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BAR BIN/Amphiphysin/Rvs 

CDP-DAG cytidine diphosphate-diacylglycerol 

cER cortical endoplasmic reticulum 

CL cardiolipin 

DIC differential interference contrast 

ERMES ER mitochondria encounter structure 

IMS intermembrane space 

MECA mitochondria-ER-cortex anchor 

MIM mitochondrial inner membrane 

MLCL monolysocardiolipin 

MOM mitochondrial outer membrane 

mtDNA mitochondrial DNA 

PA phosphatidic acid 

PC phosphatidylcholine 

PE phosphatidylethanolamine 

PG phosphatidylglycerol 

PGP phosphatidylglycerol phosphate 

PM plasma membrane 

PS phosphatidylserine 
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Gene descriptions 

Gene Name Encoded protein: short description 
ARP2 
ARP3 

Actin related protein Highly conserved actin nucleation mediator. Required for the 
motility and integrity of actin patches. 

ATP20 ATP synthase Subunit g of the mitochondrial F1FO ATP synthase. Required 
for dimerization of the ATP synthase complex. 

ATP23 ATPase Metalloprotease of the mitochondrial inner membrane. 

CAF4 
CCR4 associated 

factor 
Molecular adaptor that connects Fis1 and Dnm1. High 

structural similarity to Mdv1. 

CAN1 
canavanine 
resistance Plasma membrane arginine permease. 

CDS1 CDP-diacylglycerol 
synthase CDP-Diacylglycerol synthase of the ER.  

CHO1 Choline requiring Phosphatidylserine synthase of the ER. Involved in the 
biosynthesis of phosphatidylethanolamine. 

CHPPR 
Chondrocyte protein 
with a poly-proline 

region 

Mitochondrial inner membrane protein that likely plays a role in 
mitochondrial division. Not present in yeast. 

CLD1 
Cardiolipin-specific 

deacylase 
Mitochondrial cardiolipin-specific phospholipase; generates 

monolysocardiolipin. Involved in the remodeling of cardiolipin. 
CRD1 Cardiolipin synthase Cardiolipin synthase. Produces cardiolipin. 

DNM1 Dynamin-related GTPase that forms spirals around mitochondrial tubules and 
mechanochemically severs them. 

DRP1 
Dynamin-related 

protein Mammalian homolog of Dnm1. 

DRP-1 
Dynamin-related 

protein 
C. elegans homolog of Dnm1. 

FIS1 Mitochondrial fission Mitochondrial receptor for the fission machinery. 

FMP30 
Found in 

mitochondrial 
proteome 

Protein required for the biosynthesis of cardiolipin in the 
absence of Psd1. 

FtsZ 
Filamenting 

temperature-sensitive 
mutant Z 

Protein involved in prokaryotic cell division. Assembles as a 
ring at the mid-point of the cell, forming a functional analog of 

the contractile ring used in cytokinesis of many eukaryotic cells. 

FZO1 
Fuzzy onions 

homolog 
GTPase that mediates mitochondrial outer membrane fusion. 

GEM1 
GTPase EF-hand 

protein of 
mitochondria 

Regulatory subunit of the mitochondria-ER encounter structure. 
Gem1 is a cytosolic protein and solves the interaction between 

the mitochondria-ER encounter structure and Dnm1 upon 
mitochondrial division. 

GEP4 
Genetic interactors of 

prohibitins 
Mitochondrial phosphatidylglycerol-phosphatase. Involved in 

the biosynthetic pathway of cardiolipin. 

MCP1 
MCP2 

Mdm10 
complementing 

protein 

Proteins of unknown function. Overexpression rescues the 
phenotype of yeast cells lacking ER-mitochondrial contacts. 

MDM10 
MDM12 
MDM34 

Mitochondrial 
distribution and 

morphology 

Components of the mitochondria-ER encounter structure that 
tethers the mitochondria to the ER. 10 and 34 are mitochondrial 

proteins. 12 is a cytosolic protein. 

MDM30 
Mitochondrial 

distribution and 
morphology 

F-box component of an SCF complex; required for Fzo1 
ubiquitination and for mitochondrial fusion. 

MDM31  
Mitochondrial 

distribution and 
morphology 

Mitochondrial inner membrane protein with similarity to Mdm32; 
required for normal mitochondrial morphology, distribution, and 
nucleoid organization. Overexpression rescues the phenotype 

of yeast cells lacking ER-mitochondrial contacts. 
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Gene Name Encoded protein: short description 

MDM32 
Mitochondrial 

distribution and 
morphology 

Mitochondrial inner membrane protein with similarity to Mdm31; 
required for normal mitochondrial morphology, distribution, and 

nucleoid organization.  

MDM33 
Mitochondrial 

distribution and 
morphology 

Mitochondrial inner membrane protein that possibly plays a role 
in mitochondrial division. Overexpression causes a growth 

defect and mitochondrial fragmentation. 

MDM35 
Mitochondrial 

distribution and 
morphology 

Required for import of Ups1 and Ups2 in the intermembrane 
space. Protects them against proteolytic degradation. 

MDM36 
Mitochondrial 

distribution and 
morphology 

Mitochondrial fission promoting protein. Required for interaction 
between Num1 and Dnm1. The deletion mutant mitochondrial 

phenotype is indistinguishable from that of ∆num1 stains. 
MDV1 Mitochondrial division Molecular adaptor that connects Fis1 and Dnm1. 
Mfn1 
Mfn2 

Mitofusin Human homologs of Fzo1. 

MGM1 
Mitochondrial 

genome maintenance 
GTPase that mediates mitochondrial inner membrane fusion. 

Also required for cristae formation. 

MGM101 
Mitochondrial 

genome maintenance 
Mitochondrial nucleoid protein required for mitochondrial DNA 

recombination. 

MIP1 
Mitochondrial DNA 

polymerase 
DNA polymerase that mediates the replication of the 

mitochondrial DNA. 

MMM1 
Maintenance of 
mitochondrial 
morphology 

ER component of the mitochondria-ER encounter structure that 
tethers mitochondria to the ER. 

MMR1 
Mitochondrial Myo2 

receptor-related 
Anchors mitochondria to the cortical ER in small buds. 

Candidate for the mitochondrial Myo2 receptor. 

MTGM 
Mitochondrial 

targeting GxxxG motif 
Mitochondrial inner membrane protein that likely plays a role in 

mitochondrial division. Not present in yeast. 

MTP18 Mitochondrial protein Mitochondrial inner membrane protein that likely plays a role in 
mitochondrial division. Not present in yeast. 

MYO2 Myosin Class V myosin that transports mitochondria. 

NUM1 Nuclear migration 

High copy suppressor of a mutant Dnm1 allele. Required for 
orientation of the mitotic spindle and for maintenance of 

mitochondrial morphology. Likely involved in mitochondrial 
fission. Interacts with Dnm1. 

OPA1 Optic atrophy Mammalian homolog of Mgm1. 

OPY1 
Overproduction-

induced pheromone-
resistant yeast 

Sensor and modulator of the phosphatidylinositol 4,5-
bisphosphate synthesis. 

PAM17 
Presequence 
translocase-

associated motor 
Component of the mitochondrial protein import motor. 

PCP1 
Processing of 
cytochrome c 
peroxidase 

Mitochondrial rhomboid intramembrane peptidase required for 
the processing of various mitochondrial proteins. 

PGS1 PGP synthase  Protein of the mitochondrial cardiolipin biosynthetic pathway. 
PHB1 
PHB2 

Prohibitin Subunits of the ring-shaped inner mitochondrial membrane 
prohibitin complex influencing mitochondrial protein stability. 

PMA1 
plasma membrane 

ATPase 
Plasma membrane H+-ATPase that pumps protons out of the 

cell. 

PMI 
Pantagruelian 

Mitochondrion I 
Mitochondrial inner membrane protein that likely plays a role in 

mitochondrial division. Not present in yeast. 

PSD1 
Phosphatidylserine 

decarboxylase 

Phosphatidylserine decarboxylase of the mitochondrial inner 
membrane; converts phosphatidylserine to 

phosphatidylethanolamine. 

PSD2 
Phosphatidylserine 

decarboxylase 
Phosphatidylserine decarboxylase of the golgi/vacuole; 

converts phosphatidylserine to phosphatidylethanolamine. 
RTN1 
RTN2 

Reticulon-like Reticulon proteins; involved in formation of tubular ER by 
stabilizing membrane curvature. 
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Gene Name Encoded protein: short description 

shibire Japanese for 
paralyzed 

Encodes Dynamin. Pinches-off endocytic vesicles. 

TAM41 
Translocator 

assembly and 
maintenance 

CDP-Diacylglycerol synthase of the mitochondria. Involved in 
the biosynthetic pathway of cardiolipin. 

TAZ1 Tafazzin Monolysocardiolipin acyltransferase. Involved in the remodeling 
of cardiolipin. 

TOM20 
Translocase of the 
outer mitochondrial 

membrane 

Component of the mitochondrial protein import machinery. 
Attached to the outer membrane via its N-terminal 

transmembrane domain. 

UGO1 Japanese for fusion 
Mitochondrial fusion factor that orchestrates Mgm1 and Fzo1 

activity. Plays a role in Fzo1 dimer formation. 

UPS1 Unprocessed Involved in cardiolipin biosynthesis and in topogenesis of 
Mgm1. 

UPS2 Unprocessed Antagonizes Ups1. Involved in phosphatidylethanolamine 
stability and cristae biogenesis. 

VAC17 Vacuole related Vacuole-specific receptor for Myo2. 

YME1 
Yeast mitochondrial 

escape 
Catalytic subunit of the mitochondrial inner membrane i-AAA 

protease complex. 
YOP1 YIP One Partner Membrane protein required to maintain ER morphology. 
YTA10 
YTA12 

Yeast tat-binding 
analog 

Components of the mitochondrial inner membrane m-AAA 
protease complex. 
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Summary 

Mitochondria play diverse roles in the physiology and metabolism of eukaryotic cells. Like most 

membrane bounded organelles, they cannot be synthesized de novo but grow and split into distinct 

organelles and must be inherited to daughter cells upon cell division. The structure of the highly 

dynamic mitochondrial network is adjusted to fit cellular needs by orchestrating mitochondrial 

movement, fusion, and fission. All three processes are important for the maintenance of functional 

mitochondria. The core components of the transport, fusion, and division machineries have been 

identified in baker’s yeast. However, the mechanisms controlling mitochondrial dynamics remain 

poorly understood. 

The synoptic aim of this work was to characterize the molecular function of three genes that are 

involved in maintaining structural integrity of mitochondria: NUM1, MDM33, and UPS1. Yeast cells 

lacking NUM1 or MDM33 show defects in mitochondrial fission, whereas UPS1 has been reported to 

be involved in mitochondrial fusion and the biosynthesis of the mitochondrial signature lipid 

cardiolipin. This work assigns a specific process to each of the three genes and provides evidence 

how these processes influence mitochondrial behavior. In summary, this study elucidates how 

various processes influence the fusion and fission of a double membrane bounded organelle. 

First, Num1 was identified as key component of a tethering complex that anchors mitochondria at 

the mother cell cortex. The tethering complex serves to counteract bud-directed mitochondrial 

movement and assures that a part of the mitochondria remains in the mother cell upon cell division. 

It acts antagonistically to a known mitochondrial anchor containing Mmr1 at the tip of the daughter 

cell. Thus, Num1 in the mother and Mmr1 in the bud form two separate cortical tethers to ensure 

proper distribution of mitochondria by generating opposing forces at spatially distinct and exclusive 

locations. Strikingly, the tethering of mitochondria at the mother cell cortex was identified as a 

prerequisite for efficient mitochondrial division. 

Second, it was shown that Mdm33 orchestrates mitochondrial fission and phospholipid biosynthesis. 

Genetic analysis revealed a tight association of MDM33 and genes affecting mitochondrial 

phospholipid metabolism. Consistently, Mdm33 overexpression alters mitochondrial lipid 

composition and directly influences mitochondrial phospholipid biosynthesis. Mutants lacking 

Mdm33 show reduced mitochondrial fission activity, indicating that Mdm33 promotes mitochondrial 

division but is no essential component of the fission machinery. Furthermore, Mdm33 was found to 

act upstream of mitochondrial fission and fusion and to be required to keep mitochondria in a fission 

competent shape. The results suggest an intriguing connection between mitochondrial fission and 

phospholipid homeostasis. 

Third, it was investigated by electron microscopy whether cells lacking Ups1 or other cardiolipin 

biosynthesis factors show aberrant mitochondrial ultrastructure. Intriguingly, reduction of cardiolipin 

levels only affected the shape of the mitochondrial inner membrane when it was accompanied by an 

increase in mitochondrial cytidine diphosphate-diacylglycerol. A genetic epistasis analysis with focus 

on mitochondrial ultrastructure revealed that Ups1 acts prior to the first enzymatic reaction of the 

cardiolipin biosynthesis. This pointed to a role of Ups1 in supplying the CL biosynthesis machinery 

with precursor lipids. Thus, Ups1 mainly functions in cardiolipin biosynthesis and it is conceivable 

that reduced cardiolipin levels in ∆ups1 mutants cause mitochondrial fragmentation. 
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Zusammenfassung 

Mitochondrien sind von essentieller Bedeutung für die Physiologie und den Metabolismus 

eukaryontischer Zellen. Als membranöse Organellen können sie nicht de novo erschaffen werden, 

sondern müssen bei der Zellteilung an die Tochterzelle weitergegeben werden. Die Struktur des 

mitochondrialen Netzwerkes ist sehr dynamisch und wird durch koordinierte Teilung, Fusion und 

Bewegung an die Bedürfnisse der Zelle angepasst. Die Hauptkomponenten, die den Transport, die 

Teilung und die Fusion von Mitochondrien ermöglichen, wurden in der Bäckerhefe identifiziert. Die 

Mechanismen, die diese Prozesse regulieren, sind jedoch kaum verstanden. 

Das synoptische Ziel dieser Arbeit war die Charakterisierung von drei Genen, die an dem Erhalt der 

strukturellen Integrität des mitochondrialen Netzwerkes beteiligt sind: NUM1, MDM33 und UPS1. 

Zellen ohne Num1 oder Mdm33 weisen Defekte in der Teilung der Mitochondrien auf, wohingegen 

Ups1 für die Fusion von Mitochondrien und die Biosynthese von Cardiolipin benötigt wird. In dieser 

Arbeit wird die molekulare Funktion jedes dieser drei Gene untersucht und es wird aufgezeigt, wie 

diese Funktion das Verhalten sowie die Fusion und die Teilung des mitochondrialen Netzwerkes 

beeinflusst.  

Zuerst wurde Num1 als Bestandteil eines Komplexes identifiziert, der die Mitochondrien an der 

Plasmamembran der Mutterzelle verankert. Diese Verankerung wirkt dem Transport der 

Mitochondrien in die Knospe entgegen und stellt sicher, dass ein Teil des mitochondrialen 

Netzwerkes in der Mutterzelle verbleibt. Num1 wirkt somit antagonistisch zu Mmr1, der 

Hauptkomponente eines ähnlichen Verankerungskomplexes an der Knospenspitze. Es ist daher 

anzunehmen, dass die Vererbung von Mitochondrien durch die Koordination von Transport und 

Verankerung in der Mutter und der Knospe sichergestellt wird. Erstaunlicherweise ist eben diese 

Verankerung zwingend für die effiziente Teilung von Mitochondrien erforderlich. 

Als nächstes wurde herausgefunden, dass Mdm33 mitochondriale Teilung und Phospholipid-

Biosynthese miteinander verknüpft. Genetische Analysen zeigten eine enge Assoziation zwischen 

MDM33 und Genen der mitochondrialen Phospholipid-Biosynthese auf. Tatsächlich beeinflusst die 

Überexpression von MDM33 die Lipidzusammensetzung der Mitochondrien und beeinträchtigt die 

mitochondriale Phospholipid-Biosynthese. Zellen ohne Mdm33 weisen Defekte in der Teilung von 

Mitochondrien auf. Mdm33 ist für die Teilung der Mitochondrien jedoch nicht essentiell und übt eine 

Funktion aus, die der Teilung und Fusion von Mitochondrien übergeordnet ist. Dennoch wird Mdm33 

auch benötigt, um eine teilungsfähige Form der Mitochondrien aufrechtzuerhalten. Dies deutet auf 

eine interessante Verbindung zwischen mitochondrialer Teilung und Phospholipid-Homöostase hin. 

Schließlich wurde der Effekt von Defekten der Cardiolipin-Biosynthese auf die Ultrastruktur der 

Mitochondrien untersucht. Interessanterweise wurde beobachtet, dass reduzierte Cardiolipin Level 

nur die Ultrastruktur verändern, wenn simultan der Gehalt an Cytidindiphosphat-Diacylglycerin 

ansteigt. Im Zuge einer genetischen Epistase Analyse wurde festgestellt, dass Ups1 im Hinblick auf 

die Ultrastruktur der Mitochondrien anderen Genen der Cardiolipin Biosynthese übergeordnet ist. 

Dies deutet darauf hin, dass Ups1 vor der enzymatischen Kaskade agiert, die die Synthese von 

Cardiolipin katalysiert. Letztendlich wurde geschlussfolgert, dass der Fusionsdefekt in Abwesenheit 

von Ups1 sekundär durch die defekte Cardiolipin-Biosynthese begründet ist.  
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Introduction 

Mitochondria are essential organelles of almost all eukaryotic cells. They generate energy in the form 

of ATP by oxidative phosphorylation, participate in intracellular signaling and apoptosis, are the site 

of many catabolic and anabolic pathways including the citric acid cycle, the assembly of iron-sulfur 

clusters, and are involved in the biosynthesis of heme, certain phospholipids as well as fatty acids 

(Scheffler, 2001; Osellame et al., 2012). This multitude of different functions is reflected in their 

complex structure. They are double membrane bounded organelles and the smooth outer 

membrane (MOM) surrounds the highly folded inner membrane (MIM), which in turn enwraps a 

dense, protein rich matrix. Both membranes enclose an aqueous compartment, the intermembrane 

space (IMS). The MIM can be subdivided into the inner boundary membrane that faces the MOM and 

infoldings – termed cristae – that protrude into the matrix (Mannella, 2006). Textbooks often depict 

mitochondria as small isolated organelles, as seen in electron micrographs (Keyhani, 1980), but in 

most cell types they form large interconnected networks (Fig. 1A, B). Mitochondria are highly 

dynamic: They move along the cytoskeleton, undergo frequent division, and fuse with other 

mitochondria (Fig. 1C; Bereiter-Hahn and Voth, 1994). The shape of the cristae and mitochondrial 

network is highly variable, depending on cell type and physiological state of the cell (Griparic and van 

der Bliek, 2001). Mitochondria contain their own genome and protein biosynthesis machinery but 

the vast majority of all mitochondrial proteins is encoded in the nucleus and imported into the 

mitochondria post-translationally. In baker’s yeast, mitochondria contain more than 750 different 

proteins (Sickmann et al., 2003), of which only 8 are encoded in the mitochondrial genome (Lipinski 

et al., 2010). The number of genes that remain encoded on the mitochondrial DNA (mtDNA) varies 

among species (Gray et al., 1999) but in all cases the essential contribution of the mitochondrial 

genome to the oxidative phosphorylation demands that mtDNA is faithfully maintained and inherited 

(Chen and Butow, 2005). This contributes to the semi-autonomous nature of mitochondria: 

Mitochondrial growth requires the import of nuclear-encoded proteins from the cytosol, the 

synthesis of polypeptides encoded by the mitochondrial genome, the incorporation of lipids 

produced mostly in the endoplasmic reticulum (ER), and the replication of mtDNA.  

As this work was performed in Saccharomyces cerevisiae, the focus will from now on be on 

mitochondrial biology in baker’s yeast. In addition to its obvious amenability to genetic analysis, S. 

cerevisiae is particularly suitable to study mitochondrial behavior because it can generate the 

required energy solely by fermentation (Altmann et al., 2007). Therefore, genes that are required for 

oxidative phosphorylation are dispensable for yeast cells growing on fermentable carbon sources. 

Respiratory-deficient mutants are referred to as petite due to their small colony phenotype on media 

with limited amount of fermentable carbon sources (Ephrussi et al., 1949). Since most complexes of 

the respiratory chain are composed of mitochondrial and nuclear encoded subunits, the petite 

phenotype can be caused by mutations in the nuclear (nuclear petite) or mitochondrial genome 

(cytoplasmic petite; Ephrussi and Slonimski, 1955). Cytoplasmic petite mutants are characterized by 

the absence of functional [rho
+] mtDNA, either through a complete loss [rho

0], or extensive deletions 

[rho
−] (Lipinski et al., 2010).   

In budding yeast, mitochondria form a branched reticulum below the cell cortex (Koning et al., 1993). 

The intracellular position, number, size, and morphology of the mitochondria are tightly orchestrated 

to the cellular needs. For example, if yeast cells enter stationary phase or late meiosis, the branched 

network rapidly splits into smaller organelles (Miyakawa et al., 1984; Yaffe, 2003). Furthermore, the 
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network reversibly gets far more extended and branched when the cells are grown on non-

fermentable carbon sources (Egner et al., 2002; Jakobs et al., 2003). Two genome wide screens 

identified the genes that are required to maintain mitochondrial morphology in yeast (Dimmer et al., 

2002; Altmann and Westermann, 2005). In the past decade most of the novel mediators have been 

assigned to a specific process or function that is required to maintain mitochondrial morphology.  

 

Mitochondrial fusion and division  

Mitochondria frequently fuse and divide. Mitochondrial fusion serves to unify the mitochondrial 

compartment thereby counteracting mitochondrial dysfunction caused by mutations of the mtDNA 

(Westermann, 2002). Furthermore, extended mitochondrial networks generated by fusion activity 

are electrically united systems and help to distribute energy within the cell (Amchenkova et al., 1988; 

Skulachev, 2001). As yeast mutants lacking the mitochondrial fusion machinery rapidly lose their 

mtDNA, fusion of mitochondria obviously acts in the maintenance of the mitochondrial genome 

(Jones and Fangman, 1992; Hermann et al., 1998). In contrast, the generation of smaller organelles 

by mitochondrial division plays an important role in the removal of damaged organelles by 

autophagy (Mao et al., 2013), regulation of developmental processes, and in proper mitochondrial 

Figure 1 | Mitochondrial ultrastructure and dynamics in S. cerevisiae. A. Electron micrograph and 
cartoon depicting mitochondrial ultrastructure. MOM = mitochondrial outer membrane. MIM = 
mitochondrial inner membrane. IMS = intermembrane space. B. Mitochondria of exponentially growing 
yeast cells visualized with matrix targeted GFP. Shown is a merge of GFP fluorescence and DIC. C. 
4d-microscopy of exponentially growing yeast cells. Mitochondria are visualized with matrix targeted 
GFP. Images on the left are merges of a 2d-projection of 10 z-stacks of GFP fluorescence and the 
corresponding DIC image. On the right, time courses of 2d-projections of 10 z-stacks of GFP 
fluorescence are shown. All images are unpublished. 
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distribution (Lackner and Nunnari, 2009). In yeast between 0.5 and 2.5 events of mitochondrial 

fusion and fission occur per minute. The exact number depends on the growth phase and on the 

carbon source (Nunnari et al., 1997; Jakobs et al., 2003). If mitochondrial fusion is unopposed by 

fission, mitochondria turn into a highly interconnected single organelle (Bleazard et al., 1999; Santel 

and Fuller, 2001; Smirnova et al., 2001). Likewise, a lack of mitochondrial fusion leads to 

fragmentation of the organelle (Hermann et al., 1998; Chen et al., 2003). The mitochondrial 

morphology is maintained by balancing these two antagonizing processes. Hence, if fusion and fission 

are blocked simultaneously, tubular mitochondrial morphology is restored (Bleazard et al., 1999; 

Sesaki and Jensen, 1999; Fekkes et al., 2000).  

Mitochondrial division 

Mitochondrial division is mediated by the proteins Dnm1 (dynamin-related) in yeast and DRP1 

(dynamin related protein) in mammals that are large self-assembling GTPases belonging to the family 

of dynamin related proteins (Lackner and Nunnari, 2009). Members of the dynamin superfamily are 

well known to be involved in the scission of a wide range of vesicles and organelles (Praefcke and 

McMahon, 2004). The role of dynamins in membrane scission was first discovered in paralyzed 

Drosophila melanogaster mutants (Grigliatti et al., 1973). The mutants were immobile due to an 

accumulation of endocytic profiles caused by a temperature sensitive allele of the dynamin shibire 

(van der Bliek and Meyerowitz, 1991). Classical dynamins form spirals around membranes and they 

mechanochemically sever these driven by oligomerization-stimulated GTPase activity (Praefcke and 

McMahon, 2004). 

 

In yeast, the soluble protein Dnm1 assembles on mitochondria into punctate structures (Otsuga et 

al., 1998; Sesaki and Jensen, 1999). These assemblies are either laterally associated with 

mitochondria and most likely involved in anchoring the mitochondria at the cell cortex or they 

completely surround the mitochondrial tubules and drive mitochondrial division (Legesse-Miller et 

al., 2003; Schauss et al., 2006). The recruitment of Dnm1 from the cytosol is mediated by two 

cooperating proteins, Fis1 (mitochondrial fission) and Mdv1 (mitochondrial division; Fig. 2A). Fis1 is 

an integral protein of the MOM with a C-terminal transmembrane domain and an N-terminal 

Figure 2 | Model of mitochondrial division in S. cerevisiae. A. Cartoon depicting the mitochondrial 
division machinery. MOM = mitochondrial outer membrane. MIM = mitochondrial inner membrane. 
IMS = intermembrane space. B. Model for ER-mediated mitochondrial constriction and Dnm1 
assembly. C. Dnm1 assembles as a helix and the inner lumen of Dnm1 spirals decreases from ~80 
nm to ~25 nm upon addition of GTP. All images are unpublished. See text for details. 
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tetratricopeptide repeat domain facing the cytosol (Mozdy et al., 2000). Mdv1 acts as a molecular 

bridge between Fis1 and Dnm1 (Karren et al., 2005). The N-terminal extension domain interacts 

directly with the cytosolic part of Fis1 (Tieu et al., 2002) whilst the C-terminal WD-40 repeat domain 

interacts with Dnm1 (Fig. 2A; Cerveny and Jensen, 2003). Mdv1 furthermore assembles into punctate 

structures that colocalize with Dnm1 assemblies. This assembly depends on Dnm1 (Tieu et al., 2002) 

and succeeds the formation of Dnm1 punctae (Naylor et al., 2006), indicating that Mdv1 also acts 

after targeting Dnm1 to the mitochondria. Consistent with this idea, in vitro data show that Mdv1 

promotes GTP-bound Dnm1 oligomerization and could co-assemble with Dnm1 in a stoichiometric 

manner (Lackner et al., 2009). Therefore, Mdv1 might act simultaneously as a nucleator for Dnm1 

assembly and later on as a scaffold to stabilize Dnm1 assemblies.  

Interestingly, GTP-bound Dnm1 assembled on liposomes forms spirals that have a diameter of 100 

nm which would be insufficient to surround a mitochondrion with a mean diameter of 300 nm 

(Ingerman et al., 2005). Therefore, mitochondrial constriction has to precede the assembly of 

mitochondria-surrounding Dnm1 spirals. Indeed, the constriction of the mitochondrial matrix and 

MOM was found to be independent of Fis1 or Dnm1, respectively (Jakobs et al., 2003; Legesse-Miller 

et al., 2003). Recent electron microscopical studies showed that the ER wraps around mitochondria 

at sites of future division (Fig. 2B). This causes a constriction of the mitochondria to a diameter of 

approximately 100 nm, perfectly fitting the diameter of assembled Dnm1 spirals (Friedman et al., 

2011). Thus, mitochondrial division is spatially linked to ER-mitochondria contact sites (Murley et al., 

2013). Taken together, the current model for mitochondrial division is that Fis1 and Mdv1 

cooperatively recruit GTP-bound Dnm1 to ER-mediated mitochondrial constriction sites. There Dnm1 

co-oligomerizes with Mdv1 to form large spirals that completely surround the mitochondrion. 

Subsequently, the Dnm1 spirals undergo self-assembly stimulated GTP-hydrolysis what leads to a 

conformational change causing a constriction of the spiral (Fig. 2C; Mears et al., 2011). Dnm1 thereby 

mechanochemically severs the mitochondrion by a mechanism that is strikingly similar to the action 

of classical dynamins in endocytosis. 

Mitochondrial inner membrane division 

It is unclear whether the activity of Dnm1 is sufficient to simultaneously sever both mitochondrial 

membranes or whether an independent machinery divides the MIM (Westermann, 2008). However, 

there is evidence that separate machineries for MOM and MIM division exist. First, mitochondrial 

matrix constriction can be observed in absence of Dnm1 or Fis1. This could be explained by the ER 

constricting the mitochondria, but in some cases the matrix constriction occurs independently of the 

MOM (Jakobs et al., 2003; Legesse-Miller et al., 2003). Second, it was shown in C. elegans that in cells 

lacking the Dnm1 homolog DRP-1 the matrix is divided into bleb-like structures whereas the MOM 

stays connected by thin tubules devoid of matrix content (Labrousse et al., 1999). Third, isolated rat 

liver mitochondria change the amount of cristae junctions per cristae according to the environmental 

conditions (Mannella et al., 2001). Generation of additional cristae junctions requires membrane 

remodeling, topologically identical to MIM division (Mannella, 2006). And fourth, plastids, the plant-

specific double membrane bounded organelles that share an endosymbiotic origin with 

mitochondria, are known to be divided by cooperation of a dynamin-like protein that acts from the 

outside and a homolog of the prokaryotic fission protein FtsZ (filamenting temperature-sensitive 

mutant Z) that acts from the inside (Yoshida et al., 2012).  
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There are few known MIM proteins likely involved in mitochondrial fission and therefore candidates 

for MIM division: Mdm33 (mitochondrial distribution and morphology) in yeast, PMI (Pantagruelian 

Mitochondrion I) in flies, CHPPR (Chondrocyte Protein With a Poly-Proline Region) in chicken, and 

MTGM (mitochondrial targeting GxxxG motif) and MTP18 (mitochondrial protein) in humans 

(Messerschmitt et al., 2003; Tonachini et al., 2004; Tondera et al., 2004; Tondera et al., 2005; Zhao et 

al., 2009; Rival et al., 2011; Macchi et al., 2013). Most of these proteins are conserved among mouse, 

fly, and human, except of Mdm33 that has no homolog in higher eukaryotes. Interestingly, none of 

the mammalian factors has a homolog in yeast. Overexpression of most of these proteins is 

associated with mitochondrial fragmentation whilst deletion or knockdown results in fewer but 

larger mitochondria (Tab. 1). This suggests a role of each of these proteins in mitochondrial fission. 

Table 1 | Candidate proteins for mitochondrial inner membrane (MIM) division. See text for more 
details. 

Name organism localization overexpression 
deletion / 

knockdown 
reference 

CHPPR 
chicken, 

conserved 
MIM 

fragmented 
mitochondria 

not determined Tonachini et al., 2004 

Mdm33 yeast MIM - integral 
fragmented 

mitochondria 
mitochondrial 

swelling 
Messerschmitt et al., 

2003 

MTGM 
human, 

conserved 
MIM - integral 

fragmented 
mitochondria 

mitochondrial 
elongation 

Zhao et al., 2009 

MTP18 
human, 

conserved 
MIM - integral 

fragmented 
mitochondria 

mitochondrial 
aggregation 

Tondera et al., 2004; 
Tondera et al., 2005 

PMI 
fly, 

conserved 
MIM - integral not determined 

mitochondrial 
swelling 

Rival et al., 2011;  
Macchi et al., 2013 

 

Mdm33 is a 54 kDa protein of the MIM that forms homo-oligomeric complexes. It has two C-terminal 

transmembrane domains that are connected by a small IMS linker. The N-terminal part of the protein 

faces the matrix. Deletion of MDM33 causes the formation of giant ring-like mitochondria which are 

composed of very long stretches of both mitochondrial membranes enclosing a very narrow matrix 

space. Typically, these structures are swollen at some parts which are tightly packed with cristae. In 

striking contrast, MDM33 overexpression causes a growth arrest, rapid mitochondrial fragmentation, 

and the formation of MIM septa (Messerschmitt et al., 2003). It is persuasive that Mdm33 promotes 

mitochondrial division: The extremely extended structures in the deletion mutant can form only in 

the absence of frequent division. Furthermore, overexpression causes a shift of the balance between 

mitochondrial fusion and fission towards fission. 

Num1 and Mdm36 

There are two additional cytosolic factors that contribute to mitochondrial division and distribution 

in baker’s yeast, namely Num1 (nuclear migration) and Mdm36. Num1 is a large cell-cortical protein 

that is required for proper orientation of the mitotic spindle (Heil-Chapdelaine et al., 2000) and was 

found to be a high copy suppressor of a dominant negative Dnm1 allele (Cerveny et al., 2007). NUM1 

and MDM36 were identified in a genome wide screen for mutants with altered mitochondrial 

morphology (Dimmer et al., 2002). Cells lacking either of both display severely altered mitochondria 

with interconnected aggregated nets located in the middle of the cell. They are no essential 

components of the mitochondrial division machinery as ∆num1 and ∆mdm36 mutant mitochondria 
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retain fission ability and double mutants with ∆fzo1 contain fragmented mitochondria. Num1 

physically interacts with Dnm1 and a colocalization of Mdv1-free Dnm1 spots and Num1 can be 

observed in fluorescence micrographs (Cerveny et al., 2007; Hammermeister et al., 2010). These 

Dnm1 spots are spatially oriented towards the cell cortex and have been described to be formed 

independently of Mdv1 (Schauss et al., 2006). Intriguingly, the colocalization of Num1 and Dnm1 

depends on Mdm36 (Hammermeister et al., 2010). The cortical localization of Num1 together with 

the absence of peripheral mitochondria and an increase in mitochondrial motility in both ∆num1 and 

∆mdm36 mutants suggested that the proteins might be involved in anchoring the mitochondria to 

the cell cortex (Cerveny et al., 2007; Hammermeister et al., 2010). Yet, it remained unknown how this 

may contribute to mitochondrial fission (Schauss and McBride, 2007).  

Mitochondrial fusion 

Although dynamins usually act in membrane scission, mitochondrial fusion is mediated by distantly 

related members of the dynamin superfamily: Fzo1 (fuzzy onions homolog) acting in MOM fusion 

and Mgm1 (mitochondrial genome maintenance) acting in MIM fusion. Fzo1 is conserved from yeast 

to humans and was first identified in sterile male flies that failed to rearrange their mitochondria 

during spermatogenesis. Normally, in D. melanogaster the mitochondria aggregate next to the 

spermatid nuclei to form a structure called Nebenkern. The Nebenkern consists of two giant 

mitochondria that are wrapped around each other and have the shape of a sliced onion in electron 

micrographs (Tokuyasu, 1975). In the fuzzy onions mutant the mitochondria failed to fuse during 

Nebenkern formation, giving the structure a fuzzy appearance (Hales and Fuller, 1997). Yeast Fzo1 

(mitofusins Mfn1 and Mfn2 in humans) is a large GTPase with two MOM spanning transmembrane 

domains. Only a small loop connects the transmembrane domains and resides in the IMS whilst the 

rest of the protein faces the cytosol (Fig. 3A; Hermann et al., 1998; Fritz et al., 2001).  

 

Figure 3 | Model of mitochondrial fusion in S. cerevisiae. A. Cartoon depicting the mitochondrial 
fusion machinery. MOM = mitochondrial outer membrane. MIM = mitochondrial inner membrane. IMS 
= intermembrane space. B. Tethering of two mitochondria by Fzo1 cis- and trans-dimer formation. C. 
Mgm1 trans-dimer formation directly after MOM-fusion. D. Fused mitochondria with unified matrix. The 
proteins in B and C are depicted according to A. See text for details. All images are unpublished. 
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Mgm1 (optic atrophy 1 or OPA1 in humans) is a large evolutionary conserved GTPase that exists in 

two isoforms. The large isoform contains an N-terminal transmembrane domain that anchors the 

protein in the MIM with the major part of the protein facing the IMS (Wong et al., 2000; Herlan et al., 

2003). Upon processing by the rhomboid protease Pcp1 (processing of cytochrome c peroxidase) a 

small isoform is generated that lacks the transmembrane domain but still contains the GTPase 

domain (Fig. 3A) and is a soluble protein of the IMS (Herlan et al., 2003; McQuibban et al., 2003). 

Apparently, both isoforms are required for mitochondrial fusion (Herlan et al., 2003; McQuibban et 

al., 2003). Fzo1 and Mgm1 are essential components of the mitochondrial division machinery as 

∆fzo1 and ∆mgm1 mutants show fragmented mitochondria (Guan et al., 1993; Hermann et al., 1998; 

Rapaport et al., 1998), no mitochondrial fusion upon mating (Hermann et al., 1998; Wong et al., 

2000), and mitochondria isolated from these mutants fail to fuse their matrices in vitro (Meeusen et 

al., 2004; Meeusen et al., 2006). Both proteins share typical features with known fusion proteins: 

First, they have GTPase domains that could be used to overcome the energy barrier of membrane 

fusion (Martens and McMahon, 2008). Second, Fzo1 and Mgm1 form homotypic trans-complexes 

that are required to tether the fusion partners together (DeVay et al., 2009; Anton et al., 2011). 

Third, Mgm1 and most likely also Fzo1 undergo a conformational change upon GTP hydrolysis, pulling 

the opposing membranes together (Anton et al., 2011; Abutbul-Ionita et al., 2012). Since MOM 

fusion is abolished in ∆fzo1 but not in ∆mgm1 mutants (Meeusen et al., 2004; Meeusen et al., 2006), 

Fzo1 most likely catalyzes the fusion of the MOM whilst Mgm1 catalyzes the fusion of the MIM. 

Interestingly, cells lacking Mgm1 show decreased cristae abundance (Meeusen et al., 2006) and an 

alteration in cristae structure (Sesaki et al., 2003). Since yeast cells with severe defects in oxidative 

phosphorylation show similar phenotypes (Sauvanet et al., 2012), the cristae alterations in ∆mgm1 

strains could well be a secondary effect caused by the loss of the mtDNA. 

In yeast, two additional proteins have been identified that are required for MOM fusion, Ugo1 (which 

is Japanese for fusion) and Mdm30 (Fig. 3A). Since mitochondria are surrounded by two membranes, 

fusion of both membranes has to be orchestrated. In yeast, the MOM protein Ugo1 might fulfill this 

role as it physically links Fzo1 and Mgm1 (Wong et al., 2003; Sesaki and Jensen, 2004). Furthermore, 

Ugo1 promotes Fzo1 cis-dimerization (Anton et al., 2011) and seems to exhibit an essential function 

after membrane tethering in later steps of both MIM and MOM fusion (Hoppins et al., 2009). Mdm30 

is a mitochondria-associated F-box protein required for mitochondrial fusion (Fritz et al., 2003). It 

regulates mitochondrial fusion by mediating Fzo1-ubiquitylation and degradation in a proteasome-

dependent manner (Dürr et al., 2006; Cohen et al., 2008). This is not required for Fzo1-mediated 

membrane tethering but for membrane fusion (Cohen et al., 2011). The current model for 

mitochondrial fusion is that Ugo1 and GTP binding promote Fzo1 cis-dimer formation and these cis-

dimers then form trans-complexes with Fzo1 dimers of opposing mitochondrial membranes. GTP 

hydrolysis leads to a conformational change in Fzo1, what allows Mdm30 dependent ubiquitylation 

and degradation of Fzo1 and finally leads to MOM fusion (Fig. 3A, B). Afterwards trans-complexes 

between Mgm1 of the two opposing MIMs are formed and the MIMs are fused by a GTP-hydrolysis 

driven conformational change in Mgm1 (Fig. 3C, D).   

Mitochondrial movement and partitioning 

Most membrane bounded organelles cannot be generated de novo and therefore have to be 

inherited from the mother to the daughter cell. In budding yeast the cell division is asymmetrical, 

producing a smaller daughter cell, called bud. Hence, the process is termed budding. At the 
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beginning of the cell cycle a site for bud emergence is selected and the whole cytoskeleton is 

polarized towards the newly formed bud what establishes an axis of polarity and an intrinsic cellular 

asymmetry. All organelles, mRNAs and even the mitotic spindle are transported along the actin 

cytoskeleton. After a bud site is selected the growth of the yeast cell is limited to the bud and the 

organelles are duplicated and segregated into the bud (Pruyne et al., 2004).  

There are two conflicting models for mitochondrial transport in budding yeast. The first states that 

mitochondrial movement is driven by Arp2/3 (actin-related protein) mediated actin polymerization 

(Vevea et al., 2013), similar to the movement of the intracellular pathogen Listeria monocytogenes 

(Tilney and Portnoy, 1989; Tilney et al., 1990). In this model, the Arp2/3 complex is directly targeted 

to the mitochondria by a structure called mitochore, consisting of the proteins Mmm1 (maintenance 

of mitochondrial morphology), Mdm10 (mitochondrial distribution and morphology), and Mdm12 

(Boldogh et al., 2001; Boldogh et al., 2003). Since Mmm1 was mislocalized to the mitochondria upon 

its first description (Burgess et al., 1994; Kondo-Okamoto et al., 2003) but actually resides in the ER 

and serves in ER-mitochondria tethering (Kornmann et al., 2009), the model is rather unlikely. The 

alternative and more reasonable model postulates that the class V myosin motor protein Myo2 is 

bound on the mitochondria by an unknown receptor and actively transports them along existing 

actin cables (Förtsch et al., 2011). This model is mainly supported by the findings that (I) actin-

binding of isolated mitochondria is ATP-dependent (Lazzarino et al., 1994), (II) isolated mitochondria 

show motor activity in cell-free actin gliding assays (Simon et al., 1995), (III) myo2 mutants fail to 

efficiently segregate mitochondria into the bud (Itoh et al., 2002), (IV) this can be rescued by an 

artificial mitochondria-anchored version of Myo2 when the mutations are in the Myo2 cargo-binding 

domain (Förtsch et al., 2011), (V) mitochondria isolated from strains lacking functional Myo2 lose 

their ability to interact with actin filaments in vitro (Altmann et al., 2008), and (VI) Myo2 is found on 

isolated mitochondria by immuno-electron microscopy (Förtsch et al., 2011). Usually, Myo2 is 

recruited to the cargo organelles by specific receptors in the organellar membranes. The best 

mitochondrial Myo2 receptor candidate is the bud-localized peripheral MOM protein Mmr1 (Itoh et 

al., 2004). Overexpression of MMR1 results in accumulation of mitochondria in the bud and rescues 

mitochondrial distribution defects of myo2 mutants. Mmr1 physically interacts with the cargo 

binding domain of Myo2 (Itoh et al., 2004) and the binding site partially overlaps with the binding site 

of the vacuolar receptor Vac17 (Ishikawa et al., 2003; Eves et al., 2012). This is consistent with the 

idea that vacuoles and mitochondria compete for Myo2 binding and that this is required for 

coordination of the inheritance of both cargoes (Eves et al., 2012). However, the mitochondrial 

inheritance defect of ∆mmr1 mutants is unexpectedly mild (Itoh et al., 2004; Frederick et al., 2008) 

and Myo2 cargo-binding domain mutants are not synthetic sick with but epistatic to the deletion of 

Mmr1 (Förtsch et al., 2011), suggesting that Mmr1 is not the mitochondrial Myo2 receptor. 

After cell division, mother and daughter cells both should contain a complete set of organelles. 

Therefore, a mechanism in addition to the bud-directed transport of organelles must exist and 

ensure proper segregation. Recent studies indicate that Mmr1 does not act as mitochondrial Myo2 

receptor but instead localizes to bud tips and physically links mitochondria to the cortical ER (Swayne 

et al., 2011). Thereby mitochondria are anchored and retained at the bud tip what is of particular 

importance directly before cell division when the actin cytoskeleton of the mother cell and the bud 

reorganizes and is no longer oriented towards the bud tip but towards the mother bud neck 

(Moseley and Goode, 2006). It was shown that mitochondria are also immobilized in the mother cell 

distal to the bud. This anchorage of mitochondria in the so-called ‘retention zone’ most likely ensures 
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that some mitochondria remain in the mother cell (Yang et al., 1999). The molecular mechanism 

underlying the establishment of the retention zone remained unknown. 

Mitochondria-ER contact sites 

Interorganellar membrane contact sites play important roles in lipid transfer, signal transduction, and 

Ca2+-trafficking (Rowland and Voeltz, 2012). Most known contact sites are formed between the ER 

and other organelles, including the mitochondria, vacuole, Golgi, peroxisomes, as well as the plasma 

membrane (Elbaz and Schuldiner, 2011; Toulmay and Prinz, 2011). In yeast, the contacts between the 

mitochondria and the ER are formed by a proteinaceous structure called ER mitochondria encounter 

structure (ERMES). The ERMES consists of four core subunits (Fig. 4): Mdm34 (mitochondrial 

distribution and morphology) and Mdm10 in the MOM, Mdm12 in the cytosol, and the integral ER 

protein Mmm1 (maintenance of mitochondrial morphology; Kornmann et al., 2009). Disruption of 

any of the subunits causes a complete disassembly of the complex leading to swollen mitochondria, 

the loss of mtDNA, and a severe growth defect (Burgess et al., 1994; Sogo and Yaffe, 1994; Berger et 

al., 1997; Youngman et al., 2004).  

The loss of the mitochondrial genome in ERMES 

mutants could be explained by the fact that the 

ERMES colocalizes with actively replicating 

nucleoids. The ‘replisome’ consists of mtDNA, 

the mitochondrial genome maintenance factor 

Mgm101, and the mitochondrial DNA 

polymerase Mip1 (Fig. 4). Interestingly, the 

ERMES subunit Mmm1 colocalizes with 

Mgm101 even in the absence of mtDNA what 

indicates a three membrane spanning protein 

complex (Meeusen and Nunnari, 2003). This 

complex might also contain the MIM proteins 

Mdm31 and Mdm32 as in either deletion 

mutant the colocalization between Mmm1 and 

the nucleoids is abolished (Dimmer et al., 2005). 

The ERMES contains an additional regulatory 

subunit, the MOM GTPase Gem1 (GTPase EF-

hand protein of mitochondria; Kornmann et al., 2011; Stroud et al., 2011). Since mitochondrial 

division occurs at sites of mitochondria-ER contacts (see above), the ERMES complex colocalizes with 

assembled Dnm1 on mitochondria. Directly after division, this interaction has to be dismantled what 

is done by Gem1. Interestingly, the connection between ERMES and mtDNA probably also serves to 

link mitochondrial division and nucleoid segregation because mitochondrial nucleoids are associated 

with over 80% of mitochondrial division events (Murley et al., 2013). 

As the contacts between ER and mitochondria are important for lipid exchange (Achleitner et al., 

1999) and phosphatidylethanolamine (PE) biosynthesis (see below), the ERMES mutants display a 

lipid phenotype (Kornmann et al., 2009; Osman et al., 2009a). Intriguingly, most of ERMES mutant 

phenotypes including the alterations in lipid composition can be alleviated by overexpression of the 

Figure 4 | Cartoon depicting the ER mitochondria 
encounter structure in S. cerevisiae. MOM = 
mitochondrial outer membrane. MIM = 
mitochondrial inner membrane. IMS = 
intermembrane space. mtDNA = mitochondrial 
DNA. Unpublished. See text for details. 



Introduction - Mitochondrial phospholipid biosynthesis 

 

10 
 

poorly characterized genes MCP1 or MCP2 (Mdm10 complementing protein). This implies that there 

might be an ERMES independent lipid transport between ER and mitochondria (Tan et al., 2013). 

Mitochondrial phospholipid biosynthesis 

Phospholipids play many essential roles in the biology of the cell that extend beyond lipid 

metabolism and membrane integrity. They are of vital importance for vesicular and non-vesicular 

transport (Balla, 2013), membrane identity (Nakatsu et al., 2012), folding and import of membrane 

proteins (Joshi et al., 2009), and many more cellular processes (Henry et al., 2012). Mitochondria 

contain a specific set of phospholipids that is required to maintain their morphology and 

functionality. In yeast, all glycerolipids are derived from the precursor lipid phosphatidic acid (PA) via 

sequential modifications by multiple phospholipid-synthetic enzymes located in various cellular 

compartments. Whilst mitochondria contribute to the synthesis of few cellular fatty acids and 

phospholipids, most are produced in the ER. The ER synthesizes the majority of PA, 

phosphatidylinositol, phosphatidylserine (PS), and phosphatidylcholine (PC), whereas mitochondria 

produce PE and cardiolipin (CL; Fig. 5; Henry et al., 2012).  

 

Although most membrane phospholipids, such as PC, form stable lipid bilayers at physiological 

temperatures, some cellular lipids intrinsically destabilize bilayers. When they are purified, they do 

not assemble bilayer phases at physiological conditions. This is mainly caused by a small headgroup 

or bulky sidechains resulting in a cone-like shape. Whereas bilayers are mainly formed by cylindrical 

lipids, conical lipids prefer the formation of structures with a high intrinsic curvature such as 

liposomes or micelles. The presence of non-bilayer lipids is important to disorder membranes and 

thereby keep them in a fluid state. However, the overall lipid mixture of cellular membranes is always 

balanced to form metastable lipid bilayers (Frolov et al., 2011). The phospholipids CL and PE which 

are produced in mitochondria both have a small headgroup compared to the size of the sidechains 

and therefore are non-bilayer forming. They are fusogenic, play crucial roles in maintaining 

mitochondrial morphology, and can confer negative curvature to mitochondrial membranes (Joshi et 

al., 2009; Tamura et al., 2009; Potting et al., 2010; Kuroda et al., 2011). Interestingly, the combined 

deletion of genes that are involved in production of CL and PE are synthetically lethal in yeast, 

indicating that CL and PE are partially redundant and that a sufficient level of either of them is 

required for life (Gohil et al., 2005). This overlap of function can also be seen in their role in 

mitochondrial fusion. When both lipids are depleted simultaneously, the mutants exhibit fragmented 

mitochondria, reduced membrane potential, and loss of mtDNA, characteristic of fusion mutants 

(Joshi et al., 2012). When only PE or CL is depleted, the phenotype is similar but considerably less 

Figure 5 | Mitochondrial phospholipid biosynthesis in S. cerevisiae. MOM = mitochondrial outer 
membrane. CL = cardiolipin. MLCL = monolysocardiolipin. PG = phosphatidylglycerol. PGP = 
phosphatidylglycerol phosphate. CDP-DAG = cytidine diphosphate-diacylglycerol. PA = phosphatidic 
acid. PS = phosphatidylserine. PE = phosphatidylethanolamine. Dashed lines indicate transport 
processes. Unpublished. See text for details. 
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severe (Chen et al., 2010; Chan and McQuibban, 2012). How the non-bilayer lipids contribute to 

mitochondrial fusion is not completely understood. 

Biosynthesis of phosphatidylethanolamine 

In yeast, PE is synthesized by two alternative pathways: The Kennedy pathway and the cytidine 

diphosphate-diacylglycerol (CDP-DAG) pathway. In the CDP-DAG pathway, CDP-DAG is processed into 

PS in the ER by the PS-synthase Cho1 (choline requiring; Atkinson et al., 1980; Letts et al., 1983). PS is 

then either transported into the mitochondria and decarboxylated by the PS decarboxylase Psd1 

(Clancey et al., 1993; Trotter et al., 1993) or transported into the golgi/vacuole where the 

decarboxylation is performed by Psd2 (Trotter and Voelker, 1995). The product of this reaction, PE, is 

subsequently transported back into the ER and further processed into PC (Fig. 5). In the Kennedy 

pathway, PE and PC are directly synthesized from ethanolamine and choline, bypassing PS as an 

intermediate (Kennedy and Weiss, 1956). The CDP-DAG pathway is the major route for PE 

biosynthesis and more than 75% of the cellular PE is synthesized by Psd1 (Clancey et al., 1993; 

Trotter et al., 1993). Interestingly, both pathways are used by wildtype cells, regardless of whether or 

not ethanolamine and choline are present in the growth medium (Henry et al., 2012). 

Biosynthesis of cardiolipin 

CL has a characteristic dimeric structure with two phosphatidyl moieties that are linked by a glycerol. 

It is well known as the mitochondrial signature lipid and plays a critical role in mitochondrial function 

and biogenesis (Joshi et al., 2009). The first step of the CL biosynthesis is the conversion of PA to 

CDP-DAG but unlike the PE biosynthesis pathway, all of the enzymes for de novo synthesis of CL are 

present in the mitochondria (Fig. 5; Henry et al., 2012). For long time, only the ER residing CDP-DAG 

synthase Cds1 was known. Since isolated mitochondria showed CDP-DAG synthase activity it was a 

matter of debate whether Cds1 might be as well imported into the mitochondria (Kuchler et al., 

1986; Shen et al., 1996). Recently, the debate was put to an end by identification of an additional 

mitochondrial CDP-DAG synthase, Tam41 (translocator assembly and maintenance; Tamura et al., 

2013). The CDP-DAG produced by Tam41 serves as a substrate for the PGP synthase Pgs1 and is 

converted to phosphatidylglycerol phosphate (PGP; Chang et al., 1998). Gep4 (genetic interactors of 

prohibitins) subsequently forms phosphatidylglycerol (PG) via dephosphorylation of PGP (Kelly and 

Greenberg, 1990; Osman et al., 2010). The cardiolipin synthase Crd1 afterwards catalyzes an 

irreversible condensation reaction to couple PG and CDP-DAG and form CL (Tuller et al., 1998). CL 

then undergoes remodeling — deacylation by Cld1 (cardiolipin-specific deacylase) leads to the 

formation of monolysocardiolipin (MLCL) and Taz1 (tafazzin) then removes an acyl chain from 

another phospholipid and adds it to MLCL, consequently regenerating CL with a different sidechain 

(Gu et al., 2004; Beranek et al., 2009). Astonishingly, CL biosynthesis and remodeling by Cld1p are 

associated with the matrix-facing leaflet of the MIM (Schlame and Haldar, 1993; Baile et al., 2013) 

whilst Taz1 is sorted into the IMS with two segments inserting it into the MIM and the MOM 

(Claypool et al., 2006; Herndon et al., 2013). Hence, MLCL must be transported to the IMS-facing 

MIM leaflet in order to gain access to Taz1. 

Associated factors 

Mitochondrial phospholipid biosynthesis does not only depend on the proteins directly involved in 

the biosynthetic pathway but as well on other associated factors. Since mitochondrial phospholipid 
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biosynthesis requires the import of precursors from the ER it is not surprising that ERMES mutants 

show reduced levels of CL and PE (Osman et al., 2009a; Tan et al., 2013). A specific reduction of CL 

levels can be observed in cells lacking the IMS protein Ups1 (unprocessed; Osman et al., 2009a; 

Tamura et al., 2009). Yeast cells grown on glucose and lacking UPS1 show a growth defect, reduced 

mitochondrial protein import, defects in assembly of the ATP/ADP carrier, impaired processing of 

Mgm1, and reduced mitochondrial membrane potential (Sesaki et al., 2006; Osman et al., 2009a; 

Tamura et al., 2009). Since ∆ups1 mutants also harbor fragmented mitochondria it was assumed that 

Ups1 might play a role in mitochondrial fusion. Ups1 has a closely related homologue – Ups2 – that is 

an IMS protein and belongs to the same protein family as Ups1. Loss of Ups2 causes defects in 

mitochondrial PE stability as well as reduced cristae biogenesis. Strikingly, additional loss of UPS2 

rescues all phenotypes apart from the mitochondrial morphology defects in ∆ups1 mutants (Osman 

et al., 2009a; Tamura et al., 2009). This suggests antagonizing functions of Ups1 and Ups2. 

Consistently, overexpression of Ups2 causes defects similar to that of ∆ups1 mutants as it reduces CL 

levels. However, overexpression of Ups1 causes no reduction in PE stability (Osman et al., 2009a). 

Both, Ups1 and Ups2, depend on the small twin CX9C protein family member Mdm35 which ensures 

efficient import into the IMS and protects both proteins against proteolytic degradation by the MIM 

i-AAA protease Yme1 (yeast mitochondrial escape) and the MIM metalloprotease Atp23 (ATPase; 

Potting et al., 2010). How Ups1 and Ups2 regulate mitochondrial morphology and mitochondrial 

phospholipid metabolism is still unknown.  

Another protein that is required for the biosynthesis of CL is the integral MIM protein Fmp30 (found 

in mitochondrial proteome). Fmp30 shows strong similarity to mammalian N-acyl-PE-specific 

phospholipase D which is a member of a superfamily including a wide variety of hydrolases, the 

metallo-b-lactamase family. Functional analysis renders it likely that Fmp30 has hydrolase activity, 

and that this activity is essential for the function of the protein. Though, the molecular function of 

Fmp30 is unknown. Intriguingly, Fmp30 is only required for the formation of CL in the absence of 

Psd1 (Kuroda et al., 2011). Thus, the double mutant ∆fmp30 ∆psd1 is inviable as cells cannot tolerate 

simultaneous reduction of CL and PE levels (Gohil et al., 2005).  

Prohibitins 

Members of the conserved prohibitin membrane protein family have been identified in organisms of 

all phylogenetic kingdoms with two closely related proteins – Phb1 and Phb2 – being present in each 

case. Though the localization of the prohibitins is controversial, recent studies indicate that they 

mainly act in the MIM (Osman et al., 2009b). They are named prohibitins because the injection of 

PHB1 mRNA into human dermal fibroblasts inhibits the initiation of DNA synthesis (McClung et al., 

1989). This was later assigned to the 3’ untranslated region of the PHB1 mRNA (Jupe et al., 1996). 

Single particle electron microscopy and crosslinking studies suggest that yeast Phb1 and Phb2 form a 

large ring-like complex in the MIM that is built up of multiple Phb1 and Phb2 subunits alternating 

with each other (Back et al., 2002; Tatsuta et al., 2005). When the complex formation is inhibited by 

deletion of one subunit, the presence of the other subunit can no longer be detected (Berger and 

Yaffe, 1998). Intriguingly, deletion of the prohibitins shortens replicative lifespan in yeast cells 

(Coates et al., 1997; Piper and Bringloe, 2002; Kirchman et al., 2003). This seems to be caused by 

mitochondrial dysfunction in aged prohibitin mutants as they show alterations in mitochondrial 

morphology and inheritance (Piper et al., 2002). The molecular function of the prohibitins is only 

poorly understood. They form a large supercomplex with the mitochondrial m-AAA protease in the 
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MIM and the observation that protein stability is decreased in the prohibitin mutants suggests that 

they negatively regulate the m-AAA protease activity (Steglich et al., 1999). The prohibitin complex is 

furthermore able to stabilize newly synthesized mitochondrial translation products through direct 

interaction (Nijtmans et al., 2000), pointing to a potential role as membrane-bound chaperones. 

Consistently, a constitutive mitochondrial unfolded protein response can be observed in cells lacking 

Phb1 and Phb2 (Schleit et al., 2013). Interestingly, although the prohibitin deletion mutants grow 

well under normal conditions, prohibitins become essential for cell survival when cells are deficient 

for CL or PE. Therefore, they show strong negative genetic interactions with genes involved in 

mitochondrial morphology maintenance and with genes involved in the mitochondrial phospholipid 

biosynthesis (Berger and Yaffe, 1998; Osman et al., 2009a). In addition to this, prohibitin mutants 

cannot tolerate a loss of their mtDNA or defects in mitochondrial proteolysis (Dunn et al., 2006; 

Osman et al., 2007; Osman et al., 2009a). The diversity of different processes that the prohibitins are 

involved in implies a role of the prohibitins as major MIM organizing factors.   
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Aims and scope of this thesis 

Many genes and processes are involved in the maintenance of the tubular mitochondrial network in 

yeast, some of which are only poorly characterized. The best analyzed processes are undoubtedly 

mitochondrial fusion and fission (Westermann, 2010) and although the principle of mitochondrial 

division was established almost 40 years ago (Kolb-Bachofen and Vogell, 1975), many questions 

about the regulation and exact mechanism of mitochondrial fission remain unsolved. Especially the 

interplay of the various processes that regulate mitochondrial morphology is poorly understood. The 

main scope of this thesis was to characterize the molecular function of three proteins that have been 

reported to participate in mitochondrial fusion and fission: Mdm33, Num1, and Ups1. In all three 

cases the mitochondrial phenotypes of the deletion mutants differ from that of known division and 

fusion mutants. This suggests that the proteins might only be indirectly involved in the fusion or 

fission of mitochondria. To unravel the molecular function of these proteins within the processes of 

mitochondrial dynamics was the synoptic goal of this work. 

Num1 is known to play a role in mitochondrial division though the mitochondrial division machinery 

retains residual activity in the absence of Num1 (Cerveny et al., 2007). Previous research has 

illustrated that Num1 functions as a cortical anchor for dynein motor proteins, facilitating transport 

of the nucleus along astral microtubules from the mother cell to the emerging bud (Bloom, 2001). 

The aggregation of mitochondria in the middle of the cell in ∆num1 mutants suggests that Num1 may 

play a similar role in anchoring mitochondria to the cell cortex (Schauss and McBride, 2007). Thus, 

mitochondrial fission and segregation appear somehow connected. It was one major goal of this 

thesis to study the connection between the two processes by further analyzing mitochondrial 

behavior of ∆num1 mutants.  

Next, Mdm33 is the best candidate for MIM division, though functional data is missing 

(Messerschmitt et al., 2003). It was speculated that fission of the MIM might trigger MOM 

constriction thereby promoting the assembly of Dnm1 (Westermann, 2008). Hence, it was a major 

interest to investigate the assembly and activity of Dnm1 in the absence of Mdm33. Membrane 

scission is an energy requiring process but Mdm33 lacks energy providing domains. Thus, if Mdm33 is 

a key player of MIM division, other proteins must be assisting it. Interestingly, overexpression of 

MDM33 is associated with a growth arrest and mitochondrial fragmentation (Espinet et al., 1995; 

Messerschmitt et al., 2003). It is tempting to speculate that other proteins act in close cooperation 

with Mdm33 and that absence of either of these proteins might have an alleviating effect on the 

overexpression of MDM33. To address this, a microarray based genome wide suppressor screen was 

designed to identify those deletion strains that render the overexpression of MDM33 less toxic.  

Finally, it is well established that sufficient CL and PE levels are required for mitochondrial fusion 

(Chan and McQuibban, 2012; Joshi et al., 2012). How the lipids contribute to the fusion process is 

unknown. Cells lacking Ups1 show reduced CL levels and fragmented mitochondria, but it remained 

unclear whether Ups1 acts mainly in mitochondrial fusion or CL metabolism (Sesaki et al., 2006; 

Tamura et al., 2009). Thus, elucidating the main molecular function of Ups1 and the impact of this 

function on mitochondrial morphology and ultrastructure was the third major scope of this thesis. 
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Synopsis 

Num1 anchors mitochondria at the mother cell cortex 

In his doctoral studies, Johannes König (University of Bayreuth, Westermann group) developed an 

assay to study the relative mitochondrial content of mother cells and buds by 3d-fluorescence 

microscopy. This enabled him to systematically test known morphology component mutants for 

defects in mitochondrial distribution. Upon analysis of cells lacking the mitochondrial protein Mmr1 

and comparing them to wildtype cells, he observed that ∆mmr1 mutants retained more 

mitochondria in the mother cell and less were present in the bud (Klecker et al., 2013). This was in 

agreement with previous reports (Itoh et al., 2004). It is assumed that this phenotype is caused by 

Mmr1 anchoring the mitochondria at the bud tip and counteracting retrograde mitochondrial 

transport into the mother cell (Swayne et al., 2011). Strikingly, it was reported that additional 

deletion of NUM1 has an alleviating effect on the growth of ∆mmr1 mutants (Hoppins et al., 2011). 

Thus, we decided to further investigate the mitochondrial distribution defects of ∆num1 and ∆num1 

∆mmr1 mutants. Former studies had already shown that mitochondrial distribution is defective in 

∆num1 mutants (Dimmer et al., 2002; Cerveny et al., 2007). In our analysis, cells lacking Num1 

showed the opposite phenotype of the ∆mmr1 mutants as the mitochondrial distribution was heavily 

shifted towards the mother cell. Intriguingly, ∆num1 ∆mmr1 double mutants showed ∆num1-like 

mitochondrial morphology but a more wildtype-like distribution than either single mutant (Klecker et 

al., 2013). This suggested that Num1 acts antagonistically to Mmr1 and counteracts anterograde 

movement of mitochondria into the bud. Num1 is known to attach dynein motor proteins to the cell 

cortex (Bloom, 2001) and the mitochondrial phenotype of ∆num1 mutants pointed to a possible role 

of Num1 as mitochondrial cell cortex anchor (Schauss and McBride, 2007). In cells with small buds 

Num1 exclusively localizes to the cortex of the mother cell (Heil-Chapdelaine et al., 2000) whilst 

Mmr1 is mainly found at the bud tip (Itoh et al., 2004; Swayne et al., 2011). Thus, Num1 and Mmr1 

could execute similar functions but at distinct parts of the cell. We therefore adapted our working 

hypothesis to a model in that Num1 mainly functions as mitochondrial anchor in the mother cell.  

Yeast mitochondria are highly dynamic and continuously move back and forth along the actin 

cytoskeleton (Fehrenbacher et al., 2004). The attachment of mitochondria to the cell cortex most 

likely serves to ensure partitioning of mitochondria between the mother cell and the bud. Fixing the 

mitochondria at the opposite pole of the mother cell counteracts bud-directed mitochondrial 

transport (Simon et al., 1997; Yang et al., 1999). We reasoned that retention of mitochondria in the 

mother cell should therefore become essential when the transport is heavily shifted towards the bud 

(Fig. 6). To address this, we took advantage of the fact that in cells expressing a mitochondrial 

anchored version of the motor protein Myo2 the mitochondrial transport is heavily shifted towards 

the anterograde direction. Förtsch et al. (2011) replaced the cargo binding domain of Myo2 by the 

transmembrane domain of the MOM protein Fis1 (Myo2-Fis1) in order to attach the motor to 

mitochondria. Expression of Myo2-Fis1 causes an accumulation of mitochondria in small buds but the 

mitochondria remain anchored at the mother cell cortex (Förtsch et al., 2011). Indeed, we found 

Myo2-Fis1 to be toxic in cells lacking Num1 (Klecker et al., 2013). In wildtype cells one or two 

mitochondria tubules were still anchored at the retention zone when we expressed Myo2-Fis1 but 

this could not be observed in ∆num1 cells. Instead, we found the mitochondria to be completely 

transported into the bud, implicative of a lack of mitochondrial anchors in the mother cell. To rule 
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out the possibility that this effect is caused by the mitochondrial division defect of ∆num1 cells, we 

also tested growth and mitochondrial distribution of cells lacking the essential mitochondrial division 

component Dnm1 and expressing Myo2-Fis1. These cells did not show any defects in growth or 

mitochondrial distribution (Klecker et al., 2013). Taken together, our results indicate that 

mitochondrial retention in the mother cell is defective in cells lacking Num1, but not in cells lacking 

Dnm1. Our results imply that defective mitochondrial division alone is not sufficient to impair 

mitochondrial retention and highlight a specific role of Num1 in this process. 

 

Num1 could either regulate the retention of mitochondria in the mother cell or be an integral part of 

the mitochondrial cell cortex tether. If the latter was true, Num1 should colocalize with the cell 

cortex and the mitochondria at the retention zone. We addressed this possibility by fluorescence 

microscopy. In wildtype cells, Num1 was preferentially found at the sites where mitochondria were in 

close proximity to the cell cortex, consistent with Num1 being an integral part of the tethering 

complex. In cells expressing Myo2-Fis1 Num1 colocalized in a statistically significant manner with the 

terminal parts of mitochondrial tubules that protrude into the mother cell (Klecker et al., 2013). Since 

these sites represent the retention zone and ∆num1 mutants lack mitochondrial retention, Num1 

fulfills all requirements to be an essential component of the mitochondrial anchor in mother cells.  

Mdm36 is a mitochondria-associated protein and the phenotype of ∆num1 and ∆mdm36 strains is 

strikingly similar. In both mutants mitochondria form highly interconnected collapsed networks that 

are positioned in the center of the cell (Hammermeister et al., 2010). One explanation for the 

phenotypical similarity could be the defect in mitochondrial fission that is common for both mutants. 

However, the phenotype is obviously different from that of other mitochondrial division mutants 

(Cerveny et al., 2007; Hammermeister et al., 2010). Thus, Mdm36 is likely also involved in cortical 

tethering of mitochondria. We decided to examine whether the main defect of both mutants is the 

absence of mitochondrial cell cortex attachment. To test this, we generated chimeric proteins that 

artificially tether the mitochondria to the plasma membrane (PM) and investigated the effect of 

these constructs on mitochondrial morphology in ∆num1 and ∆mdm36 strains. To assure stable 

association of the tether with the mitochondria, we first fused the transmembrane domain of the 

MOM protein Tom20 to GFP. Since the transmembrane domain of Tom20 carries the localization 

signal (Waizenegger et al., 2003), this protein is faithfully inserted into the MOM with the GFP 

 
Figure 6 | Model of mitochondrial distribution in mutant strains. Arrows indicate mitochondrial 
transport. Unpublished. In wildtype strains mitochondrial movements in anterograde and retrograde 
direction are balanced. When the mitochondrial motor, Myo2, is covalently linked to the MOM by 
fusion to the transmembrane domain of Fis1 (Myo2-Fis1), the movement is heavily shifted to the 
anterograde direction (Förtsch et al., 2011). If the mitochondrial cortex anchor in the mother cell is 
missing, expression of Myo2-Fis1 results in transport of the whole mitochondrial content into the bud. 
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domain facing the cytosol. This construct was 

then fused to a cortex binding domain (Fig. 7). 

We chose two different pleckstrin homology 

domains and according to Yu et al. (2004) both 

have a high affinity of binding to the cell cortex. 

The domain was either taken directly from Num1 

or from the completely unrelated 

phosphatidylinositol 4,5-bisphosphate synthesis 

factor Opy1 (Ling et al., 2012). The tethers were 

expressed in wildtype cells and we observed the 

formation of GFP punctae at the contact sites 

between the mitochondria and the cell cortex, 

indicating that the constructs worked as 

intended. Intriguingly, the expression efficiently 

rescued mitochondrial morphology defects of ∆num1 and ∆mdm36 cells, demonstrating that Num1 

and Mdm36 mainly influence mitochondrial structure and inheritance via cortical tethering. 

Consistently, the constructs did not influence the mitochondrial morphology of cells lacking the 

essential fission component Dnm1 (Klecker et al., 2013).  

Mitochondria form contacts with plasma membrane invaginations 

To get an idea of the structural composition of the mitochondrial cell cortex tether, Dirk Scholz 

(University of Bayreuth, Westermann group) searched for and imaged the retention zone by electron 

tomography. He found the mitochondria to be frequently localized in close contact to PM 

invaginations. In some cases he could observe direct contact between these invaginations and 

mitochondria (Klecker et al., 2013). Interestingly, the N-terminal domain of Num1 exhibits structural 

und functional similarities to BIN/Amphiphysin/Rvs (BAR) domains (Tang et al., 2012). BAR domains 

are known to bind membranes and sense or induce membrane curvatures upon recruitment to the 

membrane surface (Qualmann et al., 2011). Thus, it is tempting to speculate that Num1 binds to PM 

microdomains with high curvature by its BAR-like domain. Consistently, Tang et al. (2012) reported 

that mutations in its BAR-like domain disrupt the assembly of Num1 into cortical patches. 

Link between mitochondrial division and mitochondrial anchorage 

Our results indicated that the main mitochondrial defect of ∆num1 mutants is the loss of cortical 

tethering in the mother cell. The mitochondrial fission defect of cells lacking Num1 could be a 

secondary effect, if mitochondrial cell cortex tethering was an essential prerequisite for 

mitochondrial division. Even though the chimeric cortex anchors rescued the mitochondrial 

morphology of ∆num1 and ∆mdm36 strains, it was not clear whether they also restored 

mitochondrial division activity. We therefore decided to address this by shifting the balance between 

mitochondrial fusion and fission towards fission and examine the effect of the chimeric cortex 

anchors under these conditions. An increase of mitochondrial fission can be achieved by treating the 

cells with sodium azide. Sodium azide efficiently depletes the cells of ATP by inhibition of the 

respiratory chain due to irreversible binding of the heme in the cytochrome c oxidase (Seligman et 

al., 1968; Wilson et al., 1972). This causes several cellular defects and rapid mitochondrial 

fragmentation. Since the mitochondrial fragmentation depends on the division machinery it is a 

 
Figure 7 | Chimeric cortex tethers rescue the 
mitochondrial morphology and distribution 
phenotype of cortex anchor mutants. Shown is a 
cartoon depicting the structure of the constructed 
chimeric tethering proteins. MOM = mitochondrial 
outer membrane. MOM TMD = transmembrane 
domain of a MOM protein. Unpublished.   
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suitable assay to test for fission activity (Fekkes et al., 2000). Treatment of wildtype cells with sodium 

azide led to rapid fragmentation of the mitochondria what could not be observed in cells lacking 

Num1, Mdm36 or Dnm1. When we additionally expressed the chimeric cortex tethers, fission activity 

was restored in ∆num1 and ∆mdm36 strains, but not in cells lacking Dnm1 (Klecker et al., 2013). This 

demonstrates that the primary defect of cells lacking Num1 or Mdm36 is the impaired anchorage of 

the mitochondria to the mother cell cortex. This lack of mitochondrial anchoring then causes a 

secondary defect in mitochondrial division. 

 

Though we were able to show that mitochondrial cortex anchoring indeed is an essential prerequisite 

for mitochondrial division, the exact mechanism remains unknown. One possible explanation would 

be that the stable anchoring of mitochondria at the cell cortex applies tension forces to the 

mitochondria when Myo2 is moving them along actin cables. This tension could either result in 

mitochondrial constriction or directly aid the process of membrane scission (Fig. 8A). Furthermore, it 

is convincing that mitochondrial tips must be separated after a fission event to prevent direct re-

fusion. If mitochondrial division was spatially linked to the anchoring sites, one tubule would remain 

Figure 8 | Mechanisms ensuring proper mitochondrial distribution in budding yeast. A and B. Two 
nonexclusive models of how mitochondrial anchorage and mitochondrial division could be linked. 
Arrows indicate mitochondrial transport, arrowheads represent tension forces and double-headed 
arrows depict fusion tendency. C. Model for mitochondrial inheritance in yeast. Mitochondria are 
transported into the bud by Myo2. Anchorage of the mitochondria at the cell cortex of the mother and 
daughter cell by Num1 and Mmr1, respectively, ensures equal partitioning. D. Two models for the 
mitochondrial mother cell cortex anchor are shown. In both models the anchor consists of Num1, 
Mdm36, and an unknown mitochondrial factor. The MECA (mitochondria-ER-cortex anchor) model 
additionally contains ER whilst our model includes binding to invaginations of the plasma membrane. 
PH = pleckstrin homology domain. MOM = mitochondrial outer membrane. IMS = intermembrane 
space. 36 = Mdm36. All images are unpublished. See text for more details. 
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stationary while the other would rapidly depart due to Myo2 driven mitochondrial movement (Fig. 

8B). Both explanations do not exclude each other. Astonishingly, overexpression of a shortened 

version of Num1 rescued mitochondrial division defects in cells expressing Dnm1 and a dominant 

negative, cytosolic version of Dnm1 (Cerveny et al., 2007). This implied that Num1 directly promotes 

mitochondrial division what is contradicted by our findings. This could be explained by the shortened 

Num1 version binding the dominant negative version of Dnm1. By sequestration of the mutant Dnm1 

the inhibitory effect could be relieved what would restore fission activity. 

One of the main goals of the project was to define the activity of Num1 in molecular detail. Taken 

together, our results show that yeast cells have two separate cortical tethers – Num1 in the mother 

and Mmr1 in the bud – that ensure the proper distribution of mitochondria by generating opposing 

forces at spatially distinct locations (Fig. 8C). Mmr1 attaches newly inherited mitochondria to the bud 

tip while Num1 facilitates retention of mitochondria in the mother cell. It appears that the 

combination of anterograde and retrograde movements together with attachments of mitochondria 

to the cell cortex ensures equal partitioning of mitochondria during cell division. The main function of 

Num1 is to tether the mitochondria at the mother cell cortex. Loss of this cell cortex anchor then 

causes a secondary defect in mitochondrial fission by a yet unknown mechanism.  

Role of Mdm36 in mitochondrial tethering 

We propose that Mdm36 is a primary constituent of the mitochondrial tethering complex, based on 

the similarity of the mitochondrial phenotypes of ∆mdm36 and ∆num1 mutants. This hypothesis is 

further strengthened by Lackner et al. (2013) observing a direct interaction between Num1 and 

Mdm36. Furthermore, mitochondrial morphology and mitochondrial fission defects of ∆mdm36 

mutants can be rescued by synthetic mitochondria-PM tethers (Klecker et al., 2013). Interestingly, 

Mdm36 associates with mitochondria due to binding of an unknown mitochondrial interaction 

partner (Hammermeister et al., 2010). This together with the direct interaction between Num1 and 

Mdm36 suggests that Mdm36 might act as a receptor mediating binding of Num1 to mitochondria. 

Indeed, Mdm36 forms foci associated with the cortical side of mitochondrial tubules. These foci are 

adjacent to but only partially overlap with Num1 clusters and are located between Num1 and 

mitochondria (Lackner et al., 2013), indicative of Num1 binding to mitochondria via interaction with 

Mdm36.   

Two models for mitochondrial tethering by Num1 

While our manuscript was in revision, Lackner et al. (2013) published that they identified Num1 as a 

key component of the mitochondrial cell cortex anchor in mother cells by a completely different 

approach. They systematically screened for genes that influence the fitness of a yeast strain lacking 

MOM fusion and fission (absence of FZO1 and DNM1). In their screen the presence of NUM1 was 

essential for cell viability in ∆fzo1 ∆dnm1 double mutants. Lackner and coworkers observed the 

localization of the entire mitochondrial network in daughter buds at non permissive temperatures 

in ∆dnm1 ∆num1 double mutants harboring a temperature sensitive allele of fzo1. This further 

supports our hypothesis that Num1 acts as a mitochondrial retention factor in mother cells. 

The yeast PM is subdivided in at least two different non-overlapping compartments that were named 

according to the first described residing protein: the membrane compartment occupied by the 

plasma membrane ATPase Pma1 and the membrane compartment containing the arginine permease 
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Can1 (canavanine resistance; Malinska et al., 2003; Opekarova et al., 2010). The Can1-positive 

compartment consists of evenly distributed isolated patches that were later described as eisosomes 

(Walther et al., 2006) – organelles with a controversial role in endocytosis (Stradalova et al., 2012). 

Strikingly, eisosomal proteins are almost exclusively found at PM invaginations (Stradalova et al., 

2009). Lackner et al. (2013) reported three major components of the eisosomes to co-

immunoprecipitate with Mdm36, offering the intriguing possibility that mitochondria might be 

anchored at eisosomal PM invaginations. However, a role of eisosomes in the cortex anchoring of 

mitochondria lacks experimental proof. 

Lackner et al. (2013) postulate the presence of a tethering complex consisting of at least Num1, 

Mdm36, and ER and they termed it mitochondria-ER-cortex anchor (MECA). In their model, Num1 

functions as the core component of the MECA by mediating interactions with the PM, the ER, and 

Mdm36 (Fig. 8D). The model is based on high resolution fluorescence microscopy experiments that 

revealed close proximity between ER and sites where Num1 or Mdm36 colocalize with the 

mitochondria. Furthermore, to show that Num1 binds cortical ER (cER) Lackner and coworkers 

deleted the ER tubule-shaping proteins Rtn1/2 (reticulon-like) and Yop1 (YIP one partner). In the 

triple mutant the cER displays expanded sheet-like structures (Voeltz et al., 2006) and they observed 

a re-distribution of Num1 to sites of the cell where misshaped cER is present (Lackner et al., 2013). 

These results are contrary to our electron microscopy which showed that the ER was absent from the 

sites where the mitochondria encountered the PM (Klecker et al., 2013). We postulate that Num1 

and Mdm36 cooperatively tether the mitochondria to PM invaginations without involvement of the 

ER (Fig. 8D). 

Based on the experimental results it is hard to decide which model is correct. The cER is well known 

to anchor peroxisomes (Knoblach et al., 2013) that are also transported by Myo2 (Fagarasanu et al., 

2006). Furthermore, it is assumed that mitochondria are anchored at the cER in bud tips by Mmr1 

(Swayne et al., 2011). It is persuasive that a similar mechanism might also be used in mother cells. 

Though, in the MECA model the ER is only one component of the tethering complex and the 

mitochondria are not directly tethered to the ER. The observed colocalization of Num1 and the cER 

could well happen by chance as the cER underlies about 40-50 % of the cell surface (Manford et al., 

2012; Wolf et al., 2012). Thus, the role of the cER in mitochondrial anchoring in the mother cell 

remains ambiguous. An obvious approach to test for both hypotheses would be the investigation of 

the localization of Num1 by immuno-electron microscopy.  

Role of Dnm1 in mitochondrial cell cortex attachment 

It is still unknown how Dnm1 contributes to the anchoring of mitochondria. Already in the very first 

description of Dnm1 is was hypothesized that the protein might be required to ”spread out and 

anchor portions of the mitochondrial network at the cell periphery” (Otsuga et al., 1998). This was 

based on the observation that mitochondria accumulate at one side of the cell in ∆dnm1 mutants. 

Since we were not able to rescue this phenotype by expression of our tethering proteins, it is most 

likely a secondary consequence of the mitochondrial fission defect in cells lacking Dnm1. Though, 

Dnm1 forms stable foci at the cell cortex and these foci colocalize with the mitochondria and with 

Num1 (Otsuga et al., 1998; Schauss et al., 2006; Cerveny et al., 2007). This subset of Dnm1 puncta 

depends on a close relative to Mdv1, the CCR4-NOT complex associated factor Caf4 that has an 

identical domain structure but seems to play only a minor role in mitochondrial division (Griffin et al., 

2005). When either Caf4 or Mdm36 are missing, Num1 does not colocalize with Dnm1 (Schauss et al., 
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2006; Hammermeister et al., 2010; Lackner et al., 2013). Since ∆caf4 mutants show no defect in 

mitochondrial division or mitochondrial distribution (Griffin et al., 2005), the function of the cortical 

Dnm1 puncta remains elusive. It is clear that they do not act in mitochondrial division, as they are 

devoid of Mdv1 (Cerveny et al., 2007) and lack fission activity (Schauss et al., 2006; Lackner et al., 

2013). Intriguingly, double mutants of Dnm1 and Num1 have a severely reduced fitness and produce 

mother cells devoid of mitochondria when grown on higher temperatures (Cerveny et al., 2007). This 

could be explained by Num1 and Dnm1 cooperating on mitochondrial retention with residual activity 

in the single mutants. The double mutants would then completely lack the activity what could be 

causative for the synthetic effect. But this does not match the observation that impaired 

mitochondrial fusion worsens the phenotype of the double mutants (Lackner et al., 2013). Thus, the 

function of the cortical Dnm1 assemblies, the meaning of the interaction between Num1 and Dnm1, 

and the role of Dnm1 in mitochondrial anchoring has to be further investigated.  
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Molecular function of Mdm33 

Strains lacking Mdm33 display large ring-like mitochondria that can obviously not be generated in the 

presence of frequent mitochondrial fission. Furthermore, overexpression of MDM33 is associated 

with rapid fragmentation of the mitochondrial network. The localization of Mdm33 in the MIM and 

the formation of MIM septa upon overexpression of MDM33 pointed to an involvement in MIM 

division (Messerschmitt et al., 2003), but the molecular function of Mdm33 remained elusive. 

Therefore, we decided to examine the function of Mdm33 in more detail. 

MDM33 interacts with genes involved in phospholipid homeostasis  

In the past decade several groups systematically analyzed on a genome-wide level which genes act in 

similar pathways (Costanzo et al., 2010; Hoppins et al., 2011; Frost et al., 2012). To achieve this, the 

so called functional genomic research approach uses the phenomenon of genetic interactions that 

has been identified more than 100 years ago (Bateson et al., 1905). In a general sense a genetic 

interaction occurs when the combination of two mutations results in a surprising phenotype that 

cannot be explained simply by combination of the independent effects observed for each mutation 

alone. Thus, a genetic interaction highlights that the functions of two genes are somehow connected. 

Most of the functional genomics studies take cell growth as a measurable phenotype. A genetic 

interaction is annotated when the double mutant growth significantly differs from the combination 

of the growth rates of each single mutant. The interaction can be positive or negative if the growth of 

the double mutant is better or worse than expected, respectively (Dixon et al., 2009). In 2011 a 

functional genomic study was published that measured 616,270 distinct pairwise genetic interactions 

of a total of 1,482 genes that are involved in processes related to mitochondrial functions (Hoppins 

et al., 2011). We took advantage of this so-called MITO-MAP and determined the genetic 

interactome of MDM33. Strikingly, MDM33 showed no significant genetic interactions with genes 

involved in fusion or fission of mitochondria. Instead, we found strong interactions with genes 

encoding mitochondrial phospholipid biosynthesis factors or subunits of the F1FO ATP synthase. 

Furthermore, MDM33 showed strong positive genetic interactions with both subunits of the inner 

membrane prohibitin complex which modulates mitochondrial phospholipid homeostasis (Klecker et 

al., in preparation).  

All of the genetic interactions that are reported in the MITO-MAP are based on growth of the double 

mutants. Since a genetic interaction can be observed for all different types of measurable 

phenotypes, we asked whether the reported genetic interactions also have an impact on 

mitochondrial morphology. We systematically generated strains lacking MDM33 and one respective 

interaction partner that is involved in mitochondrial function, structure or dynamics and examined 

mitochondrial morphology. The phenotype of the ∆mdm33 strain was not affected by deletion of 

most interaction partners, indicating a central role of MDM33 in mitochondrial morphogenesis. 

However, deletion of PHB1/2, FMP30, MDM31, all subunits of the ERMES complex, or GEM1 altered 

the mitochondrial morphology of ∆mdm33 mutants (Klecker et al., in preparation). Intriguingly, all of 

these genes have been implicated to play an important role in mitochondrial lipid metabolism: (I) 

Lipid production in the mitochondria requires import of precursor lipids from the ER at mitochondria-

ER contact sites that are formed by the ERMES (Kornmann et al., 2009). The formation of these 

contact sites is regulated by Gem1 (Kornmann et al., 2011; Stroud et al., 2011). (II) Fmp30 and 

prohibitins show strong genetic interactions with genes involved in mitochondrial CL and PE 
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biosynthesis and Fmp30 is required for the maintenance of a sufficient CL level in the absence of 

mitochondrial PE synthesis (Birner et al., 2003; Osman et al., 2009a; Kuroda et al., 2011). (III) Mdm31 

is known to play an important role in CL biosynthesis in mitochondria and overexpression of MDM31 

can partially compensate for the loss of ERMES (Tamura et al., 2012). The genetic interaction profile 

of MDM33 and the requirement of mitochondrial phospholipid biosynthesis factors for the formation 

of the ∆mdm33 mitochondrial morphology phenotype pointed to a role of Mdm33 in mitochondrial 

phospholipid homeostasis. 

Mapping of the interactome of MDM33 

To further investigate the cellular process which Mdm33 participates in, we decided to take 

advantage of the fact that overexpression of MDM33 causes a growth defect (Espinet et al., 1995). 

We assumed that Mdm33 acts in close cooperation with other mitochondrial proteins and that the 

presence of these proteins is required for the overexpression of MDM33 to become toxic. Therefore, 

the deletion of a gene encoding a protein that acts in close cooperation with Mdm33 should rescue 

the growth defect. We expressed MDM33 from the galactose-inducible GAL1/10 promoter in a 

pooled library of 4,987 viable haploid deletion strains and found some strains to be able to grow 

under inductive conditions. Each of the deletion strains carries a start- to stop-codon deletion of a 

single gene and one or two unique identifier sequences termed ‘barcodes’ (Winzeler et al., 1999; 

Giaever et al., 2002). Thus, each strain can be identified by its barcode sequence (Shoemaker et al., 

1996; Winzeler et al., 1999). To be able to identify the strains that are able to cope with high Mdm33 

levels, Alfons Weig (DNA Analytics, University of Bayreuth) designed a spot array that carries probes 

that are complementary to each barcode present in the deletion library. Hence, each strain that is 

present in a pool of strains can be identified simultaneously by PCR-based labelling of all barcode 

sequences and hybridizing them to the array. Using this method, the screen revealed several 100 

deletion strains that suppress the MDM33 overexpression conferred growth defect (Klecker et al., in 

preparation). Similar numbers of suppressing gene deletions have been reported for genome wide 

suppressor screens to identify Cdc42 recycling factors (Das et al., 2012), telomere capping factors 

(Downey et al., 2006; Addinall et al., 2008) or genes that ameliorate the toxicity of the huntingtin 

protein (Mason et al., 2013).  

We reasoned that close interaction partners should genetically interact with MDM33 upon both, 

overexpression and deletion, and therefore we merged the results from the MITO-MAP and the 

suppressor screen. We found that six genes show genetic interactions with MDM33 in the MITO-MAP 

and suppress the overexpression coupled growth defect and consider these as very close interaction 

partners. Among them was ELP3, which encodes a subunit of the elongator complex, which is a major 

component of the RNA polymerase II holoenzyme and responsible for transcriptional elongation 

(Wittschieben et al., 1999). The gene shows a very high number of genetic interactions and we 

assume that the suppression of the growth defect is caused by inefficient expression of MDM33. We 

therefore excluded ELP3 from further analyses. Each of the remaining five genes encodes a 

mitochondrial protein: We found both subunits of the MIM organizing prohibitin complex, PHB1 and 

PHB2 (Osman et al., 2009b); the subunit g of the F1FO ATP synthase, ATP20 (Boyle et al., 1999); a 

regulatory subunit of the mitochondrial protein import motor complex, PAM17 (presequence 

translocase-associated motor; Popov-Celeketic et al., 2008); and a CL biosynthesis factor, FMP30 

(Kuroda et al., 2011). Importantly, the suppression of the overexpression induced toxicity by ∆phb1 

could be complemented by expression of the deleted protein. We also checked for reduced 
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promoter activity or protein biosynthesis in the prohibitin mutants by expressing other toxic genes 

from the same promoter, but the suppression was limited to the expression of MDM33 (Klecker et 

al., in preparation). Thus, our genetic analysis suggests that Mdm33, Phb1, Phb2, Pam17, Fmp30, and 

Atp20 act in closely related cellular pathways.  

In an independent approach to identify Mdm33 interaction partners, Megan Wemmer and Jodi 

Nunnari (UC Davis) performed a mass spectrometry-based proteomic analysis of Mdm33 

immunoprecipitations to identify interacting proteins. Strikingly, among the most robust interacting 

proteins were Phb1 and Phb2 and the alpha and beta subunits of the F1FO ATP synthase (Klecker et 

al., in preparation). The observed genetic and direct interactions suggest close functional and spatial 

proximity between Mdm33, the prohibitin complex, and maybe also the ATP synthase. 

We asked whether the close Mdm33 interaction partners share anything in common besides their 

mitochondrial localization. We integrated the MITO-MAP interactions of all five genes into a genetic 

interaction network and observed a highly interconnected genetic cluster consisting of MDM33, 

PHB1, PHB2, PAM17, FMP30, ATP20, PSD1, CRD1, GEM1, and the subunits of the ERMES complex 

(Klecker et al., in preparation). All genes that we found to be associated with MDM33 and its five 

close interaction partners are involved in mitochondrial phospholipid biosynthesis: (I) Psd1 

decarboxylates PS to PE within mitochondria (Fig. 5; Clancey et al., 1993; Trotter et al., 1993); (II) 

Crd1 synthesizes CL by coupling PG and CDP-DAG (Fig. 5; Tuller et al., 1998); and (III) the ERMES 

complex and its regulatory subunit Gem1 link the ER to mitochondria what is important for the 

import of precursor lipids from the ER into the mitochondria where they are further processed 

(Kornmann et al., 2009; Kornmann et al., 2011; Stroud et al., 2011). Based on our physical and 

genetic interaction data we therefore postulate that Mdm33 acts in mitochondrial phospholipid 

metabolism. 

Mdm33 acts in mitochondrial biosynthesis of phosphatidylethanolamine 

To address the potential role of Mdm33 in mitochondrial phospholipid metabolism, we determined 

by mass spectrometry the mitochondrial phospholipidome of wildtype cells and cells overexpressing 

MDM33 (in cooperation with Mathias Haag and Thomas Langer; University of Cologne). Intriguingly, 

we found mitochondrial PE and CL levels to be reduced upon MDM33 overexpression (Klecker et al., 

in preparation). This was of particular interest as both CL and PE are synthesized in the mitochondria 

and the enzymes catalyzing the formation of PE and CL, Psd1 and Crd1, were found to show strong 

genetic interactions with MDM33 and its five close interaction partners, respectively. As described 

above, the combined deletion of genes required for production of PE and CL is synthetic lethal in 

yeast (Gohil et al., 2005). Thus, the simultaneous reduction of mitochondrial PE and CL upon 

overexpression of MDM33 might be causative for the observed growth defect. Furthermore, it is 

known from different organisms that changes in mitochondrial lipid composition can cause 

misshaping of mitochondrial membranes (Claypool et al., 2008; Mileykovskaya and Dowhan, 2009; 

Pineau et al., 2013; Tasseva et al., 2013). Therefore, we consider it likely that changes of 

mitochondrial ultrastructure observed upon overexpression of MDM33 are a consequence of 

alterations of mitochondrial PE and CL levels. Consistently, we found MIM remodeling and growth 

arrest upon MDM33 overexpression to be independent of the outer membrane fission machinery. 

However, we did not observe mitochondrial fragmentation but swelling of the mitochondrial 

network in cells overexpressing MDM33 in the absence of the essential MOM fission factor Dnm1 

(Klecker et al., in preparation). 
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The biosynthesis of PE and CL within mitochondria requires import of precursor lipids from the ER. 

Kornmann et al. (2009) suggested that the ERMES complex is essential for the formation of 

mitochondria-ER contacts that are required for phospholipid exchange between both organelles. 

Intriguingly, we found the formation of the ERMES complex to be unaffected by the overexpression 

of MDM33. We then directly measured PE biosynthesis activity by addition of liposomes containing 

fluorescently labeled PS to isolated mitochondria and observed a reduced PS to PE conversion rate 

upon overexpression of MDM33 (Klecker et al., in preparation). Taken together, our results indicate 

that Mdm33 directly influences mitochondrial phospholipid biosynthesis. 

Role of Mdm33 in mitochondrial fission 

Mdm33 plays an important role in the maintenance of mitochondrial morphology and ∆mdm33 

mutants exhibit gigantic ring-shaped mitochondria that can obviously only be maintained in the 

absence of frequent mitochondrial division. Furthermore, overexpression of MDM33 leads to rapid 

fragmentation of the mitochondrial network. These observations are suggestive of a role of Mdm33 

in mitochondrial fission (Messerschmitt et al., 2003). We decided to address the potential role of 

Mdm33 in mitochondrial division by shifting the balance between mitochondrial fusion and fission 

towards fission in strains lacking MDM33. After a short treatment with azide, we observed rapid 

fragmentation of the mitochondria in wildtype cells whereas those of cells lacking Dnm1 remained 

connected. In ∆mdm33 strains mitochondrial fragmentation was delayed but observable, indicative 

of Mdm33 not being essential for but promoting mitochondrial division (Klecker et al., in 

preparation). Since assembled Dnm1 spirals are too tight to even wrap around normal mitochondrial 

tubules, it is convincing that the giant mitochondria in ∆mdm33 mutants might be too big to be 

divided by Dnm1. We decided to test this by imaging the residual division events in ∆mdm33 mutants 

by time-resolved live-cell fluorescence microscopy. In agreement with our hypothesis, we found 

mitochondrial division to be exclusively limited to mostly tubular parts of the mitochondria in the 

mutant cells (Fig. 9A). The time course of Dnm1 assembly and mitochondrial division was not 

significantly altered in mutant cells (Klecker et al., in preparation). We conclude that Mdm33 

contributes to efficient mitochondrial division by maintaining a fission competent mitochondrial 

shape, albeit it does not appear to constitute an essential component of the mitochondrial division 

machinery. 

It was recently shown that ER tubules wrap around mitochondria and mediate mitochondrial 

constriction prior to Dnm1 assembly (Friedman et al., 2011). This is spatially and functionally linked 

to the ERMES that connects ER and mitochondria (Kornmann et al., 2009). The Miro GTPase Gem1 is 

required to disintegrate contacts between the fission machinery and the ERMES after the division 

event, thereby generating free mitochondrial tips (Murley et al., 2013). Intriguingly, Andrew Murley 

and Jodi Nunnari (UC Davis) found Mdm33 to form punctate assemblies that colocalize with the ER 

residing ERMES component Mmm1, Dnm1, and mitochondrial division events. Though, we found the 

association of ERMES with sites of assembled Dnm1 to be independent of the presence of Mdm33, 

suggesting that the latter is dispensable for the initial steps of mitochondrial division (Klecker et al., in 

preparation). It is tempting to speculate that Mdm33 assembles at mitochondrial division sites to 

modulate the lipid composition or membrane topology of the MIM to support Dnm1 mediated 

mitochondrial division (Fig. 9B, C). Taken together our results indicate that Mdm33 links 

mitochondrial fission and mitochondrial phospholipid metabolism. Further studies will be needed to 

show how this connection influences mitochondrial biogenesis. 
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Figure 9 | Role of Mdm33 in mitochondrial division. A. In wildtype strains mitochondrial fusion and 
fission are balanced. When the cells are depleted from ATP by addition of azide, the balance is 
heavily shifted towards fission. The ring-like mitochondrial structures in ∆mdm33 cells are likely too 
large to be separated by Dnm1. Thus, cells lacking Mdm33 show less mitochondrial fragmentation 
upon addition of azide due to the lack of fission competent mitochondria. B. Model for the function of 
Mdm33 in ER assisted mitochondrial division. Local accumulation of Mdm33 adjusts the MIM to the 
needs of mitochondrial division. The color of the inner membrane depicts fission competence 
according to A. ERMES = ER mitochondria encounter structure. C. Old and new model for the 
molecular function of Mdm33. Grey color indicates processes that are not essential for mitochondrial 
division. All images are unpublished. See text for more details. 
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Ups1 catalyzes intramitochondrial transport of phosphatidic acid 

Ups1 acts early during CL synthesis  

Cellular membranes consist of a huge variety of different lipids and membrane proteins. The 

synthesis of both, proteins and lipids, is tightly regulated to fit the cellular needs (Henry et al., 2012). 

Mitochondria play an important role in cellular membrane homeostasis and contribute significantly 

to the synthesis of membrane lipids. Strikingly, our study on the function of MDM33 demonstrated 

that mitochondrial phospholipid biosynthesis and mitochondrial dynamics act in close cooperation. 

Especially mitochondrial fusion seems to heavily depend on the mitochondrial lipid composition (Furt 

and Moreau, 2009). We are only beginning to understand how these processes are connected. A 

study by Choi et al. (2006) suggested that lipids might be directly involved in the fusion process as 

mitochondrial fusion requires the generation of the fusogenic lipid PA in the MOM. The involvement 

of PA in membrane fusion is well established for SNARE mediated exocytosis (Vitale et al., 2001) and 

appears to be a general principle of membrane fusion. Furthermore, the biosynthesis of PE and CL 

are intimately linked to mitochondrial fusion in yeast (Chan and McQuibban, 2012; Joshi et al., 2012). 

One factor that is required for CL biosynthesis, mitochondrial fusion, and proper topogenesis of the 

MIM mitofusin Mgm1 is the IMS protein Ups1 (Tamura et al., 2009; Potting et al., 2010). We decided 

to team up with the group of Thomas Langer (University of Cologne) in order to further elucidate the 

molecular function of Ups1.  

Previous studies had already shown that the steady-state level of CL is reduced in cells lacking Ups1 

but the function of Ups1 in CL biosynthesis remained elusive (Osman et al., 2009a; Tamura et al., 

2009). The group of Thomas Langer investigated the complete phospholipidome of purified 

mitochondria from cells lacking Ups1. Intriguingly, an accumulation of CL biosynthesis intermediates 

was not observable and only the level of the precursor lipid PA was significantly increased. It is a 

conclusive concept that the deletion of a gene encoding an enzyme will cause the substrate of the 

enzymatic reaction to accumulate whilst the amount of product will decline, respectively. Thus, the 

accumulation of PA in ∆ups1 cells suggested that Ups1 acts in the initial step of the CL biosynthesis, 

the conversion of PA to CDP-DAG (Fig. 5). The lipid phenotype of ∆ups1 cells was strikingly similar to 

that reported for ∆tam41 mutants (Kutik et al., 2008). The molecular function of Tam41 was 

unknown when we performed our study. It was only known that Tam41 acts before Pgs1 (conversion 

of CDP-DAG to PGP) and Gep4 (dephosphorylation of PGP) and so we concluded that both, Ups1 and 

Tam41, act in the initial step of CL biosynthesis. We decided to investigate by electron microscopy 

the impact of deletion of UPS1 and TAM41 on the mitochondrial ultrastructure since cells lacking CL 

show strong defects in mitochondrial processes (Joshi et al., 2009), such as abnormal assembly of the 

respiratory chain complexes and supercomplexes (Zhang et al., 2005). Intriguingly, albeit depleted of 

CL, the deletion strains ∆ups1 and ∆tam41 did not show an altered mitochondrial ultrastructure 

(Connerth et al., 2012). This is in agreement with a previous report that reduction of CL caused by 

deletion of Taffazin is not necessarily associated with changes in the mitochondrial ultrastructure 

(Acehan et al., 2009).  

The Langer group performed a genetic epistasis analysis in order to further define the function of 

Ups1 and Tam41 for CL metabolism (Fig. 10). Epistasis means that one mutation completely masks 

the phenotypic effects of other mutations. It provides a logical framework for inferring biological 

pathways, because here the product of one protein’s action becomes the substrate for the next. 
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Hence, if one enzyme is missing and the pathway is completely blocked, all downstream acting 

enzymes can be lost without any phenotypical consequences (Roth et al., 2009). We focused on the 

three genes acting in the very beginning of the CL biosynthetic pathway: UPS1, PGS1, and TAM41. 

Cells lacking TAM41 or PGS1 suffer from very severe growth defects and this can be alleviated by 

additional deletion of UPS1. Surprisingly, we found the mitochondrial ultrastructure to be 

dramatically altered in cells lacking PGS1. The mitochondria contained extremely elongated cristae, 

which frequently formed MIM septa or onion-like structures. In agreement with the growth of the 

strains, ultrastructurally the ∆pgs1 ∆ups1 and the ∆tam41 ∆ups1 double mutants were 

indistinguishable from the ∆ups1 single mutant (Connerth et al., 2012).  

 

It was puzzling that ∆pgs1 mutants showed alterations in mitochondrial ultrastructure that were 

obviously not caused by a lack in CL. Therefore, Mathias Haag examined the phospholipidome of all 

analyzed single and double mutants. The only unique feature of the ∆pgs1 mutant was an 

accumulation of CDP-DAG within the mitochondria and this was dependent on the presence of Ups1 

(Fig. 10). Hence, the alterations in the mitochondrial ultrastructure caused by the deletion of PGS1 

are most likely caused by an accumulation of CDP-DAG (Connerth et al., 2012). The ∆pgs1 ∆tam41 

double mutant was inviable but it was previously shown that the accumulation of CDP-DAG in ∆pgs1 

cells also depends on Tam41 (Osman et al., 2010). Thus, the epistasis analysis further strengthened 

the theory of Ups1 and Tam41 acting in the initial step of CL biosynthesis. The question remained if 

Tam41 acts before Ups1, or vice versa. Strains lacking TAM41 accumulated more PA than strains 

lacking UPS1 and the ∆ups1 ∆tam41 double mutant showed the same mitochondrial PA amount as 

the ∆ups1 single mutant. Thus, in respect to the phospholipid composition, the mitochondrial 

ultrastructure, and the growth the ∆ups1 allele was epistatic to the ∆tam41 and ∆pgs1 allele 

(Connerth et al., 2012). In biochemical pathways, the predominating mutation is always epistatic and 

 
Figure 10 | Classical epistasis in the CL biosynthesis pathway. MOM = mitochondrial outer 
membrane. MIM = mitochondrial inner membrane. CL = cardiolipin. PGP = phosphatidylglycerol 
phosphate. CDP-DAG = cytidine diphosphate-diacylglycerol. PA = phosphatidic acid. Grey color 
indicates that this part of the pathway is hindered in the respective mutant. Bold font represents 
accumulation. Unpublished. See text for details. 
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upstream to the masked mutation. We conclude that Ups1 acts upstream of Pgs1 and Tam41 and is 

required to supply Pgs1 and Tam41 with the required substrates (Fig. 10). These results are in perfect 

agreement with a recent study by Tamura and coworkers. They show that Tam41 catalyzes the 

mitochondrial conversion of PA to CDP-DAG which serves as substrate for Pgs1 (Tamura et al., 2013). 

Ups1 is a novel lipid transfer protein 

Mitochondria and ER cooperate in the synthesis of membrane lipids. Aside from Taz1, all 

mitochondrial proteins that act in the biosynthesis of CL and PE are localized in the MIM (see above). 

Consequently, there has to occur an extensive lipid exchange between the ER and the MOM and 

between both mitochondrial membranes but the molecular processes that facilitate lipid transport 

are only poorly understood (Tatsuta et al., 2013). Initial studies suggested that lipid exchange 

between MOM and MIM occurs at contact sites where both membranes encounter each other 

(Simbeni et al., 1991). Membrane contact sites could facilitate spontaneous transfer of phospholipids 

between both membranes but could not maintain different phospholipid compositions of both 

membranes (Tatsuta et al., 2013). The localization of Ups1 in the IMS and the requirement of Ups1 

activity for early steps of CL biosynthesis suggested that Ups1 might facilitate the transport of PA 

from the MOM to the MIM. Consequently, the group of Thomas Langer switched to in vitro studies 

to address this hypothesis. For the in vitro studies they used complexes of Mdm35 and Ups1, 

because Ups1 assembles with Mdm35 in the IMS of yeast cells and could not be purified from E. coli 

in the absence of Mdm35 (Connerth et al., 2012). In brief, they observed that these complexes not 

only bind to liposomes, but that they extract lipids from liposomes and mediate the bidirectional 

transport of phospholipids between liposomes in vitro. Here, the Mdm35/Ups1 complexes showed a 

strong specificity for binding to liposomes containing negatively charged lipids and for the transport 

of PA, respectively. Strikingly, CL present at physiological concentrations trapped Ups1 at liposomes. 

Since the MIM shows high concentrations of CL this may serve to render the PA transport 

irreversible. Moreover, high CL concentrations inhibited PA transfer between liposomes, offering an 

intriguing possibility to orchestrate the 

biosynthesis of CL according to the cellular 

needs by a negative regulatory feedback 

mechanism. The physiological relevance of this 

phenomenon became clear when Ups1 was 

found to accumulate at the MIM in the absence 

of the Ups1-degrading protease Yme1 (Connerth 

et al., 2012).  

Taken together, the following model for Ups1 

activity was proposed: Ups1 is a lipid transport 

protein of the IMS. Upon PA-binding and PA-

extraction from the donor membrane, Ups1 

binds Mdm35, which stabilizes Ups1 and 

protects it from proteolytic degradation by 

Yme1 and Atp23. The Ups1/Mdm35 complex 

binds negatively charged phospholipids in the 

acceptor membrane, which is accompanied by 

the dissociation of Mdm35 from the complex 

Figure 11 | Cartoon depicting the transfer of 
phosphatidic acid by Ups1/Mdm35 complexes.
MOM = mitochondrial outer membrane. MIM = 
mitochondrial inner membrane. CL = cardiolipin. 
PA = phosphatidic acid. Adapted from: Tatsuta et 
al. (2013). 
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and the release of PA. The rapid enzymatic conversion of PA into CL in the MIM renders the transport 

unidirectional. Afterwards Mdm35 could extract Ups1 from the acceptor membrane and recycle it for 

additional transport cycles. If the CL concentration in the MIM exceeds the optimal range, Ups1 

remains stably bound to the MIM and is degraded by Yme1 (Fig. 11). Therefore, the main defect in 

cells lacking Ups1 is impaired CL biosynthesis. It is well established that CL and PE biosynthesis 

mutants have defects in Mgm1 topogenesis (Joshi et al., 2012) and that both isoforms are required 

for fusion activity (Herlan et al., 2003). Furthermore, Mgm1 dimerization depends on CL (DeVay et 

al., 2009) and thus the loss of CL most likely causes mitochondrial fragmentation in ∆ups1 mutants.  
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Abstract 

Mitochondrial dynamics and membrane lipid homeostasis both affect mitochondrial morphology and 

function, but the molecular basis and functional interconnections of these processes are not 

completely understood. Here we show that in yeast the mitochondrial inner membrane protein 

Mdm33 links phospholipid homeostasis to mitochondrial fission. Genetic and proteomic data reveal 

multiple interactions of Mdm33 with components of phospholipid metabolism and mitochondrial 

membrane homeostasis. Lipid profiling by mass spectrometry of mitochondria isolated from Mdm33-

overexpressing cells reveals a role in modulating the levels of phosphatidylethanolamine and 

cardiolipin. Furthermore, we show that mutants lacking Mdm33 show strongly decreased 

mitochondrial fission activity. Strikingly, GFP-Mdm33 is localized to discrete foci that spatially and 

temporally coincide with punctate structures formed by the major mitochondrial fission factor, 

Dnm1. Our results support a model suggesting that Mdm33 locally modulates the phospholipid 

composition and physical properties of the inner membrane to support mitochondrial division by 

Dnm1. 

Introduction 

Mitochondria play key roles in cellular energy metabolism, various biochemical pathways, 

developmental processes, apoptosis, and aging (Nunnari and Suomalainen, 2012). This multitude of 

functions is reflected by the shape of the mitochondrial compartment. Mitochondria are highly 

dynamic organelles that constantly adapt their morphology to the requirements of cellular 

physiology by frequent fusion and fission (Westermann, 2010; Friedman and Nunnari, 2014) and 

remodeling of their ultrastructure (Zick et al., 2009). As many of the molecular components and 

cellular pathways have been conserved during evolution, mitochondrial structure and dynamics can 

be studied in baker's yeast Saccharomyces cerevisiae as a model organism (Okamoto and Shaw, 

2005; Merz et al., 2007). Fusion and fission of the mitochondrial outer membrane are mediated by 

dynamin-related GTPases. Fzo1 in yeast and mitofusins Mfn1 and Mfn2 in mammals are large, 

membrane-bound proteins that constitute the key components of the outer membrane fusion 

machinery. Dnm1 in yeast and Drp1 in mammals are soluble dynamin-related proteins that are 

recruited to the mitochondrial surface by membrane-bound receptors and adaptor proteins to 

assemble oligomeric rings that sever the mitochondrial outer membranes. Mgm1 in yeast and Opa1 

in mammals are dynamin-related GTPases that are associated with the inner membrane and are 

thought to constitute the mediators of inner membrane fusion (Hoppins et al., 2007; Westermann, 

2010; Chan, 2012). It is currently unknown whether a separate machinery for division of the inner 

membrane exists, or whether both mitochondrial membranes are severed simultaneously by 

dynamin rings on the outer membrane (Chan, 2012; Elgass et al., 2013). 

Mitochondria display a complex organization also at the ultrastructural level. The mitochondrial inner 

membrane consists of two subcompartments: Cristae are membrane invaginations that 

accommodate the respiratory chain complexes, and the inner boundary membrane constitutes an 

inner envelope closely apposed to the outer membrane. Both are connected by narrow, tubular 

cristae junctions (Mannella, 2006; Zick et al., 2009; van der Laan et al., 2012). The molecular 

mechanisms and components that shape the mitochondrial inner membrane are only poorly 

understood. At least three different protein complexes are thought to contribute to this process. 

First, loss of Mgm1/Opa1 leads to perturbation of inner membrane structure, both in yeast and 
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mammals (Olichon et al., 2003; Amutha et al., 2004; Griparic et al., 2004). Intriguingly, the function of 

Mgm1/Opa1 in mitochondrial fusion can be uncoupled from its role in maintenance of mitochondrial 

ultrastructure, suggesting that it plays a specific role in this process (Frezza et al., 2006; Meeusen et 

al., 2006). Second, dimerization and higher order assembly of ATP synthase, which is an abundant 

complex in the inner membrane, is an important determinant of cristae structure (Paumard et al., 

2002; Strauss et al., 2008). And third, Mic60 (formerly named Fcj1 or mitofilin) was proposed to play 

an important role in the formation of cristae junctions in yeast and metazoans (John et al., 2005; Rabl 

et al., 2009). Recently it was shown that Mic60 is part of a larger complex, termed MICOS (Pfanner et 

al., 2014), that serves as an organizer of inner membrane structure (Harner et al., 2011; Hoppins et 

al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). 

Mounting evidence suggests that not only membrane shaping protein complexes but also the lipid 

composition of the inner membrane is a major factor determining mitochondrial ultrastructure. 

Mitochondria of yeast cells lacking enzymes involved in cardiolipin (CL) biogenesis contain extremely 

elongated cristae sheets that sometimes form inner membrane septae or onion-like structures 

(Claypool et al., 2008; Mileykovskaya and Dowhan, 2009; Connerth et al., 2012). Similarly, 

mitochondrial cristae defects were observed in Arabidopsis leaf cells, human lymphoblasts, and 

mouse cardiomyocytes defective in cardiolipin biogenesis (Acehan et al., 2009; Gonzalvez et al., 

2013; Pineau et al., 2013). Furthermore, ultrastructural defects of mitochondria were revealed by 

electron microscopy of yeast and mammalian cells with reduced phosphatidylserine (PS) or 

phosphatidylethanolamine (PE) levels (Chan and McQuibban, 2012; Tasseva et al., 2013).  

Deletion or overexpression of the yeast MDM33 gene induces severe defects both in mitochondrial 

dynamics and mitochondrial ultrastructure. The MDM33 gene was isolated in a screen for yeast 

mutants with aberrant mitochondrial distribution and morphology (Dimmer et al., 2002). The 

Mdm33 protein is located in the mitochondrial inner membrane with the major part of the protein 

facing the matrix. Mutants lacking Mdm33 contain large, extended mitochondria frequently forming 

hollow spheres that enclose portions of the cytoplasm. Aberrant ∆mdm33 mitochondria contain 

swollen parts filled with cristae and extended parts that are devoid of cristae (Messerschmitt et al., 

2003). For unknown reasons overexpression of MDM33 leads to a growth arrest (Espinet et al., 1995; 

Messerschmitt et al., 2003). Mitochondria of MDM33-overexpressing cells are highly fragmented and 

contain septated or vesiculated inner membranes (Messerschmitt et al., 2003). However, it remained 

unclear whether the primary function of Mdm33 is the structural organization of the inner 

membrane, or inner membrane division, and whether these functions are interconnected. To reveal 

the role of Mdm33 in mitochondrial biogenesis we systematically analyzed and functionally 

characterized its genetic and proteomic interactions. Our results suggest that Mdm33 modulates the 

phospholipid composition of the inner membrane to facilitate Dnm1-dependent division. 

Results 

MDM33 interacts with genes involved in phospholipid metabolism and 

mitochondrial membrane homeostasis 

The MITO-MAP (Hoppins et al., 2011) is based on 616,270 distinct pairwise genetic interactions of 

1,482 genes and provides a comprehensive view of the connections between cellular pathways 

related to mitochondrial functions. We took advantage of this resource to look for genes that 
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positively or negatively interact with MDM33 in double deletions (Fig. 1A). Positive genetic 

interactions frequently occur between genes acting in a common pathway, whereas negative 

interactions point to compensatory pathways (Dixon et al., 2009). Strikingly, MDM33 shows strong 

positive interactions with the genes encoding enzymes required for synthesis of the major 

phospholipids, PS, PE, and phosphatidylcholine (PC), and negative interactions with genes required 

for CL biosynthesis (Fig. 1B). Furthermore, MDM33 positively interacts with the prohibitin genes, 

PHB1 and PHB2, encoding an inner membrane complex modulating mitochondrial phospholipid 

homeostasis (Osman et al., 2009b) and with genes encoding subunits of the ER mitochondria 

encounter structure (ERMES) that is required for exchange of lipids between mitochondria and the 

ER (Kornmann et al., 2009). Two clusters of negative genetic interactors comprise components of 

mitochondrial distribution and ATP synthase subunits (Fig. 1A). These data point to a role of Mdm33 

in phospholipid metabolism and mitochondrial membrane homeostasis, processes that also might be 

critical for mitochondrial distribution and function. 

Suppression of MDM33 overexpression-dependent growth arrest 

Overexpression of MDM33 is associated with a growth arrest (Espinet et al., 1995; Messerschmitt et 

al., 2003). This allowed us to screen for genes rescuing MDM33 overexpression. We reasoned that 

Mdm33 presumably requires interaction partners to exert its function, and that these interaction 

partners will also be required to induce the growth arrest. Thus, deletion of a gene encoding an 

interaction partner required for Mdm33 function should relieve the overexpression-induced growth 

defect. A similar strategy was recently successfully employed to isolate factors involved in recycling 

of the Cdc42 GTPase, a key regulator of cell polarity (Das et al., 2012). In contrast to the study by Das 

et al., who screened for suppressors in an array of deletion mutants on agar plates, we decided to 

identify putative suppressors by quantifying the abundance of deletion mutants in cell pools by a 

microarray-based approach (Fig. S1A, B). 

To induce MDM33 overexpression-dependent growth arrest we transformed a multicopy plasmid 

expressing MDM33 from the strong, inducible GAL1/10 promoter into a pool containing the 4,987 

strains of the MATα haploid non-essential yeast deletion library (Giaever et al., 2002). We expected 

that only deletion mutants that are unable to express MDM33 properly or lack interaction partners 

of Mdm33 should be able to grow under inducing conditions. In a proof-of-principle experiment we 

plated a similar number of transformants of the isogenic wild type and the deletion mutant pool on 

repressing and inducing media. As expected, transformants of the wild type and pooled deletion 

mutants could grow well on glucose-containing medium (SD) when MDM33 overexpression was 

repressed. Importantly, wild type transformants ceased to grow on galactose-containing medium 

(SGal) when MDM33 overexpression was induced. In contrast, some transformants of the deletion 

pool produced colonies under inducing conditions (Fig. 2A) suggesting that yeast cells are able to 

cope with high Mdm33 levels when critical interacting genes are lacking. 

To screen for genes interacting with MDM33 we grew the transformed yeast deletion pool under 

repressing and inducing conditions on agar plates. As each strain of the yeast deletion library is 

labeled with a unique molecular barcode sequence (Fig. S1A) (Giaever et al., 2002) microarray 

hybridization can be used to quantify deletion mutants in pools. We isolated genomic DNA from the 

pooled transformants and determined the abundance of the deletion mutants under inducing vs. 

repressing conditions in two independent experiments. After high-density oligonucleotide array 

hybridization, approximately 80% of the deletion mutants produced a good signal after growth on 
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glucose-containing medium, but were not detectable after growth on galactose-containing medium 

(Fig. 2B). As expected, ∆gal3 and ∆gal4, which lack factors important for induction of the GAL1/10 

promoter, grew well under inducing conditions (Fig. S1C). Several 100 mutants lacking proteins of 

various cellular functions produced a significant signal under inducing conditions and thus represent 

putative interaction partners of MDM33 (Table S1). Consistent with the results described above, 

deletion of genes encoding mitochondrial fusion or fission factors did not suppress lethality upon 

MDM33 overexpression. 

To identify candidates that genetically interact with MDM33 upon both overexpression and deletion 

we merged the results from the suppressor screen with the MITO-MAP (interaction score less than -3 

or more than 3). Six genes showed high scores in both screens (Fig. 2C). ELP3 encodes a subunit of 

the RNA polymerase II holoenzyme and is responsible for transcriptional elongation (Wittschieben et 

al., 1999). This gene shows a very high number of genetic interactions and was excluded from further 

analysis as it likely interacts with MDM33 in an indirect manner. The remaining five genes encode 

mitochondrial proteins, namely the two subunits of the prohibitin complex, Phb1 and Phb2 (Osman 

et al., 2009b); the subunit g of the ATP synthase, Atp20 (Boyle et al., 1999); a regulatory subunit of 

the mitochondrial protein import motor complex, Pam17 (Popov-Celeketic et al., 2008); and a CL 

biosynthesis factor, Fmp30 (Kuroda et al., 2011).  

After transformation of the MDM33-overexpressing plasmid into deletion mutants we confirmed 

that deletion of either of these genes suppresses the growth defect (Fig. 2D). Next, we chose the 

prohibitin mutants to confirm in double deletion mutants that both ∆phb1 and ∆phb2 show a 

positive genetic interaction with ∆mdm33 (Fig. S2A). Notably, ∆phb1 strains did not suppress the 

growth defect when PHB1 was substituted from a plasmid, indicating that the suppression is directly 

caused by the absence of PHB1 (Fig. S2B). It has been observed that overexpression of several genes 

encoding mitochondrial inner membrane proteins is toxic in yeast (Sopko et al., 2006). To test 

whether our screen yielded specific suppressors for MDM33 we took ∆phb1 and ∆phb2 mutants and 

overexpressed two non-related genes encoding mitochondrial inner membrane proteins, SCO2 and 

YHM2, that have been reported to cause a growth arrest when expressed from the GAL1/10 

promoter (Sopko et al., 2006). Sco2 acts in the delivery of copper to the cytochrome c oxidase (Nittis 

et al., 2001), whereas Yhm2 catalyzes mitochondrial citrate/oxoglutarate antiport (Castegna et al., 

2010). Deletion of the prohibitin genes did not affect the growth of SCO2 or YHM2 overexpressing 

strains (Fig. 2E). We conclude that the suppression of overexpression induced growth defects in our 

suppressor mutant strains is specific for MDM33. Taken together, our genetic analysis suggests that 

Phb1, Phb2, Pam17, Fmp30, Atp20, and Mdm33 act in closely related cellular pathways. 

MDM33 is part of a genetic network regulating mitochondrial phospholipid 

biosynthesis 

Our genetic analysis based on the MITO-MAP (Fig. 1) and the MDM33 overexpression suppressor 

screen (Fig. 2) revealed that PHB1/2, PAM17, FMP30, ATP20, and MDM33 can be integrated into a 

highly interconnected genetic interaction network. This network includes ERMES, the ERMES 

regulatory subunit Gem1, and genes of the mitochondrial phospholipid biosynthesis pathways, 

namely PSD1 and CRD1 (Fig. 3A). Psd1 catalyzes the conversion of PS to PE within mitochondria while 

Crd1 catalyzes an irreversible condensation reaction to couple phosphatidylglycerol and cytidine 
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diphosphate-diacylglycerol (CDP-DAG) to form CL (Clancey et al., 1993; Trotter et al., 1993). Thus, 

genetic data indicate a role of Mdm33 in mitochondrial phospholipid metabolism.  

Next, we asked whether the genetic interactions have an impact on mitochondrial morphology. We 

systematically examined mitochondrial morphology in 79 mutants with combined deletions of the 

MDM33 gene and genes interacting with MDM33 or encoding proteins involved in mitochondrial 

structure or dynamics (Table S2). ∆mdm33 was found to be epistatic to most of the other deletion 

alleles, substantiating its central role in mitochondrial morphogenesis. However, deletion of FMP30, 

GEM1, MDM10, MDM12, MDM31, MDM34, MMM1, PHB1, or PHB2 resulted in a mitochondrial 

morphology phenotype that was epistatic to ∆mdm33 (Fig. 3B). Intriguingly, all of these genes are 

implicated in mitochondrial lipid metabolism: (i) Lipid production in mitochondria requires import of 

precursor lipids from the ER at contact sites that are formed by the ERMES complex that consists of 

Mdm10, Mdm12, Mdm34, and Mmm1 (Kornmann et al., 2009). These contacts are regulated by 

Gem1 (Kornmann and Walter, 2010; Stroud et al., 2011). (ii) Both Fmp30 and prohibitins are known 

to show strong genetic interactions with genes involved in mitochondrial CL and PE biosynthesis, and 

Fmp30 is required for the maintenance of a sufficient CL level in the absence of mitochondrial PE 

synthesis (Birner et al., 2003; Osman et al., 2009a; Kuroda et al., 2011). (iii) Mdm31 is known to play 

an important role in CL biosynthesis in mitochondria, and overexpression of MDM31 can partially 

compensate for the loss of ERMES (Tamura et al., 2012a). The requirement of mitochondrial 

phospholipid biosynthesis factors for the formation of the ∆mdm33 mitochondrial phenotypes 

further supports a potential role of Mdm33 in mitochondrial phospholipid metabolism. 

In contrast, lariat-shaped mitochondria characteristic for ∆mdm33 could be found in double mutants 

lacking the inner membrane fusion factor Mgm1 and in triple mutants lacking the outer membrane 

fusion and fission factors Fzo1 and Dnm1 (Fig. 3B). This suggests that Mdm33 acts upstream of 

mitochondrial fusion and fission. 

Mdm33 physically interacts with Phb1, Phb2, and Atp20 

In a parallel approach to identify Mdm33 interaction partners, we cross-linked lysates of cells 

expressing functional GFP-Mdm33 fusions and subjected them to immunoprecipitation using anti-

GFP antibodies. Interacting proteins were identified by mass spectrometry (LC-MS/MS). The most 

robust interacting proteins were the prohibitins, which were detected with high scores in three 

different strains expressing GFP-Mdm33 either from an allele integrated into the genome, a low 

copy, or a multi-copy plasmid. In addition, Atp1 and Atp2, the alpha and beta subunits of the F1 

sector of the ATP synthase, were found to interact with GFP-Mdm33 (Table 1). Thus, the proteomic 

analysis suggests proximity between the Mdm33 complex, prohibitins, and the ATP synthase. These 

results are in good agreement with the genetic interactions of MDM33 with PHB1, PHB2, and ATP20. 

Mdm33 controls phospholipid homeostasis in mitochondria 

Our genetic and proteomic analyses suggested that MDM33 might participate in mitochondrial lipid 

metabolism. To test this, we analyzed the phospholipid composition of mitochondria isolated from 

wild type or Mdm33 overexpressing cells by mass spectrometry. Strikingly, phospholipids that are 

synthesized in mitochondria, PE and CL, were strongly reduced in mitochondria of strains 

overexpressing MDM33 (Fig. 4A), suggesting that Mdm33 affects mitochondrial phospholipid 

homeostasis. The combined deletion of genes required for production of CL and PE is synthetic lethal 
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in yeast, indicating that CL and PE are partially redundant and that a sufficient level of either of them 

is required for cell survival (Gohil et al., 2005). Thus, the disturbance of mitochondrial phospholipid 

biosynthesis upon overexpression of MDM33 might cause the observed growth defect. Furthermore, 

it is known that changes in mitochondrial lipid composition can cause septation of the mitochondrial 

inner membrane (Connerth et al., 2012). Therefore, we consider it likely that changes of 

mitochondrial ultrastructure observed upon overexpression of MDM33 are a consequence of 

alterations of the PE and CL content in mitochondrial membranes. 

PE biosynthesis occurs via multiple pathways (Fig. S3). In yeast the main pathway starts in the ER 

where PS is synthesized. PS is then transported to the mitochondrial inner membrane where the PS 

decarboxylase, Psd1, converts it to PE. It was recently suggested that ERMES is critical for 

establishing mitochondrial ER contacts that are required for phospholipid exchange between both 

organelles (Kornmann et al., 2009). Therefore, we checked whether the formation of ERMES is 

impaired by overexpression of MDM33. Impairment of ERMES is expected to change the localization 

of Mmm1, an ER-resident ERMES subunit, from patch-like assemblies to a diffuse ER signal 

(Kornmann et al., 2009). Analysis of Mmm1-ERFP expressing strains by fluorescence microscopy 

revealed that ERMES localization is not affected by MDM33 overexpression (Fig. 4B).  

It was recently shown that Psd1 is required for processing of Mgm1 (Chan and McQuibban, 2012), a 

dynamin-related protein that exists in two alternatively processed forms that are both required for 

mitochondrial inner membrane fusion (Herlan et al., 2003). As mitochondria are similarly fragmented 

in cells lacking Mgm1 (Wong et al., 2000) and in cells overexpressing MDM33 (Messerschmitt et al., 

2003), we considered the possibility that altered lipid composition of mitochondria containing excess 

Mdm33 results in a defect in processing of Mgm1. However, Western blot analysis of total cell 

extracts revealed that this is not the case (Fig. 4C). 

Next, we examined the conversion of PS to PE by addition of liposomes containing fluorescently 

labeled PS (NBD-PS) to isolated mitochondria and subsequent thin layer chromatography of 

mitochondrial lipids (Tamura et al., 2012b). A Western blot analysis revealed that the protein level of 

Psd1 was not changed in mitochondria isolated from MDM33 overexpressing strains (Fig. 4D). 

However, mitochondria containing high Mdm33 levels showed only about 50-70% PS to PE 

conversion activity compared to the wild type (Fig. 4D, E). Taken together, our results suggest that 

Mdm33 has a direct impact on PE synthesis in mitochondria. 

Mdm33 contributes to mitochondrial division 

∆mdm33 cells harbor large mitochondria that are often interconnected, and overexpression of 

MDM33 results in mitochondrial fragmentation. These observations are suggestive of a role of 

Mdm33 in mitochondrial division (Messerschmitt et al., 2003). To test a function of Mdm33 in this 

process more directly, we induced mitochondrial fragmentation in wild type, ∆dnm1, and ∆mdm33 

cells by treatment with sodium azide (Fekkes et al., 2000) and observed mitochondrial morphology 

by fluorescence microscopy (Fig. 5A). Treatment of wild type cells led to rapid mitochondrial 

fragmentation, while ∆dnm1 mitochondria remained interconnected, confirming that fragmentation 

is dependent on the mitochondrial fission machinery. In contrast, ∆mdm33 mutants retained 

considerable fission activity. However, the number of cells with fragmented mitochondria was 

strongly reduced compared to the wild type suggesting that Mdm33 promotes mitochondrial fission 

(Fig. 5A). Next, we analyzed cells expressing Dnm1-GFP by time-resolved live cell fluorescence 
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microscopy. We could observe Dnm1-GFP-dependent matrix constriction and mitochondrial division 

in ∆mdm33 cells (Fig. 5B). However, these events were restricted to a rather small tubular portion of 

the mitochondria and never occurred in the large ring-like structures. We conclude that Mdm33 

contributes to efficient mitochondrial division, albeit it does not appear to constitute an essential 

component of the mitochondrial division machinery.  

It was recently shown that ER tubules wrap around mitochondria and mediate mitochondrial 

constriction prior to Dnm1 assembly (Friedman et al., 2011). This is spatially and functionally linked 

to the ERMES complex that tethers the ER and mitochondria (Kornmann et al., 2009). The Miro 

GTPase Gem1 is required to disintegrate these contacts after the division event, thereby generating 

free mitochondrial tips (Murley et al., 2013). We asked whether the association of ERMES with sites 

of mitochondrial division might be disturbed in cells lacking Mdm33. We observed that the ER-

resident ERMES subunit Mmm1 colocalizes with Dnm1-GFP in wild type and ∆mdm33 cells, 

suggesting that this step of mitochondrial division does not require Mdm33 (Fig. 5C). 

To test whether mitochondrial fragmentation and growth arrest upon MDM33 overexpression 

depend on the outer membrane fission machinery we overexpressed MDM33 in ∆dnm1 strains. We 

observed a strong growth defect in cells lacking Dnm1, although we did not observe mitochondrial 

fragmentation (Fig. 5D, E). Instead we found parts of the mitochondrial network to be swollen. 

Electron microscopy revealed that overexpression of MDM33 in the absence of Dnm1 causes 

swelling of the mitochondria and inner membrane septa formation (Fig. 5F). This indicates that 

mitochondrial fragmentation upon MDM33 overexpression is Dnm1-dependent, whereas growth 

arrest and inner membrane remodeling are independent of Dnm1. Taken together, our results are 

consistent with the idea that Mdm33 is important to keep mitochondria in a fission-competent 

shape. 

Mdm33 foci are present at sites of mitochondrial division 

Next, we asked whether Mdm33 is present at sites of mitochondrial division. To test this, we co-

expressed functional fusion proteins GFP-Mdm33 and Dnm1-mCherry and labelled mitochondria 

with mito-BFP. Intriguingly, GFP-Mdm33 was found to accumulate in fluorescent foci in many cells. 

The majority of these foci co-localized with Dnm1-mCherry. Time-resolved fluorescence microscopy 

showed that these foci are formed transiently and coincide with the formation of Dnm1-mCherry foci 

and mitochondrial constriction or division (Fig. 6). These results suggest that Mdm33 cooperates with 

Dnm1 in mitochondrial division. Similarly, GFP-Mdm33 foci were found to also co-localize with 

Mmm1-mCherry (Fig. S4) suggesting that Mdm33 is required already at an early step of fission when 

the division sites are selected. 

Discussion 

Mitochondrial fission and phospholipid metabolism both affect mitochondrial structure and 

morphology. However, only little is known about the functional relationship of these processes. Here, 

we show that Mdm33 interacts in many ways with molecular components and pathways of 

mitochondrial phospholipid homeostasis. At the same time, Mdm33 is present at sites of 

mitochondrial fission, and mutants show severe fission defects. We propose that Mdm33 links 

mitochondrial inner membrane lipid homeostasis to mitochondrial division. 
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Division of the mitochondrial double membrane is a complex process that conceivably requires 

machineries acting inside and outside the organelle (Westermann, 2010; Friedman and Nunnari, 

2014). Recent evidence suggests that the ER marks the sites of mitochondrial division. It wraps 

around the outer membrane and thereby constricts the diameter of the mitochondrial tubule to a 

size that allows the Dnm1 division ring to assemble on the cytosolic side of the organelle (Friedman 

et al., 2011). However, it remained unclear whether the process of ER-associated mitochondrial 

division (ERMD) also requires fission proteins acting on the mitochondrial inner membrane. While 

some primitive algal mitochondria have retained FtsZ-related fission proteins from their bacterial 

ancestors (Beech et al., 2000), animals, fungi, and most plants lack mitochondrial FtsZ homologs. 

Thus, it is possible that FtsZ in mitochondria has been replaced by other factors during the evolution 

of most eukaryotic lineages. Our previous characterization of the ∆mdm33 mutant provided 

evidence for a role of Mdm33 in mitochondrial inner membrane division (Messerschmitt et al., 2003). 

Mutant cells have a unique phenotype with extremely extended and often ring-shaped giant 

mitochondria. It is conceivable that these aberrant organelles can form only in the absence of 

frequent division events. Here, we show that deletion of the MDM33 gene impedes azide-induced 

mitochondrial fragmentation, and we observed a striking co-localization of Mdm33 and Dnm1 during 

fission. Taken together, these observations show that Mdm33 is a fission-promoting factor. 

We found that Mdm33 genetically and physically interacts with prohibitins, which are known 

modulators of mitochondrial inner membrane homeostasis (Osman et al., 2009b). Strikingly, Mdm33 

overexpression lowers the rate of mitochondrial PE biosynthesis and CL levels. It is well established 

that also prohibitins have an intimate functional relationship with the lipid composition of 

mitochondrial membranes, especially with the levels of PE and CL. We previously proposed that ring-

like prohibitin complexes might serve as membrane organizers modulating the distribution of CL and 

PE within the membrane (Osman et al., 2009a). Our genetic and proteomic data suggest that Mdm33 

and prohibitins cooperate in this process. It is therefore conceivable that, similar to prohibitins, 

Mdm33 acts as a membrane scaffold ensuring proper organization of the inner membrane and 

regulating lipid biosynthesis.  

Accumulating evidence suggests that modulation of lipid composition is an important aspect of 

mitochondrial membrane fusion and fission (Furt and Moreau, 2009). For example, fusion requires 

the local generation of the fusogenic lipid phosphatidic acid (PA) in the mitochondrial outer 

membrane (Choi et al., 2006), the biosynthesis of PE and CL are intimately linked to mitochondrial 

fusion in yeast (Chan and McQuibban, 2012; Joshi et al., 2012), and CL plays a major role 

mitochondrial division in Arabidopsis thaliana (Pan et al., 2014). We show here that Mdm33 has an 

impact on the abundance of CL and PE. These are both non-bilayer forming lipids with small 

headgroups and therefore confer negative curvature to mitochondrial membranes, a feature that is 

particularly important during fusion or fission (Huttner and Zimmerberg, 2001; Chernomordik and 

Kozlov, 2003; van den Brink-van der Laan et al., 2004; McMahon and Gallop, 2005). Thus, it is 

conceivable that Mdm33 activity affects the capacity of the inner membrane to undergo fission. 

Our cytological and genetic interaction data support an auxiliary role of Mdm33 in mitochondrial 

fission. Time-resolved fluorescence microscopy revealed that mitochondrial fission events do occur in 

the absence of Mdm33, albeit at strongly reduced frequency. This indicates that Mdm33 is not an 

essential part of the division machinery. Ring-shaped mitochondria characteristic for mutants lacking 

MDM33 are prevalent in double and triple mutants lacking fusion and fission factors. Thus, the 

∆mdm33 deletion is epistatic to the deletion of genes encoding core components of the fusion and 
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fission machineries. Furthermore, Mdm33 overexpression-induced inner membrane septae form 

independently of Dnm1. These observations suggest that Mdm33 acts upstream of fusion and fission. 

We consider it likely that Mdm33 prepares the inner membrane for division by local modulation of its 

phospholipid composition and biophysical properties. Although they are antagonistic activities, 

fusion and fission of membranes are related processes. In both cases membranes fuse and mix the 

lipids of their bilayers followed by separation of a hemi-fused intermediate. In case of fusion the 

membranes belong to two different organelles, while fission can be regarded as the fusion of 

organellar membranes from the inner side of the same organelle (Chernomordik and Kozlov, 2003; 

Kozlov et al., 2010). Thus, fusion and fission of mitochondria could both require local adjustments of 

the membrane lipid composition to lower the energy barrier of lipid bilayer mixing. In this scenario 

Mdm33 might contribute to the formation of microdomains that are particularly enriched in PE and 

CL to generate curvature. Formation of these microdomains then renders the membrane competent 

for fission (i.e. fusion of the inner membrane from the matrix side). It is conceivable that this activity 

facilitates mitochondrial constriction at division sites by mitochondrial ER interactions and helps in 

severing the mitochondrial double membranes by the Dnm1 division ring that is assembled on the 

outer membrane. 

Materials and Methods 

Plasmids and cloning procedures 

Standard procedures were used for cloning and amplification of plasmids (Green and Sambrook, 

2012). PCR was performed using Pfu polymerase (Fermentas, St. Leon-Rot, Germany) or the GoTaq 

polymerase (Promega, Madison, WI) according to the manufacturer’s instructions. Plasmids pYX142-

mtGFP (Westermann and Neupert, 2000), pVT100U-mtGFP (Westermann and Neupert, 2000), 

pYX142-mtERFP (Scholz et al., 2012), pYX223-MDM33 (Messerschmitt et al., 2003), pHS20 (Sesaki 

and Jensen, 1999), pTT46(Phb1) (Tatsuta et al., 2005), pESC-SCO2 (Zhu et al., 2001), and pESC-YHM2 

(Zhu et al., 2001) were described previously. The pRS316-MMM1-ERFP plasmid containing the 

promoter and coding region of MMM1 fused to the yeast-enhanced mRFP (Keppler-Ross et al., 2008) 

coding sequence was provided by Stefan Böckler (Universität Bayreuth, Germany). To obtain pYX223-

mtBFP, the BFP fused to the Su9 mitochondrial presequence was subcloned from pYES-mtBFP 

(Westermann and Neupert, 2000) into the HindIII and XhoI sites of pYX223. The FLAG-tagged version 

of MDM33 was constructed by PCR-amplification-based fusion of the FLAG tag to the fragment 

encoding the mature part of MDM33 using the oligonucleotides 5’-ATA TAT GGA TCC GAT TAT AAA 

GAT GAT GAC GAT AAG CTA CAG AAC GGT GAT ACT CC-3’ and 5’-AAT TTT CTC GAG TTT TAA CGA TAT 

TCT TGC GC-3’ and genomic DNA as template. This fragment was then cloned into the BamHI and 

XhoI sites of pMM112 (Messerschmitt et al., 2003), yielding pRS316-FLAG-MDM33. Plasmid pYX223-

FLAG-MDM33 was created by PCR-amplification of the fragment containing the import sequence, the 

FLAG tag and the mature part of MDM33 using pRS316-FLAG-MDM33 as template and 

oligonucleotides 5’-TAT AAA GCT TAT GTT GAG ATA CTA TGG GGC GAC-3’ and 5’-AAT TTT CTC GAG 

TTT TAA CGA TAT TCT TGC GC-3’ and cloning into the HindIII and XhoI sites of pYX223.  

Yeast strain constructions 

Standard procedures were used for manipulation of yeast (Sherman, 1991; Gietz et al., 1992). Yeast 

deletion mutants were taken from the yeast deletion collection (Giaever et al., 2002). Double 
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deletion mutants were constructed by mating and tetrad dissection. All yeast strains were isogenic to 

BY4741, BY4742, and BY4743 (Brachmann et al., 1998). For rapid generation of double mutants the 

synthetic genetic array (SGA) technology was used (Baryshnikova et al., 2010). ORF replacement of 

MDM33 was achieved by homologous recombination. The URA3 marker used for this purpose was 

amplified using the plasmid pYES-mtGFP (Westermann and Neupert, 2000) as template and 

oligonucleotides 5'-GAT CAT TGG GGT CTT TTT CGT TGT GAA ATT GTA ACG GGT GAA CTC AGT GAT 

TGA ATC TTA GAT CAC ACT GCC TTT G and 5'-TGT ATT TAT GAT TTT ATT ATG TAC AAG GAT AAA GGA 

TGA AAA AAA TGC ATG CGT GTT ACC GCT GTT GAG ATC CAG TTC.  

Microscopy 

Epifluorescence microscopy in Figs. 3-5 was performed using an Axiophot or an Axioplan 2 

microscope (Carl Zeiss Lichtmikroskopie, Göttingen, Germany) equipped with a Leica DCF360FX 

Camera with Leica LAF AF Version 2.2.1 Software (Leica Microsystems, Wetzlar, Germany) or an 

Evolution VF Mono Cooled monochrome camera (Intas, Göttingen, Germany) with Image ProPlus 5.0 

and Scope Pro4.5 software (Media Cybernetics, Silver Spring, MD), respectively. For time-resolved 

live cell microscopy in Fig. 5B cells were observed with a Leica DMI 6000 wide field fluorescence 

microscope equipped with a Leica DFC360FX camera and Leica LAS AF Software Version 2.1.0. Image 

manipulations other than minor adjustments of brightness and contrast were not performed. For 

time-resolved live cell microscopy in Figs. 6 and S4 cells were grown to midlog phase, sonicated in 

brief, concentrated, and immobilized on microscope slides on a 3% lowmelt agarose bed in growth 

medium. Cells were viewed with a microscope (IX70 DeltaVision; Olympus) using a 60× 1.4 NA 

objective lens (Olympus) and a 100 W mercury lamp (Applied Precision). Light microscopy images 

composed of a z stack with 0.4 µm increments of the whole cell were collected using an integrated, 

cooled charge-coupled device (CCD) based camera (CoolSNAP HQ; Photometrics) equipped with a 

Sony Interline Chip. Datasets were processed using DeltaVision's iterative, constrained three-

dimensional deconvolution method to remove out of focus light. Projection of the z stack was 

generated with Applied Precision software and images were manipulated in Photoshop (Adobe), 

making linear adjustments to brightness or contrast. 

For electron microscopy, cells were grown to log phase and prepared essentially as described 

previously (Bauer et al., 2001). Ultra-thin 50 nm sections were post-stained for 20 min 2% uranyl 

acetate and for 3 min in lead citrate. Samples were examined in a CEM 902 (Carl Zeiss, Oberkochen, 

Germany) transmission electron microscope operated at 80 kV. Micrographs were taken using a 1350 

× 1050 pixel Erlangshen ES500W CCD camera (Gatan, Peasanton, CA) and Digital Micrograph 

software (version 1.70.16). 

Microarray design and hybridization 

The S. cerevisiae TAG microarray design is based on the Saccharomyces Genome Deletion Project 

(Giaever et al., 2002). The 20mer UpTAG and DownTAG sequences were taken from the MATα 

mating type strains. Reinvestigations of the yeast knockout strain collection by deep sequence 

analysis of the TAG sequences revealed yeast deletion strains that contained mutated TAG barcodes 

in comparison to the originally designed barcodes (Eason et al., 2004; Smith et al., 2009). We 

included the originally designed barcodes as well as the combined mutated barcodes of the two re-

sequencing projects in our microarray design. If the mutated sequence contained deletions of one or 

more nucleotides, the mutated sequence was filled up with T’s to a 20mer sequence. In addition, a 
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limited set of 500 mismatches of UpTAG sequences were designed by exchange of the eleventh 

nucleotide (A↔T, G↔C). Furthermore, the primer sequences used for labeling the TAG barcodes 

were also included in the microarray design. All TAG sequences were uploaded to the Agilent eArray 

website and extended to a final length of 60 nucleotides with Agilent’s linker sequences. Probes were 

randomly distributed across the array using the 8x15k format and printed slides were ordered 

directly from Agilent Technologies (Waldbronn, Germany).  

Genomic DNA from yeast samples was extracted using the NucleoMag 96 Plant DNA extraction kit 

(Machery-Nagel, Dueren, Germany) on a KingFisher magnetic particle processor (Thermo Scientific, 

Langenselbold, Germany). Genomic DNA was precipitated with ethanol and suspended in TE buffer. 

TAG barcode sequences were labeled by asymmetric PCR (20 µl) using 200 ng genomic DNA as 

described (Pan et al., 2007). After PCR labeling, 3.6 µl blocking oligonucleotides U1c and U2c (50 µM 

each) were added to 1.5 µl of the upTAG PCR labeling reaction, heated to 100°C for 1 min, and kept 

at room temperature for at least 20 min; downTAG samples were treated in the same way with 

downTAG blocking oligonucleotides D1c and D2c. A hybridization solution was prepared by 

combining Cy3- and a Cy5-blocked TAG samples (each 4.5 µl), 9 µl nuclease-free water, 4.5 µl 10X 

Blocking Agent and 22.5 µl 2X Hi-RPM Buffer (Agilent Technologies). The hybridization mix was added 

to the Agilent 8x15k arrays and hybridized at 50°C for ca. 16 h. Microarrays were washed using Oligo 

aCGH Wash Buffer 1 and 2 (Agilent Technologies) as recommended by the manufacturer; 

decomposition of cyanine dyes was protected by incubating the slides in a Stabilization and Drying 

Solution (Agilent Technologies).  

Dry microarray slides were scanned in a FLA8000 slide scanner (Fujifilm) at 5 µm pixel resolution in 

confocal mode. Microarray images were analyzed using the ArrayVision software v8.0, rev4.0 (GE Life 

Sciences); spot intensities were calculated as background-corrected median-based trimmed mean 

densities. Spot values of each microarray experiment were scaled to a total array intensity of 

147,680,000 units to facilitate comparison of independent experiments (total intensity 

normalization) (Quackenbush, 2002). 

Genetic interaction network 

The genetic interaction network was visualized using the Cytoscape software (Shannon et al., 2003). 

Immunoprecipitation and LC MS/MS analysis 

Immunoprecipitation was performed basically as described in Hoppins et al. (2011) with the 

following adjustments. 500 ODUs of GFP-tagged strains or an untagged W303 control were lysed in 

IPLB (20 mM Hepes, pH 7.4, 150 mM KOAc, 2 mM Mg(Ac)2, 1 mM EGTA, and 0.6 M Sorbitol) with 1X 

protease inhibitor cocktail set I (CalBiochem) on ice for 10 min and cleared. Lysates were crosslinked 

by addition of 1 mM DSP (Thermo Scientific) and allowed to incubate on ice for 30 min. Crosslinking 

was quenched with the addition of 100 mM Tris pH 7.4. Membranes were then solubilized with 1% 

digitonin on ice for 30 minutes, and subsequently cleared at 12,000x g for 10 min at 4˚C. The 

supernatant was incubated with 50 μl antiGFP microbeads (Miltenyi Biotec Inc.) on ice for 30 min. 

The beads were isolated using Miltenyi μ columns and a μMACS separator (Miltenyi Biotec Inc.), 

washed three times with IPLB with 0.1% digitonin and protease inhibitors, and washed twice with 

IPLB containing no digitonin or protease inhibitors. Onbead trypsin digestion was performed, beads 

were incubated for 30 min at room temperature in 25 μl elution buffer I (2 M urea; 50 mM Tris, pH 
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7.5, 1 mM DTT, and 5 μg/ml trypsin). This was followed by two 50 μl applications of elution buffer II 

(2 M urea; 50 mM Tris, pH 7.5, and 5 mM chloroacetamide). Elutions were collected and digestion 

was allowed to continue at room temperature overnight. Reactions were stopped with 1 μl 

trifluoroacetic acid (TFA). Peptides samples were submitted to the Genome Center Proteomics Core 

at the University of California, Davis, for mass spectrometry (LC MS/MS) based protein identification. 

Urea from the peptide samples was removed using desalting tips (Aspire RP30; Thermo Fisher 

Scientific). The tips were prepared by pipetting 60% acetonitrile up and down 20 times and then 

equilibrated with 0.1% TFA by pipetting up and down 15 times. The peptide sample was pulled 

through the tip 15 times before being washed with 0.1% TFA. The peptides were eluted from the tips 

using 100 μl of 60% acetonitrile and dried via vacuum centrifugation. Protein identification was 

performed using a Paradigm HPLC and CTC Pal autosampler (both from Bruker) paired to either a LTQ 

ion trap mass spectrometer (Thermo Fisher Scientific) or Thermo-Finnigan LTQFT ultra ion trap mass 

spectrometer (Thermo Fisher Scientific) through an ADVANCE Plug and Play Nano Spray Source 

(Bruker). Peptides were desalted onto a nanotrap (Zorbax 300SBC18; Agilent Technologies), then 

eluted from the trap and separated by a 200 mm × 15 cm Magic C18 AQ column (Bruker) at a flow 

rate of 2 μl/min. Peptides were eluted using a 60 min gradient of 2-80% buffer B (buffer A, 0.1% 

formic acid; buffer B, 95% aceto nitrile/0.1% formic acid). The elution gradient was set at 2-35% 

buffer B for 30 min, increased from 35-80% buffer B for 2 min, and held at 80% buffer B for 1 min. 

The gradient then decreased from 80-2% buffer B over 2 min and equilibrated for 25 min. The top 10 

ions in each survey scan were subjected to automatic low energy collision induced dissociation. 

Tandem mass spectra were extracted by BioWorks version 3.3. Mass charge state deconvolution and 

deisotoping were not performed. All MS/MS samples were analyzed using X! Tandem. The raw data 

was analyzed with X! Tandem using the UniProt Saccharomyces cerevisiae database appended with 

the cRAP database, which includes a compilation of common laboratory contaminants, and both 

forward and reverse sequences were utilized in the data analysis. Trypsin was set as the cleaving 

enzyme in the X! Tandem search parameters. X! Tandem was searched with a fragment ion mass 

tolerance of 0.4 D and a parent ion tolerance of 1.8 D. Iodoacetamide derivative of cysteine was 

specified in X! Tandem as a fixed modification. Deamidation of asparagine and glutamine, oxidation 

of methionine and tryptophan, sulfone of methionine, tryptophan oxidation to formylkyn urenine of 

tryptophan, and acetylation of the N terminus were specified in X! Tandem as variable modifications. 

Scaffold (version Scaffold_2_02_033_00_07; Proteome Software Inc.) was used to validate MS/MS 

based peptide and protein identifications. Proteins with a t test P value ≤ 0.05 comparing unique 

peptides obtained from mass spec of tagged strain to untagged control were further investigated. 

Lipid profiling by mass spectrometry and in vitro Psd1 activity assay 

Mitochondria for lipid profiling and measurement of Psd1 activity were isolated from yeast cells by 

differential centrifugation (Daum et al., 1982) and further purified by sucrose gradient centrifugation 

(Hammermeister et al., 2010). Lipid content of isolated mitochondria was determined as described 

(Osman et al., 2009a). The preparation of liposomes and the in vitro assay for Psd1 activity were 

performed essentially as described previously (Tamura et al., 2012b). Lipids in stock solutions in 

chloroform were mixed at the desired molar ratio, and the solvent was evaporated under a flow of 

dry nitrogen. The dried lipids were hydrated in 800 µl of reaction buffer (300 mM sucrose, 150 mM 

KCl, 10 mM Tris-HCl, pH 7.5, 1 mM DTT) by repeated cycles of incubation at 30°C, vortexing, and 

freeze-thawing. After 1 h hydration the liposomes were prepared by extruding 30 times at 30°C using 
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an Avanti Mini-Extruder with 0.2 µm polycarbonate membranes according to the manufacturer’s 

instructions. Liposomes were stored at 4°C and used within 5 days.  

For thin layer chromatography, phospholipids were extracted from mitochondria by vortexing in 500 

µl of 2:1 chloroform/methanol for 15 min at room temperature using a Disruptor Genie (Scientific 

Industries, Bohemia, NY). 100 µl of water was added and the samples were vortexed for additional 5 

min. The organic phase was separated by centrifugation at 400 x g for 5 min and dried under a 

constant flow of nitrogen. The samples were resuspended in 60 µl of chloroform and 20 µl of each 

sample was subjected to TLC analysis. Silica gel plates (Fluka Analytical, Sigma-Aldrich, St. Louis, MO) 

were developed with chloroform / methanol / acetone / water / acetic acid (50:10:20:5:15, 

vol/vol/vol/vol/vol). NBD fluorescence was imaged with an ImageQuant LAS 4000 gel documentation 

system (GE Healthcare Europe GmbH, Freiburg, Germany) using excitation and detection 

wavelengths for GFP. 

Online supplemental material 

Fig. S1 shows an outline of the suppressor screen and growth of ∆gal3 and ∆gal4 suppressors. Fig. S2 

shows negative genetic interactions of ∆mdm33 and prohibitin mutants and complementation of 

prohibitin mutants by PHB1. Fig. S3 shows a sketch of phosphatidylethanolamine biosynthesis 

pathways. Fig. S4 shows co-localization of GFP-Mdm33 and Mmm1-mCherry. Table S1 shows 

microarray results from the MDM33 overexpression suppressor screen. Table S2 summarizes 

mitochondrial phenotypes of double deletion mutants. 
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Figure Legends 

Figure 1. MDM33 interacts with genes encoding components of phospholipid biosynthesis. (A) 
Genetic connection scatter plot of MDM33. The plot was generated using data from the MITO-MAP 
(Hoppins et al., 2011). Each point in the scatter plot represents one gene. The x-axis represents the 
cosine correlation between the ∆mdm33 interaction scores and the interaction scores obtained for the 
represented gene. The y-axis indicates interaction score between ∆mdm33 and the represented gene. 
Several genes acting in phospholipid metabolism, mitochondrial inner membrane homeostasis 
(prohibitins), mitochondrial ER contacts (ER mitochondria encounter structure, ERMES), mitochondrial 
distribution, and ATP synthase are highlighted. (B) Pathways of phospholipids biosynthesis. Positive 
(green), neutral (black), and negative (red) genetic interaction scores are indicated. CDP-DAG, 
cytidine diphosphate-diacylglycerol; CL, cardiolipin; MLCL, monolyso-cardiolipin; PA, phosphatidic 
acid; PC, phosphatidylcholine; PDME, phosphatidyldimethyl-ethanolamine; PE, phosphatidyl-
ethanolamine; PG, phosphatidylglycerol; PGP, phosphatidyl-glycerolphosphate; PI, 
phosphatidylinositol; PMME, phosphatidylmonomethyl-ethanolamine; PS, phosphatidylserine. 
 
Figure 2. Genome-wide screen for suppressors of MDM33-overexpression induced growth 
arrest. (A) Wild type cells or pooled deletion strains were transformed with pYX223-MDM33 or the 
empty vector and plated on synthetic complete medium containing glucose or galactose as carbon 
source. Growth was observed after 3 days of incubation at 30°C. (B) A pool containing the 4987 
strains of the MATα haploid non-essential yeast deletion library was transformed with pYX223-
MDM33, plated on synthetic complete medium containing glucose or galactose as carbon source and 
strain abundance was quantified by microarray hybridization. Shown are normalized and background 
corrected microarray fluorescence signal values for the barcodes of each deletion strain. (C) Each 
point in the scatter plot represents one gene. The x-axis shows the genetic interaction score between 
MDM33 and the represented gene according to the MITO-MAP (Hoppins et al., 2011; compare Fig. 1). 
The y-axis indicates the normalized and background corrected microarray fluorescence signal taken 
from (B). (D) Strains were transformed with a multicopy plasmid overexpressing MDM33 from the 
inducible GAL1/10 promoter or the respective empty vector. 10-fold serial dilutions were spotted on 
synthetic complete medium containing glucose or galactose as carbon source and incubated at 30°C 
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for 2 (glucose) or 8 (galactose) days. (E) Strains were transformed with an empty vector or a multicopy 
plasmid overexpressing SCO2 or YHM2 from the inducible GAL1/10 promoter. 10-fold serial dilutions 
were spotted on synthetic complete medium containing glucose or galactose as carbon source. 
Growth was scored after incubation at 30°C for 3 days. 
 
Figure 3. MDM33 is part of a genetic network regulating mitochondrial phospholipid 
biosynthesis. (A) Genetic interaction network of MDM33. Nodes represent deleted or overexpressed 
genes; edges represent genetic interactions. The network is based on the scores obtained in the 
suppressor screen (blue) and in the MITO-MAP (blue and grey). (B) Cells expressing mitochondrial 
matrix targeted GFP (mtGFP) were grown to logarithmic growth phase in YPD and analyzed by 
fluorescence microscopy. Cell outlines are indicated by a white line. The arrow indicates smaller 
spherical mitochondria in the ∆mgm1 ∆mdm33 double mutant. Bar, 5 µm. 
 
Figure 4. Mdm33 acts in mitochondrial phospholipid homeostasis. (A) Phospholipidome of 
mitochondria isolated from cells harboring the indicated plasmids and grown in synthetic complete 
medium containing galactose as carbon source. Phospholipid analysis was done by quantitative mass 
spectrometry. Data represent mean values + SD. (B) Cells expressing mitochondrial matrix targeted 
GFP (mtGFP), and ERFP-tagged Mmm1 (pRS316-MMM1-ERFP) were transformed with a multicopy 
plasmid overexpressing MDM33 from the inducible GAL1/10 promoter or the empty vector, grown to 
the logarithmic growth phase in synthetic complete media containing galactose as carbon source, and 
analyzed by fluorescence microscopy. Bar, 5 µm. (C) Western blot analysis of whole cell extracts 
carrying an empty vector or overexpressing Mdm33 under control of the GAL1/10 promoter from a 
multicopy plasmid (pYX223-MDM33). Cells were grown overnight in synthetic complete media 
containing galactose as carbon source and diluted to logarithmic growth phase. Protein was extracted 
from the cells by boiling in sample buffer after alkaline treatment. (D) In vitro Psd1 activity assay. 
Isolated mitochondria of the indicated strains were incubated with liposomes containing NBD-PS for 
30 minutes at 30°C, the reaction was stopped, and the total lipids were isolated and separated by 
TLC. Shown is the NBD-fluorescence. The same samples were analyzed by Western blotting. (E) 
Quantifications are the ratio of the NBD-PE and NBD-PS signals normalized to the wild type-ratio. 
Shown are mean values and standard deviation obtained from three independent experiments.  
 
Figure 5. Mdm33 is required for mitochondrial fission. (A) Cells expressing mitochondrial matrix 
targeted GFP (mtGFP) were grown to logarithmic growth phase in YPD, either mock-treated or 
incubated for 40 min with 0.5 mM sodium azide, fixed in 3.7% formaldehyde, and analyzed by 
fluorescence microscopy. For each strain cells containing fragmented mitochondria were scored. Error 
bars indicate standard deviations of 3 independent experiments with 150 cells per experiment. Images 
are merges of DIC and GFP fluorescence (green). Bar: 5 µm. (B) Time lapse series of cells grown to 
logarithmic growth phase in synthetic complete medium and expressing mitochondrial matrix targeted 
ERFP (mtERFP) and DNM1-GFP. Images represent maximum intensity projections of fluorescence 
image z stacks. Arrows highlight mitochondrial division events. Bar, 5 µm. (C) Cells expressing DNM1-
GFP, MMM1-ERFP, and mitochondria targeted BFP (mtBFP) were grown to logarithmic growth phase 
in synthetic complete medium and analyzed by fluorescence microscopy. For both strains cells were 
scored for association of Mmm1-ERFP with Dnm1-GFP patches. Bar, 5 µm. (D) Strains were 
transformed with a multicopy plasmid overexpressing MDM33 from the inducible GAL1/10 promoter 
(pYX223-MDM33) or an empty vector. 10-fold serial dilutions were spotted on synthetic complete 
medium containing glucose (repression of the GAL promoter) or galactose (induction of the GAL 
promoter) as carbon source and incubated at 30°C for 2-4 days. (E) Cells expressing MDM33 from the 
GAL promoter and mtGFP were grown overnight in synthetic complete medium containing galactose 
as carbon source, diluted to logarithmic growth phase and analyzed by fluorescence microscopy. Bar, 
5 µm. (F) Electron micrographs of ultrathin sections of cells grown as in (E). Bars, 200 nm. 
 
Figure 6. GFP-Mdm33 forms foci co-localizing with Dnm1-mCherry. (A) GFP-Mdm33 foci and 
Dnm1-mCherry punctae coincide spatially. The mitochondrial matrix was labelled with BFP. 
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Arrowheads highlight co-localization of GFP-Mdm33 and Dnm1-mCherry. Images are projections of z-
stacks. Bar, 2 µm. (B) GFP-Mdm33 foci and Dnm1-mCherry punctae coincide temporally. Cells were 
analyzed as above for 210 sec taking a z-stack every 10 sec. Bars, 2 µm. 
 

Tables 

Table 1. Mdm33 is in vicinity of prohibitins and ATP synthase. Immunoprecipitates of cross-linked 
GFP-Mdm33 were analyzed by mass spectrometry. The number of peptides and percent coverage is 
shown for each identified protein. 

 total spectrum count (% coverage) 

protein identified integrated GFP-Mdm33 low copy GFP-Mdm33 high copy GFP-Mdm33 

Mdm33 203 (64%) 450 (76%) 512 (77%) 

Phb1 8 (20%) 35 (56%) 45 (56%) 

Phb2 13 (22%) 48 (49%) 65 (51%) 

Atp1 9 (12%) 42 (24%) 54 (28%) 

Atp2 9 (15%) 120 (60%) 74 (43%) 

 

 

Supplemental materials 

Figure S1. Screen for genetic interaction partners of MDM33. (A) Schematic representation of a 
bar-coded deletion allele in strains of the yeast deletion collection (Giaever et al., 2002). (B) Outline of 
the microarray-based genome wide suppressor screen. (C) Strains were transformed with a multicopy 
plasmid overexpressing MDM33 from the inducible GAL1/10 promoter or the respective empty vector. 
10-fold serial dilutions were spotted on synthetic complete medium containing glucose or galactose as 
carbon source and incubated at 30°C for 2 (glucose) or 4 days (galactose). 
 
Figure S2. PHB1 and PHB2 genetically interact with MDM33. (A) Double mutants of ∆phb1/2 and 
∆mdm33 were generated by tetrad dissection. The growth of more than 150 spores was scored for 
each cross and set in relation to the mean growth of the wild type spores. Shown are representative 
tetrads and the mean colony size in % of wild type. Error bars indicate standard error. Green bars 
indicate the difference of the observed colony size and the size that would be expected if the genes 
would not interact. (B) Strains harboring a multicopy plasmid overexpressing MDM33 from the 
inducible GAL1/10 promoter (pYX223-MDM33) or the respective empty vector were transformed with 
a low copy plasmid expressing PHB1. 10-fold serial dilutions were spotted on synthetic complete 
medium containing glucose (repression of the GAL promoter) or galactose (induction of the GAL 
promoter) as carbon source and incubated at 30°C for 2-4 days.  
 
Figure S3. Phosphatidylethanolamine biosynthesis pathways in yeast. Dashed lines indicate 
transport while solid lines indicate enzymatic reactions. OM: Mitochondrial outer membrane. IM: 
mitochondrial inner membrane. G/E/V: Golgi / endosome / vacuole. ERMES: ER-mitochondria 
encounter structure. PS: Phosphatidylserine. PE: Phosphatidylethanolamine. Etn: Ethanolamine. Etn-
P: Phosphorylethanolamine. CDP-Etn: CDP-ethanolamine. CDP-DAG: CDP-diacylglycerol. 
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Figure S4. GFP-Mdm33 forms foci co-localizing with Mmm1-mCherry. Images are projections of 
z-stacks. Bar, 2 µm.  
 
Table S1. Scores from the microarray-based genome-wide screen for suppressors of MDM33 
overexpression induced toxicity. A pool containing the 4987 strains of the MATα haploid non-
essential yeast deletion library was transformed with pYX223-MDM33, plated on synthetic complete 
medium containing glucose or galactose as carbon source and strain abundance was quantified by 
microarray hybridization. Given are normalized and background corrected microarray fluorescence 
signal values for the barcodes of each deletion strain under both conditions. The table also includes 
scores for the genetic interaction between the indicated gene and MDM33 and their respective 
interactome similarity. Latter scores were taken from the MITO-MAP. Red color indicates negative 
genetic interaction whilst green color indicates positive genetic interaction with a threshold of -3 and 
+3, respectively.  
 
Table S2. Screen for genes that are required for the formation of aberrant mitochondrial 
structures in the ∆∆∆∆mdm33 mutant. Cells expressing mitochondrial matrix targeted GFP (mtGFP) 
were grown to logarithmic growth phase in YPD and mitochondrial morphology was analyzed by 
fluorescence microscopy. The table provides information about the mitochondrial phenotype of 79 
double mutants that were generated using the SGA technology. It also includes scores for the genetic 
interaction between both deleted genes and the interactome similarity. These scores were taken from 
the MITO-MAP. Yellow color indicates that the strains did not exhibit ∆mdm33 mitochondrial 
morphology. 
 

Please refer to the attached CD-ROM for Tab. S1 and S2. 
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