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SUMMARY 

Boron, discovered as an element in 1808 and produced in pure form in 1909, still 

remains one of the most complicated light elements full of surprises. Even the number of pure 

boron polymorphs is a subject of intensive discussions. It is proven the existence of α-, β- and 

γ-boron phases. Structural details of the most common boron phase (β-B) are still not fully 

revealed. For decades boron remained the last stable element in the periodic table, whose 

ground state was not determined. It has been a subject of a longstanding controversy, whether 

α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature.  

The existence of the α-tetragonal boron phase T-50 has been an open question since its 

first discovery. It was not clear if T-50 could be synthesized as a pure boron phase or its 

structure must be stabilized by the presence of carbon or nitrogen. Theorists claimed that T-50 

could not exist at all because of its unstable electronic configuration.  

The tasks of the present work were (a) to develop a methodology of a reproducible 

synthesis of known boron phases (first of all α-boron), (b) to investigate if there are any still 

unknown boron phase(s) stable or metastable at pressures up to 20 GPa and temperatures up 

to 2200 K, (c) to study high-pressure and high-temperature behaviour of boron phases, and (d) 

to establish the experimental PT phase diagram of boron.  

We have developed a method of synthesis of single crystals of -boron. They were 

crystallized from a boron-platinum melt at high pressures (6-11 GPa) and high temperatures 

(1450-1875 K). An average size of the as-grown isometric crystals was 60 μm to 80 μm in 

maximum dimension. An accurate refinement of the crystal structure of -B using single-

crystal X-ray diffraction data was possible due to the excellent quality of the single crystals. 

The crystal structure is in good agreement with the literature data. Detailed investigation of 

single crystals of α-boron using Raman spectroscopy was performed under elevated pressures 

and temperatures. The behaviour of the Raman modes under pressure was studied both 

theoretically and experimentally. We confirmed α-boron to be stable at least up to 36 GPa and 

600 K and derived its mode Grüneisen parameters. We established the pressure-temperature 

dependence of the A1g mode of α-B. 

Single crystals of β-boron were grown at temperatures above 1550 K and pressures up 

to 11 GPa using the similar methodology like that worked out for synthesis of -boron. An 

average size of β-boron crystals was 60 μm. Their quality was sufficient for the structure 

refinement based on single crystal X-ray diffraction data. Their size allowed measurements of 

the microhardness. 
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In a series of experiments above 8 GPa we synthesized single crystals of tetragonal δ-

boron (also known in literature as -tetragonal boron or T-50) and refined the crystal structure 

of this phase based on synchrotron X-ray diffraction data. The purity of δ-boron was 

confirmed by means of the microprobe analysis and the electron energy loss spectroscopy 

(EELS).  

A new, so far unknown boron phase, ε-boron, was synthesized at pressures of 8-10 

GPa and temperatures between 2000-2250 K. The microprobe analysis and EELS revealed 

that the samples were not contaminated. The crystal structure of the new phase was 

determined by means of single crystal X-ray diffraction. ε-boron crystallizes in a R-3m space 

group with the unit cell parameters a = 5.5940(7) Å and c = 12.0756(16) Å (in hexagonal 

setting). The unit cell contains 15 boron atoms. The structure can be presented by the network 

of B12 icosahedra with a group of three boron atoms in the inter-icosahedra space. This phase 

is isostructural to boron carbide B13C2 (if carbon atoms are substituted by boron ones). The X-

ray density of ε-boron is 2.41 g/cm
3
. Measured hardness is ~60 GPa which places ε-boron in 

the family of superhard materials.  

We have demonstrated that δ-boron and ε-boron are metastable polymorphs because 

(a) they were found only together with other stable boron phases (-, -, or γ-B), and (b) upon 

heating at high pressure, both δ-B and ε-B transform to - or γ-B, if the PT conditions 

correspond to the fields of stability of the latter. 

Summarising, in the course of the present work the high-pressure high-temperature 

synthesis of the five boron polymorphs was established as a reproducible, verifiable and well-

documented process. Following the synthesis prescription one can grow single crystals of α-

B, β-B, γ-B, -B, and -B phases. Based on results of numerous HPHT experiments, the phase 

boundaries between the stable boron phases (α-B, β-B, γ-B) were found. Thus, our serial 

exploration of the pressure-temperature field using the large volume press synthesis technique 

resulted in establishing the phase diagram of boron (showing also the PT fields of the 

appearance of its two metastable phases, -B and -B) in the pressure interval of 3 GPa to 18 

GPa at temperatures between 1073 K and 2423 K. Based on our experimental data and linear 

extrapolation of the α/β phase boundary down to ambient pressure we could resolve a 

longstanding controversy on the ground state of boron in favour of the α-B phase.  
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ZUSAMMENFASSUNG 

Das im Jahre 1808 entdeckte und seit 1909 in reiner Form produzierte Element Bor 

gilt weiterhin als eines der komplexesten der leichten Elemente und bietet auch heute noch 

Erstaunliches. Allein schon darüber, wie viele reine Bor-Polymorphe exisitieren, wird eine 

intensive Diskussion geführt. Bisher ließen sich α-, β- und γ-Bor-Phasen nachweisen. 

Strukturelle Details über die am häufigsten auftretende β-Bor-Phase sind jedoch immer noch 

nicht vollständig geklärt. Über Jahrzehnte war Bor das letzte der stabilen Elemente des 

Periodensystems, dessen Grundzustand noch unbestimmt war. Über lange Zeit wurde 

kontrovers diskutiert, ob α-B oder β-B die thermodynamisch stabile Phase bei normalen 

Umgebungsbedingungen (Druck und Temperatur) ist. 

Die Existenz von α-tetragonalem Bor T-50 ist immer noch zweifelhaft geblieben. Es 

konnte nicht dareglegt werden, ob T-50 als reine Bor-Phase synthetisiert werden kann oder ob 

seine Struktur durch die Zugabe von Kohlenstoff oder Stickstoff stabilisiert werden muss. 

Theoretiker führen an, dass T-50 aufgrund seiner instabilen Elektronenkonfiguration nicht 

existent sein kann. 

Die Aufgabenstellung der hier präsentierten Arbeit umfasste, (a) eine Methodik für 

reproduzierbare Synthesen der bekannten Bor-Phasen (insbesondere α-Bor) zu entwickeln, (b) 

zu untersuchen, ob weitere bisher unbekannte Bor-Phasen existieren, die bei Drucken bis 20 

GPa und Temperaturen bis 2200 K stabil bzw. metastabil sind, (c) das Hochdruck-

/Hochtemperaturverhalten von Bor-Phasen zu erforschen und (d) ein PT-Phasendiagramm für 

Bor auf experimenteller Basis zu erstellen. 

Es wurde im Verlauf dieser Arbeit eine Synthesemethode für -Bor-Einkristalle 

entwickelt. Die Einkristalle wurden bei hohen Drücken (6-11 GPa) and hohen Temperaturen 

(1450-1875 K) aus einer Bor-Platin-Schmelze auskristallisiert. Die durchschnittliche Größe 

der Kristalle (wie gewachsen) lag zwischen 60 und 80 µm in ihrer größten Ausdehnung. Eine 

präzise Verfeinerung der -Bor-Kristallstruktur mit Hilfe von Röntgenbeugungsanalysen war 

aufgrund der hervorragenden Qualität der Einkristalle möglich. Die Kristallstruktur stimmt 

gut mit Literaturdaten überein. Einkristalle von -Bor wurden mit Hilfe der Raman-

Spektroskopie bei erhöhten Drücken und Temperaturen genauer untersucht. Das Verhalten 

von Raman-Moden unter Druck wurde sowohl mit theoretischen als auch experimentellen 

Ansätzen erforscht. Die hier präsentierte Arbeit bestätigt die Stabilität von -Bor bis 

mindestens 36 GPa und 600 K und leitet daraus den Grüneisen-Parameter ab. Sie stellt die 

Druck-Temperatur-Beziehung der A1g-Mode von α-B vor. 
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Einkristalle von β-Bor wurden bei Temperaturen oberhalb von 1550 K und bei 

Drücken bis 11 GPa mit der gleichen Methodik wie bei der Synthese von α -Bor gezüchtet. 

Die β-Bor-Kristalle waren durchschnittlich 60 μm groß, ihre Qualität erwies sich für 

Feinbestimmungen auf der Basis von Einkristall-Beugungsdaten als ausreichend. Die 

Kristallgröße erlaubte Bestimmungen der Mikrohärte.  

In einer Reihe von Experimenten oberhalb von 8 GPa wurden Einkristalle tetragonalen 

δ-Bors (in der Literatur auch als -tetragonales Bor oder T-50 beschrieben) synthetisiert. Die 

Kristallstruktur dieser Phase wurde mit Beugungsdaten aus Synchrotron-Anwendungen 

verfeinert. Den Reinheitsgrad des δ-Bors belegen Mikrosondenmessungen und Ergebnisse der 

Elektronen-Energieverlust-Spektroskopie (EELS). 

Eine neue, bisher unbekannte Bor-Phase (ε-Bor), wurde bei Drücken zwischen 8-10 

GPa und Temperaturen zwischen 2000-2250 K erzeugt. Mikrosondenanalysen und EELS 

ergaben, dass die Proben nicht kontaminiert waren. Die Kristallstruktur der neuen Phase 

wurde mit Röntgenbeugungsanalysen an Einkristallen bestimmt. Die ε-Bor-Phase kristallisiert 

in der Raumgruppe R-3m mit folgenden Parametern für die Einheitszelle: a = 5.5940(7) Å 

und c = 12.0756(16) Å (in hexagonaler Anordnung). Die Einheitszelle weist 15 Bor-Atome 

auf. Die Struktur kann durch ein ikosaedrisches (zwanzigflächiges) Netzwerk aus 12 Bor-

Atomen (B12) mit einer Gruppe aus 3 Bor-Atomen im inter-ikosaedrischen Raum dargestellt 

werden. Die Phasenstruktur ist isometrisch zu Borkarbid B13C2 (wenn Kohlenstoff-Atome 

durch Bor-Atome substitutiert werden). Die mittels Röntgenbeugungsmethoden bestimmte 

Dichte von ε-Bor beträgt 2.41 g/cm
3
, die gemessene Härte liegt bei ~60 GPa, wodurch ε-Bor 

der Gruppe der superharten Materie zuzuordnen ist. 

Es konnte gezeigt werden, das δ-Bor und ε-Bor metastabile Polymorphe sind, da sie 

(a) stets nur zusammen mit anderen stabilen Bor-Phasen (-, -, oder γ-B) vorkommen und 

(b) sowohl δ-B als auch ε-B beim Aufheizen unter hohem Druck sich zu - oder γ-Bor 

umwandeln, wenn die PT-Bedingungen den Stabilitätsfeldern dieser Bor-Phasen entsprechen. 

Zusammenfassend lässt sich festhalten, dass mit der hier präsentierten Studie die 

Hochdruck-/Hochtemperatur-Synthese von fünf Bor-Polymorphen als reproduzierbarer, 

verifizierbarer und gut dokumentierbarer Prozess eindeutig belegt ist. Mit den vorgelegten 

Syntheseanleitungen können Einkristalle von α-B, β-B, γ-B, -B und -B gezüchtet werden. 

Aufgrund der Ergebnisse aus zahlreichen HP/HT-Experimenten wurden die Phasengrenzen 

zwischen den stabilen Bor-Phasen α-B, β-B und γ-B festgelegt. Die Reihenuntersuchungen im 

Druck/Temperatur-Feld durch Materialsynthesen mit Hilfe von großvolumigen Hochdruck-

Pressen führten zur Festlegung des Phasendiagramms von Bor im Druckintervall zwischen 3 
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und 18 GPa bei Temperaturen zwischen 1073 und 2423 K. Auch die PT-Felder der zwei 

metastabilen Phasen -B und -B können in diesem Phasendiagramm dargestellt werden. 

Aufgrund der in dieser Studie gewonnenen experimentellen Daten und der linearen 

Extrapolation der α/β-Phasengrenze bis hinunter in Bereiche des Umgebungsdrucks kann eine 

schon lang anhaltende Kontroverse über den Grundzustand von Bor zugunsten der α-B-Phase 

beendet werden. 
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1 INTRODUCTION 

1.1 Motivation and background 

Boron does not exist in nature as a pure elemental phase because of its extreme 

chemical activity but, being utilised in compounds it plays an important role in human 

activities since antiquity (Garett 1998). Boron compounds are widely used as engineering 

materials (dielectrics, B-doped semiconductors), superhard materials (cBN, boron carbide), 

reinforcing chemical additives, for example, for obtaining special glass or corrosion- or heat- 

resistant alloys (Perkins 2011), and superconducting materials (ex., MgB2) (Braccini et al. 

2007). Surprisingly, despite centuries of application and decades of intensive studies of boron 

compounds, elemental boron still remains in focus of wide scientific interest due to its 

enigmatic properties and largely unknown phase diagram (Albert & Hillebrecht 2009; 

Zarechnaya et al. 2009; Masago & Shirai 2006; van Setten et al. 2007), pressure induced 

metallization and superconductivity (Eremets et al. 2001), formation of unusual chemical 

bonds (Mondal et al. 2011), and potential technological applications, exceptional chemical 

stability combined with very high hardness and interesting semiconducting and optical 

properties (Zarechnaya et al. 2009; Zhou et al. 2010). 

Boron is the fifth element in the periodic table with only three valence electrons. In 

spite of its apparent simplicity, boron has complex chemistry and remains likely one of the 

stable element so far, whose enigmas are not completely uncovered after 200 years since its 

discovery. For example, until very recently the electron density distribution based on 

experimental data was unknown for all boron modifications. So that the chemical bonding is 

still not entirely clarified for boron polymorphs. 

A great contribution in comprehension of boron chemistry was made by William 

Lipscomb (Lipscomb 1981a; Lipscomb 1981b). He studied chemical bonding and structure of 

boranes BxHx+4/BxHx+6/BxHx+8 trying to explain why so many of them exist (Lipscomb 1966). 

As a result he introduced for example, two-electron three-center (2e3c) bonding concept 

(figure 1.1.1) (Lipscomb 1973). For his “studies on the structure of boranes illuminating 

problems of chemical bonding”, William Lipscomb was awarded Nobel Prize in chemistry in 

1976.  
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Figure 1.1.1 A pair of 2e3c bonds in the B2H6 molecule.  

 

But scientists challenged boron as well. Although both carbon and nitrogen can form 

compounds with stable homoatomic triple bonds, they have not been known for boron until 

recently. It was predicted that structures with triple B-B bonds are possible (Mitoraj & 

Michalak 2011; Holzmann et al. 2011) and Braunschweig et al. challenged such a synthesis 

starting with a precursor that already had one boron-boron bond in place (Braunschweig et al. 

2012). They succeeded to synthesize compounds with double B-B and triple B-B bonds. The 

chromophore properties and robustness of these compounds, according to Braunschweig et al. 

(2012), offer exciting possibilities for the further study of the reactivity and optical properties 

of B-B double and triple bonds, in line with the recent interest in boron-based functional 

materials (Braunschweig et al. 2012). 

Due to establishing the method of synthesis of high quality single crystals of γ-boron 

(Zarechnaya et al. 2009), synchrotron X-ray diffraction data was acquired. Quality of the data 

made possible to perform the first topological analysis of the experimentally obtained electron 

density for the high pressure (HP) γ-boron polymorph and to reveal 1e2c and 2e3c bonds in 

this phase (Mondal et al. 2011). 

There are two polymorphs of pure crystalline boron synthesized at ambient pressure: 

α-rhombohedral boron and β-rhombohedral boron, and their existence is proven beyond doubt 

(Albert & Hillebrecht 2009). The tetragonal structures described in literature have been 

considered to be insufficiently supported by evidence for elemental modifications (Albert & 

Hillebrecht 2009). 

Below these phases of elemental boron are described and problems with their 

synthesis and characterisation are illuminated. 
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1.2 Elemental boron modifications 

1.2.1 α-boron 

Pure boron was obtained in a crystalline form for the first time in 1909 (Weintraub 

1909). The first detailed report of synthesis of α-boron single crystals was described only in 

1958 (McCarty et al. 1958). It was observed that the product of the pyrolytic decomposition 

of BI3 on a surface heated at 1073-1273 K contained a crystalline modification of boron 

(McCarty et al. 1958) with a simple rhombohedral structure (α-boron). Tantalum, tungsten 

and boron nitride have all been used successfully as substrates decomposition of the boron 

iodide or boron hydride resulting in synthesis of single crystals of α-boron. Above ~1770 K 

those crystals transformed to the structurally more complex β-rhombohedral form (McCarty 

et al. 1958). In 1959 single crystals of α-boron were made by crystallizing amorphous boron 

in a platinum melt (Horn 1959). After a few reports in the 1950s  and 1960s (McCarty et al. 

1958; Horn 1959; Amberger & Dietze 1960; Wald 1970, see also Albert & Hillebrecht 2009 

for review) there was a long time of the absence of any references to synthesis of α-boron 

single crystals.  

 

Figure 1.2.1 The framework of B12 icosahedra in α-boron.  

  

-boron has the simplest structure (Will & Kiefer 2001; Decker & Kasper 1959; 

Morosin et al. 1986; Switendick & Morosin 1990; Parakhonskiy et al. 2011) among three 

established stable boron phases: it consists of B12 icosahedra located in corners of a 

rhombohedral unit cell (figure 1.2.1). The structure was solved in 1959 (Decker & Kasper 

1959). α-boron crystallizes in a rhombohedral structure (R-3m space group) with unit cell 

parameters a = 4.9179(5) Å, c = 12.5805(16) Å in a hexagonal setting (Parakhonskiy et al. 

2011). 
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-boron demonstrates a truly spectacular combination of properties – it is a direct 

band gap semiconductor (with the reported band gap of 2.0 eV (Horn 1959), 2.4 eV (Terauchi 

et al. 1997), or 2.15(2) eV as derived by us from EELS data), has a very high hardness (we 

measured the Vickers hardness of 38(2) GPa on polycrystalline aggregates), thermally and 

chemically highly resistive, and quite light (the density of -B is 2.46 g/cm
3
 vs 4.89 g/cm

3
 of 

CdS or 6.11 g/cm
3
 of GaN having comparable band gaps). Such properties may make -B 

material of choice in many industrial semiconductors applications, and, especially, as a 

working element of solar cells with high efficiency of sun light conversion into electrical 

power.  

 Inter- and intraicosahedra vibration modes assignment based on Raman spectroscopy 

was made at pressures up to 35 GPa (Richter & Ploog 1975; Vast et al. 1997). X-ray 

diffraction and Raman spectroscopy analysis was performed later on single crystals at 

pressures up to 100 GPa (Polian et al. 2008). α-boron is claimed to be stable in this pressure 

range (Polian et al. 2008).  

Raman spectra from the samples of α-boron investigated by Werheit et al. (Werheit et 

al. 2010), revealed new very weak Raman bands at 494, 552, 750, 1094 and 1238 cm
-1

 in 

respect to previous theoretical (Shirai & Katayama-Yoshida 1998) and experimental (Vast et 

al. 2007) data. The authors interpreted them as surface modes excited by the Ar ion laser of 

488 nm. No information was provided regarding purity of the crystals of α-B studied in 

Werheit et al. 2010 and their synthesis technique. Discrepancy between previous theoretical 

and experimental data (Vast et al. 1997; Polian et al. 2008; Shirai & Katayama-Yoshida 1998; 

Werheit et al. 2010) and recent observations required clarification. 

It is already more than 50 years passed since α-boron was obtained in a crystalline 

form for the first time, but several problems still remain. A methodology of reproducible 

synthesis is needed to be developed. Pressure-temperature stability range is needed to be 

verified. The Raman spectroscopy data required clarification. 

1.2.2 β-boron 

-boron is the most common phase and most complicated from the structural point of 

view. -boron powder is commercially available. The β-B crystallizes from melt at ambient 

pressure and can be also produced by different chemical methods including vapour deposition 

(Cueilleron & Viala 1979; Greenwood 1973). 

The structure of β-boron was solved for the first time by Sands & Hoard (1957) and 

later refined (Hoard et al. 1970; Callmer 1977). -boron crystallizes in a rhombohedral 
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structure (R-3m space group) with the unit cell parameters a = 10.932(1) Å, c = 23.818(3) Å 

in a hexagonal setting (Slack et al. 1988). Measured experimental density was 2.35 g/cm
3
. -

boron consists of B12 icosahedra and B27-B-B27 clusters. B27 cluster consists of 3 B12 

icosahedra sharing their faces. They are connected with the similar B27 cluster through the B 

atom, and form the B27-B-B27 unit. B12 icosahedra form a 3-dimensional framework with B27-

B-B27 clusters inside the voids (figure 1.2.2.1). Presence of voids and partially occupied 

positions makes β-boron the most complex structure among all boron polymorphs (Slack et 

al. 1988).  

 

Figure 1.2.2.1 Crystal structure of rhombohedral β-boron (picture is taken from Albert & Hillebrecht 

2009). 

 

Availability of β-boron crystals makes this phase well-studied. Optical (Spitzer & 

Kaiser 1958), electrical (Greiner & Gutowski 1957) and mechanical (Tsagareishvili & 

Khvedelidze 1980) properties of β-boron were measured. It was theoretically predicted 

(Mailhiot et al. 1990) and experimentally found that β-boron changes its state from a wide 

band gap semiconductor to metal and even a superconductor at 160 GPa (Eremets et al. 

2001).  

But due to its complexity, the structure of β-boron is not entirely understood. The 

electron density distribution has not been determined. The Raman spectroscopy investigation 

of β-boron single crystals under high pressure has not been done so far. 
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1.2.3 The controversy on the ground state of boron and a relative 

stability of the two modifications (α-B and β-B) at ambient conditions 

 

Relative stability of α-B and β-B at ambient conditions still remains a puzzle. Boron is 

the last stable element in a periodic table, which ground state is needed to be clarified. Due to 

the ground state energies of the two modifications are very similar, theoreticians do not have 

consensus on that problem. Using density-functional (DFT) calculations Shirai et al. (Masago 

and Shirai 2006; Shirai et al. 2007) studied ground-state and thermodynamic properties 

(including the effect of atomic disorder and phonons) of α- and β-boron and found that at zero 

temperature α-B is more stable than β-B. That agrees with the conclusion of Shang et al. 

(2007), who considered defect free α- and β-B using first-principle quasi-harmonic phonon 

calculations. By considering the phonon contribution as the major source of the temperature 

dependence of the free energy, Masago et al. (Masago & Shirai 2006) obtained 970 K as the 

transition temperature of α-to-β boron. This is at odds with conclusions of van Setten et al. 

(2007), who introduced the quantum mechanical zero-point vibrational energy as a 

mechanism to stabilize β-B at absolute zero temperature and found β-B to be the ground state 

of elemental boron in their DFT calculations. Moreover, theoretical calculations indicate that 

it is possible to find an arrangement of partially occupied sites in -boron that also increase its 

stability with respect to the -phase (Ogitsu et al. 2009; Widom and Mihalkovič 2008; van 

Setten et al. 2007). Ogitsu et al. (2009), using lattice Monte Carlo techniques combined with 

ab initio calculations, found that boron could be a frustrated system and a series of β-boron 

structures, nearly degenerate in energy, may be stabilized by a macroscopic amount of 

intrinsic defects. According to Ogitsu et al. (2009) defects are responsible not only for 

entropic effects but also for a reduction in internal energy making β-B more stable than α-B at 

zero temperature.  

This long-standing controversy has not been resolved experimentally so far as well. 

On heating at ambient pressure to temperatures above 1500 K α-B slowly transforms to -B, 

which means that a stable high-temperature form of boron is the -phase. The fact that -B 

could not be transformed to α-B at ambient pressure may indicate that α-B is metastable 

(Shalamberidze et al. 2000). In this respect, although α-B is completely ordered, its relative 

structural simplicity does not make it self-evident that α-B is more stable compared to β-B at 

ambient conditions. Slow kinetics of transformations (i.e. large kinetic barriers) and/or high 

melting temperature of boron make difficult accurate measurements by unambiguous 

techniques, such as calorimetry (Ogitsu et al. 2009). 
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This controversy could be resolved by determining of phase boundary between α-B 

and β-B phases and hence the stable phase at ambient pressure and zero temperature.  

1.2.4 γ-boron 

The existence of a HP boron phase was reported for the first time in 1965 (Wentorf 

1965), when a new phase was obtained as a powder at 10 GPa and 1770 K. The structure 

could not be solved from the powder diffraction that time. Even the unit cell parameters could 

not be determined. But later polycrystalline HP phase with the same diffraction pattern was 

synthesized by Zarechnaya et al. (Zarechnaya et al. 2008). Due to advances of diffraction 

techniques and software the structure was solved from a powder diffraction data (Zarechnaya 

et al. 2008). The existence of this phase was also theoretically predicted by Oganov et al. 

(Oganov et al. 2009).  The HP phase of boron was called γ-boron. Its structure was confirmed 

(Zarechnaya et al. 2009) and then refined from the single crystal synchrotron X-ray 

diffraction data. Oganov et al. (2009) pointed on an partial ionic character of the bonds in this 

phase. However, the accurate structure analysis including analysis of the electron density 

revealed the polar covalent character of bonds in γ-boron (Zarechnaya et al. 2009, Mondal et 

al. 2011).  

γ-boron crystallizes in an orthorhombic structure (Pnnm space group) with the unit cell 

parameters a = 5.0563 Å, b = 5.6126 Å and c = 6.9710 Å. The structure is similar to that of α-

boron, with B2 dumbbells, filling the octahedral voids formed by centers of six B12 icosahedra 

(figure 1.2.4.1).  

For the last few years γ-boron has become an object of intensive studies. It is 

extremely hard (Vickers microhardness is 58 GPa) (Solozhenko et al. 2009; Zarechnaya et al. 

2009), optically transparent with an optical absorption edge of 2.1 eV. It is a poor electrical 

conductor with a resistivity on the order of 10
6
 Ω·cm at ambient conditions. Resistivity 

decreases with increasing temperature, indicating semiconductor behavior of γ-boron 

(Zarechnaya et al. 2009).  
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Figure 1.2.4.1 Structure of γ-boron: B12 icosahedra are connected by B2 dumbbells. 

 

The X-ray density of γ-boron is 2.54(1) g/cm
3
. High density, compared with α- and β-

boron, and strong covalent bonding, suggest the lesser compressibility of γ-boron. High 

pressure investigations of γ-boron single crystals evidence its stability to at least 30 GPa and 

2000 K (Zarechnaya et al. 2010). Above ~40 GPa splitting of several Raman peaks occurs. 

Explicit analysis of boron atoms vibrations upon pressures was made by Zarechnaya et al. up 

to 100 GPa (Zarechnaya et al. 2010).  

 

1.2.5 Tetragonal boron, T-50 and T-192 phases 

There is still a wide gap in knowledge about reported in literature but still not well 

established boron phases: tetragonal B50 (T-50) and B192 (T-192) (also known as I- and II-

tetragonal phases). The fact of existence of T-50 boron phase is still a topic of debates 

between theorists and experimentalists. The T-50 was first mentioned in literature in a 1943 

by Labengayer (Laubengayer & Hurd 1943). It was synthesized by a reduction of a BBr3 

vapour on a Ta filament in a crystalline form (Laubengayer & Hurd 1943). The structure was 

solved from X-ray diffraction data collected from those crystals (Hoard et al. 1958; Hoard & 

Geller 1951). T-50 was shown to crystallize in a tetragonal structure (P42/nnm space group) 

with the unit cell parameters a = 8.75 Å, c = 5.06 Å (Hoard et al. 1958). The structure consists 

of B12 icosahedra connected together into 3-dimensional network, with additional boron 

atoms located in the following positions: 2b (0, 0, ½) (figure 1.2.5.1). 
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Figure 1.2.5.1 Unit cell of T-50, viewed along c axis. 

 

However later, in 1954 Longuet-Higgins and Roberts pointed out that the proposed 

B50 structure would not have a stable electronic configuration and therefore could not exist 

(Longuet-Higgins & Roberts 1954). In 1974 Hoard’s et al. (1958) results on T-50 were 

refuted by Will and Ploog (Will & Ploog 1974), because they (a) failed to reproduce of 

Laubengayer’s experiment, (b) theoretically proved an instability of B50 due to its electronic 

configuration, and (c) found that X-ray diffraction measurement revealed the N and C 

impurities in the samples surpassingly T-50 phase (Will & Ploog 1974). Then a series of 

works showed that B50 is stabilized by small amounts of foreign atoms such as carbon, 

nitrogen or transition elements forming, for example, B48B2C2, B48B2Ti2 or other compounds 

(Becher 1960; Becher & Neidhard 1968; Bullett 1982). In 1992 theoretical work by Lee et al. 

supported these results, showing that the total energies of B50C2 and B50N2 are lower than 

those of a mixture of pure B50 and carbon or nitrogen (Lee et al. 1992). Synthesized 

nanoribbons of α-tetragonal boron also contained small amounts of oxygen and carbon (Xu et 

al. 2004). 

Only in 2007 possibility of the existence of the pure α-tetragonal boron polymorph in 

a nanocrystalline form was theoretically demonstrated (Hayami & Otani 2007). In 2009 

nanowires of pure α-tetragonal crystalline boron with a 25 nm diameter was finally 

synthesized (Liu et al.  2009). Recently T-50 powder was obtained at HPHT conditions in a 

mixture with other boron phases. No X-ray diffraction data was presented (Qin et al. 2012). 
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Qin et al. suggested that T-50 is an intermediate phase in the phase transition between γ-B or 

β-B to T-192, however it was not experimentally supported (Qin et al. 2012) 

There is very limited information regarding T-192 phase in literature. The only 

reported synthesis of T-192 was in 1960 (Talley et al. 1960). Specimens were prepared by the 

reduction of BBr3 by H2 on incandescent tungsten and rhenium filaments. Deposition was 

performed at ambient pressure and temperature of 1813 K. Measured density of T-192 was 

2.364(5) g/cm
3
 at a room temperature. Powder diffraction data revealed that the unit cell is 

tetragonal with a = 10.12 Å and c = 14.14 Å and contains 192 atoms, grouped in 16 B12 

icosahedra (Talley et al. 1960). Later, the structure was refined from single crystal data 

(Vlasse et al. 1979). Then every attempt to produce T-192 crystals was failed. 

It was proposed that phase transition of β-boron to the tetragonal T-192 structure 

occurs at pressures higher than 10 GPa and temperatures higher than 1500 K (Ma et al. 2003). 

The suggestion was based on alteration of powder diffraction pattern of β-boron after heating, 

but the purity of tetragonal phase was not confirmed by any means.  

Therefore there are still much unknown regarding tetragonal boron phases T-50 and T-

192. Do they really exist? What are their relations to the other boron phases? Where are their 

places on the phase diagram? Are they stable or metastable?  

1.2.6 The phase PT diagram of boron 

Phase diagrams are established for the majority of elements and compounds, but 

reliable phase diagram is still absent for elemental boron. The phase boundary separating the 

β-B and -B phases was experimentally found by Zarechnaya et al. (Zarechnaya et al. 2009). 

The two other phase boundaries have not been reported based on experimental data until 

recently.  The phase diagram drawn by Oganov (2011) (figure 1.2.6.1a) is schematic and 

based only on a few experimental points related to the HPHT synthesis conditions of -B. The 

author (Oganov 2011) sketched the -/-B phase boundary in accordance with the theoretical 

data of van Setten et al. (2007). 

 The experimental phase diagram, published by Qin et al. (2012) resulted from studies 

of solid-solid phase transitions in boron under pressure, thus the phase boundaries drawn in 

the phase diagram of Qin et al. (figure 1.2.6.1b) do not correspond to equilibrium ones.  

Applied temperature might not be enough to overcome the energy barrier for a phase 

transition. That means the equilibrium phase boundaries may be shifted to lower pressures 

and temperatures.  
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Figure 1.2.6.1 a) Theoretically predicted phase diagram (Oganov 2011). b) Experimental phase 

diagram built by Qin et al. (2012). 

 

Summarizing, the goals of the present work were to develop a methodology synthesis 

of α-boron, to investigate relations between known boron phases and to construct the 

experimental boron phase diagram.  

a b 
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1.3 Experimental techniques 

Below I summarize experimental and analytical techniques used in the present 

research. For high-pressure synthesis multi-anvil large volume presses and piston cylinder 

apparatus were used. For in situ studies of boron phases diamond anvil cells were used. The 

Raman spectroscopy, X-ray diffraction, Scanning Electron Microscopy (SEM) and 

Transmission Electron Microscopy (TEM) were used for a chemical and structure analysis of 

prepared samples. 

1.3.1 High pressure techniques 

1.3.1.1 Multi-anvil apparatus 

Multi anvil apparatus is a device for pressure generation. Attained pressures and 

temperatures could be 28 GPa and 3000 K respectively (Frost et al. 2004). The pressure range 

can be extended to over 90 GPa using inner-anvils of sintered diamond (Ito 2012). We used 

two 6-8 Kawai type multi-anvill systems (Kawai & Endo 1970; Kawai et al. 1973; Ohtani et 

al. 1987; Walker et al. 1990) installed at Bavarian Geoinstitute (BGI, Bayreuth University): 

1000 ton Hymag and 1200 ton Sumitomo presses.  Pressure was generated by a hydraulic 

press and transmitted by six tool-steel outer anvils and eight tungsten carbide cubic inner-

anvils to focus an applied load on a Cr2O3-doped MgO octahedral high-pressure chamber, 

which is used as a pressure transmitting medium. By varying the corner truncation size of the 

inner-anvils, various sample-pressure ranges can be attained. Capsule with the sample is 

enclosed inside the pressure chamber as presented on figure 1.3.1.1.1. The volume of the 

sample and the pressure that could be reached with specific assemblies is presented in a table 

1.3.1.1.1. Comparative octahedra sizes are presented on a figure 1.3.1.1.2. Perofilite gaskets 

are used as a support of an octahedral pressure chamber.  

 

Table 1.3.1.1.1 Sample sizes for different octahedron edge length (OEL)/cube truncated edge length 

(TEL). 

OEL/TEL, mm Size (length/ diameter/ 

wall width), mm 

Volume of the capsule, 

mm
3

 

Largest pressure, 

can be attained 

25/17 4x4x0.15 2.4 6 GPa 

25/15 4x4x0.15 2.4 8 GPa 

18/11 3.5x2x0.25 1.75 11 GPa 

14/8 2.8x1.6x0.15 0.672 15 GPa 

10/5 2x1.6x0.15 0.48 20 GPa 
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A sample under investigation is put inside the cylindrical LaCrO3 or C heater, which is 

isolated from the sample by MgO or Al2O3 layer. It prevents contamination and resistance 

changing due to chemical reaction between heater and sample. The heater is also separated 

from the octahedron by a ZrO2 tube. To provide electrical conductivity through the heaters, 

tube was closed by Mo or C electrodes (figure 1.3.1.1.1). 

 

Figure 1.3.1.1.1 A cross-section of the pressure chamber (not scaled), which is enclosed into 

the MgO octahedron (not shown). The capsule size is 4/4/0.3 mm (length/ outer diameter/ thickness of 

a metallic tube used for the capsule) in the 25/15 assembly and 3.5/2/0.5 mm in the 18/11 assembly. 

(1) ZrO2 tube; (2) heater; (3) Mo disc (4) MgO; (5) cylindrical hole for a thermocouple; (6) capsule; 

(7) sample. 

 

 

 

Figure 1.3.1.1.2 Comparative sizes of octahedra. The ratios OEL/TEL 

(in mm) are given at the bottom. 

25/15 18/11 14/8 7/3 
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1.3.1.2 Piston cylinder apparatus 

Piston cylinder apparatus is a device which could attain pressures up to 4.5 GPa. These 

hydraulic presses drive a piston through a cylinder against a top plate to provide a load.  

Sample could be safely heated upon compression up to 3000 K with graphite furnace (by 

passing current through it). To minimize thermal stress in the pressure vessel, cold water 

circulates through the stack top plate, pressure vessel and bridge during heating. Pressure 

vessel contains a WC core supported by concentric rings of hardened steel.  Pressure chamber 

is compressed in the core of the vessel by a piston, driven by a WC push piece. The force is 

provided by the main hydraulic ram acting against stack top plate and sample assembly, 

which is pushed by the end load ram from the other side. Size of the sample is a 10x5x0.25 

(mm), hence a volume is 12.5 mm
3
. 

In a present work Voggenreiter 220 ton piston cylinder apparatus were used to conduct 

experiments below 3 GPa and 3000 K. 

 

 

Figure 1.3.1.2.1 Piston cylinder apparatus and the sample assembly. 

 

1.3.1.3 Diamond anvil cell  

Diamond anvil cell is a universal device for obtaining extremely high pressure (up to 

300 GPa) in a small volume, which makes it ideally appropriable to single crystal high 

pressure measurements. Pressure chamber is formed inside the rhenium gasket, which is 

squeezed between the two diamond culets to 30-50 micron thickness. Then the hole of 
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appropriate diameter is drilled in the indentation centre. Material under investigation is placed 

in such a cylindrical void along with a ruby ball, which serves as a pressure gauge. The 

pressure chamber is then filled with neon which brings the conditions close to hydrostatic. 

Initial pressure could be as low as a few hundred bars (figure 1.3.1.3.1). 

 

Figure 1.3.1.3.1 Diamond anvil cell scheme. 

 

There are two major methods of heating in diamond anvil cells — laser and electrical 

one (Dubrovinsky et al. 2009; Dubrovinskaia & Dubrovinsky 2003) (figure 1.3.1.3.2). 

Laser heating technique covers a wide temperature field: between 1300 and 5000 K. 

The sample preparation for laser-heating experiments is relatively easy and there is no 

practical risk to the diamonds due to heating (Dubrovinsky et al. 2009). 

The other one is an external heating device that heats the whole diamond anvil cell. In 

this method thermal isolation of cell is required, e.g. aluminium foil. It covers temperature 

range 300-900 K with precision of 2 K. Temperature is directly measured by means of S-type 

Pt-Pt0.9Rh0.1 thermocouple. 

 

Figure 1.3.1.3.2 Portable external heater for a diamond anvil cell. 
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1.3.2 Analytical techniques 

1.3.2.1 Raman spectroscopy 

Raman spectroscopy is the powerful non-destructive tool for analysing phonon spectra 

of crystalline solids. Material is exposed to the laser irradiation in a near ultraviolet – near 

infrared range. Raman effect occurs due the interaction between laser light and phonons. 

Photon excites molecule from the ground state to a virtual energy state. Then several 

possibilities could occur. Molecule relaxes and emits photon of the same energy , which is 

called Rayleigh scattering. The molecule relaxes to a different state and emits a photon of a 

slightly different energy ν, which gives a rise to a Raman scattering. This difference in 

energies h(ν±ν) provides information about frequency of the oscillation modes (figure 

1.3.2.1.1). Combinations of the measured frequencies are unique and could be considered as a 

material fingerprint.  

 

 

Figure 1.3.2.1.1 Scattering process scheme. 

 

Raman spectra represent the change of frequencies of the emitted and exciting light 

versus intensity. The electromagnetic wave induces electric field  

 )2cos(0 tEE  , 

 where ν is frequency of induced electric field.  

EP  , 

where α is a polarizability, and P – dipolar momentum. 

If we consider q as a shift of a nuclei, and is an oscillation frequency of the molecule, then 
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where the first term describes Rayleigh scattering on the frequency and the second term 

describes Raman scattering on the Stokes ν-νand anti-Stokes ν+ν frequencies. It is 

clearly seen that Raman scattering is absent for materials whose polarizability is not changed 

with oscillations ( 0
0
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In the present work Raman spectra were collected using Dilor XY and LabRam 

spectrometers equipped with the He-Cd (325 nm), Ar (514 nm) and He-Ne (632.8 nm) laser 

sources. 

1.3.2.2 X-ray diffraction 

The X-ray diffraction is one of the most popular non-destructive analytical techniques, 

which allows determining the phase composition and crystal structure of material. X-rays are 

electromagnetic waves with wavelengths from 0.01 nm to 10 nm.  There are two most 

common ways to produce X-rays: X-ray tubes and synchrotrons. In an X-ray tube, X-rays are 

generated by bombarding a target of a suitable material with a focused electron beam. In 

synchrotrons, high-energy electrons are deflected by electromagnetic fields, yielding X-ray 

emission. 

X-ray diffraction technique is based on the scattering of X-rays by electrons, which is 

also known as Thomson scattering. It occurs because the electron oscillates in the electric 

field of the incoming X-ray beam and an oscillating electric charge radiates electromagnetic 

waves. Thus, X-rays are radiated from the electron at the same frequency as the primary 

beam.   

As a consequence of the regular arrangement of the atoms in solid matter, coherent 

scattering of the X-rays at the atoms results in a constructive interference from the reflections 

of the atomic planes at certain well-defined angles. The positions of the reflections are 

calculated using optical path difference 2s with sinds  . Maxima are produced for integer 
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multiples of t results in Bragg’s law, which gives the geometrical conditions under which a 

diffracted beam can be observed: 

 sin2dn  

where d is the interplanar spacing, is the Bragg angle, n is the order of interference, is the 

wavelength. 

Every d has corresponding indexes in the reciprocal space h, k, l. Measuring array of 

intensities with corresponding hkl makes possible to determine the structure parameters, the 

unit cell and solve the structure.  

In the present work X-ray diffraction techniques were used for the phase identification 

and the structure solution. Boron is a light element, which makes it to be a weak X-rays 

scatterer. Therefore acquiring data of acceptable quality requires a long exposure time on the 

order of 12 hours. Another solution could be to increase beam intensity, which is possible 

using synchrotron radiation. 

The synchrotron radiation is produced by acceleration of electrons in a very large 

circle by external electromagnetic field. The energy of accelerated electrons could reach 8 

GeV. Electrons emit very intense electromagnetic radiation with a continious spectrum from 

the far infrared to the γ-ray region, called synchrotron radiation. Synchrotron radiation has 

extremely low beam divergence, strong polarization, and it is emitted in very short pulses, 

typically less than a nano-second. Using such radiation it is possible to study very small 

samples in a very short time.  

Selection of single crystals, and preliminary structural analysis was carried out on a 

high-brilliance diffractometer installed at Bayreisches Geoinstitut. Diffractometer consists of 

RIGAKU FR-D high brilliance source, OSMIC Inc. Confocal Max-Flux optics, and SMART 

APEX 4K CCD detector. The diffraction patterns were processed using Fit2D software 

(Hammersley 1998). 

 

1.3.3 Electron microscopy techniques 

1.3.3.1 Scanning electron microscopy and electron microprobe analysis 

The scanning electron microscopy (SEM) can image the surface of bulk samples with 

a great depth of view and a well-defined, three-dimensional appearance. In contrast to TEM, 

where transmitted electrons are detected, in SEM mainly backscattered and secondary 

electrons, which are emitted from the surface due to excitation by the primary electron beam 

are detected. Moreover, the electron beam with a focal spot size of 1-5 nm is rastered across 
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the sample to generate the image pixel-wise. The scanning electron microscope has many 

advantages compared to optical microscopes. The SEM has a large depth of field, which 

allows more of a specimen to be in focus at one time. The SEM also has much higher 

resolution, thus closely spaced specimens can be magnified at much higher levels. Because 

the SEM uses electromagnets rather than lenses, the researcher has much more control in the 

degree of magnification. All of these advantages, as well as the strikingly clear images, make 

the scanning electron microscope one of the most useful instruments in research today. 

The morphology of the synthesized samples of single crystals were studied by means 

of the scanning electron microscopy (SEM) (LEO-1530). The chemical composition of the 

sample was studied by X-ray microprobe analysis. 

The quantitative chemical analysis of synthesized products was performed using JEOL 

JXA-8200 instrument under conditions of 20 keV for acceleration voltage and of 20 nA for 

acceleration current in wavelength dispersive mode (WDX). The size of the focused electron 

beam was about several microns. All samples were carbon coated with a thickness less than 

10 nm. Counting time for each element was 20 s at the peak position and 10 s at each 

background position.  

 

1.3.3.2 Transmission electron microscopy 

The transmission electron microscopy (TEM) is a microscopy technique, which uses a 

high energy beam of electrons transmitted through a very thin specimen, to image and analyse 

the material with the atomic scale resolution. The image is magnified and focused onto a 

fluorescent screen or some other imaging device, for example CCD camera. TEM has a 

significantly higher resolution than other microscopes due to the very small de Broglie 

electrons wavelength, but resolution is limited by electromagnetic lenses aberrations. 

It also could be used to define chemical composition of the investigated sample, using 

Electron Energy Loss Spectroscopy (EELS) technique. The sample exposed to the electron 

beam, with known energies, and some of them are inelasticity scattered which results in an 

energy loss. Electron energy difference is strongly dependent on the chemistry of the 

bombarded material. Difference between initial electron energies and resulting electron 

energies are measured by an electron spectrometer.  

Electron transparent foils were prepared by focused ion beam (FIB) techniques. FIB 

allows preparation of site-specific TEM foils with typical dimensions of 15–20 µm wide, 

approximately 10 µm high and  0.15 µm thick (Wirth 2004). 
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The TEM investigations were performed with a TECNAI F20 XTWIN transmission 

electron microscope operating at 200 kV with a field emission gun electron source.  The TEM 

is equipped with a Gatan Tridiem™ filter, an EDAX Genesis™ X-ray analyzer with ultra thin 

window and a Fishione high angle annular dark field detector (HAADF).  The Tridiem filter 

was used for the acquisition of energy-filtered images applying a 20 eV window to the zero 

loss peak. EEL spectra were acquired with a dispersion of 0.1 eV/channel and an entrance 

aperture of 2 mm. The resolution of the filter was 0.9 eV at full width of half maximum of the 

zero loss peak. Acquisition time was 1 second. Spectra of the different K-edges (B, C, N, O) 

were acquired in diffraction mode with a camera length of 770 mm. Spectra processing 

(background subtraction, removal of plural scattering, quantification) was performed using 

the DigitalMicrograph software package. EDX spectra were usually acquired in the scanning 

transmission mode (STEM) using the TIA™ software package of the TEM. Significant mass 

loss during analysis was avoided by scanning the beam in a pre-selected window (20 x 20 nm 

or larger). Spot size was approx. 1 nm, and acquisition time 60 s at an average count rate of 

60 – 80 counts/s.  This resulted in a counting error of about 4 -5% at a 3 level. 
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2  SYNOPSIS (scope of the articles) 
 

In this section I summaraize experiments and main results, which have been presented 

in four papers in peer-reviewed journals (published or submitted for publication). These 

papers comprise the present thesis.  

2.1 Synthesis of single crystals of α-boron 

Synthesis of α-boron single crystals has been a long-standing problem obstructing deeper 

investigations of this boron polymorph. Last documented synthesis of α-boron single crystals 

was done in 1960s and not reproduced since then (Albert & Hillebrecht 2009).  

In our work in a series of experiments we have reproducibly obtained single crystals of 

pure α-boron using β-boron as a starting material. The synthesis was realised at high 

pressures, while all previous methods of α-boron synthesis were based on techniques realised 

at ambient pressure (see section 1.3 for the HP synthesis details). The experiments were 

conducted at pressures of 6 to 11 GPa and at temperatures of 1450 to 1875 K (table 2.1.1).  

Table 2.1.1 Summary of experiments on synthesis of single crystals of the rhombohedral α-boron 

phase. All synthesis products contain additionally platinum boride. Typical uncertainty in temperature 

is ± 50 K, and 0.5 GPa in pressure. 
Experiment Starting 

material 

Experimental conditions HP 

assembly 

Synthesis 

products capsule 

material 

temperature, 

K 

pressure, 

GPa 

heating 

time, 

min 

H3161 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 10.5 5 18/11 α-B,  γ-B 

H3170 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 7.2 5 18/11 α-B, β-B 

S4894 β-B Pt 1873 7 5 25/15 α-B, β-B 

H3255 β-B Pt 1573 8.5 3 18/11 α-B, β-B 

H3271 β-B Pt 1673 6 5 18/11 α-B, 

recrystallized 

β-B 
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H3273 β-B Pt 1573 6 5 18/11 α-B, β-B 

H3286 β-B Pt 1873 8 5 18/11 α-B, γ-B 

 

α-boron is known as a material of red or maroon colour (Albert & Hillebrecht 2009). Tiny 

crystals of this characteristic colour extracted from the capsule were first identified as α-boron 

using the Raman spectroscopy. This phase identification was confirmed by X-ray diffraction. 

The colour of the crystals varied from light red to deep red and yellowish depending on the 

size of the crystals and experimental conditions (figure 2.1.1). The size of the crystals depends 

on the heating time.  

 

 

Figure 2.1.1 Comparison of α-boron single crystals, synthesized upon different heating time. 

 

2.2 Investigation of single crystals of α-boron 

The refinement of the crystal structure of α-boron was carried out using the data 

collected at room temperature from a crystal with dimensions of 0.08  0.04  0.03 mm
3
. 

Initial coordinates of the two crystalographically independent boron atoms were taken from 

the literature. The final refinement with 15 parameters, including an isotropic extinction 

parameter, results in a good fit to the diffraction data (Rf=0.0275, wRf = 0.0453 (I>3)). The 

refined crystal structure is in agreement with that reported in the literature (table 2.2.1). High 

quality synchrotron single crystal X-ray diffraction data was used for analyzing the electron 

density distribution. 

5 minutes heating 

60 minutes heating 
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Table 2.2.1 The data on the crystal structure and the unit cell parameters of α-B obtained in 

the present study in comparison with the literature data. 
 This Study (Decker & 

Kasper 1959) 

(Will & 

Kiefer 

2001) 

(Switendick et 

al. 1991) 

(Morosin et al. 

1986) 

a, Å 4.9065(4) 4.9179 4.9179 4.9075(9) 4.927(3) 

c, Å 12.5658(5) 12.5805 12.5805 12.559(3) 12.564(7) 

V, Å3
 261.98(3) 263.5 263.50 261.94 264.13 

B1,  x 0.11880(6) 0.11886 0.11886(1) 0.11892(3) 0.1187(2) 

B1,  z 0.89125(4) 0.89133 0.89133(1) 0.89122(2) 0.8912(1) 

B2,  x 0.19678(7) 0.19686 0.19686(1) 0.19688(3) 0.1965(2) 

B2,  z 0.0242484) 0.02432 0.02432(1) 0.02428(2) 0.0243(1) 

 

To clarify the discrepancy between theoretical and experimental Raman spectroscopy 

data (Vast et al. 1997; Polian et al. 2008; Shirai & Katayama-Yoshida 1998; Werheit et al. 

2010), detailed Raman spectroscopy investigation on the α-boron crystals was undertaken.  

The piston-cylinder-type diamond anvil cells made at Bayerisches Geoinstitut and diamonds 

with the culet diameters of 200 microns were used in high pressure experiments (see section 

1.3.1). Previously synthesized α-boron (Parakhonskiy et al. 2011a; Parakhonskiy et al. 2011b) 

crystals were selected and placed into the pressure chamber (figure 2.2.1). Sizes of the used 

crystals were 90x45, 80x40 and 25x40 microns. Neon was used as a pressure transmitting 

medium. Small ruby ball was placed along with the α-boron crystal to serve as a pressure 

marker (Syassen 2008). The DACs were heated using the external resistivity heating system 

(Dubrovinskaia & Dubrovinsky 2003). 
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Figure 2.2.1 Image of the sample chamber of a diamond anvil cell: the α-boron crystal 

(orange) placed into a 120-micron hole drilled in the rhenium gasket. A transparent circle in the 

middle is a ruby ball. Neon is a pressure transmitting medium.  

 

Experimental Raman spectroscopy results obtained at ambient conditions are 

presented in table 2.2.2 in comparison with the literature data. Experimentally measured 

frequencies of the Raman modes of α-boron at ambient conditions agree well with those 

previously reported in (Werheit et al. 2012; Richter & Ploog 1976; Vast et al 1997; Shirai et 

al. 2006). Complementarily, we performed first-principles calculations using the density-

functional theory (DFT) and the density-functional perturbation theory (DFPT). The 

wavenumbers of the Raman bands calculated in the present study (see table 2.2.2, figure 

2.2.2) are systematically about 40 cm
-1

 higher than the corresponding experimental values. 

The only exception is the first Eg peak experimentally observed at 519 cm
-1

. The most likely 

explanation is an overestimation of the B-B bonding, specific to local density approximation. 

In a molecular solid, usually the lowest-frequency modes are lattice modes, characterized by 

large units of the structure vibrating as rigid parts, and thus are less affected by 

overestimations of the intramolecular bond strengths. Furthermore the behaviour of the mode 

at 519 cm
-1

 (525 cm
-1

 theoretical) is noteworthy as it exhibits a clear softening under pressure. 

This suggests that the compression mechanism in the structure of α-boron is dominated by 

rotations of the B12 cages.  
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Figure 2.2.2 The pressure dependence of the wavenumbers of the Raman modes of α-boron. Black 

circles are experimentally obtained values, white squares – theoretically calculated ones. 
 

Table 2.2.2 Phonon frequencies of α-boron observed in the present study compared with our 

theoretical calculations and the literature data (experimental uncertainties are 2 cm
-1

).  
 ω, cm

-1
, exp. 

this work 

ω, cm
-1

, 

theor. this 

work 

ω, cm
-1

, 

(Richter 

and Ploog 

1975) 

ω, cm
-1

, 

(Vast et al. 

1997) 

ω, cm
-1

, 

(Vast et al. 

1997) 

ω, cm
-1

, 

(Shirai and 

Katayama-

Yoshida 

1998) 

ω, cm
-1

, 

(Werheit 

et al. 

2010) 

weak surface 

mode 

 

 

    494 

Eg 519 525 524 525 529 497 527 

weak surface 

mode 

 

 

    552 

Eg 581 618 587 586 608 572 589 

A1g 686 720 693 692 708 710 694 

Eg 703 742 710 708 729 743 713 

weak surface 

mode 

 

 

    750 

Eg 768 801 776 774 790 818 778 

A1g 784 826 796 793 815 759 795 

Eg 862 903 872 870 890 884 873 

A1g 917 958 931 925 947 965 934 

weak surface 

mode 

 

 

    1094 

Eg 1118 1146 1125 1122 1138 1169 1125 

A1g 1153  1157    1160 

A1g 1185 1201 1185 1186 1192 1191 1187 

A1g 1190  1198    1201 

weak surface 

mode 

 

 

    1238 
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Based on our experimental data, we were able to write an empirical equation which 

allows determining pressure (in GPa) if temperature and the wavenumber of the A1g mode of 

α-B is known:  

23903.0293.0  TP  ,  

where P – pressure in GPa, ω – the peak position in cm
-1

 and T is the temperature in K with 

estimated uncertainties 0.5 GPa, 3 cm
-1

 and 5 K respectively.  

Grüneisen parameters were measured and compared with literature data (table 2.2.3). 

α-boron confirmed to be stable up to 36 GPa. 

 

Table 2.2.3 Mode Grüneisen parameters of α-B Raman active vibrations.  

mode Eg  Eg A1g Eg Eg A1g Eg A1g Eg 

ω, cm
-1

 519 581 686 703 768 784 862 917 1118 

This work, γi 0.325 1.541 1.037 1.287 0.939 1.321 1.114 1.493 1.233 

 

γexp, [12] 0.130 1.260 0.973 1.139 0.756 1.186 0.904 1.306 1.040 

 

γtheor, [12] 0.077 1.215 0.889 1.077 0.656 1.155 0.834 1.229 1.083 

 

The active Raman modes of α-boron at pressures up to 36 GPa were theoretically 

calculated up to 100 GPa and experimentally measured. Experimentally measured frequencies 

at ambient conditions agree well with those previously reported in Richter & Ploog 1976; 

Vast et al. 1997; Shirai et al. 2006. We performed a detailed investigation of the particular 

ranges, where additional weak surface modes were found by Werheit (Werheit et al. 2012). 

Raman spectra in those regions were measured for about an hour on both Ar and He-Ne laser 

systems. Although we used He-Cd laser with the excitation light wavelength of 325 nm, 

which is smaller than used in Werheit et al. (2012), neither of these surface modes was 

detected in our study. This observation may suggest that the observed ”surface modes” could 

be either artefacts or the result of possible contamination of the boron samples studied in 

Werheit et al. 2012), taking into account that characterisation of their purity was not provided 

in the paper. 

2.3 Synthesis of single crystals of β- and γ-boron 

 In order to experimentally constrain relations between -, -, and γ-boron phases we 

performed more than 30 experiments in a multi-anvil apparatus, extending high pressure 
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synthesis methodology described previously, for other P-T ranges (table 2.3.1). Every trial 

aimed at establishing the phases that can be crystallised from melt or by solid-solid phase 

transformation of the precursor. Recovered samples were analysed by scanning electron 

microscopy and electron microprobe for chemical purity, X-ray diffraction and Raman 

spectroscopy for phase composition, and some samples were studied by TEM for 

characterising their structure (see experimental techniques).  

 

Figure 2.3.1 Single crystals of γ-boron (a) and β-boron (b). 

 

Table 2.3.1 Summary of high-pressure high-temperature experiments on boron. 

Experiment* Starting 

material 

Experimental conditions** Synthesis results*** 

capsule 

material 

temperature, 

K 

pressure, 

GPa 

heating 

duration, 

min 

H3161 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 10.5 5 α-B, γ-B 

H3170 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 7.2 5 α-B, initial β-B 

S4894 MA β-B Pt 1873 7 5 α-B, initial β-B 

H3255 MA β-B Pt 1573 8.5 3 α-B, initial β-B 

H3271 MA β-B Pt 1673 6 5 α-B, recrystallized β-B 

H3273 MA β-B Pt 1473 6 5 α-B, initial β-B 

H3286 MA β-B Pt 1873 8 5 α-B, γ-B 

a 
30 m 

b 

50 m 
a 
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S4805 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 9.5 5 γ-B, initial β-B 

H3154 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 10.5 5 γ-B, initial β-B 

H3191 MA β-B Pt 2193 12 1 γ-B, initial β-B 

H3244 MA β-B Pt 1873 14 2 γ-B, initial β-B 

H3260 MA β-B Pt 1073 9.7 10 initial β-B 

H3270 MA β-B Pt 1723 5 5 initial β-B, 

recrystallized β-B 

S5068 MA β-B Pt 1423 4 5 initial β-B, α-B, 

recrystallized β-B 

S5156 MA β-B Pt 1473 6 60 α-B 

H3292 MA β-B Pt 1573 7 5 α-B, initial β-B 

S4979 MA β-B Au 1373 7 5 α-B, initial β-B 

H3313 MA β-B Au 1823 7 5 α-B, initial β-B, 

recrystallized β-B 

S4995 MA β-B Au 1623 7 5 α-B, initial β-B 

H3315 MA β-B Pt 1523 5 5 α-B, recrystallized β-B 

S5016 MA β-B Pt 2023 7.5 5 recrystallized β-B 

S5017 MA β-B Pt 2123 9.0 5 γ-B, recrystallized β-B 

S5046 MA  β-B Pt 2023 8 5 γ-B, recrystallized β-B 

S5053 MA β-B Pt 2023 8.5 5 γ-B, initial β-B 

S5060 MA β-B Pt 2123 8 5 recrystallized β-B 

S5061 MA β-B Pt 1723 8 5 α-B, γ-B 

S5064 MA 

 

β-B Pt 1923 7.5 5 α-B, γ-B, recrystallized 

β-B 

A404 PC β-B Pt 1773 3 5 recrystallized β-B 

A405 PC β-B Pt 2423 3 5 recrystallized β-B 

DAC1 α-B Re 1550 11.5 7 γ-B 

DAC2 α-B Re 1600 4.7 7 β-B 

* MA – multi-anvil runs, PC – piston cylinder, and DAC – diamond anvil cell experiments 

** Typical uncertainty in temperature is ± 50 K, and 0.5 GPa in pressure. 

*** Platinum borides were found in all experiments at temperatures above eutectic if platinum as 

capsules material or component of starting mixture was used. In some experiments synthesis 

products contain initial non-transformed β-boron powder. 
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2.4 The phase PT diagram construction and the ground state 

determination 

Proven chemical and phase purity of boron crystals obtained at different pressure-

temperature conditions creates a basis for construction of the experimental phase diagram. 

Different runs resulted in crystallization of one, two or even all three boron phases 

simultaneously (table 2.3.1), that allows defining stability fields of the α-B, β-B and γ-B 

phases (figure 2.4.1). The phase boundary separating the β-B and γ-B phase stability fields 

agrees well with the phase relations experimentally found in a previous work (Zarechnaya et 

al. 2009). The other two phase boundaries (α-β-Band α-γ-B have not been reported so far 

based on experimental data. We argue that the α-B has the thermodynamic stability field, 

because its crystallization is controlled only by pressure and temperature conditions of the 

experiments independently on the type of metallic solvent (Au or Pt, table 2.3.1). Observation 

of simultaneous crystallization of chemically pure - and -B (at 5 GPa and 1520 K, for 

example) or - and γ-B (at 8 GPa and 1570 GPa, for example) demonstrates the existence of 

monovariant boundaries in the pressure-temperature phase diagram. The invariant (triple) 

point in the phase diagram could be determined by intersections of -/-B, -/γ-B, and -/γ-B 

boundaries. The all three lines cross at 7.6(5) GPa and 1880(50) K (figure 2.4.1). Indeed, at 

7.5 GPa and 1920 K we observed simultaneous crystallisation of all -, -, and γ-boron 

phases (table 2.3.1, figure 2.4.1).  
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Figure 2.4.1 Pressure-temperature phase diagram of boron. PT conditions at which crystallisation of 

various boron phases occurred are marked by different signs: green squares – -boron; purple 

diamonds – γ-boron; red hexagons – -boron; open red squares – - and -boron; open purple squares 

– - and γ-boron; open purple hexagons – - and γ-boron; blue triangle – -, -, and γ-boron; the red 

star marks the conditions of the multi-anvil experiment which led to the solid-solid -to--B phase 

transition; continues blue lines show apparent phase boundaries. The inserts present images of 

synthesized crystals of -, -, and γ-boron. 

 

In 1960s and 1970s arguments were raised (Greenwood 1973; Polian et al. 2010; 

Zarechnaya et al. 2008; Horn 1959) that crystallization of small crystals of -B from different 

metallic solvents (Pt, Au, Ag, Cu, Cu-Ni, etc.) at temperature around 1100–1200 K may 

indicate stability of the -B polymorph at temperatures below these values. However, 

inability to grow larger crystals of -B, its crystallization simultaneously with the -B form, 

and failure to transform -B into the -B phase or to synthesize -B from an amorphous 

boron precursor supports arguments that -B may be just a metastable, or even monotropic, 

form of boron. In our experiments at appropriate pressure-temperature conditions (figure 

2.4.1) -B crystals grow at the expense of -Band in some runs (table 2.3.1) all starting -

boron transforms into the -phase. Moreover, we observed direct transformation of -B into 
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-B. All mentioned observations prove that -boron is a thermodynamically stable phase. 

Extrapolation of the -/-B boundary to ambient pressure (figure 2.4.1) also suggests that -

boron is the thermodynamically stable low-temperature boron phase below 970 K. The 

linear extrapolation is totally justified by considering a potential phase diagram of the unary 

boron system. Indeed, knowing one point on the coexistence line in the fundamental property 

diagram one can determine the direction of the line by applying the Gibbs-Duhem relation to 

both phases using the fact that dT, dP and dμA must be the same in both phases if they still 

coexist: 

dμA = −SαdT + Vα dP 

dμA = −SβdT + Vβ dP, 

where μA is the chemical potential of boron, Sα , Sβ – molar entropies and Vα , Vβ – molar 

volumes of  α- and β-B, correspondingly. 

This system of equations above defines the direction of the α + β coexistence line in 

the fundamental property diagram. The direction of the projected line in the PT phase 

diagram, i.e. the α + β phase field, is obtained by eliminating dμA from the Gibbs-Duhem 

relations: 

dT
VV

SS
dP





-

-
 . 

Except for very low temperatures the equilibrium line is almost a straight line because the 

differences in S and V stay rather constant for solid phases.  

Previously reported difficulties and even failure to synthesize -B at ambient pressure 

could be explained based on the phase diagram we have experimentally constructed (figure 

2.4.1): -B is stable below about 1000 K and strictly speaking, should not crystallize from 

metallic fluxes with the eutectic point at temperature above 1100 K. However, according to 

the Ostwald step rule at conditions not far from equilibrium not the most stable but the least 

stable polymorph that crystallizes first (Niemyski & Zawadzki 1962), so that -B may appear 

if a boron-rich metallic flux solidified at relatively low temperature (Greenwood 1973). 

Transformation of -B or amorphous boron into the -phase requires very significant 

rearrangement and/or rupture of B12 icosahedra. It is impossible to activate such a 

rearrangement at relatively low temperatures (below 1000 K) in the field of stability of -B. 

With a pressure increase the temperature stability field of -boron increases and, as we 

demonstrated in a DAC experiment, it becomes possible to realize the direct -to--B 

transition.  
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Theoretical works (van Setten et al. 2007; Widom & Mihalkovič 2008; Ogitsu et al. 

2009) suggesting that -B is the ground state of boron are not supported by our experimental 

observations. The phase diagram drawn by Oganov et al. (2009) is schematic and based on 

only a few experimental points related to the HPHT synthesis conditions of β-B. The authors 

(Oganov et al. 2009) sketched the -/β-B phase boundary in accordance with the theoretical 

data of van Setten et al. (van Setten et al. 2007)  and consequently suggested that β-B is stable 

down to 0 K at ambient pressure at odds with our experimental data. Combining ab initio 

pseudopotential calculations and some experimental data (Grüneisen parameters, 

particularly), Masaga et al. (2006) and Shirai et al. (2007) estimated the phase boundary 

between - and -phases and apparently found that -B is more stable below about 1000 K, 

in good agreement with our experimental results. However, these authors calculated total 

energy of β-B using an ideal, defects free structural model which contradicts available 

experimental crystallographic data. Such a simplification of the structure of β-B in 

calculations could result in “underestimating” β-boron stability compared to other calculations 

(van Setten et al. 2007); i.e. the agreement with the experimental results could be reached just 

by chance, because indeed, according to the works of van Setten et al. (2007), Widom & 

Mihalkovič (2008), and Ogitsu et al. (2009), structural defects in -B play a key role in 

stabilization of the phase. Thus, our results call for further detailed theoretical investigations 

related to stability of boron polymorphs.  

A phase diagram, as a projection of the fundamental property diagram, allows 

materials scientist indirect use of thermodynamics (Hillert 2007). It can be utilized to 

understand materials behaviour and propose optimal ways of their synthesis. The phase 

diagram of boron (figure 2.4.1) shows that -B is not only thermodynamically stable phase in 

a large pressure-temperature range, but it also can be reproducibly synthesized (Parakhonskiy 

et al. 2011) at conditions readily accessible by modern industry for large-scale production 

(like synthetic diamonds, for example).  

 

2.5 Synthesis of metastable boron phases: δ- and ε-boron 

2.5.1 Tetragonal metastable boron phase (δ-boron) 

At pressures above 9 GPa along with the γ-B crystals, some needle-shaped crystals 

were obtained. They were grey-reddish in colour and semitransparent (figure 2.5.1.1). The 

size of the crystals varied from 30×2 μm to 150×5 μm. Each time the new phase was obtained 
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in the presence of “plate-shaped” -boron crystals (figure 2.3.1a) and never found as a single 

phase that points towards its metastability.  

 

Figure 2.5.1.1 Single crystal of T-50 (designated as δ-B later in this work). 

 

Single crystal X-ray diffraction data was collected at the Swiss-Norwegian Beam Line 

at the European Synchrotron Radiation Facility. The phase was identified as a tetragonal 

boron phase with the structure of T-50 (Hoard et al. 1958) reported in literature (figure 

1.2.5.1).  Interatomic B-B distances in B12 icosahedra are 1.715(10)–1.801(12), which well 

correspond to those in other boron icosahedral structures, like α-boron (B12) (1.7486(4)–

1.8042(4)) and γ-boron (B28) (1.766(3)–1.880(3)) (Zarechnaya et al. 2009). The chemical 

purity of the T-50 phase was proven by EELS. Thus, it can be designated as δ-B in a row of 

the known stable α-, β- and γ- polymorphs. 

 

Figure 2.5.1.2 Raman spectrum of single crystal of δ-boron. 

 

Raman spectrum of the synthesized crystals has one intense Raman peak at 491 cm
-1

 

(figure 2.5.1.2), which may serve as a fingerprint of the δ-boron. Other peaks at 287, 325, 

361, 561, 631, 703, 745, 821, 918, 1078 and 1112 (cm
-1

) are much less intense. Peaks at 361 
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cm
-1

, 491 cm
-1

, 703 cm
-1

, 745 cm
-1

, 1112 cm
-1 

are presented in the specrtum of tetragonal 

boron, measured by Xu et al. from nanoribbons (Xu et al. 2004). The Raman spectrum 

reported by Qin et al. (2012) measured from a T-50 powder is very fuzzy and looks 

differently. Since the peak positions were not presented in the work of Qin et al., it is not 

possible to compare them more precisely. 

Summarising, we have confirmed reality of the tetragonal boron phase (as metastable 

one) whose existence was disputed for more than a half of a century. For the first time this 

phase was reproducibly synthesised in form of single crystals.  

2.5.2 Newly synthesized rhombohedral metastable boron phase (ε-boron) 

In course of our experiments at P-T conditions of 8-9 GPa and 1900-2100 K, except 

known boron phases, some other yellow-reddish-orange, transparent, plate-shaped crystals 

were obtained (figure 2.5.2.1). Sizes of these crystals vary from 20 to 150 microns. The 

Raman spectrum of these crystals is characterized by following peak positions: 336 cm
-1

, 484 

cm
-1

, 537 cm
-1

, 732 cm
-1

, 807 cm
-1

 and 1086 cm
-1

. It does not look similar to spectra of any 

other boron phases (Parakhonskiy et al. 2011), but akin to that of B13C2, with a small shift of 

about 5 cm
-1

 (fig. 2.5.2.2). EELS measurements on this phase revealed however the absence 

of carbon. Taking into account that the crystals were obtained only in the presence of other 

boron phases, this phase is likely metastable, similarly to δ-B, and was called ε-boron. 

 

Figure 2.5.2.1 Single crystal of the new boron phase (later designated as ε-B). 

30m 



 43 

 

Figure 2.5.2.2 Raman spectra of B15 (red) and B13C2 (blue). 

 

Single crystal X-ray diffraction revealed that this phase is isostructural to B13С2 (Clark 

& Hoard 1943), but the carbon atom is substituted by boron in the B-C-B chain. The unit cell 

parameters: a = 5.5940(7) Å, c = 12.0756(16) Å; the space group is R-3m. The structure is 

similar to that of α-boron described above, but compared to α-B, it contains a chain of three 

boron atoms in the intericosahedral space (figure 2.5.2.3). 

 

Figure 2.5.2.3 Crystal structure of ε-boron. 

 

To study phase transformations in ε-B in the field of stability of γ-B, an ε-boron 

crystal along with a -B crystal was loaded into a diamond anvil cell and then compressed to 

11 GPa. Neon was used as a pressure transmitting medium and a ruby ball as a pressure 

gauge. After pressurising, both crystals were heated by laser to 2300 K. At these P-T 
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conditions pure boron must transform to the γ-B phase according to the phase diagram (figure 

2.4.1). After heating the Raman spectra were measured again. As seen in figure 2.5.2.4, both 

β- and ε-B fully transformed to γ-B that may serve as an additional evidence of the pure boron 

composition of the ε-boron phase. 

 

Figure 2.5.2.4 Raman spectra of ε- and β-boron crystals taken in a DAC before (upper two curves) 

and after (lower two curves) laser heating to 2300 K at 11 GPa. 

Table 2.5.2.1 Summary of high-pressure high-temperature experiments on boron, conducted in a 

multi-anvil press in addition to the previous (Table 2.3.1). Heating duration in every experiment was 5 

minutes. (Typical uncertainty in temperature is ±40 K and 0.5 GPa in pressure. In a synthesis product 

initial non-transformed β-boron powder and platinum boride are not mentioned). 

Experiment Starting 

material 

Experimental conditions Synthesis results 

capsule 

material 

temperature, K pressure, GPa 

S4805 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 9.5 γ-B, δ-B 

H3154 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 10.5 γ-B, δ-B 

S5064 β-B Pt 1923 7.5 α-B, γ-B, β-B, δ –B 
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S5110 β-B Pt 1373 14.5 -B, γ-B 

S5150 β-B Pt 1673 13 δ -B, γ-B 

S5166 β-B Pt 1673 14 δ -B, γ-B 

S5231 β-B Pt 1573 16 δ -B, γ-B 

S5225 β-B Pt 1873 16 γ-B 

S5194 β-B Pt 1573 18 γ-B 

S5206 β-B Pt 1923 18 γ-B 

S5187 β-B Pt 2073 18 γ-B 

S5063 β-B Pt 1873 8.5 γ-B, ε-B 

S5053  β-B Pt 2023 8.5 γ-B, ε-B 

S5027 β-B Pt 1873 9 γ-B, ε-B 

S5062 β-B Pt 1973 9 γ-B, ε-B 

S5084 β-B Pt 2073 9 γ-B, β-B, ε-B 

S5080 β-B Pt 2123 9 γ-B, β-B 

S5090 β-B Pt 2023 10 γ-B 

S5095 β-B Pt 1873 10 γ-B, δ-B  

S5103 β-B Pt 1773 10 γ-B, δ-B  

S5148 β-B Pt 1423 13 γ-B, δ-B  

S5123 β-B Pt 1323 13 γ-B, δ-B 

S5169 β-B Pt 1473 14 γ-B, δ-B 

S5073 β-B Pt 2323 9.5 γ-B, β-B 

 

Table 2.5.2.1 summarizes HPHT experiments conducted with the purpose of synthesis 

of metastable boron phases. Based on these results, a new version of the boron phase diagram, 

which included metastable phases, was drawn (figure 2.5.2.5).  
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Figure 2.5.2.5 The pressure-temperature phase diagram of boron. P-T conditions at which 

crystallisation of various boron phases occurred are marked by different signs: green squares – -

boron; purple diamonds – γ-boron; red hexagons – -boron; open red squares - - and -boron; open 

purple squares - - and γ-boron; open purple hexagons - - and γ-boron; blue triangle – -, -, and γ-

boron; red triangle – ε-, -, and γ-boron; the red star marks the conditions of the multi-anvil 

experiment which led to the solid-solid -to--B phase transition; continues blue lines show apparent 

phase boundaries. Hour-glass rhombuses in the yellow area and semi-filled rhombuses in the orange 

area mark PT conditions of experiments when correspondingly single crystals of ε-B and δ-B were 

synthesized. 

 

Measured microhardness of ε-boron is HV ≈ 55 GPa. An experiment in a diamond anvil 

cell showed the kinetic stability of ε-boron at room temperature up to 62 GPa. These 

important properties of the newly synthesised material may be useful for prospective 

applications.   
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4.1 High pressure synthesis of single crystals of -boron 
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Published in Journal of Crystal Growth, 321(1), 162-166 (2011) 

4.1.1 Abstract 

 

A method of synthesis of single crystals of alpha-boron (-B) is presented. -Boron 

has been crystallized from a boron-platinum melt at high pressures (6-11 GPa) and high 

temperatures (1200-1600 °C). The method is based on the high-pressure large volume (multi-

anvil) press technique. An average size of the as-grown isometric crystals is 60 μm to 80 μm 

in maximum dimension. A refinement of an accurate crystal structure of -B against single-

crystal X-ray diffraction data demonstrates the excellent quality of the single crystals. The 

crystal structure is in good agreement with the literature. 

 

4.1.2 Introduction 

Boron-rich compounds are very attractive materials for research because of their 

unique physical properties suitable for many applications. They are widely used in thermally 

stable glasses and ceramics. Boron-containing reagents are used for synthesis of organic 

compounds, including intermediates to pharmaceuticals. The variety of applications of boron 

compounds all over the world is uncountable [1]. 

There are two polymorphs of pure crystalline boron obtained at normal pressure: α-

rhombohedral boron and β-rhombohedral boron (β-B); recently a new high pressure high 

temperature boron phase, orthorhombic γ-B28, was synthesized [2]. The most easily available 
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modification of boron is the β-B phase that can be purchased or relatively easy obtained in a 

chemical laboratory. 

For the first time amorphous boron was obtained in 1808 via reduction of boron oxide 

B2O3 or boric acid B(OH)3 with potassium [2]. Later it was found that amorphous boron could 

be obtained not only by means of chemical reactions, but also in the process of electrolysis 

[2]. It took time until 1958, when a way of synthesis of pure boron in a crystalline form [3] 

was found. It was observed that the product of the pyrolytic decomposition of BI3 on a surface 

heated at 800-1000 °C contained a crystalline modification of boron [3] with a simple 

rhombohedral structure (α-boron). Tantalum, tungsten and boron nitride have all been used 

successfully as substrates on which decomposition of the boron iodide or boron hydride 

occurred resulting in synthesis of single crystals of α-boron. Above 1500 °C those crystals 

transformed to the structurally more complex β-rhombohedral form [3]. In 1959 single 

crystals of α-boron were made by crystallizing amorphous boron in a platinum melt [4]. After 

a few reports in the 1950s  and 1960s [3-5], see also [2] for review) there was a long time of 

the absence of any references to synthesis of single crystals of α-boron. There is a very recent 

report on studying microcrystalline samples of α-B consisting of single crystals “prepared by 

recrystallization from solution of isothermal saturation of molten palladium-boron alloys, 

using a vapour source of boron” [6-7]. Unfortunately, it is not clear from the publication, 

when the crystals were synthesised, and the paper [7] does not contain a detailed description 

of the procedure, which could allow reproducing the synthesis.  

In the present work in a series of experiments we have reproducibly obtained single 

crystals of pure α-boron using β-boron as a starting material. Our synthesis was realised at 

high pressures, while all previous methods of α-boron synthesis were based on techniques 

realised at ambient pressure. Obtained single crystals were investigated by means of the 

Raman spectroscopy and X-ray diffraction.  

 

4.1.3 Experimental 

4.1.3.1 Sample preparation 

Highly crystalline β-boron (purity of 99.995 at.%, grain size of <1000 μm), purchased 

from Chempur Inc., was used as a source  of boron. Either pure β-B was loaded into a Pt 

capsule, or a mixture of β-B and Pt powders (in proportion of 85:15 wt. %, Table 4.1.3.1) was 

loaded into a gold capsule. The capsules were made from Pt or Au tubes.  
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Table 4.1.3.1 Summary of experiments on synthesis of single crystals of the rhombohedra α-boron 

phase. All synthesis products contain additionally platinum boride. 

Experiment Starting 

material 

Experimental conditions HP 

assembly 

Synthesis 

products capsule 

material 

temperature, 

°C 

pressure, 

GPa 

heating 

time, 

min 

H3161 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1200 10.5 5 18/11 α-B,  B28 

H3170 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1200 7.2 5 18/11 α-B, β-B 

S4894 β-B Pt 1600 7 5 25/15 α-B, β-B 

H3255 β-B Pt 1300 8.5 3 18/11 α-B, β-B 

H3271 β-B Pt 1400 6 5 18/11 α-B,  B28, 

recrystallized 

β-B 

H3273 β-B Pt 1200 6 5 18/11 α-B, β-B 

H3286 β-B Pt 1300 8 5 18/11 α-B, B28 

 

 

4.1.3.2 Synthesis technique 

Synthesis was realised at various pressure-temperature conditions using 1000-ton 

(Hymag) and 1200-ton (Sumitomo) multi-anvil hydraulic presses. The synthesis technique is 

similar to that described in details in our previous publications [8-10] The Kawai-type multi-

anvil system employs six tool-steel outer anvils and eight tungsten carbide cubic inner anvils 

to focus an applied load on an octahedral high-pressure chamber formed as a result of corner 

truncations on the inner-anvils. By varying the corner truncation size of the inner-anvils, 

various pressures can be attained. An octahedron made of magnesium oxide that matches the 

pressure chamber was used as a pressure transmitting medium. A cross-section of the 

octahedron is shown in Figure 4.1.3.2.1. In our experiments 18/11 (the edge-length of an 

octahedron /anvil truncation edge-length, in millimeters) assemblies for pressures of 7-11 GPa 

and 25/15 assemblies for pressures of 5-8 GPa were used. Although a clear advantage of large 
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assemblies is the increase of the amount of synthesized material, reaching very high temperatures in 

large assemblies is more difficult. In our experiments temperature was increased stepwise with a 

speed of about 80 K/min. Duration of heating was 5 or 3 minutes. Then the sample was 

quenched.  

 

Figure 4.1.3.2.1 A cross-section of the pressure chamber (not scaled), which is enclosed into the MgO 

octahedron (not shown). The capsule size is 4/4/0.3 mm (length/ outer diameter/ thickness of a 

metallic tube used for the capsule) in the 25/15 assembly and 3.5/2/0.5 mm in the 18/11 assembly. (1) 

ZrO2 tube; (2) heater; (3) Mo disc (4) MgO; (5) cylindrical hole for a thermocouple; (6) capsule; (7) 

sample. 

 

4.1.3.3 Analytical techniques 

For the phase identification, selection of single crystals, and preliminary structural 

analysis a high-brilliance Rigaku diffractometer (Mo-Kα radiation) equipped with Osmic 

focusing X-ray optics and Bruker Apex CCD detector was used. The diffraction patterns were 

processed using Fit2D software[11]. 

The refinement of the crystal structure of α-boron at room temperature was carried out 

using the X-ray diffraction data collected on a MAR345 Imaging Plate diffractometer [12].  

Refinement of the lattice parameters and data reduction were performed by EVAL15 [13] and 

SADABS [14].  

A LabRam spectrometer (with a resolution of 2 cm
−1

), a He–Ne laser (632.8 nm) with 

a power of 15 mW for excitation, and a 50× objective were used for the Raman scattering 

experiments.  

The morphology and chemical composition of the synthesized samples of single crystals were 

studied by means of the scanning electron microscopy (SEM) (LEO-1530). Chemical purity of the 

samples was confirmed using WDX microprobe analysis (JEOL JXA-8200; focused beam; 20 keV, 20 

nA).  
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4.1.4 Results and discussion 

Experiments on synthesis of single crystals of α-boron were conducted at pressures of 

6 to 11 GPa and at temperatures of 1200 to 1600 °C (Table 4.1.3.1). After extracting from the 

octahedron, the sample in a gold or platinum capsule was first immersed for several minutes 

into aqua regia to remove the most part of the capsule material. The resulting product was 

crushed up using tungsten carbide cubes as anvils to get crystals for further investigations.  

The α-boron is known as a material of red or maroon colour [2]. Tiny crystals (Figure 

4.1.4.1) of this characteristic colour extracted from the capsule were identified as α-boron 

using Raman spectroscopy. This phase identification was confirmed by X-ray diffraction. The 

colour of the crystals varied from light red to deep red and yellowish depending on the size of 

the crystals and experimental conditions. The quality of crystals was different in different 

experiments. The crystals of the best quality were obtained in experiments conducted in a 

platinum capsule with pure β-B as a precursor. Deteriorated quality of the crystals obtained 

from a mixture of β-B and a Pt powder may be related to possible contaminations of platinum 

by platinum oxide (usual for “platinum black” used in our experiments). Due to frailness of 

the crystals, they can be easily fragmented, but the average size of the rather isometric intact 

crystals is of about 60 to 80 μm (Figure 4.1.4.1). 

 

Figure 4.1.4.1 As-grown single crystals of α-boron (experiment S4894) viewed in the optical 

microscope. 

 

Synthesised α-boron is a result of recrystallization from a boron-platinum melt at high 

pressures and high temperatures. The melting point of pure boron is 2300 °C, but the boron-

platinum system is known to have a low melting eutectic [5] that results in a considerable 
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decrease of the melting temperature even at high pressure and a possibility for the synthesis at 

temperatures as low as 1200 °C. The grown crystals could be observed in the metallic matrix 

(Figure 4.1.4.2).  

 

Figure 4.1.4.2 SEM image of α-boron crystals grown in the metallic matrix. 

 

 An example of a typical Raman spectrum from single crystals of α-B is shown in 

Figure 4.1.4.3 that is in agreement with the Raman spectra of α-B reported in literature [15, 

16].  The spectrum is characterised by a number of pronounced Raman peaks at 519, 581, 

686, 703, 768, 786, 862 and 917 (cm
-1

) (Figure 4.1.4.3). The vibrational modes with the 

wavenumbers of 1118 cm
-1

 and 1170 cm
-1

 could be classified as intericosahedral. The modes 

between 500 and 950 cm
-1

 are intraicosahedral [14, 15].  
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Figure 4.1.4.3 A typical Raman spectrum obtained from single crystals of α-boron. 

 

Figure 4.1.4.4 presents a 2D X-ray diffraction pattern obtained in a 360
o
 χ-rotational 

scan for the collection time of 300 s using the Rigaku high-brilliance diffractometer. The 

diffraction of α-B is presented by individual spots which confirmed that we had a single 

crystal. 

 

  

Figure 4.1.4.4 A 2D X-ray diffraction pattern of an α-boron single crystal obtained in a 360
o
 χ-

rotational scan for 300 s collection time using the Rigaku high-brilliance diffractometer (Mo-K 

radiation). All spots are from the α-B single crystal and diffraction lines and arcs are from platinum 

boride.  
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The structure of α-boron is simplest of all boron modifications. It consists of B12 

icosahedral units simply arranged in a trigonal unit cell (space group R-3m, Z=36 in 

hexagonal setting) [2, 17]. The refinement of the crystal structure of α-boron at was carried 

out using the data collected at room temperature from a crystal with dimensions of 0.08  

0.04  0.03 mm
3
. Initial coordinates of the two crystalographically independent boron atoms 

were taken from the literature [18]. The crystal structure along with the atom numbering 

scheme are presented in Figures 4.1.4.5 and 4.1.4.6, which were prepared using the program 

DIAMOND [19]. An independent spherical atom refinement on F was performed using the 

computer program JANA2006 [20]. The final refinement with 15 parameters, including an 

isotropic extinction parameter, results in a good fit to the diffraction data (Table 4.1.4.1). The 

present crystal structure is in agreement with that reported in the literature [18, 21-23] (Table 

4.1.4.2). 

 

 

 
Figure 4.1.4.5 Perspective view of the α-boron structure showing the packing of the icosahedral 

building blocks; viewed along the b-axis of the hexagonal unit cell. 
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Figure 4.1.4.6 Perspective view of one boron icosahedron (a building block of the α-boron structure) 

along the c-axis. It is formed by only two crystallographically independent boron atoms present in α-

boron that are labelled as B1 and B2.  

 

 

Table 4.1.4.1 Crystallographic parameters for -boron obtained in the present study and details of the 

structure refinement.  

 
Formula      B 

Space group     R-3m, Trigonal 

Z       36 

a (Å)       4.9065(4) 

c (Å)       12.5658(5) 

Volume (Å
3
)     261.98(3) 

F(000)      180 

Temperature (K)     293 

Wavelength (Å)     0.70159 

Crystal dimensions (mm
3
)   0.08  0.04  0.03 

Rint      0.0353 

[Sin()/]max (Å
-1

)    0.9448 

Density (g cm
-3

)     2.4659 

Absorption coefficient (mm
-1

)   0.091 

Observed Criteria     I > 3(I) 

No. of observed/unique/total reflections  219/238/3381 

 

ISAM refinement 

RF(obs/all)      0.0275/0.0304 

wRF(obs/all)      0.0453/0.0457 

GoF(obs/all)      3.17/3.28 

 

Table 4.1.4.2 The data on the crystal structure and the unit cell parameters of α-B obtained in the 

present study in comparison with the literature data. 

 This Study Ref. 20 Ref. 17 Ref. 21 Ref. 22 

a, Å 4.9065(4) 4.9179 4.9179 4.9075(9) 4.927(3) 

c, Å 12.5658(5) 12.5805 12.5805 12.559(3) 12.564(7) 

V, Å3
 261.98(3) 263.5 263.50 261.94 264.13 

B1,  x 0.11880(6) 0.11886 0.11886(1) 0.11892(3) 0.1187(2) 
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B1,  z 0.89125(4) 0.89133 0.89133(1) 0.89122(2) 0.8912(1) 

B2,  x 0.19678(7) 0.19686 0.19686(1) 0.19688(3) 0.1965(2) 

B2,  z 0.0242484) 0.02432 0.02432(1) 0.02428(2) 0.0243(1) 

RF(obs) 0.0275 0.144 0.0196 0.022 0.062 

 

 

4.1.5 Conclusion 

In a series of experiments we have shown a feasibility of obtaining single crystals of 

α-boron of a good quality at high pressures and high temperatures. Single crystals of α-boron 

were synthesised from β-boron as a starting material. Such a way of synthesis has not been 

described in literature. Crystal structure was refined from single crystal X-ray diffraction data 

in good agreement with the literature. 
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4.2.1 Abstract  

Detailed investigation of single crystals of α-boron using Raman spectroscopy was 

performed under elevated pressures and temperatures. The behaviour of the Raman modes 

under pressure was studied both theoretically and experimentally. The results were compared 

with the literature data. 

4.2.2 Introduction  

Raman spectroscopy is recognized as a powerful non-destructive technique 

for  characterization of boron polymorphs and their behaviour under pressure [1–3]. Boron 

has three polymorphs, currently established as phases (α-, β-, and γ-B, see Refs. [1, 4]), and 

each of them possesses its unique Raman spectrum, which can be used as a phase 

fingerprint [4, 5]. α-boron has the simplest structure [5–9] of the three boron phases: it 

consists of B12 icosahedra located at the corners of a rhombohedral unit cell. 

The first α-boron Raman study was performed by Richter and Ploog [10] on crystals 

made in 1964 [11]. They assigned and described α-boron modes at ambient conditions and 

came to the conclusion that the modes exhibiting the highest frequencies (1100 to 1200 cm
-l
) 

are caused by the strong inter-icosahedral covalent bonds, while the intra-icosahedral modes 

have frequencies in the intermediate range from 500 to 900 cm
-l
 [10]. Librational modes were 

considered to be due to rotation of the whole icosahedron. Analysis of lattice dynamics of α-

boron under pressure was performed by Vast et al. [12].  Mode frequencies were theoretically 
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calculated and experimentally measured on crystals whose synthesis was reported in 

Ref. [13]. Based on these data Grüneisen parameters were calculated. It was shown also that 

the intercluster bonds are of the same strength as the intracluster ones [12], and that α-boron is 

stable up to 30 GPa. Later, stability of α-boron up to 80 GPa was confirmed 

experimentally [14] and theoretically predicted up to 270 GPa [15,16]. Ab initio calculations 

and an assignment of the Raman modes were performed by Shirai and Katayama-

Yoshida [17]. The assignment of the Raman bands was clarified recently [18] and the 

experimentally proven stability range was extended to 100 GPa [13, 17, 18]. The very last 

assessment of the Raman data on all boron polymorphs was made by Werheit et al. [2]. In the 

Raman spectra from the samples of α-boron investigated in [2], very weak Raman bands at 

494, 552, 750, 1094 and 1238 cm
-1

 were observed. These bands have not been reported 

previously. The authors interpreted them as surface modes excited by the Ar ion laser of 488 

nm. No information was provided regarding the purity of the crystals of α-B studied in [2] and 

their synthesis technique. 

The discrepancy between previous theoretical and experimental data [12, 16, 17, 

2] required clarification. In the  present work we undertook  a detailed Raman spectroscopy 

investigation of α-boron single crystals at ambient conditions and at pressures up to 36 GPa 

and temperatures up to 473 K. The crystals studied were synthesized using the high-pressure 

high-temperature technique [5] and their purity was carefully confirmed [4] to assure the 

reliability of the obtained experimental results. Experimental data were compared with our 

theoretical calculations.  

4.2.3 Experimental  

The piston-cylinder-type diamond anvil cells made at Bayerisches Geoinstitut and 

diamonds with the culet diameters of 200 microns were used in high pressure experiments. 

Rhenium gaskets were squeezed between the diamonds to make an indentation of a 300-

micron thickness. Then a 120-micron round hole was drilled in the center of the indentation. 

Previously synthesized α-boron crystals [4, 5] were selected and placed into this hole 

(Figure 4.2.3.1). Sizes of the used crystals were 90x45, 80x40 and 25x40 microns. Neon was 

used as a pressure transmitting medium. Ruby served as a pressure marker [19] and ruby balls 

were placed into the hole. The DACs were heated using the external resistivity heating 

system [20], which provides a good thermal stability. Temperature was directly measured by 

means of S-type Pt-Pt0.9Rh0.1 thermocouple. 
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Figure 4.2.3.1 Image of the sample chamber of a diamond anvil cell: the α-boron crystal (orange) 

placed into a 120-micron hole drilled in the rhenium gasket. A transparent circle in the middle is a 

ruby ball. Neon is a pressure transmitting medium.  

 

The Raman spectra were collected using Dilor XY and LabRam spectrometers 

equipped with the He-Cd, Ar and He-Ne laser sources, with the excitation wavelength of 325 

nm, 514 nm and 632.8 nm, respectively. The laser power in the range of 15 to 1000 mW was 

used. Raman spectra were collected by means of 50 accumulations for three seconds each on 

the Raman system with the red laser, five accumulations for 120 seconds each with the UV 

laser and ten accumulations for 120 seconds each on the Raman system with a green 

laser. The resulting wavelength resolution was 3 cm
-1

. The position of the Raman peak 

maximum was determined on the second derivative. 

Pressure in the cells was increased up to 36 GPa with a step of about 3 GPa at the 

temperatures: 293 K, 343 K, 373 K, 423 K and 473 K. Each step the Raman spectrum was 

measured.  Pressure and temperature dependence of the Raman shift was subsequently 

analyzed. The regression lines and the Clapeyron slope were fitted by the least square method. 

Complementarily, we perform first-principles calculations using the density-functional 

theory (DFT) [21] and the density-functional perturbation theory (DFPT) [22, 23] in the 

ABINIT implementation [24–27] with planewaves and norm-conserving 

pseudopotentials [28, 29]. We sample the electron density in the reciprocal space using a 

regular grid of 8x8x8 special k-points [30] and a kinetic energy cut-off of 30 Hartrees (1 

Hartree = 27.2116 eV) for the wavefunctions. We use the local density approximation to 

compute the exchange-correlation energy. We determine the Raman spectra, with both peak 

position and intensity, in the framework of DFPT. For more details the reader is encouraged 
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to check the WURM database description [31] or the original paper of the 

implementation [27].  

4.2.4 Results and discussion 

Experimental Raman results obtained at ambient conditions are presented in Table 

4.2.4.1.  It was compared with the literature data.   Experimentally measured frequencies of 

the Raman modes of α-boron at ambient conditions agree well with those previously reported 

in [2, 10, 12, 16]. We performed detailed investigation of the particular ranges (Figure 

4.2.4.1), where additional weak surface modes were found in [2]. Raman spectra in those 

regions were measured for about an hour on both Ar and He-Ne laser systems. Although we 

used He-Cd laser with the excitation light wavelength 325 nm, which is smaller than used 

in [2], and neither of these surface modes was detected in our study. It can suggest that the 

observed ”surface modes” could be either artefacts or the result of possible contamination of 

the boron samples studied in [2], taking into account that characterisation of their purity was 

not provided in the paper. 

 

Table 4.2.4.1 Phonon frequencies of α boron observed in the present study compared with our 

theoretical calculations and the literature data (experimental uncertainties are 2 cm
-1

) . 

 ω, cm
-1

, exp. 

this work 

ω, cm
-1

, 

theor. this 

work 

ω, cm
-1

, 

(Richter 

and Ploog 

1975) 

ω, cm
-1

, 

(Vast et al. 

1997) 

ω, cm
-1

, 

(Vast et al. 

1997) 

ω, cm
-1

, 

(Shirai and 

Katayama-

Yoshida 

1998) 

ω, cm
-1

, 

(Werheit 

et al. 

2010) 

weak surface 

mode 

 

 

    494 

Eg 519 525 524 525 529 497 527 

weak surface 

mode 

 

 

    552 

Eg 581 618 587 586 608 572 589 

A1g 686 720 693 692 708 710 694 

Eg 703 742 710 708 729 743 713 

weak surface 

mode 

 

 

    750 

Eg 768 801 776 774 790 818 778 

A1g 784 826 796 793 815 759 795 

Eg 862 903 872 870 890 884 873 

A1g 917 958 931 925 947 965 934 

weak surface 

mode 

 

 

    1094 

Eg 1118 1146 1125 1122 1138 1169 1125 

A1g 1153  1157    1160 

A1g 1185 1201 1185 1186 1192 1191 1187 

A1g 1190  1198    1201 

weak surface 

mode 

 

 

    1238 
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Figure 4.2.4.1 The Raman spectrum of α boron obtained at ambient conditions. The insets are 

enlarged spectral regions, where the additional surface modes were observed in [2]. 

 

The wavenumbers of the Raman bands calculated in the present study (see Table 

4.2.4.1) are systematically about 40 cm
-1 

higher than the corresponding experimental values. 

The only exception is the first peak, Eg, experimentally observed at 519 cm
-1

. The most likely 

explanation is an overestimation of the B-B bonding, specific to LDA [28]. In a molecular 

solid, usually the lowest-frequency modes are lattice modes, characterized by large units of 

the structure vibrating as rigid parts, and thus are less affected by overestimations of the 

intramolecular bond strengths. 

Furthermore the behaviour of the mode at 519 cm
-1

 (525 cm
-1

 theoretical) is 

noteworthy as it exhibits a clear softening under pressure. This suggests that the compression 

mechanism in the structure of α-boron is dominated by rotations of the B12 cages. 



 66 

 
 

Figure 4.2.4.2 Raman spectra of α-boron collected in the pressure range from 0 to 36 GPa.  

 

During an isothermal compression up to 36 GPa at room temperature, monotonous 

shift of the Raman peak positions of α-B toward higher wavenumbers was observed (Figure 

4.2.4.2). The velocity of the shift of the frequencies is different for different lines and varies 

in wavenumbers between 2.68 cm
-1

/GPa for the 768 cm
-1

 line and 5.19 cm
-1

/GPa for the 

917 cm
-1

 one (Figure 4.2.4.3). From the acquired data the Grüneisen 

parameters
V

i

i
ln

ln







   were estimated. They are listed in Table 4.2.4.2 compared to 

the experimental and theoretical values of the Grüneisen parameters deduced from the 

pressure derivatives of frequences published by Vast et al. [12]. The monotonous pressure 

induced broadening of the Raman bands is observed under compression. However, the first 

Eg mode seems to be the only one almost unaffected by pressure. Over the whole range of 

pressures studied, it almost does not shift or broaden (Figures 4.2.4.2, 4.2.4.3). This 

exceptional behavior was recently discussed in the literature [17] and it was suggested that 

this mode corresponds to the icosahedron librational vibration that is highly harmonic. The 
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position of the maximum was reported to be shifting to higher wavenumbers followed by 

moving back to lower values when subjected to pressures exceeding 20 GPa [17]. This 

behavior was interpreted as an indication of instability that theoretically should occur at 

pressures of about 210 GPa [15]. Nevertheless, the structure was found to be stable at least up 

to 100 GPa [17]. We observed that under compression up to 36 GPa the whole Raman profile 

keeps its form that indicates preserving the icosahedral clusters in the structure of α-B within 

the studied pressure range. 

 

Table 4.2.4.2 Mode Grüneisen parameters of α-B Raman active vibrations.  

mode Eg Eg A1g Eg Eg A1g Eg A1g Eg 

This work, γi 0.325 1.541 1.037 1.287 0.939 1.321 1.114 1.493 1.233 

 

γexp, [12] 0.130 1.260 0.973 1.139 0.756 1.186 0.904 1.306 1.040 

 

γtheor, [12] 0.077 1.215 0.889 1.077 0.656 1.155 0.834 1.229 1.083 

 

 
 
Figure 4.2.4.3 The pressure dependence of the wavenumbers of the Raman modes of α-boron. Black 

circles are experimentally obtained values, white squares – theoretically calculated ones. 
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The dependence of the Raman A1g mode of α-B (at 784 cm
-1

 at ambient conditions) on 

pressure and temperature was selected for further analysis due to this line is relatively strong 

and sharp. The pressure dependence of the A1g mode of α-B is presented on the figure 

4.2.4.4.a. The fitted value at ambient conditions is 784±1 cm
-1 

and the pressure dependence is 

3.41±0.05 cm
-1

GPa
-1

. Estimated pressure and peak position uncertainties are 0.5 GPa and 3 

cm
-1

 respectively. During heating the peaks move towards lower wavenumbers. For the 784 

cm
-1

 line the temperature shift was determined relatively to the appropriate value at 298 K. 

Based on our experimental data, we are able to write an empirical equation which 

allows determining pressure (in GPa) if temperature and the wavenumber of the A1g mode of 

α-B are known: 

23903.0293.0  TP     (1) 

Where P – pressure in GPa, ω - the peak position in cm
-1

 and T is the temperature in K with 

estimated uncertainties 0.5 GPa, 3 cm
-1

 and 5 K. 

The fitted solid line described by equation (1) (Figure 4.2.4.4.b) has the slope           

0.11±0.02 cm
-1

K
-1

. Temperature shift of each point was calculated by averaging the shifts at 

different pressures. Estimated uncertainties in temperature and peak positions are 5 K and                      

3 cm
-1

 respectively. 

 
Figure 4.2.4.4 The pressure (a) and temperature (b) dependence of the position of the A1g mode (784 

cm
-1

 line at ambient conditions) of α-B.  

 

  

a b 
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4.2.5 Conclusions 

The active Raman modes of α-boron at pressures up to 36 GPa were theoretically 

calculated and experimentally measured. From the acquired data the Grüneisen parameters 

were estimated. The temperature dependence of the position of Raman bands in a temperature 

range of 293 – 473 K was measured as well. Based on that data, an empirical equation 

describing the dependence of the frequency of the A1g 784 cm
-1

 Raman mode on pressure and 

temperature was determined in the pressure-temperature ranges of 0 – 36 GPa and 293 –

 473 K.  
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4.3.1 Abstract 

Boron, discovered as an element in 1808 and produced in pure form in 1909, has still 

remained the last elemental material, having stable natural isotopes, with the ground state 

crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B 

is the thermodynamically stable phase at ambient pressure and temperature. In the present 

work this enigma has been resolved based on the α-B-to-β-B phase boundary line which we 

experimentally established in the pressure interval of ca. 3 GPa to 8 GPa and linearly 

extrapolated down to ambient pressure. In a series of high pressure high temperature 

experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and 

established the phase boundaries in the pressure-temperature boron phase diagram that 

provided evidence of higher thermodynamic stability of α-B, which possesses the simplest 

crystal structure among the three stable boron phases. Our work opens a way for reproducible 

synthesis of -boron, an optically transparent direct band gap semiconductor with very high 

hardness, thermal and chemical stability. 

4.3.2 Introduction 

Boron does not exist in nature as a pure elemental phase because of its extreme 

chemical activity but, being utilised in compounds it plays an important role in human 

activities since antiquity
1
. Boron compounds are widely used as engineering materials 

(dielectrics, B-doped semiconductors), superhard materials (cBN, boron carbide), reinforcing 

chemical additives, for example, for obtaining special glass or corrosion- or heat- resistant 

alloys)
2
, and superconducting materials (ex., MgB2)

3
 . Surprisingly, despite centuries of 
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application and decades of intensive studies of boron compounds, elemental boron still 

remains in focus of wide scientific interest due to its enigmatic properties (largely unknown 

phase diagram
4-7

, pressure induced metallization and superconductivity
8
, formation of unusual 

chemical bonds
9
 and potential technological applications (exceptional chemical stability 

combined with very high hardness and interesting semiconducting and optical properties
5,10

. 

Among elemental boron polymorphs, only -rhombohedral (α-B), β-rhombohedral (β-

B), and γ-orthorhombic boron (γ-B) have been currently established as pure phases
4
. They can 

be synthesised as single crystals at high pressures and high temperatures and preserved at 

ambient conditions
4, 11-14

. Building blocks of all these polymorphs are quasi-molecular B12 

icosahedra arranged in the structures of different complexity. Among them β-B has the most 

complex structure, whose details should yet be clarified by further studies. The presence of 

not fully occupied positions and probably interstitial atoms allow characterising the structure 

of β-B as a defect one
7,15,16

. The γ-B consists of covalently bonded B12 icosahedra in a 

distorted cubic closest packing with B2 dumbbells placed at the octahedral sites
5,9

. α-B has the 

simplest structure with only 12 atoms per a unit cell, where B12 icosahedra are arranged in a 

distorted cubic closest packing
17

.  

Relative stability of α-B and β-B at ambient conditions remains a puzzle. The β-B 

crystallizes from melt at ambient pressure and can be also produced by different chemical 

methods including vapour deposition
18,19

. The α-B was crystallized from a variety of metallic 

solvents in the middle of 1960s
20

, but later the technology of producing the pure crystalline 

phase was lost
4
 and only recently high-pressure synthesis of α-B single crystals was 

reported
14

. On heating at ambient pressure at temperatures above 1500 K α-B slowly 

transforms to -B and it means that a stable high-temperature form of boron is the -phase. 

The fact that -B can not be transformed to α-B at ambient pressure may indicate that α-form 

is metastable
21

. In this respect, although α-B is completely ordered, its relative structural 

simplicity does not make it self-evident that α-B is more stable compared to β-B at ambient 

conditions. Slow kinetics of transformations (i.e. large kinetic barriers) and/or high melting 

temperature of boron have possibly prevented accurate measurements by unambiguous 

techniques, such as calorimetry
22

.  

Theoreticians do not have consensus on the problem of relative stability of α-B and β-

B polymorphs. Using density-functional (DFT) calculations Masaga et al. and Shirai et al.
6,23

 

studied ground-state and thermodynamic properties (including the effect of atomic disorder 

and phonons) of α- and β-B borons and found that at zero temperature α-B is more stable than 

β-B. That agrees with the conclusion of Shang et al.
24

, who considered defect free α- and β-B 
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using first-principle quasi-harmonic phonon calculations. By considering the phonon 

contribution as the major source of the temperature dependence of the free energy, Masaga et 

al.
6
 obtained 970 K as the transition temperature of α-to-β boron. This is at odds with 

conclusions of van Setten et al.
7
, who introduced the quantum mechanical zero-point 

vibrational energy as a mechanism to stabilize β-B at absolute zero temperature and made β-B 

in their DFT calculations the ground state of elemental boron. Moreover, investigations 

indicate that it is possible to find an arrangement of partially occupied states in -boron that 

also increase its stability with respect to the -phase
7,15,22,25

. Ogitsu et al.
22,25

, using lattice 

model Monte Carlo techniques combined with ab initio calculations, found that boron could 

be a frustrated system and a series of β-boron structures, nearly degenerate in energy, may be 

stabilized by a macroscopic amount of intrinsic defects. According to Ogitsu et al.
22,25

,  

defects are responsible not only for entropic effects but also for a reduction in internal energy 

making β-B more stable than α-B at zero temperature. Thus, if the -B phase happens to be 

the ground state, the presence of geometrical frustration will lead to an exotic thermodynamic 

property in the vicinity of zero temperature that would be very unusual for a pure elemental 

material.  

In the present work we report the results of systematic experimental exploration of the 

pressure-temperature (PT) phase diagram of boron at pressures of 3 GPa to 14 GPa and 

temperatures of 1073 to 2423 K aimed at establishing phase boundaries and resolving the 

long-standing problem regarding relative stability of the α- and β-B phases.  
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4.3.3 Results 

4.3.3.1 Boron phases 

 

Figure 4.3.3.1.1 Pressure-temperature phase diagram of boron. PT conditions at which 

crystallisation of various boron phases occurred are marked by different signs: green squares – -

boron; purple diamonds – γ-boron; red hexagons – -boron; open red squares – - and -boron; open 

purple squares - - and γ-boron; open purple hexagons - - and γ-boron; blue triangle – -, -, and γ-

boron; the red star marks the conditions of the multi-anvil experiment which led to the solid-solid -

to--B phase transition; continues blue lines show apparent phase boundaries. The inserts present 

images of synthesized crystals of -, -, and γ-boron. 

 

In order to experimentally constrain relations between -, -, and γ-boron phases we 

performed more than 30 experiments in a multi-anvil apparatus (Fig. 4.3.3.1.1, Table 

4.3.3.1.1, see also Methods below). In all experiments a boron source (commercially available 

polycrystalline high purity (99.9995%) β-B, see Methods Summary) was enclosed into a 

metallic (Au or Pt) capsule with or without addition of a Pt powder and treated at various 
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high-pressure high-temperature (HPHT) conditions. Every trial aimed at establishing the 

phases that can be crystallised from melt or by solid-solid phase transformation of the 

precursor. Recovered samples were analysed by scanning electron microscopy and electron 

microprobe for chemical purity, X-ray diffraction and Raman spectroscopy for phase 

composition, and some samples were studied by TEM for characterising their microstructure 

(Methods Summary). 

 

Table 4.3.3.1.1 Summary of high-pressure high-temperature experiments on boron. 

Experiment* Starting 

material 

Experimental conditions** Synthesis results*** 

capsule 

material 

temperature, 

K 

pressure, 

GPa 

heating 

duration, 

Min 

H3161 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 10.5 5 α-B, γ-B 

H3170 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1473 7.2 5 α-B 

S4894 MA β-B Pt 1873 7 5 α-B 

H3255 MA β-B Pt 1573 8.5 3 α-B 

H3271 MA β-B Pt 1673 6 5 α-B, recrystallized β-B 

H3273 MA β-B Pt 1473 6 5 α-B 

H3286 MA β-B Pt 1873 8 5 α-B, γ-B 

S4805 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 9.5 5 γ-B 

H3154 MA 85 at.% 

β-B + 

15 at.% 

Pt 

Au 1773 10.5 5 γ-B 

H3191 MA β-B Pt 2193 12 1 γ-B 

H3244 MA β-B Pt 1873 14 2 γ-B 

H3260 MA β-B Pt 1073 9.7 10 initial β-B 
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H3270 MA β-B Pt 1723 5 5 recrystallized β-B 

S5068 MA β-B Pt 1423 4 5 α-B, recrystallized β-B 

H3286 MA β-B Pt 1873 8 5 α-B,  γ-B 

H3292 MA β-B Pt 1573 7 5 α-B 

S4979 MA β-B Au 1373 7 5 α-B, initial β-B 

H3313 MA β-B Au 1823 7 5 α-B, recrystallized β-B 

S4995 MA β-B Au 1623 7 5 α-B 

H3315 MA β-B Pt 1523 5 5 α-B, recrystallized β-B 

S5016 MA β-B Pt 2023 7.5 5 recrystallized β-B 

S5017 MA β-B Pt 2123 9.0 5 γ-B, recrystallized β-B 

S5046 MA  β-B Pt 2023 8 5 γ-B, recrystallized β-B 

S5053 MA β-B Pt 2023 8.5 5 γ-B 

S5060 MA β-B Pt 2123 8 5 recrystallized β-B 

S5061 MA β-B Pt 1723 8 5 α-B, γ-B 

S5064 MA 

 

β-B Pt 1923 7.5 5 α-B, γ-B, recrystallized 

β-B 

A404 PC β-B Pt 1773 3 5 recrystallized β-B 

A405 PC β-B Pt 2423 3 5 recrystallized β-B 

DAC1 α-B Re 1550 11.5 7 γ-B 

DAC2 α-B Re 1600 4.7 7 β-B 

* MA – multi-anvil runs, PC – piston cylinder, and DAC – diamond anvil cell 

experiments 

** Typical uncertainty in temperature is ± 50 K, and 0.5 GPa in pressure. 

*** Platinum borides were found in all experiments at temperatures above eutectic if 

platinum as capsules material or component of starting mixture was used. In some 

experiments synthesis products contain initial non-transformed β-boron powder. 
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An image of a cross-section of a typical sample chamber recovered after experiment at 

7 GPa and 1573 K is shown in Fig. 4.3.3.1.2 As seen, single crystals of the boron phase are 

embedded into the matrix of solidified melt of platinum and platinum borides that form in all 

experiments at temperatures above eutectic. 

 
 

 
Figure 4.3.3.1.2 Cross section of the capsule recovered after the experiment at 7 GPa and 1573 

K. Bright orange-red α-boron crystals were crystallised from Pt-PtB flux. The insert shows an 

enlarged area containing platinum boride and small α-B crystals. 

 

Dependent on the pressure-temperature conditions, the experiments resulted in 

formation of the following pure boron phases:  

(1) Re-crystallised β-B, which is different from the precursor polycrystalline β-B. It forms 

black or slightly reddish in thin sections single crystals of a irregular or sometimes hexagonal 

shape (Fig. 4.3.3.1.1), gives a typical for single crystals diffraction pattern consisting of spots 

(Fig. 4.3.3.1.3) (space group R-3m, a = 10.965(2) Å, c = 23.859(4) Å). Its Raman spectrum is 

distinctly different from that of the precursor and characterised by much sharper peaks 

compared to the latter (Fig. 4.3.3.1.4); 
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Fig. 4.3.3.1.3 2D rotational X–ray diffraction patterns of (a) polycrystalline β–B used as starting 

material and (b) re-crystallized β–B single crystals consisting of diffraction spots. 

Wavenumber, cm-1

400 600 800 1000 1200

In
te

n
si

ty
, 

a.
u

.

0

5000

10000

15000

20000

25000

-boron
starting material

-boron
re-crystallized at high-P,T

-boron

-boron

 
 
Figure 4.3.3.1.4 Representative Raman spectra of boron phases. All spectra were collected for 10 

sec except the one spectrum of starting polycrystalline -boron collected for 60 min. 
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(2) γ-B, which appears as purple elongated prismatic crystals, gives the characteristic strong 

Raman spectra (Figs. 4.3.3.1.1, 4.3.3.1.4) and the X-ray diffraction pattern (space group 

Pnnm, a = 5.0576(4) Å, b = 5.6245(8) Å, c = 6.9884(10) Å). This material is identical to that 

described in our previous works
5,9,26

. 

(3) α-B. It forms single crystals of semi-transparent orange-red colour and relatively isometric 

shape (Fig. 4.3.3.1.1, 4.3.3.1.2). Like other boron phases, -B is easily identified by the 

Raman spectrum
14,27

(Fig. 4.3.3.1.4) and X-ray diffraction (space group R-3m, a = 4.9065(4) Å, 

c = 12.5658(5) Å). 

The SEM (EDX), microprobe (WDX), and EELS data have shown that boron phases 

obtained from crystalline β-boron powders are not contaminated independently on the type of 

the capsule material or pressure-temperature conditions (Fig. 4.3.3.1.5). SEM images of the 

sample surfaces in backscattered electrons demonstrate homogeneity of the synthesized at 

HPHT boron phases. High resolution transmission electron microscopy (HRTEM) images of 

-B, for example, reveal almost dislocation free regular packing of spheres (Fig. 4.3.3.1.5) 

with a diameter of 3.3-3.4 Å, comparable with that of a circumscribed circle around the B12 

icosahedron (3.34 Å)
28

. 
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Figure 4.3.3.1.5 High resolution TEM image of the -boron crystal synthesized from platinum 

flux at 7 GPa and 1573 K. The insert in the left upper corner is a Fast Fourier Transform (FFT) 

pattern showing characteristic -B reflections 4.16 Å, 4.02 Å, and 2.52 Å. The insert in the right upper 

corner is a core-loss EELS spectrum of the B-K edge confirming the absence carbon contaminations at 

about 284 eV the onset of the C-K edge. The spectrum has been gain-normalized and deconvoluted 

using the low-loss spectrum. 

 

4.3.3.2 Boron phase diagram  

Proven chemical and phase purity of boron crystals obtained at different pressure-

temperature condition creates a basis for construction of the experimental phase diagram. 

Different runs resulted in crystallization of one, two or even all three boron phases 

simultaneously (Fig. 4.3.3.1.1, Table 4.3.3.1.1) that allows defining stability fields of the 

andphases. The phase boundary separating the –B and -B phase stability 

fields agrees well with the phase relations experimentally found in our previous work
5
. The 

other two phase boundaries (and have not been reported so far based on 

experimental data. We argue that the  has the thermodynamic stability field, because its 

crystallization is controlled only by pressure and temperature conditions of the experiments 

independently on the type of metallic solvent (Au or Pt, Table 4.3.3.1.1). Observation of 
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simultaneous crystallization of chemically pure - and -B (at 5 GPa and 1520 K, for 

example) or - and γ-B (at 8 GPa and 1570 GPa, for example) demonstrates the existence of 

monovariant boundaries in the pressure-temperature phase diagram. The invariant (triple) 

point in the phase diagram could be determined by intersections of -/-B, -/γ-B, and -/γ-B 

boundaries. The all three lines cross at 7.6(5) GPa and 1880(50) K (Fig. 4.3.3.1.1). Indeed, at 

7.5 GPa and 1920 K we observed simultaneous crystallisation of all -, -, and γ-boron 

phases (Table 4.3.3.1.1, Fig. 4.3.3.1.1). 

The transition of -to- boron upon heating at ambient pressure was already reported 

in literature
20,21

. In a diamond anvil cell (DAC) experiment (see Methods Summary) we 

loaded two pre-synthesized -B crystals into the sample chamber along with sodium chloride, 

NaCl, acting as a pressure transmitting medium and thermal insulator. One of the crystals was 

laser-heated at 4.7(3) GPa and 1600(100) K and another one at 11.5(5) GPa and 1550(100) K. 

In the first case we observed formation of -B, while at higher pressure -B transformed 

directly into the γ-phase (Fig. 4.3.3.2.1). One more DAC experiment was conducted at 7 GPa 

and 1370 K, i.e. at temperature lower than that necessary for eutectic melting of platinum and 

boron. As in other experiments -B was used as starting material, but in the recovered sample 

we found polycrystalline -B. Direct solid-solid phase transformation of -to- phase proves 

that -boron is a thermodynamically stable phase at certain PT conditions (Fig. 4.3.3.1.1).  
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Figure 4.3.3.2.1 Raman spectra of pre-synthesized -B crystals taken in situ in a diamond anvil 

cell experiments at various PT conditions. From the bottom to the top: before and after laser heating 

at 11.5(5) GPa and 1550(100) K and at 4.7(3) GPa and 1600(100) K. At higher pressure we observed 

formation of γ-B, while at lower pressure -B transformed directly in to the -phase. (NaCl in the 

DAC experiments was used as a pressure transmitting medium and a thermal insulator.) 

 

4.3.4 Discussion 

Extrapolation of the -/-B boundary to ambient pressure (Fig. 4.3.3.1.1) suggests that 

-boron is the thermodynamically stable low-temperature boron phase below 933(50) K. 

Indeed, in 1960s and 1970s arguments were raised
20,29-33

 that crystallization of small crystals 

of -B from different metallic solvents (Pt, Au, Ag, Cu, Cu-Ni, etc.) at temperature around 

1100–1200 K may indicate stability of the -polymorph at temperatures below these values. 

However, inability to grow larger crystals of -B, its crystallization simultaneously with the 

-form, and failure to transform -B into the -phase or to synthesize -B from an 
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amorphous boron precursor supports arguments that -B may be just a metastable, or even 

monotropic, form of boron. In our experiments at appropriate pressure-temperature conditions 

(Fig. 4.3.3.1.1) -B crystals grow at the expense of -Band in some runs (Table 4.3.3.1.1) all 

starting -boron transforms into the -phase. Moreover, we observed direct transformation of 

-B into -B. All mentioned observations prove that -boron is a thermodynamically stable 

phase. Previously reported difficulties and even failure to synthesized -B at ambient pressure 

could be explained based on the phase diagram we have experimentally constructed (Fig. 

4.3.3.1.1): -B is stable below about 1000 K and strictly speaking, should not crystallize from 

metallic fluxes with the eutectic point at temperature above 1100 K. However, according to 

the Ostwald step rule at conditions not far from equilibrium not the most stable but the least 

stable polymorph that crystallizes first
34

, so that -B may appear if a boron-rich metallic flux 

solidified at relatively low temperature
20

. Transformation of -B or amorphous boron into the 

-phase requires very significant rearrangement and/or rupture of B12 icosahedra. It is 

impossible to activate such a rearrangement at relatively low temperatures (below 1000 K) in 

the field of stability of -B. With a pressure increase the temperature stability field of -

boron increases and, as we demonstrated in a DAC experiment, it becomes possible to realize 

the direct -to--B transition.  

Theoretical works
7,15,22,25

 suggesting that -B is the ground state of boron are not 

supported by our experimental results. The phase diagram drawn by Oganov et al.
35

 is 

schematic and based on only a few experimental points related to the HPHT synthesis 

conditions of β-B. The authors
35

 sketched the -/β-B phase boundary in accordance with the 

theoretical data of van Setten et al.
7
  and consequently suggested that β-B is stable down to 0 

K at ambient pressure at odds with our conclusions. Combining ab initio pseudopotential 

calculations and some experimental data (Grüneisen parameters, particularly), Masaga et al.
6
 

and Shirai et al.
23

 estimated the phase boundary between - and -phases and apparently 

found that -B is more stable below about 1000 K, in good agreement with our experimental 

results. However, these authors
6,23

 calculated total energy of β-B using an ideal, defects free 

structural model which contradicts available experimental crystallographic data. Such a 

simplification of the structure of β-B in calculations could result in “underestimating” β-boron 

stability compared to other calculations
7
; i.e. the agreement with the experimental results 

could be reached just by chance, because indeed, according to Refs. 7, 15, 22, and 25 

structural defects in -B play key role in stabilization of the phase. Thus, our results call for 

further detailed theoretical investigations related to stability of boron polymorphs. 
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Boron has been for a long time known as prospective material
4,5 

for numerous 

applications. -boron demonstrates a truly spectacular combination of properties – it is a 

direct band gap semiconductor (with the reported band gap of 2.0 eV (Ref. 36), 2.4 eV (Ref. 

37), or 2.15(2) eV as derived by us from EELS data), has a very high hardness (we measured 

the Vickers hardness of 38(2) GPa on polycrystalline aggregates), thermally and chemically 

highly resistive, and quite light (the density of -B is 2.46 g/cm
3
 vs 4.89 g/cm

3
 of CdS or 6.11 

g/cm
3
 of GaN having comparable band gaps). Such properties may make -B material of 

choice in many industrial semiconductors applications, and, especially, as a working element 

of solar cells with high efficiency of sun light conversion into electrical power. So far 

research and development on potential applications of -boron were hindered by concerns of 

its thermodynamic instability and the absence of a reliable way of synthesis of single crystals. 

A phase diagram, as a projection of the fundamental property diagram, allows materials 

scientist indirect use of thermodynamics
38

. It can be utilized to understand materials 

behaviour and propose optimal ways of their synthesis. The phase diagram of boron (Fig. 

4.3.3.1.1) shows that -B is not only thermodynamically stable phase in a large pressure-

temperature range, but it also can be reproducibly synthesized
14

 at conditions readily 

accessible by modern industry for large-scale production (like synthetic diamonds, for 

example).  

Summarising, our serial exploration of the pressure-temperature field using the large 

volume press synthesis technique resulted in establishing the phase diagram of boron in the 

pressure interval of 3 GPa to 14 GPa at temperatures between 1073 K and 2423 K. Based on 

our experimental data and linear extrapolation of the β phase boundary down to ambient 

pressure we could resolve a long-standing controversy on the ground state of boron in favour 

of the phase. 

Methods 

Polycrystalline β-boron (purity of 99.9995 at.%, grain size of <1000 microns), 

purchased from Chempur Inc., was used as a boron source material.  

High-pressure techniques 

Experiments in multianvil apparatuses were conducted in installed at BGI 1000-ton 

(Hymag) and 1200-ton (Sumitomo) hydraulic presses
37

. The Kawai-type multi-anvil system 

employs six tool-steel outer-anvils and eight tungsten carbide cubic inner-anvils to focus an 

applied load on an octahedral high-pressure chamber formed as a result of corner truncations 

on the inner-anvils. By varying the corner truncation size of the inner-anvils, various sample-

pressure ranges can be attained. An octahedron made of magnesium oxide that matches the 
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pressure chamber was used as a pressure medium. In our experiments 18/11 (the edge-length 

of an octahedron /anvil truncation edge-length, in millimeters) assemblies for pressures of 7-

11 GPa and 25/15 assemblies for pressures of 5-8 GPa were used. Although an indubitable 

advantage of using large assemblies is the increase of the amount of synthesized material, 

reaching highest temperatures in big assemblies is more difficult. Temperature in our 

experiments was increased stepwise with a speed of about 80 K/min. Duration of heating was 

5 or 3 minutes. Then the samples were either gradually cooled with a speed 10 K/min, or 

quenched. “Pressure in chamber” vs “hydraulic oil pressure” in experiments was calibrated by 

observations of phase transitions in standard materials, and temperature determined using 

W3Re/W25Re thermocouple. Uncertainties estimated in pressure 0.5 GPa and in temperature 

50 K. 

Experiments at pressures below 4 GPa were conducted using an end-loaded piston-

cylinder type apparatus
38

. The sample material was loaded into 6 mm diameter, 13 mm long 

Pt capsules (sample area 3 mm diameter, 6 mm long) which were placed into ½ inch talc-

pyrex sample assemblies. These sample assemblies contained an internal, tapered, graphite 

resistance furnace to ensure minimal temperature gradients along the length of the capsule. 

Temperature gradients are estimated to be less than 25°C for the experimental conditions 

used. Pressure was calibrated against the quartz-coesite and kyanite-sillimanite transitions, as 

well as the melting point of diopside, and pressures are considered accurate to within less than 

± 5% of the stated value. Temperatures were measured with a Pt-Pt10%Rh thermocouple. 

Run pressures and temperatures were continually monitored and maintained for the duration 

of the runs. Experiments were quenched isobarically by turning off power to the heating 

circuit. 

Diamond anvil cell experiments we conducted using diamond anvils with the culet 

diameter of 300 m. Pre-synthesized -B and NaCl (used as a pressure medium and thermal 

insulating material) were loaded into the pressure chamber in the Re gasket preindented to 

about 45 m thickness with the hole of 125 m in diameter. Several ruby chips were placed 

into the sample chamber for pressure measurements. For double-side laser heating we 

employed two UniHead systems installed at BGI
39

. The size of the laser beam was of about 30 

µm in diameter with a temperature variation of 50 K within the beam. The heating duration 

was about 5 minutes. Temperature was measured by means of multiwavelength 

spectroradiometry.  
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Analytical techniques 

For the phase identification, selection of single crystals, and preliminary structural 

analysis a high-brilliance Rigaku diffractometer (Mo-Kα radiation) equipped with Osmic 

focusing X-ray optics and Bruker Apex CCD detector was used. The diffraction patterns were 

processed using Fit2D software. 

A LabRam spectrometer (with a resolution of 2 cm
−1

), a He–Ne laser (632.8 nm) with 

a power of 15 mW for excitation, and a 50× objective were used for the Raman scattering 

experiments.  

The morphology and chemical composition of the synthesized samples of single 

crystals were studied by means of the scanning electron microscopy (SEM) (LEO-1530). 

Chemical purity of the samples was confirmed using WDX microprobe analysis (JEOL JXA-

8200; focused beam; 20 keV, 20 nA). 

Electron transparent foils were prepared by focused ion beam (FIB) techniques. FIB 

allows preparation of site-specific TEM foils with typical dimensions of 15–20 µm wide, by 

approximately 10 µm high and approx. 0.150 µm thick
40

. 

TEM investigations were performed with a TECNAI F20 XTWIN transmission electron 

microscope operating at 200 kV with a field emission gun electron source.  The TEM is 

equipped with a Gatan Tridiem™ filter, an EDAX Genesis™ X-ray analyzer with ultra thin 

window and a Fishione high angle annular dark field detector (HAADF).  The Tridiem filter 

was used for the acquisition of energy-filtered images applying a 20 eV window to the zero 

loss peak. EEL spectra were acquired with a dispersion of 0.1 eV/channel and an entrance 

aperture of 2 mm. The resolution of the filter was 0.9 eV at FWHM of the zero loss peak. 

Acquisition time was 1 second. Spectra of the different K-edges (B, C, N, O) were acquired in 

diffraction mode with a camera length of 770 mm. Spectra processing (background 

subtraction, removal of plural scattering, quantification) was performed using the 

DigitalMicrograph software package. EDX spectra were usually acquired in the scanning 

transmission mode (STEM) using the TIA™ software package of the TEM. Significant mass 

loss during analysis was avoided by scanning the beam in a pre-selected window (20 x 20 nm 

or larger). Spot size was approx. 1 nm, and acquisition time 60 seconds at an average count 

rate of 60 – 80 counts/second.  This resulted in a counting error of about 4 -5% at a 3 level. 
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4.4.1 Abstract 

In the present work we have confirmed the existence of the tetragonal boron phase T-

50 that was disputed for more than a half of a century. This phase was reproducibly 

synthesised at high pressures and high temperatures (HPHT) in form of single crystals and its 

structure was refined based on single crystal synchrotron X-ray diffraction data. We also 

present here a previously unknown rhombohedral boron phase synthesized in a limited HPHT 

field. Its structure was solved based on in house single crystal X-ray diffraction data and 

found to be similar to that of boron carbide. After hitherto known stable α-B, β-B, and γ-B 

polymorphs, T-50 and the newly obtained rhombohedral boron phases were designated in the 

present work as δ-B and ε-B, correspondingly. Issuing from the experimental evidences, the 

both phases are considered as metastable. 

4.4.2 Introduction 

The synthesis and structure of tetragonal boron t-I (also referred to as α-tetragonal 

boron, or T-50 on the number of atoms distributed among four icosahedra and two interstitial 

positions in the unit cell (space group P42/nnm), according to the original study [1-3]) has 

been a long standing controversy [4]. Further we will call this phase T-50. Despite theoretical 

calculations [5] showed that T-50 has an unstable electronic configuration, it was considered 

the first known crystal structure of a boron allotrope [4] until Will & Ploog refuted this [6]. 

Will & Ploog [6] failed to reproduce the crystals using the chemical preparative technique 

described in Ref. 1, but developed methods allowing yielding boron-rich carbide B25C and 

nitride B25N with the structure previously reported [1-3] for the tetragonal boron polymorph. 

The argument of irreproducibility of the previously reported synthesis [1] along with a 
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possibility to explain stabilisation of the otherwise theoretically unstable T-50 structure due to 

the presence of carbon and nitrogen [6] led to a long-time rejection of the existence of T-50 as 

a boron polymorph [4]. 

Synthesis of boron nanoribbons [7] and nanowire boron bundles [8] with the T-50 

structure has been reported in literature relatively recently and the DFT based calculations [9] 

showed that T-50 can be stabilized compared to α-B and β-B if one takes into consideration 

the surface energy. However, all the available experimental information summarised in the 

recent review article (see Ref. 4 and references therein) allowed the authors [4] to conclude 

that the question of the real composition and structure of T-50 can still not be answered. 

Although recently there were reports on synthesis of polycrystalline T-50 [10, 11, 12], there 

have not been unambiguous synthesis of T-50 in the form of single crystals, hence the efforts 

to do this to prove the existence of this phase are totally justified. 

Following our successful experience on HPHT synthesis of single crystals of α-B and 

γ-B [13-16], in the present work we systematically explored the PT phase diagram of boron in 

the region of pressures of 7.5 to 18 GPa and temperatures of 1373 to 2373 K to study the 

relations between boron stable phases and to reveal possible metastable phases. In a series of 

experiments we synthesized single crystals of the T-50 boron phase (later designated as δ-B) 

and a new, previously not reported in literature, rhombohedral boron phase (later designated 

as ε-B) using β-boron as a starting material. Single crystals of the both phases were 

investigated by means of X-ray diffraction and spectroscopic techniques at variable PT 

conditions. The implications of the experimental results for the PT phase diagram of boron 

have been outlined. 

 

4.4.3 Experimental details 

Highly crystalline β-boron (purity of 99.995 at.%, grain size of <1000 μm), purchased 

from Chempur Inc., was used as a source of boron. Pure β-B was loaded into a Pt or Au capsules 

made from the metal tubes. The capsules along with LaCrO3 heaters, isolated from each other 

by the MgO tubes, were enclosed into magnesium oxide (MgO+5 wt% Cr2O3) octahedron 

which served as a pressure transmitting medium.  

Synthesis was realised at various PT conditions using 1000-ton (Hymag) and 1200-ton 

(Sumitomo) multi-anvil hydraulic presses as described elsewhere [13-17]. The Kawai-type 

multi-anvil system was employed. In our experiments 18/11 (octahedron edge/anvil truncation 

length in mm), 14/8, and 10/5 assemblies were used to achieve pressures of 7-11 GPa, 11-15, 
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and 14-20 GPa, correspondingly. Temperature was measured using a W3%Re-W25%Re 

thermocouple located axially with respect to the heater (without corrections for the pressure 

effect on the thermocouple’s emf). It was increased stepwise with a speed of about 80 K/min. 

In all the experiments, the uncertainties in pressure and temperature determination were 

estimated to be 1 GPa and 100 K, respectively. Duration of heating was 5 minutes, then the 

sample was quenched. After decompression, the synthesis products were extracted and 

crystals were taken out of the capsule with a needle and carefully washed first in aqua regia at 

100 °C and then in water.  

For the phase identification, selection of single crystals, and preliminary structural 

analysis a high-brilliance Rigaku diffractometer (Mo Kα radiation) equipped with Osmic 

focusing X-ray optics and Bruker Apex CCD detector was used. The diffraction patterns were 

processed using Fit2D software [18]. 

A LabRam spectrometer (with a resolution of 2 cm
−1

), a He–Ne laser (632.8 nm) with 

a power of 15 mW for excitation, and a 50× objective were used for the Raman spectroscopy 

experiments.  

The morphology and chemical composition of the synthesized single crystals were 

characterised by means of the scanning electron microscopy (SEM) (LEO-1530). Chemical 

composition of the samples was investigated using WDX microprobe analysis (JEOL JXA-

8200; focused beam; 20 keV, 20 nA). 

Electron transparent foils were prepared by focused ion beam (FIB) techniques. FIB 

allows preparation of site-specific TEM foils with typical dimensions of 15–20 µm wide, by 

approximately 10 µm high and approx. 0.150 µm thick [19]. 

TEM investigations were performed with a TECNAI F20 XTWIN transmission electron 

microscope operating at 200 kV with a field emission gun electron source. The TEM is 

equipped with a Gatan Tridiem™ filter, an EDAX Genesis™ X-ray analyzer with ultra thin 

window and a Fishione high angle annular dark field detector (HAADF).  The Tridiem filter 

was used for the acquisition of energy-filtered images applying a 20 eV window to the zero 

loss peak. EELS spectra were acquired with a dispersion of 0.1 eV/channel and an entrance 

aperture of 2 mm. The resolution of the filter was 0.9 eV at full width, at half maximum of the 

zero loss peak. Acquisition time was 1 second. Spectra of the different K-edges (B, C, N, O) 

were acquired in diffraction mode with a camera length of 770 mm. Spectra processing 

(background subtraction, removal of plural scattering, quantification) was performed using 

the DigitalMicrograph software package. EDX spectra were usually acquired in the scanning 

transmission mode (STEM) using the TIA™ software package of the TEM. Significant mass 
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loss during analysis was avoided by scanning the beam in a pre-selected window (20 x 20 nm 

or larger). Spot size was approx. 1 nm, and acquisition time 60 seconds at an average count 

rate of 60 – 80 counts/second. This resulted in a counting error of about 4 -5% at a 3 level. 

Single-crystal X-ray diffraction data of the ε-B crystal was collected at ambient 

temperature using four-circle Oxford Diffraction Xcalibur diffractometer (λ = 0.7107 Å) 

equipped with an Xcalibur Sapphire 2 CCD detector. The reflection intensities were measured 

by omega scanning of narrow (0.5°) frames. The data collection and further integration were 

performed with CrysAlis CCD and CrysAlis RED software [20], respectively. Empirical 

absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK 

scaling algorithm which is included to the CrysAlis RED software [20]. The structure was 

solved by the direct method and refined by full matrix least-squares in the anisotropic 

approximation for all atoms using the SHELX-97 program package[21]. 

Due to a small size of the δ-B crystal X-ray diffraction experiment has been performed 

on synchrotron (Swiss-Norwegian beamline BM01A, ESRF). The data were collected at 

ambient temperature using a six-circle KUMA6 diffractometer (λ = 0.7006 Å) equipped with 

a MAR345 image plate detector. The reflection intensities were measured by omega-scanning 

of narrow (0.5°) frames. The data collection and further integration were performed with 

CrysAlis CCD and CrysAlis RED [20] software, respectively. The absorption corrections 

were applied empirically by the SADABS program [22,23]. The structure was solved by the 

direct method and refined by full matrix least-squares in the isotropic approximation for all 

atoms. The DIAMOND software [24] was used to create molecular graphics. 

Diamond anvil cell (DAC) experiments were conducted using diamond anvils with the 

culet size of 250 μm. A hole of 120 μm in diameter was drilled in the Re gasket pre-indented 

to about 30 μm thickness to serve as a pressure chamber. Neon was used as a pressure 

transmitting medium. A ruby gauge was used for pressure determination. For double-side 

laser heating in DAC we employed two UniHead systems [25] installed at Bayerisches 

Geoinstitut. The size of the laser beam was of about 30 µm in diameter with a temperature 

variation of 50 K within the beam. The heating duration was about 5 minutes. Temperature 

was measured by means of multiwavelength spectroradiometry.  
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4.4.4 Results and discussion 

 HP synthesis and characterisation of single crystals of the tetragonal metastable 

boron phase (δ-boron) 

At pressures above 9 GPa, characteristic needle-shaped grey-reddish semitransparent 

crystals were found among other synthesis products (Figure 4.4.4.1a). Their size varied from 

30×2×2 μm
3
 to 150×5×5 μm

3
.  

 

a                                                                              b  

Figure 4.4.4.1. Single crystal of (a) T-50 (designated as δ-B later in this work) and (b) the newly synthesised 

boron phase (designated as ε-B later in this work).  

 

On the X-ray diffraction the phase was identified as the tetragonal (T-50) boron
 
[2,3] 

(Figure 4.4.4.2a) in good agreement with the results of HRTEM and electron diffraction 

(Figure 2b). Experimental parameters and single crystal synchrotron X-ray diffraction data are 

presented in Table 4.4.4.1. The refined unit cell parameters are in agreement with those 

determined by Hoard et al. [2] (Table 4.4.4.2). Interatomic B-B distances in B12 icosahedra 

vary from 1.66 to 1.87 Å and correspond to those in other icosahedral boron structures, like α-

boron (B12) (1.74-1.81 Å) and γ-boron (B28) (1.76-1.88 Å) [13,16]. 

 

a                                                                              b 

Figure 4.4.4.2 Structure of T-50 (δ-B). (a) Structure of δ-B in polyhedra; (b) HRTEM image of δ-B. 

On electron diffraction pattern all reflections correspond to δ-B.  
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Table 4.4.4.1 Experimental single crystal X-ray diffraction data for T-50 (δ-B). 

Name B50 

Formula weight  540.50 

Temperature  296(2) K 

Wavelength  0.7 Å 

Crystal system  Tetragonal 

Space group  P42/nnm 

Unit cell dimensions a = 8.708(9) Å 

 c = 5.0750(8) Å 

Volume 384.8(6) Å3 

Z 1 

Density (calculated) 2.332 g/cm3 

Absorption coefficient 0.086 mm-1 

F(000) 250 

Crystal size 0.100x0.02x0.002 mm3 

Theta range for data collection 3.26 to 21.07° 

Index ranges -8 ≤ h ≤ 8, -8 ≤ k ≤ 8, -5 ≤ l ≤ 5 

Reflections collected 2816 

Independent reflections 119 [R(int) = 0.056] 

Completeness to theta = 21.07° 96.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 119 / 0 / 16 

Goodness-of-fit on F2 1.003 

Final R indices [I>2σ(I)] R1 = 0.094, wR2 =0.246  

R indices (all data) R1 = 0.095, wR2 = 0.247 

Largest diff. peak and hole                            0.058 and -0.27 e·Å-3 

 

Table 4.4.4.2 The data on the crystal structure of δ-B obtained in the present work in comparison with 

the literature data. 

 This work Hoard et al. (Ref. 2)  

a, Å 8.708(9) 8.743(15) 

c, Å 5.0750(9) 5.030(3) 

V, Å
3
 384.8(6) 384.493 

B1, 2b 0, 0, 1/2 0, 0, 1/2 

B1, 8m 0.1239(7) 0.1239(7) 0.3685(18) 0.1195, 0.1195, 0.3780 

B3, 8m 0.2458(8) 0.2458(8) 0.5897(17) 0.2423, 0.2425, 0.5815 

B4, 16n 0.3161(7) 0.1042(8) 0.3907(14) 0.3253, 0.0883, 0.3985 

B5, 16n 0.2288(7) 0.0827(7) 0.0819(13) 0.2272, 0.0805, 0.0685 

R1 9.4% 11.4% 

 

The Raman spectrum of the synthesized crystals is drastically distinct from those of 

other boron polymorphs (Figure 4.4.4.3a). It has one dominating intense Raman peak at 491 
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cm
-1

, which is also characteristic for the spectrum of tetragonal boron nanoribbons reported 

by Xu et al. [7]. The Raman spectrum reported by Qin et al. [10] does not correspond to the 

spectra obtained both in the present work and Ref. 7.  

 

 

a                                                                              b  

Figure 4.4.4.3 Raman and EELS spectra of boron polymorphs. (a) Raman spectrum of T-50 (δ-B) compared to 

those of α-B and γ-B. (b) EELS spectra of boron popymorphs compared to that of boron carbide. 

 

Thus, in the present work T-50 was for the first time synthesised at HPHT conditions 

in form of single crystals and its structure was refined based on synchrotron X-ray diffraction 

data. Diffraction data provide no sign of any contamination. The presence of carbon or 

nitrogen in the structure was also excluded, because the chemical purity of the T-50 phase 

was proven by EELS (Figure 4.4.4.3b). Therefore, the long standing controversy, if the 

“theoretically unstable” [5, 26] T-50 phase can be synthesised as a bulk material without 

stabilisation due to the surface energy in nanostructures, or by the presence of carbon or 

nitrogen [6], has been experimentally resolved. This means that T-50 can be designated as δ-B 

in a row of the known stable α-B, β-B, and γ-B polymorphs. The fact that the δ-B crystals 

never appeared as a single phase in the process of HPHT synthesis, but always in the presence 

of other boron polymorphs, points towards metastability of δ-B. 

 

 HP synthesis and characterisation of single crystals of the new rhombohedral 

metastable boron phase (ε-boron) 

In course of our experiments at P-T conditions of 8.5-9 GPa and 1873-2073 K, except 

known boron phases, some other yellow-reddish-orange, transparent, plate-shaped crystals 

were found (Figure 4.4.4.2b). The length of these crystals varied from 20 μm to 150 μm. 

Their Raman spectrum is characterized by the following peak positions: 336 cm
-1

, 484 cm
-1

, 

537 cm
-1

, 732 cm
-1

, 807 cm
-1

 and 1086 cm
-1

. It is different from the spectra of any other boron 
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polymorphs, but akin to that of boron carbide B13C2 with a small shift of about 5 cm
-1

 (Figure 

4). The transparency of the new crystals compared to always black boron carbide also gives 

evidence to their different chemical nature. EELS measurements on the new phase revealed 

the absence of carbon (Figure 4.4.4.3b) or any other atoms except boron. Taking into account 

that the crystals appeared only in the presence of the other boron phases, this phase is likely 

metastable. After δ-B it will be called ε-B further in the paper. 

 

Figure 4.4.4.4 Raman spectrum of the newly synthesised phase (later in this work designated as ε-B) 

(lower curve) compared to that of boron carbide B13C2 (upper curve). Both spectra were collected on 

the same instrument at one experimental session that excludes a possibility of the shift because of the 

calibration problem. 

 

Single crystal X-ray diffraction (Table 4.4.4.3) revealed that this phase is isostructural 

to B13С2 [27], whose arrangement of B12 icosahedra is analogues to that the α-B structure. 

The rhombohedral unit cell of B13С2 contains tree-atomic (or two-atomic in case of the 

presence of a vacancy) linear groups of carbon and boron atoms oriented along the main 

diagonal of the unit cell. In the newly synthesised boron phase there are only tree-atomic 

linear groups consisting of boron atoms (Figure 4.4.4.5). The unit cell parameters are: a = 

5.5940(7) Å, c = 12.0756(16) Å (hexagonal setting); the space group is R-3m. We must note 

that upon refinement of the structure, a residual electron density peak of 0.54 e* Å
-3

 appears 

in 0.47 Å from B4, while the absolute value of the largest hole is smaller, -0.27 e*Å
-3

. In 

addition, an equivalent isotropic thermal parameter of B4 is much smaller (0.0028(8) Å
2
) in 

comparison with that for B1, B2, B3 atoms (0.0113(13), 0.0074(6), 0.0078(6) Å
2
). The 

quality of the refinement can be improved due to placing one carbon atom instead of B4, then 

the R1 value decreases from 5.01 to 3.83 % (contrary, placing nitrogen instead of boron 

increases the R1 value to ~7.5%). The highest residual density peak and hole have very close 

absolute values, 0.278 and -0.274 e* Å
-3

. The thermal parameter of C4 (0.0083(7) Å
2
) 

becomes closer to B2, B3 (0.0075(5), 0.0079(5) Å
2
). In both models the isothermal parameter 
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of B1 is larger, ~0.011 Å
2
 which is the most likely due to a disorder of the boron atom in this 

position. However, taking into account the confirmed by EELS and EDX absence of any 

contaminations in the material, the presently available experimental data can be interpreted 

only as described above and presented in Table 4.4.4.3 and Table 4.4.4.4. 

                              

Figure 4.4.4.5 Crystal structure of ε-B. 

 

Table 4.4.4.3 Experimental single crystal X-ray diffraction data for ε-B. 

Name  B15 

Formula weight  162.15 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Trigonal 

Space group  R-3m 

Unit cell dimensions a = 5.5940(7) Å 

 c = 12.0756(16) Å 

Volume 327.25(7) Å3 

Z 3 

Density (calculated) 2.468 g/cm3 

Absorption coefficient 0.091 mm-1 

F(000) 225 

Crystal size 0.05 x 0.03 x 0.01 mm3 

Theta range for data collection 4.53 to 31.12° 

Index ranges -7 ≤ h ≤ 8, -8 ≤ k ≤ 6, -13 ≤ l ≤ 17 

Reflections collected 978 

Independent reflections 148 [R(int) = 0.0863] 

Completeness to theta = 25.00° 94.4 %  

Max. and min. transmission 0.9991 and 0.9955 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 148 / 0 / 18 

Goodness-of-fit on F2 1.185 

Final R indices [I>2 σ(I)] R1 = 0.0501, wR2 = 0.1254 

R indices (all data) R1 = 0.0590, wR2 = 0.1292 

Largest diff. peak and hole 0.540 and -0.327 e·Å-3 
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Table 4.4.4.4 Atomic coordinates and equivalent isotropic displacement parameters for ε-B. Ueq is 

defined as one third of the trace of the orthogonalized Uij tensor. 

 

Atom 
Wyckoff 

position 
x/a y/b z/c Ueq, Å

2
 

B(1) 3b 0 0 1/2 0.011(1) 

B(2) 18h 0.1626(3) 0.8374(3) 0.6413(2) 0.007(1) 

B(3) 18h 0.2255(3) 0.7745(3) 0.7805(2) 0.008(1) 

B(4) 6c 0 0 0.6192(3) 0.003(1) 

 

To study phase transformations of ε-B in the field of stability of γ-B, a crystal of ε-B 

along with a β-B crystal was loaded into a DAC. Neon was used as a pressure transmitting 

medium and ruby as a pressure gauge. After pressurising to 11 GPa, both crystals were heated 

by laser at 2300 K. According to the phase diagram [13], at such PT conditions boron must 

transform to the γ-B phase. After heating the Raman spectra were measured again. As 

expected, both β-B and ε-B fully transformed to γ-B (Figure 4.4.4.6) that may also serve as an 

additional evidence of the pure-boron composition of the ε-B phase.  

 

Figure 4.4.4.6 Raman spectra of ε- and β-boron crystals taken in a DAC before (upper two curves) 

and after (lower two curves) laser heating at 2300 K at 11 GPa. 

 

Stability of ε-B under compression at room temperature was investigated by 

pressurising a crystal of ε-B isothermally in a DAC to 62 GPa. During the compression, a 

monotonous shift of the Raman peak positions toward higher wavenumbers was observed. 
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The Raman spectroscopy investigation revealed the absence of any phase transitions in ε-B 

under compression up to 62 GPa at room temperature. 

At 30, 40 and 62 GPa, the crystal of ε-boron was heated by laser at 2000 K for 5 min. The 

Raman spectra did not change after heating. Similar experiments at 11 GPa and 2300 K led to 

a transition of ε-boron to γ-boron that may be an evidence of the increasing kinetic stability of 

ε-B with pressure. It is interesting to note, that at 62 GPa, the crystal of ε-boron became 

colorless and totally optically transparent (Figure 7). 

   

 

Figure 4.4.4.7 Photograph of ε-B crystal in the DAC upon 62 and 2 GPa. 

 

Measured microhardness of ε-boron is HV ~ 55-60 GPa that is similar to that of single 

crystal γ-B (~ 60 GPa) [16] and higher than that of boron carbide (38 GPa) and of other boron 

polymorphs, α-B (42 GPa) and β-B (45 GPa) [27]. 

 

The implications of the experimental results for the HP phase diagram of boron 

Table 4.4.4.5 summarizes the HPHT experiments conducted with the purpose of 

synthesis of metastable boron phases. Based on these results, the PT phase diagram of boron 

[13] can be complemented with the fields of the occurrence of metastable phases, ε-B and δ-B 

(Figure 4.4.4.8).  

Table 4.4.4.5 Summary of HPHT experiments on boron, conducted in multi-anvil apparatus. Heating 

duration in every experiment was 5 minutes. (Typical uncertainty in temperature is ±50K and ±0.5 

GPa in pressure. In synthesis products initial non-transformed β-boron powder and platinum boride are 

not mentioned). 

 

Experiment Starting 

material 

Experimental conditions Synthesis results 

capsule 

material 

temperature, K Pressure, GPa 

S4805 85 at.% 

β-B + 15 

at.% Pt 

Au 1773 9.5 γ-B, δ-B 
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H3154 85 at.% 

β-B + 15 

at.% Pt 

Au 1773 10.5 γ-B, δ-B 

H3244 β-B Pt 1873 14 γ-B 

S5064 β-B Pt 1923 7.5 α-B, γ-B, recryst. β-B 

S5110 β-B Pt 1373 14.5 δ -B, γ-B 

H3191 β-B Pt 2193 12 γ-B 

S5150 β-B Pt 1673 13 δ -B, γ-B 

S5166 β-B Pt 1673 14 δ -B, γ-B 

S5231 β-B Pt 1573 16 δ -B, γ-B 

S5225 β-B Pt 1873 16 γ-B 

S5194 β-B Pt 1573 18 γ-B 

S5206 β-B Pt 1923 18 γ-B 

S5187 β-B Pt 2073 18 γ-B 

S5063 β-B Pt 1873 8.5 γ-B, ε-B 

S5053  β-B Pt 2023 8.5 γ-B, ε-B 

S5027 β-B Pt 1873 9 γ-B, ε-B 

S5062 β-B Pt 1973 9 γ-B, ε-B 

S5084 β-B Pt 2073 9 γ-B, β-B, ε-B 

S5080 β-B Pt 2123 9 γ-B, β-B 

S5060 β-B Pt 2123 8 β-B 

S5090 β-B Pt 2023 10 γ-B 

S5095 β-B Pt 1873 10 γ-B, δ-B  

S5103 β-B Pt 1773 10 γ-B, δ-B  

S5148 β-B Pt 1423 13 γ-B, δ-B  

S5123 β-B Pt 1323 13 γ-B, δ-B 

S5169 β-B Pt 1473 14 γ-B, δ-B 

S5073 β-B Pt 2323 9.5 γ-B, β-B 

 

  

Figure 4.4.4.8. The PT phase diagram of boron [13]. The PT fields where metastable phases of ε-B 

and δ-B were observed along with other boron phases are shadowed. The conditions at which 

crystallisation of various boron phases occurred are marked by different signs: solid green squares - -

B; solid purple diamonds – γ-B; solid red hexagons - -B; open red squares - -B and -B; open 

purple squares - -B and γ-B; open purple hexagons - -B and γ-B; blue solid triangle - -B, -B, and 

γ-B; red inversed triangle - ε-B, -B, and γ-B; red star marks the conditions of the multi-anvil 

experiment which led to the solid-solid -B-to--B phase transition; continues blue lines show 

apparent phase boundaries. Hour-glass rhombuses in the shadowed yellow area and semi-filled 

rhombuses in the shadowed orange area mark PT conditions of experiments when correspondingly 

single crystals of ε-B and δ-B were synthesized.  
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The PT phase diagram (Figure 4.4.4.8) is quite different from that one recently 

proposed in Qin et al. [10]. In particular, the diagram of Qin et al. [10] does not contain any 

information about the field of stability of -B and the phase boundaries do not agree with 

those shown in Figure 8. The discrepancies and the mismatch of the diagrams can be 

explained as follows. Our exploration of the boron phase diagram [13] was based on the same 

principles used for establishing the carbon phase diagram [28, 29] and crystallisation at 

various PT conditions was realised from the melt both in Ref. 13 and in the present work. This 

technique allows establishing equilibrium phase boundaries [28, 29]. Qin et al. [10] studied 

solid-state transformations which require high activation energies. The specific effects of 

transformation paths, pointed out as an additional factor for formation of metastable forms in 

the carbon system [29], play equally important role for boron as well, when metastable phases 

are quenched-in to survive metastably. This explains why the metastable T-50 (δ-B) phase 

was observed at quite different PT conditions in the present work and in Qin et al. [10], but 

always in the presence of other boron polymorphs. 

It should be noticed that in no one HPHT experiment we observed the T-192 phase 

[30, 31], although our PT experimental conditions covered the field where the T-192 was 

previously reported [30]. Studying solid-state transformations, Qin et al. [10] also did not see 

the T-192 phase, thus its existence still has not been confirmed experimentally. 

4.4.5 Conclusion 

In a series of experiments we have shown a feasibility of synthesis of single crystals of 

the tetragonal boron phase δ-B (previously called T-50) at high PT conditions. The structure 

of δ-B was refined based on single crystal X-ray diffraction in good agreement with the 

literature data. A new, previously not observed rhombohedral boron phase ε-B was 

synthesised at pressures above 8.5 GPa in form of single crystals and found to be isostructural 

with boron carbide. Chemical purity of the investigated crystals was proven by EELS. At 

ambient temperature ε-B was found to be stable at least up to 62 GPa. The measured Vickers 

hardness of the newly synthesised ε-B phase is about 55 GPa that places it in the row of 

superhard materials.  
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