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Abstract 

The oxygen and hydrogen isotopic composition of (hemi)cellulose and leaf wax-

derived lipids, respectively, are increasingly used in paleohydrological and -climate 

reconstructions. However, previous studies found it challenging to disentangle the effects of 

past changes in δ18O and δ2H of precipitation (δ18Oprec and δ2Hprec, respectively) and changes 

due to evapotranspirative enrichment of leaf water.  

In this dissertation, a possible solution for the above given constraint is presented, 

namely a coupled δ18O sugar and δ
2H n-alkane biomarker approach. Sugar biomarkers were 

extracted hydrolytically from plant and soil samples and measured for δ18O using gas 

chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS). Prior to coupling 

of the δ
18O sugar and δ

2H n-alkane results, the recently developed method for compound-

specific δ18O analyses of the hemicellulose-derived sugars had to be validated. First 

δ
18Ohemicellulose results obtained from topsoils investigated along two climate transects (Norway 

and Argentina) enabled detecting and evaluating climate variables that are influencing the 

isotopic imprint in sugar biomarkers. Accordingly, the sugar biomarkers reflect the δ18O 

isotopic composition of precipitation altered by evapo(transpi)rative 18O enrichment of leaf 

and soil water. Both the results of modeling analyses of δ18Oleaf water and a climate chamber 

experiment corroborate this interpretation. Furthermore, these studies suggest that the degree 

of evapotranspirative 18O enrichment is most rigorously controlled by relative air humidity 

(RH), whereas temperature is of minor importance. 

A coupled δ18Osugar-δ
2Hn-alkane approach on topsoils was applied for the first time to the 

above mentioned Argentinian climate transect. Based on the premise that the sugar and n-

alkane biomarkers are primarily leaf-derived, δ18Oleaf water and δ2Hleaf water were reconstructed 

and used to assess the deuterium excess of leaf water. The calculated deuterium excess proved 

to be a suitable proxy for RH, revealing a systematic trend towards more negative values in 
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the southern, more arid part of the transect. Using a Péclet modified Craig-Gordon model 

allows reconstructing biomarker-based RH values which correlate significantly with the 

actual RH values along the transect. Likewise, δ18Oprec and δ2Hprec can be calculated using the 

coupled biomarker approach and the Craig-Gordon model; they, too, correlate significantly 

with the actual δ18O and δ2H values of modern precipitation, thus validating the suggested 

coupled δ18O-δ
2H biomarker approach. 

Finally, a first paleoclimatic application of the δ18Osugar-δ
2Hn-alkane approach to a 

lacustrine archive is presented for Lake Panch Pokhari, Nepal. The established 16 ka δ18Oprec 

and δ2Hprec records reflect well the variability of the Indian Summer Monsoon (ISM) and the 

established deuterium excess record of lake water allows reconstructing the evaporation 

history of Panch Pokhari Lake. 

Conclusively, the newly developed and validated coupled δ18O-δ2H biomarker 

approach presented in this dissertation offers great and intriguing potential for more 

quantitative paleoclimate research, both on terrestrial and lacustrine sedimentary archives. 
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Zusammenfassung 

Zur Rekonstruktion paläohydrologischer und paläoklimatischer Bedingungen finden 

zunehmend stabile Sauerstoff- und Wasserstoffisotope (18O, 2H) aus Blattwachs-bürtigen 

(Hemi-)Zellulosen und Lipiden Anwendung. Bislang war es aber nicht möglich, mit 

Sicherheit zwischen den Ursachen der 18O und 2H Anreicherung in den Biomarker zu 

differenzieren, da diese durch die δ18O und δ2H Signatur des Niederschlags (δ18ONiederschlag 

und δ2HNiederschlag) wie auch durch eine Anreicherung des Blattwassers während der 

Verdunstung verursacht werden können. In der vorliegenden Dissertation wird eine Methode 

vorgestellt, diese Differenzierungsschwierigkeiten mit Hilfe einer gekoppelten δ18O Zucker 

und δ
2H n-Alkane Analyse zu überwinden. Dabei werden die Zuckerbiomarker hydrolytisch 

aus Pflanzen- und Bodenproben extrahiert und δ18O mit Hilfe der Gas Chromatographie-

Pyrolyse-Isotopenverhältnis Massenspektrometrie (GC-Py-IRMS) bestimmt. Bevor jedoch 

die  δ18O Zucker und δ2H n-Alkan Ergebnisse kombiniert werden können, musste die neu 

entwickelte substanzspezifische δ18O Analyse von Hemizellulose-bürtigen Zuckern validiert 

werden. Dazu wurden δ18OHemizellulose Daten von Oberböden entlang zweier Klimatransekte 

(Norwegen und Argentinien) untersucht und Klimavariabeln, die Einfluss auf die Isotopie der 

Zuckerbiomarker haben, erfasst und evaluiert. Es konnte gezeigt werden, dass 

Zuckerbiomarker die δ18O Isotopie des Niederschlags einbauen und demzufolge auch 

teilweise widerspiegeln. Zusätzlich spielt jedoch auch die 18O Anreicherung von Blatt- und 

Bodenwasser durch evapotranspirative Prozesse eine entscheidende Rolle. Dieser Befund 

konnte durch die Ergebnisse einer δ
18OBlattwasser Modellierung und eines 

Klimakammerexperimentes bestätigt werden. Des Weiteren deuten die vorliegenden Studien 

darauf hin, dass der Grad der 18O Anreicherung durch Verdunstung meist ausschließlich durch 

die relative Luftfeuchte (RH) kontrolliert wird, während die Temperatur nur von geringer 

Bedeutung zu sein scheint. Der kombinierte  δ18OZucker-δ
2HLipid Ansatz wurde zuerst auf die 
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Oberböden des oben genannten argentinischen Klimatransekts angewandt. Basierend auf der 

Annahme, dass die Zucker- und n-Alkanbiomarker vorrangig blattbürtig sind, wurden 

δ
18OBlattwasser und δ2HBlattwasser rekonstruiert und genutzt, um den Deuterium-Excess des 

Blattwassers zu ermitteln. Die Eignung von Deuterium-Excess als Proxie für RH wurde durch 

einen starken systematischen Trend zu negativeren Werten im südlichen und trockeneren Teil 

des Transekts nachgewiesen. 

Die Anwendung eines Péclet modifizierten Craig-Gordon Modells erlaubt darüber 

hinaus die Rekonstruktion biomarkerbasierter RH Werte. Diese korrelieren über das gesamte 

Transekt signifikant mit den aktuellen RH Werten. Weiterhin können δ18ONiederschlag und 

δ
2HNiederschlag mit Hilfe des kombinierten Biomarkeransatzes und des Craig-Gordon Modells 

berechnet werden. Diese Werte korrelieren ebenfalls signifikant mit aktuellen δ18O und δ2H 

Werten des heutigen Niederschlags und eignen sich damit zur Validierung des 

vorgeschlagenen kombinierten δ18O-δ
2H Biomarkeransatzes.  

Abschließend wird eine Studie vorgestellt, die erstmals eine paläoklimatische 

Anwendung des kombinierten δ18OZucker-δ
2HLipid Ansatzes auf ein lakustrisches Archiv 

darstellt. Die für den Panch Pokhari See in Nepal etablierten 16 ka δ18ONiederschlag und 

δ
2HNiederschlag Rekords spiegeln demnach die Variabilität des Indischen Sommermonsuns 

wider, und der Deuterium-Excess Rekord des Seewassers erlaubt die Rekonstruktion der 

Verdunstungsgeschichte des Panch Pokhari Sees. 

Zusammenfassend und ausblickend ist festzuhalten, dass die im Rahmen dieser 

Dissertation entwickelte und validierte Methode des kombinierten δ
18O-δ

2H 

Biomarkeransatzes vielversprechende innovative Möglichkeiten für eine zukünftige 

quantitativere Paläoklimaforschung bietet, die sich sowohl auf terrestrische als auch auf 

lakustrische Sedimentarchive anwenden lässt. 
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Towards a coupled δ18O sugar and δ2H n-alkane 

approach in paleoclimate research 
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1. Introduction and motivation 

Stable oxygen (18O/16O) and hydrogen (2H/1H) analyses are contemporary research 

topics in the field of paleohydrology (Barbour, 2007; Sachse et al., 2012). Small variations in 

oxygen-18 and deuterium composition in the water molecule are associated with isotopic 

fractionation occurring during phase changes in the hydrological cycle, as light isotopes (16O 

and 1H) evaporate more rapidly then their heavier counterparts. The interpretation of δ18O and 

δ
2H records from various climate archives (e.g. lacustrine and marine sediments, ice cores, 

speleothems, and tree-rings) on the global scale is based on geographical effects (latitude, 

altitude, continentality), temperature dependence, the amount effect, and rainout of air masses 

(Dansgaard, 1964; Rozanski et al., 1993; Araguas-Araguas et al., 2000). All together, these 

climatic factors define the δ18O and δ2H isotopic composition of paleoprecipitation (δ18Oprec 

and δ2Hprec, respectively) which furthermore represents the source water for biosynthesis of 

diverse plants compounds (e.g. (hemi)cellulose and lipids). This allows inferring paleoclimate 

information by analysing variations of stable isotope ratios of oxygen and hydrogen from 

(hemi)cellulose-derived sugar and leaf wax-derived lipid biomarkers, respectively. 

While compound specific δ2H analyses of lipid biomarkers are nowadays widely 

applied in paleoclimate and -hydrological research (Sauer et al., 2001a; Schefuss et al., 2005; 

Pagani et al., 2006; Eglinton and Eglinton, 2008; Tierney et al., 2008; Zech et al., 2013a), 

compound-specific δ18O analyses are hardly applied so far due to analytical challenges (Hener 

et al., 1998; Juchelka et al., 1998; Jung et al., 2007; Greule et al., 2008). However, a recently 

developed method for compound-specific δ18O analyses of individual hemicellulose-derived 

sugar biomarkers (Zech and Glaser, 2009) overcomes the limitations of previously applied 

δ
18O analyses of soils and sediments. Given that experimental findings and theoretical 

mechanistic considerations suggest stability of δ18O signature of sugars (Zech et al., 2012) 

and δ2H of lipids (Radke et al., 2005; Eglinton and Eglinton, 2008), combining these proxies 
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has great potential for paleoclimate and -hydrological reconstructions. However, prior to 

coupling of δ18Osugars and δ2Hlipids it is important to validate the newly developed method for 

δ18O analyses of sugars and disentangle climatic and plant-physiological factors influencing 

the δ18O signal recorded in these hemicellulose-derived biomarkers. 

The aims of this dissertation are to (i) validate δ18Ohemicellulose as climate proxy through 

climate chamber and transect studies, (ii) evaluate the potential of the combined δ18Osugars-

δ
2Hlipids conceptual model in hydrological research, and (iii) apply the novel combined 

approach to a promising lacustrine paleoclimate archive. 

2. Method for compound-specific δδδδ18
O analyses and first application to topsoils along a 

climate transect (Study 1) 

Publications reporting on the natural abundance of δ18O in soils are sparse (Balabane, 

1983; Zech and Glaser, 2009). This can be ascribed to analytical and methodological 

challenges which include thermal conversion/elemental analysis – isotope-ratio mass 

spectrometry (TC/EA-IRMS) for bulk, and gas chromatography – pyrolysis – isotope-ratio 

mass spectrometry (GC-Py-IRMS) for compound specific δ18O analyses. Moreover, applied 

bulk analyses make it challenging to discriminate the origin of oxygen in soils 

(inorganic/organic), and whether it reflects a climate signal or not. The instrumental coupling 

of GC-Py-IRMS simplified compound specific δ18O measurements, but it has been hardly 

applied so far (Jung et al., 2005; Jung et al., 2007; Greule et al., 2008). Zech and Glaser 

(2009) optimised the GC-Py-IRMS δ18O method for sugar biomarkers and reported on its 

potential for the application in soils and sediments (Fig. 1). Briefly, hemicellulose 

monosaccharides such as arabinose and xylose are extracted from soil/plant/sediment samples 

using trifluoroacetic acid and further purified with cation exchange columns (XAD and 



Extended Summary 
___________________________________________________________________________ 
 

5 
 

Dowex). The freeze-dryed samples are derivatised with methylboronic acid and measured for 

compound specific δ18O using a GC-Py-IRMS system. The δ18O measurements are carried 

out on pyrolytically produced carbon monoxide (CO) for each individual sugar biomarker. All 

δ18O results are expressed in the δ-nomenclature as per mil (‰) deviation relative to the 

internationally accepted standard Vienna Standard Mean Ocean Water, (V SMOW; Coplen et 

al., 1996). In the following δ18Ohemicellulose refers to the weighted mean δ18O value of the most 

abundant sugar biomarkers. These are arabinose and xylose, sometimes additionally fucose. 

 

Fig. 1: Scheme of GC-Py-IRMS compound-specific δ18O analyses of plant-derived sugar 

biomarkers in soils (from Zech et al., 2011). 

 

Experimentally, it was confirmed that litter and soil organic matter degradation does 

not affect δ18Ohemicellulose values (Zech et al., 2012). Accordingly, δ18O of hemicellulose-

derived sugars has the potential to be used as paleoclimate proxy. In order to determine which 

paleoclimatic information are recorded in sugar biomarkers extracted from soils, first 

compound-specific δ18Ohemicellulose analyses were applied on topsoils in Study 1. Nine 

sampling sites along a strong east-west climate transect over the Central Scandinavian 
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Mountains, Norway were analysed. While the climate is very wet along the western slopes 

(approx. 2250 mm y-1), it becomes more arid along the eastern slopes due to rain-shadow 

effects (approx. 445 mm y-1). 

Since oxygen atoms of plant-biosynthesized sugars originate from water (Schmidt et 

al., 2001), it can be expected that hemicellulose, like cellulose, reflects the isotopic 

composition of precipitation (Gray and Thompson, 1976; Libby et al., 1976; Gray and 

Thompson, 1977; Burk and Stuiver, 1981). The isotopic composition of precipitation over the 

Norwegian transect reflects more negative δ18Oprec values with increasing altitude and 

longitudinal shift in east-west direction (so called “altitude” and “continental” effects, 

respectively; Dansgaard, 1964). However, the bulk δ18O values and δ18O values of 

hemicelluloses (arabinose and xylose) do not reflect the same trend. This implies that other 

variables exert an additional important control on δ18O of sugar biomarkers. Increased aridity 

along the transect can be assumed to cause higher evapotranspirative 18O enrichment of leaf 

water which results in higher apparent isotopic fractionation between δ18Oprec and 

δ18Ohemicellulose observed in the more arid eastern part of the transect. This finding is in 

agreement with studies reporting that δ18Ocellulose is additionally strongly influenced by 

evaporative 18O enrichment of leaf water due to transpiration (Dongmann et al., 1974; 

Flanagan et al., 1991; Roden et al., 2000; Barbour et al., 2004; Pendall et al., 2005). 
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3. Plant physiology and climate aspects influence on δδδδ18
Ohemicellulose (Studies 2 and 3) 

3.1 Validation of the δδδδ18
Ohemicellulose proxy 

Study 1 shows that evapotranspiration leads to leaf water enrichment in 18O compared 

to plant source water (precipitation). It is known that the degree of 18O enrichment depends on 

plant physiological and climate factors (Barbour, 2007; Farquhar et al., 2007). It is crucial to 

disentangle the influence of plant physiological variables (e.g. leaf temperature and 

transpiration) and primary climatic drivers (air temperature and relative air humidity, RH) on 

δ18Ohemicellulose in order to use it as a climate proxy. Therefore, a conjoint research was 

conducted consisting of a climate chamber experiment (Study 2) and a climate transect study 

(Study 3). 

In Study 2, the investigated plants (Eucalyptus gobulus, Vicia faba and Brassica 

oleracea) were grown in climate chambers under different climatic conditions following 

diurnal variations in temperature (14 – 30 °C) and RH (20% – 70%) (Fig. 2). Sugar 

biomarkers were extracted from the stem material and analysed for compound-specific δ18O. 

The δ18O values of arabinose and xylose correlate significantly with measured δ18Oleaf water and 

with modelled δ18Ocellulose values (R=0.66, p<0.001, n=24 and R=0.80, p<0.001, n=24, 

respectively). Hence, these chamber experiment results corroborate the interpretation of Study 

1 suggesting that hemicellulose-derived biomarkers reflect the oxygen isotopic composition 

of plant source water altered by evapotranspirative 18O enrichment of leaf water. Furthermore, 

model sensitivity tests demonstrate that RH rigorously controls the evapotranspirative 

enrichment, while a direct temperature effect is much smaller. 
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Fig. 2: Comparison of δ18Oarabinose and δ18Oxylose with modelled δ18Ocellulose, measured δ18Oleaf 

water, δ18Oxylem water, δ18Osoli water, and transpiration rate (E). Additionally, temperature and 

relative air humidity are displayed (from Zech et al., 2014a).  

 

Although negligible direct influence of temperature was reported in Study 2, it needs 

to be noted that temperature influences the transpiration rate, which affects evapotranspirative 

enrichment of leaf water due to the so-called Péclet effect. This effect accounts for the flux of 

source water entering the leaf through the transpiration flow opposed by backward diffusion 

of isotopically enriched water (Farquhar and Lloyd, 1993). In automatically irrigated systems 

where plant source water is no limiting factor (e.g. chambers used in Study 2), at higher 

temperature also the transpiration rate is higher, which causes less effective opposing 

diffusion of isotopically enriched water from the evaporative front into the xylem. This is 

reflected in lower enrichment of leaf water, arabinose, and xylose in 18O compared to the 

values from chambers with lower temperature (Fig. 2).  
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The influence of air temperature and relative air humidity is furthermore investigated 

in Study 3 along an Argentinian transect spanning from ~32°S to 47°S and comprising 20 

sampling localities (Fig. 3). 

 

Fig. 3: A) Sampling localities along the investigated Argentinian climate transect and 

interpolated δ18O estimates of annual precipitation (Bowen, 2012). B) Vegetational zonation 

in the study area (from Tuthorn et al., 2014). 

 

The investigated sites cover a large climate gradient with warm humid subtropical 

conditions in the north, distinct arid conditions in the middle part and cool temperate 

conditions in the south. Pronounced contrasting climate conditions are reflected in the 

vegetation zones of the study area (Fig. 3B), changing from Humid/Dry Pampa in the north to 

the Espinal vegetation zone that prevails under semi-arid climate (Burgos and Vidal, 1951), 

Low Monte semi-desert/desert in the most arid region of Argentina (Fernández and Busso, 
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1997), and Patagonian Steppe in the southernmost part of the transect (Le Houérou, 1996; 

Paruelo et al., 1998). 

δ18Oprec values (from Bowen, 2012) reveal a systematic trend southwards, getting more 

depleted (Fig. 3A and Fig. 4). This trend most likely reflects the so called “temperature 

effect” on δ18Oprec (Dansgaard, 1964). 

 

Fig. 4: A) Comparison of measured δ18Ohemicellulose values of arabinose, fucose and xylose with 

modeled δ18Oprec, δ
18Oleaf water, δ

18Ostem cellulose, and δ18Oleaf cellulose. B) Mean annual precipitation 

and temperature characterizing the investigated sampling sites (from Tuthorn et al., 2014). 
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The δ18O values of all three hemicellulose sugar biomarkers are significantly 

correlated with each other, especially arabinose and xylose (r=0.96, p<0.001, n=20), and 

reveal systematic trends over the investigated transect with maximum values in the middle 

and southernmost part (Fig. 4). The comparison of δ18Ohemicellulose with δ18Oprec (from Bowen, 

2012) shows that they do not follow the same trend southwards (Fig. 4). These results indicate 

that increasing aridity along the climatic gradient cause enhanced evapotranspirative 

enrichment of leaf water, which is especially pronounced and well depicted in measured 

δ
18Ohemicellulose values of the Espinal and Low Monte area. 

Furthermore, the empirical data analyses were combined with mechanistic model 

simulations of δ18Oleaf water in order to better detect and evaluate how the dominant climate 

variables (air temperature and relative air humidity) influence δ18Ohemicellulose. 

3.2 Péclet modified Craig-Gordon model simulations 

Evapotranspirative 18O enrichment of leaf water can be predicted by using a 

mechanistic model originally developed for fractionation processes of water surfaces by Craig 

and Gordon (1965) and adapted for plants by Dongmann et al. (1974) and subsequently by 

Farquhar and Lloyd (1993). 

Accordingly, δ18Oleaf water can be estimated as follows:  

 

δ
18Oleaf water = ∆18Oleaf water + δ18OSW      (Eqn. 1), 

 

where ∆18Oleaf water is the bulk leaf water evaporative enrichment and δ18OSW is the oxygen 

isotope composition source or xylem water. Calculation of ∆18Oleaf water accounts for the Péclet 

effect and evaporative enrichment of leaf water above the plant’s source water in 18O at the 

sites of evaporation (according to Craig and Gordon, 1965 and Botting and Craig, 1969). The 
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model was optimised by Kahmen et al. (2011), reducing the necessary model input data to the 

primary variables: air temperature, relative air humidity, and the isotopic composition of 

source water (precipitation). 

The modeled δ18Oleaf water values for the Argentinian transect correlate significantly 

with the measured δ18Ohemicellulose values (r=0.81, p<0.001, n=20) which corroborates that the 

investigated hemicelluloses-derived biomarkers reflect δ18Oleaf water, i.e. δ18Oprec altered by 

evaporative 18O enrichment during transpiration. In additional sensitivity tests mean RH was 

varied up to ±20% and mean annual temperature up to ±5°C. The respective results indicate 

that reasonable changes in RH strongly influence δ18Oleaf water (shifts of ±12.8 – ±14.0 ‰), 

whereas changes in Tair have only a marginal effect (shifts of ±0.5 – ±1.2 ‰). 

Based on the results of the Argentinian transect study and the climate chamber 

experiment a conceptual model for interpreting δ18Ohemicellulose in paleoclimate studies is 

suggested (Fig. 5). 

 

Fig. 5: Conceptual diagram illustrating the major variables influencing δ18Ohemicellulose (from 

Zech et al., 2014a). 
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Accordingly, δ18Ohemicellulose values in plants and soils depend primarily on: 

• δ18Oprec which in turn depends on climatic and geographical effects, 

• evapotranspirative 18O enrichment of leaf water which is most rigorously controlled 

by relative air humidity, and 

• the biosynthetic fractionation factor and its potential temperature dependency.  

4. Coupling of δ
18

O sugar and δ
2
H lipid biomarkers (Study 4) 

4.1 δ
2
H analyses of lipid biomarkers 

Leaf wax-derived lipids show a great potential to be used in paleohydrology and -

climate reconstruction (Eglinton and Eglinton, 2008). In Study 4, δ2H of n-alkanes and fatty 

acids were analysed in topsoils along the previously described transect (chapter 3.1., Study 3) 

spanning a climate gradient in Argentina. Similar to sugar biomarkers, these results prove that 

although leaf wax biomarker δ2H isotopic composition primarily reflects δ2Hsource water 

(precipitation), it is additionally modulated by evapotranspirative enrichment (Fig. 6). This 

was only recently considered in respective paleoclimate studies (Zech, R. et al., 2013c). The 

analytical results are additionally supported by mechanistic model simulations (Péclet 

modified Craig-Gordon model) of δ2Hleaf water revealing a positive correlation between 

modeled values and measured δ2Hlipids. This highlights the role of aridity for 

evapotranspiration and isotopic enrichment of leaf waxes and lends support to prior studies on 

the topic (Sachse et al., 2006; Feakins and Sessions, 2010; Kahmen et al., 2013). 
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Fig. 6: Comparison of measured δ2Hn-alkanes (weighted mean of n-C29 and n-C31) and δ2Hfatty 

acids (weighted mean of n-C22, n-C24, n-C26, n-C28, and n-C30), inferred isotopic composition of 

leaf water, and δ2Hprec (from Tuthorn et al., to be submitted to BGD). 

 

4.2 Conceptual model for interpreting coupled δ
2
H-δ

18
O biomarker results 

Based on the δ18O or δ2H biomarker records alone, it is challenging to disentangle 

whether the isotopic composition of these biomarkers is a consequence of changing isotopic 

composition of precipitation or changes in evapotranspirative enrichment of leaf water. The 

possibly variable degree of evapotranspirative enrichment can make it challenging to 

reconstruct the isotopic composition of precipitation. In order to overcome this limitation, a 

coupled sugar δ18O and n-alkane δ2H approach for reconstructing the deuterium excess (d-
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excess) of leaf water is introduced. d-Excess quantifies the isotopic deviation from the Global 

Meteoric Water Line (GMWL) and has the potential to be used as paleoclimate proxy for 

relative air humidity. Furthermore, the coupled δ18O and δ2H biomarker approach allows 

reconstructing the isotopic composition of precipitation (δ18Oprec and δ2Hprec). 

The δ18O-δ2H conceptual model (Fig. 7) presented in Study 4 is based on the 

assumption that the investigated sugar and n-alkane biomarkers are primarily leaf-derived and 

reflect the isotopic composition of leaf water. Taking fractionation factors during 

hemicellulose and n-alkane biosynthesis into account (DeNiro and Epstein, 1981; Sternberg, 

1986; Sessions et al., 1999; Schmidt et al., 2001), the model allows reconstructing the leaf 

water isotopic composition and subsequently the d-excess of leaf water from sedimentary 

archives. 

The calculated d-excess reveals a systematic trend towards more negative values in the 

southern, arid part of the transect. Using a Craig-Gordon model adapted by Gat and Bowser 

(1991) relative air humidity (RH) was reconstructed as follows:  

 

( )182*
18

*
2 88

1
kk CC

d
RH

⋅−+⋅−

∆
−=

εε
 (Eqn. 2) 

 

where ∆d represents the difference in d-excess between leaf-water and source water. 

According to Merlivat (1978), the kinetic isotope fractionation equals 25.1 ‰ and 28.5 ‰ for 

Ck
2 and Ck

18, respectively. Equilibrium isotope enrichments ε2
* and ε18

* as functions of 

temperature can be calculated using empirical equations of Horita and Wesolowski (1994). 
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Fig. 7: δ18O-δ2H diagram illustrating the global meteoric water line (GMWL) and an 

evaporation line (EL). Data for the δ18O values of hemicellulose-derived sugars (mean of 

arabinose, fucose, and xylose) and the mean δ2H values of leaf wax-derived n-alkanes (mean 

of n-C29 and n-C31) are displayed (from Tuthorn et al., to be submitted to BGD). 

 

Reconstructed RH follows the systematic d-excess trend and correlates significantly 

(r=0.79, p<0.001, n=20) with empirical modern relative humidity (retrieved from GeoINTA 

2012) along the transect, which generally validates the δ18O-δ2H conceptual model. 

Similarly, the δ
18O and δ2H values of precipitation, calculated as intersection of the 

individual ELs with the GMWL, correlate significantly with, but systematically underestimate 

the δ18O and δ2H values of modern precipitation, respectively (Fig. 8). This can be attributed 

to seasonality effect on investigated area, but also further effects need to be considered such 

as influence of evaporative enrichment of soil water, changing vegetation (grass versus trees 
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or shrubs), seasonality of biomarker synthesis, and the accuracy of the biosynthetic 

fractionation factors. 

 

Fig. 8: Reconstructed biomarker-based δ18Oprec and δ
2Hprec results and comparison with actual 

modern δ18Oprec and δ
2Hprec values, respectively (from Tuthorn et al., to be submitted to 

BGD). 

 

Recently, the proposed coupled δ18O-δ2H biomarker approach was applied 

successfully to a terrestrial paleoclimate archive, namely a ~220 ka permafrost paleosol 

sequence in NE-Siberia (Zech et al., 2013a). Similar potential for the application of the 

coupled δ18O-δ2H biomarker approach is offered also by lacustrine sediments, which are 

known to be valuable paleoclimate archives, too (Sauer et al., 2001b; Huang et al., 2004; 

Sachse et al., 2004; Wissel et al., 2008; Chapligin et al., 2012; Zech et al., 2014b). 
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5. First application of the coupled δ
18

Osugar and δ
2
Hn-alkane approach in paleolimnology 

(Studies 5 and 6) 

5.1 A 16 ka δ
18

Osugar and δ
2
Hn-alkane biomarker records 

While biomarkers extracted from soils or terrestrial sediment archives reflect the 

isotopic composition of precipitation modified by evapo(transpi)rative enrichment of soil and 

leaf water (Zech et al., 2013b; Tuthorn et al., 2014), aquatic biomarkers reflect lake water 

isotopic composition. Notably, lake water does not necessarily simply reflect the isotopic 

composition of precipitation as lake water is becoming enriched in 18O and 2H due to 

evaporation and involving isotopic fractionation processes. This offers the possibility to 

reconstruct lake water evaporation history (e.g. Mayr et al., 2007; Muegler et al., 2008; 

Aichner et al., 2010). However, based on δ18O or δ2H records alone, it is hard to distuinguish 

between changes of the precipitation signal and changes of evaporation. By contrast, the 

coupled δ18O-δ
2H approach proposed in this dissertation offers the intriguing possibility to 

disentangle between these two factors.  

The first application of the coupled δ
18O-δ

2H biomarker approach in paleolimnology 

was carried out on Late Glacial – Holocene lacustrine sediments from Lake Panch Pokhari. 

This lake is of glacial origin and located at 4,050 m a.s.l. about 100 km north of Kathmandu 

in Central Nepal, Helambu Himalaya (28°02.533’N; 85°42.822’E). The area is influenced by 

the Indian Summer Monsoon causing heavy rainfall between May and September and 

Westerlies causing minor winter precipitation.  
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Fig. 9: Age profiles for analytical results from the sediment cores of Lake Panch Pokhari and 

comparison with δ18O records of Chinese speleothemes (P/E- ratio of precipitation to 

evaporation, ISM- Indian Summer Monsoon; from Tuthorn et al., submitted to Journal of 

Hydrology).  

 

The weighted mean of the three investigated sugar biomarkers arabinose, fucose, and 

xylose reveals lower δ18O values coinciding with the Bølling-Allerød and the early Holocene, 

and higher δ18O values coinciding with the deglaciation and the Younger Dryas (Fig. 9). The 

δ18O sugar biomarker record is controlled by “amount” and “source” effects, and evaporative 

enrichment of lake water. Additionally, a lacustrine δ2H record based on n-alkane biomarkers 

is established in Study 6. The δ2Hn-alkane record reveals similarities with the δ
18Osugar record 

with high values characterising the deglaciation and the Older and the Younger Dryas, and 

lower values characterising the Bølling and the Allerød periods (Fig. 9). However, certain 

discrepancies between the records are revealed, too. For instance, the δ2Hn-alkane values are 

very negative throughout the Holocene, whereas the Holocene δ18Osugars values are well within 

the range of the Late Glacial δ18Osugar values. 
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5.2 Reconstruction of lake evaporation history 

A major prerequisite for the interpretation of the coupled δ18Osugar and δ
2Hn-alkane record 

of Lake Panch Pokhari is the assumption that the investigated sedimentary organic matter is 

primarily of autochthonous, aquatic origin. This seems justified given that (i) the catchment is 

very small and sparsely vegetated, (ii) the C/N ratios are relatively low (<12) and (iii) sugar 

biomarker patterns show high abundance of fucose indicating aquatic origin (Study 6). 

Study 6 suggests that the d-excess of lake water, which is reconstructed from the 

aquatic n-alkane and sugar biomarkers, can serve as proxy for the evaporation history of Lake 

Panch Pokhari. For the validation of this hypothesis, the reconstructed d-excess values were 

compared with other proxies that can be used as lake level indicators, such as the C/N ratio 

and the hydrogen index (HI) (Talbot and Livingstone, 1989) (Fig. 10). All three evaporation 

proxies reveal minimum values during the deglaciation, the Older Dryas and the Younger 

Dryas, when presumably precipitation was reduced. This is in agreement with the δ18O 

records of Asian speleothems (Wang et al., 2001; Dykoski et al., 2005) and δ18Ohemicellulose 

(Zech et al., 2014b) indicating weak Indian Summer Monsoon during the deglaciation and the 

Younger Dryas, and a strengthened monsoon during the Bølling-Allerød and the early 

Holocene (Fig. 9). 

Furthermore, the d-excess indicates high evaporative enrichment of lake water also 

during the Middle Holocene, when the lake did not dessicate according to C/N ratio and HI 

proxy. This can be explained with overall higher temperatures and thus higher evaporation 

during the Holocene compared to the Late Glacial. 
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Fig. 10: Comparison of (a) C/N ratio (from Krstic et al., 2011), (b) Hydrogen Index (HI), and 

(c) deuterium-excess as proxies for evaporation history of Lake Panch Pokhari (from Tuthorn 

et al., submitted to Journal of Hydrology). 

 

The proposed interpretation of the d-excess record in terms of an intensive or weak 

Indian Summer Monsoon is additionally corroborated by the reconstructed δ18Oprec and δ2Hprec 

records. As depicted in Fig. 9, these records strongly resemble the Chinese speleothem δ18O 

records and suggest that the Indian Summer Monsoon as well as the East Asian Summer 

Monsoon were very weak both during the deglaciation and the Younger Dryas. 
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6. Conclusions 

Within this dissertation it was shown that compound-specific δ18O values of 

hemicellulose-derived sugar biomarkers of modern topsoils do not simply reflect δ18Oprec 

(Study 1). The results of a climate chamber experiment (Study 2), an Argentinian climate 

transect study (Study 3) and a modeling approach (Studies 2 and 3) suggest that, apart from 

δ
18Oprec, evapotranspirative 18O enrichment of leaf water exerts a dominant control on 

δ
18Osugar of plants and soils. This enrichment is most rigorously controlled by relative air 

humidity, whereas temperature has only a marginal effect. 

As possible solution for disentangling between varying δ18Oprec and varying 

evapotranspirative 18O enrichment, a coupled δ18O sugar and δ2H n-alkane biomarker 

approach is proposed (Study 4). This approach is validated using the Argentinian topsoil 

transect. Accordingly, d-excess of leaf water can be assessed by analyzing the sugar and n-

alkane biomarkers and it can be used as proxy for relative humidity. Furthermore, δ18Oprec and 

δ
2Hprec can be reconstructed from the biomarker results using a modified Craig-Gordon 

model. Finally, the intriguing possibilities for future paleoclimate research using the proposed 

coupled δ18O sugar and δ2H n-alkane biomarker approach were presented and evaluated for a 

first application to a lacustrine sediment archive (Studies 5 and 6). Accordingly, the 

established 16 ka d-excess record for Lake Panch Pokhari, Nepal, allows reconstructing the 

lake evaporation history and moreover the reconstruction of the δ18Oprec record that is 

reflecting the Indian Summer Monsoon variability. 

Further studies are needed to inquire whether the fractionation factors during 

biomarker biosynthesis are temperature-dependent or not, and to improve our understanding 

of possible species and seasonality effects. 
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Abstract 

Precipitation and topsoil samples from a climate transect over the Scandinavian 

Mountains, Norway, were analyzed for bulk and compound-specific δ18O values. The natural 

abundance of 18O in the plant-derived hemicellulose biomarkers arabinose and xylose 

correlates positively with δ18O of bulk soil, but not with δ18O of precipitation. This suggests 

that other factors than δ18Oprec, such as evaporative 18O enrichment of leaf water, exert a 

strong influence on the natural abundance of 18O in soils. 

 

Keywords: mountain soils, biomarkers, hemicelluloses, sugars, oxygen isotopes, evaporative 

18O enrichment. 
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1. Introduction 

While stable carbon (13C/12C) and nitrogen (15N/14N) isotope analyses, particularly 

compound-specific isotope analyses (CSIA), have become widely applied and powerful tools 

in plant and soil sciences during the last decades (Glaser, 2005; Amelung et al., 2008; Sauheitl 

et al., 2009), there are hardly any publications reporting on the natural abundance of 18O in 

soils, so far (Balabane, 1983). This can be attributed to several reasons. First, oxygen in soils 

occurs in several inorganic (e.g. carbonates, clay minerals, silicates) and organic (e.g. plant-

derived, microbial-derived) pools. Some of these pools are exchangeable with soil water (e.g. 

the oxygen atoms forming carbonyl groups), others are not (e.g. oxygen atoms forming 

hydroxyl groups). Some of these pools reflect a climate signal (e.g. plant-derived cellulose), 

other do not (e.g. lignin phenols; Schmidt et al., 2001). Second, 18O analysis requires 

conversion of the oxygen atoms of a sample into carbon monoxide via pyrolysis. Respective 

‘online’ instrumental facilities both for bulk (via thermal conversion/elemental analysis – 

isotope ratio mass spectrometry = TC/EA – IRMS) and compound-specific (via gas 

chromatography – pyrolysis – isotope ratio mass spectrometry = GC – Py – IRMS) δ18O 

analysis is relatively young (Werner et al., 1996; Hener et al., 1998; Juchelka et al., 1998) and 

challenging compared to δ13C and δ15N analysis. Only recently, a methodological approach 

for determining δ18O of plant-derived biomarkers from soils was suggested (Zech and Glaser 

2009). And third, the potential applications of δ18O analyses in soils, presumably ranging 

from paleoclimate reconstructions to labelling experiments, are not yet elaborated. 

Here we present a first 18O dataset from a climate transect over the Southern Scandinavian 

Mountains, Norway, comprising the natural abundances of 18O in precipitation, bulk soil, and 
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the hemicellulose biomarkers arabinose and xylose. The objective of this study is to answer 

the question whether soils reflect δ18O of precipitation. 

2.  Material and methods 

The Central Scandinavian Mountains in Southern Norway, culminating in the 2469 m 

a.s.l. high summit of Mt. Galdhøpiggen, feature a strong climate transect from the windward 

westerly exposed slopes to the leeward easterly exposed slopes (Fig. 1). The climate is very 

wet along the western slopes (2250 mm/year in Bergen), and becomes more arid on the 

eastern slopes due to rain shadow effects (445 mm/year in Kongsvoll in Oppdal (Dovrefjell); 

NMI, 2012).  

 

Fig. 1: Location of the study areas in the W and E part of the Central Scandinavian 

Mountains, respectively. Mean annual precipitation (MAP) illustrates the strong climate 

gradient (from NMI, 2012).  
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In August 2010, nine composite precipitation samples, reflecting the precipitation of a 

typical rainy summer season according to the long-year on-site experience of AG Löffler, 

were collected for one week using storage rain gauges. The gauges were installed within a 

long-term alpine ecosystem research project (Löffler et al., 2006; Pape et al., 2009) along a 

climate transect ranging from 930 m a.s.l. in western part (N62°04’, E6°24’) to 340 m. a.s.l. in 

the eastern part (N61°53’, E9°32’) of the Central Scandinavian Mountains (Fig. 1 and 2). 

Representative mixed topsoil samples (0 – 5 cm depth, total organic carbon contents ranging 

from 3.1 to 6.7%, sieved < 2 mm, roots removed using tweezers, finely ground) from six of 

these sites were analyzed for bulk and compound-specific δ18O. 

 Bulk water and soil δ18O analyses were carried out in the Laboratory of Isotope 

Biogeochemistry of the Bayreuth Center of Ecology and Environmental Research (University 

of Bayreuth, Germany). Note that bulk soil δ18O analyses do not only capture oxygen bound 

in organic matter, but partly although often not quantitatively also oxygen from inorganic 

compounds like clay minerals, silicates, and carbonates (Werner, 2003). For the TC/EA-

IRMS system, a pyrolysis oven (HEKAtech, Wegberg, Germany) was coupled via a ConFlo 

III Interface (Thermo Fisher Scientific) with a Delta V Plus isotope ratio mass spectrometer 

(Thermo Fisher Scientific). The standard deviation of bulk δ18O analysis is typically ±1‰. 

For compound-specific δ18O analysis, the hemicelluloses of the 6 topsoil samples were 

hydrolyzed using 4M TFA according to Amelung et al. (1996). After purifying the 

monosaccharides over XAD and Dowex columns, they were derivatized with methylboronic 

acid (MBA) and measured at the University of Halle according to the procedure described in 

detail by Zech and Glaser (2009). The GC-Py-IRMS system consisted of a Trace GC 2000 

gas chromatograph (Thermo Fisher Scientific, Bremen, Germany) coupled with a Delta V 

Advantage isotope ratio mass spectrometer (Thermo Fisher Scientific) via a pyrolysis reactor 

and a GC/TC III interface (Thermo Fisher Scientific). All oxygen isotope values are 
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expressed in per mil (‰) relative to the Vienna Standard Mean Ocean Water (VSMOW). The 

relative abundance of the exclusively plant-derived sugar biomarkers arabinose and xylose 

was much higher than for other sugars (e.g. fucose and rhamnose). This is in agreement with 

findings of Zech and Glaser (2009) and Zech et al. (2012) and we therefore only focus on 

δ18O of arabinose and xylose in this study. 

3. Results 

 The natural abundance of 18O in precipitation over the investigated mountain transect 

features two well known effects. First, the δ18O values become more negative with increasing 

altitude both in the western (from -9.3 to -10.7‰) and in the eastern part (from -11.6 to -

14.6‰) of the transect (Fig. 2). This is called the “altitude effect” (Dansgaard, 1964). 

Second, the leeward eastern part of the transect is characterized by systematically more 

negative δ18O values compared to the western part of the transect (Fig. 2). This can be 

attributed to the preferential rainout of isotopically heavy water molecules when the air 

masses are crossing the mountain range (called “continent effect”). 

The plant-derived sugar biomarkers arabinose and xylose have very similar δ18O 

values (R=0.92) but do not reflect δ18Oprec. In fact, none of the two effects described above 

(altitude and continent effect) is confirmed and the δ18O amplitudes are conspicuously higher 

than those of δ18Oprec (Fig. 2). Bulk δ18O values of the topsoil samples correlate positively 

with compound-specific δ18O values of arabinose (R=0.58, n=6, p=0.23) and xylose (R=0.80, 

n=6, p=0.06), but the absolute values are considerably less positive and the δ18O amplitude is 

dampened.  
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Fig. 2: Measured δ18O values of precipitation, bulk soil and plant-derived sugar biomarkers 

arabinose and xylose along an altitudinal and climate transect over the Central Scandinavian 

Mountains, Norway. Additionally, the mean apparent isotopic fractionation εprec/sugars is 

calculated as proxy for evapotranspirative 18O enrichment of leaf water by transpiration. 1) no 

soil samples were available for 18O analyses. 

 

4. Discussion 

 The plant-derived sugar biomarkers arabinose and xylose in topsoils obviously do not 

reflect δ18O of precipitation. Given that Zech et al. (2012) demonstrated that δ18O values of 

sugar biomarkers do not change during litter decomposition, this finding cannot be explained 

with different edaphic conditions. In fact, it is well known amongst plant physiologists that 
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plants do not simply incorporate the oxygen isotope signal of source water, i.e. of 

precipitation and soil water. Transpiration results in an evaporative 18O enrichment of leaf 

water, where plant sugars are assimilated. Furthermore, a biosynthetic fractionation factor of 

approximately +27‰ has to be considered for sugars (Barbour, 2007; Ferrio et al., 2009). 

Figure 2 illustrates that the mean apparent fractionation factor δ18Oprec - sugars for arabinose and 

xylose reveals a clear maximum in the more arid eastern part of the transect (rain shadow 

effect). Note that the highest site along the eastern transect (E1565) is often cloudy, thus 

confirming that this site is still characterized by high relative air humidity. Hence, we 

conclude that evaporative 18O enrichment of leaf water by transpiration due to increasing 

aridity from west to east is the most plausible explanation for the very positive δ18O values at 

the sites E1400 and E1220 (Fig. 2).  

At the current state of research, we can only speculate why the lowermost study site 

E1100 on the eastern slopes does not confirm this trend. Presumably, specific microclimatic 

conditions affecting evaporative 18O enrichment such as overall reduced wind-speed, reduced 

wind-speed due to denser shrub vegetation, etc. have to be considered. Indeed, site E1100 is 

characterized by the highest abundance of dwarf-shrubs. Furthermore, a species effect cannot 

be excluded, because different plants can vary in their transpiration rate and hence their 

evaporative 18O enrichment under the same climatic conditions. Possibly also a higher input 

of root-derived hemicelluloses to the soils compared to above-ground litter could be relevant. 

Site E1100 has a higher root density compared to the sites at higher altitude (unpublished data 

by J. Löffler). Given that Gessler et al. (2009) reported that up to 40% of the oxygen atoms of 

assimilated sugars are not transferred into wood cellulose because they exchange with xylem 

water, we suppose that also root hemicelluloses do not show the same 18O enrichment as do 

leave hemicelluloses. 
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The compound-specific δ18O results are partly confirmed by bulk δ18O (Fig. 2). Both 

the more negative bulk δ18O values and the reduced amplitude can be explained with dilution 

effects. On the one hand, not all plant products incorporate oxygen from leaf water and thus 

carry a climatic signal. For instance, lignin phenols incorporate atmospheric oxygen and show 

δ18O values near +5‰ (Schmidt et al., 2001). On the other hand, soils contain mineral and 

clay mineral oxygen pools with a very different oxygen isotope signature compared to plant-

derived organic matter. 

We are not aware of any other study focussing on the natural abundance of 18O in soil 

organic matter except for Balabane (1983). Applying a novel analytical method based on GC-

Py-IRMS, we have demonstrated that plant-derived sugar biomarkers and bulk soils do not 

simply reflect δ18O of precipitation, but are in all likelihood strongly affected by evaporative 

18O enrichment of leaf water during transpiration. 
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Abstract 

The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate 

research. However, its application to sedimentary archives is challenging due to extraction 

and purification of cellulose. Here we present compound-specific δ18O results of 

hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-

isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned 

analytical challenges. The biomarkers were extracted from stem material of different plants 

(Eucalyptus gobulus, Vicia faba and Brassica oleracea) grown in climate chamber 

experiments under different climatic conditions. 

The δ18O values of arabinose and xylose range from 31.4 to 45.9‰ and from 28.7 to 

40.8‰, respectively, and correlate highly significantly with each other (R=0.91, p<0.001). 

Furthermore, δ18Ohemicellulose (mean of arabinose and xylose) correlate highly significantly with 

δ18Oleaf water (R=0.66, p<0.001) and significantly with modeled δ18Ocellulose (R=0.42, p<0.038), 

as well as with relative air humidity (R=-0.79, p<0.001) and temperature (R=-0.66, p<0.001). 

These findings confirm that the hemicellulose-derived sugar biomarkers, like cellulose, reflect 

the oxygen isotopic composition of plant source water altered by climatically controlled 

evapotranspirative 18O enrichment of leaf water. While relative air humidity controls most 

rigorously the evapotranspirative 18O enrichment, the direct temperature effect is less 

important. However, temperature can indirectly exert influence via plant physiological 

reactions, namely by influencing the transpiration rate which affects δ18Oleaf water due to the 

Péclet effect. In a companion paper (Tuthorn et al., this issue) we demonstrate the 

applicability of the hemicellulose-derived sugar biomarker δ18O method to soils and provide 

evidence from a climate transect study confirming that relative air humidity exerts the 

dominant control on evapotranspirative 18O enrichment of leaf water. 
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Finally, we present a conceptual model for the interpretation of δ18Ohemicellulose records 

and propose that a combined δ18Ohemicellulose and δ2Hn-alkane biomarker approach is promising 

for disentangling δ18Oprecipitation variability from evapotranspirative 18O enrichment variability 

in future paleoclimate studies. 

 

Keywords: climate chamber experiment, stable oxygen isotopes, biomarkers, evaporative 18O 

enrichment, plant physiology, paleoclimatology, Péclet effect 
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1. Introduction 

The natural abundance of stable oxygen isotopes (18O/16O) is a well known proxy in 

paleoclimate research. It is successfully applied to a wide range of different climate archives 

such as ice cores, deep sea and lacustrine sediments, speleothems and tree-rings (Epica 

Members, 2004; Ngrip Members, 2004; Lisiecki and Raymo, 2005; Spötl et al., 2006; 

Mischke et al., 2010; Rozanski et al., 2010). This can be partly attributed to the finding that 

the isotopic composition of precipitation is mainly controlled by climatic factors, namely the 

“temperature effect” in high latitudes and the “amount effect” in tropical and particularly in 

monsoon regions. Other influencing factors are continentality, altitude and changes in the 

source area of the moisture-bearing air masses (Dansgaard, 1964; Rozanski et al., 1993; 

Araguas-Araguas et al., 2000). 

In lacustrine sediment and tree-ring archives, it is often cellulose which is used as 

recorder of the isotopic composition of lake water (Wolfe et al., 2007; Wissel et al., 2008; 

Rozanski et al., 2010) and leaf water (Danis et al., 2006; Boettger et al., 2007; Gessler et al., 

2009; Kress et al., 2010), respectively. While typical δ18O values of ground water range from 

-10 to +2‰ and those of leaf water from -5 to +10‰, cellulose is generally enriched in 18O by 

~+27‰ relative to the water present during biosynthesis (Schmidt et al., 2001). Measurements 

are commonly carried out on purified cellulose using thermal conversion/elemental analysis – 

isotope ratio mass spectrometry (TC/EA-IRMS) (Werner et al., 1996; Saurer and Siegwolf, 

2004). However, analytical challenges concerning extraction, purification and measurement 

(due to hygroscopicity of cellulose) exist (Saurer and Siegwolf, 2004; Wissel et al., 2008) and 

hamper an adaptation of this method to soils and terrestrial sediments. These limitations may 

be overcome by an alternative, recently developed method (Zech and Glaser, 2009; Zech et 

al., 2013), which is based on compound-specific δ18O analyses of hemicellulose-derived sugar 
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biomarkers such as arabinose, fucose, xylose, and rhamnose using gas chromatography – 

pyrolysis – isotope ratio mass spectrometry (GC-Py-IRMS) (Zech et al., 2011). The sugar 

biomarkers are thereby released hydrolytically from the samples and purified highly 

efficiently after derivatisation using gas chromatography. Given that Zech et al. (2012) found 

no evidence for oxygen isotope exchange reactions and 18O fractionation affecting the 

isotopic composition of hemicelluloses during litter degradation, they proposed that this 

method has potential to become a valuable tool in paleoclimate research. 

Like cellulose, hemicelluloses are structural components of plant cell walls and should 

reflect the oxygen isotopic composition of source water (= soil water) altered by evaporative 

18O enrichment due to transpiration (Epstein et al., 1977; Schmidt et al., 2001; Barbour, 2007; 

Farquhar et al., 2007). The degree of evaporative 18O enrichment of leaf water is known to 

depend on plant physiological and climate parameters. Respective models, based on the 

conceptual framework for the isotope effects accompanying the evaporation process, laid 

down by Craig and Gordon (1965), have been developed and refined during the last decades 

(Dongmann et al., 1974; Flanagan et al., 1991; Roden et al., 2000; Barbour et al., 2004; Cuntz 

et al., 2007; Kahmen et al., 2011). 

The aim of this study was to take advantage of plant material (Eucalyptus gobulus, 

Vicia faba and Brassica oleracea) grown in climate chamber experiments in order to (i) 

determine the δ18O values of hemicellulose-derived sugar biomarkers (δ18Ohemicellulose) and to 

compare them with δ18Oleaf water and modeled δ18Ocellulose results, (ii) to investigate the effect of 

relative air humidity, temperature and transpiration rate on δ18Ohemicellulose and (iii) to draw 

implications for paleoclimate studies applying GC-Py-IMRS δ18O analyses in soil and 

sediment archives. 
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2. Material and Methods 

2.1 Climate chamber experiment 

The experiment was conducted in winter 2000/01 in the climate chambers of the GSF, 

Neuherberg, Germany. The experimental design was described in detail previously (Mayr, 

2002). In brief, seedlings of Eucalyptus globulus, Vicia faba and Brassica oleracea were 

grown for 56 days in eight climate chambers under seven different climatic conditions 

(identical in chamber 4 and 8; Table 1). Diurnal variations followed typical natural conditions. 

Temperature and relative air humidity from 11 a. m. to 16 p. m. were set to 14°C, 18°C, 24°C 

and 30°C and to 20%, 30%, 50% and 70%, respectively. The actual temperature and relative 

air humidity were measured; accordingly, only minor deviations (<5%) from set relative air 

humidity was observed. Uniform irrigation conditions were ensured by an automatic irrigation 

system using tensiometers in 9 cm substrate depth. The irrigation water, provided by a water 

tank, was sampled regularly over the period of the experiment and showed only minor 

variability in its oxygen isotopic composition (δ18O = -10.7‰ ± 0.3‰). Similarly, soil water 

and atmospheric water vapour were sampled regularly for δ18O analyses (using suction cups 

in 13 cm substrate depth and cryo traps, respectively) and transpiration rates were determined 

(Table 1 and Fig. 1). At the end of the experiment, the plants were harvested for δ18O analyses 

of leaf and stem water (vacuum distillation). Although stem water is strictly speaking the 

mixture of xylem and phloem water, stem water basically reflects the δ18O values of soil 

water (Fig. 1). In simplification, we therefore refer to xylem water (XW) in the following. For 

further details on the experiment and δ18O water analyses the reader is referred to Mayr 

(2002). 
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2.2 Sample preparation and compound-specific δ
18

O analyses of hemicellulose-derived 

sugar biomarkers 

Sample preparation for hemicellulose-derived sugar biomarker analyses was carried 

out on dry and finely grinded stem material of the climate chamber experiment at the 

Department of Soil Physics, University of Bayreuth, Germany, and followed a slightly 

modified procedure described in detail by Zech and Glaser (2009). The hemicellulose sugars 

were extracted hydrolytically (105 °C, 4 h) from sample aliquots containing ~10 mg total 

organic carbon with 10 mL 4 M trifluoroacetic acid (TFA) as proposed by Amelung et al. 

(1996); the extracted monosaccharides were purified using XAD-7 and Dowex 50WX8 

columns. For derivatization of the freeze-dried sugars we added 4 mg methylboronic acid 

(MBA) in 400 µL dry pyridine and heated the samples to 60 °C for 1 h. The originally 

included second derivatization step with bis(trimethylsilyl)trifluoroacetamide (BSTFA), 

which is necessary for the remaining hydroxyl groups of hexoses, was skipped because Zech 

and Glaser (2009) found not reproducible derivatization results. For the investigated pentoses 

arabinose and xylose and the deoxyhexoses fucose and rhamnose the MBA derivatization 

ensures that each sugar yields only one peak in the chromatograms and furthermore oxygen 

addition by the derivatization reagent is avoided (Pizer and Tihal, 1992). 

Compound-specific δ18O measurements were performed in the Isotope Laboratory of 

the Institute of Agronomy and Nutritional Sciences, Martin-Luther-University Halle-

Wittenberg, Germany. The GC-Py-IRMS system consisted of a Trace GC 2000 gas 

chromatograph (Thermo Fisher Scientific, Bremen, Germany) coupled to a Delta V 

Advantage isotope ratio mass spectrometer (Thermo Fisher Scientific) via an 18O-pyrolysis 

reactor and a GC/TC III interface (Thermo Fisher Scientific). The sample batches were run in 

six-fold replication with co-derivatized sugar standard batches with varying sugar 

concentrations and known δ18O values embedded in-between in order to allow for corrections 
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of an amount dependence of the δ18O measurements if necessary (Zech and Glaser, 2009) and 

in order to ensure the ‘Principle of Identical Treatment’ of samples and standards (Werner and 

Brand, 2001). Results are presented as δ18O values (in permil, ‰), which is the deviation of 

the oxygen isotope ratio of a sample relative to that of an international standard (Coplen, 

2011) 

 

1
tan

18 −







=

dards

sample

R

R
Oδ         (Eqn. 1), 

 

where Rsample and Rstandard represent the isotope ratio 18O/16O of the sample and the Vienna 

Standard Mean Ocean Water (V-SMOW), respectively. Mean standard errors for the 

replication measurements of all samples are 1.3‰ and 0.6‰ for arabinose (n=3) and xylose 

(n=6), respectively. Note that three replication measurements could not be evaluated for 

arabinose due to a slight drift of the retention times during the run of the sequence and a 

resulting arabinose peak overlap with a reference gas peak. 

2.3 Modeling 

In order to compare our experimental findings with modeling results we used the 

Péclet modified Craig Gordon leaf water model of Barbour et al. (2004) and conducted model 

sensitivity tests for changing temperatures, relative air humidities, transpiration rates and leaf-

air temperature differences. For these tests, the δ18O value of the source water (= stem water) 

was set to -5‰ and the δ18O value of the atmospheric water vapour was set to -17.6‰. 
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3. Results and Discussion 

3.1 δ18
O results of hemicellulose-derived sugar biomarkers 

The investigated plant stem material of Eucalyptus, Vicia and Brassica contains 

considerably higher relative abundances of the pentoses arabinose and xylose compared to the 

deoxyhexoses fucose and rhamnose. This is in agreement with findings of Jia et al. (2008) and 

Zech et al. (2012) and hampered a reliable evaluation of fucose and rhamnose. The δ18O 

values of arabinose and xylose range from 31.4 to 45.9‰ and from 28.7 to 40.8‰, 

respectively, and are highly significantly correlated with each other (R=0.91, p<0.001, n=24). 

They reveal similar and systematic patterns for Eucalyptus, Vicia and Brassica depending on 

the climatic conditions adjusted in the eight chambers (Table 1 and Fig. 1). For comparison, 

soil water in 13 cm depth, which is slightly enriched in 18O relative to the irrigation water (-

10.7‰), shows small variability ranging from -7.6 to -5.4‰ (Table 1 and Fig. 1). 

Atmospheric water vapour, by contrast, is slightly depleted in 18O relative to the irrigation 

water. δ18O values range from -22.9 to -15.1‰ (chamber 4 and 3, respectively, see Table 1) 

and are positively correlated with relative air humidity (R=0.80, p=0.017, n=8).  

Slightly but systematically more positive δ18Oarabinose values compared to δ18Oxylose 

values were also reported by Tuthorn et al. (this issue) and Zech et al. (submitted), but not by 

Zech and Glaser (2009) and Zech et al. (2012; 2013). Both pentoses are biosynthesized in 

plants by the decarboxylation of C6 carbon atoms from glucose (Altermatt and Neish, 1956; 

Harper and Bar-Peled, 2002; Burget et al., 2003). Given that arabinose is an epimerase 

product of xylose and the intermediate UDP-4-keto-xylose (Purich and Allison, 2002) could 

be able to exchange oxygen isotopes with the aqueous phase, the observed difference may be 

attributed to a slight biosynthetic 18O fractionation or 18O exchange. In the following we use 

the mean of δ18Oarabinose and δ18Oxylose and refer to it as δ18Ohemicellulose. 
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Fig. 1: Results for δ18Oarabinose and δ18Oxylose and comparison with modeled δ18Ocellulose, δ
18Oleaf 

water, δ
18Oxylem water, δ

18Osoil water, transpiration rate (E) and the climate parameters temperature 

and relative air humidity. 1) from Mayr (2002). 

 

3.2 Comparison of δ
18

Ohemicellulose with modeled δ
18

Ocellulose and measured δ
18

Oleaf water 

The δ18Ohemicellulose values correlate highly significantly with the δ18Oleaf water values 

(Mayr, 2002) (R=0.66, p<0.001, n=24) and significantly with the modeled δ18Ocellulose values 

(R=0.42, p<0.038, n=24). Furthermore, Fig. 1 depicts that the amplitude of δ18Oleaf water is by 

several per mil higher compared to the amplitude of δ18Ohemicellulose and modeled δ18Ocellulose. 

This can be reasonably attributed to the fact that stem material and not leaf material was 

investigated in our study. Leaf water is enriched in 18O compared to plant source water 

(δ18Oxylem water) due to isotope effects accompanying the evaporation/transpiration process 
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(Craig and Gordon, 1965; Dongmann et al., 1974; Flanagan et al., 1991; Farquhar et al., 

2007). Although with a biosynthetic 18O fractionation of ~+27‰ (Cernusak et al., 2003), 

sugars which are biosynthesized in leaves reflect the oxygen isotopic composition of leaf 

water and thus its evapotranspirative 18O enrichment (Schmidt et al., 2001; Barbour, 2007). 

However, it is known that up to 40% of the oxygen atoms of sucrose, which is the most 

important transport sugar in plants, are isotopically exchanged with non-enriched xylem water 

during cellulose synthesis (Sternberg et al., 1986; Gessler et al., 2009). Indeed, our 

δ18Ohemicellulose values obtained for stem material are enriched in 18O by only ~+24‰ on 

average relative to the leaf water, indicating that part of the leaf water 18O enrichment is lost. 

It is noteworthy that the δ18Ohemicellulose values tend to be more positive than the modeled 

δ18Ocellulose values (Fig. 1), because as mentioned above, pentoses are biosynthesized by a 

decarboxylation of the C6 carbon atoms from glucose (Altermatt and Neish, 1956; Harper and 

Bar-Peled, 2002; Burget et al., 2003) and because Sternberg et al. (2006) found evidence for 

non-uniform isotope distributions of oxygen atoms attached to different carbon atoms in 

glucose as postulated already by Schmidt et al. (1995). Hence, more positive δ18Ohemicellulose 

values than δ18Ocellulose values (also observed in our companion study presented by Tuthorn et 

al., this issue) might indicate that the oxygen atom in C6 position of glucose building up 

cellulose is more depleted in 18O than the average of the oxygen atoms in positions C2 to C5. 

This interpretation is in agreement with the recent finding of Waterhouse et al. (2013) that 

about 80% of the oxygen atoms in C6 position are isotopically exchanged during 

heterotrophic cellulose synthesis and have hence lost the evapotranspirative 18O enrichment 

signal of leaf water. 

Overall, our findings suggest that δ18Ohemicellulose of stem material, like δ18Ocellulose, 

reflects slightly dampened the climatically controlled evapotranspirative 18O enrichment of 

leaf water. 
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3.3 Effect of RH, temperature and transpiration rate on δδδδ
18

Ohemicellulose 

The δ18Ohemicellulose values do not only correlate highly significantly with δ18Oleaf water, 

but also with the climate variables relative air humidity (R=-0.79, p<0.001, n=24) and 

temperature (R=-0.66, p<0.001, n=24) (Fig. 1). Fig. 2 illustrates in form of a 3D-scatterplot 

that the correlation is even better when a multiple regression analysis is carried out with 

δ18Ohemicellulose depending on the variables RH and temperature (R=0.89, p<<0.001, n=24). 

Accordingly, the lower RH and temperature are in our climate chamber experiment, the more 

positive the δ18Ohemicellulose values become. 

 

Fig. 2: 3D-Scatterplot and multiple regression analysis describing the dependence of 

δ18Ohemicellulose on the climate parameters temperature and relative air humidity in the climate 

chamber experiment. 
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The strong dependence of evapotranspirative 18O enrichment of leaf water on RH, 

which is reflected in our δ18Ohemicellulose results (Fig. 2), is well known and included in 

respective models, for instance in the equation (Eqn. 2) of Flanagan et al. (1991) 
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where R is the 18O/16O ratio of leaf water (lw), xylem water (xw) and atmospheric water 

vapour, respectively, and ei and ea is the water vapour partial pressures in the intercellular 

spaces and the atmosphere, respectively. Both the kinetic 18O fractionation factor αk and the 

equilibrium 18O fractionation factor α* are temperature-dependent (Merlivat, 1978). However, 

when compared with the strong effect that changing RH has, the effect of temperature on 

δ18Oleaf water according to Eqn. 2 is negligible and can hence not explain this part of our 

findings. 

Further modifications of the model introducing boundary layer effects, the Péclet 

effect, and leaf-air temperature differences (Roden et al., 2000; Barbour et al., 2004; Kahmen 

et al., 2011) confirm that RH is the most important and rigorous climatic factor controlling 

evapotranspirative 18O enrichment of leaf water. Fig. 3A illustrates this strong dependency 

using the model of Barbour et al. (2004) for different transpiration rates. By contrast, the 

direct effect of pure temperature changes on evapotranspirative 18O enrichment of leaf water 

remains negligible (Fig. 3B). However, model sensitivity tests highlight that transpiration rate 

changes have a very strong effect on δ18Oleaf water with more negative values resulting from 

higher transpiration rates (Fig. 3A and C). This can be attributed to a Péclet effect (Farquhar 

and Lloyd, 1993), with the Péclet number ℘ describing the ratio of convection to diffusion 

according to Eqn. 3: 
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CD

LE
=℘          (Eqn. 3), 

 

where L is the effective length, C is the molar density of water and D the diffusivity of H2
18O. 

Accordingly, at higher transpiration rates the backward diffusion of 18O-enriched water from 

the evaporating sites opposing the transpirational convection is less effective and δ18Oleaf water 

becomes more negative due to the dilution with not 18O-enriched xylem water.  

 

Fig. 3: Results of model sensitivity tests showing the dependency of δ18Oleaf water on (A) RH, 

(B) temperature, (C) transpiration rate, and (D) leaf-air temperature difference. The model 

used for these simulations is from Barbour et al. (2004). 
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A prerequisite for the Péclet effect to be effective is a good water supply of the plants 

as it was ensured in our climate chamber experiment by the installed automatic irrigation 

system. One of the factors influencing transpiration is temperature and indeed there is a 

significant positive correlation for all three investigated plant species with correlation 

coefficients of R=0.86 (p=0.006), R=0.82 (p=0.013) and R=0.91 (p=0.002, n=8 for all) for 

Eucalyptus, Vicia and Brassica, respectively (Fig. 1). Hence, although there is only a 

negligible direct temperature effect, there is a strong indirect temperature effect on our 

δ18Ohemicellulose results (Fig. 2) by varying transpiration rates and the Péclet effect. 

The Péclet effect can also help explaining the observed and at first glimpse unexpected 

large differences of δ18Oarabinose and δ18Oxylose for Vicia between chamber 4 and 8 (Fig. 1). 

Despite the climatic conditions in those two chambers were identical, stem material from 

Vicia in chamber 4 is characterized by significantly more negative δ18Oarabinose and δ18Oxylose 

values. Mayr (2002) found that Vicia in chamber 4 was characterized by considerable higher 

transpiration rates (E=1.5 ± 0.7 mmol m-2 s-1) than Vicia in chamber 8 (E=0.9 ± 0.7 mmol m-2 

s-1), which involves a stronger Péclet effect for the plants in chamber 4. Given that the 

climatic conditions in the chambers 4 and 8 were identical, plant physiological differences 

likely account for the different transpiration rates. Indeed, Mayr (2002) reported that the 

stomatal conductance for water (gH2O) and the net photosynthetic rate (A) of Vicia were 

considerably higher in chamber 4 compared to chamber 8 (gH2O=74 ± 8 versus 32 ± 30 mmol 

m-2 s-1 and A=7.7 ± 0.9 versus 2.9 ± 2.6 µmol m-2 s-1). 
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4. A conceptual model for interpreting δδδδ
18

Ohemicellulose in sedimentary paleoclimate 

archives  

 

Fig. 4: Conceptual diagram illustrating the major factors influencing the oxygen isotopic 

composition of hemicellulose-derived sugar biomarkers.  

 

The above presented results and discussion suggest that plant hemicellulose sugars are 

a valuable recorder of δ18Oleaf water comparable to cellulose. Investigating δ18O of 

hemicellulose-derived sugar biomarkers in soil and sediment archives by applying the method 

proposed by Zech and Glaser (2009) has therefore potential for paleoclimate studies, 

particularly because Zech et al. (2012) found no evidence for degradation effects on 

δ18Ohemicellulose. 

• One major factor influencing δ18Ohemicellulose is the oxygen isotopic composition of the plant 

source water (Fig. 4). Basically, it depends on δ18Oprecipitation which can vary over time due 
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to temperature, amount and/or source effects (Dansgaard, 1964; Rozanski et al., 1993; 

Araguas-Araguas et al., 2000). While it is generally accepted that the uptake of water by 

roots is not associated with a 18O fractionation (Wershaw et al., 1966; Dawson et al., 2002), 

other factors may need careful consideration. For instance, the uptake of ground water 

depleted in 18O by deep rooting plants versus uptake of soil water enriched in 18O by 

evaporation (Fig. 4), seasonality of δ18Oprecipitation (growing season) (see also our companion 

study presented by Tuthorn et al., this issue) or uptake of permafrost meltwater (Sugimoto 

et al., 2002). 

• A second major influencing factor is evapotranspirative 18O enrichment of leaf water (Fig. 

4). It is most rigorously controlled by relative air humidity (Fig. 3A), whereas the direct 

physical effect of temperature on evapotranspirative 18O enrichment is much smaller (Fig. 

3B). However, temperature can indirectly exert influence via plant physiological reactions, 

namely by affecting the transpiration rate which strongly controls δ18Oleaf water due to the 

Péclet effect at least under very arid climatic conditions (Fig. 3C). While this effect is 

highlighted in the here presented climate chamber study with an automatic irrigation 

system, the relevance of the temperature and the Péclet effect in paleoclimate studies where 

water supply is actually often limited is presumably considerably lower than the relevance 

of relative air humidity. This assumption is confirmed by a climate transect study on 

δ18Ohemicellulose of modern topsoils presented in the companion paper by Tuthorn et al. (this 

issue).  

• Thirdly, a biosynthetic 18O fractionation of ~+27‰ (Sternberg et al., 1986; Cernusak et al., 

2003; Gessler et al., 2009) causes newly assimilated sugars and leaf cellulose to be 

systematically enriched in 18O compared to leaf water (Fig. 4). Recently, Sternberg and 

Ellsworth (2011) suggested that the biochemical 18O fractionation during cellulose 

synthesis is not constant but increases a lower temperatures to values of ~+31‰. However, 
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this conclusion is based on the assumption that the percentage of oxygen atoms exchanging 

during cellulose synthesis (pex) is constant and 42%. This assumption may not hold true, 

because although not statistically significant (p=0.10, n=6), there is a clear trend indicating 

that pex is not constant but temperature-dependent (ranging from ~40% to ~45%). 

Calculating the biosynthetic 18O fractionation with the temperature-dependent pex values 

(Table S1 of Sternberg and Ellsworth, 2011) actually does not support the conclusion that 

the biosynthetic 18O fractionation is statistically significant temperature-dependent (p=0.22, 

n=6). 

• Significant input of stem or root-derived hemicelluloses rather than leaf-derived 

hemicelluloses to sedimentary archives results in a dampening of the leaf water 18O 

enrichment signal. This is caused by the above mentioned partial oxygen isotope exchange 

(pex) with xylem water that is not enriched in 18O, during stem (hemi-)cellulose synthesis 

(Fig. 4). 

• First results (this study and Tuthorn et al., this issue) indicate that hemicelluloses are 

slightly enriched compared to cellulose. This points to the loss of a relatively depleted 

oxygen atom attached to C6 during pentose biosynthesis (C6 decarboxylation; Altermatt 

and Neish, 1956; Harper and Bar-Peled, 2002; Burget et al., 2003) and is in agreement with 

the recent finding that about 80% of the oxygen atoms in C6 position are isotopically 

exchanged during cellulose synthesis (Waterhouse et al., 2013). 

• It is worth mentioning that in paleolimnological studies dealing with lacustrine sediments, 

no evapotranspirative 18O enrichment of leaf water has to be considered provided that the 

hemicelluloses are primarily of aquatic origin (Zech et al., accepted). In cases where 

evaporative 18O enrichment of lake water is negligible and lake water resembles 

precipitation, this can largely simplify the paleoclimatic interpretation because then the 
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apparent 18O fractionation between precipitation and the lacustrine δ18Ohemicellulose record 

can be assumed to have been constant (Fig. 4). 

• By contrast, in terrestrial records it will be challenging or even impossible to disentangle 

δ18Oprecipitation variability from possible variability of evapotranspirative 18O enrichment of 

leaf water based on δ18Ohemicellulose records alone. Zech et al. (submitted) therefore suggested 

that the most promising approach in biomarker-based paleohydrology and paleoclimate 

research may be the combination of δ18Ohemicellulose and δ2Hn-alkane records, with n-alkanes 

serving as leaf wax-derived lipid biomarkers. Such a combined approach allows estimating 

the evapotranspirative 18O and 2H leaf water enrichment by using an Craig-Gordon-

modelled evaporation line and thus in turn allows reconstructing δ18Oprecipitation and 

δ2Hprecipitation. 
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Abstract 

The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a 

valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the 

potential to serve as archives recording the isotopic composition of paleoprecipitation. In a 

companion paper (Zech et al., this issue) we investigated δ18Ohemicellulose values of plants 

grown under different climatic conditions in a climate chamber experiment. Here we present 

results of compound-specific δ18O analyses of arabinose, fucose, and xylose extracted from 

modern topsoils (n=56) along a large humid-arid climate transect in Argentina in order to 

answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. 

The results from the field replications indicate that the homogeneity of topsoils with 

regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for 

the field replications are 1.5 ‰, 2.2 ‰ and 1.7 ‰, for arabinose, fucose, and xylose, 

respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar 

trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three 

sugars) do not correlate positively with δ18Oprec (r=-0.54, p<0.014, n=20). By using a Péclet-

modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values 

correlate highly significantly with modeled δ18Oleaf water values (r=0.81, p<0.001, n=20). This 

finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec 

but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to 

evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf 

water is relatively low (~10 ‰) in the humid northern part of the Argentinian transect and 

much higher (up to 19 ‰) in the arid middle and southern part of the transect. Model 

sensitivity tests corroborate that changes in relative air humidity exert a dominant control on 

evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of 

temperature changes is of minor importance. While oxygen exchange and degradation effects 
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seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose 

values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality 

effects, wind effects, and in case of abundant stem/root-derived organic matter input a partial 

loss of the evaporative 18O enrichment of leaf water.  

Overall, our results prove that compound-specific δ18O analyses of hemicellulose 

biomarkers in soils and sediments are a promising tool for paleoclimate research. However, 

disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air 

humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O 

analyses alone. 

 

Keywords: stable oxygen isotopes, hemicellulose biomarkers, sugars, evaporative 

enrichment, plant physiology, paleoclimate  
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1. Introduction 

Stable oxygen isotope (18O/16O) analysis has become one of the most important tools 

in hydrology and paleoclimate research. This is based on the observation that the isotopic 

composition of precipitation (δ18Oprec and δ2Hprec) is mainly controlled by climatic factors 

(Araguas-Araguas et al., 2000; Dansgaard, 1964). Various kinds of archives are studied in 

order to reconstruct the isotopic composition of precipitation and thus to reconstruct 

paleoclimate; for instance speleothems (Cruz et al., 2005; McDermott et al., 2011), ice-cores 

(Dansgaard et al., 1993; Thompson et al., 2005), lake sediments (Sauer et al., 2001; Wissel et 

al., 2008) and plant cellulose (Danis et al., 2006; Li et al., 2011; Loader et al., 2008). 

Recently, Zech and Glaser (2009) and Zech et al. (2013) developed and applied a method 

based on gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Py-IRMS), 

which allows compound-specific δ18O analyses of plant-derived hemicellulose sugar 

biomarkers extracted from soils and sediments. Given that Zech et al. (2012) report absence 

of isotope fractionation during decomposition as well as absence of oxygen exchange 

reactions affecting the δ18O signature of sugar molecules based on experimental findings and 

on theoretical biochemical mechanistic considerations, this method has potential to be applied 

to soil/sedimentary climate archives for paleoclimate research. 

Oxygen atoms of plant-biosynthesized sugars originate from water (Schmidt et al., 

2001). Therefore, like cellulose, hemicelluloses can be expected to reflect the isotopic 

composition of precipitation (Burk and Stuiver, 1981; Gray and Thompson, 1976; Gray and 

Thompson, 1977; Libby et al., 1976). However, it is well acknowledged that δ18Ocellulose is 

additionally strongly influenced by evaporative 18O enrichment of leaf water due to 

transpiration (Barbour et al., 2004; Dongmann et al., 1974; Flanagan et al., 1991; Pendall et 

al., 2005; Roden et al., 2000). The degree of evaporative 18O enrichment of leaf water 
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depends on plant physiological and climatic conditions, such as relative air humidity, 

temperature and transpiration rate. In a companion paper (Zech et al., this issue) we report the 

results of an experimental study based on climate chamber experiments that investigate the 

effect of the above mentioned plant physiological and climate conditions on δ18Ohemicellulose. 

In the study presented here, we take advantage of an Argentinian climate transect in 

order to answer the question “do hemicellulose biomarkers in soils reflect the 18O/16O isotopic 

composition of precipitation?”. Furthermore, we use a Péclet-modified Craig-Gordon 

(PMCG) model to model the isotopic composition of leaf water (δ18Oleaf water) and leaf 

cellulose (δ18Oleaf cellulose) and to test if additional environmental variables influence δ18O 

values of hemicellulose biomarkers. By combining empirical data analyses with the 

mechanistic model simulations we aim to detect and evaluate the dominant climate variables 

influencing δ18Ohemicellulose along the investigated transect and to draw implications for 

paleoclimate studies applying the δ18Ohemicellulose method. 

2. Material and methods 

2.1 Study area and topsoil samples 

The investigated Argentinian transect comprises 20 sampling localities (Fig. 1 and 

Table 1). It ranges from ~32° to 47° southern latitude and covers a large climate gradient with 

warm humid subtropical conditions in the north (Zárate, Buenos Aires Province), pronounced 

arid conditions in the middle part of the transect and cool temperate conditions in the south 

(Bajo Caracoles, Santa Cruz Province). Mean annual temperature and mean annual 

precipitation at the sampling sites range from 11.4 °C to 18.0 °C and from 185 mm year -1 to 

1100 mm year -1, respectively (Fig. 2B) (GeoINTA, 2012). 
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Table 1: Geographical description of the 20 sampling localities, mean (n=3) total organic 

carbon (TOC) contents of the investigated topsoil samples and soil type classification. 

 

  

 Figure 1A depicts that according to the interpolated δ18O estimates retrieved from 

Bowen (2012), δ18Oprec along the investigated transect is characterized by a systematic trend 

towards more negative values in the south. 

The large range of different climatic conditions is reflected in the vegetation zones of 

the study area (Fig. 1B). The northernmost sampling sites are located in the Humid Pampa 

(grasslands featuring a humid-subhumid climate with incipient water excess). Further south, 

the Dry Pampa under subhumid-arid climate forms the transition to the Espinal vegetation 

zone that prevails under semi-arid climate (Burgos and Vidal, 1951). The Low Monte 

vegetation zone prevails in the most arid region of Argentina (total annual precipitation of 100 

– 350 mm) (Fernández and Busso, 1997) and the Patagonian Steppe in the southernmost part 

of the transect under cool-temperate, arid climate (Le Houérou, 1996; Paruelo et al., 1998). 
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Fig. 1: A) Sampling localities along the investigated Argentinian climate transect and 

interpolated δ18O estimates of annual precipitation (from Bowen, 2012). B) Vegetational 

zonation in the study area (from Olson et al., 2001). 

 

During a field campaign in March and April 2010, a total of 56 mixed topsoil (A 

horizon) samples from maximum 51 cm depth were taken from the 20 sampling localities. 

Sampling in triplicates (duplicates for locations No. 1 and 18 – 20) at a distance of ~100 m 

was conducted in order to investigate possible topsoil heterogeneities at each sampling 

locality. The soil samples were air-dried in the field and later dried in an oven at 50 °C. 

2.2 Compound-specific δ
18

O analyses of the hemicellulose sugar biomarkers 

Extraction and purification of the hemicellulose sugars from grinded soil samples was 

performed according to the method described by Amelung et al. (1996) and Zech and Glaser 

(2009). Accordingly, 4M trifluoroacetic acid (TFA) was used at 105 °C for 4 h in order to 
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liberate the monosaccharides from hemicelluloses and other non-cellulose polysaccharides. 

The extracted monosaccharides were filtered through glass fibre filters and purified using 

XAD columns to remove dissolved humic substances and Dowex cation exchange columns to 

remove cations like iron and also amino sugars. After freeze drying, the samples were 

dissolved in pyridine and derivatised with methylboronic acid (MBA) (Knapp, 1979). The 

originally included second derivatization step with bis(trimethylsilyl)trifluoroacetamide 

(BSTFA), which is necessary for derivatising the remaining hydroxyl groups of hexoses, was 

skipped because no reproducible derivatization results were found in previous studies (Zech 

and Glaser, 2009). For the investigated pentoses arabinose and xylose, as well as for the 

deoxyhexose fucose, the MBA derivatization ensures that no foreign oxygen is additionally 

introduced and that each sugar yields only one peak in the chromatograms. Rhamnose was 

present in too low concentrations in most samples and could therefore not be evaluated. 

The compound-specific δ18O measurements were performed on a GC-Py-IRMS 

system for which a Trace GC 2000 gas chromatograph (Thermo Fisher Scientific, Bremen, 

Germany) was coupled to a Delta plus isotope ratio mass spectrometer (Thermo Fisher 

Scientific) via a pyrolysis reactor and a GC/TC III interface (Thermo Fisher Scientific). 

Oxygen from the analytes was converted ‘online’ into carbon monoxide (CO) in the pyrolysis 

reactor (Thermo Fisher Scientific) which was preconditioned with iso-octane in order to 

ensure C surplus in the reactor and full conversion of oxygen in CO. δ18O measurements were 

carried out on CO by monitoring the ion currents at m/z 28, 29 and 30. For further details on 

the principle of compound-specific δ18O analyses, the reader is referred to Zech et al. (2011). 

The Argentinian sample batches were measured at least in quadruplicate replication with 

batches of external sugars standard concentration series being measured in-between. This 

procedure ensures compliance with the principle of “Identical Treatment” (PIT) of samples 

and standards (Werner and Brand, 2001) and allows checking and correcting if necessary for 
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an amount dependence of the δ18O measurements. The hydrolytically introduced oxygen 

atoms in C1 position of the sugars are mathematically corrected as described in Zech and 

Glaser (2009). 

All δ18O results presented in the following are expressed in the δ notation as per mil 

(‰) deviation from the internationally accepted standard according to the equation (Eqn. 1): 

 

δ = (Rsample – Rstandard)/Rstandard              (Eqn. 1), 

 

where Rsample and Rstandard are the isotope ratio (18O/16O) in the sample and the Vienna 

Standard Mean Ocean water (V-SMOW), respectively. Mean standard errors for all δ18O 

measurements (56 samples done in quadruplicate to fivefold replication) of arabinose, fucose 

and xylose were 0.57 ‰, 0.71 ‰ and 0.41 ‰, respectively. Rhamnose was excluded from 

data evaluation because the respective peaks in the chromatograms were either too low to be 

evaluated reliably or not detected at all. 

2.3 Péclet-modified Craig-Gordon model simulations 

As mentioned above, leaf water is typically enriched in 18O compared to the source 

water of plants due to evapotranspiration. This process is primarily driven by the water vapor 

pressure of the atmosphere (ea), air temperature (Tair), the isotopic composition of atmospheric 

water vapor (δ18Oprec) (Kahmen et al., 2011) and in addition by different plant physiological 

variables (e.g. leaf temperature and transpiration) (Barbour, 2007; Farquhar et al., 2007). The 

18O enrichment of leaf water through evapotranspiration can be predicted by using a 

mechanistic model originally developed for fractionation processes of water surfaces by Craig 

and Gordon (1965) and adapted for plants by Dongmann et al. (1974) and subsequently 

Farquhar and Lloyd (1993). 
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The model allows estimating δ18Oleaf water according to Eqn. 2  

 

δ
18Oleaf water = ∆18Oleaf water + δ18OSW      (Eqn. 2), 

 

where ∆18Oleaf water is the bulk leaf water evaporative enrichment and δ18OSW is the oxygen 

isotope composition source or xylem water. ∆18Oleaf water can be calculated as follows: 
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18        (Eqn. 3). 

 
∆

18Oe is the evaporative enrichment of leaf water above the plant’s source water in 18O 

at the sites of evaporation and is calculated as follows: 
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e
OO εεε −∆++=∆ + 1818        (Eqn. 4), 

where ε+ is the equilibrium fractionation between liquid water and vapor at the air-water 

interface (Botinga and Craig, 1969), εk is the kinetic fractionation, ∆18Owv is the isotope 

composition of water vapor and ea/ei is the ratio of ambient to intercellular vapor pressures 

(Craig and Gordon, 1965). The Péclet effect accounts for flux of source water entering the 

leaf through the transpiration flow opposed by backward diffusion of isotopically enriched 

water (Farquhar and Lloyd, 1993). The Péclet number was determined as follows:  

  

 ℘ = EL/CD          (Eqn. 5), 

 

where E is the transpiration rate, L is effective path length, C is the molar concentration of 

water and D is the diffusivity of H2
18O. Transpiration rate was calculated using relative 
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humidity, air temperature and atmospheric pressure at each sampling site and mean stomatal 

conductance of 0,15 mol/m2/s. For L we used an average value of 20 mm that we kept 

constant across the transect. A L-value of 20 mm reflects an average value based on reports 

for a large number of species in the literature (Kahmen et al., 2008; Kahmen et al., 2009; 

Song et al., 2013). 

Under field conditions, ea, Tair and δ18Oprec are primary climatic drivers of the model 

with additional influences of secondary variables (O-isotope composition of source water, O-

isotope composition of water vapor, leaf temperature, rates of stomatal conductance to water 

vapor loss and transpiration) (Craig and Gordon, 1965; Cuntz et al., 2007; Dongmann et al., 

1974; Farquhar and Cernusak, 2005; Kahmen et al., 2011; Kahmen et al., 2008). Functional 

relationships between primary and secondary variables were analyzed and optimized by 

Kahmen et al. (2011), which reduces the necessary model input data to the primary variables. 

An isotopic equilibrium between precipitation and water vapor was assumed in order to 

calculate δ18OWV (included in Eqn. 4) and subsequently leaf water evapotranspirative 

enrichment. For our simulations, the primary drivers (ea, Tair and δ18Oprec) for the 20 sites were 

obtained from Bowen (2012) or GeoINTA (2012). 

3. Results and discussion 

3.1 Compound-specific δ
18

O values of the hemicellulose biomarkers 

The δ18O values obtained for arabinose, fucose and xylose range from 35.3 – 43.6 ‰, 

34.1 – 42.3 ‰ and 33.7 – 40.8 ‰, respectively, and reveal systematic trends over the 

investigated transect (Table 2 and Fig. 2A). 
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Table 2: Compound-specific δ18O results for the hemicellulose biomarkers arabinose, fucose 

and xylose. Standard deviations are given for the field replications. δ18O values of annual 

precipitation were retrieved from The Online Isotopes in Precipitation Calculator (Bowen, 

2012). 

 

 

The northern sampling sites are characterized by the lowest δ18Ohemicellulose values 

whereas δ18Ohemicellulose maxima characterize the middle and southernmost part of the transect. 

Standard deviations for the field replications are 1.5 ‰, 2.2 ‰ and 1.7 ‰, for arabinose, 

fucose and xylose, respectively. This finding suggests that the overall homogeneity of topsoils 

with regard to δ18Ohemicellulose is high. As an exception, the mean standard deviation for fucose 

at the sampling site 18 and the mean standard errors for all three hemicelluloses at the 

sampling sites 19 and 20 are higher with up to 6.4 ‰, indicating lower homogeneity of the 

topsoil replications.  

The δ18O values (in the following we refer to the means of the field replications) of all 

three hemicellulose sugar biomarkers are highly significantly correlated with each other, 

especially arabinose and xylose (r=0.96, p<0.001, n=20). Slightly but systematically more 

positive δ18O values of arabinose (Table 2 and Fig. 2A) compared to xylose were also 
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reported in our companion paper (Zech et al., this issue) but not by Zech and Glaser (2009) 

and Zech et al. (2013; 2012). Both pentoses (arabinose and xylose) are biosynthesized in 

plants by the decarboxylation of the C6 carbon atoms from glucose (Altermatt and Neish, 

1956; Burget et al., 2003; Harper and Bar-Peled, 2002). Given that arabinose is an epimerase 

product of xylose, more positive δ
18O values of arabinose could reflect a biosynthetic 

fractionation. 

3.2 Comparison of δ
18

Ohemicellulose results with δ
18

Oprec 

 

Fig. 2: A) Comparison of measured δ18Ohemicellulose values of arabinose, fucose, and xylose 

extracted from topsoils along the Argentinian climate transect with modeled δ18Oprec, δ
18Oleaf 

water, δ
18Ostem cellulose, and δ18Oleaf cellulose. B) Mean annual precipitation and temperature 

characterizing the investigated sampling sites. 
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The δ18O values of annual precipitation retrieved from The Online Isotopes in 

Precipitation Calculator (Bowen, 2012), calculated from a global data set according to an 

algorithm published by Bowen and Revenaugh (2003), reveal a systematic trend ranging from 

-5 ‰ in the north to -11.7 ‰ in the south (Table 2 and Fig. 2A). This trend most likely 

reflects the “temperature effect” on δ18Oprec (Dansgaard, 1964). Since oxygen in 

hemicelluloses, like in cellulose, originates from plant water (e.g. Schmidt et al., 2001) and 

thus ultimately from precipitation, δ18Oprec values represent without doubt an important 

variable influencing δ18Ohemicellulose values. One might thus expect hemicellulose biomarkers in 

soils to reflect δ18Oprec. However, in our study the weighted mean δ18O values of arabinose, 

fucose and xylose are negatively correlated with δ18Oprec (r=-0.54, p<0.014, n=20) and do not 

reflect δ18Oprec along the transect. 

3.3 Relative air humidity as important controlling factor on δ
18

Oleaf water and 

δ
18

Ohemicellulose along the investigated Argentinian transect 

The above finding highlights that in addition to δ18Oprec another variable exerts an 

important control on δ18Ohemicellulose. Indeed, amongst plant physiologists it is well known that 

evapotranspiration results in an 18O enrichment of leaf water and that this signal is 

incorporated in newly assimilated sugars and in leaf- and stem cellulose (Barbour, 2007; 

Farquhar et al., 2007; Flanagan et al., 1991; Kahmen et al., 2011; Roden et al., 2000). As 

well, our experimental investigations presented in the companion paper (Zech et al., this 

issue) report that δ18Ohemicellulose reflect slightly dampened the climatically controlled 

evapotranspirative 18O enrichment of leaf water. Several climatic and plant physiological 

variables such as relative air humidity, temperature and transpiration rate influence the degree 

of evaporative 18O enrichment of leaf water. 
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In order to evaluate the effect of air temperature and relative air humidity on 

δ
18Ohemicellulose, a Péclet-Modified Craig-Gordon Model was used to model δ18Oleaf water along 

the investigated Argentinian transect and to conduct sensitivity tests. Modeled results for 

δ
18Oleaf water with ea, Tair and δ18Oprec values from GeoINTA (2012) and Bowen (2012) are 

shown in Fig. 2A. Accordingly, the general δ18Oprec trend towards more negative values from 

north to south is not reflected in modeled δ18Oleaf water. Rather, the modeled δ18Oleaf water values 

correlate highly significantly with the measured δ18Ohemicellulose values (r=0.81, p<0.001, 

n=20), corroborating that our hemicellulose biomarker results reflect δ18Oleaf water, i.e. δ18Oprec 

altered by evaporative 18O enrichment during transpiration rather than δ18Oprec alone. 

Leaf water δ18O is driven in model simulations by three primary variables; 

temperature, relative humidity and δ18Oprec. To test if leaf water is more sensitive to relative 

humidity or temperature, we performed a sensitivity analysis with the model where mean 

annual humidity and mean annual Tair were varied by 10 and 20 % and by 2.5 and 5.0 °C (Fig. 

3). These model sensitivity tests demonstrate that reasonable changes in relative humidity 

strongly influence δ18Oleaf water resulting in shifts of 12.8 – 14.0 ‰ depending on the sampling 

site, whereas changes in Tair have only a marginal effect in the range of 0.5 – 1.2 ‰ on 

δ
18Oleaf water. The same was observed in a previous study for alpha cellulose (Kahmen et al., 

2011) and in our chamber experiments presented in the companion paper for hemi celluloses 

(Zech et al., this issue). Given the large relative air humidity gradient prevailing along the 

investigated Argentinian transect (ranging from 48.0 to 73.2 %), this finding helps to explain 

why δ18Ohemicellulose values do not reflect δ18Oprec values. Evaporative 18O enrichment of leaf 

water is relatively low (~10 ‰) in the humid northern part of the transect and high (up to ~19 

‰) in the arid middle and southern part of the transect (Fig. 2A). 
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Fig. 3: Model sensitivity tests based on a Péclet-modified Craig-Gordon model (Kahmen et 

al., 2011) showing the dependency of δ18Oleaf water on relative air humidity and temperature 

changes. 

 

3.4 Comparison between measured δ
18

Ohemicellulose and modeled δ
18

Ocellulose values 

Based on the notion that δ18O values of primary assimilates (glucose and ultimately 

sucrose) are approximately 27 ‰ more enriched compared to leaf water (Sternberg et al., 

1986; Yakir and DeNiro, 1990), the PMCG model also allows calculating values for δ18Oleaf 

cellulose and δ18Ostem cellulose by accounting for 40 % of exchangeable oxygen atoms during 

cellulose formation with leaf water (for leaf cellulose) and xylem water (for stem cellulose) 
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(Roden et al., 2000). Calculated values represent the maximum possible difference between 

leaf and stem cellulose. The modelling results range from 31.14 ‰ to 37.70 ‰ and 25.85 ‰ 

to 30.18 ‰ for δ18Oleaf cellulose and δ18Ostem cellulose, respectively, and show weaker 18O 

enrichment than the measured δ18Ohemicellulose values (Fig. 2A). We acknowledge that the 

measured δ18Ohemicellulose values reflect a mixture of leaf and stem/root organic matter. 

Stem/root (hemi)celluloses are depleted in 18O compared to leaf (hemi)celluloses because 

approximately 40 % of the O atoms during stem cellulose synthesis are exchanging with not 

enriched stem water (Sternberg et al., 1986). Hence, it can be expected that varying input of 

leaf vs. stem/root (hemi)celluloses results in varying δ18O (hemi)cellulose values in soils. In 

fact, modeled stem cellulose is depleted in 18O by approximately 7 ‰ compared to modeled 

leaf cellulose (Fig. 2A). While it is difficult to address the question leaf- versus stem-derived 

qualitatively at the current state of research, based on the model simulations we would 

consider that leaf input in soil organic matter along here investigated transect is greater 

compared to stem/root input.  

The observed systematic offset between modeled cellulose and measured 

hemicellulose values might be attributed to inaccurate model input variables. Neither relative 

air humidity, nor temperature nor the isotopic composition of atmospheric water vapor 

(δ18Oprec) are actually measured values but interpolated values from GeoINTA (2012) and 

from Bowen (2012). For the interpolated δ18Oprec values used in the PMCG model, Bowen 

and Revenaugh (2003) show a confidence intervals (95 %) ranging from 0.2 to 1.2 ‰. 

Furthermore, evaporative 18O enrichment of soil water is not considered in the model results 

and can potentially cause a considerable positive offset of the actual δ18Ohemicellulose values. 

The companion experimental study by Zech et al. (this issue) has also reported more 

positive δ18Ohemicellulose compared to δ18Ocellulose values. This feature can possibly be attributed 

to position-specific δ18O differences of oxygen atoms in glucose molecules forming (hemi-) 



Study 3 
___________________________________________________________________________ 
 

90 
 

cellulose. Sternberg et al. (2006) reported that the fractionation factor for the oxygen atoms in 

C2 position is 19.6 ‰, while for the oxygen atoms associated with the carbon atoms C3-C6 it 

is on average 28.8 ‰. Since pentoses are biosynthesized by the decarboxylation of the C6 

carbon atoms from glucose (Altermatt and Neish, 1956; Burget et al., 2003; Harper and Bar-

Peled, 2002), more positive δ18Ohemicellulose values would indicate that the oxygen atoms in C6 

position of glucose building up cellulose are isotopically depleted compared to the average of 

the oxygen atoms in position C2 – C5. This is in agreement with recent study by Waterhouse 

et al. (2013) indicating that oxygen atoms at C6 position undergo around 80 % exchange with 

medium water during heterotrophic cellulose synthesis. 

Finally, two additional factors may help explaining the increased offset between 

measured δ18Ohemicellulose and modeled δ18Ocellulose values characterizing the three southernmost 

sampling sites (18-20). First, while modeling is carried out with mean annual climate values, 

the growing season (when biosynthesis of hemicelluloses actually occurs) for these sites does 

not coincide with the months when precipitation falls, i.e. during the winter months (Jobbágy 

et al., 2002). Taking this seasonality effect into account, the PMCG model yields by 1-2 ‰ 

more positive δ18Ocellulose values. Second, Patagonia is characterized by dry westerly winds 

(foehn) (Beltrán, 1997), which presumably additionally contribute to higher evaporative 18O 

enrichment of leaf water. 

4. Conclusions and implications for paleoclimate studies 

Investigating the compound-specific δ18O values of hemicellulose sugar biomarkers of 

modern topsoils along a climate transect in Argentina allows drawing conclusions, which 

have implications for the interpretation of δ18O values of hemicellulose sugars derived from 

paleosols for the reconstruction of climate history. 
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• Although oxygen in hemicelluloses derives from water and thus ultimately from 

precipitation, the hemicellulose biomarkers arabinose, fucose and xylose do not simply 

reflect δ18Oprec but rather δ18Oleaf water. The correlation between measured δ18Ohemicellulose 

and modeled δ18Oleaf water is highly significant (r=0.81, p<0.001, n=20). 

• This finding can be attributed to the evaporative 18O enrichment of leaf water during 

transpiration. Model sensitivity tests using a Péclet-modified Craig-Gordon (PMCG) 

model corroborate that relative air humidity is a very rigorous climate parameter 

influencing δ18Oleaf water, whereas temperature is of minor importance.  

• While oxygen exchange and degradation effects on δ18O values of hemicelluloses sugar 

biomarkers seem to be negligible (Zech et al., 2012), further effects that need to be 

considered when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are 

evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of 

abundant stem/root-derived organic matter input a partial loss of the evaporative 18O 

enrichment of leaf water. 

• Overall, our Argentinian climate transect study is in agreement with an experimental study 

conducted on plant material from a climate chamber experiment presented in the 

companion paper (Zech et al., this issue). Our results corroborate the conceptual model 

proposed by Zech et al. (this issue) for interpreting δ18Ohemicellulose results in paleoclimate 

studies (Fig. 4). 
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Fig. 4: Conceptual diagram illustrating the major factors influencing the oxygen isotopic 

composition of hemicellulose sugar biomarkers (from Zech et al., this issue). 
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Abstract 

The δ2H isotopic composition of leaf waxes is used increasingly for paleohydrological 

and -climate reconstructions. However, it is challenging to disentangle past changes in the 

isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf 

water. For this study, we analyzed δ2H on n-alkanes and fatty acids in topsoils along a transect 

spanning a climate gradient in Argentina, for which we had previously measured δ18O on 

plant-derived sugars. Our results indicate that leaf wax biomarker δ2H values (δ2Hlipids) 

primarily reflect δ2Hsource water (precipitation), but are modulated by evapotranspirative 

enrichment. A mechanistic model is able to produce the main trends in δ2Hlipids along the 

transect, but seems to slightly underestimate evapotranspirative enrichment in arid regions 

and overestimate it in grass-dominated ecosystems. 

Assuming constant biosynthetic fractionation, and combining δ2H of lipids and δ
18O of 

plant-derived sugar biomarkers, the isotopic composition of leaf water can be calculated. This 

also yields the deuterium excess (d-excess), which mainly reflects evapotranspirative 

enrichment, and can be converted to relative air humidity (RH). The high correlation with 

measured RH, as well as the good agreement between reconstructed and actual δ2H and δ18O 

of precipitation along the transect lends support for our approach and highlights the value of 

combined δ
2H and δ18O measurement of lipid and sugar biomarkers for paleoclimate research. 

Future studies are needed to evaluate the biosynthetic fractionation factors, the degree of soil 

water enrichment, seasonality, and the role of grasslands. 

 

Keywords: paleoclimate proxies, hemicellulose sugars, n-alkanes, leaf water enrichment, 

deuterium-excess, relative air humidity. 
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Highlights 

• Leaf wax lipids reflect δ2H of precipitation and evapotranspirative enrichment  

• Combining δ2H and δ18O from lipids and sugars yields d-excess of leaf water 

• d-Excess of leaf water is a promising novel proxy for relative air humidity 

• δ
2Hprec and δ18Oprec can also be reconstructed by combining both biomarker proxies 
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1. Introduction  

Long chain n-alkanes and fatty acids are important components of the epicuticular leaf 

waxes of terrestrial plants (Eglinton, 1967). As leaf waxes can be preserved in sedimentary 

archives over a long time (Radke et al., 2005; Samuels et al., 2008), they can serve as 

valuable biomarkers for paleo-environmental and -climate reconstructions (Eglinton and 

Eglinton, 2008; Zech et al., 2011). The δ2H isotopic composition of leaf waxes is of particular 

interest in this regard, because, at least to a first order, it reflects the isotopic composition of 

precipitation (Sauer et al., 2001; Sachse et al., 2004; Rao et al., 2009), which in turn depends 

on temperature, humidity, atmospheric circulation, etc. (Gat, 1996; Araguas-Araguas et al., 

2000). While there is probably no fractionation of hydrogen isotopes during water uptake by 

the roots (Ehleringer and Dawson, 1992), several studies have shown that leaf water is 

enriched in 2H compared to the source water or precipitation (Flanagan et al., 1991; Yakir, 

1992; Sachse et al., 2006; Smith & Freeman, 2006; Farquhar et al., 2007; Feakins & Sessions, 

2010). This 2H enrichment, which is also recorded in the leaf waxes, can be explained by 

evapotranspiration and is mainly controlled by relative air humidity (RH), temperature and the 

isotopic composition of atmospheric water vapor. Potential variations in the degree of 

evapotranspirative enrichment in the past can make it challenging to reconstruct the isotopic 

composition of paleoprecipitation from δ2H biomarker records alone.  

Compound-specific δ2H of lipid biomarkers, especially n-alkanes due to their good 

preservation, are already widely applied in paleoclimate and -hydrological research (Sauer et 

al., 2001; Schefuss et al., 2005; Pagani et al., 2006; Tierney et al., 2008; Zech et al., 2013c). 

Comparison of δ2Hn-alkanes with δ2Hfatty acids in such research is hardly done so far but may 

provide additional merits of using fatty acids as an alternative to n-alkanes. Similarly, 

compound-specific δ18O analyses of sugars remain in their infancy, yet hold significant 
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promise (Hener et al., 1998; Juchelka et al., 1998; Werner, 2003; Jung et al., 2005; Jung et 

al., 2007; Greule et al., 2008; Zech & Glaser, 2009; Zech et al., 2012). Similar to leaf waxes, 

hemicellulose-derived sugars record the isotopic composition of water used for metabolism, 

i.e. the isotopic composition of precipitation altered by evapotranspirative 18O enrichment of 

soil and leaf water (Zech et al., 2013b). Hemicellulose residues can persist in soils (Zech et 

al., 2012), and combined plant wax δ2H and hemicellulose sugar δ18O measurements offer the 

potential of reconstructing the deuterium excess of leaf water. The d-excess quantifies the 

isotopic deviation of water from the Global Meteoric Water Line (GMWL) and may serve as 

valuable proxy for evapotranspirative enrichment and RH.  Furthermore, if leaf water values 

are defined in a δ2H-δ18O diagram, by using a leaf water evaporation line (EL) sugar and n-

alkane isotopic information may enable reconstruction of the isotopic composition of 

precipitation in paleohydrological studies (Zech et al., 2013a). 

This study describes the application of a combined δ2H and δ
18O biomarker approach 

to modern topsoils sampled along a climate transect in Argentina. The aims of this 

investigation are to  

(i) compare the δ2H values of n-alkanes with those of fatty acids, modeled n-alkane δ2H 

values and δ18O values of sugars and evaluate the dominant climate factors influencing these 

values,  

(ii) reconstruct d-excess using δ2H values of n-alkanes and δ18O values of sugars and assess 

the potential of reconstructed d-excess of leaf water as paleoclimate proxy for RH, and  

(iii) evaluate the potential of the combined δ18O and δ2H biomarker approach to reconstruct 

the isotopic composition of precipitation. 
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2. Material and methods 

2.1 Transect description and samples 

The investigated transect in Argentina spans from ~32°S to 47°S, and encompasses 20 

sampling localities spanning a large climate and altitudinal (22 – 964 m) gradient (Fig. 1).  

 

Fig. 1: Sampling localities along the investigated transect in Argentina. The colors illustrate 

the gradient in δ2Hprec, and mean annual temperature and precipitation are shown below. 
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Mean annual temperature ranges from 11.4 °C to 18.0 °C and mean annual 

precipitation from 185 mm to 1100 mm. Precipitation shows a systematic southward trend 

towards more negative δ18O and δ2H values (δ18Oprec  and δ2Hprec, respectively) (Bowen, 2012; 

GeoINTA, 2012). The transect is described in detail by Tuthorn et al. (2014). Briefly, it is 

characterized by warm humid subtropical conditions in the north (Zárate, Buenos Aires 

Province), pronounced arid conditions in the middle part of the transect and cool temperate 

conditions in the south (Las Heras, Santa Cruz Province). These markedly contrasting climate 

conditions are reflected in the vegetation zones of the study area, changing from Humid/Dry 

Pampa in the north to the Espinal vegetation zone that prevails under semi-arid climate 

(Burgos and Vidal, 1951), Low Monte semidesert/desert in the most arid region of Argentina 

(Fernández and Busso, 1997), and Patagonian Steppe in the southernmost part of the transect 

(Le Houérou, 1996; Paruelo et al., 1998). 

During a field campaign in March and April 2010, mixed topsoil samples (Ah-

horizons) were collected from the 20 sample sites along the transect. The soil samples were 

air-dried in the field and later in an oven at 50°C. 

2.2 Compound-specific δ
2
H analyses of n-alkanes and fatty acids 

For δ2H analyses of n-alkane and fatty acid biomarkers, an Accelerated Solvent 

Extractor (Dionex ASE 200) was used to extract free lipids from the dried soil samples with 

dichloromethane (DCM) and methanol (MeOH; 9:1). The total lipid extracts were separated 

over pipette columns filled with ~2 g aminopropyl. n-Alkanes were eluted with hexane, more 

polar lipids with DCM:MeOH (1:1), and free fatty acids with diethyl ether:acetic acid (19:1). 

The n-alkanes were further purified using zeolite (Geokleen) pipette columns. The zeolite was 

dried and dissolved in HF after eluting branched- and cyclo-alkyl compounds with hexane, 

and the straight-chain (n-alkyl) compounds were then recovered by liquid-liquid extraction 
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with hexane. For samples 1 – 12, an additional purification step with silver nitrate columns 

was carried out in order to eliminate unsaturated compounds.  

Fatty acids were methylated using 5% HCl in methanol at 80°C for 12 hours. 

Subsequently, liquid-liquid extraction with 5% NaCl and hexane was used to retrieve fatty 

acid methyl esters (FAMEs). FAMEs were purified by elution with dichloromethane over 

SiO2 columns (~2 g). 

5α androstane and hexamethylbenzene was used for quantification of the compounds 

on an Agilent Technologies 7890A gas chromatograph (GC) equipped with a VF1 column (30 

m, 0.25 mm i.d.,, 0.25 µm film thickness) and a flame ionization detector (FID). Compound-

specific δ2H values of the long-chain n-alkanes and FAMEs were determined based on at least 

triplicate analyses on a gas chromatograph-pyrolysis-isotope ratio mass spectrometer (GC-

pyrolysis-IRMS, Delta V, ThermoFisher Scientific, Bremen, Germany). The A4 standard 

mixture (provided by Arndt Schimmelmann, Indiana University, USA) was run three times 

per sequence at three different concentrations. All results are reported after normalization 

using multi-linear regression (Paul et al., 2007) and simple mass-balance correction of the 

FAMEs for the isotopic composition of the methanol used for derivatisation. Long-term 

precision of the analyses was monitored using a laboratory standard (oak, n-C29). The 

standard was analyzed in every sequence and yielded a mean value of -147.2 with a standard 

deviation of ± 1.7 ‰ across all sequences run for this study.   

2.3 Modeling of leaf water 
2
H enrichment 

The 2H enrichment of leaf water due to evapotranspiration can be predicted by using 

mechanistic models originally developed for isotope fractionation processes associated with 

evaporation from water surfaces by Craig and Gordon (1965). These models were adapted for 

plants by Dongmann et al. (1974) and subsequently Farquhar and Lloyd (1993). Evaporative 
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enrichment of the leaf water (∆2He) at the evaporative surface in the mesophyll is given by the 

equation:  

( )
i

a

kWVke
e

e
HH εεε −∆++=∆ + 22 ,      (Eqn. 1) 

where ε+ is the equilibrium fractionation between liquid water and vapor at the air-water 

interfaces (Bottinga and Craig, 1969), εk  is the kinetic fractionation during water vapor 

diffusion from leaf intercellular air space to the atmosphere, ∆2HWV is the isotopic difference 

of the water vapor and the source water, and еa/еi is the ratio of ambient to intercellular vapor 

pressure (Craig and Gordon, 1965). This basic calculation was modified by including a Péclet 

effect that accounts for opposing fluxes of source water entering the leaf through the 

transpiration flow and the back-diffusion of isotopically enriched water from the sites of 

evaporation (Farquhar and Lloyd, 1993): 

( )
CDEL

eH
H e

leafwater /

12
2

−℘−∆
=∆ .       (Eqn. 2) 

The quotient of EL/CD represents the Péclet number (℘ ) where E is the transpiration 

rate, L is the effective path length, C is the molar concentration of water and D is the 

diffusivity of 2H2O. The approach we used for our estimates of 2H enrichment of leaf water 

followed that of Kahmen et al. (2011b), where the Péclet-modified Craig Gordon model is 

reduced to three input variables: air temperature, atmospheric vapour pressure and source 

water δ2H. This simplified model is based on the assumption that leaf temperature equals air 

temperature and that atmospheric vapor δ2H is in equilibrium with source water δ2H (Kahmen 

et al. 2011b). Transpiration rate is estimated using relative humidity and air temperature 

(retrieved from GeoINTA, 2012) and atmospheric pressure at each sampling site and 

assuming a mean stomatal conductance of 0.15 mol/m2/s. Based on reports for a large number 

of species in the literature (Kahmen et al., 2008; Kahmen et al., 2009; Song et al., 2013), we 

used an average value of 20 mm for L and kept it constant across the transect. For our 
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simulation of leaf water δ2H values we obtained the model input variables air temperature, 

atmospheric vapor pressure and source water δ2H from GeoINTA (2012) and Bowen (2012). 

The isotopic composition of the leaf water can be estimated according to Eqn. 3: 

 

δ
2Hleaf water = ∆2Hleaf water + δ2HSW      (Eqn.3), 

 

where ∆2Hleaf water is the bulk leaf water evaporative enrichment and δ2HSW is the hydrogen 

isotope ratio of source/xylem water. 

3. Results and Discussion 

3.1 Comparison of δ
2
Hn-alkanes and δ

2
Hfatty acids  

The C29 and C31 n-alkane homologues were sufficiently abundant in all samples to be 

measured for their hydrogen isotopic composition. The δ2H values range from -155 to -222 ‰ 

and reveal a similar trend between n-C29 and n-C31 along the investigated transect (Table 1 

and Fig. 2). While the northern and middle part of the transect is characterized by relatively 

high δ
2H values (~ -160 ‰), the southern part of the transect is characterized by considerably 

more negative δ2H values (~ -210 ‰). 

The δ2H values of the fatty acids n-C22, n-C24, n-C26, n-C28 and n-C30 range from -128 

to -225 ‰ (Table 1 and Fig. 2). Interestingly, the longer homologues n-C28 and n-C30 are 

systematically enriched by a few per mil compared to the n-alkanes. Reasons for this trend 

remain vague at this point, but may be relate to metabolic pathways, seasonal differences in 

homologue production, or differences in homologue sources. Roots, for example, have also 

been suggested as a source of long-chain n-fatty acids (Bull et al., 2000). Shorter homologues, 

for have been suggested to be not only plant-derived, but also of bacterial origin (Matsumoto 
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et al., 2007; Bianchi and Canuel, 2011). Similarly, soil microbial overprinting of long chain 

n-alkanes and fatty acids cannot be excluded (Nguyen Tu et al., 2011; Zech et al., 2011).  

 

Table 1: δ
2H values of individual leaf wax n-alkanes and fatty acids. Measurements were 

carried out in at least triplicate (sd = standard deviation). 

 

 

There is a good overall agreement between the n-alkanes and the fatty acids (R=0.96, 

p<0.001, n=20; for the weighted means), both showing much more negative δ2H values in the 

south than in the northern and middle portions of the transect (Table 1, Fig. 2). The consistent 

δ
2H pattern revealed by the n-alkanes along the north-south climate transect does not solely 

reflect the δ2H isotopic composition of precipitation, with δ2H of the fatty acids exhibiting 

similar behavior. Especially in the middle part of the transect, δ2H of the lipid biomarkers 

shows a pronounced offset (Fig. 3). Given that n-alkanes are considered to primarily reflect 

leaf signals and are most widely applied in paleoclimate and paleohydrological studies, we 

will principally refer to δ2H of long chain n-alkanes in further discussion and calculations. 
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Fig. 2: Comparison of δ2H results of individual leaf wax n-alkanes and n-alkanoic (fatty) 

acids along the investigated transect. 

 

3.2 Evapotranspirative 
2
H enrichment of leaf water  

Assuming a constant biosynthetic fractionation of -160 ‰ for the n-alkane and fatty 

acids biosynthesis in plants (Sessions et al., 1999; Sachse et al., 2006), we estimate the 

isotopic composition of leaf water using our n-alkane and fatty acids δ2H values along the 

transect/gradient (Fig. 3). Note that an average biosynthetic fractionation factor of ~-200 ‰ 

was reported by Sessions et al. (1999) for short- and mid-chained fatty acids synthesized 

mostly by unicellular/multicellular marine alge. By contrast, there are hardly any biosynthetic 

fractionation factors reported for long-chained fatty acids of higher plants. Given that our δ2H 
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n-alkanes and fatty acids values are very similar, using a biosynthetic fractionation factor of -

160 ‰ for both lipids seems appropriate. 

 

Fig. 3: Comparison of measured δ2Hn-alkanes (weighted mean of n-C29 and n-C31) and δ2Hfatty 

acids (weighted mean of n-C22, n-C24, n-C26, n-C28, and n-C30), inferred isotopic composition of 

leaf water, and δ2Hprec (Bowen, 2012). 

 

Estimated leaf water δ2H values suggest a pronounced 2H enrichment of leaf water 

compared to precipitation (up to +62 ‰). This finding highlights the role of aridity for 

evapotranspiration and isotopic enrichment of leaf waxes, in good agreement with prior 

studies (Sachse et al., 2006; Feakins and Sessions, 2010; Douglas et al., 2012; Kahmen et al., 

2013a).   
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Figure 4 illustrates the overall good agreement between δ2Hleaf water values inferred 

from the measured n-alkanes and fatty acids, and δ2Hleaf water values calculated using the 

Peclet-modified Graig-Gordon model. The correlations are highly significant (r=0.88, 

p<0.001, n=20, for n-alkanes and r=0.93, p<0.001, n=20 for fatty acids), suggesting that the 

model correctly implements the most relevant processes related to evapotranspirative 

enrichment of leaf water. While predicting the overall trend in leaf water δ2H along the 

transect with reasonable accuracy, the model does not capture site-to-site excursions in the n-

alkane-derived leaf water δ2H values from this overall trend. Additional influences that are 

not captured by the model, such as evaporative 2H enrichment of soil water can possibly 

explain the underestimation of the modeled δ2Hleaf water values in the middle part of the transect 

(Fig. 4). In contrast, the model might overestimate δ
2Hleaf water in the northern and the southern 

part of the transect. The corresponding ecosystems, the Humid Pampa and the Patagonian 

Steppe, respectively, are grasslands, whereas the middle part of the transect is dominated by 

shrubland. Grass-derived lipids have been shown to be less strongly affected by 

evapotranspirative leaf water enrichment than those of trees or shrubs (McInerney et al., 

2011; Yang et al., 2011; Sachse et al., 2012; Kahmen et al., 2013b), and hence the 

overestimation of the model may be due to plant species effects (Pedentchouk et al., 2008; 

Douglas et al., 2012). The more pronounced offsets in Patagonia could additionally be 

attributed to a seasonality effect. The growing season in Patagonia is not year-round but 

mainly in spring. 

In order to assess the sensitivity of the model to the input parameters, we varied vapor 

pressure of air by +/- 5 hPa and mean annual temperature by +/- 5°C. While changes in 

temperature have only negligible effects on the modeled δ2H isotopic composition of leaf 

water, changes in RH yield difference of up to ~30 ‰ (Fig. 4). Different climatic conditions 
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during the spring growing season in Patagonia could thus readily explain the overestimation 

of the evapotranspirative enrichment in the model. 

 

Fig. 4: Results of δ2Hleaf water model simulations and comparison with measured δ2Hn-alkanes and 

δ
2Hfatty acids. Sensitivity tests for δ2Hleaf water are shown for changes in RH and air temperature 

for all 20 sites along the transect. 

 

Evapotranspirative enrichment of leaf water has also been observed in δ18O values of 

hemicellulose-derived arabinose, fucose and xylose analysed in topsoils along the investigated 

transect (Tuthorn et al., 2014). Model sensitivity tests of 18O enrichment of leaf water using 

PMCG model corroborate the observations presented here that air humidity is the key factor 

defining the 18O/2H enrichment of leaf water. 
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3.3 Combining δ
18

O sugar and δ
2
H n-alkane biomarker analyses 

3.3.1 The conceptual model 

A conceptual model for the combined interpretation of δ2Hn-alkane and δ18Osugar 

biomarkers can be illustrated in a δ18O-δ2H diagram (Fig. 5). The model is based on the 

assumption that the investigated n-alkane and hemicellulose biomarkers are primarily leaf-

derived and reflect the isotopic composition of leaf water. With regard to the topsoil transect 

investigated here, this assumption is reasonable and supported by leaf water modeling (for 

δ
2H in Section 3.2, and for δ18O see Tuthorn et al., 2014).  

 

Fig. 5: δ
18O-δ2H diagram representing the global meteoric water line (GMWL) and an 

evaporation line (EL). Data for the δ18O values of hemicellulose-derived sugars (mean of 

arabinose, fucose, and xylose) and the mean δ2H values of leaf wax-derived n-alkanes (mean 

of n-C29 and n-C31) are displayed. δ2H and δ18O values of leaf water are reconstructed using 

biosynthetic fractionation factors and δ2H and δ18O values of precipitation are calculated as 

intersection of the individual ELs with the GMWL. 
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Accordingly, the isotopic composition of leaf water can be reconstructed from the 

isotopic composition of the biomarkers by applying an average value according to various 

studies of the biosynthetic fractionation factors resulting in -160 ‰ (Sessions et al., 1999; 

Sachse et al., 2006) and +27 ‰ (Sternberg et al., 1986; Yakir and DeNiro, 1990; Schmidt et 

al., 2001; Cernusak et al., 2003) for δ2H and δ18O, respectively (Fig. 5). 

In the δ18O-δ2H diagram, the distance of reconstructed leaf water to the Global 

Meteoric Water Line (GMWL) defines the deuterium excess (d = δ2H - 8⋅δ18O). Observed 

deviation is caused by the kinetic effect resulting in slower diffusivity of the 1H1H18O 

molecules compared to the 2H1H16O molecules. More humid conditions and less 

evapotranspiration are reflected by lower d values, and more arid conditions and more 

evapotranspiration are reflected by higher d values.  Using a Craig-Gordon model adapted by 

Gat and Bowser (1991), the d-excess of leaf water can be used to calculate RH values 

normalized to the temperature of leaf-water: 

          
( )182*

18
*
2 88

1
kk CC

d
RH

⋅−+⋅−

∆
−=

εε
 (Eqn. 4) 

where ∆d represents the difference in d-excess between leaf-water and source water. 

According to Merlivat (1978), the kinetic isotope fractionation equals 25.1 ‰ and 28.5 ‰ for 

Ck
2 and Ck

18, respectively, considering that these are the maximum values of kinetic 

fractionation during molecular diffusion of water through stagnant air. Equilibrium isotope 

enrichments ε2
* and ε18

* as functions of temperature can be calculated using empirical 

equations of Horita and Wesolowski (1994). 

The combined δ18O-δ2H biomarker approach also allows reconstruction of the isotopic 

composition of plant source water, which can be considered as an approximation for δ2Hprec 

and δ18Oprec. In Figure 5 these are given by the intersects of the individual evaporation lines 

(EL) with the GMWL. The slope value of 2.82 that is used for the EL has been observed in 
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previous experiments on evaporating leaf water (Allison et al., 1985; Walker and Brunel, 

1990; Bariac et al., 1994; Zech et al., 2013a). 

3.3.2 Reconstructed RH values along the climate transect and comparison with actual 

RH values 

The reconstructed d-excess values of leaf water along the investigated transect range 

from -67 to -178 ‰ and reveal a systematic trend towards more negative values in the south 

(Fig. 6). The reconstructed RH values calculated using the leaf water d-excess values 

according to the above-described Craig-Gordon model range from 16 to 65 %, with one 

extremely low value of 5 % (Fig. 6). They follow the systematic d-excess trend and correlate 

significantly (r=0.79, p<0.001, n=20) with the actual modern RH values retrieved from 

GeoINTA (2012), which generally validates the δ18O-δ2H conceptual model. 

 

Fig. 6: Comparison of reconstructed humidity based on a normalized Craig-Gordon model 

accounting for deuterium excess and temperature with modern humidity data retrieved for the 

investigated sites (GeoINTA, 2012). Deuterium excess values were calculated using δ18Oleaf 

water reconstructed from terrestrial sugars (Tuthorn et al., 2014) and δ2Hleaf water reconstructed 

from n-alkanes. 
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However, as depicted by Fig. 6, the reconstructed RH values systematically 

underestimate the actual (modern) RH values. This is especially pronounced for the three 

southernmost locations (18-20) and may be attributed to several causes. First, the applied 

model calculations do not account for evaporative enrichment of soil water. In the δ
18O-δ2H 

diagram, the soil water enrichment shifts the source water (simplified to ‘reconstructed 

precipitation’ in Fig. 5 and our model) along the evaporation line and thus leads to too 

negative d-excess values and an underestimation of RH. Second, the reconstructed source 

water lies on the GMWL in the model, while local meteoric water lines and thus actual 

precipitation may have a d-excess offset from the GMWL (d-excess of GMWL = 10 ‰). In 

our case, this effect should be negligible, as d-excess values of precipitation along the transect 

are only on the order of 4.8 – 11 ‰ (Bowen, 2012). Third, given that leaf waxes considered to 

be formed mostly during early stages of leaf ontogeny (Kolattukudy, 1970; Riederer & 

Markstaedter, 1996; Kahmen et al., 2011a; Tipple et al., 2012) they may not necessarily 

reflect the mean annual isotopic composition of precipitation in regions with pronounced 

seasonality, but rather the isotopic composition of precipitation during the growing season. As 

well, compared to the annual (modern) RH values, growing season RH yields up to 9% (CRU, 

2013) lower values in Patagonia where seasonality is especially pronounced. Fourth, 

reconstructed RH values will be also underestimated if n-alkanes do not fully incorporate the 

evapotranspirative 2H enrichment of leaf water (section 3.2; McInerney et al., 2011; Kahmen 

et al., 2013b). In the δ
18O-δ2H diagram, leaf water would thus plot lower than the simple 

Craig-Gordon model predicts, and d-excess would be too negative. 

Finally, the δ18O biosynthetic fractionation factor of ~+27 ‰, which has been reported 

for cellulose, may underestimate the actual fractionation factor of hemicelluloses (Tuthorn et 

al., 2014; Zech et al., 2014), which would result in reconstructed leaf water values plotting 

too far to the right in the δ18O-δ2H diagram. This can be explained with the loss of a relatively 
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18O-depleted oxygen atom attached to C-6 during pentose biosynthesis (C-6 decarboxylation; 

Altermatt and Neish, 1956; Harper and Bar-Peled, 2002; Burget et al., 2003), and is in 

agreement with the recent finding that about 80% of the oxygen atoms at the C-6 position are 

isotopically exchanged during cellulose synthesis (Waterhouse et al., 2013). In contrast, the 

value of +27 ‰ would be an overestimation in cases where significant amounts of stem or 

root-derived sugars contribute to the soil sugar pool, because up to 40% of the oxygen atoms 

being biosynthesized in leaves are exchanging with non-enriched root/stem water during 

cellulose biosynthesis in roots/stems (Sternberg et al., 1986; Gessler et al., 2009). However, 

given that this would result in an overestimation of reconstructed RH values (the opposite is 

observed, Fig. 6), we suggest that the majority of the sugar biomarkers along the topsoil 

transect investigated here are leaf-derived and not stem-/root-derived. 

3.3.3 Comparison of reconstructed and actual δ
2
Hprec and δ

18
Oprec values  

Values of δ18Oprec and δ2Hprec reconstructed as the intercepts of the individual 

evaporation lines (EL) with the GMWL in the δ18O-δ2H diagram (Fig. 5) range from -7 to -22 

‰ and from -47 to -166 ‰, respectively. They correlate significantly (Fig. 7; r=0.90, 

p<0.001, n=20, and r=0.88, p<0.001, n=20 for δ18Oprec and δ2Hprec, respectively) with the 

actual δ2Hprec and δ18Oprec values as derived from Bowen (2012). While the reconstructed 

δ
18Oprec and δ2Hprec values, like the reconstructed RH values, generally validate our conceptual 

model, they appear to systematically underestimate the actual δ18O and δ2H values of the 

precipitation water (Fig. 7). 

The uncertainties discussed above for the observed offset of reconstructed versus 

actual RH values can also affect the accuracy of reconstructed δ18Oprec and δ2Hprec values. As 

well, the actual values for the isotopic composition of precipitation as reported by Bowen 

(2012) show a confidence interval (95%) ranging from 0.2‰ to 1.2‰, and from 2‰ to 11‰ 

for δ2Hprec and δ18Oprec, respectively. 
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Here, we would like to emphasize the possible influence of seasonality. Leaf waxes 

and sugar biomarkers likely reflect the humidity and the isotopic composition of spring and 

summer precipitation rather than mean annual values. Accounting for these seasonality 

effects, the apparent offsets would be reduced. Future modeling studies should therefore pay 

particular attention to seasonality, and consider using climate parameters of the growing 

season instead of annual means. 

 

Fig. 7: Correlation of δ18Oprec and δ
2Hprec reconstructed from the biomarkers with actual 

modern δ18Oprec and δ
2Hprec (from Bowen, 2012), a and b, respectively. 

4. Conclusions 

The hydrogen isotopic composition of leaf wax n-alkanes and n-alkanoic (fatty) acids 

extracted from topsoils along a transect in Argentina varies significantly, with δ2H values 

ranging from -155 to -222 ‰ and -128 to -225 ‰, respectively. These δ2H values broadly 

parallel variations in the hydrogen isotopic composition of precipitation, but are modulated by 

evapotranspirative enrichment of leaf water. A mechanistic leaf water model correctly 

simulates the overall trends, but our data suggest that it might slightly underestimate the 

evapotranspirative leaf water 2H enrichment in arid environments, while it might overestimate 
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the evapotranspirative enrichment in grass-dominated ecosystems. Sensitivity tests show that 

RH exerts a stronger influence on evapotranspirative enrichment than temperature.  

Based on the premise that n-alkanes and hemicellulose biomarkers are primarily leaf-

derived, we use their oxygen and hydrogen isotopic compositions to reconstruct δ18Oleaf water 

and δ2Hleaf water, which in turn allows assessment of the d-excess of leaf water. The large 

calculated range in d-excess along the transect (-67 to -178 ‰) can be used to calculate values 

for RH, and the latter are found to correlate significantly with empirical modern RH along the 

transect. Despite this overall correlation, we observe a systematic underestimation of RH, 

which we attribute to limitations of the model. Similarly, δ18Oprec and δ2Hprec calculated from 

biomarker isotopic compositions significantly correlate with, but systematically underestimate 

the δ18O and δ2H values of modern precipitation.  

The novel combined δ2H-δ18O biomarker approach has great potential for paleo-

hydrological and paleo-climate reconstructions. In principle, it allows determination of d-

excess of past leaf water, thus constraining evapotranspirative enrichment and aridity, as well 

as the isotopic signal of past precipitation. Further studies are needed to understand the 

observed systematic offsets, which point to the possible influence of evaporative enrichment 

of soil water, changing vegetation (grass versus trees or shrubs), seasonality of biomarker 

synthesis, and the accuracy of the biosynthetic fractionation factors. 
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Abstract 

We investigated a late glacial-Holocene lacustrine sediment archive located at 4,050 m 

a.s.l. in the small carbonate-free catchment of Lake Panch Pokhari, Helambu Himal, Nepal. A 

δ18O sugar biomarker record was established by applying novel compound-specific δ18O 

analysis of plant sugar biomarkers (Zech and Glaser in Rapid Commun Mass Spectrom 

23:3522-3532, 29). This method overcomes analytical challenges such as extraction and 

purification faced by previous methods aimed at using δ18O of aquatic cellulose as a 

paleoclimate proxy. 

The δ18O results for sugar biomarkers arabinose, xylose, and fucose agree well and 

reveal a pronounced trend towards lower δ18O values during the deglaciation and the onset of 

the Bølling/Allerød interstadial. By contrast, the period of the Younger Dryas is characterized 

by higher δ18O values. The early Holocene again reveals lower δ18O values.  

We suggest that our lacustrine δ18O record reflects coupled hydrological and thermal 

control. It is strongly related to changes in the oxygen isotopic composition of paleo-

precipitation and resembles the δ18O records of Asian speleothems. With respect to the 

‘amount effect,’ the record is interpreted as reflecting the Indian Summer Monsoon intensity. 

The precipitation signal is, however, amplified in our record by evaporative 18O enrichment 

that is controlled by the ratio of precipitation to evaporation (P/E).  

We suggest that our δ18O record reflects the variability of the Indian Summer 

Monsoon, which was strong during the Bølling/Allerød interstadial and early Holocene, but 

weak during the Younger Dryas stadial. This interpretation is corroborated by a pollen-based 

index for Lake Panch Pokhari that estimated the strength of the Indian Summer Monsoon 

versus the strength of the Westerlies. Millennial-scale synchronicity with the Greenland δ18O 
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temperature records highlights the previously suggested strong teleconnections between the 

Asian Monsoon system and North Atlantic climate variability. 

 

Keywords: High Himalaya, Late glacial, Indian Summer Monsoon, stable oxygen isotopes, 

sugar biomarkers 
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1. Introduction 

The oxygen isotopic composition (18O/16O) of precipitation depends on climate factors 

such as temperature and precipitation amount (Dansgaard 1964; Araguas-Araguas et al. 

2000). Whereas the ‘temperature effect’ predominates at high-latitudes, the ‘amount effect’ 

generally predominates in monsoonal regions. Similar to speleothems (Wang et al. 2001; 

Dykoski et al. 2005) and ice cores (Thompson et al. 1997, 2005), lake sediments offer the 

opportunity to study continuous, high-resolution δ18O climate archives. Hence, they are 

investigated, for instance on the Tibetan Plateau, to reconstruct the Asian Monsoon history. In 

fact, the Holocene Asian Monsoon history is well documented by numerous δ18O records 

from lake sediments (Zhang et al. 2011). There are, however, a number of problems 

associated with the construction of lacustrine δ18O records. For instance, input of old soil 

carbon from the catchment and lake reservoir effects can confound chronologies. 

Furthermore, developing δ18O records depends on the occurrence of ostracod- or diatom-

containing sediments, and species-specific differences and catchment-specific effects (e.g. 

meltwater effect) may need to be considered (Lister et al. 1991; Liu et al. 2007; Mischke et al. 

2010). With regard to sedimentary cellulose as a recorder of past lakewater δ18O, there are 

analytical challenges with respect to extraction, purification and measurement of aquatic 

cellulose (Saurer and Siegwolf 2004; Kitagawa et al. 2007; Wolfe et al. 2007; Wissel et al. 

2008). Recently, Zech and Glaser (2009) and Zech et al. (2012) developed a novel method 

that is based on compound-specific δ18O analyses of sugar biomarkers that are extracted 

hydrolytically from soils and sediments. This method may help overcome the mentioned 

analytical challenges and make δ18O of sugar biomarkers a valuable new proxy in 

paleolimnology. 



Study 5 
___________________________________________________________________________ 
 

133 
 

The aim of our study was to test the applicability of the δ18O sugar biomarker method 

proposed by Zech and Glaser (2009) and Zech et al. (2012) to lacustrine sediments. We (i) 

tested the method on late glacial-Holocene sediments from Lake Panch Pokhari, which is 

situated at 4,050 m a.s.l. in Helambu Himal, Nepal, (ii) compared our δ18O record with other 

δ18O records, and (iii) discuss the factors that influence δ18O records in the study area, to 

better understand the history and forcing mechanisms that influence the Indian Summer 

Monsoon (ISM). 

1.1 Site description and modern climate 

Lake Panch Pokhari is located approximately 100 km north of Kathmandu in the 

Helambu Himal, Nepal, at 4,050 m a.s.l. (28°02.533’N; 85°42.822’E). It is of glacial origin, 

about 2 m deep and 100 m long and located on a mountain ridge. It is rainwater fed and 

features a small, non-permanent outflow (Krstic et al. 2012). It is surrounded by a very small 

(~0.5 km2), carbonate-free catchment (Figs. 1a and b) with sparse alpine vegetation. The 

catchment bedrock is composed of gneisses and the vegetation belongs to the Central 

Himalayan Mountain Meadow Zone (Fukui et al. 2007). During summer, the catchment is 

grazed and pilgrim routes cross the area. The study area receives most of its precipitation 

from the ISM, with heavy rainfall between May and September and minor winter 

precipitation from the Westerlies (Fig. 1c). Mean annual precipitation and temperature at the 

Nyalam meteorological station (3,810 m a.s.l., 28 km northeast) are 650 mm yr-1 and 3.5 °C, 

respectively (Tian et al. 2003). Lake Panch Pokhari is generally frozen from the end of 

October until the end of April. 
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Fig. 1: Location of Lake Panch Pokhari on a mountain ridge in the Helambu Himal, Nepal. a) 

Northward and b) eastward oblique view over the Panch Pokhari catchment that is indicated 

by dotted white lines (modified from Google Earth). c) The research area is predominantly 

influenced by the Indian Summer Monsoon (ISM) and to some degree by winter precipitation 

provided by the Westerlies. EASM = East Asian Summer Monsoon. The EASM exerts the 

pivotal climatic influence on Hulu Cave. 
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2. Materials and methods 

2.1 Sampling, TOC analyses and radiocarbon dating  

During a field campaign in April 2001, two overlapping sediment cores (N1 and N2) 

were taken through two neighboring ice boreholes in the middle of Lake Panch Pokhari. 

Sediment core N1 was opened, described and sampled in the field. The sampling interval was 

5 cm in the upper part of the sediment core (0-3.5 m) and 2 cm in the lower, distinctly 

laminated part (3.5-4.5 m). Samples were air-dried and stored in plastic bags for transport. 

Core sections N2a to N2g of sediment core N2 were kept intact in plastic tubes and stored in a 

cooling chamber until they were opened and sampled at 1-cm intervals in the laboratory of the 

Institute of Soil Science and Soil Geography, University of Bayreuth, Germany. 

For total organic carbon (TOC) analyses, sediment samples from cores N1 and N2 

were first dried in an oven at 40 °C for several days. Next, finely ground homogenous 50 mg 

sub-samples were combusted in tin capsules with tungsten oxide added, and TOC was 

determined by thermal conductivity on a Vario EL elemental analyzer (Elementar, Hanau, 

Germany). Precision was determined by measuring an acetanilide standard in quadruplicate. 

Mean standard errors were < 0.02%. 

Radiocarbon analyses were carried out on the alkali-insoluble organic matter fractions 

of nine sediment core samples at the Physics Department of the University of Erlangen, 

Germany, and at the Poznan Radiocarbon Laboratory, Poland (Table 1). Calibration was done 

with CalPal Online (Danzeglocke et al. 2012). 
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Table 1: Radiocarbon data obtained for sediment cores N1 and N2 from Lake Panch Pokhari. 

 

 

2.2 Compound-specific δδδδ
18

O analyses of sugar biomarkers 

Monosaccharide sugars from plant-derived hemicelluloses and from algae-derived 

polysaccharides were released hydrolytically from the sediment samples (sediment core N1) 

with 4M trifluoroacetic acid (TFA) (105 °C for 4h), using the procedure described by 

Amelung et al. (1996). After filtering with glass fibre filters, the sugars were purified using 

XAD and Dowex columns. Derivatization after freeze-drying was done with methylboronic 

acid (MBA) (Knapp 1979), which ensures that, in contrast to other derivatization methods, the 

sugars arabinose, fucose and xylose yield only one peak in the chromatograms (Fig. 2), and 

that all oxygen atoms in the derivatives originate from the sugar molecules and not from 

derivation reagents (Pizer and Tihal 1992). Oxygen atoms in C1 position of the sugar 

molecules do not originate from the polysaccharides, but are introduced during the hydrolysis 

step. These oxygen atoms, however, form a carbonyl group and are therefore easily 

exchangeable with ambient water. Using water with a known δ18O signature during the 

analytical procedure, and considering an equilibrium fractionation factor of +27‰ (Sternberg 

and DeNiro 1983), enables measured δ18O values to be corrected. For further details on this 

correction procedure, see Zech and Glaser (2009). 
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Compound-specific δ18O measurements were performed using a GC-Py-IRMS (gas 

chromatography-pyrolysis-isotope ratio mass spectrometer) consisting of a Trace GC 2000 

gas chromatograph (Thermo Fisher Scientific, Bremen, Germany) coupled to a Deltaplus 

isotope ratio mass spectrometer (Thermo Fisher Scientific) via a pyrolysis reactor and a 

GC/TC III interface (Thermo Fisher Scientific). Sample batches were run in six-fold 

replication, with replications embedded between standard batches with varying sugar 

concentrations, as outlined by Zech and Glaser (2009). Mean standard errors for arabinose, 

fucose and xylose were 1.0‰, 1.4‰ and 1.0‰, respectively. Given that rhamnose often 

yielded only minor peaks (Fig. 2) and was not detected in some samples, we excluded it from 

further data evaluation. 

The applied novel δ18O method circumvents analytical challenges associated with 

conventional δ18O methods used to isolate and measure aquatic cellulose from lake sediments 

(Saurer and Siegwolf 2004; Wolfe et al. 2007; Wissel et al., 2008). For further details the 

reader is referred to Zech and Glaser (2009) and to Zech et al. (2012). 

 

Fig. 2: Typical GC-Py-IRMS chromatogram for the sediment samples from Lake Panch 

Pokhari (sample 490 cm depth). Whereas the lower part of the figure shows the signal 

intensity of m/z 28 (12C16O), the upper part shows the ratio of m/z 30 to m/z 28 (12C18O to 
12C16O). 
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2.3 Pollen analyses and calculation of a pollen-based index reflecting the Indian 

Summer Monsoon (ISM) strengt 

For pollen analyses, sediment samples of 1 cc were prepared with HCl, KOH, HF and 

acetolysis (Erdtman 1960; Moore et al. 1999). Identification of palynological remains was 

carried out under 500x to 1250x magnification. About 200 pollen types were distinguished 

using literature and a reference collection of about 5,500 type slides (Beug and Miehe 1999; 

Beug 2004; Schlütz and Zech 2004). Pollen taxa (i.e. Picea, Engelhardia, Shorea) most likely 

representing one species in central Nepal are named accordingly (Picea smithiana, 

Engelhardia spicata, Shorea robusta) (Schlütz and Zech 2004). Calculation of pollen 

percentages is based on the sum of terrestrial plants, about 360 pollen grains per sample. 

From the identified arboreal pollen types, those representing one species (i.e. Engelhardia 

spicata) or a group of species (Acer acuminatum-type) with a clear geographic preference 

were identified and assigned to two groups (Table 2). 

 

Table 2: Arboreal pollen taxa grouped according to their modern distribution. 
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One group includes pollen types of trees and shrubs mostly restricted to the western 

Himalaya, a region with high snowfall in winter and relatively dry summer months. The 

second group consists of pollen types of trees and shrubs restricted to the eastern Himalaya, 

where the influence of the ISM is strong (Annotated checklist of the flowering plants of 

Nepal; Flora of China; Polunin and Stainton 1999). Using these two groups, the percentage 

contribution of eastern-derived pollen types was calculated for each sample. The percentage 

contributions were then transformed to a range from 0 to 1, with 1 corresponding to 100% 

pollen from the eastern part of the Himalaya,  and used as index of the ISM strength (Fig. 3). 

3. Results 

3.1 Chronostratigraphy and TOC contents 

Nine radiocarbon (14C) dates were obtained for the alkali-insoluble organic matter 

fraction in sediment cores N1 and N2 (Table 1). The radiocarbon results suggest that 

sediments of Lake Panch Pokhari represent a valuable paleoenvironmental and climate 

archive of the late glacial and Holocene (Fig. 3). Sedimentation began after the cirque became 

deglaciated approximately 15.8 cal ka BP. The warm Bølling/Allerød interstadial 

(radiocarbon dates 14,369 ± 290 and 12,788 ± 73 cal a BP) is characterized by higher TOC 

content, whereas the colder period of the Younger Dryas is characterized by low TOC content 

(Fig. 3). The onset of the early Holocene is dated at 11,311 ± 76 cal a BP (N1) and 11,349 ± 

89 cal a BP (N2). TOC contents enable correlation of sediment cores N1 and N2 (Fig. 3). 

Whereas calibrated 14C ages and errors are illustrated in Fig. 3 in stratigraphic position, they 

are plotted by age in Fig. 4. 
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Fig. 3: Depth profiles for analytical results from the sediment cores of Lake Panch Pokhari. 

Total organic carbon (TOC) contents for sediment cores N1 and N2 are shown with the 

calibrated radiocarbon data given to the right. The δ18O results of hemicellulose and 

polysaccharide sugar biomarkers (arabinose, fucose and xylose) extracted from core N1 (grey 

lines show all data, dark lines show the 3-point running mean) reflect the ratio of precipitation 

to evaporation (P/E). In addition, a pollen-based index of the strength of the Indian Summer 

Monsoon (ISM) and the July insolation at 30°N (Berger and Loutre 1991) are shown. The 

periods of deglaciation and Younger Dryas are depicted with horizontal blue bars. 

 

3.2 Lake Panch Pokhari δδδδ
18

O sugar biomarker results 

Compound-specific δ18O values for sugar biomarkers arabinose, fucose and xylose 

range from 13.3 to 52.7‰ and reveal similar trends (Fig. 3). The long-term trends reveal 

dramatically decreasing δ18O values during the deglaciation, with minimum values during the 

Bølling-Allerød interstadial and maximum δ18O values during the Younger Dryas. During the 
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early Holocene, Lake Panch Pokhari δ18O values were again lower, although not reaching the 

minimum values of the Bølling-Allerød. The middle Holocene is characterized by relatively 

high δ18O values. At higher resolution, the individual δ18O records of Lake Panch Pokhari are 

punctuated by numerous centennial-scale δ18O shifts, particularly during the late glacial and 

the early Holocene (Figs. 3 and 4). 

4. Discussion 

4.1 Interpretation of the δδδδ
18

O sugar biomarker record of Lake Panch Pokhari 

Concerning interpretation of the δ18O record from Lake Panch Pokhari, we assumed 

that the sugar biomarkers were produced primarily by aquatic organisms. This is plausible, 

because the lake catchment is very small, with only scarce vegetation. Carbon/nitrogen ratios 

are generally ≤12 (Krstic et al. 2012) and thus do not indicate a significant input of terrestrial 

organic matter, which is typically characterized by higher ratios (Meyers and Ishiwatari 

1993). Furthermore, the abundance of fucose (Fig. 2) may serve as a proxy for autochthonous 

organic matter, because fucose is only a minor component of vascular plants (Jia et al. 2008; 

Zech et al. 2012), whereas it is often very abundant in phytoplankton, zooplankton and 

bacteria (Hecky et al. 1973, Hicks at al. 1994, Biersmith and Benner 1998, Ogier et al. 2001). 

Concerning incorporation of the δ18Olake water signal into the aquatic hemicelluloses and 

polysaccharides, an 18O enrichment of approximately +27‰ during sugar metabolism has to 

be considered (DeNiro and Epstein 1981; Schmidt et al. 2001). Although generally 

determined by studying cellulose rather than hemicelluloses, this +27‰ biosynthetic 

fractionation factor is confirmed across diverse taxonomic groups and was long assumed not 

to vary with temperature. Recently, Sternberg and Ellsworth (2011) found evidence for slight, 

but systematically greater fractionation at lower temperatures. Given the wide range of sugar 
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biomarkers investigated here (δ18O values range from 13.3 to 52.7‰), we suggest that our 

sedimentary δ18O record primarily reflects the variability of δ18Olake water. The isotopic 

composition of the lake water is controlled by the δ18O of paleo-precipitation, modified by 

evaporative 18O enrichment. 

4.2 Comparison with other δδδδ
18

O records and modern precipitation 

Our δ18O sugar biomarker record closely resembles the late glacial Greenland ice core 

and Chinese speleothem δ18O records (Wang et al. 2001; Dykoski et al. 2005; NGRIP 

members 2005) (Fig. 4). The magnitude of change in Chinese speleothem δ18O records over 

the glacial-interglacial transition (~4‰; Dykoski et al. 2005), however, is much smaller than 

the magnitude of change recorded in our lacustrine sequence. The weighted average for all 

three biomarkers ranges from 16.8 to 37.5‰ (3-point running mean, Fig. 4).  

Excluding the first, high δ18O values during deglaciation, the magnitude is 13.1‰. For 

comparison, the Guliya ice core on the Tibetan Plateau features a δ18O shift of ~10‰ over the 

last glacial-interglacial cycle (Thompson et al. 2005), the Dasuopu ice core features an 

interannual δ18O magnitude of ~6‰ from AD 1985 to 1995 (Tian et al. 2003) and the 

ostracode shells of Lake Qinghai feature a δ18O range of ~8‰ during the late Pleistocene (Liu 

et al. 2007). It is important to keep in mind that there is strong seasonal δ18O variability in 

modern precipitation from our study area. Data from the nearby Nyalam meteorological 

station (3,810 m a.s.l., N28°11’, E85°58’) show δ18Oprecipitation values greater than +5‰ from 

March to May and as low as -30‰ from June to September (Tian et al. 2003). 
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Fig. 4: Comparison of the Lake Panch Pokhari δ18O record with other δ18O records. a) The 

grey line shows the weighted average for arabinose, fucose and xylose; the dark line shows 

the 3-point running mean for the weighted average. b) Hulu stalagmites H82 and PD (Wang et 

al. 2001) and c) Greenland ice core δ18O record (NGRIP members 2005) plotted versus time. 

Vertical blue bars highlight the periods of deglaciation and the Younger Dryas. Calibrated 

radiocarbon ages and errors are plotted for sediment cores N1 and N2. VSMOW = Vienna 

Standard Mean Ocean Water, VPDB = Vienna Pee Dee Belemnite. 

 

4.3 Amount effect and source effect as influencing factors 

The modern seasonal pattern, with relatively low δ18Oprecipitation values during summer, 

indicates that the ‘temperature-effect’ that predominates at high latitudes (Dansgaard 1964; 
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Araguas-Araguas et al. 2000) and on the Northern Tibetan Plateau (Tian et al. 2003), is of 

minor relevance in our study area. Rather, as in other monsoon-influenced regions, modern 

precipitation in Helambu Himal is characterized by low δ18O values when the ISM is active 

and brings precipitation maxima. This is called the ‘amount-effect.’ The strength of the 

monsoon, and the area under its influence, has varied in the past. Hence, speleothem δ18O 

records in South Asia (Wang et al. 2001; Fleitmann et al. 2003; Dykoski et al. 2005; Sinha et 

al. 2005; Shakun et al. 2007) are assumed to reflect δ18O variations of precipitation and δ18O 

is often interpreted as a proxy for the intensity of the ISM and the East Asian Summer 

Monsoon (EASM), respectively (Fig. 1). We therefore highlight the similarities between the 

Chinese speleothems and our late glacial and Holocene lacustrine δ18O record from Panch 

Pokhari (Fig. 4). Accordingly, we suggest that high δ18O values during the deglaciation and 

the Younger Dryas indicate a weak ISM, whereas lower δ18O values during the Bølling-

Allerød and the early Holocene indicate a strengthened ISM. This is in agreement with 

precipitation-controlled glacier advances in the Himalaya during the early late glacial and the 

early Holocene (Owen 2009). Notably, a Younger Dryas glacier advance has yet to be 

identified (Owen 2009). 

In addition to monsoon strength, it is important to consider two ‘source effects’ when 

interpreting δ18O variability of paleo-precipitation. First, the oxygen isotope composition of 

the Indian Ocean seawater was not constant during the late Glacial. Schrag et al. (2002) 

reported an average glacial-interglacial δ18O decrease of 1‰ for seawater as a consequence of 

18O-depleted glacial meltwater. Assuming a linear relationship between sea level and seawater 

δ18O, Dykoski et al. (2005) suggested that the δ18O value of the Indian Ocean decreased by 

~0.35‰ from 16 to 11 ka, thus accounting for ~15% of the Dongge Cave speleothem δ18O 

variability. This may, however, be an underestimation because this approach presumes a rapid 

and uniform mixing and distribution of the glacial meltwater via ocean circulation. 
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Furthermore, we suggest that accumulation of 18O-enriched Indian Ocean sea surface water, 

as a consequence of evaporative losses, could have been much greater than acknowledged, 

especially during periods when the thermohaline-driven conveyer belt of deep ocean 

circulation slowed down, i.e. during the Younger Dryas event. This hypothesis is supported 

by the occurrence of increased salinity from 18 to 14.5 ka and during the Younger Dryas 

(Levi et al. 2007). 

The second ‘source effect’ is also challenging to test quantitatively. The study area 

nowadays receives only minor winter precipitation. Given that monsoon precipitation is 18O-

depleted compared to winter precipitation brought by the Westerlies (Breitenbach et al. 2010), 

shifting atmospheric circulation patterns and hence changing ratios of winter to summer 

precipitation budgets, could yield changing mean annual δ18O values of precipitation. This 

would point to a variability of the area of influence of the ISM, but does not necessarily 

require variability in the strength of the ISM.  

As an additional proxy, we calculated a pollen-based index using pollen from the 

Eastern Himalaya as an indicator for a strong ISM and pollen from the Western Himalaya as 

an indicator of stronger Westerlies and therefore a weakened ISM. This index not only shows 

the orbitally driven, long-term trend of the ISM strength, but also confirms millennial-scale 

ISM variability, as indicated by our δ18O record during the late Glacial (Fig. 3). 

4.4 Evaporative 
18

O enrichment as an influencing factor 

Given that the glacial-interglacial transition is recorded by a shift in δ18O in the range 

of ~4‰ in Chinese speleothem records, and up to ~10‰ in ice cores, we argue that the 

magnitude of δ18O change within the lacustrine sequence cannot be explained by δ18O 

variability of precipitation alone (~20‰ for the weighted mean of all biomarkers, 3-point 

running mean; Fig. 4). 
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In particular, the high δ18O values during deglaciation and the overall relatively high 

δ18O values during the entire Holocene are unlikely to be explained by δ18Oprecipitation 

variability alone. We thus suggest that evaporative 18O enrichment of the lake water was an 

amplifying factor and that our δ18O record is a proxy for the ratio of local precipitation to 

evaporation (P/E). This is consistent with the interpretation of monsoon-influenced lacustrine 

δ18O records from East Africa (Barker et al. 2011) and the Tibetan Plateau (Lister et al. 1991; 

Liu et al. 2007). Accordingly, P/E was low during the arid phases of the late glacial, i.e. 

during the deglaciation and the Younger Dryas. Using the weighted mean annual 

δ18Oprecipitation value (-13.6‰) of the nearby Nyalam meteorological station (Tian et al. 2003), 

it is possible to estimate the isotopic composition of sugar biomarkers during extreme aridity 

by combining the effects of monsoon precipitation, evaporation-induced isotopic enrichment 

and metabolic fractionation of hemicelluloses. Absence of summer monsoon precipitation 

with low δ18O values results in δ18Oprecipitation values of ~0 to -5‰. During the very arid period 

of deglaciation, evaporative 18Olake water enrichment of +10‰ is assumed (adapted from the 

modern 18Olake water enrichment of Lake Qinghai, NE Tibetan Plateau; Henderson et al. 2010) 

and a fractionation factor of +27‰ for the hemicellulose metabolism is used. Combining 

these factors results in calculated δ18O values of 32 to 37‰, and for comparison, the 

measured weighted average is 37.5‰ (3-point running mean). 

In contrast, P/E was high during the humid Bølling-Allerød and the early Holocene. 

Relatively high δ18O values during the generally warmer early Holocene, compared to the 

Bølling-Allerød interstadial (Figs. 3, 4), likely reflect the thermal control on evaporation as 

opposed to lower precipitation. This interpretation is in agreement with an evaporation-

induced shift towards higher δD values of n-alkane biomarkers in lacustrine records from the 

Tibetan Plateau (Aichner et al. 2010). Both higher temperatures and increasing aridity are 

likely responsible for the relatively high δ18O values during the middle Holocene (Fig. 3). 
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Enhanced aridity has been linked to the collapse of the Neolithic culture in Central China 

during this time (Wu and Liu 2004). 

4.5 Driving mechanisms and North Atlantic – Indian Summer Monsoon teleconnections 

The driving mechanism for the strength of the ISM and the EASM is the pressure 

gradient between the continental low over Asia and the high-pressure cells over the Southern 

Indian Ocean and the Western Pacific. Plausible factors affecting the pressure gradients are 

orbitally controlled changes in insolation (Berger and Loutre 1991) and changing stadial-

interstadial or glacial-interglacial boundary conditions (Overpeck et al. 1996; Sirocko et al. 

1996; An et al. 2011). Whereas on longer time scales, monsoon history is coupled to 

insolation changes at 30 °N in June (Leuschner and Sirocko 2003; Yuan et al. 2004; 

Herzschuh 2006), centennial and millennial changes in monsoon intensity recorded within 

high-resolution archives (e.g. speleothems and some marine records) are often correlated with 

North Atlantic climate events. The synchronicity of our High Himalayan lacustrine δ18O 

record with the Greenland δ18O record (Fig. 4) corroborates the strong North Atlantic – Indian 

Summer Monsoon teleconnections. These teleconnections can be explained by atmospheric 

and ocean circulation mechanisms. Accordingly, a Northern Hemisphere cooling weakens the 

sea-land pressure gradient in Southern Asia and thus the ISM. Similarly, increasing the Indian 

Ocean sea surface temperature by a slow-down of the thermohaline-driven conveyer belt of 

the deep ocean circulation, for instance during the Younger Dryas, weakens the sea-land 

pressure gradient and thus the ISM as well. 
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5. Conclusions 

Sediments of Lake Panch Pokhari provide a valuable late glacial climate archive for 

the High Himalaya. A lacustrine δ18O record was established by applying novel compound-

specific δ18O analysis of sugar biomarkers. All three biomarkers, i.e. hemicellulose-derived 

arabinose and xylose and algae-derived fucose, revealed similar, systematic δ18O variations, 

with low δ18O values coinciding with the Bølling-Allerød and the early Holocene and higher 

δ18O values coinciding with the deglaciation and the Younger Dryas. The δ18O biomarker 

record is controlled by both “amount” and “source” effects, as well as evaporative 18Olakewater 

enrichment. Overall, our δ18O record reflects the ratio of amounts of precipitation and 

evaporation (P/E) and allows reconstruction of ISM variability. 

The Lake Panch Pokhari δ18O record largely resembles the East Asian speleothem 

δ18O records, indicating that the ISM and the EASM are driven by the same mechanisms. 

Importantly, similarities to the Greenland ice core δ18O records support the previously 

suggested strong North Atlantic – Indian Summer Monsoon teleconnections. 
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Highlights 

• δ
18O and δ

2H biomarker records were established for a lake sediment archive 

• The 16 ka δ18Osugar and δ2Hn-alkane biomarker records are similar but not identical 

• Differences are explicable with evaporative isotopic enrichment of lake water 

• Reconstructed d-excess of lake water can serve as proxy for evaporative losses 

• A coupled δ18O-δ2H approach allows a model-based reconstruction of δ18Oprec 
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Abstract 

Over the past decades, δ18O and δ
2H analyses of lacustrine sediments became an 

invaluable tool in paleohydrology and paleolimnology for reconstructing the isotopic 

composition of past lake water and precipitation. However, based on δ18O or δ2H records 

alone, it can be challenging to distuinguish between changes of the precipitation signal and 

changes of evaporation. Here we propose a coupled δ18O-δ2H biomarker approach that offers 

the possibility to disentangle between these two factors. The isotopic composition of n-

alkanes were analysed in order to establish a 16 ka Late Glacial and Holocene δ2H record for 

the sediment archive of Lake Panch Pokhari in High Himalaya, Nepal. The δ2Hn-alkane record 

generally corroborates a previously established δ
18Osugar record reporting on high values 

characterising the deglaciation and the Older and the Younger Dryas, and low values 

characterising the Bølling and the Allerød periods. Since the investigated n-alkane and sugar 

biomarkers are considered to be primarily of aquatic origin, they were used to reconstruct the 

isotopic composition of lake water. The reconstructed deuterium excess of lake water ranges 

from +57 ‰ to -85 ‰ and can serve as proxy for the evaporation history of Lake Panch 

Pokhari. Lake desiccation during the deglaciation, the Older Dryas and the Younger Dryas is 

corroborated by a multi-proxy approach using additionally the Hydrogen Index (HI) and the 

carbon to nitrogen ratio (C/N) as proxies for lake sediment organic matter mineralisation.  

Furthermore, the coupled δ18O and δ2H approach allows disentangling the lake water isotopic 

enrichment from variations of the isotopic composition of precipitation. The reconstructed 16-

ka δ18Oprecipitation record of Lake Panch Pokhari is well in agreement with the δ18O records of 

Chinese speleothems and presumably reflects the Indian Summer Monsoon variability. 

Keywords: n-alkanes, sugars, stable water isotopes, d-excess, evaporation, lake desiccation,  
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1. Introduction  

Biomarker and stable isotope analyses became an indispensable tool in many different 

scientific fields. In paleohydrology and paleoclimatology, stable oxygen (18O/16O) and 

hydrogen (2H/1H) isotopes are of especial interest because the isotopic composition of 

precipitation is known to depend primarily on climatic conditions such as temperature and 

precipitation amount (Craig, 1961; Dansgaard, 1964; Craig & Gordon, 1965; Rozanski et al., 

1982). Hence, various kinds of archives are investigated in order to reconstruct the isotopic 

composition of precipitation and thus paleoclimate (Dansgaard et al., 1993; Roden et al., 

2000; Cruz et al., 2005; Thompson et al., 2005; Loader et al., 2008; Rao et al., 2009; Li et al., 

2011; Zech et al., 2013).  

With regard to lacustrine sediments, which have been recognised to be often excellent 

climate archives, δ18O and δ
2H analyses are performed for instance on carbonates of ostracod 

shells, on silica of diatoms, on aquatic cellulose, on hemicellulose-derived sugar biomarkers 

or on leaf wax-derived n-alkanes (Sauer et al., 2001; Huang et al., 2004; Sachse et al., 2004; 

Wissel et al., 2008; Mischke et al., 2010; Chapligin et al., 2012; Zech et al., 2014b). All these 

methods have their own advantages and disadvantages, but overall the results are in many 

paleoclimate studies considered to reflect primarily the isotopic composition of precipitation. 

However, lake water does not always simply reflect the isotopic composition of precipitation. 

Especially under arid and semiarid climatic conditions, lake water is becoming enriched in18O 

and 2H due to evaporation and involving isotopic fractionation processes. While this offers the 

intriguing possibility to reconstruct lake water evaporation history (e.g. Mayr et al., 2007; 

Muegler et al., 2008; Aichner et al., 2010a), a major constraint of single isotope studies 

(based on δ18O or δ2H results alone) can be how to distuinguish between changes of the 

precipitation signal and changes of evaporation. 
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In this study we propose as possible solution for the above presented constraint a 

coupled δ18O and δ2H biomarker approach. We (i) established a lacustrine δ2H record based 

on n-alkane biomarkers for late glacial – Holocene sediments of Lake Panch Pokhari, Nepal. 

(ii) The δ2Hn-alkane  record is compared with a previously published δ18O record of sugar 

biomarkers (Zech et al., 2014b). (iii) Using the biomarker records, the isotopic composition of 

lake water is reconstructed and the deuterium excess of lake water is evaluated as proxy for 

lake evaporation history. (iv) Lastly, we present a model-based reconstruction of δ18O and 

δ
2H values of paleoprecipitation (δ18Oprec and δ2Hprec, respectively). 

2. Material and methods 

2.1 Study area – Lake Panch Pokhari, Helambu Himal, Nepal 

A detailed description of the study area was provided previously by Krstic et al. 

(2012) and Zech et al. (2014b). In brief, Lake Panch Pokhari is located at 4050 m a.s.l., about 

100 km north of Kathmandu in the Helambu Himal, Nepal (28°02.533’N; 85°42.822’E; Fig. 

1). It is of glacial origin, became ice-free around 16 cal ka BP when sedimentation started 

according to radiocarbon data, it is rainwater fed and about 2 m deep. Importantly for this 

study, Lake Panch Pokhari is surrounded by a very small catchment and it has a small, but 

non-permanent outflow. The catchment is scarcely vegetated so that in all likelihood the vast 

majority of the sedimentary organic material of Lake Panch Pokhari is of autochthonous 

rather than of allochthonous origin. 

The study area is influenced by the Indian Summer Monsoon causing heavy rainfall 

between May and September and the Westerlies causing minor winter precipitation. Modern 

day mean annual precipitation at the close-by meteorological station Nyalam (3810 m a.s.l., 

28 km northeast) is 650 mm and mean annual temperature is about 3.5 °C (Tian et al., 2003). 
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However, it is widely accepted that monsoon precipitation strongly varied during the past 

(Wang et al., 2001; Dykoski et al., 2005; Mischke & Chen, 2014). 

 

Fig. 1: Location of Lake Panch Pokhari, Helambu Himalaya, Nepal. The most prominent 

atmospheric circulation pattern influencing the study area are additionally depicted 

(Westerlies, ISM - Indian Summer Monsoon, EASM - East Asian Summer Monsoon).  

 

Two overlapping sediment cores (N1 and N2) were taken from the middle of Lake 

Panch Pokhari in April 2001. Already in the field, the N1 sediment core was sampled at 5 cm 

core intervals in the upper part (0-3.5 m) and at 2 cm intervals in the lower and laminated part 

(3.5-4.5 m). The N2 sediment cores N2a to N2g were retrieved intact and later on sampled at 

1 cm intervals in the laboratory. For the here presented n-alkane and sugar biomarker 

analyses, oven-dried (40 °C) sediment samples of core N1 were investigated. 

2.2 Compound-specific δ
2
H analyses of n-alkanes 

n-Alkane biomarkers from 38 sediment samples were prepared according to a slightly 

modified procedure described by Zech and Glaser (2008) in the Laboratory of the Department 
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of Soil Physics, University of Bayreuth, Germany. Briefly, the procedure involves extraction 

of lipids with methanol/toluene (7/3) using an accelerated solvent extractor (ASE 200, 

Dionex, Germering, Germany) and purification of n-alkanes on silica/aluminium oxide (both 

5% deactivated) columns with hexane/toluene (85/15) as eluent. 

δ
2H values of the alkanes n-C25, n-C27, n-C29 and n-C31 recovered from the sediment 

samples were determined in the Stable Isotope Laboratory of the Max Planck Institute, Jena, 

Germany, using a HP5890 gas chromatograph equipped with a DB-5 ms column (30 m × 0.32 

mm i.d., 0.5 µm film thickness, Agilent). The gas chromatograph was coupled via a high-

temperature conversion oven operated at 1425 °C (Hilkert et al., 1999) to an isotope ratio 

mass spectromenter (DeltaplusXL, Finnigan MAT, Bremen, Germany) for compound-specific 

δ
2H analyses. Each sample was analyzed in triplicate. Note that short- and mid-chained n-

alkanes were less abundant and therefore did not withstand linearity criteria in most samples. 

All δ2H values were normalized to the VSMOW (Vienna Standard Mean Ocean 

Water) scale using a mixture of n-alkanes (n-C10 to n-C32). The δ2H values of the n-alkanes in 

the standard mixture were calibrated against internal references (NBS-22, IAEA-OH22) using 

TC/EA-IRMS. The accuracy and drift of the system were evaluated via three standard 

measurements after every three samples (nine injections). To ensure stable ion source 

conditions the H3
+ factor was determined at least once a day. Mean δ2H values and standard 

deviations for triplicate measurements of the alkanes n-C25, n-C27, n-C29, and n-C31 are given 

in Table 1. Weighted mean δ2H values over all four n-alkanes are plotted versus sediment 

depth in Fig. 2a and against sugar biomarker δ18O results (from Zech et al., 2014b) in a δ2H-

δ
18O-diagram in Fig. 3. 
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3. Theory/calculation  

3.1 δ18
O-δ

2
H diagram 

Precipitation word-wide typically plots along the so-called global meteoric water line 

(GMWL) in a δ18O-δ2H diagram (Fig. 3) (Dansgaard, 1964). Due to fractionation processes, 

evaporation causes evaporating water to be isotopically depleted in 18O and 2H. By contrast, 

residual water, for instance lake water, becomes enriched in 18O and 2H. However, this 

enrichment does not follow the GMWL but rather a so-called local evaporation line (LEL) 

(Fig.3). This is caused by the kinetic effect resulting in slower diffusivity of the 1H1H18O 

molecules compared to the 2H1H16O molecules. 

3.2 Model-based reconstruction of δ
18

Oprec and δ
2
Hprec values 

The isotopic evaporative enrichment under steady-state conditions in open water 

bodies can be described as an isotopic mass balance model (Craig & Gordon, 1965). 

Assuming equilibrium conditions between isotopic composition of atmospheric vapor and 

total inflow leads to the following equation (Gat & Bowser, 1991): 

( )

( )
E

I
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δδ       (Eqn. 1) 

where: 

ITOT- total inflow (precipitation, surface water and groundwater inflow), 

E- evaporation rate, 

hN- relative humidity normalized to the ground temperature (%), 

δLS- isotopic composition of lake water under steady state conditions (‰), 

δIT- isotopic composition of the total inflow components (‰), 
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∆ε- kinetic isotopic enrichment, 

ε
*- equilibrium isotopic enrichment. 

 

The kinetic isotopic enrichment (∆ε) can be expressed according to Gonfiantini (1986) as: 

( )Nk hnC −Θ=∆ 1ε        (Eqn. 2) 

where n is a turbulence parameter, kC  is kinetic fractionation factor for 18O and/or 2H and Θ 

is advection parameter which takes humidity buildup into account (Gibson et al., 2008). 

Under turbulent conditions, the commonly used value for n equals 0.5 (Merlivat, 1978; Vogt, 

1978; Gonfiantini, 1986; Gibson, 2001), whereas Θ can be set to 1 for small water bodies 

because the influences of the evaporation flux on the surrounding humidity is minor (Gat, 

1995). Therefore kinetic fractionation factors reach only half of their maximum extent, 12.4‰ 

and 14.3‰ for Θ2
knC  and Θ18

knC , respectively (Vogt, 1978; Gonfiantini, 1986; Araguas-

Araguas et al., 2000). The equilibrium isotopic enrichment can be calculated as: 

3
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ε ,        (Eqn. 3) 

where VL /α describes the temperature dependent equilibrium fractionation factor for 18O 

and/or 2H. Eqn. 3 can be derived by empirical equations after Horita and Wesolowski (1994). 

We use here a constant temperature of 10°C which results in values of 92.55‰ and 10.67‰ 

for ∗
2ε  and ∗

18ε , respectively. Note that the temperature is negligible compared to the 

measurement errors of biomarker analyses (Zech et al., 2013). 

Using Eqn. 1 and considering the definition of kinetic fractionation, the slope of the 

local water evaporation line (LEL) can be described as follows:  
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Given the premise that that paleoprecipitation plotted along the GMWL, Eqn. 3 can be 

used to reconstruct the isotopic composition of precipitation by calculating the intersection 

between the individual LELs (for a given lake water data point) and the GMWL. Using the 

above presented fractionation factors we calculated slope (SLEL) of 4.2 for the LEL. 

Note that Eqn. 4 is independent of relative humidity and it only depends on the 

fractionation factors which are valid under isotopic equilibrium conditions between total 

inflow and local atmospheric water vapor (Gat, 1971; Gat & Bowser, 1991). However, recent 

studies suggest that SLEL is not independent of climate, as assumed in the Craig-Gordon model 

(Gibson et al., 2005; Gibson et al., 2008). Therefore we use additional slopes to reconstruct 

the isotopic composition of paleoprecipitation. Water samples of the Bangong lake system in 

western Tibet (Fontes et al., 1996) show a slope of 3.5 for the LEL due to high potential 

evaporation and low relative humidity. Still, Gibson et al. (2008) presents that SLEL in high-

latitudes of Himalaya generally ranges from 4 to 5. To cover a possible climatic range we use 

SLEL values of 5 and 3.5 for additional reconstructions of the isotopic composition of 

precipitation. This offers a confidence interval for the reconstructed δ18Oprec and δ2Hprec values 

(Fig. 2c and d). 

Note furthermore that no reconstruction is calculated for lake water data points lying 

left of the GMWL (Fig. 3). These data points imply that no evaporation occurred and lake 

water reflects the isotopic composition of precipitation. 

4. Results and Discussion 

4.1 Lake Panch Pokhari δ
2
Hn-alkane record and comparison with the δ

18
Osugar record 

The δ2H values of the four analysed n-alkanes n-C25, n-C27, n-C29, and n-C31 of Lake 

Panch Pokhari range from -126 ‰ to -260 ‰ (Table 1) and correlate significantly with each 
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other. The coefficients of correlation for δ2H of n-C25, n-C27, n-C29, and n-C31 range from 0.84 

to 0.96 (p < 0.001; n = 38). The weighted mean δ2H of all four n-alkanes is plotted versus 

depth in Fig. 2a. Accordingly, the δ2Hn-alkane record reveals a pronounced trend towards more 

negative values from the deglaciation to the Early Holocene. This trend is interrupted by two 

periods showing δ2Hn-alkane maxima, which coincide with the Younger Dryas and presumably 

the Older Dryas events. For details on the age-depth model, the reader is referred to Zech et 

al. (2014b). 

The δ2Hn-alkane record reveals similarities with the δ
18O record established for the sugar 

biomarkers arabinose, fucose and xylose from Lake Panch Pokhari (Zech et al., 2014b) (Fig. 

2b). Namely, both records show maxima for the deglaciation and the Older and the Younger 

Dryas, whereas they show minima for the Bølling and the Allerød periods. However, the 

records also feature clear discrepancies. Particularly, the δ2Hn-alkane record is characterized by 

very negative values throughout the Holocene, whereas the Holocene δ18Osugar values are well 

within the range of the Late Glacial δ18Osugar values (Fig. 2a and b). 
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Table 1: δ2H values of individual n-alkanes. Measurements were carried out in triplicate (sd = 

standard deviation). 
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Fig. 2: Comparison of (a) the Lake Panch Pokhari δ2Hn-alkane record (weighted mean of n-C25, 

n-C27, n-C29, and n-C31) with (b) the δ18Osugar record (from Zech et al., 2014), (c, d) the 

reconstructed δ2Hprec and δ
18Oprec records and (e) the δ18O records of Chinese speleothems 

(Wang et al., 2001; Dykoski et al. 2005). P/E = ratio of precipitation to evaporation; SLEL = 

slope of the evaporation line; H82, PD, D4 = identification of Chinese speleothems. 

 

4.2 Interpretation – δ
2
Hn-alkane and δ

18
Osugar reflect lake water 

A fundamental question for the interpretation of the δ2Hn-alkane and δ18Osugar records is 

whether the sedimentary biomarkers are autochthonous and of aquatic origin or allochthonous 

and of terrestrial origin. This is crucial because, albeit with an offset called biosynthetic 

fractionation factor (Schmidt et al., 2001), aquatic biomarkers can be considered to reflect 

primarily the isotopic composition of lake water. By contrast, biomarkers produced by 

terrestrial plants reflect the isotopic composition of leaf water (Tuthorn et al., 2014; Zech et 

al., 2013), i.e. precipitation modified by evapo(transpi)rative enrichment of soil and leaf 

water, thus requiring a different interpretation. 
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Concerning Lake Panch Pokhari, there are several arguments pointing to sedimentary 

organic matter being primarily of aquatic origin. First, the catchment is very small and 

sparsely vegetated. Second, carbon and nitrogen ratios (C/N) may serve as proxy for aquatic 

versus terrestrial organic matter. This is based on the finding that non-vascular aquatic 

organisms typically have very low C/N ratios of <10, whereas terrestrial vascular plants 

typically have much higher C/N ratios (Meyers and Ishiwatari, 1993). With C/N ratios of <12 

(Krstic et al., 2012) (Fig. 4a), the sediments of Lake Panch Pokhari are well within the range 

of sedimentary organic matter which has not experienced significant terrestrial input. Third, 

the sugar biomarker patterns strongly indicate that the sugars are of aquatic origin because of 

the abundant occurrence of fucose (Zech et al., 2014b). The latter is known to be a major 

component of phytoplankton, zooplankton and bacteria (Hecky et al., 1973; Biersmith & 

Benner, 1998; Ogier et al., 2001), whereas it is produced in much lower concentrations by 

vascular plants (Jia et al., 2008; Zech et al., 2012). Fourth, the n-alkanes n-C25, n-C27, n-C29, 

and n-C31 dominate in the sediments of Lake Panch Pokhari. These homologues are often 

considered to be of terrestrial origin in lacustrine archives because they clearly dominate the 

n-alkane patterns of most higher plant leaf-waxes (Eglinton & Hamilton, 1967; Meyers, 

2003). However, long-chained n-alkanes are no exclusive biomarkers for terrestrial plants. 

They have been identified to dominate also in emergent aquatic plants and are reported to be 

derived from certain microalgae such as Botryococcus braunii and diatoms, too (Bradley, 

1966; Lichtfouse et al., 1994; Volkman et al., 1998; Ficken et al., 2000; Aichner et al., 2010b 

Douglas et al., 2012;). Indeed, the sediments of Lake Panch Pokhari are very rich in diatoms, 

yielding up to ~ 70% diatom abundance and up to ~45% biogenic opal (Kristic et al., 2012; 

Kristic at al., 2013). 

Hence, while we acknowledge that a partial contribution of terrestrial organic matter 

cannot be excluded, the above arguments suggest that the investigated n-alkane and sugar 
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biomarkers are primarily of aquatic origin. This in turn allows reconstructing the isotopic 

composition of the paleolake water based on the δ2Hn-alkane and δ18Osugar results by applying 

biosynthetic fractionation factors. For n-alkanes and sugars, biosynthetic fractionation factors 

of ~-160‰ (Sessions et al., 1999; Sachse et al., 2006) and ~+27‰ (Sternberg et al., 1986; 

Yakir & DeNiro, 1990; Schmidt et al., 2001; Cernusak et al., 2003), respectively, can be 

assumed. Note that there is an ongoing discussion concerning the temperature dependency of 

the biosynthetic fractionation factor of sugars. While Sternberg and Ellsworth (2011) suggest 

that the factor can increase to ~+31‰ at lower temperatures, this is questioned by Zech et al., 

2014a) and further studies, ideally hydroponic culture studies (Ellsworth and Sternberg, 

2014), are needed to answer this question. 

The reconstructed isotopic composition of the lake water can now be used to draw 

further paleoclimatic interpretations. It is determined by the isotopic composition of 

paleoprecipitation on the one hand and by evaporative isotopic enrichment of the lake water 

on the other hand. While single isotope studies based on δ18O or δ2H results alone do not 

allow distinguishing between these two factors, a coupled δ18O and δ
2H approach offers this 

possibility. 

4.3 Coupling δ
18

Osugar  and δ
2
Hn-alkane biomarker results of Lake Panch Pokhari 

4.3.1 Deuterium-excess as proxy for lake water evaporation losses 

Fig. 3 depicts the δ
18Osugar and δ

2Hn-alkane biomarker results in a δ18O-δ2H diagram. By 

applying the biosynthetic fractionation factors for n-alkanes and sugars, the biomarker results 

can be converted into paleolake water isotopic composition (Fig. 3). The respective paleolake 

water data points mostly plot close to the GMWL or right of the GMWL, the latter being 

attributable to evaporation losses. The distance of the reconstructed paleolake water to the 
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GMWL can be described as deuterium excess (d = δ2H - 8⋅δ18O; Dansgaard, 1964). The 

reconstructed d-excess values of Lake Panch Pokhari range from +57 to -85‰ (Figs. 3 and 4).  

 

Fig. 3: δ18O-δ2H diagram illustrating the isotopic deviation of lake water (definded as 

deuterium-(d-)excess) from the Global Meteoric Water Line (GMWL). δ18O values of 

hemicellulose-derived sugars (mean of arabinose, fucose, and xylose; from Zech et al., 2014) 

and δ2H values of wax-derived n-alkanes (mean of n-C25, n-C27, n-C29, and n-C31) are used 

for reconstruction of the isotopic composition of Panch Pokhari lake water. δ2H and δ18O 

values of precipitation are calculated as intersections of the individual local evaporation lines 

(LEL) with the GMWL using a slope value of 4.2. 

 

Note that d-excess values of > +10‰, i.e. data points plotting left of the GMWL in 

Fig. 3, are not necessarily outliers because such positive d-excess values can occur when there 
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is strong recycling of rainwater (re-evaporation) and d-excess values of up to +30‰ are 

reported also from the Tibetan Plateau (Tian et al., 2001). 

Given that evaporation causes lake water to become 18O and 
2H enriched along the 

LELs, the degree of evaporative losses is reflected by the d-excess values (Fig. 3). We 

therefore suggest that the d-excess, which is reconstructed from the aquatic n-alkane and 

sugar biomarkers, can serve as proxy for the evaporation history of Lake Panch Pokhari (Fig. 

4c). For comparison and in addition, Fig. 4 also depicts the C/N ratio and the hydrogen index 

(HI) as lake level indicators (Talbot and Livingstone, 1989).  

 

Fig. 4: Comparison of (a) C/N ratio (from Krstic et al., 2011) (b) Hydrogen Index (HI) and (c) 

deuterium-excess of lake water as proxies for evaporation history of Lake Panch Pokhari. 
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These indicators are based on the notion, that lake desiccation results in mineralization 

of the sedimentary organic matter due to subaerial exposure. Thereby, carbon is lost in form 

of CO2 causing lower C/N ratios. Furthermore, certain organic compounds are selectively 

removed and inert organic compounds that are characterized by lower HI values (< 200) 

become relatively enriched. According to Fig. 4, all three evaporation proxies/lake level 

indicators reveal distinct minima during the deglaciation, the Older Dryas and the Younger 

Dryas. The multi-proxy approach hence clearly suggests that during these periods Lake Panch 

Pokhari desiccated, presumably due to greatly reduced precipitation. This interpretation is in 

agreement with the generally accepted notion that the Indian Summer Monsoon and the East 

Asian Summer Monsoon were very weak before ~15 ka BP and during the Younger Dryas, as 

indicated by maxima of East and South Asian speleothem δ18O records (Fig. 2e). While the 

C/N ratio shows several more minima also during the Holocene, the HI never drops again 

below 200 (Fig. 4b). This suggests that Lake Panch Pokhari did not desiccate during the 

Holocene. Also this finding is in agreement with the monsoon history, because more negative 

δ
18Ospeleothem values during the Holocene are interpreted to reflect intensified monsoon 

precipitation (Fig. 2e). Nevertheless, the d-excess indicates that relatively high evaporative 

enrichment of the lake water occurred, especially during the Middle Holocene (Fig. 4c). This 

can be explained with overall higher temperatures and thus lake water evaporation during the 

Holocene compared to the Late Glacial. 

4.3.2 Reconstructed δ
18

Oprec and δ
2
Hprec values 

As described in section 3.2 and depicted in Fig. 3, the coupled δ18O and δ2H biomarker 

approach furthermore allows reconstructing the isotopic composition of precipitation as 

intersects of the LELs with the GMWL. Using a slope of 4.2 for the LEL yields δ2Hprec and 

δ
18Oprec values which range from -177 ‰ to +7.9 ‰ and from -23.4 ‰ to -0.3 ‰, respectively 

(Figs. 2c and d). In order to provide a confidence interval, Figs. 2c and d additionally display 



Study 6 
___________________________________________________________________________ 
 

173 
 

δ
18Oprec and δ

2Hprec records obtained when using slopes of 3.5 and 5. The reconstructed 

δ
18Oprec values for the uppermost and youngest sediments of Lake Panch Pokhari are well in 

agreement with modern precipitation of close-by meteorological station Nyalam (weighted 

δ
18Oprec = -13,6‰, Tian et al., 2003).  

Figure 2 furthermore illustrates that the reconstructed δ18Oprec record of Lake Panch 

Pokhari strongly resembles the δ18O records of Chinese speleothems (Wang et al., 2001; 

Dykoski et al., 2005), thus validating the proposed modeling approach. Especially the 

pronounced trend towards more negative δ18O values at the transition from the late glacial to 

the Early Holocene is much better reflected by the reconstructed δ18Oprec record (Fig. 2d) 

compared to the δ18Osugar/δ
18Olake water record (Fig. 2b). Overall more negative δ18Oprec values 

in the High Himalaya compared to Southern and Eastern China can be attributed to the 

altitude effect (Meier et al., 2013). 

Concerning the paleoclimatic interpretation, the strong resemblance of the δ18Oprec 

record of Lake Panch Pokhari with the Chinese speleothem δ18O records supports the idea that 

the Indian Summer Monsoon and the East Asian Summer Monsoon varied mostly 

synchronously during the late glacial and the Holocene. Furthermore, the most pronounced 

intensification of both monsoon systems coincides with the Early Holocene and lasted until 

approximately 5 ka BP (Fig. 2). Both interpretations are in agreement with the generally 

accepted knowledge about monsoon history (Zhang et al., 2011). 

5. Conclusions 

A lacustrine δ2H biomarker record was established for Lake Panch Pokhari. The δ2H 

values of the n-alkanes n-C25, n-C27, n-C29, and n-C31 range from -126 ‰ to -260 ‰. The 

δ
2Hn-alkane record resembles the δ

18Osugar biomarker record, shows high values for the 

deglaciation and the Older and the Younger Dryas, but low values for the Bølling and the 



Study 6 
___________________________________________________________________________ 
 

174 
 

Allerød periods. However, the two biomarker isotope records also reveal discrepancies, for 

instance during the Holocene, when the δ2Hn-alkane record is characterized by the most negative 

values whereas the δ18Osugar record is characterized by intermediate values.   

The investigated biomarkers are primarily of autochthonous, aquatic origin. This 

seems plausible because (i) the catchment is very small and sparsely vegetated, (ii) the C/N 

ratios are relatively low (<12), (iii) the sugar biomarker patterns show high abundance of 

fucose and (iv) the sediments are very rich in diatoms. Hence, their isotopic composition can 

be used to reconstruct the isotopic composition of lake water by applying biosynthetic 

fractionation factors. The reconstructed d-excess of lake water ranges from +57 ‰ to -85 ‰ 

and can serve as proxy for the evaporation history of Lake Panch Pokhari. Distinct minima 

suggest strong evaporative enrichment during the deglaciation, the Older Dryas and the 

Younger Dryas, which is corroborated by the lake desiccation proxies C/N and HI and can be 

attributed to greatly reduced precipitation. The coupled δ
18Osugar and δ2Hn-alkane approach 

furthermore allowed reconstructing δ18Oprec and δ
2Hprec values using a Craig-Gordon model. 

The respective precipitation records are well in agreement with Chinese speleothem δ18O 

records suggesting that the Indian Summer Monsoon varied synchronously with the East 

Asian Summer Monsoon and became strongly intensified during the Early Holocene. 
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