observed for
their incommensurate superlattice reflections. These results would indicate that the

long-range order exist in both the commensurate and incommensurate phases.

Depending on the present results, a definite conclusion of the existence of long-
range order in the low-temperature phases of Na, TiOCl (x = 0.01) cannot be made.
Other techniques need to be employed to uncover the whole behavior of Na, TiOCl
(x =0.01), and more x-ray experiments of different concentrations of Na intercalated

TiOCI are required to explore the mechanism of interaction between Na and TiOCIl.

7.4 Conlusion

Na,TiOCl with = = 0.01 has been studied by temperature-dependent x-ray diffrac-
tion. Upon cooling, Na,TiOCI transforms into an incommensurate phase at T,
= 92.8(7) K and subsequently into a spin-Peierls phase at 7,; = 64.86(2) K. The
intercalation of Na atoms enlarges the temperature range of the incommensurate
phase of TiOCI. The limited experimental information prevents a definition about

the existence or not of long-range order in the low-temperature phases.
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Chapter 8

Nuclear and magnetic

superstructure of CrOCI at 8 K

8.1 Introduction

Transition-metal oxyhalides MOX (M = Ti, V, Cr, and Fe; X = Cl, Br, I) have
earned considerable attention over the past few decades, due to their complex mag-
netic properties. The major difference of these isostructural compounds is the num-
bers of d electrons of the transition-metal atoms, which is considered as the origin
of their diverse behavior. A precise structure refinement will be of benefit to the
understanding of interactions between atoms in a crystal. The modulated crystal
structures of TiOCl and VOCI of the low-temperature phases have been reported
(Shaz et al., 2005; Schonleber et al., 2009), but the modulated structure of CrOCl
in the low-temperature phase is still unknown. Upon cooling, TiOCl undergoes two
phase transitions at 90 K and 67 K (Shaz et al., 2005), while VOCI and FeOCl
undergo only one phase transition at 80.3 K and 81 K, respectively (Wiedenmann
et al., 1983; Zhang et al., 2012). For CrOCI, a clear phase transition was estab-
lished at 13.5 K, and a second transition was discovered at about 27.2 K by the
temperature dependence experiment of the specific heat (Angelkort et al., 2009).

CrOCl is isostructural to FeOCl, with space group Pmmn at room temperature
(Schéfer and Wartenpfuhl, 1961). The crystal structure consists of slabs CrOCl

33
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Figure 8.1: Crystal structure of CrOCI.

as displayed in Fig. 8.1. Cr-O double layers are bounded by layers of Cl atoms.
Successive slabs are interconnected by weak van der Waals interactions. Along
b, Cr atoms align in a chain. In VOCI, two d electrons of V3" occupy 3d,2_,2,
3d,. orbitals, resulting in a c-axis unique monoclinic lattice distortion of the state
with antiferromagnetic order (Komarek et al., 2009; Schonleber et al., 2009). The
three d electrons of Cr** in CrOCI are supposed to occupy the 3d,2_,2, 3d,, and
3d,. orbitals, corresponding to an a-axis unique monoclinic lattice distortion of the
AFM state at low temperatures (Angelkort et al., 2009). The mechanism of orbital
occupation in FeOCI is still not very clear, but a c-axis unique monoclinic lattice

distortion was observed (Chapter 5).
In the present study, we report the modulated structure of CrOCI at 8 K based

on x-ray diffraction data obtained with synchrotron radiation. The symmetry of
CrOCl is confirmed as a-axis unique monoclinic at 8 K (Angelkort et al., 2009),
with spacegroup P2;/m and lattice parameter a = 3.8539(9), b = 3.1693(9), ¢ =
7.6569(22) A and o = 90.06(2)°.
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8.2 Experimental

8.2.1 Preparation of CrOCI

Single crystals of CrOCl were grown by chemical vapour transport in evacuated
quartz-glass ampoules, starting with stoichimometric amounts of CrCl; and CryOg3
and employing HgCl, as transport agent (Schéfer and Wartenpfuhl, 1961; Nocker
and Gruehn, 1993; Angelkort et al., 2009). The crystal shape is plate-like with very
small thickness along the c axis. The typical size of an individual crystal is up to
3 mm along the a and b axes. Crystals were mounted on carbon fibers with aid of
two-component glue. Dozens of crystal was tested on a laboratory diffractometer
Mach3, with Mo K, radiation. A crystal with narrow widths of the Bragg reflections

in w scans was selected for the low-temperature experiment.

8.2.2 X-ray diffraction experiments

A crystal of dimensions 0.32 x 0.06 x 0.004 mm?® was selected for x-ray diffraction
experiments at Hasylab, employing radiation of a wavelength of 0.5600 A. Diffraction
at room temperature confirmed the FeOCl structure type with space group Pmmn.
In order to meet the low temperature requirements, a closed-cycle helium cryostat
was employed. Two beryllium caps were used to isolate air at low temperature.
With the aid of the four-circle diffractometer at beamline D3, integrated inten-
sities of Bragg reflections up to a resolution of sin(f)/A = 0.89 A~ were measured
with a point detector at 8 K. A modulation wave vector q = (0, 1/2, 0) was em-
ployed to determine the position of satellite reflections. In the data collection, w
scans were performed with 101 steps and a step size of 0.005 °. The exposure time
for each step was 1 second for main reflections, while it was 4 seconds for the weaker
satellite reflections. However, due to the limitation of beryllium caps and the body
of cryostat, not all octants can be reached. Finally, a number of 806 main reflections
and 929 satellite reflections were collected. Most of the reflections at 8 K were split
into two peaks in the w scans, consistent with the previous results (Angelkort et al.,
2009). w Scans were performed subsequently on several selected reflections at 298
K, 8 K, and 17 K (Fig 8.2). Peak splitting only occurs at 8 K, indicating that the
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Figure 8.2: Diffracted intensity as a function of the crystal orientation w for reflections
(0-25) (a-c) and (2 0 4) (d), at temperatures as indicated.

lattice distortion should accompany the magnetic phase transition at 13.5 K.

Diffraction data were processed by the computer program REDUCE. Combined

intensities were determined for the two peaks in each w scan. The integrated in-
tensities were corrected to eliminate the effects of varying intensity of the incident
beam. By checking the profiles of w scans, 19 reflections were removed due to a
high shoulder of the peak, which do not provide the real intensities (Supplemen-
tary Table D.1). An absorption correction was applied using the computer program
JANA2006, based on a crystal shape determined by inspection under an optical

microscope. After absorption correction, R;,; was improved from 0.0574 to 0.0563.
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8.3 Structure refinement and discussion

JANA2006 was used for structure refinements against the integrated intensities,
following the procedures described by Shaz et al. (2005). Integrated intensities
of both main Bragg reflections and satellite Bragg reflections were imported into
JANA2006. Four integers hklm were employed to index reflections, where m = 0
indicates main reflections and m = 1 means satellite reflections. The orientation
matrix used in the experiments gave a value of 89.94° for the angle a. In order to
use a monoclinic setting with @ = 90.06°, a coordinate transformation was applied
as defined by the change of indices to (-h k -1 m). Both main and satellite reflections
were indexed with respect to the orthorhombic unit cell at room temperature and
the modulation wave vector q = (0, 1/2, 0).

First of all, the basic structure was refined against the main reflections. The ba-
sic structure model was taken from Christensen et al. (1975). Considering the mono-
clinic distortion of CrOCl at 8 K, the orthorhombic superspace group Pmmn(0520)000
(o2 = 0.5), as well as a supercell a X 2b X ¢ with monoclinic symmetry and space
group P2;/m (a-axis unique) were employed for the structure refinement. In all
superspace refinements, to = 1/8 was applied. The intensities of reflections (1 0
0), (30 0) and (5 0 0) were not observed, in line with the systematic extinctions.
Finally, 1127 reflections were recognized as observed reflections with I > 30(I).

The modulated structure was refined against all data. At 4.2K, CrOCI was
reported to possess a four-fold antiferromagnetic structure with magnetic supercell
a x 4b x ¢ (Christensen et al., 1975). Thus the magnetic modulation wave vector q,,
is (0, 1/4, 0), half of the lattice modulation wave vector q, in accordance with the
theory expressed in section 2.4. In order to combine the nuclear structure refinement
and magnetic structure refinement, a uniform modulation wave vector should be
employed. Here, a lattice modulation vector of (0, 1/4, 0) was used. Thus the
satellite reflections will be treated as the second-order satellite reflections, and the
commensurate modulated structure was described by a single harmonic modulation

function of second-order for each Cr, O and Cl,

u(7y) = [ulsin(47Zy), ul sin(4ny), ul sin(4nzy)], (8.1)
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Where 7, =t + q.X and t is the phase of the modulation.

Table 8.1:
CrOCl at 8 K.

Experimental and crystallographic data of modulated nuclear structure of

Chemical formula

Mr

Crystal system

Superspace group

Wavevectors

to

a (A)

b (A)

c (A)

a

vV (A3)

Z

Supercell

Supercell space group

Crystal shape (mm?)
Diffractometer

[sin(6) /N maz (A7)

Absorption correction

Tmin / Tmax

Criterion of observability
R;ni(obs./all)

No. of measured reflections

No. of unique reflections (obs./all)
No. of main reflections (obs./all)
No. of 2™ order satellite reflections (obs./all)
Average redundancy

Refined parameters

Extinction parameters

Rp (obs.) all/main/satellite reflections
wRp? (obs.) all/main/satellite reflections
GoF (obs.)

Twinning axis, angle (°)

Relative twin volumes

CrOCl

99.3
Orthorhombic
Pmmn(0050)s0s
q = 0.25b"

1/8

3.8539(9)
3.1693(9)
7.6569(22)

90.06(2)

93.5

2

adb c

P2;/cll

0.32 x 0.06 x 0.004 mm?
Huber four-circle diffractometer
0.89

Gaussian (JANA2006)

0.7293 / 0.9848

I >30(1)

0.0491/0.0491

1465

821/1043

487/515

334/528

1.402

21

0.61(15)

0.0339/0.0300/0.0680
0.0517/0.0507/0.0696

3.63

(001), 180
0.5396(92)/0.4604(92)

The refinement was successful within superspace group Pmmn(0050)s0s. The

components of the first-order harmonic modulation parameters were set to 0. The
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refinement converged at a low observed Rr = 0.039, and a detailed refinement report
is present in Tables 8.1 and 8.2
Table 8.2: Relative atomic coordinates, ADPs (A?) and Fourier amplitudes (A) of the

modulation function [Eq. (8.1)] for each of the three crystallographically independent
atoms of the basic structure.

Superspace group Pmmn(0020)000 Pmmn(0090)s0s
basic structure q=(0,1/4,0)
y[Cr] 0.5 0.5
z[Cr] 0.1082(0) 0.1082(0)
Uy, [Cr] 0.0002(2) 0.0002(2)
Uy, [Cr] 0.0007(2) 0.0007(1)
Uss[Cr] 0.0022(2) 0.0021(2)
Uiso[Cr] 0.0010(1) 0.0010(1)
u2[Cr]-b = 0.0055(2)
u?[Cr]-c - -0.0085(1)
y[O] 0 0
2[0] 0.9442(2) 0.9443(1)
Un[O] 0.0009(5) 0.0008(3)
Uy [O] 0.0031(5) 0.0031(3)
Ua3[O] 0.0031(5) 0.0037(4)
Ujso[O] 0.0026(3) 0.0026(2)
u2[O]-b - 0.0080(8)
u?[O]-c - 0.0081(7)
y[C]] 0 0
z[C]] 0.3278(1) 0.3278(0)
Un[Cl] 0.0034(2) 0.0034(2)
Ug,[Cl] 0.0020(2) 0.0020(2)
Us3[Cl] 0.0025(2) 0.0025(2)
Uiso[Cl] 0.0027(1) 0.0026(1)
u2[C1]-b - -0.0055(3)
u?[Cl]-c - -0.0028(2)

x[Cr], x[O], x[C]] =0

The amplitudes of the modulation wave are about one tenth of those of TiOCl
(Shaz et al., 2005), implying that the modulation of atoms in CrOCI is much weaker
than that in TiOCl. The modulated distances between Cr-Cr atoms in the Cr—Cr
chains are shown in Table 8.3.

Magnetic structure refinement was performed against neutron powder diffrac-
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Table 8.3: Selected geometric parameters of distances in the superstructure of CrOCI at
8 K (this work) and TiOCl at 10 K (Shaz et al., 2005). The atoms are labeled by the same
method which was used to describe TiOCl by Shaz et al. (2005): Crystallographically
independent atoms are indicated by numbers 1 and 2; Different but symmetry—equivalent
atoms are indicated by an additional letter. Standard uncertainties are included.

Atoms (CrOCI) Distance (A) Atoms (TiOCl) Distance (A)
Crla — Cr2a® 3.1771(2) Tila — Ti2a® 3.429(1)
Crla — Cr2be 3.1616(2) Tila — Ti2be 3.254(1)

“Distances within a single ribbon parallel to b.

tion data collected at 8 K by A. Schonleber. Several superspace groups were
employed to fit the refinement of magnetic structure to check the best structure
model. The best magnetic structure was refined with the magnetic superspace group
Pmmn.1'(0050)s0ss (Petricek et al., 2010; Perez-Mato et al., 2012) and modulation
wave vector (0, 1/4, 0). However, due to a technical limitation of JANA2006, it is
not possible to refine the magnetic structure with orthorhombic superspace group
and « angle slightly deviating from 90° at the same time. Here, the magnetic super-
space group P2;/m.1'(00203)0s was used, while additional symmetry restrictions on
coordinates, displacive parameters of atoms and modulation parameters of magnetic
moments were applied according to the symmetry of the orthorhombic magnetic su-
perspace group Pmmn.1’(0020)s0ss. Under the setting of this model, the magnetic
modulation parameters M}[Cr] = 3.84(19) and M,[Cr] = 1.2(8) were obtained. A
further refinement was performed with the value of M;[Cr] fixed to 0. Within this
setting, M}[Cr] = 3.90(18) was obtained.

In a last refinement, the parameters of displacive modulation functions that
were obtained via the refinement of modulated nuclear structure of CrOCl were
applied to the magnetic structure (Table 8.4), resulting in 79 observed second-order
satellite reflections. The changes of Ry are listed in Table 8.5. The influence of
the displacive modulation on the magnetic structure is very small (Table 8.6). The
ordered magnetic moment is parallel to ¢ (Fig. 8.3), consistent with previous studies
(Christensen et al., 1975; Angelkort et al., 2009). But the magnitude of magnetic
moment is modulated, in contrast to a previous study (Christensen et al., 1975). In

the be plane, an individual Cr atom is surrounded by 2 O atoms and 2 Cl atoms.
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Table 8.4: Experimental and crystallographic data of magnetic structure of CrOCI refined

with atoms displacive modulation functions.

Chemical formula

Mr

Crystal system

Superspace group

Temperature (K)

Wavevectors

a (A)

b (A)

c (A)

a

V (A%

Z

Supercell

Supercell space group

Radiation type

Wavelength (A)

No. of unique reflections (obs./all)
No. of main reflections (obs./all)
No. of 1% order satellites (obs./all)
No. of 2" order satellites (obs./all)
Refined parameters

Rp (obs.)

Rp (obs.)(main)

Rp (obs.)(1% order satellite)

Rr (obs.)(2"? order satellite)
wRp? (obs.)

wRr? (obs.)(main)

wRp? (obs.)(1° order satellite)
wRp? (obs.) (2" order satellite)
Rprofite

WRprofile

CrOCl
99.3
Orthorhombic
Pmmnl’(0050)s0ss
8

q = 0.25b"
3.8632(1)
3.1777(1)
7.6757(1)
90.07(0)
94.23

2

adb c
P2;/cll
Neutron
1.46271
618/1049
237/262
302/525
79/262
14
0.0482
0.0441
0.0771
0.0743
0.0655
0.0578
0.0720
0.0669
0.0490
0.0688

When the 2 O atoms move close to each other and the 2 Cl atoms move apart from

each other, the magnitude of magnetic moment is larger (Cr3a in Fig. 8.3).
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Table 8.5: The values of Rp and wRp? for the observed reflections, without modulated
nuclear structure and with modulated nuclear structure with fixed modulation parameters
from Table 8.2.

without modulation with modulation

Rr (obs.) 0.0430 0.0482
Rp (obs.)(main reflections) 0.0441 0.0441
Ry (obs. )(1” order satellite reflections) 0.0772 0.0771
Rp (obs.)(2™ order satellite reflections) — 0.0743
wRy? (obs.) 0.0654 0.0655
wRr? (obs.)(main reflections) 0.0579 0.0578
wRE? (obs.)(1% order satellite reflections) 0.0723 0.0720
wRp? (obs.)(2" order satellite reflections) - 0.0669
Rproite 0.0490 0.0490
WRyprofite 0.0688 0.0688

Table 8.6: Relative atomic coordinates and ADPs (A2) for each of the three crystallo-
graphically independent atoms of the basic structure, before and after applying the Fourier
amplitudes in Table 8.2.

without modulation with modulation
y[Cr] 0.5 0.5
z[Cr] 0.1077(11) 0.1077(11)
U [Cr] 0.0188(27) 0.0188(27)
Uy, [Cr] 0.0113(24) 0.0112(24)
Uss[Cr] 0.0068(54) 0.0068(54)
Usso[Cr] 0.0123(21) 0.0123(22)
M}[Cr] 3.9020(1756) 3.9043(1756)
y[O] 0 0
z[0] 0.9438(9) 0.9438(9)
U1 (O] 0.0225(22) 0.0225(22)
Uy [O] 0.0178(17) 0.0178(17)
Us;[0] 0.0107(33) 0.0107(33)
Uiso[O] 0.0170(14) 0.0170(14)
y[C]] 0 0
z[C]] 0.3286(6) 0.3286(6)
U [C]] 0.0220(12) 0.0220(12)
Ux[Cl] 0.0166(10) 0.0166(10)
Uss[Cl] 0.0133(25) 0.0132(25)
Uiso[Cl] 0.0173(10) 0.0173(10)

x[Cr], x[O], x[C]] =
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Table 8.7: Selected interatomic distances and bond angles in the superstructure of CrOCI
at 8 K. Crystallographically independent atoms are indicated by numbers. Different but
symmetry equivalent atoms are indicated by and additional letter. Standard uncertainties
are given in parentheses.

Atoms Distance (A) Atoms Distance (A)
Crla - Ola 2.0244(1) Crla — Clla 2.3242(1)
Cr2a — Ola 2.0284(1) Cr2a — Clla 2.3248(1)
Cr2a — O2a 2.0269(1) Cr2a — Cl2a 2.3253(1)
Cr3a — 02a 2.0279(1) Cr3a - Cl2a 2.3190(1)
Cr3a - O3a 2.0244(1) Cr3a - Cl3a 2.3242(1)
Crda — O3a 2.0284(1) Crda — Cl3a 2.3248(1)
Crda — O4a 2.0269(1) Crda — Cl4a 2.3253(1)
Crlb - Oda 2.0279(1) Crlb — Clda 2.3190(1)
Atoms Angle (deg.) Atoms Angle (deg.)
Crla — Ola — Cr2a 103.625(1) Crla - Clla — Cr2a 86.500(1)
Cr2a — O2a — Cr3a 102.847(1) Cr2a — Cl2a — Cr3a 86.086(1)
Cr3a — O3a — Cr4a 103.625(1) Cr3a — Cl3a — Cr4a 86.500(1)
Crda — Oda - Crlb  102.847(1) Crda — Clda - Crlb  86.086(1)

8.4 Conclusion

The nuclear and magnetic superstructures of CrOCl at 8 K have been determined.
The positions of the nuclear and magnetic superlattice reflections in the low-temperature
phase indicate a two-fold, 2b nuclear superstructure and a four-fold, a 4b magnetic
superstructure of CrOCI, respectively. The modulation of the atoms in CrOCI is
very weak, about one tenth of that in TiOCl. Both the nuclear and the magnetic
structures possess an a-unique monoclinic symmetry. The ordered magnetic moment

is parallel to ¢, and the magnitude of which is modulated.
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Chapter 9
Summary

The present work reports on the behaviors of temperature-dependent magnetic or-
der of the transition-metal oxychlorides MOC] (M = Ti, Cr, Fe); further studies
were performed on scandium-doped TiOCI and sodium-intercalated TiOCI. Single
crystals of MOCI] were grown by the chemical vapor phase transport method. At
ambient condition, all compounds MOCI are isostructural with the orthorhombic
space group Pmmn. They have a layered structure with each of the MOCI slabs
containing a double MO layer sandwiched between Cl layers on each side. The
slabs of MOCI are stacked along the lattice direction ¢ and separated by van der
Waals gaps. Within the MO layers, electrons on neighboring M atoms in a chain
along b interact via direct exchange; moreover, interactions of the electrons may
also exist between M atoms on neighboring chains by direct exchange, as well as by
M—-0O—-M superexchange. The different magnetic behaviors of MOCI are related to
the different numbers of 3d electrons of M3*.

The main experimental technique employed is x-ray diffraction at synchrotron
stations. Profiles of so-called w-26 maps on selected reflections were measured to
search for monoclinic lattice distortions of FeOCl, Sc,Ti;—,OCl (x = 0.005) and
Na,TiOCl (x = 0.01). The Néel temperature of FeOCl was derived from the
temperature-dependent value of the monoclinic angle. q Scans were performed
with the aim of determining the wave vectors of the modulated nuclear structure.
The temperature-dependent components of q vectors were used to determine the

temperature of transformation between incommensurate and commensurate fluctu-

97



98 CHAPTER 9. SUMMARY

ating regimes in Sc,Ti;_,OCI (x = 0.005) and the temperature of spin-Peierls phase
transition in Na,TiOCl (x = 0.01). Data collections were performed of integrated
intensities of Bragg reflections. These data were used to refine structure models of
CrOCl and Sc,Ti;_,OCI (z = 0.005) at 8 K. By combining the atomic modulation
parameters with the magnetic structure of CrOCI, the modulated magnetic order of
CrOCl at 8 K have been studied.

For FeOCl, the antiferromagnetic phase transition has been studied by temperature-
dependent anisotropic magnetic susceptibility, heat capacity, dielectric measure-
ments and x-ray diffraction experiments. These investigations reveal a second-order
phase transition and provide a consistent Néel temperature of 82.0(2) K, in line
with the previous values claimed by other research groups. The main discovery is
that the magnetic phase transition of FeOCl is accompanied by a monoclinic lat-
tice distortion, in agreement with the distortions observed for CrOCIl, VOCI and
TiOCl. The value of monoclinic distortion angle v is 90.1° at 8 K. The ordered
magnetic moments possess a component along c, but a component along b may
exist as well. Very few superlattice reflections, which are quite weak, were observed
by q scans at selected temperatures up to 58 K. The results of q scans show a
temperature-dependent length of incommensurate modulation wave vector.

Upon cooling, TiOCl undergoes a phase transition to an incommensurately mod-
ulated state at T., = 90 K, and then a first-order phase transition to the spin-Peierls
state at T.; = 67 K. For Sc,Ti;_,OCI (x = 0.005), the specific heat does not show
any anomalies. Instead of the anomalies, an excess heat capacity is found over a
broad temperature range where the anomalies occurred for TiOCl. The equiva-
lent entropies contained in the anomalies in TiOCl and in the broad excess heat
capacity in Sc,Ti;_,OCl (x = 0.005), demonstrate that sharp phase transitions
have been replaced by fluctuation regimes. q Scans were performed along a* cen-
tered on selected reflections (h k+1/2 1) at temperatures between 52.5 and 90 K.
The appearance of a single superlattice peak between 52.5 and 60 K indicates a
commensurate regime. Above 62.5 K, two superlattice peaks at incommensurate
positions described by (h £+ ¢ k+1/2 [) were observed, indicating an incommen-
surate regime. The transformation from incommensurate regime to commensurate

regime occurs below T.; = 61.5(3). However, both regimes lack long-range order.
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Instead, they should be recognized as crystalline phases of orthorhombic TiOCl-type
structures supporting incommensurate and commensurate fluctuations of particu-
larly large correlation lengths. Instead of a phase transition occurring at a definite
temperature, a transformation of one fluctuating regime to another describes this
feature.

Unlike substituting Ti for Sc, Na, TiOCl (x = 0.01) was obtained by intercalating
Na into the gaps between TiOCI layers. The temperature of T,y = 64.86(2) K
was determined by the temperature-dependent q scans along a*, about 2 K lower
than that of pure TiOCl. The temperature of T.o = 92.8(7) K was determined by
the temperature-dependence of the intensities of the incommensurate superlattice
reflections, about 3 K higher than that of pure TiOCl. These behaviors reveal an
enlarged temperature interval of the incommensurate state.

The modulated structure of CrOCI at 8 K was determined from x-ray diffraction
data of synchrotron x-ray radiation. The appearance of two-fold nuclear superlattice
reflections is in agreement with a four-fold magnetic superstructure. The magnitude
of the modulation of Cr atoms in CrOCI is about one tenth that of Ti atoms in
Sc, Ti;—,OCl (z = 0.005) and TiOCl. The refinement of magnetic structure was
almost not affected by introducing atomic modulation parameters derived from the

refinement of modulated nuclear structure.
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Chapter 10
Zusammenfassung

Die vorliegende Arbeit behandelt das temperaturabhangige Verhalten der magne-
tischen Ordnung der Ubergangsmetalloxychloride M OCI (M = Ti, Cr, Fe); weitere
Untersuchungen wurden an Scandium-dotiertem TiOCI und an Natrium-interkalier-
tem TiOC] durchgefiihrt.

MOCI-Einkristalle wurden mittels chemischen Transports in der Gasphase ge-
ziichtet. Alle Verbindungen MOCI sind bei Normalbedingungen isostrukturell in
der orthorhombischen Raumgruppe Pmmmn. Sie zeigen Schichtstrukturen, die aus
“MOCI-Scheiben” aufgebaut sind. Jede dieser Scheiben besteht aus einer MO-
Doppelschicht, die auf beiden Seiten von Cl-Schichten umgeben ist. Diese “MOCI-
Scheiben” sind dann entlang der Gitterrichtung c gestapelt und durch van der
Waals-Liicken voneinander getrennt. In den MO-Schichten wechselwirken Elek-
tronen benachbarter M-Atome in den Ketten entlang b iiber direkten Austausch;
dariiberhinaus kann es auch zu einer Wechselwirkung der Elektronen zwischen den
M-Atomen benachbarter Ketten kommen, sowohl als direkter Austausch, als auch
als M—O—-M Superaustausch. Das unterschiedliche magnetische Verhalten dieser
Verbindungen hangt mit der unterschiedlichen Zahl der 3d Elektronen in MOCI
zusamien.

Die hier verwendete experimentelle Hauptmethode ist Synchrotron-Rontgenbeu-
gung. Profile sogenannter w-26-Karten von ausgewahlten Reflexen wurden gemessen
und ausgewertet, um fiir FeOCl, Sc,Ti;_,OCI (x = 0.005) und Na,TiOCI (x = 0.01)

nach monoklinen Gitterverzerrungen zu suchen. Die Néel-Temperatur von FeOCl
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wurde iiber die Temperaturabhangigkeit des monoklinen Winkels bestimmt. Mit
Hilfe von g-Scans wurden die Wellenvektoren der modulierten nuklearen Strukturen
bestimmt und aus den temperaturabhangigen Komponenten dieser q-Vektoren dann
die Umwandlungstemperatur zwischen den inkommensurablen und kommensurablen
fluktuierenden Regimen in Sc,Ti;—,OCI (x = 0.005) und die Temperatur der spin-
Peierls Phasenumwandlung in Na,TiOCl (x = 0.01). Es wurden Datensammlungen
integrierter Intensitaten von Bragg Reflexen durchgefiihrt. An diesen Daten wurden
die Strukturmodelle von CrOCI und von Sc,Ti;—,OCI (x = 0.005) bei 8 K verfein-
ert. Durch Kombination der atomaren Modulationsparameter mit der magnetischen
Struktur von CrOCI wurde die modulierte magnetische Ordnung von CrOCI bei 8
K untersucht.

Fir FeOCl wurde die antiferromagnetische Phasenumwandlung mittels temper-
aturabhangiger anisotroper magnetischer Suszeptibilitat, Warmekapazitat, dielek-
trischen Messungen und Rontgenbeugungsexperimenten untersucht. Es wurde eine
Phasenumwandlung zweiter Ordnung gefunden, fiir die die unterschiedlichen Meth-
oden eine konsistente Néel-Temperatur von 82.0(2) K ergaben. Dies stimmt mit
Werten anderer Forschergruppen iiberein. Die “Hauptentdeckung” ist, dass die
magnetische Phasenumwandlung von FeOCI von einer monoklinen Gitterverzerrung
begleitet wird, in Ubereinstimmung mit den Verzerrungen, wie sie bei CrOCl, VOCI
and TiOCl beobachtet werden. Der Wert des monoklinen Verzerrungswinkels -~y
betragt bei 8 K 90.1°. Die geordneten magnetischen Momente besitzen eine Kom-
ponente entlang c, wobei auch eine zusatzliche Komponente entlang b moglich ist.
Einige wenige Uberstrukturreflexe, die sehr schwach sind, konnten mittels g-Scans
bei ausgewéhlten Temperaturen bis 58 K vermessen werden. Als Ergebnis zeigen
diese g-Scans, dass der Betrag des inkommensurablen Modulationswellenvektors
temperaturabhéangig ist.

Wird TiOCI gekiihlt, durchlauft es bei T, = 90 K eine Phasenumwandlung in
einen inkommensurabel modulierten Zustand und dann bei T,.; = 67 K eine Phasen-
umwandlung erster Ordnung in einen spin-Peierls Zustand. Fir Sc,Ti;_,OCl (x
= 0.005) zeigt die spezifische Warme keine Anomalien. Stattdessen findet sich
eine Uberschusswarmekapazitit iiber einen breiten Temperaturbereich, in dem die

Anomalien fir TiOCl auftreten. Die sich entsprechenden Entropien, die in den
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Anomalien in TiOCl und der breiten Uberschusswérmekapazitéit in Sc,Ti;_,OCI
(x = 0.005) enthalten sind, zeigen auf, dass die scharfen Phasenumwandlungen
durch fluktuierende Regime ersetzt wurden. g-Scans entlang a* wurden im Temper-
aturbereich zwischen 52.5 and 90 K durchgefiihrt, zentriert auf ausgewahlten Re-
flexen (h k+1/2 1). Das Auftreten eines einzelnen Uberstrukturpeaks in den einzel-
nen Scans zwischen 52.5 and 60 K deutet auf ein kommensurables Regime. Oberhalb
62.5 K wurden in den Scans je zwei Uberstrukturpeaks auf den inkommensurablen
Lagen (h+ ¢ k+1/2 [) beobachtet, die ein inkommensurables Regime anzeigen.
Der Ubergang vom inkommensurablen zum kommensurablen Regime findet unter-
halb T.; = 61.5(3) statt. Da jedoch beide Regime ein Fehlen der langreichweitigen
Ordnung zeigen, sollten sie stattdessen als kristalline Phasen der orthorhombischen
TiOCl-Typ Strukturen verstanden werden, die inkommensurable und kommensu-
rable Fluktuationen mit besonders langen Korrelationslangen zeigen. Anstelle einer
Phasenumwandlung bei einer festen Temperatur beschreibt ein Ubergang von einem
in ein anderes fluktuierendes Regime dieses Merkmal.

Anders als beim Substituieren von Ti durch Sc wurde Na,TiOCl (x = 0.01)
durch Interkalation von Na in die Liicken zwischen den TiOCIl-Scheiben gewon-
nen. Die Umwandlungstemperatur von 7., = 64.86(2) K wurde durch tempe-
raturabhangige q-Scans entlang a* ermittelt und liegt etwa 2 K niedriger als bei
reinem TiOCl. Die Umwandlungstemperatur von T., = 92.8(7) K wurde aus der
Temperaturabhéngigkeit der Intensitéten der inkommensurablen Uberstrukturreflexe
bestimmt und liegt etwa 3 K hoher als bei reinem TiOCI. Es liegt also ein grofleres
Temperaturintervall des inkommensurablen Zustands vor.

Die modulierte Struktur von CrOCI bei 8 K wurde aus Synchrotron-Rontgen-
beugungsdaten bestimmt. Das Auftreten von Uberstrukturreflexen einer zweifachen
nuklearen Uberstruktur steht im Einklang mit der vierfachen magnetischen Uber-
struktur. Die Gréfle der Modulation des Cr-Atoms in CrOCI ist etwa ein Zehntel
derjenigen des Ti in Sc,Ti;_,OCl (z = 0.005) und in TiOCl. Die Verfeinerung der
magnetischen Struktur wird kaum durch die Einfithrung atomarer Modulationspa-
rameter beeinflusst, die aus der Verfeinerung der modulierten nuklearen Struktur

abgeleitet sind.



104 CHAPTER 10. ZUSAMMENFASSUNG



Appendix A

Supplementary materials: FeOCl
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A.1 Profiles of 20-dependent w-scans

Data of Crystal A

Profiles measured on reflection (2 2 0)

The step sizes in 26 direction is 0.002 deg. The step sizes in w direction is 0.004 deg
at 46.4 K and 66.6 K, 0.002 deg at the other temperatures. The measuring time for

the w-scans was chosen to be 0.5 s per step.
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Figure A.1: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (2 2 0) of crystal A. A20 and Aw indicate the deviation from
the center of the scan in units of 0.01 deg. The center of map is at 26., w. (deg): 26.025,
12.996 10 K; 26.060, 13.012 13.3 K; 26.039, 13.034 27.2 K; 26.030 12.998 46.4 K. Crystal
temperatures are indicated.
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Figure A.2: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (2 2 0) of crystal A. A20 and Aw indicate the deviation from
the center of the scan in units of 0.01 deg. The center of map is at 20., w. (deg): 26.041,
13.044 57.6 K; 26.048, 13.036 66.6 K; 26.037, 13.002 75.5 K; 26.046, 13.031 83.5 K; 26.034,

13.007 114.6 K; 26.021, 13.041 145 K. Crystal temperatures are indicated.
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Profiles measured on reflection (2 0 -4)

The step sizes in 20 and w direction are both 0.008 deg at 13.3 K and 66.6 K, 0.002
deg at 114.6 K and 145 K. The measuring time for the w-scans was chosen to be 0.5

S per step.
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Figure A.3: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (2 0 — 4) of crystal A. A20 and Aw indicate the deviation
from the center of the scan in units of 0.01 deg. The center of map is at 20., w. (deg):
23.071, 12.001 13.3 K; 23.706, 11.978 66.6 K; 23.680, 11.866 114.6 K; 23.666, 11.862 145

K. Crystal temperatures are indicated.
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w-20 MAPS

A.l

Profiles measured on reflection (0 2 -5)

The step sizes in 20 and w direction are both 0.008 deg at 13.3 K and 66.6 K, 0.002

deg at 114.6 K and 145 K. The measuring time for the w-scans was chosen to be 0.5

S per step.
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Figure A.4: Diffracted intensity as a function of the scattering angle 26 and the crystal

orientation w for reflection (0 2 —

5) of crystal A. A26 and Aw indicate the deviation

from the center of the scan in units of 0.01 deg. The center of map is at 26., w. (deg):
28.420, 14.300 13.3 K; 28.410, 14.300 66.6 K; 28.394, 14.232 114.6 K; 28.374, 14.205 145

K. Crystal temperatures are indicated.
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Profiles of 26-dependent w-scans of Crystal B
Profiles measured on reflection (2 2 0)

The step sizes in 20 and w direction are both 0.002 deg at all temperatures. The

measuring time for the w-scans was chosen to be 0.5 s per step.

A20 (deg)O

Y
Aw(degq)

0
Aw(deg) A26 (deg)

Figure A.5: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (2 2 0) of crystal A. A20 and Aw indicate the deviation from
the center of the scan in units of 0.01 deg. The center of map is at 26., w. (deg): 26.017,
13.085 12.7 K; 26.025, 13.065 57.5 K; 26.029, 13.043 93 K; 26.005, 13.041 145 K. Crystal
temperatures are indicated.
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Profiles measured on reflection (2 0 -4)

The step sizes in 260 and w direction are both 0.002 deg at all temperatures. The

measuring time for the w-scans was chosen to be 0.5 s per step.

0
A26 (deg)® A28 (deg)

Figure A.6: Diffracted intensity as a function of the scattering angle 260 and the crystal
orientation w for reflection (2 0 —4) of crystal A. A20 and Aw indicate the deviation from
the center of the scan in units of 0.01 deg. The center of map is at 26., w. (deg): 23.691,
11.882 12.7 K; 23.651, 11.872 145 K. Crystal temperatures are indicated.

Profiles measured on reflection (0 2 -5)

The step sizes in 260 and w direction are both 0.002 deg at all temperatures. The

measuring time for the w-scans was chosen to be 0.5 s per step.

0
0 A28 (de
5 Aw(deg) (deg) 5

A20 (deg)0
Figure A.7: Diffracted intensity as a function of the scattering angle 260 and the crystal
orientation w for reflection (0 2 —5) of crystal A. A26 and Aw indicate the deviation from
the center of the scan in units of 0.01 deg. The center of map is at 20., w. (deg): 28.431,
14.243 12.7 K; 28.384, 14.273 145 K. Crystal temperatures are indicated.
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A.2 Profiles fitting for determination of the peak
position of FeOCl

To determine the reflection splitting the measured reflection intensities of the 26-
dependent w-scans were summed for equal 26-values. The resulting intensities plot-
ted against the 26 values yields a pseudo powder diagram whose profile was fitted

using Gauss functions.

Data of Crystal A

Intensity (a.u.)
Intensity (a.u.)

26.00 26.04 26.08 26.00 26.04 26.08

26 (deg) 20 (deg)
3 30
S S
> >
z z
C C
g g
= =
2 0- =
26.00 26.04 26.08 26.00 26.04 26.08
20 (deg) 20 (deg)

Figure A.8: Reflection profiles of reflection (2 2 0) were derived from 26 dependent w-scans
by summing of the reflection intensities for same 26 values. The solid curve represent the
superposed curves of Gauss-type functions.
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Figure A.9: Reflection profiles of reflection (2 2 0) were derived from 26 dependent w-scans
by summing of the reflection intensities for same 26 values. The solid curve represent the
superposed curves of Gauss-type functions.
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Data of Crystal B
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Figure A.10: Reflection profiles of reflection (2 2 0) were derived from 26 dependent w-
scans by summing of the reflection intensities for same 26 values. The solid curve represent
the superposed curves of Gauss-type functions.



A.2. PROFILES FITTING FOR DETERMINATION OF PEAK POSITION 115

Values of splitting in 26 and monoclinic angle v

Table A.1: Values of splittings in 20 and monoclinic angle ~.

Crystal A Crystal B

T (K) A20 A ~A A20 A v A
12.7 - - - 0.04217 90.09169
13.3 0.04169 90.09064 - - -
27.2 0.03933 90.08553 - - -
46.4 0.02966 90.06446 - - -
57.5 - - - 0.02622 90.05700
57.6 0.02408 90.05232 - - -
66.6 0.02117 90.04605 - - -

75.5 0.01175 90.02557 - - —
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A.3 Structural distortion with modulation wave

vector

In order to study the structural distortion with modulation wave vector, g scans
were performed to find satellite reflections. The data in Table A.2 and A.3 have
been plotted in Chapter 5 Fig. 5.6.

g Scans of satellite reflections

Table A.2: ¢ Scans of crystal A

T (K) (110) (12-g 0) (120) @

10.0 1.00053 1.45886 2.01835 0.54969
13.3 1.00070 1.45918 2.01827 0.54944
27.2 0.99989 1.4569 2.01585 0.55017
46.4 1.00199 1.45447 2.01532 0.55347
57.6 0.99902 1.44846 2.01323 0.55686

Table A.3: ¢ Scans at crystal B

T (K) (20-2) (2 g -2) (21-2) @
12.7 -0.00094 0.54925 0.99879 0.55061
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B.1 Profiles of main reflections at selected tem-
peratures

For selected main reflections so-called w—26 maps were obtained by repeated w scans
at a series of values for 20. Detector slits were set to 6 x 0.02 mm?, which corresponds
to an acceptance angle in the direction of 26 of 0.0031 deg. The step size in the 26
direction was 0.002 deg. The step size in the w direction was 0.001 deg at 1" = 298
K and 0.002 deg at the other temperatures. The measuring time was chosen to be

0.5 s per step.

Profiles measured on reflection (0 2 -4)

-4
0
A26 (deg)

-4

A20 (deg) Aw(deg)

A28 (deg)” : A26 (deg)®
Figure B.1: Diffracted intensity as a function of the scattering angle 20 and the crystal
orientation w centered at reflection (0 2 -4). w—260 maps are given for four temperatures,
as indicated. A260 and Aw indicate the deviation from the center of the scan in units of
0.01 deg. The centers of maps are at 260., w.: 25.239, 12.611 deg at 8 K; 25.224, 12.614

deg at 80 K; 25.203, 12.603 deg at 100 K; 25.096 12.547 deg at 298 K.
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Profiles measured on reflection (2 0 -5)

A26 (deg) 0

-4

A20 (deg) O 4 ‘Aw(deg) A29(deg)0

Aw(degq)

Figure B.2: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w centered at reflection (2 0 -5). w—260 maps are given for four temperatures,
as indicated. A260 and Aw indicate the deviation from the center of the scan in units of
0.01 deg. The centers of maps are at 20., w.: 26.452, 13.241 deg at 8 K; 26.463, 13.262
deg at 80 K; 26.45, 13.247 deg at 100 K; 26.427, 13.211 deg at 298 K.
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Profiles measured on reflection (2 -2 -4)

»
A20 (deg)®

-4
A28 (deg) \w(deg)

-4

: 0 4 0 0
A20 (deg) Aw (deg) A20 (deg) Aw (deg)
Figure B.3: Diffracted intensity as a function of the scattering angle 20 and the crystal
orientation w for reflection (2 -2 -4). w—20 maps are given for four temperatures, as
indicated. A20 and Aw indicate the deviation from the center of the scan in units of 0.01
deg. The centers of maps are at 260., w.: 30.572, 15.234 deg at 8 K; 30.582, 15.303 deg at
80 K; 30.567, 15.282 deg at 100 K; 30.488, 15.238 deg at 298 K.
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Profiles measured on reflection (-1 -1 -1)

-4

A20 (deg) =4 Aw(deg)

-4

—4°
0
A28 (deg) Ow(deg) A28 (deg) O\w(deg)

Figure B.4: Diffracted intensity as a function of the scattering angle 26 and the crystal
orientation w for reflection (-1 -1 -1). w—26 maps are given for four temperatures, as
indicated. A260 and Aw indicate the deviation from the center of the scan in units of 0.01
deg. The centers of maps are at 20,, w.: 13.483, 6.755 deg at 8 K; 13.475, 6.705 deg at 80
K; 13.461, 6.701 deg at 100 K; 13.417, 6.708 deg at 298 K.
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B.2 Dependence of the scattered intensity on diffrac-

tion angle 26

For each Bragg reflection the scattered intensity as a function of the scattering angle
260 has been obtained by integrating the w—260 maps over w. The resulting reflection
profiles contain a single peak, which has been fitted by a pseudo-Voigt function
in each case. These data indicate the absence of any splitting of the diffraction
maxima. They are thus in agreement with orthorhombic symmetry of the crystal

lattice at all temperatures.

12
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Figure B.5: Reflection profiles of the reflection (0 2 -4) for four different temperatures, as
indicated. They have been obtained by integration along w of the data in Fig. B.1. Solid
curves represent fits by pseudo-Voigt functions.
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Figure B.6: Reflection profiles of the reflection (2 0 -5) for four different temperatures, as
indicated. They have been obtained by integration along w of the data in Fig. B.2. Solid
curves represent fits by pseudo-Voigt functions.
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Figure B.7: Reflection profiles of the reflection (2 -2 -4) for four different temperatures,
as indicated. They have been obtained by integration along w of the data in Fig. B.3.
Solid curves represent fits by pseudo-Voigt functions.
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Figure B.8: Reflection profiles of the reflection (-1 -1 -1) for four different temperatures,
as indicated. They have been obtained by integration along w of the data in Fig. B.4.
Solid curves represent fits by pseudo-Voigt functions.
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126

Table B.1: Position (z.) and FWHM of the reflection profiles in Figs. B.5-B.8, as fitted by pseudo-Voigt functions.

T (K)
8

80
100
298

02-4 20-5 -1-1-1 2-2-4
Te FWHM =z, FWHM =z, FWHM =z, FWHM
25.22677 0.02248 26.46939 0.01418 13.47766 0.02618 30.57163 0.01992
25.21163 0.0218  26.45894 0.01351 13.47112 0.02417 30.56926 0.02375
25.19663 0.02205 26.45406 0.01204 13.46162 0.02403 30.55968 0.02331
25.08693 0.02456 26.42123 0.01139 13.42016 0.02519 30.48074 0.01902
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B.3 Reflection positions by ¢ scans

q Scans at selected superlattice positions have been measured in dependence of
temperature. They allow the determination of the components of the commensurate
and incommensurate modulation wave vectors at each temperature.

q Scans have been performed along a* centered at commensurate positions (h k—i—% l).
The scans encompass the range (h — 0.15) — (h + 0.15) by 151 steps of step size

0.002. The exposure time was 8 s per step.

¢ Scans along a* centered at (1 -0.5 -9)

1500 1000

52.5K

55K

o

S

]
1

Intensity (count)
Intensity (count)

: T T T T
0.85 0.90 0.95 1.00 1.05 1.10 1.15

600 400

o& 57.5K 60K

200

Intensity (count)
Intensity (count)

Figure B.9: ¢ Scans centered on (1 -0.5 -9) for temperatures of 52.5, 55, 57.5 and 60
K. All scans show a single peak as demonstrated by the successful fit of a pseudo-Voigt
function to the data (solid lines).
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Figure B.10: ¢ Scans centered on (1 -0.5 -9) for temperatures of 62.5, 65, 70 and 75 K.

All scans show a double peak as demonstrated by the successful fit of two pseudo-Voigt
functions to the data (solid lines).
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Figure B.11: ¢ Scans centered on (1 -0.5 -9). Scans at 80, 85 and 87.5 K show a double
peak as demonstrated by the successful fit of two pseudo-Voigt functions to the data (solid

lines). A peak is not found in the scan at 7= 90 K.
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q Scans along a* centered at (0 -2.5 -3)
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Figure B.12: ¢ Scans centered on (0 -2.5 -3) for temperatures of 52.5, 55, 57.5 and 60
K. All scans show a single peak as demonstrated by the successful fit of a pseudo-Voigt
function to the data (solid lines).
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Figure B.13: ¢ Scans centered on (0 -2.5 -3) for temperatures of 62.5, 65, 70 and 75 K.
All scans show a double peak as demonstrated by the successful fit of two pseudo-Voigt
functions to the data (solid lines).
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Figure B.14: ¢ Scans centered on (0 -2.5 -3). Scans at 80, 85 and 87.5 K show a double
peak as demonstrated by the successful fit of two pseudo-Voigt functions to the data (solid
lines). A peak is not found in the scan at 7' = 90 K.
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q Scans along a* centered at (0 -1.5 -1)
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Figure B.15: ¢ Scans centered on (0 -1.5 -1) for temperatures of 52.5, 55, 57.5 and 60
K. All scans show a single peak as demonstrated by the successful fit of a pseudo-Voigt
function to the data (solid lines).
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APPENDIX B. SUPPLEMENTARY MATERIALS: Sc,Ti;—, OCI

62.5K

Int.(Counts)

N
o

Int.(Counts)

(o5
o

65K

90+

85K

g Scans centered on (0 -1.5 -1). Scans at 62.5, 65, 70 and 85 K show a

double peak as demonstrated by the successful fit of two pseudo-Voigt functions to the

data (solid lines). A peak is not found in the scan at 7' = 90 K.
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q Scans along a* centered at (0 -1.5 -2)
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Figure B.17: ¢ Scans centered on (1 -1.5 -2). Scans at 75 and 80 K show a double peak as

demonstrated by the successful fit of two pseudo-Voigt functions to the data (solid lines).
A peak is not found in the scan at T' = 87.5 K.
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B.4 w Scans at the positions of main reflections
and commensurate and incommensurate satel-

lite reflections

w Scans at commensurate satellite reflections

w Scans of 1 deg wide were performed at commensurate satellite reflections in 101

steps of step size 0.01 deg. The time of exposure was 4 s per step.

w Scans centered at (1 -0.5 -9)
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Figure B.18: w Scans centered at (1 -0.5 -9) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position x. and the FWHM of
the peaks are: 19.0016(4), 0.0621(2) deg at 8 K; 19.0011(4), 0.0611(11) deg at 20 K;
19.0028(3), 0.0522(10) deg at 30 K; 19.0357(3), 0.0493(9) deg at 40 K.
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Figure B.19: w Scans centered at (1 -0.5 -9) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions.
the peaks are: 19.0305(3), 0.0467(9) deg at 50 K; 18.9949(4), 0.0686(14) deg at 52.5 K;
18.9931(7), 0.0876(22) deg at 55 K; 18.9851(8), 0.1127(29) deg at 57.5 K; 19.0081(13),
0.1536(48) deg at 60 K; 18.9636(22), 0.2045(78) deg at 62.5 K.

The position z, and the FWHM of
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Figure B.20: w Scans centered at (1 -0.5 -9) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position z. and the FWHM of the
peaks are: 18.9532(30), 0.2639(138) deg at 65 K; 18.9331(65), 0.3366(348) deg at 70 K;
18.8718(90), 0.2672(399) deg at 75 K; 18.8763(221), 0.4631(1404) deg at 80 K.
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w Scans centered at (0 -2.5 -3)
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Figure B.21: w Scans centered at (0 -2.5 -3) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position . and the FWHM of
the peaks are: 13.5282(9), 0.1939(36) deg at 8 K; 13.5289(10), 0.1863(40) deg at 20 K;
13.5253(10), 0.1768(39) deg at 30 K; 13.5339(9), 0.1555(34) deg at 40 K.
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Figure B.22: w Scans centered at (0 -2.5 -3) at different temperatures as indicated.
The solid lines represent the fit by Lorentz functions. The position z. and the FWHM
of the peaks are: 13.5355(8), 0.1454(27) deg at 50 K; 13.5300(21), 0.3114(107) deg at
52.5 K; 13.5281(49), 0.4587(332) deg at 55 K; 13.5201(77), 0.5952(761) deg at 57.5 K;
13.4497(205), 0.3517(1086) deg at 60 K.
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Figure B.23: w Scans centered at (0 -2.5 -3) at different temperatures as indicated.
Reflection maxima have not been observed.
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w Scans centered at (0 -1.5 -1)
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Figure B.24: w Scans centered at (0 -1.5 -1) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position x. and the FWHM of
the peaks are: 7.4814(16), 0.3219(87) deg at 8 K; 7.4795(19), 0.3138(100) deg at 20 K;
7.4759(17), 0.2853(84) deg at 30 K; 7.4894(13), 0.2629(59) deg at 40 K.



B.4. w SCANS

143

500
400 200+
g 300+ 3
> =
2 200 g 1001
IS S
1001
04— . . . . . 0
70 72 74 76 78 80
o (deg.)
200 120
55K
110
1001
: i
<, 100 >
2 2 80
Q (]
< £ 701
60-
0+— ; ; ; ; ; 50 +— ; ; ; ;
70 72 74 76 78 80 70 72 74 76 78 80
o (deg.) o (deg.)
100
5 60K 90- 62.5K
90+
80-
80 o O .
5 @ 3 70
< 70 lo \ oF g/)o >
= | P I B 604
r L | :
= b c
IS o 5 oo =~ 504
50
401
O T T T s 78 8o 66 68 70 72 74 76 7.8 80 82 84
o (deg.) o (deg.)

Figure B.25: w Scans centered at (0 -1.5 -1) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position z. and the FWHM of the
peaks are: 7.4880(10), 0.2389(44) deg at 50 K; 7.4761(38), 0.5675(355) deg at 52.5 K;
7.4772(73), 0.7325(998) deg at 55 K; 7.4800, 1.4818(1140) deg at 57.5 K. Scans at 60 and
62.5 K do not exhibit reflection maxima.
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Figure B.26: w Scans centered at (0 -1.5 -1) at different temperatures as indicated. The

scans do not show any reflection maxima.
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w Scans at main reflections

w Scans of 0.2 deg wide were performed at positions of main reflections in 101 steps
of step size 0.002 deg. The time of exposure was 0.5 s per step. Here, only the scans

of the reflection (1 -1 -8) are shown.

w Scans centered at (1 -1 -8)
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Figure B.27: w Scans centered at (1 -1 -8) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position . and the FWHM of
the peaks are: 17.5006(5), 0.0278(16) deg at 8 K; 17.5001(4), 0.0280(13) deg at 20 K;
17.4921(2), 0.0227(8) deg at 30 K; 17.5339(2), 0.0246(6) deg at 40 K.
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Figure B.28: w Scans centered at (1-1-8) at different temperatures as indicated. The solid
lines represent the fit by Lorentz functions. The position x, and the FWHM of the peaks
are: 17.5309(1), 0.0209(5) deg at 50 K; 17.5049(1), 0.0192(4) deg at 52.5 K; 17.5066(1),
0.0201(4) deg at 55 K; 17.5099(1), 0.0184(3) deg at 57.5 K; 17.5304(2), 0.0198(6) deg at
60 K; 17.5130(1), 0.0165(2) deg at 62.5 K.
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Figure B.29: w Scans centered at (1 -1-8) at different temperatures as indicated. The solid
lines represent the fit by Lorentz functions. The position x. and the FWHM of the peaks
are: 17.5129(1), 0.0156(2) deg at 65 K; 17.5211(1), 0.0145(2) deg at 70 K; 17.5208(1),
0.0138(2) deg at 75 K; 17.5266(1), 0.0131(2) deg at 80 K; 17.53602(4), 0.0136(1) deg at
85 K; 17.5006(1), 0.0132(2) deg at 87.5 K.



Table B.2: Full-width-at-half-maximum (FWHM) of the Lorentz functions fitted to the peaks in the w scans on satellite
reflections (Figs. B.18-B.26) and on the main reflection (1 -1 -8) (Figs. B.27-B.29). These values have been plotted in Fig.
6.6 of the main article.

APPENDIX B. SUPPLEMENTARY MATERIALS: Sc,Ti;—, OCI

148

1-0.5-9 0-25-3 0-15-1 1-1-8

T (K) FWHM s.u. FWHM s.u. FWHM  s.u. FWHM s.u.

8 0.06213 0.00121 0.19392 0.00362 0.32191 0.0087  0.0278  0.00162
20 0.06114 0.0011  0.18633 0.00396 0.31376 0.01004 0.02804 0.00133
30 0.05216 0.00103 0.17678 0.00386 0.28532 0.00842 0.02271 0.00078
40 0.04934 0.00088 0.15547 0.00341 0.26292 0.00591 0.02457 0.00063
50 0.04665 0.00086 0.14544 0.00272 0.23887 0.00441 0.02088 0.00047
52.5  0.06857 0.00141 0.31138 0.01067 0.56751 0.03546 0.0181  0.00018
95 0.08761 0.00218 0.45869 0.03323 0.73252 0.09979 0.0201  0.00036
57.5 0.11266 0.00285 0.59523 0.07607 - - 0.01839 0.00034
60 0.15356 0.00475 — - - - 0.01977 0.00057
625  0.2045 0.00772 -~ - - - 0.01748 0.00015
65 0.26386 0.01377 — - - - 0.01558 0.00022
70 0.33661 0.03477 -~ - - - 0.01454 0.00019
75 0.26721 0.03994 - - - - 0.01381 0.00018
80 0.46308 0.1404  — - - - 0.01311 0.00017
85 - - - - - - 0.01362 0.00014
875  — - - - - - 0.0132  0.00019
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C.1 Dependence of the scattered intensity on diffrac-

tion angle 26

For each Bragg reflection the scattered intensity as a function of the scattering angle
20 has been obtained by integrating the w-26 maps over w (Fig. 7.2). The resulting
reflection profiles contain a single peak, which has been fitted by a pseudo-Voigt
function in each case (Fig. 7.3). These data indicate the absence of any splitting of
the diffraction maxima. They are thus in agreement with orthorhombic symmetry
of the crystal lattice at all temperatures.

Table C.1: Position (z.) and FWHM of the reflection profiles in Fig. 7.3, as fitted by
pseudo-Voigt functions.

220 20-4 02-5
T (K) =z FWHM Ze FWHM Ze FWHM
8 25.81(52) 0.01399(7) 23.47(17) 0.01067(11) 27.99(55) 0.01267(11)

298 25.72(34) 0.01372(9) 23.42(15) 0.01144(12) 27.85(33) 0.01193(5)
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C.2 Dependence of the scattered intensity on an-
gle w

For each Bragg reflection the scattered intensity as a function of the angle w has been
obtained by integrating the w—26 maps over 26 (Fig. 7.2). The resulting reflection
profiles of (2 2 0) and (0 2 -5) contain peaks with long shoulders in different sides
at both 298 K and 8 K. The profile of (2 0 -4) at 298 K shows a single peak, while
that at 8 K displays a single peak with a nasty shoulder (Fig. C.1).

The steps size of these profiles is 0.002°. Without considering the shoulders, the
FWHM of (22 0), (20-4), (0 2-5) are listed in Table C.2.

Table C.2: FWHM of the reflection profiles in Fig. C.1, as obtained by counting the data
points.

FWHM
T (K) 220 20-4 025
8 0.011(1) 0.009(1) 0.013(1)

298 0.014(1) 0.011(1) 0.014(1)
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Figure C.1: Reflection profiles of reflections for two different temperatures, as indicated.
They have been obtained by integration along 26 of the data in Fig. 7.2. The profiles of
(2 0-4) at both 298 K and 8 K are fitted by Lorentz functions, resulting in the FWHM of
0.0092(2)° and 0.0098(4)°, respectively.
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C.3 Reflection positions by ¢ scans

q Scans at selected superlattice positions have been measured in dependence of
temperature. They allow the determination of the components of the commensurate
and incommensurate modulation wave vectors at each temperature.

q Scans have been performed along a* centered at commensurate positions (h k+% l).

The step size of scans is 0.002 and the exposure time was 4 s per step.

q Scans along a* centered at (2 3.5 1)

For the ¢ scans at temperatures of 64, 64.5, 65 and 66 K, please refer to main text

(Chapter 7, Fig. 7.4)
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Figure C.2: ¢ Scans centered on (2 3.5 1) for temperatures of 67, 68, 70, 72, 75 and 80 K.
All scans show a double peak as demonstrated by the successful fit of two pseudo-Voigt
functions to the data (solid lines).
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Figure C.3: ¢ Scans centered on (2 3.5 1). Scans at 85, 90 and 91 K show a double peak as
demonstrated by the successful fit of two pseudo-Voigt functions to the data (solid lines).
A clear peak is not found in the scans at 92 and 95 K.
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q Scans along a* centered at (2 3.5 -1)
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Figure C.4: ¢ Scans centered on (2 3.5 -1) for temperatures of 64, 65, 66 and 67 K.
First two scans show a single peak as demonstrated by the successful fit of a pseudo-Voigt
function to the data (solid lines). The scan at 66 K is fitted by three pseudo-Voigt function.
The scan at 67 K is fitted by two pseudo-Voigt function.
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Calculations of component q; of the modulation wave vector

Table C.3: Position (2. and z.) and FWHM of the reflection profiles in Figs. 7.4 and
C.2-C.3, as fitted by pseudo-Voigt functions.

T (K) Tl Teo Tea-Tel ¢ FWHM
65 19827(3)  2.0353(12)  0.0526(14)  0.0263(7)

66 1.9672(2)  2.0534(2)  0.0862(3)  0.0431(2)  0.0064(2)
67 1.9620(2)  2.0585(1)  0.0965(2)  0.0483(1)  0.0052(1)
68 1.9562(2) 2.0629(2) 0.1067(3) 0.0534(2) 0.0042(1)
70 1.9494(2)  2.0695(2)  0.1201(3)  0.0601(2)  0.0042(1)
7 1.9447(4)  2.0730(4)  0.1283(6)  0.0642(3)  0.0032(6)
75 1.9401(3)  2.0779(3)  0.1378(4)  0.0689(2)  0.0051(2)
80 1.9339(3)  2.0823(5)  0.1484(6)  0.0742(3)  0.0043(2)
85 1.9320(5) 2.0841(8) 0.1521(9) 0.0761(5) 0.0040(4)
90 1.9307(3) 2.0889(8) 0.1582(9) 0.0791(5) 0.0017(5)
91 1.9305(7) 2.0889(20) 0.1584(21) 0.0792(11) 0.0025(8)

Table C.4: Position (z. and z.) and FWHM of the reflection profiles in Figs. C.4, as
fitted by pseudo-Voigt functions.

T (K) Tel T Tea-Tel Q1 FWHM
66 1.9690(2) 2.0488(387) 0.0798(387) 0.0399(194) 0.0061(2)
67 1.9609(1) 2.0571(1) 0.0962(1) 0.0481(1) 0.0040(1)
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C.4 w Scans at the positions of commensurate and

incommensurate satellite reflections

w Scans of 1 deg wide were performed at commensurate and incommensurate satellite

reflections in 101 steps of step size 0.01 deg. The time of exposure was 4 s per step.

w Scans at commensurate satellite reflections
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Figure C.5: w Scans centered at (2 3.5 1) at different temperatures as indicated. The solid
lines represent the fit by Lorentz functions. The position x, and the FWHM of the peaks
are: 19.1778(4), 0.0690(13) 63 K; 19.1770(4), 0.0688(11) 64 K; 19.1781(4), 0.0686(15) 64.5
K; 19.1741(4), 0.0662(12) 65 K.
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w Scans at incommensurate satellite reflections
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Figure C.6: w Scans centered at (2-¢; 3.5 1) at different temperatures as indicated.
The solid lines represent the fit by Lorentz functions. The position z. and the FWHM
of the peaks are: 19.1211(9), 0.0836(29) 66 K; 19.0823(6), 0.0624(17) 67 K; 19.0585(5),
0.0431(16) 70 K; 19.0351(6), 0.0503(19) 75 K.



160 APPENDIX C. SUPPLEMENTARY MATERIALS: Na, TiOCI

100

© 85 K

200+

(&)
o

100

Intensity (a.u.)
Intensity (a.u.)

95K

i
o

N
o
oS

Intensity (a.u.)

o (deg)

Figure C.7: w Scans centered at (2-¢q; 3.5 1) at different temperatures as indicated. The
solid lines represent the fit by Lorentz functions. The position ., and the FWHM of
the peaks are: 19.0118(8), 0.0272(24) 85 K; 19.0158(10), 0.0329(31) 92 K; A peak is not
observed at 95 K.
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Table D.1: 19 reflections were removed due to the high shoulder in the profile of the
diffraction peaks, which do not provide the real intensities.

h k 1 h k 1 h k h k 1
-1 -2 0 o -2 -7 0 0 -1 1 -3 -6
0o -2 A4 -1 -3 -6 1 -2 0 0o -5 -6
o -2 -3 o -3 -8 2 -1 4 o -4 -9
0 -1 -1 o -3 -7 1 -3 -5 o -4 -7
0 -1 1 0o -3 -6 2 -3 1
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