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SUMMARY

In times of climate change and increasing carbaxide concentrations, three questions
arise for ecosystem sciences: At first, which estesys can contribute to mitigate those
processes? Secondly, how will ecosystems readh@igltanging conditions? And finally,
is the performance of our commonly applied researdthods adequate under those
complex and continuously changing environmentaddmns? This thesis is integrated in
the joint research project FORKAST which investggathose questions. The role of
grassland ecosystems’ source or sink, related gocéinbon cycle is currently not well-
defined. At least, extensively managed grasslandhish European low mountain ranges

may be able to contribute to climate change miiiigelby carbon sequestration.

In ecosystem sciences, two dominant approachesism®@ to gain access to the carbon
cycle. On the one hand these are the micrometagicalomethods as the eddy-covariance
technigue which provides a top view from the atnmesp and, on the other hand, leading
isotopic methods used in agricultural and soil sogewhich allow a more interior view on

the ecosystem. In this thesis, the advantagestbfdre turned to account.

In a first step, the investigated area, an extehginanaged grassland in a mid European
low mountain range, was defined as a net carbda $ime carbon uptake accounted for —
91gCm?a’ in 2010. It has to be mentioned, too, that theglderm climate
measurements on the site revealed an upward tfesting droughts. In a forty year time
series a decrease of precipitation of 21 mm in lAgprd May had been detected. Hence, the
reaction of the carbon cycle was investigated lbyamng a 1000-year spring drought event
(i.e. 38 days without any precipitation) and conmpgithe carbon allocation into shoots,
roots, soil and respiration fluxes to those detkaiae plots with normal precipitation.
Therefore, a stable isotope pulse labeling experintead been conducted. This fact
indicated an increase of carbon allocation by 6t8%elow ground pools as soil and roots

and a reduction of shoot respiration by 8.5% duspting drought.

Gaining absolute values of carbon allocation, tbkative portion, provided by pulse
labeling and tracing, was set off the absolute @aibput into the ecosystem, obtained by
eddy-covariance measurements of the net ecosystdrarcexchange in combination with

partitioning of that into underlying assimilatiomda respiration flux. With the absolute
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carbon input of —=7.1 g Cthd™ and the relative allocation of the labeling, iffixes of
2.5, 0.8, 0.5, 2.3 and 1.0 g C1d™* into shoots, roots, soil, shoot respiration and, CO

efflux could be determined and validated.

Flux partitioning is an important tool in ecosysteiences. It can be accomplished in
different ways. The commonly applied flux partitiog model based on Lloyd—Taylor and
Michaelis—Menten functions had been compared tok damd transparent chamber
measurements and to a partitioning by an isotogpraach, based on isoflux
measurements with the relaxed eddy accumulatiohnigoe. The latter comparison
revealed a lack of sensitivity of the common fluartgioning model for ecosystem
reactions on short term changes in the weatherittomsl The isotopic model based on
detecting the isotope discrimination worked well grassland compared to former
experiments over a forest. Furthermore, relaxed; eddtumulation basetfCO, isoflux
measurements confirmed only minor influences of aspheric isofluxes on isotopic
labeling experiments by detecting only a negligitbetion of *CO, of the entire COflux.
However, there are certain restrictions for appyielaxed eddy accumulation on managed
grassland, found in this study. Scalar similardyprecondition for proper relaxed eddy
accumulation fluxes, cannot be guaranteed diredtgr the management. It is suggested to
wait at least 22 days in summer and 12 days innamtafter the management. The
ecosystem needed this span of time to recovereipdar source/sink distribution of water

vapor, CQ and temperature.

The chamber method was applied to validate themdlssion flux, provided by the
common flux partitioning model. This was done dgrithe day at time of turbulent
atmospheric conditions. In a comparison experimegtiveen the chamber and eddy-
covariance a good agreement was found at that tmtbe late afternoon and during night,
the chamber could not reproduce present atmospleenditions, as, for example,
increasing stable stratification due to the oafeceor coherent structures. This resulted in
smaller chamber CQOsource fluxes of 26% during night and larger chamBQ sink
fluxes of 14% during day. The chamber techniqueingortant for small scale
measurements (especially in treatment experimeiita)s, it is important to know the

reasons for those differences to eddy-covariance.
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ZUSAMMENFASSUNG

Durch den Klimawandel und die steigenden Kohlenidikonzentrationen in der

Atmosphaére stellen sich den Umweltwissenschaftieenentscheidende Fragen:

Welche Okosysteme konnen einen Betrag zu AbschwiicHieser Prozesse leisten? Wie
werden die unterschiedlichen Okosysteme auf diéngarten Bedingungen reagieren?
Und reichen die gegenwartig angewendeten Untersigdmiethoden aus um die

komplexen und sich standig verandernden Umweltlgeoigen angemessen erfassen zu

kédnnen?

Diese Arbeit befasst sich als ein Teil des Verbuogites FORKAST mit der
Erforschung dieser Fragestellungen. Die Rolle voieséh als Kohlenstoffquelle oder -
senke ist derzeit nicht klar definiert, wobei zudest extensiv bewirtschafteten Wiesen in

Mitteleuropéaischen Mittelgebirgen eine Senkenfabigkugesprochen wird.

Zwei Forschungsansatze pragen die Umweltwissentsthain Bezug auf den
Kohlenstoffkreislauf. Mikrometeorologische Methodere die Eddy Kovarianz Methode
bieten eine Art Uberblick aus der Atmosphare, witiresich die Boden- und
Agrarwissenschaften (iber Isotopenanalysen eine némsicht des Okosystems
verschaffen. Die Vorziige beider Forschungsfeldedemin dieser Arbeit gekoppelt.

Der erste Schritt war die eindeutige Definition desuntersuchenden Extensivgriinlandes
als Kohlenstoffsenke. Die Kohlenstoffaufnahme kgptim Untersuchungsjahr 2010 91 g
Kohlenstoff m? a™. Zusétzlich wurde eine Zeitreihe tiber 40 JahreNieterschlagsdaten
ausgewertet, welche fur das Untersuchungsgebiet ggigende Tendenz zu Frihjahrs-
trockenheit aufzeigten. In April und Mai wurde ei@@samtabnahme der Niederschlage

um 21 mm festgestellt.

Auf Grund dieser Erkenntnis sollte die Reaktion #ehlenstoffkreislaufes untersucht
werden. Eine 1000-jahrige Fruhjahrsdurre (d.h. 8§eTohne Niederschlag) wurde auf den
Forschungsflachen kiinstlich erzeugt. AnschlieRendder die Kohlenstoffeinlagerung in
Spross, Wurzeln, Boden und Spross- bzw. Bodenatrauhgiesen Flachen mit der unter
normalen Niederschlagsbedingungen verglichen, wefiir Markierungsexperiment mit

dem stabilen KohlenstoffisotopC durchgefithrt wurde. Die Frithjahrsdiirrevarianigtee
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einen Anstieg der Kohlenstoffverlagerung in Wurzalmd Boden um 6.2 % und einen
Ruckgang der Sprossatmung um 8.5 %.

Um die Kohlenstoffverlagerung in Masseneinheitegedr@n zu kénnen, wurde die durch
das Isotopenmarkierungsexperiment bestimmte reladerlagerung mit der Masse an
aufgenommenem Kohlenstoff verrechnet. Letztereulge®.1 g Kohlenstoff if d™* und
konnte Uber die Eddy Kovarianz Methode und eine etlbdsierte Aufteilung des Netto-
Okosystemaustausches in seine Teilflisse Assimilatnd Respiration bestimmt werden.
Es ergab sich ein Kohlenstoffeintrag von 2.5, 0.8, 2.3 and 1.0 g Kohlenstoff A in

Spross, Wurzeln, Boden, Sprossatmung und Bodengtmun

Die Aufteilung des Netto-Okosystemaustausches éniltin zugrundeliegenden Fliisse ist
in den Umweltwissenschaften von grof3er Bedeutumgkamn auf unterschiedliche Weise
bewerkstelligt werden. Die Ergebnisse des Ublicke® dafir angewendeten Modells
nach Lloyd-Taylor und Michaelis-Menten wurden mitesdungen mit dunklen und
transparenten Kammern und mit einem, auf Isotopsaomgen mit der Relaxed Eddy

Accumulation Methode basierendem Modell, verglichen

Das letztgenannte Vergleichsexperiment machte dehlefide Sensitivitdt des
ublicherweise verwendeten Aufteilungsmodells furzkustige Wetterveranderungen und
die entsprechenden Reaktionen des Okosystemsictieuflas auf Isotopenmessungen
basierende Modell beriicksichtigt hingegen die Isetaliskriminierung des Okosystems
und somit alle damit verbundenen Prozesse. Diel@&rab bei der Anwendung, die auf

Messflachen im Wald bekannt sind, traten auf deraséfistandort nicht auf.

Zudem bestatigten di€’CO, Isoflussmessungen mit der Relaxed Eddy Accumuiatio
Methode, dass der Anteil dCO, am Gesamtfluss und somit der Einfluss auf Isotepen

markierungsexperimente vernachlassigbar ist.

Die Anwendung der Relaxed Eddy Accumulation Methadterliegt jedoch auf extensiv
bewirtschafteten Wiesenstandorten einer nicht zigrachatzenden Einschrankung. Eine
wichtige Voraussetzung fiur eine korrekte Flussbasting, die sogenannte Skalare
Ahnlichkeit, ist kurz nach einem Grasschnitt nigaeben. Nach den Erkenntnissen dieser
Studie ist eine Anwendung der Relaxed Eddy AccutimraMethode fur 22 Tage im

Sommer und fur 12 Tage im Herbst nach einem Gragschicht empfehlenswert. Diese
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Zeit hat das Okosystem benotigt um die normalemveisrliegende Quellen- und
Senkenverteilung fir Wasserdampf, Od Warme wiederherzustellen.

Die Kammermethode wurde verwendet um den Assiroilafiuss aus dem Aufteilungs-
modell zu Uberprifen. Dieser Vergleich wurde walbraetes Tages bei ausgepragter
atmospharischer Turbulenz durchgefihrt. Unter dieBedingungen wurde in einem
Vergleichsexperiment zwischen der Eddy Kovarianzd der Kammermethode die beste
Ubereinstimmung gefunden. Am spaten Nachmittag watirend der Nacht waren die
Kammerergebnisse durch mangelhafte Abbildung demogpharischen Bedingungen
verfalscht. Wahren der Nacht wurden durch Kohar&ttakturen hervorgerufene Flisse
nicht erfasst und am spaten Nachmittag wurde digefr durch den Oaseneffekt
hervorgerufene, Stabilisierung der bodennahen thiithten unterschatzt. In der Folge
bestimmte die Kammer nachts einen um 26 % geringenel tagsiber einen um 14 %
hoheren C@Fluss. Fiur Messungen im kleinskaligen Bereich, Z@mspiel auf speziell
behandelten Flachen, ist die Kammermethode nicletrgetzen. Deshalb ist es unerlasslich

die Unterschiede zur Eddy Kovarianz Methode unémléfrsachen zu kennen.
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1 INTRODUCTION

Climate change is real and its dependence on gufemic greenhouse gas emission is
widely accepted in the scientific community. Thergase of global carbon dioxide (O
concentration induced ecosystem sciences to ifiyethgir search for counter-measures and
for identification of potential natural carbon sces and sinks. In this context, taking
advantage of the natural carbon sequestration osystems after carbon uptake by
photosynthesis is one idea. Thereby, the importahderests is more often emphasized in
the discussion than of grassland ecosystems. $hatdause grassland ecosystems are not
definitely defined as carbon source or sink. ThédPascribed the potential role of “source
or sink” to grassland ecosystems (IPCC, 2013).ddddanssens (2003) found a certain sink
capacity which is of high uncertainty, though, &idis et al. (2010) as well as Gilmanov et
al. (2010) could not find evidence either way. bmtast to that, there is a present sink
potential for extensively managed grassland ecesystin mid European low mountain
ranges (Gilmanov et al.,, 2007; Allard et al., 200dmmann et al., 2007; Hussain
et al., 2011). However, complex interactions betwe@henological development,
management and atmospheric conditions create aircenter-annual variability that can
temporally turn the ecosystem into a carbon so(\ehlfahrt et al., 2008). Climate change
enhances variations in the carbon cycle due teasing temperatures (Luo, 2007), varying
precipitation amounts and patterns (Knapp, 2002puChkt al., 2008), heat waves and
droughts (Ciais et al., 2005; Joos et al., 201@) @sing atmospheric COconcentrations
(Luo et al., 2006).

In this study, an extensively managed grasslamdisia Bavarian low mountain range is to
be defined as a carbon sink or source under presemitions. Long time climate data,
collected at the measurement site in the city oif3sfestadt (620 a.s.l., 2.5 km northeast
from the study site) confirmed altered precipitatjpatterns. A comparison of the 30 year
climate period from 1961 to 1990 with the periodnir 1971 to 2000 pointed out a total
decrease of precipitation by 21 mm in April and M&gken, 2003). This is likely to induce
drought stress already at the beginning of the tatige period. Therefore, it requires further
investigation — above all, with regard to potenti@hsequences for the carbon cycle and the
attributed sink potential of this extensively maeaggrassland in a mid European low
mountain range. This issue fits well into the "Baam Climate Program 2020" of the
Bavarian State Ministry of Sciences, Research anid, An cooperation with Bavarian
universities, specialist government agencies anda tgreat extent, with the research
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cooperation BayFORKAST (Impact of Climate on Ectsys and Climatic Adaptation
Strategies), FORKAST (Bavarian State Ministry fawviEonment and Consumer Protection,
2013). Grasslands cover the surface of the Frde StaBavaria to a large percentage and -
beneath the source/sink question, which is definitaportant in terms of climate change
mitigation — are of considerable importance foret®nomy. Consequently, the prospective
value and the protection status, coming along tiéhresilience and the performance of the

extensively managed grassland, have to be assess®ith counts.

Today, the carbon balance of a terrestrial ecosysgecommonly investigated by measuring
the NEE using the eddy-covariance technique (eajddgchi et al., 2001; Aubinet et al.,
2012). This direct method determines turbulentdkifMontgomery, 1948; Obukhov, 1951;
Swinbank), requires certain correction and qualdgtrol tools (Foken and Wichura, 1996;
Foken et al., 2004; Vickers and Mahrt, 1997) Mawigt1l #191} and, for annual sums of
NEE, gap filling mechanisms (Stoy et al., 2006; B et al., 2006a; Desai et al., 2008;
Papale, 2012; Falge et al., 2001; Moffat et alQ70 Those gap filling tools are closely
related to flux partitioning models (FPM) which alesigned for separating the NEE into its
underlying components: ecosystem respiratiogcgRand gross primary production (GPP;
Falge et al., 2002; Stoy et al., 2006; Desai e&l08; Lasslop et al., 2010; Rebmann et al.,
2012). To parameterize temperature dependags &jual to nighttime NEE due to missing
assimilation, the Lloyd—Taylor function was appliédoyd and Taylor, 1994). Light
response regression on the basis of the Michaebstéh function (Michaelis and Menten,
1913) was used to parameterize daytime solar radiatependant GPP. Those fluxes
provide a better insight into the processes ofcidmbon cycle and have further advantages
over the NEE as shown in the following. As the eddyariance method integrates the NEE
over a large area of the meadow, the NEE is justintegrated result of all interacting
processes that are related to the carbon cycleerdpg on whether the ecosystem is a
carbon sink or a source in times of changing emwvitental conditions, it is important to
know where carbon goes to or comes from (Gilmanbwvale 2007). At this point,
atmospheric approaches reach their limits. Paniiig of assimilated carbon to various
ecosystem pools can be achieved by using isot@uleniques (Buchmann, 2000, 2002;
Kuzyakov, 2006). Thereby, natural continuous (C&nid grow after C4 plants or vice
versa), artificial continuous and artificial pulséeling approaches have to be differentiated.
Pulse labeling, being applicable the best and mhost conducted, tracer method (Kuzyakov
and Domanski, 2000; Kuzyakov and Schneckenberg@®4)2is based on pulse-like
insertion of a tracer to the green biomass — asa$isemilating part of the ecosystem — and

18



subsequent sampling and tracing respectively in diverse ecosystem compartments.
Finally, it provides a relative proportion of thecorporated carbon translocated to various
above and below ground carbon pools (Kuzyakov artth&ckenberger, 2004). However,
the total amounts of translocated carbon remaimowk (Kuzyakov et al., 2001; Leake et
al., 2006). This method is often used when siteth wimilar preconditions but different
kinds of treatments are compared on the basistioisraf carbon allocation (e.g. Hafner et
al., 2012; Johnson et al., 2002; Allard et al., @0 this study it was initially applied to
plots on extensively managed grassland where teadt mentioned spring drought events
were artificially induced and intensified before tlabeled experiment. In comparison to the
variant that was exposed to precipitation as ustkenges in the carbon allocation were
detected for being able to assess the consequeiss to find adequate climate change

adaptation strategies (referring to the carboneckthhe atmospheric G@oncentration).

The comparison of the atmospheric net ecosysters fiQes of both variants (spring
drought and regular precipitation) would constitate upgrading of those experiments. At
the study’s relevant site, as lots of sites allrotree world where the exchange of £0
between terrestrial ecosystems and the atmosplemneasured, the eddy-covariance
technique is installed in place (Baldocchi et 2D01). However, to measure small scale
fluxes above a drought plot of 1°nfor example, is inappropriate because it integrahe
signal over a large flux footprint (Rannik et a&0Q12). Therefore, the application of a
complementary technique often stands to reasonchienber method. It has to be seen
critically of course to investigate differently ated plots with different methods, at least as
long as both methods are not compared properlyn&ocomparison studies between eddy-
covariance and the chamber technique found diftm®nfor example due to methodical
problems under high vegetation (Subke and Tenh2@d4), at times with low turbulence
intensity (van Gorsel et al., 2007), at night ogemplex surfaces (Myklebust et al., 2008),
due to poor regression analysis in the chambewaddt (Kutzbach et al., 2007) or different
target areas (Reth et al., 2005). Anyway, in mastiss the lacking conformity during
nighttime is mentioned. This circumstance suggestore detailed investigation in times of
stable stratification. There are also meteoroldgiétects during daytime which would be
worth investigating but still not considered in tha@entific community. Closely related to
the formation of atmospheric stability is the oadlifect that appears predominantly in the
afternoon when a large upward latent heat flux eau®oling of the surface and thereby a
downward sensible heat flux despite of a still mawy solar radiation (Stull, 1988; Foken,

2008). Firstly, it seems probable that this mosstdependent effect behaves differently on
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drought plots and on those with regular soil moest$econdly, there may be effects on the
carbon fluxes which may develop differently at aer@d surface (under a chamber dome)
and an undisturbed ecosystem. The same appligsiaspheric turbulence in general which
simply cannot be reproduced within a chamber (Kilrdorad Lemon, 1971; Pumpanen et al.,
2004; Rochette and Hutchinson, 2005). Atmospherigulence has a typical size spectrum
and distribution of the turbulent eddies dependimgheight and surface structure. To a
larger extent, low-frequency flow patterns, those, a&oherent structures (Collineau and
Brunet, 1993; Gao et al., 1989; Thomas and Fok@&@7R which are typical in the
investigated region (Foken et al., 2012b), may ealilferences between chamber and eddy-
covariance measurement results. Consequently, pooger comparison of both techniques
it is necessary to compare not only daily sumsh&f NEE but also to take various
atmospheric conditions in the course of the diuayale into account. All these basic issues
are to be clarified in a side by side measuremgtiteoNEE, with latest chamber technology

and the eddy-covariance technique with adequatityjoateria.

In contrast to chambers that — in combination &ittarkened and transparent chamber — are
able to determine ecosystem respiration and asgionl fluxes directly, eddy-covariance
just provides the NEE as a combination of both.nTaenore detailed information about the
underlying fluxes is achieved usually by applyihgfpartitioning models (Stoy et al., 2006;
Desai et al., 2008; Lasslop et al., 2010; Reichsteal., 2012). However, those may provide
fluxes with unrealistic temporal variation or maguie (Stoy et al., 2006). An alternative in
this context is partitioning, based on additionatedmination of thé*CQO, isoflux (Yakir
and Wang, 1996; Bowling et al., 2001; Knohl and [Buann, 2005; Ogée et al., 2004;
Wichura, 2009; Wichura et al., 2004; Ruppert, 2008yd et al., 1996). Due to physical
and biochemical processes as stomatal uptake of @@ photosynthesis, which
discriminates against the heavier isotdf@, the air close to the biosphere gets enriched in
13C0O, over the day. Consequently, the biomass itselfadinllowing compartments within
the dynamic carbon-cycle are depleted'i& and so is the respired GCBoth effects
account for a distinct diurnal cycle of thi€0, concentration in ecosystem air (Flanagan et
al., 1996; Lloyd et al., 1996). ResultifdCO; isofluxes can be determined by hyperbolic
relaxed eddy accumulation (HREA; (Bowling et aD02; Bowling et al., 2003; Wichura,
2009; Wichura et al., 2004) inter alia. Althougkdasupporte®CO, flux measurements get
more and more important, REA technique is stillleggptoday. Ruppert (2008) and Wichura
(2009) investigated an isotopic approach by Lloydle(1996) for partitioning NEE above
forest ecosystems and found some restrictions dueotnplicated coupling conditions
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(Thomas and Foken, 2007). This difficulty is avaida the current study by applying the
measurements for this approach tested on grassi&edeby, the commonly used FPM for
the NEE determined by eddy-covariance can be exairny a method that is based on a
real ecosystem process, the discrimination of leeasotopes by the biosphere. In addition
to the general uncertainty about the carbon sairdebehavior of grassland mentioned in
the beginning, the management of grassland eceosystauses anomalies in the seasonal
carbon cycle (Flechard et al., 2005). In the sarag,wemperature and water vapor fluxes,
that is, sensible and latent heat fluxes may diffefore and after the management and,
additionally, this may come along with certain resions for REA measurements. Errors in
the REA flux often appear when scalar of interexl aroxy scalar behave differently in
their turbulent transportation efficiency (Ruppett al., 2006b). This so called scalar
similarity is required especially for hyperbolic REbecause two important factors — the
hyperbolic deadban#l and the proportionality factds — and consequently the REA flux
would be incorrect without (Oncley et al., 1993;pRart et al., 2006bp-factors are often
treated as constant (Meyers et al., 2006; Haapatah, 2006), although they underlie a
certain diurnal variation. Other studies on managedsystems use G@nd water vapor
(Baum and Ham, 2009) and mostly temperature (Mgtes., 2007; Hensen A. et al., 2009)
as proxy scalar, sometimes shortly after the manageé (Nemitz et al., 2001). Thus, it has
to be investigated thoroughly by numerous simutetivith data from mown and unmown
grassland, if this practice can be problematic ameén REA experiments on managed
grassland should not be conducted. Only with thisrimation, correct®CO; isofluxes can
be ensured. Those fluxes serve another importaipopa of this study, too. Pulse labeling
experiments with>CO, are applied all over the world in ecosystem resedut the
influence of atmospherit?CO, fluxes was generally not considered (an overvigwiven

by Kuzyakov and Domanski (2000) and Yakir and Sierg (2000)). It has to be assessed if
the influence on experiments based on isotope memsunts can be neglected.

The overall motivation for all these technically latrous experiments is to reduce present
uncertainties about potential ecosystem reactionsohtemporary changing environmental
conditions. Furthermore, this is naturally basedresearch methods which are evaluated

critically and in detail. Regarding this, four fdcssues are revised in this study:

(a) The pulse labeling approach used in plant aidssiences requires an upgrade. Up to
now, an essential constraint of the method is to gaative portions of translocated carbon

only. However, most studies related to carbon lwaamnd turnover mass units are important
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(Kuzyakov and Domanski, 2000). With a thoroughlyaleated carbon input flux to the
ecosystem this constraint can be reserved. Forptlmgose, a completely novel approach
was conceived by looking for a steady state of rtlative carbon distribution to the
different carbon pools after the pulse labeling @iggar et al., 1997; Saggar and Hedley,
2001; Wu et al., 2010) and by setting this restiitagainst the average absolute carbon
input to the ecosystem during the period betwebslilag and steady state, determined by
eddy-covariance in combination with a flux partitiog model. This first-time performed
combination of methods can be seminal in a moremaoie integrated field of atmosphere,
plant and soil sciences in times of presently chrapgnvironmental conditions (Appendix
A).

(b) From an atmospheric point of view an upgradeetpuired, as well. Eddy-covariance
measurements are well established and its qualibfitp from sophisticated quality
assessment tools but it also suffers from two caimgs which are worth noting. For a better
insight to the carbon cycle, NEE needs to be pamgd into its source and sink fluxes by
flux partitioning tools. Consequently, those havebe evaluated by a method that is based
on a real ecosystem process, the discriminatiorhesvier isotopes by the biosphere

(Ruppert, 2008). Therefore, REA represents a deeehnique (Appendix B).

(c) Moreover, eddy-covariance is an atmosphericsoreanent technigque and is installed in
a certain height above the ground. Thus, it measarkarge flux footprint (Rannik et al.,
2012) and is unsuitable for a determination of éenxabove small, in experiments often
treated, plots, as for instance the drought plotis study. There, the chamber method and
adequate comparison to eddy-covariance under cenasion of the atmospheric conditions

become relevant (Appendix C).

(d) In respect of climate change the extensivelypagad grassland was to define as carbon
source of sink by determination of the annual carbalance with the eddy-covariance
technique and the influence of spring drought event the carbon-cycle were to define by
stable isotope pulse labeling (Bavarian State Nhyigor Environment and Consumer
Protection, 2013).
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2 METHODS AND EXPERIMENTS

In the first part of this chapter the most impottseientific methods applied in this study are
introduced. The second part describes how theshoa®tinteracted within the respective

field experiments.

2.1 Methods

2.1.1 Eddy-covariance

The eddy-covariance technique is, by definitiondieect method (Montgomery, 1948;
Obukhov, 1951; Swinbank) for measuring turbulenxds. For the determination of the £0O
flux, the concentration was measured by an opeh—gas analyzer (LI-7500, LI-COR
Biosciences, Lincoln, Nebraska USA) and the windtee by a 3D sonic anemometer
(CSAT3, Campbell Scientific, Inc., Logan, UT USA) lsigh frequency (20 Hz), 2.5 m
above ground. Data had been stored on a data I¢@&8000, Campbell Scientific, Inc.,
Logan, UT USA) and collected daily by a computestegn as a backup. Data had also been
post processed and quality controlled, based @stlabicrometeorological standards by the
software package TK2 which had been developedeatUthiversity of Bayreuth (Mauder
and Foken, 2004). In the meantime, this still ev@\software (TK3) has become available:
Mauder and Foken (2011) incorporates all necessatigy correction and data quality tools
(Foken et al., 2012a). It was proved successfullgamparison to six other commonly used
software packages (Mauder et al., 2008). For eaggraging interval of 30 minutes, the
included state of the art quality flagging systevaleated stationarity and turbulence and
marked the resulting flux with quality flags from (¥ery good quality) to 9 (very low
quality; Foken and Wichura, 1996; Vickers and Mah&97; Foken et al., 2004). Only data
with quality 3 or better has been used in thiswtddso footprint analysis after Gockede et
al. (2004), Gockede et al. (2006), Rannik et &00(® and (2012) was performed to assure
that the measured data represented exclusivelyatite use type of interest: extensively

managed grassland.

2.1.2 Relaxed eddy accumulation

The basic idea of Desjardins in 1972 (Desjardi®g,7) of separating the vertical wind into

an up— and downward component was applied by Basiagd Oncley (1990). This Eddy
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Accumulation method (EA) was combined with the fluariance—similarity to create an
indirect method: the relaxed eddy accumulation (RHAe REA—flux

FREA:b Gwpa(a_a) 1)

is derived from average up- and downward scalarceatnation c and ¢ , standard

deviation of the average vertical wind veloctty,, density of dry airp, and an empirical,

dimensionless proportionality factbrthat compensates for the loss of information due t
the mentioned “relaxation” (Ruppert et al.,, 2006bp reduce relative errors in flux
determination individually simulated-values for every measurement location and period
have to be favored over application of a constaf(lRuppert et al., 2006b; Foken, 2008).
Thus,b is determined from a proxy scalar, a second scplantity which can be measured
with high temporal resolution (by eddy-covariancad which behaves similarly in
atmospheric transport (Ruppert et al., 2006b; Rapgteal., 2012). This is described in the
theory of scalar similarity (Kaimal et al., 197Zdpson et al., 1998). The proportion of both

proxy scalar fluxesF,., and the eddy-covariance fluj{. =w'c"), providesb:

_ @
)

However, not until Businger and Oncley (1990) haddified the method by discarding
fluctuations around zero — that has only a smdlliémce on the entire flux, anyhow — by
introducing a deadband, could the REA idea be implged with regard to mechanical

restrictions of the speed of valve switching.

) o6 () (<) ?

The size of the linear deadbamg around zero is determined individually accordiaghe
experimental conditions and the particular scalainterest. The same applies bgwg)

which has to be determined individually by ass@datimulations with proxy scalars.

To maximize scalar concentration difference betwepa and downdraft air samples, an
application of a hyperbolic deadbaHdis recommended (Bowling et al., 1999b) and which
is required, for example, for differences in thelesr of the measurement precision. By
application ofH in hyperbolic REA (HREA),b(H) is reduced to lower values around
0.22+0.05 (Bowling et al., 1999b), 0.15-0.27 (Rupp al., 2006b), respectivel\ is
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based on the fluctuation of the vertical wind vélpcw' and the concentration’ of a

proxy scalar as well as their standard deviatigps

IsH 4)
0.0

w= C

Adequate scalar similarity is required especiatly iyperbolic REA becaude depends on
the proxy scalar concentration. Generabi) and the REA flux as the final product will be
flawed without scalar similarity between the scalaiterest and the proxy scalar (Oncley
et al., 1993; Ruppert et al., 2006b). Differencesdistribution (Andreas et al., 1998a;
Ruppert et al., 2006b; Held et al., 2008), amoant| strength (Katul et al., 1999; Katul and
Hsieh, 1999) of scalar sources and sinks are redsomlifferences in turbulent exchange of
the scalars and in scalar similarity. Due to thet that scalar similarity is influenced by the
seasonal variation of canopy physiology (Williams a., 2007), the effect of the
management events on the scalar similarity betwe®mn and the sonic temperature and
water vapor had been analyzed in this study byutatiog correlation coefficients (c.f.
Gao, 1995; Katul and Hsieh, 1999; Ruppert et 8065; Held et al., 2008):

proxy2 (5)

o)
Cproxyl c proxy2

C

— proxyl C

Cproxyl 'cproxyz

For more detailed information see Appendix B.

2.1.3 Stable isotope pulse labeling

Pulse labeling with the stable carbon isotdf@ provides information about the relative
allocation of recently assimilated carbon to defar carbon pools (Rattray et al., 1995).
Therefore, the assimilating plant parts are exposedhe *CO, isotope-tracer in a
transparent chamber for a short period of timee@Hhrours). The chamber has to be sealed
and, furthermore, cooling and turbulent mixing bé tchamber air has to be guaranteed
(Paterson et al., 2009). For more detailed informmaabout the chamber construction see
Drosler (2005) and Appendix A. Translocation of tsimilated*C had been analyzed
during a 21 day period in shoots, roots, soil antlGO, efflux on all 5 plots. Samples were
taken immediately (0), 1, 2, 4, 9 and 21 days dfterlabeling, dried, weighted and milled.
Also unlabeled natural abundance samples were tahkérireated in the same way. For the
final determination of the relative carbon inputoirthe different compartments, several

calculation steps were necessary. The enrichméer€dh a certain carbon pool was derived
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from subtracting the naturally abundant amount ftbsamount ot°C in the labeled pool.
Then, the total amount ofC in the pool was calculated by multiplication witte amount
of total carbon in the pool. Total amounts'# were found immediately after the labeling
was summed up over all investigated pools as aemde value for the recovered amount of
13C during the subsequent sampling period. Procegsitigs way, theé*C amounts of every
single pool at every point of time could be relatedhis total value and, additionally, the
recovery of the tracer and thereby the relativgpprioon of the carbon allocation could be
determined (cf. Hafner et al., 2012 and Appendix A)

2.1.4 Flux partitioning

In order to gain finally the absolute carbon iniib the ecosystem from the NEE measured
by eddy-covariance, two tasks were performed: Duejection of outliers and low quality
data, gaps occurred within the 30—minute NEE tierées that had to be filled and the NEE
had to be partitioned into its underlying fluxessianilation (GPP) and respirationgfR).

To parameterize temperature dependaptoRequal to nighttime NEE due to missing
assimilation, Lloyd—Taylor function had been apgl{loyd and Taylor, 1994; Falge et al.,
2001; Ammann et al., 2007; Reichstein et al., 200@)ht response regression on the basis
of the Michaelis—Menten function (Michaelis and NeEm 1913) was used to parameterize
daytime solar radiation dependant GPP (Falge e2@01; Ruppert et al., 2006a). For both,
the flux partitioning model used a time—window guleeinstead of the conventional
temperature binning approach that was suitablesii@s with distinct seasonal variation
(Ammann et al., 2007).

Applying transparent and dark soil chambers in doatibn represents an alternative

partitioning method. By a simple subtraction, GRIA be determined from measured NEE
and Rco

Beside the REA technique and the determinatiomefiCO, isoflux (Fiso; e.g. Yakir and
Wang, 1996; Bowling et al., 2001; Ruppert, 2008}hiad approach has to be mentioned.
Therefore, the isotope ratios of assimilatéd)(and respired C£(d;) are determined with

the REA device (Ruppert, 2008) and by analyzingd igsipiration samples on the basis of

the Keeling plot method (Keeling, 1958). FinalRgc can be partitioned into assimilation

F, = |:|306_6R6 Fec (6)
A~ Or
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and respiration flux

I:|so _6A FEC

F.=
" 6R_6A

(7)
in accordance to Lloyd et al. (1996), Bowling et(@001), Bowling et al. (2003), Ruppert
(2008) and Wichura (2009). For more detailed infation please see Appendix B.

2.1.5 Chamber system

The applied system (LI-8100-104C, transparent f6ENneasurements at low vegetation,
LI-COR Biosciences, Lincoln, Nebraska USA) was aromated flow—through non-
steady—state soil chamber where sample air wastasahs held circulating between the
chamber and an infrared gas analyzer (IRGA) bytarygoump with 1.5 L mith through a
chamber volume of 4822 éniThe CQ flux was estimated by the rate of €&ncentration
change inside the chamber during a 90 second titase The chamber had a lift—-and—rotate
drive mechanism which rotated the bowl-shaped clearh80° away from the collar. This
shape allowed a good mixing by means of the citmraof the sample air through the
IRGA alone, without a ventilator (LI-COR, 2004). ®®anetric and, above all, turbulence—
induced pressure fluctuations above ground sutiaad influence the efflux from the soil.
Thus, modern chambers are equipped with a ventihg that transmits atmospheric
pressure changes to the chamber headspace (Roahéttéutchinson, 2005). LI-COR had
installed a patent—pending pressure vent with &peross section at the top of the chamber
that minimizes pressure pulses at chamber closhdy alows the tracking of ambient
pressure under calm and windy conditions by elitmgathe Venturi effect (Conen and
Smith, 1998) occurring at former simple open veites (Xu et al., 2006). The exchange
through the venting tube is negligible comparedh® CQ diluting effect by water vapor
during the measurement which in turn is correctgdhle measurement software (LI-COR,
2004). NEE is measured by a chamber with a trapgpaome enabling assimilation as well
as respiration processes inside. The transparentloér for the NEE comparison was closed
for 90 seconds four times during a half-hour peribdthe meantime, the system was
flushed for 135 seconds and the dark chamber fop Ras closed for 90 seconds. The
system was then flushed with ambient air again. dlbeing and opening process of the

transparent chamber as part of the flushing tirseth13 seconds each.
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2.2 Experiments

2.2.1 Study area

All experiments of this study were conducted on #xéensively cultivated submontane
grassland site “Voitsumra” at the edge of the lowumtain range “Fichtelgebirge” in
northeast Bavaria, Germany, located 624 m a.F0&B25"N, 11°51'25“E). For the last
10 years, the site had been used as extensivelggedmgrassland without fertilization or
grazing but with sporadic mowing once or twice aryeThe soil type is gleysol (IUSS
Working Group WRB) with a thickness of at leastcfd. The average annual temperature
and precipitation are 5.8 °C and 1066 mm, respelgtiFoken, 2003). The “Grol3er
Waldstein” (877 m a.s.l.) is situated north of 8tedy site and the “Schneeberg” (1051 m
a.s.l.) is south of it. Together, these two mourgajenerate a channeled wind field for the
site with East and, especially, West as the donmgatind directions (prevailing wind
direction 263°). Thus, disturbances of the turbcéemeasurements could easily be avoided
by installing all other experimental devices close the eddy-covariance mast but
perpendicular to the main wind direction. The plaatnmunity is described ddolinio—
ArrhenatheretedR. Tx. 1937 — economic grassland and the most mkomhiof the 48 species
are Alchemilla monticola Juncus filiformis Polygonum bistortaRanunculus acrisand

Trifolium repens

All experiments described in the following had bespported by an automated weather
station which provided 10 minute averages of a eaofjclimate data as up— and down
welling short- and long-wave radiation, air and semperature, humidity and soil moisture
and precipitation. Those data were necessary falitgiassessment and as input parameters

for flux partitioning.

2.2.2 Labeling and drought experiment

The pulse labeling experiment was conducted dwingmer 2010 from 16 June to 6 July
for two different reasons. Firstly, to apply thevab coupling approach with the eddy-
covariance technique and, secondly, to evaluatengiat influences of a 1000-year spring
drought event on the carbon cycle. Therefore, thaipulation strength could be estimated
by fitting the Gumbel distribution (Gumbel, 1958)generalized extreme value distribution
(GEV), to a climate data series measured at thee @freesearch (Jentsch et al., 2007). This

circumstance resulted in an artificial spring drotideginning on 9 May 2010 and lasting
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38 days. It was induced by covering five of the pdots of the labeling experiment with
transparent and well-aerated rain-out shelters. skamless steel soil frames for attaching
the labeling chambers were pre-installed three wéekore the actual labeling experiment,
too, to keep disturbances of plants and soil adl smgossible. Soil moisture was monitored
with TDR devices on both, drought and regular, afsts. Hereafter, thEC pulse labeling
and a 21 day tracing period was conducted to danrelative carbon distribution under
regular and drought conditions finally. Accompamyieddy-covariance measurements —
conducted for the whole year 2010 for the annuddarabalance — the carbon net ecosystem
provided exchange on the site. In combination whih flux partitioning model (see. 2.1.4),
the absolute carbon assimilation could be set géirest the relative carbon distribution
found at the regular plots. However, on the smediles drought plots fluxes can not be

determined by eddy-covariance technique. Theretbeechamber method is suggested.

2.2.3 Chamber — eddy-covariance comparison

Due to the relevance of the chamber method for Isstale flux measurements and the
necessity to appraise frequently the comparabibtythe chamber method and eddy-
covariance, NEE, measured with both techniquesblkead compared in an experiment from
25 May to 3 June in 2011. Turbulent flux data wateen from the long term carbon balance
measurements on the site. The size of the fluxelosely connected to the diurnal cycle. To
be able to investigate differences between botthaodst and underlying short-term effects,
the difference between eddy-covariance and chaiffilperwas normalized with the eddy-

covariance flux.

For the chamber measurements soil collars whictudied! an area of 318 émvere pre-
installed 10 cm deep in the soil two weeks befoeedaxperiment to create a perfect seal and
to avoid disturbances of the g@fflux by cut and wounded plant roots at the beigig of

the measurement period. Due to the channeled viahdl dn the site (2.2.1), the chamber
could be installed very closely to the eddy-covarea mast without disturbing the flux

footprint.
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2.2.4 Relaxed eddy accumulation experiments

Relaxed eddy accumulation (REA) simulations seovg@drameterize REA measurements
but also to evaluate present conditions on thef@itREA application. The simulations were
accomplished in the periods before and after mowamgl aftermath events on the
extensively managed grassland site in Septembe®, 2Dfly 2010, September 2010 and
August 2011. During the whole 16 days before amd2h days after management, similar
atmospheric conditions were investigated focusingootential effects of the management

on scalar similarity and the determination of theportionality factoib.

The real REA field experiments were accomplishednduthe main growth period of 2010

on 22 June and 25 August with an adequate timel#ge last management event. The REA
device used in this study (Fig. 1) was construeted tested by (Ruppert et al., 2012) and
has already been applied in other field experim¢Rigopert, 2008). REA measurements
require high frequency vertical wind velocity an@®@Cconcentration data provided by the
ultra-sonic anemometer and the infra-red gas aaalgf the eddy-covariance mast at the
site. That one also provided the NEE flux for tleenparison of Lloyd—Taylor / Michaelis—

Menten and REA-isoflux based flux partitioning (2)J1 Isofluxes Fiso) can be derived
from CQ, concentration ((:_H) and 5'°C-isotope ratio 613CH) differences in up- and

downdrafts (Bowling et al., 1999a; Ruppert, 2008cMira, 2009):

Feo =b(Hur) 0,0,(8"C C -87C C] ®)

p, is the density of dry airg,, derived from the time series of the vertical wielocity

measured by the ultra sonic anemometer and theogiropality factorb, in this case, was
determined from the effectively measured LCfluxes measured by REA and eddy-

covariance during the experiment.

Fiso is also interesting to evaluate the influence thaspheric isotope fluxes on

experiments based on isotope measurements, forpdeaiter an isotopic labeling.
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3 RESULTS

3.1 Annual carbon balance

The NEE was directly measured by eddy-covarian@di0 (Fig. 2) and resulted for —249 g
C m? a™. After subtraction of the harvest output of 158 gn? a*, =91 g C i a still
remained (Fig. 3), identifying the site as reldiveig carbon sink in relation to other

comparable extensively managed grassland (TaliieAppendix A).
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Figure 2: Net ecosystem carbon exchange (NEE) in 20 with half-hourly resolution; mowing

and aftermath — labeled with red arrows — are cledy visible.
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Figure 3: Annual carbon budget and carbon loss by &rvest in 2010; red arrows show mowing
and aftermath
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The existing sink capacity implicates the ecosysterne worth further investigating if this
potential can be upheld or maybe degrade in tirheBroate change. Therefore, the reaction

on present spring drought events had to be analyzed

3.2 Effects of spring drought on carbon allocation

38 days before the pulse labeling experiment stafiee of the ten plots had been covered
with rain-out shelters to simulate a 1000-yearrgprought event. The 21-day-period of
sampling and tracing began immediately after' @0, pulse labeling on 16 June 2010. In
doing so, differences in tHé&C recovery rate during the tracer translocationogecould be
detected. From the first sampling onwards, ‘tirecovery in the shoot biomass decreased
in both variants (Fig. 4a and c). During the fidsty after the labeling, the loss BE by
shoot respiration may be the most important redsothis as the steep increase of tf@
recovery in the regular variant proves (Fig. 4awdver, this increase is less pronounced in
the drought variant (Fig. 4c). Here, the first éiffnces become obvious, probably caused by
reduced stomatal conductance coming along withghbstress. The maximufiC amount
attained by the dry and normal soil pool was né¢cted until one day after the labeling. In
case of the root®C dynamics, merely tendencies can be discussedubeas the large
variations. But, obviously, there is a larger inpb the root pool in the drought version in
sampling day 3 and 4 (Fig. 4a and c). Similar toashrespiration, the increase of the
loss by soil CQefflux has its maximum during the fist day andntfadates over time. At the
end of the experiment all values are stabilizing #rere are no more significant changes
than in at least the last two samplings of eadhefiive pools in both variants.

The final percentages at the end of the translmegirocess are illustrated in Figure 4b and
d. Although there were no significant differenceshe investigated carbon pools between
the two variants, an increase of 6.2% stands ftandency to higher carbon allocation to
below ground pools as soil and roots during spdngught (Fig. 4b and d). This comes
along with a reduced shoot respiration (-8.5%).
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For further investigation, the absolute insteadhw# relative carbon allocation would be
required. On the small drought plots, eddy-covax@ameasurements are not possible. The
chamber method could be an adequate substitutindtr However, uncertainties of those
measurements due to insufficient reproduction efatmospheric conditions are well known
(Rochette and Hutchinson, 2005). Thus, eddy-coneeia- chamber differences had been
evaluated in detail and the results are presentéukifollowing.

3.3 Chamber — eddy-covariance comparison

Already the fist impression of the data of the tlay eddy-covariance — chamber side by
side NEE measurement suggested a further and nedadledl analysis. Smaller chamber
CO, source fluxes of 26% during the night and largeansber CQ sink fluxes of 14%
during the day (negative sign) resulted in an alisovalue of the chamber sink flux that
was 40% larger than that which was measured by-eddgriance. This is similar to other
studies (Wang et al., 2009; Fox et al., 2008).ratfindication as to the cause of the large
difference at night may be provided by the kind dimdension of scattering of the measured
fluxes. While daytime C®flux results of both techniques scatter quite kirty, nighttime
chamber fluxes scatter less than half as much egddy-covariance fluxes: the chamber
measures a virtually constant flux during the niglit Janssens et al., 2001). For this kind of
aggregation of the positive chamber fluxes (cf.nkaet al., 2006), distinctly associated
reasons could be detected, predominantly at timéshigh atmospheric stability (Fig. 5b),
low wind velocity (Fig. 5¢) and a cool ground seda that is, little outgoing long-wave
radiation (Fig. 5d). While the eddy-covariance sgstresponds to the smallest changes of
the atmospheric conditions as well as the nighttenesystem respiration flux does, the
chamber is directly connected to the ground surfasehere the ecosystem respiration is
more or less constant — with only minor influenfresn the surrounding atmosphere (Lai et
al.,, 2012; Norman et al., 1997; Reth et al.,, 20@8nsferred into the chamber system
exclusively by the pressure vent (Xu et al., 20blile eddy-covariance measures that wide
range of CQ fluxes, the parameters illustrated in Figure 5band d turned out to be

responsible particularly for the uniformity of thieamber flux.

During night, an increasing exchange by coherentgires was detected, as well. Coherent
structures are generated by braking gravity wavesnder the influence of low level jets
(Karipot A. et al., 2008) and can cause 50-100%hefgas exchange during nighttime and
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10-20% during day above a forest (Thomas and Fdk@®d7). The influence of coherent
structures might be less above meadows due to égigible mixing layer (roughness
sublayer). It was found out that some of the higleskly-covariance fluxes in times of
uniform chamber performance occurred together Veitbe coherent structure fluxes (Fig.
6b). In the experiment region, coherent motions dleehdy been detected as a consequence
of low-level jets reaching the ground and breakgngvity waves (Foken et al., 2012b).
Coherent structures appear sporadically (averaggsrstudy: 38 #). Thus, the total size of
the coherent structure flux is less than the typtagbulent flux, yet coherent motions
produce a turbulence which is obviously recognibgdeddy-covariance but not by the
chamber technique. Coherent structures, as wedtleaing due to dewfall, cause slightly
higher turbulent fluxes during nighttimes. The censhtion heat, thereby, reduces the
downward sensible heat flux and the strong stalpiifecation. Both processes are related
to slightly higher wind velocities and to larger dgecovariance flux results. Eddy-
covariance and chamber which measured nighttinprag®n fluxes at high wind velocities
(largest 25%, u>2.9 mY are within the same range close to the bisediirgin Figure 6a
but with a significant tendency to larger eddy-ataace fluxes. That fact coincides with a
study of Denmead and Reicosky (2003) who foundnarease of the eddy-covariance — to
chamber—flux ratio with the wind velocity. Althougihe chamber reproduces the flux
variations very well at high wind velocities, thiseans that it has the ability to describe
small as well as larger fluxes, it generally undéneates the flux. Hence, at night, in
addition to the stratification effect, situationgwhigh wind velocities result in larger eddy-
covariance than chamber gfuxes.

In the late afternoon, GGsink fluxes, which had been measured by the chgnpoevail.
Those were sustained larger and longer into thaiegeresulting in a flux up to twice as
large as the eddy-covariance flux. The reason vedmeatl as the oasis effect, which is
named after the moisture-dependent cooling effectiwing in oases and which is defined
as the sensible heat flux yRchanging to negative values in combination witktilk large
positive latent heat flux (§ and solar radiation (Stull, 1988; Foken, 2008) Figure 5a,
nearly all measurements which are influenced by dhsis effect show larger chamber
fluxes. Also two thirds of the situations with caary eddy-covariance—chamber flux
directions (filled circles in Figure 5a) and theler sink fluxes of the chamber at small
values could be explained directly by the oasieaff(large black circles in Fig 5a).
Chamber fluxes are larger because in the chambdotiy wave radiation balance is altered

to almost zero. However, there is a physical batdethe surrounding, increasingly stable
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stratified air masses. This evokes reduced surtacting, weak development of stable
stratification and finally higher fluxes comparen éddy-covariance. With the sunset, the

remaining assimilation potential is gone and tHiteedence between both systems declines.

Since the oasis effect is relevant for daytime dbemilux measurements, it is important to
be considered for assimilation flux measurementk thie chamber method, for example for
partitioning issues. Such efforts should betteat@mplished from late morning — when all
instruments have dried from dewfall — until aftesnavhen the oasis effect gains more and

more influence.

Moreover, there are two other methods for partitigrof the NEE based on Lloyd—Taylor
and Michaelis—Menten functions and on isoflux measments with the relaxed eddy

accumulation technique.
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directions.

3.4 REA application and flux partitioning

Application of relaxed eddy accumulation (REA) oamaged grassland requires a detailed
evaluation of scalar similarity, for being the figgrecondition for proper determination of
the proportionality factob and consequently the REA-flux. In this thesis lacaimilarity
was detected by calculating correlation coeffigentEq. 5)for important combinations of
proxy scalar§CO, and Ts, CO, and BHO). The abrupt decrease of the correlation after th
management (see Fig. 7) suggests that bgtand HO are no suitable alternatives to £0
shortly after management. Moreover, a faster regoeé scalar similarity after autumn
rowen (dark symbols) is indicated than after midiswer mowing (bright symbols). This
circumstance can be linked with greater interventiothe ecosystem in mid-summer, that
is, removing more productive biomass than in autuinnboth cases, scalar similarity

increased with ecosystem recovery up to pre-cuttaiges.
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A further impact on simulateb-factors was found, tot. showed a higher uncertainty and
decreased strongly even to negative values afterageanent. The detailed results are
illustrated in Appendix B. As a consequence of thsult, REA field experiments had been

conducted with adequate time lag to the manageevamits.

On 22 June and 25 August 2010, before and long migadow management, all parameters
were determined in order to partition the NEE iassimilation (k) and respiration (&),
based on two different approaches: the commonljiepflux partitioning model (FPM),
based on Lloyd Taylor and Michaelis Menten funcsioand the isotopic flux partitioning
approach (Eqgs. 6 and 7). In general, both partitprapproaches correlated to a certain
extent but some noticeable differences could baddirig. 8). Most obvious in this context
is the difference in the last value in Figure 8ahe evening. While the morning rise of
photosynthetic activity was missed, the eveningakdewn to a respiration-dominated
system could be sampled by REA. At that time, theneo longer any difference between
up- and downdraft isotope ratios, so that isoflaxd consequently assimilation and
respiration fluxes, become zero. This comes aloiity the lack of photosynthesis and
discrimination, but, above all, with turbulent fles that come to a standstill, as it is

confirmed by a very small NEE. This pattern is osiywn by the isotope approach and not
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by the Lloyd Taylor and Michaelis Menten functiomsed FPM. Apart from that, the
isotopic flux partitioning shows a much greateriaiitity whereas the FPM reproduces
natural respiration changes insufficiently, causasgimilation fluxes to follow the NEE
exactly. Sometimes both approaches provide sirfilaes but the isotopic model is able to
describe various underlying fluxes of the NEE; that more intense reactions to
environmental conditions are attributed to the gstesn (cf. Ruppert, 2008). The rather
constant respiration which is provided by the terapge-based FPM, results from
relatively small temperature variations during bp#riods around the measurement days.
Temperature is only one of the driving mechanisnis r@spiration; for example,
photosynthetic activity supplies root exudatesdib Ife and accounts for a large portion of
root-derived respiration (Kuzyakov and Gavrichko2810). Discrimination of°C is an
input factor in the isotopic model. It is coupleidedtly to all assimilation-based processes.
These become apparent with the assimilation fluxcwhs closely connected to the
incoming shortwave radiation. The same appliesit@lwelocity, essential for atmospheric
fluxes and considered only in the isotopic modebasinput parameter of the isoflux. In

Appendix B, the dependence on those parametexpliaieed in detail.
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Figure 8. Comparison of NEE flux partitioning with isotopic background (respiration flux Fx:
black diamonds, assimilation flux F: light grey circles) and a common FPM (dashed lirein

same colors); the NEE measured by eddy-covariancgiillustrated as dark grey solid line.

Isotopic flux determination by REA served anotharpmse related to the isotope labeling
experiment. Only a very small portion of less tiaa*CO, flux as part of the entire GO
flux was found on the grassland site. Thus, infagsnon isotopic tracer experiments can be

excluded.
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3.5 Partitioned absolute carbon fluxes into distinct cebon pools

As already mentioned, tHéC recovery rate stabilizes at the end of the erpant (Fig. 4).
There were no more significant changes in at léaestast two samplings of each of the five
pools in both variants. Hence, the preconditiontfer partitioning of the absolute carbon
input, the isotopic steady state in the plant—smhesphere system, was fulfilled (cf. Saggar
and Hedley, 2001; Saggar et al., 1997; Wu et 8102 and the proportion of the tracer
which was present at that time in the differentlp@ould be offset against the total carbon
input by assimilation, provided by eddy-covarianteombination with the flux partitioning
model. This had been conducted exclusively for2heday tracing period after the pulse
labeling since the transferability beyond this pénwvas not validated by accounting for, for
example plant physiological factors. The proposiai the inputs into the different pools
follow naturally those in Figure 4. On average,#2.2 g C m* d* of the total input of
7.1+0.4 g C ¥ d* were incorporated in the shoot and 0.8+0.3 g € dnt in the root
biomass. 0.5+0.1 g Cthd* remained in the soil whereas 2.3+0.3 g G d" and 1.0+0.1 g

C m? d* were released to the atmosphere as shoot respiratid soil CQ efflux,
respectively. As a sum, the two latter fluxes repré an ecosystem respiratiore€p) of
3.3+0.4 g C i d™* which is predestined to serve as verification pegi@r since it was also
determined independently of the labeling by sepagathe NEE by the flux partitioning
model: 3.5+0.2 g C M d* (Fig. 9). The good correlation indicates that thpproach —
coupling two methods — was applied successfullytieumore, comparable results based on
other approaches to gain absolute carbon inputlsl cmifound in the literature (Kuzyakov
and Domanski, 2000; Appendix A).
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CONCLUSIONS

The main objective of this thesis is to advanceestigation of the carbon cycle of
extensively managed grassland — under consideratbncontemporary changing
environmental conditions (Bavarian State Ministrgr fEnvironment and Consumer
Protection, 2013) — beyond commonly applied apgresc Achievements could be made
regarding atmospheric measurement techniques ag-cesidriance and relaxed eddy
accumulation (Appendix B), chamber measurementp¢Agdix C), stable isotope labeling
(Appendix A) and flux partitioning approaches (#ppendices) by suggesting novel
evaluation methods and combinations of those. Floese achievements, the following

conclusions can be drawn:
(i) Carbon sink and drought effects

Under the present environmental and site conditiergensively managed grassland in mid
European low mountain ranges recommends consemvaia extension due to their

mitigation capability in relation to carbon sequason. If the grassland is mowed two times
a year and even if the removed biomass is conslderthe balance, there would still exist a
sink capacity. The number of management eventsléyant because a third cutting would
not be compensated and the sink capability wousdgbear. In Bavaria, there are large
areas of extensively managed grassland. Alteradiothe land use is to avoid because
carbon would be released to the atmosphere. Imtestigated region, the changing climate
can be observed in terms of spring drought everese alter the carbon allocation to
different ecosystem compartments as roots andrsdiile first instance. It is expected that
the release of that carbon to the atmospheretigigiayed to the next precipitation event. In
any case, further long term observation can belyhiggtommended as well as monitoring
the influence of ground water at the region of ies¢ These factors will define future

amounts and the quality of carbon sequestration.
(i) Flux partitioning

Eddy-covariance is the preferential technique wioethetermine NEE. A deeper insight into
the carbon cycle demands partitioning into grossnamy production and ecosystem
respiration. The representation of environmentili@mnces as incoming shortwave radiation
and wind velocity in combination with the accordanto the established common flux
partitioning model based on Lloyd-Taylor and Micle®&lenten functions, suggests a good

performance of the isotopic partitioning model.also works well on the grassland site
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compared to former studies where it was appliedr doeest ecosystems with special
coupling regimes (Ruppert, 2008; Wichura, 2009)r Bbort term experiments, it can
enhance results of the common flux partitioningd tebich depend on a relatively long time
series of temperature and radiation. This facttinthe sensitivity for reactions of the
ecosystem on short term changes in the weatheitmored In contrast to that, the isotope
based approach includes ecosystem discriminatidfiCotlirectly and, thereby, reproduces
present environmental conditions in a better way. partitioning and gap filling of long

NEE datasets, the common flux partitioning model teabe preferred. REA application for
isoflux determination in general is expensive anmgetconsuming and is therefore applicable
for short term and special investigations only. ldger, its versatility and the information

about NEE component flux variability still justifis application in ecosystem sciences.
(i) Chamber measurements

The evaluation of flux partitioning can also be @oplished by combined measurements of
dark and transparent soil chambers. This works weting the day when atmospheric
turbulence is established sufficiently. Then, stdtéhe art chamber NEE measurements are
in accordance with the results of eddy-covariabeeing the diurnal cycle there are periods
which suggest a contrary result. Chambers overastitdEE during times of oasis effect in
the late afternoon which is due to the fact that microclimate in the chamber does not
represent real atmospheric conditions but rathdd hiee radiation and stratification
conditions of the early afternoon up. During nigtltambers miss present fluxes based on
complex atmospheric phenomena as coherent stractDtee to their applicability on small
scale experiments, chambers represent a valuabkndment in ecosystem sciences.
However, the results have to be evaluated critioatider consideration of the atmospheric
framework conditions because those are often rejpext! insufficiently (Dore et al., 20083;
Lai et al., 2012; Rochette and Hutchinson, 2005).

(iv) REA application

As the influence of management events is imporfianthe carbon sequestration potential,
the same is true for some kinds of micrometeoraklgneasurement techniques. Especially
for the application of relaxed eddy accumulatiorichimust not be applied shortly after the
management due to serious consequences for thdtingsudluxes. An essential
determination of the reliable proportionality factb is wrong due to lacking scalar
similarity between the scalars shortly after thenagement. It is suggested to wait at least

22 days in summer and 12 days in autumn after theagement in like circumstances.
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Then, the ecosystem has normally recovered andetipdlar source/sink distribution (cf.

Andreas et al., 1998a; Ruppert et al., 2006b; ldekl., 2008) and source strength (Katul et
al., 1999; Katul and Hsieh, 1999) regarding thdasoguantities has normalized, too. In the
literature these restrictions were implied (Willenet al., 2007) and observed in a

comparable way for other micrometeorological meth(@lsinger, 1986).
(v) Partitioned absolute carbon input

First time coupling of atmospheric carbon flux measnents with*C pulse labeling
worked well as the self-validation via ecosysterspmation and the comparison with few
other methods presented in the literature sugdést.method combination allows a more
detailed insight into the carbon cycle by providatzgsolute values of carbon input to distinct
ecosystem compartments. One limitation is the iotstin of the result to the sampling
period shortly after the labeling. Due to the aliian pattern strongly depends on the stage
of plant growth, weather conditions and managenaetivities the result obtained by of a
single pulse labeling cannot be transferred torgéo period (Gregory and Atwell, 1991,
Kuzyakov and Domanski, 2000). However, a seriefabéling pulses at regular intervals
could provide reasonable estimates of the partitgprior the whole growth period (e.g.
Kuzyakov and Schneckenberger, 2004). It is imade& conduct such an experiment in

association with one of the numerous eddy-covaeaneasurement networks.
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Background and Aims

The complexity of ecosystem processes, especialgleu continuously changing
environmental conditions, requires high-resolufizgight into ecosystem carbon (C) fluxes.
It is essential to gain not only information aboeiative C balance and fluxes (common for

partitioning studies), but also to obtain thesabsolute mass units.
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Methods

To evaluate absolute fluxes in belowground C pothis, results of eddy-covariance and
stable isotope labeling — obtained in a 21-day expnt in summer 2010 — were combined.
Eddy-covariance based net ecosystem exchange wasured on extensively managed
grassland and separated into underlying assimilatial respiration through the use of a C
flux partitioning model. Resultant GGissimilation served as absolute C input into the
ecosystem and was further partitioned by applyiregrelative C distribution in subsidiary

pools, gained by’C pulse labeling and tracing.
Results

The results form eddy-covariance measurements shdha&t the extensively managed

grassland was a significant net carbon sink ofg@1m?a*in 2010.

The mean daily assimilation of —=7.1 g C?rd* was partitioned into fluxes of 2.5, 0.8, 0.5,
2.3 and 1.0 g C M d* into shoots, roots, soil, shoot respiration and, €fflux from soil,
respectively.

Conclusions

We conclude that the combination of EC measuremamtisatmospheric flux partitioning
with isotope labeling techniques allowed deterngnthe absolute C input into several
ecosystem pools. Hence, the study demonstratep@moach to expand atmospheric flux
measurements and to gain insight into the impoearidndividual ecosystem pools for soil

C cycling.

Keywords: stable isotope pulse labeling; net ecosystem exgdtecarbon flux; extensively

managed grassland
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Introduction

Currently, two dominant approaches in ecosysteranseis are used to gain access to the
carbon (C) cycle of terrestrial ecosystems. Micrtmomlogical methods like the eddy-
covariance (EC) technique provide a top view frdra atmosphere (Aubinet et al. 2000;
Aubinet et al. 2012; Baldocchi 2003; Baldocchi le2@01; Moncrieff et al. 1997), whereas
leading isotopic methods used nowadays in agri@lltand soil science allow a more
interior view of the ecosystem (Kuzyakov and Donka2€00; Yakir and Sternberg 2000).
Both are occasionally combined with chamber methads facilitate and expand
investigation of CQ fluxes (Goulden et al. 1996; Davidson et al. 20D@re et al. 2003;
Subke and Tenhunen 2004; Rochette and Hutchins®8)2While EC methods have the
advantage of barely disturbing ecosystem procaehs@sg the experiment, isotopic methods
are mostly destructive due to the necessity ofntala.g. plant and soil samples. Another
difference is that isotopic labeling approaches largely point measurements, while EC

integrates the signal throughout a large flux-footp(\Vesala et al. 2008).

EC is generally the favored technique on grasslémsieasuring the C balance in terms of
the net ecosystem carbon exchange (NEE), i.eprtymortion of C released and taken up by
the ecosystem (Wohlfahrt et al. 2012). To evalwetderlying processes and responses of
the ecosystem to environmental change, the NEEdhs separated into its components:
ecosystem respiration €80 and gross primary production (GPP), by flux peming
models (FPM; Falge et al. 2002; Stoy et al. 2006sd) et al. 2008; Lasslop et al. 2010;
Reichstein et al. 2012). These are also used tdiljapissing or rejected data (Stoy et al.
2006; Ruppert et al. 2006; Desai et al. 2008; Rapall2; Falge et al. 2001; Moffat et al.
2007). By determining temporal variations and thesadute amount of assimilated and

released C for a certain period, the atmosphepcageh reaches its limits.

Further partitioning of total C£efflux or C input (GPP) into various ecosystemIpas not
possible based on EC, but can be achieved usirigpisotechniques (Buchmann 2000;
Buchmann 2002; Kuzyakov 2006). Thereby, naturatinaous (C3 plants grow after C4
plants or vice versa), artificial continuous antifiaral pulse labeling approaches have to be
differentiated. Advantages and disadvantages ofdifferent labeling approaches were
discussed in several publications (Whipps, 1990uydg, 2003; Werth and Kuzyakov,
2008). Pulse labeling provides the relative distiidn of recently assimilated C into various

above and below ground pools. EC delivers the abs@& input that is representative for the
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whole ecosystem. Combining the results of EC wihiht tof **CO, pulse labeling allows
tracing the absolute input of C into various ect®yspools. Previous discussions in the
literature about combining stable isotope method® wddy-covariance technique were
aimed at, for example, acquiring natural atmosghiso-fluxes (Yakir and Sternberg 2000;
Bowling et al. 2001; Wichura 2009) or, in the casfepulse labeling, evaluating and
comparing the C cycle of various ecosystems (Ghkaea 2009).

Today, European grasslands are predominantly cemesidas C sinks but there are
uncertainties: the IPCC did not agree with thisnapi and ascribed a potential role of either
source or sink to grassland ecosystems (IPCC 200#le Janssens (2003) found a certain
sink capacity but with an uncertainty that was éarthan the sink itself. Also Ciais et al.
(2010) could not sufficiently prove the detectedkscapacity. Future climate change will
even increase this uncertainty by affecting C eyrlin temperate grasslands due to
increasing temperatures (Luo 2007), varying préafjon amounts and patterns (Knapp
2002; Chou et al. 2008), heat waves and droughtas(€t al. 2005; Joos et al. 2010), and

rising atmospheric C£xoncentrations (Luo et al. 2006).

The present study was conducted at an extensivahaged grassland site in Central Europe
during the main vegetation period 2010. Besidesexihg the question whether grassland
ecosystems function as C sink or source, the mamnao the current experiment was to
determine the absolute C input into various ecesyspools. For these reasons eddy-
covariance measurements and®@0, pulse labeling experiment were conducted. To our
knowledge, this is the first study combining resuf EC measurements and of a (qlse
labeling experiment to determine the absolute artsoohC transferred to various pools of a

grassland ecosystem in Central Europe.

Methods

Study area

The experiment was conducted during summer 2016 fhone 16th (DOY 167) to July 6th
(DOY 187) on a submontane grassland site at thee exfgthe low mountain range
“Fichtelgebirge”, 624 m a.s.l. (50°0525“N, 11°%B"E) in northeast Bavaria, Germany.
For the last 10 years the experimental site wasl @se extensively managed grassland

without fertilization or grazing, but with sporadmowing once or twice a year. The soil
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type is gleysol (IUSS Working Group WRB), with aickness of at least 70 cm. The
average annual temperature and precipitation &éG.and 1066 mm, respectively (Foken
2003). The “Grof3er Waldstein” (877 m a.s.l.) liesrth of the study site and the
“Schneeberg” (1051 m a.s.l.) is to the south. Th®se mountains generate a channeled
wind field on the site with East and above all Weast dominating wind directions
(prevailing wind direction 263°). The plant commiynican be described ddgolinio—
ArrhenathereteaR. Tx. 1937 — economic grassland. With 48 spediss,biodiversity is
quite high. The most dominant species a&lkehemilla monticola Juncus filiformis
Polygonum bistortaRanunculus acrigndTrifolium repens These species were considered
when to decide the exact location of the labelil@spto gain best possible comparability
with the whole ecosystem. Except for single laigédividuals, the canopy height was about

0.4 m at the date of labeling.

Micrometeorological determination of absolute C inp ut

Experiment setup

An automated weather station provided 10 minuteages of a range of climate data to
evaluate short term effects, but also to provideitiput parameters for the partitioning of
the NEE into its source and sink components. Thstingportant collected parameters were
up— and down welling short— and long wave radiaten and soil temperature, humidity
and soil moisture and precipitation. High freque(@§ Hz, 2.5 m above ground) data were
collected to determine turbulent fluxes, such a€ENly eddy-covariance. Water vapor and
CO, concentration were measured by an open—path galyzen (LI-7500, LI-COR
Biosciences, Lincoln, Nebraska USA) and wind veetod sonic temperature (TS) by a 3D
sonic anemometer (CSAT3, Campbell Scientific, lhogan, Utah USA). CSAT3 and LI-
7500 were pointed in a northerly direction, norrtmathe prevailing wind direction of 263°.
Thus, disturbance of the flux by the instruments wanimized (Li et al. 2013). Tower
shading could be avoided completely due to the rélad wind regime. Data were stored on
a data logger (CR3000, Campbell Scientific, In@gén, Utah USA) and collected daily by
a computer system as a backup.
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Data acquisition and analysis

The raw data for the turbulent G@uxes were post processed and quality contrdiiesed
on micrometeorological standards, applying thevgfé package TK2 developed at the
University of Bayreuth (Mauder and Foken 2004).sT#till evolving software (TK3 is now
available; Mauder and Foken 2011) includes all se&ey data correction and data quality
tools (Foken et al. 2012), was proved in comparisith six other commonly used software
packages (Mauder et al. 2008) and successfullyieappl numerous major field campaigns
(Mauder et al. 2006; Mauder et al. 2007; Eigenmahml. 2009). The included quality
flagging system evaluated stationarity and turbededuring the averaging interval of 30
minutes and marked the resulting flux data withliggidlags from 1 (very good quality) to 9
(very low quality; Foken and Wichura 1996; Fokemnakt2004). The flux data were then
filtered according to these flags and only datahwgtiality 3 or better were used during the
whole experiment. In addition to that, footprintafysis was performed (Gockede et al.
2004; Gockede et al. 2006). It could be assuretlthi®asignal measured by EC originated
exclusively from the target land use type grasslé@Rdnnik et al. 2012). Due to the
channeled wind regime, two clubbed footprints egdlin western and eastern directions.
Thus, disturbances of the turbulent fluxes measbre&C could be avoided by installing
the other experimental devices directly adjacenthts EC mast but perpendicular to the

main wind direction.

NEE flux partitioning

In order to finally gain absolute C input into teeosystem from the NEE data, two tasks
were performed: Due to rejection of outliers and Iquality data, small gaps occurred
within the 30 minute NEE time series that had tdilled and the NEE had to be partitioned
into its underlying fluxes, assimilation (GPP) aregbspiration (Rco). To parameterize
temperature dependant®, equal to nighttime NEE due to missing assimilatithe
Lloyd-Taylor function was applied (Lloyd and Tayl®994; Falge et al. 2001; Ammann et
al. 2007; Reichstein et al. 2005). Light resporegrassion on the basis of the Michaelis-
Menten function (Michaelis and Menten 1913) wasduse parameterize daytime solar
radiation dependant GPP (Falge et al. 2001; Rupgtedl!. 2006). For both, the flux-
partitioning model used a time-window scheme in$te& the conventional temperature
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binning approach that was suitable for sites witltinct seasonal variation (Ammann et al.
2007).

13C pulse labeling for determination of relative prop ortion of C partitioning

Experiment setup

Five stainless steel soil frames (each 1 x 1 m# wiu-shaped bar at the upper end were
inserted up to 10 cm depth three weeks prior teliag in order to reduce disturbances. For
3C0, pulse labeling the upper part of the chamber, isting of aluminum frames (base of
the frame 1 x 1 m?, height 0.5 m) were placed th® u-shaped bar which was filled with
water (containing a small amount 0f$0y) to ensure sealing of upper and lower parts of
the chamber. The aluminum frames were covered tvatisparent LDPE-foil (thickness: 0.2
mm; total light transmission: ~90%) shortly befdhe tracer addition. To minimize the
influence of the chamber on the tracer uptake, @iweling aggregates (EZetil Iceakku,
220g), arranged in parallel, were installed in eabhmber. A fan positioned behind the
aggregates guaranteed turbulent mixing of the clearaly and forced the air to pass the
cooling aggregates. High temperatures were theagbided and the humidity was reduced
by condensation of the water vapor at the cooliggregates’ surfaces. Hence, the
condensation at the chamber walls was reduced attdrbight conditions for the plants
were assured. For more detailed information abbetdhamber construction see Drosler
(2005). A flask, containing thEC tracer as N&°CO; (5 g 99%"C-eniched NgCOs), was
placed behind the fan to assure homogenous distibof the labeled C® An excess of

5 M H,SO, was added to the tracer solution from outsidectiember with a syringe. The
puncture holes were afterwards sealed with tapee Tdbeling was done almost
simultaneously for all five chambers with only shtme shifts of some minutes. Plants
were labeled for three hours to assure completakepbf the'*CO,. To avoid noon
depression of photosynthesis, labeling was conduoten 2:30 pm — 5:30 pm. In one of the
chambers the C{concentration was monitored with an infrared gaelyzer (LI-820, LI-
COR Biosciences, Lincoln, Nebraska USA) at the fy@igg and at the end of the labeling.
The IR-sensor of this device detects only about 8%he'*CO, (McDermitt et al. 1993),
but the concentration increased at the beginningp u®b00 ppm and a concentration next to
zero after the 3 hours was measured indicatingctimeplete uptake of the tracer. Shortly

before the labeling the G@&oncentration within the chamber dropped downeim zlue to
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assimilation. It is expected that this very shadkl of CQ and the high concentration after
adding the tracer had no noticeable influence @netkperiment. The reasons for that are

explained in the following chapters.

Data acquisition and analysis

Translocation of the assimilatétC was analyzed during a 21-day period in shootstsro
soil and soil CQefflux on all 5 plots. Samples were taken immesha(0), 1, 2, 4, 9 and 21
days after the labeling. Shoots were sampled fratircalar area of 10 cm diameter. Soil
samples were taken in the middle of this area 051830 cm depth using a soil corer (inner
diameter: 4.6 cm). Afterwards, the holes in thé s@re plugged with PVC-tubes to avoid
changing conditions around the holes. In additsamples from unlabeled plots were taken
in the same way close to each of the labeled ptotetermine thé'*C natural abundance
for calculations. All samples were frozen (-20°@jiufurther analysis. Roots were carefully
separated from the soil samples with tweezerssldlot, root and soil samples were dried,

weighed and homogenized by ball milling.

Total C and the3™*C (%o) signatures of the samples were determined usinglement
analyzer — isotope ratio mass spectrometer (EA-IRDta Plus; Thermo Fisher Scientific,
Bremen, Germany, interfaced to an elemental analy¢€ 2500; CE Instruments, Milano,
Italy) and calibrated with reference to the intéwo@al standard VPDB (Vienna Peedee
Belemnite).

The total CQ efflux from soil was determined on all labeled am unlabeled (natural
abundance) plots with the static alkali (NaOH) apson method (Lundegardh 1921; Kirita
1971; Singh and Gupta 1977) After cutting the vatyi@h to avoid any fractionation of the
isotopic signal by photosynthesis and shoot regpiraa stainless steel soil collar (inner
diameter 11 cm; height 10 cm) was placed 5 cm tinéosoil. It has to be considered that
cutting aboveground vegetation may cause decreasmdt respiration and increased
turnover of dead root biomass. A jar with 1 M Na@ds placed into each collar and the
collar was closed with a dark lid. Soil ¢@fflux was calculated using the following
equation:

F - X(C)P
CG, ,soil ARt

(D)
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with the total amount of C capturedC), the closed time of the collat and the area

enclosedA. Shortly after the labeling a NaOH trap was plaicedach chamber. NaOH was
exchanged at each sampling date and additionalth@d2th day after labeling. The amount
of NaOH was adjusted to the period by increasinghfd0 ml at the beginning up to 80 ml
at the end, to be sure that the neutralizationndidexceed one-third of the capacity of the
NaOH (Gupta and Singh 1977). The amount of coltecTewas determined by a C/N
analyzer (Multi N/C 2100, AnalytikJena, Germanyd. @btaind**C (%o) values, SrC@was
precipitated with SrG| neutralized and dried for the EA-IRMS measuremefRor the
calculation of the relative proportion biC input into various pools (shoots, roots, soil and
CO, efflux were investigated) afteé'CO, pulse labeling several calculation steps were

necessary. The enrichment'd€ in a C pool &* (13C), atom%) was derived by subtracting

the naturally abundant amount B (x(“C) o’ atom%) from the amount dfC in the

labeled pooP (x(”C)P , atom):

E (13 — 13 _ 13
£(70)=x("0), - {*9,, @
where E marks the excess dniC of the atom fractionx ( = amount of an isotope of a

chemical element, divided by the total amount ofret of this element; Coplen 2011).

The natural abundan@sC value of soil CQ efflux, measured beside the labeling plots,
was determined by correcting the measuE€ values for the admixture of atmospheric
CQO,, based on the Miller/Tans model (Miller and Ta®®2 Pausch and Kuzyakov 2012).
Therefore, measured*>C values multiplied by the respective £@€oncentrations were
plotted against the GQroncentrations. The slope of the regression Bnequivalent to the
83C value of soil C@ efflux purified from atmospheric GQMiller and Tans 2003). The
Miller/Tans model was applied in combination witgeometric mean regression (GMR), as
suggested for soil CQKayler et al., 2010). The standard errors for glupe of the GMR
were taken from the respective ordinary least sguagression (Sokal and Rohlf 2008).
These standard errors may not completely charaetdre uncertainty (Zobitz et al. 2006).

By multiplication with the total C amounin(C),, g C ni) of the pool, the*C amount

(n(“C)P , g°C m?) of the pool was calculated:
n(*c) =x(*qo(g,. ©
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Since all calculations were carried out with aradsuit has to be mentioned that in the case
of soil and roots all results referred to the sadpoil layer from 0 to 30 cm. To gain a

reference value for the recovered amount3f during the sampling period, the total

amounts of°C found immediately after the Iabeling((1‘°’C)P , g*C m?) were summed up

over all investigated pools. Then tH€ amounts of every single pool at every point wfeti

(n(lSC)P , g13C m?) could be related to this total value and the vecp (R, %) of the tracer

could be calculated using the equation:
n(lSC)
R(13C)P = ' 'R (4)
t n(13C)

4
= Ry (1)

wheret represents any date of sampling dpdhe point of time immediately after the
labeling, when samples were taken for the firstetinihese calculations were conducted

similarly for all pool typesi with one exception. In contrast to the other poelbere

sampling was destructive and therefore spatiaBjrithuted, thé*C amount (1(13C)P ,g=C

m™) within the CQ efflux (Feo, so1) Was always sampled at the same position. This was

compensated by finally summing all values of thegle sampling dates. Hence, the
complete amount of’C was considered in that pool as well. The los$eS® by shoot

respiration were not measured, but could be estidniay the following equation:

:100%—2 R*9,,, ®

("),
Due to translocation to deeper soil layers wasshgated and excluded, it is assumed that
shoot respiration is the only relevant missing sfk°C within the considered system, the
13C recovered (%) of all four measured pootould be summed, and then subtracted from
100% (Hafner et al. 2012). However, a slight oviémeation of the soil respiration might
occur due to missing of small amounts of carbocHe®y during the rainfall events during
the sampling period. To assure that @ recovered no longer changed in time, i.e. that th
allocation did reach a steady state, tf@ recovery in all pools was checked by applying a
repeated measures ANOVA withpast hocBonferroni test. Means and standard errors of

the means (SEM) are presented in the figures diesta
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To finally gain absolute C input into the partiaukecosystem pools, labeling and eddy-
covariance results were combined, i.e. the relaiieportion of thé*C recovered at the end

of the C allocation was combined with the totah@ut into the system
—_ 13
n(C), = GPPOR q%d (6)

Wheren(C)P (g C m?s™) is the absolute C input of the respective pool.

Note that chamber conditions and £€»ncentrations during labeling may have influenced
the photosynthetic rate. Hence, total Qftake during labeling presumably differed from
that measured by EC. However, we assume that tpadiof the chamber conditions on
relative ™*C partitioning within the plant-soil system weregtigible because after the short

labeling period (3 h) the plants were again expasethtural conditions.

Results

Absolute atmospheric CO , fluxes

Plants started to growth already at the end of lrglyr and the growth period ended in mid-
October (Fig. 1). At the beginning, the biomassaghowas decelerated by a frost period in
March, and during summer the assimilating biomaas tarvested by two cutting events,
(DOY 188 and 265, marked with ‘c’ in Fig. 1) whiblecame apparent in the GPP and NEE

time series.

The isotopic pulse labeling was conducted on Jitle (DOY 167, left edge of grey dashed
box in Fig. 1) and the subsequent chase period ¢&8, dashed box in Fig. 1, Table 1),
where samples were taken to investigd®dynamics and translocation, ended on July 06th
(DOY 187) with the last sampling, shortly beforee thrst meadow cutting. The most
extreme precipitation events were measured in Auduee fluxes at the labeling day and
during the chase period (CP) are shown in Tabléhkt mean daily sum of GPP at the
labeling day was —6.0 g C td™ whereas a mean GPP of —7.1+0.4 g C o’ was
determined for the whole chase period. Fig. 1 mlesia general view of the intra-annual
variability of the ecosystem fluxes, indicating ttranumber of pulse labeling experiments
would be necessary to achieve detailed season#tiqrang of absolute carbon fluxes. The
labeling experiment was conducted within a longetiperiod with a quite uniform

assimilation flux that did not end until the fittting (Fig. 1).
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13¢ dynamics and allocation

The sampling immediately started after i€0, tracer was completely assimilated. The
13C recovery in the shoot biomass strongly decrefrsen 72.3% immediately after labeling
to 46.6% 1 day after labeling, mainly due to shespiration (Fig. 2). About 14.7% &IC
was translocated from shoots into roots directtgrafibeling. Thé3C recovery of roots did
not change significantly over 21 days. In conttasthe roots, the maximufiC amount of
the soil pool was detected one day after the lagelThereafter, thEC recovery in the soil
slightly decreased and reached 6.4% 21 days atelihg (Fig. 2b). Similar to shoot
respiration,*3C in soil CQ efflux was highest during the first day and thelthed over

time.

The allocation of-*C tracer was mostly completed after 9 days and¥Beaecovery in all
pools did not change significantly between the lasb samplings. Therefore, the
precondition for the partitioning of the absolutenput, the steady state, was fulfilled. Fig.
2b illustrates the final percentage at the endhefttanslocation process. The C flux back
into the atmosphere, consisting of shoot respimaaad soil CQ efflux, dominates the
proportion by accounting for almost half (46.7%)tbé assimilated®C. About one third
(34.9%) remains in the shoots, while roots and @tihin, with 12% and 6.4%, respectively,
comparatively small proportions biC. Overall about 32% of assimilat&iC were allocated
to below-ground pools.

Partitioned absolute C allocation

The absolute amount of total assimilated C (GPPhbyecosystem during the chase period
(CP in Table 1) was partitioned for absolute Ccaatmn into individual pools based on the
13C recovery of the respective pool. THE recovery rates could only be applied to the GPP
from the chase period (Fig. 1), since the transiétabeyond this period was not validated
by accounting for, for example, plant physiologifsaitors. On average, 2.5+0.2 g C*ri™
were incorporated into the shoot and 0.8+0.3 g €dtt into the root biomass. 0.5+0.1 g C
m~ d* remained in the soil, whereas 2.3+0.3 g G th* and 1.0+0.1 g C M d* were
released to the atmosphere as shoot respiratios@h@Q, efflux, respectively. The sum of
the soil CQ efflux and shoot respiration (3.3+0.4 g C i) is in accordance with the:Ro
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of 3.5+0.2 g C n* d ™, determined independently by separating the NBE thie FPM (Fig.
3).

Discussion

Discussion overview

By combining the results of atmospheric £lix measurements ardCO; pulse labeling, a
new approach for partitioning ecosystem C fluxes wdroduced. In the following, the
results will be discussed in detail. Absolute atphesic CQ fluxes will be compared to
further flux measurements under similar environrakenbnditions, and relative assimilate
distribution will be compared to those of otH&E labeling experiments. Since there are no
studies referring to comparable efforts in deteingrpartitioned absolute C allocation in
the plant-soil-atmosphere system, on-hand resuiscampared to studies in which these

guantities were estimated.

Atmospheric C fluxes

NEE was directly measured by eddy-covariance in02Q4249 g C nf ab). After
subtraction of the harvest output (158 g C?ra’), =91 g C m a* still remained,
identifying the site as being a relatively big aarbsink in relation to other comparable
extensively managed grasslands. In Table 2, resteies dealing with atmospheric €O
fluxes on such grasslands at elevations from 373480 m a.s.l., with mean annual
temperatures from 5.5 to 9.5 °C and annual prextipit sums from 655 to 1816 mm, were
reviewed. Although the sites were chosen in a ramigieh was as narrow as possible in
terms of these parameters, there are notable ehites in the NEE. However, the NEE of
the present study lies in the middle of those efrdviewed studies (Table 2). In general, the
role of grasslands in the global carbon cycle i shcertain, as recently described by
Gilmanov et al. (2010). There a mean NEE of 70 €4, but also maximum C sources
up to 481 g C nf a* and maximum C sinks up to —366 g C’ra* were reviewed for

extensively managed grasslands all over the world.

Separating NEE into underlying assimilation (GPRJ aespiration (Bco) fluxes using the
short time window scheme was certain to capture dix@gamics of this fast changing
ecosystem (Ammann et al. 2007; Wohlfahrt et al.220because it sufficiently accounted
for seasonal parameter variability (Lasslop et28110). Total annual sums in 2010:(R
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849 and GPP: —1097 g Cfra’}) are within the range of those reviewed in Tahlét 2
therefore important to note that the results of ttiudy match best to sites with certain
restrictions relating to ecosystem productivityg.elow annual temperature means,
combined with high elevations (site No. 8 and 9bl&a2). There is also good agreement
with another low elevation site (No. 3, Table 2)t m that case GPP is probably limited by
a lack of precipitation. With that exception, theagsland in the present study is more
comparable to higher elevation sites due to itd cbimate. This is also confirmed by&,
which is on average smaller than that of the warsites with low elevation, but higher than
that of high elevation sites. Ammann et al. (200@ho even applied a similar flux
partitioning model on extensively managed grassian8witzerland, found C fluxes more
than one third higher, despite similar elevatiod g@necipitation, but with a 3.2 K higher

mean annual temperature.

In a global context, European extensively managadsiands are outstandingly productive.
While Gilmanov et al. (2010) reviewed a worldwid®®/of —154+463 g C tha ', Schulze

et al. (2010) found an average GPP for Europeishaimost ten times higher: —1343+269 g
C m?a™. This in turn is within the range of the GPP ddggland sites reviewed in Table 2,

which are obviously representative for Europeaem@sitely managed grasslands.

Relative '°C allocation

Isotopic pulse labeling was used to quantify theutrof **C to diverse ecosystem C pools.
At first view, pulse labeling reveals the relatistribution of assimilated C at the moment
of labeling and not the distribution of total unéddd C in different plant parts (Kuzyakov
and Domanski 2000). However, by observifig allocation over a certain period, up to a
steady state within the whole plant-soil-atmosptsigem, a representative proportion for
total C is finally found (Saggar et al. 1997; Saggad Hedley 2001; Wu et al. 2010). The
end of the chase period was defined as occurringnwthe amount of’C recovered in the
last two samples of each pool no longer changedifgigntly (Saggar et al. 1997). That
happened after 21 days (cf. Keith et al. 1986; &ainet al. 1994). Depending on the pools
considered and the sampling frequency, the enchefC (*C) allocation period was
defined as being between 4 and 28 days (Domanski 2001; Wu et al. 2010; Hafner et al.
2012; Ostle et al. 2000; Saggar et al. 1997). Whilsmerous pulse labeling studies address
the back diffusion of tracer to soil pore spaceungog during the labeling (Subke et al.
2009; Bahn et al. 2009; Staddon 2003; Leake €104l6), dealing with isotopic steady state
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(after 21 days) allows this difficulty to be disegded, as it is only relevant for the first two
days after the labeling (Gamnitzer et al. 2011 sB&t al. 2012).

In accordance with Wu et al. (2010), the percentay&C recovered — rather than the
isotope fraction — was used to determine the olv@malportion. Calculation of théC
recovered was achieved by referring to summatioli®fin all measured pools (Kastovska
and Santickova 2007; Hafner et al. 2012) in order to not uadémate the initial fixation
by considering only*C found in shoots directly after labeling. Abouteothird of the C
remains in the shoot biomass as reviewed by Kuayako Domanski (2000) for numerous
pasture plant studies (Table 3). In contrast, afjuical plants like wheat or maize
incorporate a lager proportion (50-60%) into theat{Jones et al. 2009; Table 3). During
the chase period the amount of tracer decreasetB¥y within the shoots, which is quite
close to the 32-51% of Johnson et al. (2002) afd 66Butler et al. (2004) and Wu et al.
(2010). Higher rates are also possible for grasslaa.g. 77% (Ostle et al. 2000) and 70%
(Leake et al. 2006), even during the first dayratie labeling. In this study the maximum
decline also took place between first and secontpbag, including the first night after the
labeling, caused mainly by night—time shoot resmraand allocation to roots (Butler et al.
2004; Leake et al. 2006). Shoot respiration dynaragree with this finding, by increasing
after the first sampling, which took place in théelafternoon at the labeling day. The much
higher percentage dfC was recovered at the second sampling resulted fre above-
mentioned night-time fluxes. However, shoot regmradynamics seem feasible and the

final proportion of 30% lies within the range foumdthe literature (Table 3).

The proportion of below-ground C input (32%) intmts (12%), soil (6.4%) and G@fflux
(13.6%) is also in line with Kuzyakov and Domangk000; Table 3). The relatively low
allocation to below-ground pools, especially to thet system, may be explained on the
general steadiness of long-established grasslastdsystems (Saggar et al. 1997). This can
be also an explanation for the non-significant gfe@nduring the chase period (Fig. 2).
However, results of other studies are quite hetregus, but these found mostly higher
amounts (Table 3) and, beyond that, diverse patter@ allocation to roots. The maximum
amount of tracer reached the roots one (Johnsah 2002) or two days (Ostle et al. 2000;
Staddon 2003), or even weeks later, but then mesthout significant differences (Rangel-
Castro et al. 2004; Leake et al. 2006; Hafner .e2@12). A slight peak at the fourth day as
in the current study is a realistic result if itdensidered that Kuzyakov and Domanski

(2000) suggested a period of hours to days aftetabeling. CQ efflux from soil exhibits
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the same pattern presented by Staddon (2003) afmebHet al. (2012): An initial peak, an
exponentially decreasing recovery'd€ over time and a decreasing slope in the cumalativ
13co, efflux (Fig. 2). This pattern of the soil G@fflux indicates fast translocation of
recently assimilated C through the system, probablgased by root-derived respiration
(Kuzyakov et al. 2001). However, G@fflux from soil was determined with the statikadi
(NaOH) absorption method. This method is useful bas also disadvantages as e.qg.
scrubbing CQ from the chamber headspace or missing atmospheabalence. Although
those two are opposite effects, on the whole tive ifhte might be overestimated. Compared
to the other pools=*C enrichment of bulk soil after pulse labeling wakatively low. The
amount of**C recovered in the soil (6.4%) is comparable tep#tudies, especially those
summarized in the reviews (Table 3). A slightlyteg amount of°C was found after one
day, but just as the weak peaks of Staddon (20&) B2 and Rangel-Castro et al. (2004)

after 7 days, it was not significant (Fig. 2).

Partitioned absolute C fluxes

Up to now, partitioned absolute amounts of alloda€& were only roughly estimated,
although in most studies addressing to C balandet@mover, total masses are important.
Kuzyakov and Domanski (2000) calculated mean albsolkalues for below-ground
translocated C by grasses and cereals from thatlite: 179 g C ffor all studies and 220

g C m? for studies longer than 100 days (i.e. 2.2 g €an average). Absolute C inputs
found for an alpine Kobresia humilis pasture (Wwalet2010) were about one third smaller
than in the present study in all compartments exiteproots, when taking the length of the
growth period into account. This results from thenegrally lower turnover rates in high
altitude grasslands (Budge et al. 2011). In additthat, the percentage of root biomass is
considerably higher in these regions (Ammann et 2009; Leifeld et al. 2009;
Unteregelsbacher et al. 2011). One further compa@diows the rough estimation of total C
in- and outputs for pasture plants. Kuzyakov andnBioski (2000) measured fluxes that are
on average 1.5 times lower than that of this stbdythe input into the root system matches

very well.

Obviously, there is a lack of studies presentingohlie values of C input to distinct
ecosystem compartments. Coupling of atmospheridu rheasurements witf*C pulse

labeling provides partitioning of absolute C fluxés general, the combination of methods
works and allows a more detailed insight into theyCle of grasslands. One limitation is
that the expansion beyond the chase period hag tchbecked independently using other
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methods. Whereas the atmospheric fluxes are mosgliesentative, at least as long as
weather conditions and management activities att@wa certain range, plant physiological
parameters — and thereby partitioning patternsry-te@ much to allow transfer of the result
of a single pulse labeling to the whole growth peéri (Gregory and Atwell 1991). In

contrast, a series of labeling pulses at regularvals (Keith et al. 1986; Swinnen et al.
1994; Kuzyakov et al. 1999; Kuzyakov et al. 200Lizikakov and Schneckenberger 2004;
Davenport and Thomas 1988) could provide reasoregtimates of the relative partitioning

for the whole growth period, to be applied to thereneasily available time series of C
input, obtained by micrometeorological flux measweats. This way, mowing events or

grazing could also be considered.

Concluding remarks

Application of eddy-covariance showed that the esieely managed grassland was a
significant net carbon sink of -91 g C”na* in 2010. The NEE flux-partitioning model
revealed a mean underlying assimilated amount mioceof —7.1+0.3 g C thd* during the
21 days of thé*C pulse labeling experiment. Pulse labeling andirigaprovided relative
partitioning of**C input into distinct ecosystem C pools. First-tiozenbining the results of
these methods to an integrative approach allowettipaing of absolute C input by
assimilation into absolute C fluxes into shootstsoand soil and the contributions to the
respiration fluxes C@efflux and shoot respiration. Two different ardsnefit from this
combination: further separation of the NEE beyosdirailation and respiration fluxes is
provided and labeling approaches are upgradednajiyfidealing with absolute instead of
relative C allocation. However, under the currestianging environmental conditions, both
approaches benefit from the reduction of unceisnby the detection and evaluation of
individual reactions of sensitive subsidiary ectsys pools and processes on the basis of
mass units. The results of this study are in linth whe available literature and should
encourage combining methods of atmosphere, plahtsaih science also in future studies.
The suggested method can be also applied to C mamls as microbial biomass and
dissolved organic carbon. Also for ecosystem madedealing with C pools and fluxes, it
provides data on C incorporation in pools in absolnits.
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Tables

Table 1. Annual (g C M a?) and daily (g C if d™) C fluxes (+SEM) for the chase period
(CP) and the day of labeling (June 16th) in 2010.

2010 (365 days) chase period (21 days) labeling day

annual sum mean of daily sums daily sum
NEE —249 -3.5 104 -1.8
GPP -1097 -7.1 ©.3 —-6.0
Reco 849 3.5 0.2 4.1
harvest 158
balance -91
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Table 2. Atmospheric C fluxes, determined on Euappgrassland sites with comparable parametersat@ev(m a.s.l.), annual sum of

precipitation (RR, mm), sorted by annual mean teatpee (T, °C); all sites were managed extensiv@yne with temporary light grazing instead

of cutting. Harvest means harvested C yield freefdfiAll fluxes are presented in g Car™.

No. Site Year Elevation T RR Management Harvest NEE GPP Rgco References

1 Amplero, 2004 900 95 1234 SXiensive, 214 -1303 1089 (Gilmanov et al. 2007)
Italy cut / grazed
Oensingen, 2002—- extensive,

2 gt 5004 450 9.0 1109 ;' °° 311 -254 -1856 1592 (Ammann et al. 2007)
Grillenburg, 2003/ extensive, _ :

3 Cermany 5004 375 79 655 . oS> ~147 278 -1128 851 (Hussain etal. 2011)

4 Laqueille, 2002= 4040 7.0 1200 EXtensive, _75 —1514 1440 (Allard et al. 2007)
France 2004 grazed
Neustift, 2001- extensive, N

5 pustia 5008 970 65 852 ; °° 317 18 -1568 1586 (Wohlfahrt et al. 2008)

g Alinya, 2003/ 1770 6.1 1064 SXlensive, _47 —606 559 (Gilmanov et al. 2007)
Spain 2004 grazed
Voitsumra, extensive, .

7 Germany 2010 624 58 1066 o 158 -249 -1097 849 This study

8 :\t";?;‘te Bondone, 5, 1550 55 1189 ‘ixéﬁtns"’e’ _75 1235 1160 (Gilmanov et al. 2007)

g MalgaArpaco, 5554 1699 55 1816 °SXeNsive, _443 —1083 640 (Gilmanov et al. 2007)
Spain grazed
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Table 3. Comparable partitioning studies relatesgpiecies, methods and investigated compartmeritsaldles are presented in % of recovery or %

of (net) assimilated tracer.

No. Plant“ Method Days a]‘ter Shoot Below Root Soil Regco Shoot - CO;, References
Conditions labeling ground resp. efflux
; 14
1 Lolium perenne; 'C pulse, 7 498 407 218 1.8 166 95 17.1 (Rattray etal. 1995)
controlled cond. ‘l’{? of recovery
2 Lolium perenne, C pulse, 2 400 600 146 30.0 15.4 (Bazot et al. 2006)
controlled cond. (1)/;(4) of recovery
3 Festuca, C pulse, 2 439 549 397 4.1 11.1 (Allard et al. 2006)
controlled cond. ‘l’{? of recovery
4 White clover/ —C pulse, 2 569 430 90 7.2 26.8 (Todorovic et al. 1999)
controlled cond. % of recovery
13
5 Grassland/ C pulse, 32 289 587 342 7.3 296 124 17.2 (Wuetal. 2010)
field conditions (1)/;(4) of recovery
g Crassland/ C pulse, 27 380 200 05 104 51.0 420 9.0 (Hafner etal. 2012)
field conditions ‘l’{? of recovery
Pasture / C pulse,
7 field conditions (1){? of recovery 35 26.4 347 21 36.8 (Saggar et al. 1997)
Pasture / C pulse,
8 field conditions % of recovery 35 31.0 270 5.2 37.0 (Saggar and Hedley 2001)
- 14 . *
g Lolium perenne, “C continuous?, 478 521 397 2.6 9.8 (van Ginkel et al. 1997)
controlled cond. % of recovery
Brome grass C % rep. pulse**,
10 controlled cond. % of assimilated*** 27.0 50 14.0 54.0 (Davenport and Thomas 1988)
21 agric.plants % of
11 Review net assimilated*++* 60 36 19 5 12 (Jones et al. 2009)
Pasture plants, % of (Kuzyakov and Domanski
12 Review assimilated** 30 40205 45 3015 55
13
13 Grassland/ C pulse, 21 349 320 120 6.4 467 331 136 thisstudy

field conditions

% of recovery
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**

*k%k

*kkk

Continuously labeled with’C during the whole time of growing

Weekly repeated pulse labeling, as suggestamt@r whole growth period

Recovery related to assimilated amount of trag#hoot respiration is not considered, may undenase final result by up to 30%)

Recovery related to net assimilated amountmaicer (shoot respiration is considered)

98



Figures

—

€ 1.2 1 —RECO GPP —NEE

O

o) — —_

5 0 e 5
0.4 - 40 £

g M prec. 38 8

5-0.8 20 &

S | 10 §

E-12 - 0 &8

° 20 -

P 10 -

(] B

g 0

© -10 -

S 20

S -

9 -30 - \ \ \ \ T \ \ \ \ \ \

1 31 61 91 121 151 181 211 241 271 301 331 361

Fig. 1. Cumulative annual fluxes of NEE, GPP angtR(flat lines), daily sums of
precipitation (black bars), daily means of globadliation (grey filled circles) and daily
mean temperatures (black filled circles). The bath\dashed outline begins with the pulse
labeling and comprises the chase period (CP), begjrwith the pulse labeling and ending

shortly before the first mowing event (c). Timeaeraxis in day of year (DOY).
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Abstract

Relaxed eddy accumulation is still applied in estayn sciences for measuring trace gas
fluxes. On managed grasslands, the length of tistevden management events and the
application of relaxed eddy accumulation has arrd&d influence on the determination of
the proportionality factob and thereby on the resulting flux. In this stutlisteffect is
discussed for the first time. Also, scalar simtlatbetween proxy scalars and scalars of

interest is affected until the ecosystem has cotalyieecovered. Against this background,
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CO; fluxes were continuously measured af@0, isofluxes were determined with a high

measurement precision on two representative daggnmimer 2010.

Moreover, a common method for the partitioning loé thet ecosystem exchange into
assimilation and respiration based on temperatuldight response was compared with an
isotopic approach directly based on the isotoperidmsnation of the biosphere. This

approach worked well on the grassland site anddcenhance flux partitioning results by

better reproducing the environmental conditions.

1 Introduction

In ecosystem sciences the interface of atmosplieosphere and soil is of particular
importance and affords insight into the carbon ¢@)le from various angles of view with
various methods that, in turn, have to be adapted evaluated. Insight from an
atmospheric perspective is mostly achieved by clear{Boulden et al., 1996; Davidson et
al.,, 2002; Dore et al., 2003; Subke and Tenhun€@4p and micrometeorological
techniques as e.g. eddy-covariance (EC; Moncriefale 1997; Aubinet et al., 2000;
Aubinet et al., 2012; Baldocchi et al., 2001; Balclu, 2003). While chambers are able to
directly measure ecosystem carbon source and sinksf on small spatial scales, EC
provides net ecosystem carbon exchange (NEE) gerlaspatial scales. More detailed
information about underlying fluxes can be achielsgdapplying flux partitioning models
(FPMs, Stoy et al., 2006; Desai et al., 2008; lgs&lt al., 2010; Reichstein et al., 2012).
Those are also used to gap-fill missing or exclutleddata (Falge et al., 2001; Stoy et al.,
2006; Ruppert et al., 2006a; Desai et al., 200@aka 2012). Those models may provide
fluxes with unrealistic temporal variation or matguie (Stoy et al., 2006). However, an
alternative is partitioning based on additionaledeination of the"*CO, isoflux (Yakir
and Wang, 1996; Bowling et al., 2001; Knohl and fBuann, 2005; Ogée et al., 2004;
Wichura, 2009; Wichura et al., 2004; Ruppert, 2008yd et al., 1996). Due to stomatal
uptake of CQand photosynthesis of C3 vegetation discrimingtaret the heavier isotope
3¢, the biomass and all following compartments wittine dynamic C-cycle ar€C
depleted with respect to the atmosphere. Ther¢feEC isotopic ratio increases in the air
during the assimilation period. Both effects acdofon a distinct diurnal cycle of the
13C 0O, mixing ratio in ecosystem air (Flanagan et al9@;9 loyd et al., 1996). Resulting
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13C0, isofluxes can be determined with the flux-gradiergthod (Flanagan et al., 1996),
by modeling approaches (Ogée et al., 2003; Lloyal.et1996), by hyperbolic relaxed eddy
accumulation (HREA, Bowling et al.,, 2001; Bowlindg al., 2003a; Wichura, 2009;

Wichura et al., 2004), the hybrid eddy covarianflagk gradient method (Bowling et al.,
1999a; Griffis et al., 2004) and direct isotopidgaovariance (Griffis et al., 2008; Sturm
et al., 2012; Wehr et al., 2013).

This study examines the application of the REA-radtbn managed grasslands. European
grassland ecosystems are still to be defined at eambon sink or source. For this reason,
detailed investigation is strongly required (Ciaisal., 2010; Soussana and Lischer, 2007).
In addition to the general uncertainty regarding #ink/source behavior of grasslands,
management of grassland ecosystems causes anonmalibe seasonal carbon cycle
(Flechard et al., 2005). Such events have to berebd carefully, but potentially introduce
certain restrictions for REA measurements. Prevstuslies indicated that errors in the
REA flux often appeared when scalars of interest @moxy scalars behaved differently in
their turbulent transportation efficiency (Ruppett al., 2006b). This so-called scalar
similarity is especially required for hyperbolic REbecause two important factors — the
hyperbolic deadbanH and the proportionality factdy, and consequently the REA flux —
will be flawed without it (Oncley et al., 1993; Rugrt et al., 2006b). Even liffactors are
often treated as constant (Meyers et al., 2006phizaa et al., 2006), they show a certain
diurnal variation. Other studies on managed ecesystapply C@and water vapor (Baum
and Ham, 2009) and mostly temperature (Myles et28@l07; Hensen A. et al., 2009) as
proxy scalars, sometimes shortly after the managefhNemitz et al., 2001). Whether this
practice can be problematic was thoroughly investig in this study by numerous
simulations with data from mown and unmown graskldime real REA measurements of
this study were conducted — in correspondence thighresults of the simulation — before
(22 June), and a sufficient period of time after thowing (25 August) in the main growth
period of 2010. The reasons for this procedure Wwel explained in the following,
especially in section 4.1. Another aim of this stusl to evaluate a commonly applied
partitioning method for the net ecosystem exchangk a small number of the labor-
intensive and sophisticated REA measurements. Rug@é08) and Wichura (2009)
investigated an isotopic approach by Lloyd et B996) for partitioning the net ecosystem

exchange (NEE) above forest ecosystems, and foumeé sestrictions due to complicated
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coupling conditions (Thomas and Foken, 2007). la ¢rrent study, this approach is
tested above grassland and finally evaluated bypeoison with a common flux
partitioning model (FPM) based on the temperatwepeddence of respiration after the
Lloyd-Taylor function (Lloyd and Taylor, 1994). Fd&:co parameterization, nighttime
NEE is used because it equals ecosystem respir@Rigir) due to missing assimilation
(Lloyd and Taylor, 1994; Falge et al., 2001; Rupgral., 2006a; Ammann et al., 2007,
Reichstein et al., 2005). To parameterize daytiolargadiation dependant gross primary
production (GPP, Falge et al., 2001; Ruppert eR806a), light response regression based
on Michaelis-Menten function (Michaelis and Mentd®13) was applied. Instead of a
temperature binning approach a time window schem& applied, which is preferred for
sites with distinct seasonal variation or treatreaggnerating abrupt changes in ecosystem

behavior (Ammann et al., 2007).

In summary, this paper comprises the examinatiorRBA application on managed
grasslands by comparing scalar similarity andtHactor before and after management
events. Then two real REA measurements were coeduaot correspondence with the
results of the simulation. The results of thoseengsed to test an isotopic flux partitioning

approach above grassland and to evaluate it by aosgm with common flux partitioning.

2 REA theory and framework

The basic idea of Desjardins in 1972 (Desjardifg,7) of separating the vertical wind into
an up- and downward component was applied by Besimgd Oncley (1990). They
combined this eddy accumulation method (EA) witle ttux-variance-similarity and

created an indirect method: the relaxed eddy actatron (REA), with the REA-flux

FREA:b Gwpa(a_a) 1)

derived from average up- and downward mixing raftighe scalara and a standard

deviation of the mean vertical wind velocity,, density of dry airp, and an empirical

and dimensionless proportionality factothat compensates for the loss of information due

to the mentioned “relaxation” (Ruppert et al., 2006\ir samples are thereby taken with a

constant flow rate and are not weighted accordinié vertical wind speed (Businger and

Oncley, 1990)b is often suggested to be unaffected by the atnewgphtability (Businger
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and Oncley, 1990; Delany et al., 1991; Foken et1#195) but it can also depend on it
(Andreas et al. 1998b). For an ideal Gaussian jeduency distribution (JFD) of the
vertical wind speed and the mixing ratio of thel@cd is constantl{ = 0.627; Baker et al.,
1992; Wyngaard and Moeng, 1992). But variation® ean be generated by just a small
skewness of the JFD of' and c¢' (Katul et al., 1996; Fotiadi et al., 2005; Ruppstral.,
2006b), the application to different trace gasess(Bger and Oncley, 1990; Baker et al.,
1992; Oncley et al., 1993; Pattey et al.,, 1993)tlme use in different ecosystem
compartments (Gao, 1995h may also vary significantly during individual 30#m
integration intervals (Businger and Oncley, 199@k& et al., 1992; Oncley et al., 1993;
Pattey et al.,, 1993; Beverland et al., 1996; Katulal., 1996; Bowling et al., 1999a;
Ammann and Meixner F.X, 2002; Ruppert et al., 2Q06tariations from 0.54 to 0.60
were found for several experimental data. Consedtyen reduce relative errors in flux
determination, individually simulateatvalues for every measurement location and period
are to be favored over application of a constaRuppert et al., 2006b; Foken, 2008).
Thus, b is determined individually by REA simulation ofpmoxy scalar, which can be

additionally measured by EC. The proportion of botbixy scalar fluxesF,., and the EC

flux (Fe. =w'c"), providesh:

b=

we )
P, ow(cT - ci)
Above-mentioned-values were determined in theoretical simulatiovisgre it is possible
to separate up- and downdrafts exactly by sign,mdtavthe smallest values. Not until
Businger and Oncley (1990) modified the method isgatding fluctuations around zero —
that have only small influences on the entire fanyhow — with a deadband, could the
REA idea be implemented with regard to mechanieatrictions of the speed of valve

switching.

w

0. 0,(c (w> )¢ (we— w]] ®

b(w) =

The size of the deadbamd, around zero is determined individually accordirg t
experimental conditions and the particular scafanterest. The same applies bwy),
which has to be determined individually by condugtsimulations with proxy scalars.
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To maximize mixing ratio difference between up- awvndraft air samples, application
of a hyperbolic deadband is recommended (Bowling et al., 1999b). That tuneed for
investigating, for example, differences in the ordé the measurement precision. By
application ofH in hyperbolic REA (HREA),b(H) is reduced to lower values around
0.22+0.05 (Bowling et al., 1999b), 0.15-0.27 (Ruppet al., 2006b), respectivel is
based on the fluctuation of the vertical wind vépow' and the mixing ratioc' of a

proxy scalar, as well as their standard deviatgnand o, :

w'C
0,0

w=cC

> H (4)

Real time knowledge of,, and o, was achieved, by continuous online recalculatiomfr

the most recent 6 min of data. Those were weighyeapplying a linear function by which
the newest data was rated three times more imgdftan the oldest data (Ruppert et al.,
2012). Adequate scalar similarity is especiallyuieeg for hyperbolic REA, becausé
depends on the mixing ratio of the proxy scalamésally, b(H) and the REA flux as the
final product will be flawed without scalar simiigr between the scalar of interest and the
proxy scalar (Oncley et al., 1993; Ruppert et2006b). Scalar similarity was defined by
Kaimal et al. (1972) and Pearson et al., (199&jradarity in the scalar time series over all
the scalar spectra. This means that scalar quemntitie transported with similar efficiency
by turbulence elements of diverse characteristitigppert et al., 2006b). Differences in
distribution (Andreas et al., 1998a; Ruppert et 2006b; Held et al., 2008), amount, and
strength (Katul et al., 1999; Katul and Hsieh, 1)98Bscalar sources and sinks are reasons
for differences in turbulent exchange of the ssaland for lacking scalar similarity.
Furthermore, scalar similarity is influenced by #sasonal variation of canopy physiology
(Williams et al., 2007).

Essential for successful REA application is theiohmf the right proxy scalar. Often
temperature, measured by a sonic anemometer,ds(Gsaus et al., 2006; Lee et al., 2005;
Gronholm et al., 2007; Bash and Miller, 2008; Bamgliet al., 1998; Gaman et al; Ren et
al., 2011) and sometimes both temperature and wagor turn out to be adequate (Held
et al., 2008). For*CO, isoflux measurements typically the proxy scalar,G© used
(Bowling et al., 2003a; Wichura, 2009). Due to a&kleof adequate high frequency

measurements ofCO,, scalar similarity between both cannot be evathjatmit it is
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assumed that both scalars behave similarly. Howeeerrces and sinks are quite different
in strength and distribution with respect to distriation against®C during assimilation
(Bowling et al., 2003a).

3 Material and methods
3.1 Study area

All experiments relevant for this study were cortddcon the extensively managed
submontane grassland site “Voitsumra” at the edfethe low mountain range
“Fichtelgebirge” in northeast Bavaria, Germany, atedd 624 m a.s.|. (50°05'25“N,
11°51'25“E). For the last 10 years the site ha®rbaised as extensively managed
grassland without fertilization or grazing, but kvéporadic mowing once or twice a year.
The plant community is described E®linio-ArrhenathereteaR. Tx. 1937 — economic
grassland (Oberdorfer, 2001) and the most dominérthe 48 species arllchemilla

monticolg Juncus filiformigsPolygonum bistortaRanunculus acrisndTrifolium repens

3.2 EC measurements

High frequency data for both EC and REA were ctdld2.5 m above ground at 20 Hz.
Water vapor and COmixing ratio were measured by an open-path galyzera(LI-7500,
LI-COR Biosciences, Lincoln, Nebraska USA), and dvivector and sonic temperature
(Ts) by a 3D sonic anemometer (CSAT3, Campbell Sdientnc., Logan, Utah USA). Al
turbulence data were stored on a data logger (C®R30@mpbell Scientific, Inc., Logan,
Utah USA) and collected daily by a micro-computgstem (MICRO-ITX, CarTFT.com)
as a backup. To avoid inconsistencies in the wixtor time series, the inclination of the
CSAT3 was monitored by an inclinometer on the tdpthe measurement mast. The
computation of the EC-flux was accomplished by gb#ware package TK2 developed at
the University of Bayreuth (Mauder and Foken, 20043 has become available in the
meantime (Mauder and Foken, 2011). This softwargatos all necessary data correction
and data quality assessment tools (Foken et al2t90and was approved in comparison

with six other commonly used software packages @awet al., 2008) and successfully
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applied in considerable field campaigns (Mauderakt 2006; Mauder et al., 2007,
Eigenmann et al., 2009).

Data processing for determining turbulent EC-flugegins with spike and outlier filtering
(Rebmann et al., 2012). Data can then already bé i REA-simulation. All following
steps in TK2 relating to determination, qualitytieg and validation of the EC-flux, are
explained in detail by Mauder and Foken (2004),df0ik008) and Foken et al. (2012a).
This also includes planar fit correction (Wilczakat, 2001), which was also applied in
the REA controlling software (Ruppert, 2005). Wivelocity datasets of the four weeks
before each REA field measurement were analyzed @adar fit corrections were
implemented in the REA controlling software (Rugp&005). Due to very small rotation
angles only minor corrections were necessary. Borasthat the signal measured by EC
originated exclusively from the target land useetygrassland”, footprint analysis was
performed (Gockede et al., 2004; Gdockede et aDp2Rannik et al., 2012). It has been
proven that more than 95% of the data originatethfgrassland and were not influenced

by surrounding land use types such as tracks aeksr

3.3 Simulation foib(H) andH

Due to the great importance of thefactor for proper REA flux determination, and
especially due to the lack of information aboutgiiole effects of management events on
grasslands, the variation dfH) was investigated by simulation. Therefore, a twar
eddy covariance data set (2010, 2011) and acconmgpiow frequency measurements of
meteorological parameters were available. Hencadaguate number of days with similar
atmospheric conditions could be chosen within pmed post-mowing periods to secure
better comparability and to focus exclusively oa #ifects induced by management. Also

the variation ob(H) within the diurnal cycle was evaluated.

However, the first step was to determine the hyplerldeadbandd. The size oH was
defined in advance and adapted according to theomé ofb. Finally, in combination
with former studies as a reference (Ruppert, 200@) hyperbolic deadband was defined
constant a$d = 1. During the simulation, the sign of the fludioa of the vertical wind
componentw' determines partitioning of the scalar of inteliestip- and downdraft, just

as during real REA sampling. In this case, the @fixing ratio was used as proxy scalar.
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The difference of the separately summed proxy scallues (a—a) and the standard
deviation of the vertical wind speeal, were calculated. By comparison of the product
o, (a—a) to the corresponding EC-fluw'c’ — determined by high frequency

measurements and TK2-software — individual facbgk$) could be derived (Eq. 3). That
evaluation was also applied to other commonly yseay scalars such assBnd water
vapor (HO). In order to evaluate their similarity to €@ the scalar time series, i.e. their
suitability as a substitute for GOscalar similarity had to be verified, and thissviene by
evaluating the consistency of the correlation coefits r. Those coefficients were
calculated for the combinations of the scalars, E®L,O and CQ — Ts by the following

equation

c

— proxyl C

I proxy2 (5)

Cproxyl ’Cproxyz 0—
C, C
proxyl proxy2

as already applied in other studies with the cati@h coefficient ranging from zero (no
correlation) to one (full correlation; Gao, 1995atll and Hsieh, 1999; Ruppert et al.,
2006b; Held et al.,, 2008). To figure out possibiéfedences before and after the
management daily average correlation coefficiehetween 9:00 and 17:00, for 16 days

before and 27 days after the management) werelatddu

3.4 REA preparation and measurements

The REA device used in this study (Fig. 1) was toicsed and tested by Ruppert et al.
(2012) and has already been applied in other fexderiments (Ruppert, 2008). REA
measurements require high frequency vertical wimdbaity and CQ@ mixing ratio,

provided by an ultra-sonic anemometer and an irddagas analyzer. According to the
hyperbolic deadband (Eg. 4), these data controhtbehanical valve system for taking up-
and downdraft air samples. The filter-protectecaket line of the system, tested and
optimized for time lag and turbulent flow (Reynolusmber = 2433; Ruppert et al., 2012),
was installed close to the measurement path ofstmec anemometer. The time lag
between the air sample in the tube and the sidrthleasonic anemometer was determined

beforehand by cross correlation analysis and pealid the REA controlling software for
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online correction (Ruppert, 2005). Valve switchiigr the separation of up- and
downdrafts (located in the REA device) was thersyaychronized with the vertical wind

velocity fluctuation, measured by the sonic anenmtemfgocated 2.5 m above the ground).

All system components were either thoroughly cleanveith Acetone:Hexane 1:1
(nanograde) and heated (glass and steel parshssess non-reactive surface materials as
Teflon® or Polyethylene to avoid fractionation processesl aample contamination.
Mylar® balloons, also with Polyethylene as the inner serfavere used as intermediate
sample reservoirs at ambient pressure. Isotopegiity for up to a residence time of 60
minutes in the balloons could be achieved by reuedlushing and heating before
application (cf. Bowling et al., 2003a and Ruppetral., 2012). After a final leakage test
the REA system was applied in the field. There wasneed for density corrections,
because the sample air was pre-dried with a N&fims-dryer and finally dried by passing
water traps with magnesium perchlorate granulatg(Q¥D,),). Between two sampling
processes the system was flushed extensively wtlaid from the measurement height to
avoid any leftover sample air from previous sanglilore than 10 L up- and downdraft
air were collected during each sampling processicelethe whole system, including
sampling flasks for final storage for laboratoryabsis, was repeatedly flushed and
conditioned with dried air to achieve high samplagguracy for subsequent high precision
isotope ratio mass spectrometry (IRMS) analysisu(@r 2005; Rothe et al., 2005; Sturm et
al., 2004). This, as well as the €@ixing ratio analysis, were accomplished in tretape
and trace gas laboratory of the Max-Planck Insitat Jena, Germany. AlC isotopic
signatures in this study were analyzed in relationC isotopic abundances in the
international standards VPDB (Vienna Pee Dee BelemnBrand et al., 2009; Wendeberg
et al., 2011; JRAS scale Ghosh et al., 2005; Wesrdeét al., 2011). The precision in the
laboratory of 0.01%. for §**C (for more detailed information about the laborgtnalysis
see Werner et al. (2001)), the application of aehlgplic deadband (hyperbolic relaxed
eddy accumulation, HREA, Bowling et al., 1999b) armnprehensive REA system and
component laboratory tests made possible the resolaf up- and downdraft isotope ratio
and mixing ratio differences, and consequently tetermination of§'*C isofluxes
(Wichura, 2009; Ruppert et al., 2012).

Besides the already mentioned leakage test, tHeobabag intermediate reservoirs were

tested for sample contamination resulting from tfca@ation processes and chemical
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compounds degassing from the inner balloon surfBlee.results proved the suitability of
the balloons for a sample storage time of up t¢ &though 30-40 minutes are enough for
REA sampling (Ruppert et al., 2012). During thetaystest the REA device operated as in
a real field experiment, but sampled standardizedfram a compressed air tank.
According to a previous system test in 2003 (19 @as standard deviation: 0.014%;
Ruppert, 2008), the accuracy of the systenf3€ could be maintained after the restarting
in 2012 (10 Samples 0.0%d; Ruppert et al., 2012). Hence, the precision ef dpplied
sampling operations was close to that of the masstometer. The mean up- and
downdraft isotope ratio difference accounted fat5&80.046 and was larger than the
instrument precision by a factor of 13. Consequyettille measurement precision accounted

for only 8% and the up- and downdraft differencaldde resolved very well.

3.5 Isoflux and partitioning

With adequate resolution of GGnd §*C-isotope mixing ratio differences in up- and
downdrafts,6°C isofluxes Eiso) can be derived by introducing tienotatiort to Eq. (1)
(Bowling et al., 1999a; Ruppert, 2008; Wichura, 208nd rewriting as:

Foo=b(Has) 0,0,(8°C, C -3"C C). (6)

C, and C, represent the COmixing ratios, andd®C_ and 3°C, the isotope mixing
ratios of up- and downdraftsb(Heff) was determined by applying to Eq. (3) and by

using effectively measured GREA and eddy fluxess,, was derived from the time series
of the vertical wind velocity, measured by the alsonic anemometer. BesidEgo,
information about the isotopic ratios of assimitatend respired CQs also necessary for
CO;, flux partitioning based on isotopic signaturés., the isotopic ratio of assimilated
CO,, was derived by subtracting the ecosystem disngtion of"*C (A¢) from the isotopic

ratio of the CQ, leaving the respective air column (i.e., the atgre of the air between

ground surface and REA sample inlet) that is affécby the assimilating biosphere

! The isotope ratios are expressed as isotopic sigrmind—notation. All isotopic signatures are reported

relative t0™*C isotopic abundances in the international starsls(RDB (see 3.4).
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(Wichura, 2009). Equation (7) is based on the nimdance equations of Lloyd et al.
(1996; see also Bowling et al., 2001 and Bowlinglet2003) and represents the tool to

determined, that can not be measured directly:
5, =8"C, —a, (7)

Equation (8) is based on the general definitiorsofopic discriminatiom\ by Farquhar et
al. (1989). In Buchmann et al. (1997, see also Buin et al., 1998), this definition was
utilized to derive the ecosystem discriminatidg Ruppert (2008) found that on small
timescales\e can be defined as the ecosystem discriminatiadheoatmospheric exchange
at measurement height against isotopes in the lbaxgndary layer air:
_8%C -3,

= 8
~T 1hs, 8

613Q thereby represents the source air from above thasarement heightd, is the

signature of the turbulent exchange which can basored directly (Ruppert, 2008):

_¥Cc C -3"C C
6 - T_T - 1 [}
(€. -¢c)

(9)

C

o, the isotopic ratio of respired GOwas determined by the Keeling plot method

(intercept of a plot ofd"°C vs. inverse carbon concentration of respiratiommas;
Keeling, 1958). Those samples were taken with tétcsalkali (NaOH) absorption method
(Lundegardh, 1921; Kirita, 1971; Singh and Gupt8/7). Dark chambers avoided
assimilation and released @@as captured in the solution as sodium carbonate f
laboratory analysis. This method allows determaratf concentration as well as isotopic
ratio during night and daytime. It is well-knowndaoften discussed that chamber methods
cannot completely reproduce influences of atmospharbulence on the flux (Kimball
and Lemon, 1971; Pumpanen et al., 2004; RochettdHaitchinson, 2005), but alternative
nighttime isotopic measurements with atmospherithodas (REA, laser techniques) for

determiningd, have a similar problem with different turbulenegimes, coming along

with different atmospheric stratification, at nigirtd daytime (Bowling et al., 2001).

KnowingFiso, 0, andd,, Fec could be partitioned into assimilation

114



F, = Fiso ~0r Fec (10)
0, O

and respiration flux

£ = Fieo=0, Fec a1
0 =0,

in accordance to Lloyd et al. (1996), Bowling et(@D01), Bowling et al. (2003a), Ruppert
(2008) and Wichura (2009). Both equations wereveerirom the C@Qmass balance of a
defined air column between ground surface and mmeasant height, considering GO
entering and leaving the column, €@ain by respiration and loss by assimilation. By
assuming adequate turbulent mixing and stationanditions, after introduction of the
corresponding C@isotope ratios to the mass balance elements aed mathematical

conversion,F, und F; can be calculated. In order to finally evaluate tfuality of the

partitioning tool based on isotopic signaturesultsswere compared with a common flux
partitioning model (FPM) based on Lloyd-Taylor (ktband Taylor, 1994) and Michaelis-

Menten functions (Michaelis and Menten, 1913).

4 Results and discussion
4.1 Simulation of REA on managed grassland

To measure isofluxes 8fCO,, the CQ mixing ratio is naturally the preferred proxy sual
used to control the sampling process and to deterrhiyperbolic deadbandd) and
proportionality factorb. Because there is consistent distribution of @éwalues in the
different quadrants, and in order that the hypeacktbresholds do not lead to the exclusion
of too much dataH = 1 was chosen in accordance to Eq. (4) afterlaiion (cf. Ruppert
et al.,, 2006b). Correct REA fluxes require corrbdtactors. By investigating managed
grassland, influences of mowing and rowen on tlesaeal cycle have to be considered.
Ongoing EC measurements provided data for REA sita before and after cutting
events. Days with similar weather conditions upgetio days before and twenty days after
the management were used to comnfkd) — on the basis of a hyperbolic deadband — by
day. Those periods showed completely differentlteg&ig. 2). Before the management,

meanb(H) was 0.2, with an interquartile variation of ab@@% (with exception of the
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early morning and evening hours). After the managenio(H) was found to have been
reduced by half, but the variation had increasednoye than 80% (Fig. 2b). While the
mixing ratio differences of up- and downdrafts ugeéq. (3) remain negative (C sink) in
almost all cases, including after the manageméetBC derived COflux represented a
higher NEE, which ranged up to positive and resipinadominated values. Both, the
reduction and the larger variations lifH) can be attributed to the management-induced

source/sink changes of the proxy scalarCO

However, determination ob(H) with Ts and BO as proxy scalars seems to be less
influenced by management events (not shown indtudy), but those can lack required
scalar similarity t0'*C as scalars of interest. This is an essentialopition for high
quality REA measurements and must be controlletd attequate effort. In this study on
all days of simulation scalar similarity between £&ahd HO and & was evaluated by
calculating scalar correlation coefficients (Eqg.B9r both combinations (G@nd Ts, CO;,
and HO), Figure 3 demonstrates an abrupt decrease ofctmeelation after the
management. Thus, neitheg ior HO are suitable alternatives to €®hortly after
management. Figure 3 also indicates faster recowérgcalar similarity after autumn
rowen (dark symbols) than after mid summer mowlmight symbols). This can be linked
to greater intervention in the ecosystem in mid s@m i.e. removing more productive
biomass than in autumn. In both cases scalar sitgilacreased with ecosystem recovery
up to pre-cutting values. The lack of scalar sintyaafter the management confirms
dependence on plant physiology (Williams et al.020and source-sink influences
(Andreas et al., 1998a; Katul et al., 1999; Katudl &lsieh, 1999; Ruppert et al., 2006b;
Held et al., 2008; Ruppert, 2008). In generalsitsuggested that REA not be applied
shortly after management events due to the fadtkil@n only be properly determined
before management events and after an adequatel pérecosystem recovery. Under the
environmental conditions present in this studys suggested that REA not be applied for
22 days after the summer mowing and for 12 dayar afte rowen in autumn (Fig. 3).

Present diurnal variations bfH) advise against application of constharactors.
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4.2 REA measurements

REA measurements in this study were conducted poioand five weeks after, summer
mowing to fulfill the precondition of an undistudb@cosystem. Apart from the selection
according to the meadow management, two REA measmedays with different wind
conditions were chosen. With an average of 2 mtlse wind velocity (u) on 22 June 2010
was half as large as on 25 August 2010 (on avedage s* during the measurement
period). On both days mean air temperature (T) medn incoming shortwave radiation
(Kin) were comparable to some extentols well a$*C values partly follow fluctuations
of Kin, although REA sampling processes lasted 40 mirtotgenerate adequate amounts
of sample air, and unfortunately integrated ovey ifferent radiation conditions (Fig. 4).
First, the enrichment of'C in the atmosphere can be observed in Figure diici®nt
water availability due to a high ground water leaetl moderate air temperatugel(7 °C)
excludes reduced stomatal conductance, i.e. nopresion. High enrichment ofC at
noon on 22 June relies on increased assimilatitims @ssumption is supported by the
development of the NEE that shows the largest @kgpturing that time (Fig. 5a). The
pattern of fso acts to a certain extent in accordance with tfiferénces of thé*C values

of up- and downdrafts. On both days the ranges & fatch results of other studies
(Bowling et al., 2001; Wichura, 2009). This alsgkegs to the evening break-down qd-
due to missing up- and downdraft isotope ratioedldhces, coming along with absent
shortwave radiation and consequently biosphereic{iast sampling on 22 June). With
the exception of this last measurement, adeqddi@ differences between up- and
downdraft samples were always achieved (on ave@atfe +0.04.; precision of IRMS

Jena: 0.01%0, Werner et al., 2001). In addition to its dependemtavind velocity, i.e.o,,
in Eq. (6), factorb is decisive for fso. Thereforeb(Heff) was calculated from directly

measured REA up- and downdraft samples and appiepEC fluxes. In contrast to
simulatedb(H), effective b-factors b(Heff) do not overestimate the GQnixing ratio

differences (i.e. underestimate the necessary sfzbé), due to a certain inevitable
imprecision of the physical sample separation @ecef the measurement system
compared to the simulatio®ample carry-over during the real REA measuremant c
also be a reason for thathus, effectiveb-factors were slightly higher (0.28+0.05) than
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the simulated values shown in Figure 2. This hesadly been observed in previous studies
(Baker et al., 1992; Beverland et al., 1996; Mosftret al., 1998; Ruppert et al., 2012).

4.3 Flux partitioning

To partition NEE into assimilation and respiratitnxes based on the isotopic method,

their isotopic signatured, andd;, as well as o and Fc, are required (Egs. 10 and 11).
o, and d; are sensitive factors in the model that have talibeussed in detail (Ogée et
al., 2004; Ruppert, 2008). Determination df is based on the Keeling plot method

(Keeling, 1958). Therefore, samples were taken th¢hstatic alkali absorption method in

dark soil chambers. The complex assignment dgf values to temporally varying

photosynthetic activity due to time lag effects @hhand Buchmann, 2005), and unsolved

problems applying night-time&, measurements, suggest the application of integrati
static chamber measurements. However, it is p@ssibimprove resolution of th®, data

with modern laserdC measurements involving considerable expense {&rf al.,
2004; Bowling et al., 2003b). Independent of thedkof data acquisition, the sensitivity of

d, related tod"*C measurements has to be evaluated (Zobitz et0fl; Pataki, 2003). In

this study the Keeling plot intercept accounted24.%. (Fig. 6) with a standard error of
1.7%o, within a 95% confidence interval of %43

On 22 June and 25 August in 2010, before and |fteg meadow mowing, all parameters
were determined in order to partition NEE into askition (Fx) and respiration (& Fig.

5) based on two different approaches: the commen ghrtitioning model (FPM), based
on Lloyd Taylor and Michaelis Menten functions, atite isotopic flux partitioning
approach (Egs. 10 and 11). On both days NEE (Bigshbws variations according to
incoming shortwave radiation (Fig. 4), with maxim@@®, sink capacity of almost 0.02
mmol m?s™* during the day. While the morning rise of phototic activity was not
sampled, evening breakdown to a respiration-dorathatystem was captured. The last
value in Figure 5a in the evening shows a speeisécThere is no longer any difference
between up- and downdraft isotope ratios, so thaftux, and consequently assimilation
and respiration fluxes, become zero. This comesgalith a lack of photosynthesis and

discrimination, but above all with turbulent fluxdst come to a standstill, as confirmed
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by a very small NEE (Fig. 5) and low wind velocayd incoming shortwave radiation
(Fig. 4). This pattern is not shown by the Lloydylba and Michaelis Menten function
based FPM. Apart from that, the isotopic flux panting shows a much greater
variability, whereas the FPM insufficiently repradds natural respiration changes, causing
assimilation fluxes to exactly follow the NEE. Sdmees both approaches provide
partially similar fluxes, but the isotopic modelable to describe various underlying fluxes
of the NEE; that is, more intense reactions to remvnental conditions are attributed to the
ecosystem (Ruppert, 2008). The quite constant nagm provided by the temperature-
based FPM results from relatively small temperauangéations during both periods around
the measurement days. Temperature is only oneeodrilting mechanisms of respiration;
for example, photosynthetic activity supplies regtidates to soil life and accounts for a
large portion of root-derived respiration (Kuzyakosnd Gavrichkova, 2010).
Discrimination of**C is an input factor in the isotopic model. It isedtly coupled to all
assimilation-based processes. These become appareghe assimilation flux closely
connected to the incoming shortwave radiation. Bhene applies to wind velocity,
essential for atmospheric fluxes and considereg onlthe isotopic model as an input
parameter of go. The diurnal cycle of the assimilation flux — detened from kso— (Fig.

5) can be explained clearly by the diurnal cyclemooming shortwave radiation and wind
velocity (Fig. 4). Especially incoming shortwaveligtion drives surface temperature and
assimilation dependent, soil organic matter derivegbpiration (Kuzyakov and
Gavrichkova, 2010). Almost all values of the isatommodel show these dependences to
some extent. This representation of environmemfiiences in combination with the
accordance to the established common flux pariitgpmodel suggests good performance
of the isotopic model, and there is no evidence domparable restrictions found for
complicated coupling regimes in high vegetationsgstems (Ruppert, 2008; Wichura,
2009).

Conclusions

Detailed investigation of pre- and post mowing dbods by REA-simulations on
managed grassland demonstrated serious constfamBREA-application directly after
management. At this time, simulatbeactors showed larger uncertainty and decreased
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strongly because the mixing ratio differences ia #imulation did not follow the NEE

determined by EC to have positive fluxes. Also, skalar similarity assumption was not
fulfilled for the evaluated proxy scalars gQ and HO after management. Consequently,
REA technique cannot be applied shortly after meadmnagement without the risk of
huge REA-flux errors. This restriction should beefally considered in future REA-

studies. A distinct decision of when to use REA iagdepends on environmental
conditions and plant community structure. Both destare decisive for plant community
recovery and hence the development of scalar coratiem and flux behavior. For several
scalar quantities plant physiology monitoring anohsideration of the state of the
ecosystem recovery could be helpful. This studygests waiting at least 22 days in
summer and 12 days in autumn after managemenkencircumstances. With carefully
evaluatedb-factors, application of a hyperbolic deadband aigh precision laboratory

analysis, up- and downdraft differences can belvedand isofluxes can be derived.

The NEE was partitioned by an isotopic modelingrapph based on information about
isotopic ratios of assimilation and respirationxés, EC- and isoflux, respectively. It
turned out that the isotopic approach works well the grassland experiment site
compared to former studies where it was appliedr dogest ecosystems with special
coupling regimes. Moreover, it can enhance resuflita common flux partitioning tool

based on Lloyd-Taylor and Michaelis Menten funcsiorAn advantage is a better
reproduction of environmental conditions, due toreclly including ecosystem

discrimination of*C and wind velocity into the model. However, thetimoel is very

sensitive and requires exact determination of sléopic signatures (Ruppert, 2008). Also
given uncertainties regarding determination of irasipn characteristics have to be further
investigated. Chamber measurements require detai@tsideration of atmospheric

conditions (Riederer et al., 2013).

REA application in general is expensive and timescming and is therefore only
applicable for short term and special investigaiolts versatility and the information
about NEE component flux variability gained throuigh use justify its application in
ecosystem sciences. However, in the future itlvdglimore and more replaced by e.g. direct
iIsotopic eddy covariance measurements that areaalapted for long term experiments
(Wehr et al., 2013).
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Abstract

Carbon dioxide flux measurements in ecosystem segeare mostly conducted by eddy
covariance technique or the closed chamber metBod.there is a lack of detailed
comparisons that assess present differences arettainties. To determine underlying
processes, a ten—day, side—by-side measuremere okt ecosystem exchange with both

techniques was evaluated with regard to variousspimeric conditions during the diurnal
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cycle. It was found that, depending on the pardicaltmospheric condition, the chamber
carbon dioxide flux was either: (i) equal to thebmn dioxide flux measured by the

reference method eddy covariance, by day with wdelleloped atmospheric turbulence,
(ii) higher, in the afternoon in times of oasiseetff (iii) lower, predominantly at night

while large coherent structure fluxes or high wsradocities prevailed, or, (iv) showed less
variation in the flux pattern, at night while stabdtratification was present. At night —
when respiration forms the net ecosystem excharigerer chamber carbon dioxide fluxes
were found. In the afternoon — when the ecosystesiili a net carbon sink — the carbon
dioxide fluxes measured by the chamber prevaildtes& two complementary aspects
resulted in an overestimation of the ecosystem cagacity by the chamber of 40 % in this

study.

1 Introduction

Net ecosystem exchange (NEE) of grasslands is tpadadominantly determined by eddy
covariance (EC) technique (Moncrieff et al., 1983ajdocchi, 2003; Foken et al., 2012a;
Wohlfahrt et al., 2012) and the chamber method {@n et al., 2002; Subke and
Tenhunen, 2004; Denmead, 2008). The chamber medlsmd becomes relevant when
measuring underlying fluxes of NEE (e.g. ecosystaspiration, Rco) directly and
separately. Also gross primary production (GPRhefbiosphere can be easily determined
by combining the use of dark £&) and transparent chambers (NEE) and simple

subtraction of the resulting fluxes.

Numerous comparison experiments between differeatnbers (Pumpanen et al., 2004;
Rochette and Hutchinson, 2005) and between chambad- EC-data (Subke and
Tenhunen, 2004; Kutzbach et al., 2007; Myklebustl 2008, Wang et al., 2013) can be
found in the literature. Comparisons between chanalpel EC—measurements are also
available for other trace gases, for example Warid Kormann (2001) found that
chambers may overestimate g£ldmissions by up to 60-80%. Differences were for
example found due to methodological problems undigh vegetation (Subke and
Tenhunen, 2004), at times with low turbulence istgn(van Gorsel et al., 2007), at night
over complex surfaces (Myklebust et al., 2008), tlugoor regression analysis in the
chamber software (Kutzbach et al., 2007) or difietarget areas (Reth et al., 2005). The
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EC method is, by definition, a direct measuring dt (Montgomery, 1948; Obukhov,
1951; Swinbank, 1951) for determining turbulenkéla. However, several conditions must
be fulfilled before the method can be applied asf@rence method. Most important in this
context are steady state conditions, flat and h@megus terrain and turbulent exchange
conditions (Lee et al.,, 2004; Foken 2008; Aubinetalk, 2012). The control of these
conditions is achieved by applying data qualitylso@&oken and Wichura, 1996; Vickers
and Mahrt, 1997; Foken et al.,, 2004), the applcatf which has recently come to
represent the state of the art. In contrast to E@at-measures an integrated signal from a
large flux footprint area (Rannik et al., 2012)t-si often challenging to achieve adequate
representativeness with the chamber method on stemsyscales (Reth et al., 2005; Laine
et al., 2006; Denmead, 2008; Fox et al., 2008anyn case, both EC and chamber methods
must be reviewed for inaccuracies (Davidson et28lQ2), and due to the fact that real
fluxes are always unknown under field conditions,isi impossible to validate flux
measurements by any technique (Rochette and Hgtmhi2005).

Chamber measurement technique has improved dugtent years and eliminated many
chamber effects (Rochette and Hutchinson, 2005)the point where pressure
inconsistencies between in— and outside the chambgarious wind velocities can be
avoided (Xu et al., 2006). But some challenges$ r&irhain, for example inside chambers,
atmospheric turbulence cannot be reproduced (Kinaimal Lemon, 1971; Pumpanen et al.,
2004; Rochette and Hutchinson, 2005) even whenlatwrs are used for mixing (Kimball
and Lemon, 1972).

Atmospheric turbulence has a typical size spectamd distribution of the turbulent
eddies, depending on height and surface structargarticular, larger, low—frequency
flow patterns, i.e. coherent structures (Collinemd Brunet, 1993; Gao et al., 1989;
Thomas and Foken, 2007), may cause differencesekatwhamber and EC measurement
results. Another cause of flux differences can Iféerthg atmospheric stratification.
Closed chambers completely cover the ecosystenmgluhie measurement process and
thereby alter the natural long wave radiation beato almost zero. This causes reduced
surface cooling, weak development of stable sicatibn and finally higher fluxes

compared to EC.
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In this study it is not the differences in NEE beém two measurement principles in
general, but rather the changing differences undeying atmospheric conditions in the

course of the diurnal cycle, which is investigated.

2 Material and Methods

2.1 Study area

The comparison experiment was conducted from Mdy ®5June % in 2011 on an
extensively managed submontane grassland siteea¢dbe of the low mountain range
“Fichtelgebirge” in northeast Bavaria, Germany. Hite is located on flat terrain 624 m
a.s.l. (50°0525“N, 11°51'25"E) between the “GrefiWaldstein” (elevation: 877 m) to
the north and the “Schneeberg” (1051 m) to thetsotihus, a channeled wind field in
west—east direction with west (263°) as prevailmgd direction is created at the site.
Most of the data were collected under ideal weatloaditions without rainfall and with
sufficient global radiation. Weak data due to délwda the instruments and one heavy
rainfall event (38.2 mm) in the night of May*3io June T were excluded. The canopy
height was about 20 cm. Thus, the chamber coulthdialled without any cutting of the

vegetation.

2.2 Eddy covariance

For the determination of the G@lux, the concentration was measured by an opgh—pa
gas analyzer (LI-7500, LI-COR Biosciences, LincdNebraska USA), and the wind
vector by a 3D sonic anemometer (CSAT3, Campbadirtific, Inc., Logan, UT USA) at
high frequency (20 Hz), 2.5 m above ground. Dateevetored on a data logger (CR3000,
Campbell Scientific, Inc., Logan, UT USA) and cotied daily by a computer system as a
backup. Data were post processed and quality dedrobased on latest
micrometeorological standards by the software pgekeK2, developed at the University
of Bayreuth (Mauder and Foken, 2004). This stilbleing software (TK3 has become
available in the meantime: Mauder and Foken, 20atdrporates all necessary data
correction and data quality tools (Foken et al.12H). It was successfully proved in

comparison with six other commonly used softwarekpges (Mauder et al., 2008). For
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every averaging interval of 30 minutes the includpdlity flagging system evaluated
stationarity and turbulence and marked the resuitinx with quality flags from 1 (very
good quality) to 9 (very low quality) (Foken and &Nura, 1996; Foken et al., 2004). In
this study only data with quality 3 or better weiseed. Also footprint analysis (not shown
here) after (Gockede et al., 2004; Gockede e2@06; Rannik et al., 2000) was performed
to assure that the measured data exclusively remiess the target land use type grassland,
i.e. the ecosystem measured by the chamber (cfi &edl., 2005). Due to the channeled
wind regime, two club—shaped footprints evolvedthie western and eastern directions.
Thus, disturbances of the turbulence measuremenisl be easily avoided by installing
all other experimental devices close to the EC nadt perpendicular to the main wind
direction. Accompanying measurements of importantrameteorological parameters
such as up— and downwelling short— and long wadéetian, air and soil temperature,
humidity and soil moisture and precipitation weceanplished by an automated weather
station and stored as 10-minute averages.

2.3 Chamber system

The applied system (LI-8100-104C, transparent 6EMeasurements at low vegetation,
LI-COR Biosciences, Lincoln, Nebraska USA) was amomated flow—through non-
steady—state soil chamber, where sample air wastamty circulated between the
chamber and an infrared gas analyzer (IRGA) bytarygump with 1.5 L mitl through a
chamber volume of 4822 énThe CQ flux was estimated from the rate of €0
concentration change inside the chamber duringsedime of 90 seconds. The chamber
was designed to minimize perturbations to the sundong environmental conditions. for
example the base plate was perforated to avoidnigeat the surface and a concentration
gradient—induced impedance of soil respiration @Q®R, 2004). The soil collars which
included an area of 318 énwere pre—installed 10 cm deep in the soil two \seeéfore
the experiment to create a perfect seal and tadadisturbances of the G@fflux by cut
and wounded plant roots at the beginning of thesmesnent period. Due to the channeled
wind field on the site (see section 2.1), the chesmdmuld be installed very close to the
eddy covariance mast without disturbing the flustfsint. The chamber had a lift—and—
rotate drive mechanism that rotated the bowl-shapadhber 180° away from the collar.
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This shape allowed good mixing by means of theutton of the sample air through the
IRGA alone, without a ventilator (LI-COR, 2004). rBmetric— and — above all —
turbulence—induced pressure fluctuations abovegteind surface influence the efflux
from the soil. Thus, modern chambers are equippid a venting tube that transmits
atmospheric pressure changes to the chamber head$pachette and Hutchinson, 2005).
LI-COR installed a patent—pending pressure vert t@pered cross section at the top of
the chamber, that minimizes pressure pulses at lobiaohosing and allows the tracking of
ambient pressure under calm and windy conditionseloyinating the Venturi effect
(Conen and Smith, 1998) occurring at former singgen vent tubes (Xu et al., 2006). The
exchange through the venting tube is negligible garad to the C@diluting effect by
water vapor during the measurement which in turrcasrected by the measurement
software (LI-COR, 2004). Forddo measurements a dark chamber is used that avoigs CO
uptake by assimilation. NEE is measured by a chamiih a transparent dome that
enables C@uptake by assimilation as well as respiration gsses inside. The transparent
chamber for the NEE comparison was closed for @0rs#s four times during a half-hour
period. In the meantime the system was flushedl8% seconds, the dark chamber was
measuring for 90 seconds (data were required fothan study and not used in this one)
and the system was flushed with ambient air agdie. closing and opening process of the

transparent chamber as part of the flushing tirseth13 seconds each.

2.4 Typical exchange conditions

The application of the eddy covariance techniqupiires turbulent conditions (Foken et
al., 2012a). Ecologists often evaluate this usirfgction velocity threshold (Goulden et
al., 1996) but more precise is a test on steadig-standitions and the fulfillment of typical
similarity conditions (Foken and Wichura, 1996). ddytime in most cases both criteria

are fulfilled whereas nighttime exchange conditiares more challenging.

Already in the late afternoon stable stratificatminthe near surface air layer begins with
cooling due to evaporation and the long wave upmgliadiation outbalancing the long
wave downwelling radiation. Exchange is poor ungtable conditions and, for example,
the respiration causes the carbon dioxide condemir¢éo increase in the first centimeters
of the atmosphere up to a partial pressure equitédethat in the soil, which consequently
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reduces the gas exchange. However, an ecosystesredowith a chamber dome is
subjected to balanced outgoing and incoming longeweadiation and therefore less
cooling at that time of the day. Naturally undengé conditions the so called oasis effect
occurs, which is named after the moisture—dependmsiing effect occurring in oases and
which is defined as a sensible heat fluy\@hanging to negative values in combination
with a still large positive latent heat flux §Qand solar radiation (Stull, 1988; Foken,
2008). A lack of sensible heat causes reductidouofyancy and consequently turbulence.
This is directly detected by the EC technique, &eactly the measurement of turbulent
fluxes (Aubinet et al., 2012). In addition to tlaglation effect, the reaction of the chamber
system is also less pronounced due to the phylsaraker to the surrounding, increasingly
stable stratified, air masses. With the sunsetehgining assimilation potential is gone,

the difference between both systems declines, tret processes come to the fore.

Under stable stratification and low turbulence flog—contribution of coherent structures
to the entire flux increases (Collineau and Brud®93; Gao et al., 1989; Thomas and
Foken, 2007; Holmes et al., 2012). These well-degahstructures, with typical periods
of 10-100 s, are caused by strong roughness osdapd heterogeneities such as tree lines,
bushes and ditches. Coherent structures in a stetadg can be measured by eddy
covariance technique (Desjardins, 1977). Analysmethods for coherent structures are
based on, for example, wavelet technology and wessented by Collineau and Brunet
(1993), Thomas and Foken (2005) and Serafimoviail. ¢2011). In the present study, we
applied the method described by Thomas and Fokef5j2to determine the flux by
coherent structures ¢B) and its contribution to the entire fluxd&Feni ).

3 Results and discussion

Scatter charts are often utilized in literature wiheeasurement technique comparisons are
discussed. However, they provide only a first ingpren of the overall behavior of both
systems, and in this study Figure 1 is intendedarmsntroduction to further detailed
breakdown of the behavior into underlying processes as not to adulterate the
comparison results, data with bad quality were kel by the quality flagging system (16
%) and no gap filling procedures were conductednyn event, only data were used when

both systems provided data of high quality. Datpsgaere predominantly occurring at
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night, when CQ source fluxes (positive sign) prevailed. Thus, tasulting mean CO
values of —4.0 (EC) and —5p8nol m? s (chamber) for the overall 10—day balance might
be overestimated. Hence, at that time, both ECcaiathber define the ecosystem to be a
CO; sink, but the absolute value of the chamber dimkWwas 40 % larger than that of EC.
This is similar to other studies (Wang et al., 2008x et al., 2008) and includes — in our
case — smaller chamber g8ource fluxes of 26 % during the night and largeamber
CO; sink fluxes of 14 % during the day (negative sigkjirst indication as to the cause of
the large difference at night may be provided by kind and dimension of scattering of
the measured fluxes, presented in Figure 1 asquitile ranges. While daytime GO
fluxes of both techniques scatter quite similawyth interquartile ranges of 0.0086 mmol
CO, m? st and 0.0094 mmol COM™ s?, respectively, for positive nighttime G@uxes,
much larger scattering in EC data (interquartilegea 0.0039 mmol COM 2 s™) than in
chamber data (0.0018 mmol €@ s%) could be recognized (see Figure 1 and cf.

Janssens et al., 2001).

This kind of aggregation of the positive chambaxés (cf. Laine et al., 2006) had various
associated reasons that are explained in the folgpwrhere must be also an explanation
for the domination of the chamber in small negat®®, fluxes, not only when both
systems showed fluxes with opposite directions.{Fitight grey filled circles) but also
when both were negative. To investigate underlyisigort—term effects on the
comparability, EC—chamber flux differences —norzedi with the EC—flux — were

calculated and illustrated as mean diurnal cyctekewhole measurement period (Fig.2a)

The characteristics of the normalized EC-chamberx fdifference suggested a
classification into four different periods. The lganorning transition time was affected by
sunrise, developing turbulence and temporary wstruments due to dewfall, and this
prevented proper data analysis for this periodel,aturing the day, when the atmospheric
turbulence was well developed, the mean differemas almost zero, i.e. both systems
worked well and showed similar results. In contrasthe late afternoon, G&ink fluxes
within the chamber were sustained longer and waget, resulting in a flux up to twice as
large as the EC flux (Fig. 2a). The reason wasddfias the oasis effect, i.e. cooling and
stabilization effects outside the chamber (see@e.4). In Figure 2b just the normalized
flux differences during periods of prevailing oasi$ect are considered, which precisely

reproduces the late— and to a small extent eartyrafon chamber dominance. Nearly all
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measurements influenced by the oasis effect shoyeldachamber fluxes (Fig. 3a). Also
two thirds of the situations with contrary EC—chambux directions (filled circles, Fig 1
and Fig 3a) and the higher sink fluxes of the chemdi small values could be directly
explained by the oasis effect (black circles, Fa. 3Vith the sunset this effect disappears,
as does the assimilation potential of the ecosyst@mi the difference between both
systems declines.

After a short evening transition time the fourthripe with typical nighttime conditions
arises — characterized by predominantly stabletifstedion (Fig. 2d) and increasing
exchange by coherent structures (Fig. 2c¢). For laidudes this is the typical diurnal
cycle for stratification (Foken, 2008). Coherentistures can cause 50-100 % of the gas
exchange during nighttime and 10-20 % during thg alove a forest (Thomas and
Foken, 2007). The influence of coherent structumgght be less above meadows due to
the negligible mixing layer (roughness sublayen).contrast to daytime CCiluxes that
scatter quite similarly (see interquartile rangesFigure 1), nighttime chamber fluxes
scatter less than half as much as the EC fluxes:chamber measures a virtually constant
flux during the night. As Figure 3b, ¢ and d illage, this predominantly occurs at times
with high atmospheric stability, presenting alonighvow wind velocity and a cool ground
surface, i.e. little outgoing long wave radiatiohile the EC system responds to the
smallest changes of the atmospheric conditions ab &s the nighttime ecosystem
respiration flux does, the chamber is directly aatad to the ground surface — where the
ecosystem respiration is more or less constantth wamly minor influences from the
surrounding atmosphere (Norman et al., 1997; Retlale 2005; Lai et al.,, 2012),
transferred into the chamber system exclusivelyth®y pressure vent (Xu et al., 2006).
Besides coherent motions, which are generated akirlg gravity waves or under the
influence of low level jets (Karipot et al. 2008)eating due to dewfall causes slightly
higher turbulent fluxes during nighttimes. The censktion heat thereby reduces the
downward sensible heat flux and the strong staiéifecation. Both processes are related
to slightly higher wind velocities (Fig. 4b) anddar EC flux results (Fig. 1). While EC
measures that wide range of £fluxes, the parameters illustrated in Figure 3land d
turned out to be particularly responsible for timfarmity of the chamber flux. To clarify
under which conditions the EC flux is notably large smaller than the chamber flux,

nighttime data with higher EC fluxes were compa@dhose that show higher chamber
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fluxes. A Student’s t—test for dependent sampleécated no differences for the flux by
coherent structures g, z/L and by, but did so for the wind velocity u and the frosti

velocity u (Fig. 4; u is not presented since the result is equivalen).to

However, EC and chamber nighttime respiration fflureeasured at high wind velocities
(largest 25 %, u>2.9 MY are within the same range close to the biseditiegin Figure 5a
but with a significant tendency to larger EC flux&his coincides with a study of
Denmead and Reicosky (2003), who found an incredsiee EC— to chamber—flux ratio
with the wind velocity. Although the chamber repnods the flux variations very well at
high wind velocities, i.e., it is able to descrismall as well as larger fluxes, it generally
underestimates the flux. Hence, at night, in additio the stratification effect, situations
with high wind velocities result in larger EC thahamber CQ fluxes. But these cannot
really explain the highest EC fluxes in times ofform chamber performance. It was
found that some of those situations occurred tagethth large coherent structure fluxes
(Fcs, Fig. 5b). In the experiment region, coherent omi were already detected as a
consequence of low—level jets reaching the grourilaeaking gravity waves (Foken et
al., 2012c). Coherent structures appear sporagi¢alerage in this study: 38" Thus,
the total size of the coherent structure flux issléhan the typical turbulent flux, yet
coherent motions produce turbulence that obvioisskecognized by EC, but not by the
chamber technique (Fig. 5b).

4 Conclusions

Ecosystem processes are coupled to atmosphericitioosd A measurement system
should be able to represent the resulting fluxea mreasonable way. Otherwise, already
small differences at small temporal scales may sprto large errors in the estimation of
the resulting flux. Because the difference betwelgamber and EC flux strongly depends
on the diurnal variation of the atmospheric cowdisi, especially sporadic short term
chamber measurements as well as repeated chambasumaments at specific times of day

are likely to be biased.

Chamber fluxes are larger than EC fluxes in the &ternoon due to surface cooling and

development of stable stratification, which in tweduces the turbulent exchange. During
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times of this oasis effect, the flux regime of ttey is upheld longer in the evening within
the chamber and the real atmospheric conditiona@respresented.

During the night a quite uniform chamber flux and BC flux with a much higher
variability were observed. Detailed investigatidntioe relevant parameters revealed that
the nighttime stable stratification, together wikv wind velocities and low outgoing long
wave radiation, support the uniformity of the chamibut not the EC flux. A greater
variation of the chamber flux data was only foundirmes with high wind velocities and
high friction velocities, respectively, which alsesulted in a certain agreement with EC,
but with overall higher EC fluxes. Hence, the chamis less sensitive to atmospheric
conditions that control the flux, because it is @& less coupled to the surrounding
atmosphere than EC (Lai et al., 2012; Dore eR@D3; Reth et al., 2005).

Coherent structures were also expected to causehC fluxes in general, but it was
found that this was only the case with the vergedat coherent structure fluxes. Those
could explain a number of situations with larger fiQes.

Although at our experimental site EC provides $gtig results for the whole diurnal
cycle — assuming that data quality regarding twbcg and stationarity is properly
controlled — chamber flux measurements requirerapemying assessment of at least wind
velocity, radiation and temperature, to evaluat@ospheric conditions to some extent.
Above all, during the night the strongest forciraygmeters, global radiation and the O
sink flux by assimilation are missing. Since thegavave radiation balance is almost zero
within the chamber anyway and the night time redmn flux from the soil is more
constant than the G@lux during the day, there should be nothing teftrigger variations

in the chamber C&lux, which do, however, occur.

The positive message is that both techniques shopep and comparable results from late
morning — when all instruments have dried from d@w# until afternoon, when the oasis

effect gains more and more influence.

Chamber measurement technique has made progrésslast years but its insensitivity to
various atmospheric conditions suggests such miet@onological tools as EC are
preferable for the investigation of those procesmed the determination of ecosystem

fluxes.
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