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Glossary
a.s.l. Above sea level, corresponds to German NN (über Normalnull)

AMS Accelerator mass spectrometry

C Carbon

C density Carbon content of coarse woody debris per volume unit

CWD Coarse woody debris, defined as all lying and standing woody debris with a 

diameter > 7 cm at their widest point

DC Decay class

Disappearance time Time period between death and decay of tree or branch to fractions < 7 cm in

diameter

DOC Dissolved organic carbon

DOM Dissolved organic matter

EPS Expressed population signal

Fm Fraction modern

FWD Fine woody debris, defined as all woody debris with a diameter 0.2 <x< 7 cm

fPOM Free particulate organic matter (ρ < 1.6 g cm-3)

GC Gas-chromatography

Glk Gleichläufigkeit

HIX Humification index

IAEA International Atomic Energy Agency

MaOM Mineral associated organic matter (ρ > 2.0 g cm-3)

N Nitrogen

NPOC Non-purgable organic carbon

NSC Non-structural carbohydrates

oPOM Occluded  particulate organic matter (1.6 < ρ < 2.0 g cm-3)

Rbar Mean inter series correlation

SOC Soil organic carbon

SOM Soil organic matter

SPT Sodium polytungstate

SUVA254 Specific UV-absorption at a wavelength of 254 nm 

TT Turnover time
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Summary
With respect  to  climate warming,  carbon (C) sequestration  is  of  important  public  and political

interest.  Forests  represent  important  terrestrial  C sinks.  Their  management  can have  direct  and

indirect influence on forest characteristics, including to some extent C sequestration. One direct

effect  of forest  management  is  an increase in  the stock of  coarse woody debris  (CWD).  CWD

represents a short- to middle term C sink that is of particular importance in natural and old-growth

forests. Its impact on the soil organic carbon (SOC) stock is largely unknown.

To investigate the impact of management, a case study was conducted in three adjacent managed

and  unmanaged  forests  with  similar  geological  and  micrometeorological  conditions  as  well  as

similar tree species composition. In each forest, the C pools of the forest floor, the mineral soil and

the CWD as well  as their turnover times (TTs) or disappearance times (in case of CWD) were

investigated.  The unmanaged forests  were withdrawn from management  40-100 years  ago.  The

dominant tree species of temperate forests, European beech, Sessile oak and Norway spruce were

considered. The experimental set-up permits to estimate how the C pools of a forest evolve within

decades following its withdrawal from forest management.

In each forest, the above-ground CWD stocks were inventoried. The volume and the decay class of

each CWD piece was determined on an area of 1 ha. For each decay class, a representative number

of  samples  of  logs  was  sampled  to  measure  wood  density  and  C  concentration.  In  addition,

radiocarbon analysis and dendrochronological cross-dating were used to determine the time of tree

death  for  CWD logs.  From these  data,  disappearance  times  were  calculated  for  the  three  tree

species.

In the unmanaged forests, the C stocks in the CWD accumulated to 10 Mg ha-1 in the spruce forest

and  to 24 – 30 Mg C ha-1 in the beech-oak forests. As such, the C stock in the CWD was 2 to 6

times greater in the unmanaged forests than in the managed forests where the C stocks in the CWD

were around 5 Mg C ha-1 at all study sites. Average disappearance times of 30 and 70 years were

calculated for beech and spruce CWD respectively. Oak CWD yielded a great variability of time

since tree death at similar C densities of individual CWD pieces. The calculation of a decay function

was thus not possible. However, the time since tree death of the dated oak CWD pieces indicated

that oak CWD has the potential to remain in forests for more than 70 years. 

In addition to the field study, CWD samples of the three tree species and of three decay classes were

incubated in a laboratory experiment under controlled conditions for a period of 380 days. In regular

intervals, the CO2 production was measured and a leachate was produced to estimate the C fluxes
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from CWD in the gaseous and in the liquid phase. 

The yearly C loss was specific to the tree species and decay class. Beech CWD had the greatest C

loss followed by oak and by spruce CWD. C loss generally increased with decay class for all tree

species. The CO2 release represented the most important pathway of C loss, however, dissolved

organic C (DOC) contributed between 1 and 25% of the total C loss. The DOC production was most

important for oak CWD and for heavily decayed wood of all tree species.

The C stock of below-ground CWD was estimated by uncovering stumps of known age. For each

tree species, five stumps were sampled in their entity for two or three different times of tree death.

Total mass and volume as well as C concentration of a representative number of sub-samples were

measured.

The great differences in volume, wood density and C concentration expressed the variability in the

properties of below-ground CWD. For this reason, a calculation of the below-ground CWD mass in

relation to the stump diameter was not possible. The number of stumps and snags was multiplied by

an average C mass per stump to calculate below-ground CWD stocks. As a result of regular thinning

and felling of trees and the resulting higher number of stumps, the below-ground CWD stocks in the

managed forests were greater than in the unmanaged forests. The C stocks in the below-ground

CWD ranged from 0.3 to 1.4  Mg C ha-1 in the managed and from 0.1 to 0.4  Mg C ha-1 in the

unmanaged forest in one of the beech-oak forest. This corresponded to 16 % of the total CWD C

stock in the managed forest and to 1 % of the total CWD C stock in the unmanaged forest.

Soil samples were taken at 30 points on a regular raster plot on an area of 2 ha. The forest floor

samples were separated by horizon in the field. The mineral soil was sampled up to a soil depth of

100 cm and separated by depth into 4 sub-samples. Of each sample, the organic C concentration was

measured.  Density fractionation in  three fractions  (<1.6 g cm-3,  1.6-2.0 g cm-3,  >2 g cm-3)  was

carried out for one mixed sample of each soil depth. Radiocarbon signatures were measured of the

mixed samples as well as of each fraction.

The SOC stocks showed greater differences among the study sites than between the management

forms. The SOC stocks ranged between 4.3 and 15.9 Mg C ha-1 in the forest floor and between 50 –

260  Mg C ha-1 in the mineral soil  down to a depth of 1 m. At all  study sites, the radiocarbon

signatures of the Oe horizon indicated a shorter TT of SOC in the unmanaged than in the managed

forests.  The difference is  attributed to a change in the decomposing community induced by the

enhanced CWD stocks. Differences between managed and unmanaged forests in TT of SOC in the

Oa horizon and the bulk mineral soil  were not consistent across all  study sites.  Either potential

management  influences  are  overshadowed  by other  effects  or  the  time  since  withdrawal  from
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management is not sufficient to result in significant changes. Of the density fractions, only the light

fraction <1.6 g cm-3 exhibited consistent differences across soil depths between management forms.

No consistent patterns were found for the denser fractions.

In dependence of tree species, CWD has the potential  to substantially contribute to the C stocks of

forest ecosystems. A withdrawal from management results in a significant increase in the CWD

stocks within decades.  However,  SOC stocks  did not increase  as a result  of enhanced CWD  C

stocks. A potentially greater input of C from CWD to the forest floor was compensated by a shorter

TT of SOC in the Oe horizon. CWD and forest management had no effect on the SOC stocks or TT

of the mineral soil. Most C from CWD is probably lost to the atmosphere as CO2 before it reaches

the soil.
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Zusammenfassung
In Hinblick auf die Klimaerwärmung ist das Verständnis des globalen Kohlenstoffkreislaufes und

Kenntnis über die Möglichkeiten anthropogener Einflussnahmen unverzichtbar. Ein Bereich, in dem

der Mensch durch sein Handeln den Kohlenstoffkreislauf beeinflussen kann, ist die Waldwirtschaft.

Wälder  stellen  in  terrestrischen  Ökosystemen  wichtige  Kohlenstoffspeicher  dar.  Die

Bewirtschaftungsform hat direkten und indirekten Einfluss auf die Kohlenstoffvorräte. Eine direkte

Einflussgröße  ist  der  Vorrat  an  Totholz,  das  im  Wald  verbleibt.  Totholz  stellt,  vor  allem  in

Naturwäldern,  einen  wichtigen  kurz-  bis  mittelfristigen  Kohlenstoffspeicher  dar.  Des  Weiteren

besitzt Totholz das Potential auch andere Kohlenstoffpools, vor allem den Boden, zu beeinflussen.

Zur  Untersuchung  des  Einflusses  der  Bewirtschaftung  wurde  eine  Fallstudie  mit  drei

unbewirtschafteten  und  benachbarten  bewirtschafteten  Wäldern  mit  jeweils  ähnlichen

Standorteigenschaften wie Ausgangsgestein,  mikrometeorologischen Eigenschaften,  Neigung und

Baumartenzusammensetzung  durchgeführt.  In  jedem  Wald  wurden  Kohlenstoffvorräte  und

--umsatzzeiten erfasst. Besonderer Fokus wurde dabei auf die Kohlenstoffvorräte im Totholz gelegt.

Die unbewirtschafteten Wälder werden seit 40-100 Jahren nicht mehr bewirtschaftet. Mit Buche,

Eiche und Fichte sind die dominierenden Baumarten der feucht-gemäßigten Zone berücksichtigt.

Das Versuchskonzept ermöglicht eine Abschätzung, wie sich die Kohlenstoffvorräte innerhalb von

einigen  Jahrzehnten  in  einem  nicht  mehr  bewirtschafteten  Wald  entwickeln  im  Vergleich  zu

bewirtschafteten Wäldern.

In jedem der Wälder wurden auf Flächen von rund 1 ha die oberirdischen Totholzvorräte in einer

Gesamtinventur erhoben. Volumen und Zersetzungsgrad jedes Totholzstückes wurden erfasst. Für

Totholzstämme  von   fünf  definierten  Zersetzungsgraden  wurde  aus  einer  repräsentativen

Stichprobenmenge  Holzdichte  und  Kohlenstoffgehalt  bestimmt.  Außerdem  wurden

Radiokarbonanalysen  und  dendrochronologische  Kreuzdatierungen  durchgeführt  um  das

Absterbejahr  von  Totholzstämmen  zu  bestimmen.  Aus  diesen  Daten  wurden  artspezifische

Abbaukurven für Totholz berechnet.

In den unbewirtschafteten Wäldern waren mit 10 Mg C ha-1 im Fichtenwald und 24 bzw. 30 Mg C

ha-1 im Buchen-Eichenwald die Kohlenstoffvorräte im oberirdischen Totholz zwei- bis sechsmal

größer  als  in  den  bewirtschafteten  Wäldern,  in  denen  die  Kohlenstoffvorräte  im  oberirdischen

Totholz  rund  5  Mg C  ha-1 betrugen.  Die  Verbleibzeiten  von  oberirdischem  Totholz  waren

artabhängig. Buchentotholz hatte mit rund 30 Jahren eine kürzere Verbleibzeit als Fichtentotholz

mit rund 70 Jahren. Für Eichentotholz unterschieden sich die erwarteten Verbleibzeiten einzelner
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Totholzstücke so stark, dass die Berechnung einer allgemeinen Abbaufunktion nicht möglich war.

Jedoch  deuteten  die  datierten  Eichentotholzstämme  daraufhin,  dass  Eichentotholz  das  Potential

aufweist, genauso lange oder länger in Wäldern zu verbleiben wie Fichtentotholz. 

Zusätzlich  zu  den Feldaufnahmen wurde  im Labor  der  Abbau von oberirdischen Totholz  unter

kontrollierten  Bedingungen untersucht.  Totholzstücke  der  drei  Baumarten  in  drei  verschiedenen

Zersetzungsgraden wurden über eine Zeitspanne von 380 Tagen bei 15°C inkubiert. In regelmäßigen

Abständen wurde die CO2 Produktion gemessen und ein Holzextrakt gewonnen, um die Flüsse aus

Totholz in der Gas- und Flüssigphase zu ermitteln.

Der  jährliche  Kohlenstoffverlust  aus  Totholz  war  art-  und zersetzungsgradabhängig.  Der  größte

Kohlenstoffverlust  wurde für Buchentotholz gefolgt von Eichen- und Fichtentotholz festgestellt.

Der  jährliche  Kohlenstoffverlust  aus  Totholz  nahm  mit  dem  Zersetzungsgrad  zu.  Die

Mineralisierung  zu  CO2 stellte  den  Hauptanteil  des  Kohlenstoffverlusts  dar,  jedoch  machte

Auswaschung  als  gelöster  Kohlenstoff  bis  zu  25%  des  Kohlenstoffverlusts  aus.  Die  höchste

Produktion  an  gelöstem  Kohlenstoff  hatte  Eichentotholz  sowie  stark  zersetztes  Totholz  aller

Baumarten. 

Der  Kohlenstoffvorrat  im  unterirdische  Totholz  wurde  durch  Ausgraben  von  Wurzelstöcken

bekanntem Todesjahres ermittelt. Pro Baumart und Todesjahr wurden im bewirtschafteten Wald fünf

Wurzelstöcke beprobt. Die Wurzelstöcke wurden vollständig entnommen und das Totholzvolumen

im Labor durch Wasserverdrängung ermittelt.  Eine repräsentative Probenanzahl wurde auf ihren

Kohlenstoffgehalt untersucht.

Unterirdisches  Totholz  zeigt  eine  große  Variabilität  im  Abbau,  die  durch  Unterschiede  in

Totholzvolumen,  -dichten  und  Kohlenstoffgehalten  der  Wurzelstöcke  von  Bäumen  des  selben

Todesjahres gekennzeichnet war. Aus diesem Grund war eine sichere Berechnung der unterirdischen

Totholzmasse  aus  dem Stumpfdurchmesser  von  Totholz  des  selben  Todesjahres  nicht  möglich.

Vielmehr erwies es sich als  sinnvoll,  die unterirdischen Totholzvorräte durch Multiplikation der

Anzahl an Totholzstücken, die dem stehendem Totholz und den Stümpfen zugeordnet wurden, mit

der  durchschnittlichen  Kohlenstoffmasse  pro  Stumpf  zu  berechnen.  Aufgrund der  regelmäßigen

Durchforstung und  der  daraus  resultierenden größeren  Anzahl  an  Stümpfen,  war  der  Vorrat  an

unterirdischem Totholz in den bewirtschafteten Waldern höher als in den unbewirtschafteten. Der

Kohlenstoffvorrat betrug im unterirdischen Totholz 0.3 – 1.4 Mg C ha-1 im bewirtschafteten Wald

und 0.1 – 0.4 Mg C ha-1 im unbewirtschafteten Wald. Dies entsprach im bewirtschafteten Wald rund

16% und im unbewirtschafteten Wald 1% des Gesamttotholzkohlenstoffvorrats.

Bodenproben wurden auf jeder Fläche an 30 Punkten auf einem regelmäßigen Raster mit  einer
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Fläche  von  2  ha  genommen.  Die  Humusauflage  wurde  nach  Horizonten  getrennt  beprobt.  Der

Mineralboden wurde bis in eine Tiefe von 100 cm beprobt und in 4 Tiefenstufen getrennt. Von jeder

der Proben wurde der Kohlenstoffgehalt bestimmt. Des Weiteren wurde für jeden Wald und  jede

Tiefenstufe eine Mischprobe zur Dichtefraktionierung in drei Fraktionen (<1.6 g cm-3, 1.6-2.0 g cm-

3,  >2  g  cm-3)  angefertigt.  Radiokarbonsignaturen  der  Mischprobe  sowie  jeder  Fraktion  wurden

gemessen.

 Im Boden wiesen die Kohlenstoffvorräte größere Unterschiede zwischen den Versuchsflächen auf

als zwischen den Bewirtschaftungsformen. Die Kohlenstoffvorräte betrugen zwischen 4.3 – 15.9

Mg C ha-1 in der Humusauflage und zwischen 48.1 – 261.4 Mg C ha-1 im Mineralboden bis in 1 m

Tiefe.  Radiokarbonanalysen  der  Humusauflage  zeigten  für  den  Of  Horizont  an  allen

Versuchsstandorten eine kürzere Umsatzzeit in den unbewirtschafteten als in den bewirtschafteten

Wäldern.  Dies  wird  durch  eine  Stimulation  des  Streuabbaus  durch  die  erhöhten  oberirdischen

Totholzvorräte erklärt. Im Oh-Horizont und im Mineralboden sind die Unterschiede zwischen den

Wäldern jedoch nicht konsistent. Es wurde angenommen, dass andere Faktoren einen Totholzeffekt

überschatten  bzw.  die  Umsatzzeiten  im  Vergleich  zur  Zeitspanne  seit  Änderung  der

Bewirtschaftungsform zu lang sind, um sich nach Jahrzehnten signifikant auf die Umsatzzeit im Oh

Horizont und Mineralboden auszuwirken. Von den Dichtefraktionen waren nur die Unterschiede

zwischen Bewirtschaftungsformen in der leichten Fraktion <1.6 g cm³ für jeden Versuchsstandort

über alle Tiefenstufen konsistent.        

Totholz hat das Potential substantiell zur Kohlenstoffspeicherung im Wald beizutragen, wobei die

Eignung  Baumarten  abhängig  ist.  Durch  eine  Beendigung  der  Bewirtschaftung  können  die

Totholzvorräte innerhalb von Jahrzehnten signifikant gesteigert werden. Jedoch hat Totholz keinen

Einfluss  auf  die  Kohlenstoffvorräte  im  Boden.  Ein  eventuell  bestehender  größerer  Input  von

Kohlenstoff in die Humusauflage wird durch eine kürzere Umsatzzeit im Of-Horizont ausgeglichen.

Im Mineralboden sind keine konsistenten Unterschiede zwischen den Bewirtschaftungsformen in

Kohlenstoffvorräten und Umsatzzeiten feststellbar.
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Introduction

Motivation

With  regard  to  climate  warming,  carbon  (C)  sequestration  is  of  particular  political  and  public

interest. Forests store 50 % of the terrestrial C stocks (Jandl et al. 2007) and are thought to have the

potential  to  increase  their  C  stock  through  anthropogenic  impact.  Management  can  influence

different  site  characteristics,  including  soil  properties.  One  substantial  result  of  management

represents the accumulation of coarse woody debris (CWD) (Christensen et al. 2009). While CWD

constitutes an important short to middle term C sink in forest ecosystems (Laiho & Precott 2004),

its influence on other C pools in forest ecosystems including the forest floor and the mineral soil are

subject of speculations (Harden et al. 2000, Manies et al. 2005). Likewise, management impact on

the soil organic carbon (SOC) stocks isn't clear (Nave et al. 2010). The aim of this study was to

investigate  the  impact  of  a  withdrawal  from management  on the SOC stocks  of  forests  within

decades. Special focus was given to CWD. 

Forests as carbon stocks

Forests represent an important C sink and contribute approximately 90% of the terrestrial above-

ground and 40% of the terrestrial below-ground C storage (Waring & Schlesinger 1985). Globally,

two thirds of the C in forest ecosystems is stored in soils (Dixon et al. 1994) as soils contain more

than twice the amount of C in vegetation or in the atmosphere (Batjes 1996, Schlesinger & Andrews

2000). More than 50% of the SOC stocks in mineral soils is stored within deep mineral horizons

below 10 cm depth (Jobbágy & Jackson 2000). Changes in the SOC content of deep soil horizons

thus greatly influence the global C budget.

C gradually accumulates in soil, forest floor, as well as biomass and by consequence C stocks reach

their  maximum  values  in  old-growth  stands  (Böttcher  &  Springob  2001,  Cerli  et  al.  2006).

Strategies to enhance C sequestration in forest ecosystems, most importantly in the soil, might be

important to counteract changes in the atmospheric CO2  concentration (Lal, 2005). Land use, land

use change and forestry can sequester C from the atmosphere. (Vankooten et al. 2004). Forestry is

estimated to have the potential  to enhance the C sequestration capacity of forest  ecosystems to

correspond to 11-15% of the actual fossil fuel emission at the global level and to 5-11% in Europe

(Brown & Sathaye 1996, Cannell 2003). 

Land use change and forest management

Land use and land use change, including conversion from forest to crop- or grassland or vice-versa
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(Poeplau et al. 2011), have major impacts on the C budget of an ecosystem (Guo & Gifford 2002,

Houghton  2003).  Protection  of  formerly  managed  forests  represents  a  smaller  change  than

afforestation or deforestation. A meta-analysis indicates that few management practices are clearly

positive or negative in regards to C sequestration (Jandl et al. 2007). Management effects are divers

and include tree species selection as well as different chemical and physical treatments of the forest

sites. Chemical treatments comprise nitrogen (N) fertilization and liming. Physical treatments of the

forest soil include clearing operations like prescribed burning, soil tillage or ploughing (Raulund-

Rasmussen et al. 2006). Management practices vary in their rotation length, the handling of logging

residues and the amount of timber removed. The removal of timber represents a substantial loss of

nutrient and C from the forest  ecosystem (Ballard 2000). Post-harvest,  depletion of C from the

ecosystem is assumed to occur as respired CO2. In addition a smaller flux exists as dissolved organic

carbon (DOC) (Kalbitz & Kaiser 2008).

Forest management has greater effects on the forest floor than on the mineral soil (DeGryze et al.

2004).  A depletion of forest floor C following management procedures is noticeable (Aussenac

1987) unless thinning residues are left  on the site (Hendrickson et  al.  1989, Mattson & Swank

1989). Chronosequence studies conducted in New England showed that the forest floor lost over

50% of its mass in the 15 years following clear cutting with a gradual recovery over the next 50

years (Covington et al. 1981). More recent cut stands had lower forest floor mass than older stands

(Federer et al. 1984).  

Relatively little data is available on the effects of management on mineral soil (Jandl et al. 2007,

Luyssaert et al. 2010). It results in a mixing of forest floor C with stable mineral soil C and leads to

an increase in SOC in the mineral soil. On the other hand, mechanical site preparation can cause

problems as the soil structure is degraded (Ballard 2000). 

A meta analysis yielded that the forest floor was significantly smaller in harvested sites, but that

harvesting had no effects on shallow or deep soil (Nave et al. 2010). Thinning influences the C

stock of  the forest  floor  and the mineral  soil  oppositely  and results in  no effect  on total  SOC

(Skovsgaard et al. 2006). Overall, the effects on the SOC stocks are small and mostly depend on the

residue  management  (Johnson & Curtis  2001).  There  is  no  evidence  that  thinning and harvest

operations have a long term effect on SOC (Johnson & Curtis 2001, Misson & Tang 2005, Vesala

2005, Jandl et al. 2007), as most effects on the soil seem short-lived. 

Coarse woody debris as a carbon stock

CWD is defined as dead woody material with a minimal diameter between 2 and 20 cm (Topp et al.
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2006, Ellis et al. 2008). CWD can occur as above-ground and below-ground CWD. Above-ground

CWD is further differentiated into lying CWD (logs and branches), standing CWD (snags) and

stumps. In some cases, only lying logs in contact with the soil are considered as CWD (Ligot et al.

2012). In this study, CWD is defined as lying and standing woody debris with a diameter of at least

7 cm at the widest point. In Germany, wood with a diameter above 7 cm is commonly defined as

merchantable (Kramer 1988).

CWD can result from natural mortality and disturbances like fire or storms. In managed forests large

amounts of CWD are created during thinning procedures. With stocks of up to 550 m³, unmanaged

forests generally have higher CWD stocks than managed forest where stocks of 10 m³ are common

(Christensen et al. 2005). CWD stocks start to accumulate at yearly rates of 0.1 – 19 m³ ha-1 a-1 when

a forest is taken out of management (Vandekerkhove et al. 2009). 

Forest  management  greatly affects  the  amount,  size  and quality of  CWD that  remain  in  forest

ecosystems. Historically few woody debris were left in managed forests and CWD was considered a

trait unique to old-growth forests (Harmon 2009). CWD management has gained importance since

the 1990s (Harmon 2001) as the ecological functions of CWD were recognized and its economic

value was identified (Heilmann-Clausen & Christensen 2004). Today, CWD is considered a key

indicator of the sustainability of forest management (Ligot et al. 2012). The ecological functions

include  its role  as  a  habitat  for  insects  and  fungi  and  its  part  in  the  nutrient  cycle  of  forest

ecosystems (Harmon et al.  1986). Furthermore CWD can enhance soil stability, increase natural

regeneration and improve the quality of aquatic ecosystems (Ligot et al. 2012). Last but not least, it

represent a short to middle term C sink (Laiho & Prescott 2004). 

During its decay CWD undergoes a transformation that results in highly divers physical, chemical

and  biological  characteristics.  Theses  changes  are  mostly  caused  by biological  decomposition.

While many insects take part in the decomposition of CWD, the decomposition of CWD is mostly

attributed  to  basidomycetes  (Käärik  1974,  Swift  1977,  Harmon  2001).  Basidiomycetes  are

commonly separated into white rot and brown rot fungi (Schmidt 2006). Abiotic decay processes

like photo-degradation play minor roles in decomposition of CWD.

CWD decay is a relatively slow process, that takes decades to several centuries (Rock et al. 2008).

Mean decomposition rates decrease with altitude (Kueppers et al. 2004) and increase from boreal to

temperate to tropical forest ecosystems (Harmon et al. 2001). Decomposition rates are controlled by

site conditions most importantly temperature and moisture (Herrmann & Bauhus 2012) as well as

wood characteristics including wood lignin, dry matter content or wood pH (Fréschet et al. 2012).

Further effects of CWD size and exposition to the soil on decomposition rates have been described
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though published results are contradictory (Harmon 2009).

Fig. 1.1: Pathways of C loss from CWD

CWD decay can be separated in three main factors: mineralization, leaching, as well as biological

and chemical fragmentation (Fig. 1.1). Mineralization is the main pathway of CWD decay and is

assumed  to  account  for  76%  of  the  total  C  loss  from  CWD  in  the  tropics  over  the  whole

decomposition period (Chambers et al. 2001). With CO2:DOC ratio of 12:1, leaching of C as DOC

is the second important pathway of C loss (Mattson et al. 1987). Fragmentation has hardly ever been

quantified, but Lambert et al. (1980) calculated that 63% of the biomass loss from boles is due to

fragmentation. While mineralized C is lost to the atmosphere, leaching and fragmentation represent

potential C inputs to the forest floor and the mineral soil ( Spears & Lajtha 2005, Crow et al. 2007). 

Further C pathways include C loss to the atmosphere as methane (Mukhin & Voronin, 2008) or as a

variety of carbohydrates during forest  fires (Hyde et  al.  2011).  Fungi can transfer C to the soil

through mycellium (Boddy & Watkinson 2005) and  animals contribute to nutrient loss in heavily

decayed wood (Swift 1977). These pathways have not been quantified and are of minor importance

for the C budget of CWD.

CWD has  the  capacity to  modify a  range of  soil  characteristics  including the heterogeneity of

organic compounds (Strukelj  et  al.  2012),  the pH value (Klinka et  al.  1995)  and the microbial

community of the soil (Rajala et al. 2012). An elevated CWD stock can increase the size of the

fungal community in the soil and result in a shift in the fungal:bacterial ratio, which may result in a

better utilization of organic compounds that a bacterially dominated microbial community is less
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able to degrade (Brant et al. 2006). Effects of CWD have been measured after only two years  in

degraded eucalpyt woodlands indicating that they originate from indirect structural effects rather

than direct  inputs  through leachates  (Goldin  & Hutchinson,  2013).  An increase of  SOC stocks

underneath CWD has never been reported, nonetheless CWD is incorporated in many soil and forest

models as a C input pool (Parton et al. 1988, Cramer et al. 2001, Tuomi et al. 2011).

Forests as nitrogen stocks

N is a mineral nutrient required for tree growth. In soils, 90 % of N occurs in solid, organic forms

(Stevenson 1982).  Global amounts of soil  N in the upper 100 cm are estimated at  133-140 Pg

(Batjes 2005). N stocks are between 6 and 10 Mg ha-1 in temperate forests (Gerstberger et al. 2004).

Most terrestrial ecosystems used to be N limited (Date 1973). The increased N deposition in the past

decades  due  to  human  activities  like  industrial  combustion  processes  and  fertilizer  application

(Vitousek et al. 1997, Gruber and Galloway 2008) resulted in a N saturation in temperate forest

ecosystems (Aber 1992). On the other hand, anthropogenic influence through forest management

has little or no effect on N stocks of the soil (Johnson and Curtis 2001).

Studies on the N cycle of forest ecosystems give contradictory on the importance of CWD. While

CWD has been reported as an important regulator of N availability in forest ecosystems (Hafner &

Groffmann 2005), other studies suggest that CWD does not make a significant contribution to the N

cycle (Laiho & Precott 1999). N concentration of above-ground CWD is low (<0.2 %) in its initial

state (Holub et al. 2001), but increases during its decay through microbial fixation of atmospheric

N2 (Larsen & Neal 1978, Jurgensen et al. 1990, Jurgensen et al. 1992, Brunner & Kimmens 2003).

Heavily decayed CWD might serve as a N source, with N release from stumps occurring at slower

rates than N release from logs or branches (Palvianien et al. 2010). 
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Objectives
The study was  conducted  with  the  aim of  investigating  the  role  of  CWD as  a  C sink  and its

influence on the SOC stock. To this end, managed forests were compared with unmanaged forests

with an elevated CWD stock.  Site  characteristics  between managed and unmanaged forests  are

assumed to be similar.  All  differences were attributed to management  in general  and especially

CWD. The specific objectives of this thesis were:

1) To test the suitability of two different methods for determination of time of tree death. Time of

tree death is an essential parameter to calculate disappearance times of CWD and to evaluate the

potential of tree species as middle-term C stocks.

Chapter 2

2) to quantify the C loss from CWD as CO2 and as DOC under laboratory conditions for samples of

different tree species and decay classes.

Chapter 3

3) to quantify the C stocks in above-ground CWD, forest floor and mineral soil in managed and

unmanaged forests and to calculate the influence of enhanced CWD stocks on the SOC turnover in

the forest floor and the mineral soil.

Chapter 4
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Material and Methods

Study sites

The thesis compromises field studies and one laboratory study. Samples used in the laboratory study

originate from the study sites the field work was conducted on and thus relate to the same forest

systems. At each study site, an unmanaged and an adjacent managed forest were investigated. 

The  unmanaged  forests  are  protected  by  law  from  management  procedures  with  the  goal  of

economical gain. No regular management procedures were conducted for several decades. However,

exceptional  procedures  were  carried  out  in  order  to  influence the  natural  succession  towards  a

favoured direction. Motivations include the prevention of large scale bark beetle infestation or the

removal of beech trees to reduce their dominance in comparison to oak. The unmanaged forests are

shaped  by  previous  human  cultivation  and  management,  which  are  visible  in  current  species

distribution and age structure of the unmanaged forests. For this reason, the unmanaged forests are

not considered old growth or natural forest ecosystems. 

The managed forests  are  high forests.  They undergo procedures  such as  thinning and selective

felling that are commonly applied in Bavarian state forests at regular intervals. 

In contrast to a comparison of managed forests with natural or old growth forest systems, this set-up

gives  insights  on how forests  that  were previously managed can evolve within time periods  of

decades, if a management change occurs. 

Grübel

Grübel (49°07' N 013°07' E) is a Norway spruce (Picea abies (L.) H. Karst.) forest situated at 1250

m a.s.l. in the Bavarian forest. The unmanaged forest has an area of 56.3 ha and was declared at

natural reserve in 1978. The soil type is Podzol. Soil moisture greatly varies across the study area:

parts of the study area are considered poorly drained. The forest floor is highly variable and can

reach a depth of over 1 m in the poorly drained parts of the study area. Mean annual temperatures

are 3-4°C and mean precipitations are 1500 mm a-1. The forest reserve is situated on the south slope

of  the  Kleiner  Arber  massif.  Due to  the  microclimatically advantaged morphology,  the  spruce-

dominated  highland  forest  starts  at  1150  m  a.s.l.,  which  is  about  100  m  higher  than  in  less

favourable parts of the Bavarian forests. While the samples were taken in an area with sheer spruce

forests, single trees of mountain ash, sycamore maple, fir and beech are scattered over the reserve.

The forest is even aged with a mean tree age estimated at 260 years. Due to the infestation with bark

beetles, single trees were removed in the past years. Generally the bark was removed and the wood
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left as logs in the forests. However, in 2010, a dozen dominant trees were felled and the timber

extracted from the forest. The investigated managed forest is situated in close proximity to the forest

reserve in northern direction. Species distribution and stand age are similar to the unmanaged forest.

Information of stand history is scarce, but it is assumed that no thinning procedures were conducted

in the past 20 years. 

Ludwigshain

Ludwigshain (49°55' N 011°48' E) is a beech-oak forest situated at an altitude of 460 m a.s.l. in the

Hienheimer Forst near  Kelheim.  Mean annual temperature is 7-8°C and mean precipitations are

950-1100 mm a-1. Geologically it is situated on the Swabian Jura. The soil is calcareous Luvisol.

Ludwigshain is a nature reserve with an area of 2.4 ha. It is most famous for its ancient oaks, that

were used in the construction of several famous German buildings, including the Cologne Cathedral

and the fortress of Ingolstadt. It was first declared a nature park by kKing Ludwig III of Bavaria in

1913 after a hunting-visit in 1906. Ever since, no thinning procedures were conducted, though the

removal of oak timber of trees that had succumbed to natural mortality has been allowed until the

mid-1960s. The area was proclaimed a natural reserve in 1939. While the forest was first protected

for its imposable oak trees, their number is slowly declining as old trees die and few oak seedlings

germinate. As part of natural succession, beeches rejuvenate successfully and gradually transform

the forest in a beech forest.  Currently the tree species distribution is 30% Sessile oak (Quercus

petraea (Mattuschka) Liebl.) and 70% European beech (Fagus sylvatica L.). The mean tree age is

370 years. The oldest oak trees are up to 470 years old. 

The managed forest has a higher amount of Sessile oak (70%) than European beech (30%). The

mean tree age is 125 years. As far as historical records reach back, the area has been used for timber

production. The last thinning procedure was conducted in the year 2002, when about 340 m³ wood

ha-1 were removed.

Rohrberg

Rohrberg (49°54' N 009°26' E) is an oak-beech forest situated 540 m a.s.l. in the Hochspessart. The

soil is Cambisol on Sandstone. Mean annual temperature is 7-8°C and precipitations are 650-750

mm a-1. Rohrberg is a nature reserve with an area of 9.9 ha. It is Bavaria's oldest nature reserve and

has been protected since 1928. With a mean stand age of 550 years and single oak trees that are up

to 840 years old, it is the oldest forest stand of Bavaria. It used to be a typical sparse oak forest, that

evolved until 1803 due to management aiming to create favourable conditions for hunting. Glands

were used as browsing for game animals. However, due to the natural dominance of beech under the
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site conditions, the abundance of beech is gradually increasing at the cost of oak trees. For this

reason,  a  number  of  dominant  beech  trees  were  removed  in  accordance  with  the  natural

conservation authority in 2002. Currently, European beech makes up 30% and Sessile oak 70% of

the biomass in the unmanaged forest. The managed forest is separated in two parts, one with a 100

years old beech forest and the other an 65 years old oak forest. The last thinning procedure took

place in the year 2007 when 106 m³ wood ha-1 were cut. 

Waldstein

Waldstein (50°08' N 011°52' E) is a Norway spruce forest situated at 770 m a.s.l. in the Lehstenbach

catchment in the Fichtelgebirge. Mean annual temperature is 5.3°C and the mean precipitations are

around 1160 mm a-1 (Gerstberger et al. 2004). The Lehstenbach catchment is dominated by Norway

spruce. The soil is classified as a Haplic Podzol with a sandy to loamy texture. 

No complete  C inventory was  conducted  at  Waldstein.  Solely below-ground spruce  CWD was

investigated.  This  decision  was  taken  as  an  investigation  of  the  below-ground CWD stocks  at

Grübel was restricted by morphological constraints of the study site and fragmentary forest records. 

General concept and field sampling

The inventory of the C stocks in managed and unmanaged forests include a complete inventory of

the C stocks in the forest floor, the mineral soil and the above-ground CWD stocks. Below-ground

CWD was sampled in the Ludwigshain (beech and oak) and Waldstein (spruce) only. Sampling of

below-ground CWD represents a huge invasion and was thus only possible in managed forests. The

suitability of the study sites is further restricted by incomplete  knowledge on time since thinning

procedures. 

Living timber biomass was not inventoried in detail. Forest records and measurements of diameter

at breast height were used to estimate above-ground timber biomass in trees. Below-ground biomass

was estimated through root:shoot ratios given in Offenthaler & Hochbichler (2006).

Above-ground coarse woody debris inventory

The  assessment  of  above-ground  CWD included  the  quantification  of  the  above-ground  CWD

stocks, the identification of CWD quality (e.g. C density) and the determination of time of tree

death. These parameters were used to calculate the CWD C stocks, the disappearance time of CWD,

the C loss from CWD, the CWD production and the CWD accumulation (Fig. 1.2). 
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Fig. 1.2: Measured and calculated CWD parameters.

 

The inventory of above-ground CWD was conducted in each forest within an area of 0.5 – 1.2 ha.

Lying logs and branches, standing snags as well as stumps with a diameter >7 cm were inventoried

as CWD. Lying CWD was defined as all CWD with no fix connection to the soil, that was situated

at an angle of less than 45° relative to the soil. Standing CWD was defined as CWD fixed to the soil

and/or situated at an angle of more than 45° relative to the soil. Standing CWD had a height of more

than 1 m. All CWD that was connected to the soil with roots and had a height of less than 1 m was

defined as stumps. Usually stumps resulted from tree cutting.

Each piece of CWD was measured, characteristics like wood colour,  penetrability with a knife,

shape and insect infestation diagnosed and a decay class from 1 to 5 (Table 1.1) attributed in their

accordance with a method adapted from Goodburn & Lorimer (1998).

Table 1.1: Decay class (DC) characteristics of coarse woody debris (CWD).

Decay class            Characteristics

        1                     Recently dead, bark intact, small twigs and leaves, no visible signs of decomposition

        2                     Bark mostly remaining, no leafs, wood not penetrable by a knife

        3                     Bark mostly missing, wood partly penetrable with knife, visible discolouration

        4                     No bark, wood completely penetrable with knife, deformation and discolouration

        5                     Wood soft, breakable with fingers, advanced humification

CWD volumes were calculated from multiple measurements of length and diameter using volume

formulas under the assumption that CWD pieces were regular cones or cylinders (Bebber & Thomas

2003). It was assumed that over- and underestimations of individual pieces levelled errors out over

the total stock. 
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To investigate CWD quality (wood density, water content as well as C and N concentrations), 722

CWD samples were taken by drilling holes of known volume and collecting all shavings. Sub-

samples of 200 samples were ground with a ball mill for further analysis. For conversion of CWD

volumes to C stocks, C densities were calculated from wood density and C concentration for each

tree species  and decay class.  This  was a  necessary step as  usage of  values  for  fresh wood for

conversion of CWD volumes to C stock leads to an overestimation of the C stocks (Weggler et al.

2012).

To determine the time of tree death of CWD that decayed under field conditions, the two methods

radiocarbon  analysis  (see  below)  and  dendrochronological  cross-dating  were  compared.  Both

methods rely on the presence of the uttermost tree ring and thus restricted the method to CWD with

an utter tissue layers that had not yet degraded. 

Decay of CWD can be expressed in different sizes including decomposition rate constants (Rock et

al. 2008), half-times (Olajuyigbe et al. 2011) and residence times (Holeksa et al. 2007). In this study,

disappearance times were calculated. It considered the C density at different times since tree death.

The disappearance time is reached when volume loss and fragmentation reduced the former CWD

to pieces with diameters of less than 7 cm.

CWD C loss was calculated from CWD C stocks and the disappearance times with tree species

specific linear function. Decadal CWD production was derived from time of tree death of current

CWD stocks. Volume loss is assumed to play an inferior role in early stages of decay (Harmon et al.

1986). The combination of CWD production and CWD loss gave the CWD accumulation.

Below-ground coarse woody debris inventory

Five stumps,  from two (oak and spruce) or three (beech) thinning procedures of known time of tree

death, were completely excavated by hand. All roots with a diameter > 7 cm were recovered. The

total volume of the samples was determined by water dispersion. 

Soil sampling

30 regularly distributed plots on a representative area of 2 ha were measured for the soil sampling.

The number was judged sufficient to represent the inhomogeneity of forest soils. The forest floor

was separated in the Oi, Oe and, if existent, Oa horizon in the field. Fine woody debris (FWD),

defined as woody pieces with a diameter between 0.2 - 7.0 cm and roots were separated in the

laboratory and their mass and C concentration were determined separately. 

The upper 10 cm of the mineral soil were sampled with a core cutter. Further soil samples up to 100

cm depth were taken with a percussion drill and separated by the depth intervals 10-20 cm, 20-50
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cm and 50-100 cm under consideration of compression. The soil was separated by depth rather than

horizons to  facilitate  statistical  comparison of the study sites.  Sampling by percussion drill  can

result to an uncertainty in the density determination of the bulk soil as well as an underestimation of

the rock content. SOC stock estimates in this study should thus be considered upper limits of the

potential SOC stock in the forests.

Twelve additional soil samples of the upper 10 cm of the mineral soil per tree species and study site

were  taken  directly  underneath  heavily  decayed  CWD  of  beech  and  oak  at  Rohrberg  and

Ludwigshain. The CWD piece and, if present, organic material, were removed from the plot before

sampling.

Sample preparation and analysis

Decay of woody debris under laboratory conditions

Twelve woody debris samples of decay class 1, decay class 3 and decay class 5 of the tree species

beech, oak and spruce (108 samples total) were incubated on filtration units in glass jars at 15°C in

a dark climate chamber for 380 days. In weekly intervals, the increase in CO2 in the glass jars within

a  time period  of  24  hours  was  measured  by gas-chromatography to  calculate  respiration  rates.

Further leached C was measured in a constant quantity of artificial rain. This set-up enabled us to

quantify the C loss as CO2 and DOC in dependence of tree species and decay class.

Density fractionation

Changes in SOC are often hard to detect in bulk soil due to its high spatial variability (Schöning et

al.  2006,  Homann  et  al.  2008,  Schrumpf  et  al.  2008).  For  this  reason,  a  division  in  less

heterogeneous chemical and physical fractions with different stability and turnover times (TTs) is

useful  to  detect  changes  (Trumbore  2000,  Kögel-Knabner  et  al.  2008).  Commonly  applied

procedures include the separation of soil in dependence of its density in three fractions that are

named free particulate organic matter (fPOM,  δ<1.6 g cm-3), occluded particulate organic matter

(oPOM, 1.6<δ<2.0 g cm-3) and mineral associated organic matter (MaOM, δ>2.0 g cm-3). In this

study, sodium-polytungstate (SPT) solution was used to separate the soil in its fractions. 

The meaning of the fractions and the implications for processes occurring under natural conditions

is controversially discussed. Generally, it is agreed upon that SOC in the lighter fractions originates

from litter input and constitutes fragmented plant debris whereas the heavier fractions are higher in

compounds derived from microorganisms (Wagai et al. 2008). The fractions respond to changes at

varying rates with a faster reaction in the light fractions than in the heavy fractions (Hedde et al.
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2008, Don et al. 2009).  As density fractionation is a time intensive costly procedure, it was only

done for one mixed sample per study site and soil depth. 

Radiocarbon analysis

The application of radiocarbon analysis in environmental studies is often based on the so-called

„bomb“ 14C or modern 14C. Due to above-ground thermonuclear weapon testing, the amount of 14C

in the atmosphere significantly increased during the 1950s.  By 1963, the amount  of  14C in the

atmosphere had almost doubled (Lassey et al. 1987). Since the limited Test Ban Treaty went into

effect in October 1963, the 14C in the atmosphere is continually diluted due to the burning of 14C free

fossil fuels and the mixing of atmospheric 14C with terrestrial and marine C pools (Levin & Kromer

2004).  This  results  in  yearly  differences  of  atmospheric  14C  that  are  above  the  sensitivity  of

radiocarbon measurements. Plants take up atmospheric C and bind it. The atmospheric 14C signal is

thus propagated first to the living biomass and than to litter pools and to the soil. This enables the

study of the flow of C through the different pools on a decadal time-scale (Goh 1991).

In this study, radiocarbon analysis were incorporated in different ways. The time of tree death of

CWD logs were studied by radiocarbon analysis of the uttermost tree ring. Further, the different

radiocarbon signatures of CWD in comparison to leaf litter was used to model the influence of

CWD on the forest floor. Finally, TTs of the SOC were calculated.

Modelling of soil organic carbon turnover in the forest floor and the mineral soil

TT  of  SOC  pools  can  be  calculated  from  radiocarbon  signatures  using  different  modelling

approaches in dependence of the input pools, and whether a system is at steady state. All modelling

approaches used in this study are based on Gaudinski et al. (2000). For the forest floor, non-steady

state models are assumed. In addition to the radiocarbon signatures, the SOC stocks and their build

up are considered for calculation of TTs. It is assumed that all input to the O i horizon originates

from fresh  leaf  litter.  For  the  Oe horizon  different  scenarios  were  calculated  with  and  without

consideration of input from the Oi horizon, the FWD and the CWD. For the Oa horizon, input from

the Oe horizon as well as from roots are considered. TTs of SOC in the bulk mineral soil and the

density fractions were calculated with a steady state model.
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Synthesis and discussion of results

Properties of above-ground coarse woody debris

The investigation of differences in C stocks in the managed and unmanaged forests gave special

focus to CWD. CWD properties changed during its decay. Wood density decreased and C and N

concentration as well as in in situ water content increasedin above-ground CWD of the three species

European beech, Sessile oak and Norway spruce (Fig. 1.3). All characteristics were marked with

high variations between samples of the same decay class as well as between samples from the same

log highlighting the natural variance in decay of CWD.

Fig. 1.3: Wood density (a), C concentration (b), N concentration (c)  and gravimetric water

content (d) at decay classes 1-5 for the tree species European beech, Sessile oak and Norway

spruce. Error bars give standard errors.

Wood density of CWD of decay class 1 significantly differs between spruce (0.38 g cm -3) and beech

as well as oak (0.51 g cm-3). It is lower than wood density of undecomposed wood (spruce: 0.43 g
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cm-3, beech: 0.72 g cm-3, oak: 0.65 g cm-3) (Trepkau 2003). Wood density exhibits a great variation

depending on environmental and climatic variables, the cambial age and radial position of the wood

and the tree height and location relative to the crown (Lei et al. 1996, Gartner et al. 2001, Swenson

& Enquist 2007). The high variation in wood density of decayed wood could thus partially stem

from initial differences in wood density. As a result of fragmentation by wood-dwelling insects and

of consumption by wood decomposers (Harmon et al. 1986), wood density of heavily decayed wood

decreased to  values  of  0.1 g cm-3  (Fig.  1.3a).  Decrease in  wood density is  the most  important

property for estimation of C stocks in CWD (Weggeler et al. 2012).

The increase in C concentration from 48.6 to 51.7 from decay class 1 to 5 (Fig. 1.3b) corresponds to

published results (Holub et al. 2001) and can be attributed to a change in the chemical composition

of  wood  following  microbial  decay.  Some  wood  decomposing  organisms,  including  brown rot

fungi,  transform the constituents  of  wood lignin,  cellulose and hemicellulose at  different  paces

(Song et al. 2012). White rot fungi simultaneously decompose lignin and cellulose (Leonowicz et al.

1999). Beech CWD is mostly decomposed by white rot fungi (Schmidt 2006), resulting in only

slight alteration of the cellulose:lignin ratio in CWD and consequently no significant change in C

concentration at decay class 1 to 4. Oak and spruce CWD on the other hand is mainly decomposed

by brown rot fungi (Schmidt 2006). Brown rot fungi do not have the capacity to decompose lignin,

but metabolize cellulose (Schmidt 2006). By consequence the amount of lignin in comparison to

cellulose  increases  in  CWD.  Pure  lignin  has  a  C  concentration  between  63  and  72  %,  while

cellulose and hemicellulose have C concentrations around 42 % (Crawford 1981).

N concentration of CWD remained at a low and constant level for decay class 1 to 3 (or 4 in case of

spruce)  (Fig.  1.3c).  The relative  increase in  N concentration  at  decay class  4  and 5  was  more

distinctive  for  spruce CWD than it  was  for  beech and oak CWD. This  pattern  corresponds  to

published results on CWD of other tree species (Krankina et al. 1999, Fukasawa et al. 2009). An

increase in N concentration can result from a relative accumulation of N in consequence of density

loss or by an uptake of N by wood decaying organisms from the soil (Hafner & Groffman 2005) or

N2 fixation from the atmosphere (Cowling & Merill 1966). In case of spruce CWD, the increase in

N concentration cannot be explained by a relative accumulation of N in CWD due to density loss

alone and must thus result from an N uptake or fixation by wood decaying fungi. Depending on its

stage of decay, CWD can serve as both a sink and a source of N in aquatic systems (Creed et al.

2004). A similar behaviour is assumed in terrestrial ecosystems (Palviainen et al. 2010).

CWD possesses a great water holding capacity that resulted in  in situ water contents of up to 15

times its dry mass (Fig. 1.3d). The  in situ water content increased with decay class showing that
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especially heavily decayed served as a water stock. Moisture content affects the decay of CWD

(Herrmann & Bauhus 2012) and might explain potential differences in C loss from CWD between

early and advanced decay classes. The water holding capacity of CWD can also be of importance to

SOC turnover in the top soil especially during drought periods, when CWD can slow evaporation of

soil moisture (Stevens 1997).

Properties of below-ground coarse woody debris

Significant (p < 0.001) differences in mean below-ground CWD density were found between beech

(0.26 g cm-3), spruce (0.41 g cm-3) and oak (0.64 g cm-3).  Below-ground CWD had a lower wood

density for beech, a higher wood density for spruce and a similar wood density for oak than above-

ground CWD.

With average  C  concentrations  of  42.9  (spruce)  to  46.3  (beech)  and 46.9  % (oak),  average  C

concentrations of below-ground CWD were lower than of above-ground CWD of the same tree

species. N concentration of below-ground CWD was lower than N concentration of above-ground

CWD for oak (0.23 %), but higher for beech (0.48 %) and for spruce (0.87 %). No agreement of N

concentration with time since tree death was found. These findings do not correspond to results

from Olajuyigbe et al. (2001) who described an increase in N concentration with increasing density

loss and time since tree death.

Above-ground coarse woody debris decay

Knowledge on decay is essential to estimate the potential of CWD as a middle-term C stock in

forest ecosystems and to assess the potential contribution of C originating from CWD to the soil. To

study CWD decay two different approaches were used in this study: a field study and a laboratory

incubation experiment. 

Due to the short  duration of this  study in comparison to the decay of CWD, a chronosequence

approach was implemented to study CWD decay in the field. Chronosequence approaches require

knowledge of the time since tree death of CWD (Harmon et al. 1986). As forestry record did not

provide sufficient information on the time of tree death of individual trees, other methods for age

determination  were  used:  dendrochronological  cross-dating  and  radiocarbon  analysis  of  the

outermost tree ring. Both methods require the presence and the ability to identify the outermost tree

ring and thus restricted decay studies to CWD with an at least partially intact outermost tree ring.

The laboratory experiment enabled the observation of decay under controlled conditions and the

measurement of C loss through different pathways namely as leached DOC and as mineralized CO2.

However,  the  sample  had no  soil  contact  in  the  implemented  design  and by consequence  any
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interaction with the soil including mycellium growth or N transfer was prevented. Microbial decay

is considered the main driver of C loss from CWD (Swift 1973), but other factors also contribute

including insect infestation (Swift 1977) and photo-degradation (Pandey 2005). In the experiment,

wood disks were cut to create samples of equal size in order to get several replications of similar

quality. New surfaces were created and samples significantly reduced in size in comparison to the

original CWD logs.  Further samples were dried, re-wet and inoculated prior to the experiment.

Temperature and moisture regimes in the experiment did not represent field conditions and effects

resulting  from  the  sample  treatment  could  not  be  distinguished  from  natural  decomposition

processes. 

Fig. 1.4: Extrapolation of C loss over a ten years period in the incubation experiment and 

under field conditions for samples of beech (B), oak (O) and spruce (S) of decay class 1, 3 

and 5.

Results of the field and the laboratory study differed in total annual C loss as well as effects of tree

species and decay class. Calculated annual C loss (1.5 – 11 % of initial C) was in average two times

higher  under  laboratory  conditions  than  under  field  conditions  (Fig.  1.4).  This  was  partially

attributed to a temperature effect as the samples were incubated at 15°C while yearly averages in the

field range between 3 and 8°C. Q10 values for CWD of 2.7 - 3.4 (Yatskov et al. 2003) would explain

the difference. Under laboratory conditions, C loss through leaching contributed between 1 and 25%

of the total C loss. Contributions were highest for oak CWD and for decay class 5 of all tree species.
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The  experimental  set-up  might  have  enhanced  C  loss  through  leaching  due  to  the  increased

surface:volume ratio resulting from the smaller sample size in comparison to logs. Nonetheless,

mineralization to CO2 was the main pathway of C loss.

CWD decay was tree species dependant. The order of tree species differed in the field and in the

laboratory.  Under  field  conditions  the  order  beech  >  spruce  >  oak  corresponded  to  other

observations in temperate forests (Rock et al. 2009). Beech CWD samples remained in the forest for

no longer than 30 years. Samples of spruce and oak CWD had disappearance times of over 70 years.

The high C density of oak CWD indicated the potential of oak CWD to remain in forests longer

than spruce CWD. The mean annual temperature of the studied spruce forest is 4 K colder than

mean annual temperatures of the beech-oak forests. The long disappearance time is thus partially

due to climate effects rather than intrinsic CWD characteristics. 

In the laboratory, C loss decreased in the order beech > oak > spruce. Sample preparation might

have favoured the decomposition of oak CWD more than of spruce CWD, as the distinct chemical

composition of  oak with a  high content  of  extractable  substances  (Bianco & Savolainen 1994)

results in a higher potential C loss through leaching from CWD.

Exponential functions are common to describe the decay of CWD (Harmon et al. 1986), indicating a

decrease in C loss relative to the initial  amount of C. However, depending on the tree species,

sigmoid or linear functions are more suitable to describe CWD decay (Fréschet et al. 2011). Under

field conditions, there was a statistically significant linear correlation between time since tree death

and C density for beech and spruce CWD, but not for oak CWD. A linear decay function indicates

that  absolute  C loss  remains  constant  at  all  decay classes.  Under  laboratory conditions,  C loss

increased with decay classes with significant differences in annual C loss between heavily decayed

CWD and less decayed wood. As heavily decayed wood was not considered under field conditions,

neither was the potential increase in C loss. 

Under laboratory conditions, all samples for each decay class originated from the same wood disk of

the same tree. Despite the relatively uniform material, standard deviation of samples of the same

kind were around 30% of the measured average C loss. Under field conditions, standard deviations

of several orders of magnitude are common (Kuehne et al. 2008), rending the finding of statistically

significant differences between decay classes more unlikely. The lack of correlation between time

since tree death and C density for oak CWD was caused by the natural variability of oak CWD. Oak

has a stong differentiation in heart- and sapwood that results in CWD size effects on decay (Harmon

2009).  Heartwood of  oak  contains  high  concentrations  of  fungi-toxic  extractables  (Hillis  1987,

Puech et al. 1999), that inhibit colonization by wood decaying fungi. Further, natural variability is
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increased by differences in decay between snags and logs (Harmon 2009) and by old oak trees that

partially die and decay while new tissue is still being formed (Ranius et al. 2009). 

Below-ground coarse woody debris decay

Below-ground CWD exhibited a great variability in C mass per stump (beech: 1 – 8 kg C, oak: 1 –

20 kg C, spruce: 2 – 36 kg C). There was no agreement between above-ground stump diameter and

below-ground C mass. No correlation between time since tree death and below-ground C mass was

found (data not shown). 

Variations in below-ground C mass was highest for below-ground oak CWD. Below-ground CWD

of about 80 % of oak trees cut 14 years prior to sampling,  was considerably reduced in mass and

volume, while below-ground CWD of the remaining stumps were in a state similar to fresh CWD

notable by a high wood density and presence of fine roots. The resistance to decay in the years

following tree cutting was attributed to the high content of tanning agents in the CWD that became

visible during sampling through discolouration of metal objects. This points to a long lag-period of

several years followed by a rapid decay of below-ground oak CWD.  Lag-periods  result from the

time needed for wood-decaying fungi to colonize the CWD (Harmon et al. 2000) and have been

described for above-ground CWD decay of various tree species (Grier 1978, Yatskov et al. 2003,

Olajuyigbe et al. 2012). Decay of below-ground CWD of coniferous tree species and birch on the

other hand occurs without a lag-period (Melin et al. 2009, Fréschet et al. 2011). The data were not

sufficient to calculate statistically significant decay functions for any tree species.

Coarse woody debris carbon stocks

Differences in above-ground CWD stocks between management types as well as tree species were

relevant. In the unmanaged forests, C stocks of CWD were between 11 and 30 Mg C ha -1. In the

managed forests, there were around 5 Mg C ha-1 of CWD. The CWD C stocks have accumulated in

the unmanaged forests since they were withdrawn from management between 40 and 100 years ago.

CWD production is still  anthropologically influenced as exceptional management practices were

conducted in the past years with preservation motives. In all forests, removal of wood resulting from

natural mortality was allowed until the mid-1960s. CWD stocks in all unmanaged forests have the

potential to further increase and are not yet at steady state. 

CWD  accumulation  is  known  to  be  a  highly  variable  process  that  is  tree  species  specific

(Vandekerkhove et al. 2009). The reconstruction of past CWD accumulation was restricted by the

number of CWD samples whose time of tree death was determined. A reconstruction by decades

was considered a good compromise between the needs of the study and the vulnerability to errors.
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Over the last decades, CWD accumulated at yearly rates of 0.2 to 1.2 Mg C ha-1 a-1 (Fig. 1.5). In the

unmanaged forests, accumulation rates were greater than in the managed forests. The increase in

CWD stocks in the managed forests was attributed to management practices that leave crowns in the

forests for ecological reasons.

Fig. 1.5: Estimated build up of the CWD stocks and cumulative C loss from CWD since

1950 at Grübel (a), Ludwigshain (b) and Rohrberg (c).

At Ludwigshain, C stocks in the below-ground CWD ranged between 0.3 and 1.4 Mg C ha-1. This

corresponded to about 16 % in the managed and to less than 1 % in the unmanaged forest of the

total C stock of CWD. In accordance with the amount of standing CWD and stumps, the C stocks in

the managed forest were estimated 2.3 times higher at Rohrberg and 1.8 times higher at Grübel than

in the unmanaged forests. With a contribution of at  least 10 % to the total  CWD stocks in the

unmanaged and over 50 % in the managed forest, below-ground CWD was of more importance in

the spruce forest at Grübel than in the beech-oak forests. This corresponds to literature values that

estimate that up to 85 % of the total CWD stocks in managed Sitka spruce forests are below-ground

(Olajuyigbe et al. 2011).

Influence of coarse woody debris on soil organic carbon stocks 

Influence of elevated CWD stocks on the SOC stocks was tested by comparing the SOC stocks and

TTs in the managed and unmanaged forests and by measuring the SOC stocks directly underneath

heavily decomposed CWD. CWD can contribute to the SOC stock of the soil through fragmentation

(Crow et al. 2007) and through leaching of C as DOC (Spears et al. 2003). Fragmentation of above-

ground CWD contributes to the SOC stock of the Oe horizon first. Fragmentation of below-ground

CWD has the potential to increase the SOC stock, especially in the fPOM fraction, at all soil depths.

Leaching of C as DOC is likely to contribute to the SOC stock in the whole mineral soil including

the MaOM fraction.
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The  SOC stocks  in  the  forest  floor  and the  mineral  soil  did  not  differ  between  managed  and

unmanaged forests.  SOC stocks of the forest  floor ranged between 4 and 15 Mg C ha -1.  FWD

represents an additional C stock of 0.3 – 1.1 Mg C ha-1. The C stocks of the CWD were about six

times higher than the SOC stocks in the forest floor in the unmanaged beech-oak forests and about

half of the SOC stock in the forest floor in the unmanaged spruce forest.

With a sample size of 30 replicates, SOC stocks of the Oe horizon have to differ by 30 % between

managed and unmanaged forests to be statistically significant. A model calculation yielded, that an

input of 5 % of the total C loss from CWD would be sufficient to cause such an increase at equal TT

of the SOC in the Oe horizon. As no significant differences in SOC stocks of the Oe horizon were

measured, the contribution to the Oe horizon from CWD is either smaller than 5 % or other factors

level out the additional input (see below).

The SOC stocks in the mineral soil up to 1 m soil depth (50 and 260 Mg C ha -1) corresponded to the

range found in the Bavarian soil inventory for similar site conditions (Wiesmeier et al. 2012). C

concentrations and bulk density of soil samples taken directly underneath heavily decayed CWD of

beech and oak at Ludwigshain and Rohrberg did not differ from soil samples taken as part of the

SOC stocks inventory. This indicated that CWD does not influence the SOC stocks in the mineral

soil,  even  on a  punctual  level.  This  result  corresponds  to  findings  by Kahl  et  al.  (2013)  who

measured no increase in the SOC stock beneath beech logs despite an increased DOC flux.

Total carbon stocks

Total C stocks of the above- and below-ground timber biomass, CWD, forest floor including FWD

and mineral soil up to 1 m soil depth amounted to 240 to 410 Mg C ha -1 (Fig. 1.6). C stocks in the

unmanaged forests were higher in Grübel and Rohrberg, but lower in Ludwigshain. The differences

between management types are not substantial. C stocks of CWD contributed 3, 12 and 8 % in the

unmanaged forests Grübel, Ludwigshain and Rohrberg respectively. In the unmanaged forests, the

contribution of CWD to the total C stocks was between 2 and 3 %. The values in the managed

forests were lower than the average contribution of CWD to the C stocks of European forests of

about 5 % (Goodale et  al.  2002). The total  C pool of European forests  including living timber

biomass, CWD, forest floor and SOC, is reported at 22.4 Pg C with 1.0 Pg stored in CWD (Goodale

et al. 2002).  
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Fig.  1.6:  C stocks  in  living timber biomass,  CWD, forest  floor  including FWD and the

mineral soil up to 1 m soil depth in the managed (M) and unmanaged (UM) forests Grübel,

Ludwigshain and Rohrberg.

Coarse woody debris nitrogen stocks

N stocks of above-ground CWD were substantially smaller in the spruce forests than in the beech-

oak forests.  At  Grübel,  N stocks  of  above-ground CWD are  around 10 kg N ha -1 in  both  the

managed  and  unmanaged  forests.  In  the  managed  forest  at  Grübel,  the  CWD is  more  heavily

decayed  With  around  90  and  115  kg  N  ha-1 in  the  unmanaged  Rohrberg  and  Ludwigshain

respectively, N stocks in above-ground CWD were about five times higher in the unmanaged beech-

oak forests than in the managed beech-oak forests (20 kg N ha-1).  In the unmanaged beech-oak

forest, N stocks were in the same order of magnitude than described for temperate beech forests

(Müller-Using & Bartsch 2007).

N stocks  of  below-ground CWD were below 10 kg in  the managed and unmanaged forests  in

Rohrberg and Ludwigshain. At Grübel, N stocks of below-ground CWD were estimated around 35

kg N ha-1 in the unmanaged forest and around 65 kg N ha-1 in the managed forest. At Grübel, N

stocks in below-ground CWD were thus greater than in above-ground CWD. So far, no studies on N

23



stocks of below-ground CWD have been published.

Average C:N ratios of above-ground CWD were between 250 and 300 in the beech-oak forests and

between 500 and 1000 in the spruce forests. Below-ground CWD has substantially lower C:N ratios

of 100 (European beech), 200 (Sessile oak) and 60 (Norway spruce). The observation that C:N

ratios  of  below-ground  CWD are  lower  than  of  above-ground  CWD corresponds  to  published

studies (Olajuyigbe et al. 2011). A possible explanation for the lower C:N ratio of below-ground in

comparison to above-ground CWD is the higher soil contact that might result in a greater fungal

translocation of N (Palviainen et al. 2011). C:N ratio is one of the variables that controls N release

during litter decomposition (Parton et al. 2007). Below-ground CWD thus has a greater potential as

a N source than above-ground CWD.

Influence of coarse woody debris on soil nitrogen stocks

Fig. 1.7: N stocks in CWD, forest floor including FWD and the mineral soil up to 1 m soil

depth in the managed (M) and unmanaged (UM) forests Grübel, Ludwigshain and Rohrberg.

N stocks in the forest floor were between 0.1 and 0.7 Mg N ha-1 (Fig. 1.7). Values were lower than

described for the forest floor of Bavarian forests between 0.8 and 2.9 Mg N ha-1 (Gerstenberger et al.

2004). Differences between study sites were more important than between management types. In the
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Oi and Oe horizon at Rohrberg and Ludwigshain, N concentration significantly differed between

managed and unmanaged forests in 2009. However, the trend could not be confirmed in samples

taken in 2011. Differences in N concentration were greater between sampling years than between

management types.

N stocks of the forest floor were of similar range than the N stocks of the above-ground CWD in the

unmanaged forest  at  Ludwigshain,  four times greater  in  the unmanaged forest  at  Rohrberg and

seventy times greater in the unmanaged forest at Grübel. The wide range demonstrates the differing

role  of  above-ground CWD in  the  N cycle  of  forest  ecosystems.  The low N stocks  in  Grübel

corresponded to results published on North American coniferous forests, where a contribution of 3

% or less of the N pool of the soil has been attributed to above-ground woody debris (Fahey et al.

1983, Busse 1994, Laiho & Prescott 1999).

N stock in the mineral soil ranged from 3.5 and 8.6 Mg N ha-1. Differences in N stocks in managed

and unmanaged forests showed no distinct patterns, nor did N concentrations or N stocks in soil

samples directly underneath CWD differ from soil sampled as part of the inventory. An influence of

CWD on the N stocks of forest systems had been suggested (Hafner & Groffman 2005), but this

result could not be confirmed in this study.

Soil organic carbon turnover in the forest floor

Fig. 1.8: Radiocarbon signatures of the forest floor and the bulk soil organic matter in the 

managed and unmanaged forests at Grübel (a), Ludwigshain (b) and Rohrberg (c).

Radiocarbon signatures of SOC in the forest  floor and bulk soil  samples  showed no consistent
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differences across all study sites between managed and unmanaged forests except in the Oe horizon

(Fig.  1.8). The differences might be explained by differences in the radiocarbon signatures of the

input pools or differences in TTs of SOC in the Oe horizon. To test the likeliness of the possibilities,

a non-steady state model with three input pools (leaf litter, FWD and CWD) was implemented for

the Oe horizon. CWD contains a relatively high amount of pre-bomb C and thus possesses a lower

radiocarbon signature than leaf litter and FWD. By consequence, an elevated input of C from CWD

would result in a lower radiocarbon signature in the Oe horizon at the same TT of SOC. 

Most model calculations of the Oe do not consider input from FWD and CWD (e.g. Gaudinski et al.

2000, Schulze et al. 2009), though variability in radiocarbon signatures of the forest floor have been

attributed to the presence of CWD (Trumbore & Harden 1997). In this study, the applied model was

restricted by a lack of information on the proportion of total C loss that enter the Oe horizon from

each input pools. The classic modelling approach without consideration of C input from FWD and

CWD to the Oe horizon gave TTs of SOC in the Oe horizon between 5 and 19 years. At all study

sites, TTs of the SOC in the Oe horizon were shorter in the unmanaged forests than in the managed

forests. Scenarios with different proportions of total C loss from CWD and FWD that enter the O e

horizon resulted in TTs of SOC in the Oe horizon differing by up to 5 years. Model runs with more

than one data point would enable to help clarify which model scenario is most accurate. No scenario

gave equal or longer TTs of SOC in the Oe horizon in unmanaged and/than in managed forests. 

While the calculation could not quantify the amount of C originating from CWD in the Oe horizon,

they permitted  to  show that  the  CWD  stocks  and  their  C  loss  are  not  sufficient  to  cause  the

difference in radiocarbon signatures through  C  input alone. It is speculated that a change in the

decomposing community could stimulate decomposition of leaf litter and result in shorter TT of

SOC in the Oe horizon. CWD has the capacity to influence the microbial community of the soil

(Rajala et al. 2012), to affect soil yeast abundance and community composition (Yurkov et al. 2012)

and to increase the size of the fungal community in the soil and cause a shift in the fungal:bacterial

ratio (Brant et al. 2006).

The increase in TT of SOC in the unmanaged forests was only visible in the Oe horizon. There was

no significant management effect on the TT of SOC in the Oa horizon. As the build up of CWD is a

gradual process and the release of C from CWD equally slow, it is possible that the time since

management change has not been sufficient to affect the Oa horizon. 

Soil organic carbon turnover in the mineral soil

The TT of SOC in the mineral bulk soil increased with soil depth. The upper 10 cm have TT of SOC
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of 130-470 years. This time period is longer than the time since management change and the period

since an elevated CWD stock has accumulated in the unmanaged forests. The differences in the TT

of SOC in the bulk soil cannot be attributed to a management effects. Differences in radiocarbon

signatures between the forests were probably existent before the management change. The same was

true for the fPOM fraction at Grübel as well as the oPOM and MaOM fractions at all study sites.

Fig. 1.9: Differences between managed and unmanaged forests in radiocarbon signatures and

SOC stocks of the fPOM fraction in Grübel (a), Ludwigshain (b) and Rohrberg (c). 

At Rohrberg and Ludwigshain, the TTs of SOC of the fPOM horizon were generally less than 250

years. Management could thus affect this soil fraction. There were consistent patterns in differences

between managed and unmanaged forests across all soil depths at each forest.  At Rohrberg, the

radiocarbon signatures of the fPOM fraction were higher in the unmanaged than in the managed

forest. At Ludwigshain however, the radiocarbon signatures of the fPOM fraction were lower in the

unmanaged than in the managed forest (Fig. 1.9). The differences in SOC stocks between managed

and unmanaged forests in the fPOM fraction also showed consistent patterns across all soil depths.

However, their direction differed between the two study sites. An explanation might be less input of

litter in the unmanaged than in the managed forest at Rohrberg and a shorter TT of SOC in the

fPOM fraction in the unmanaged than in the managed forest at Ludwigshain. Which factors cause

the specific changes could not be evaluated with this study. As the soil type differs between the two

study sites, an opposing effects of enhanced above-ground and reduced below-ground CWD stocks

cannot be excluded. A potential explanation for the lower SOC input to the fPOM fraction in the

unmanaged forest at Rohrberg is a lower SOC stock of below-ground CWD than in the managed

forest.  At  Ludwigshain,  the  shorter  TT  of  SOC  might  be  explained  by  differences  in  the

decomposing community (see above). 
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Conclusions
This thesis aimed at comparing the C sequestration potential of managed and unmanaged forests as

influenced by CWD stocks. The study specifically considered Bavarian site conditions. CWD decay

is greatly influenced by biotic and biotic factors that differ between geographical regions of the

world. So far, relatively few studies on CWD have been conducted in temperate forests. 

Differences  in  above-ground  CWD  properties  and  disappearance  times  indicate  the  differing

potential of European beech, Sessile oak and Norway spruce as lasting CWD pools. Linear models

were used to  describe C loss  from CWD, despite  differences  in  C loss  between decay classes.

Natural variation in CWD properties is important and an easy model sufficient to model C loss from

CWD on a stand level. Beech CWD has a shorter disappearance time than oak and spruce CWD and

by  consequence  is  not  as  suitable  as  a  lasting  CWD  stock  as  the  other  tree  species.  CO2

mineralization is the main pathway of C loss, showing that the most C is lost to the atmosphere

before it can contribute to other C pools of the forest ecosystem. However, leaching as DOC can

make up to one forth of the C loss from CWD. A significant C input to the soil is thus possible. As

the amount of C lost from oak CWD through leaching is highest of the investigated tree species, oak

CWD could potentially contribute most to the SOC stocks of the soil.

Below-ground  CWD  exhibits  a  greater  variability  in  properties  than  above-ground  CWD.

Calculation of functions to describe decay was not possible. Properties and potential as lasting C

stocks differ between tree species with spruce offering the greatest potential C masses per stump.   

Above-ground CWD accumulates, when a forest is withdrawn from management and represents an

important C stock in unmanaged forest ecosystems. Above-ground CWD stocks of 10 to 30 t C ha-1

have accumulated within decades. The CWD stocks continue to increase, showing the potential for

an  even  higher  C  sequestration  potential.  In  the  managed  forests,  above-ground  CWD  stocks

increased in  the past  decades,  however  the  accumulation  occurred at  a  slower rate  than in  the

unmanaged forest. 

Below-ground CWD represents an additional C stock that is greater in the managed than in the

unmanaged forests. Spruce forests have the potential to store more C in below-ground CWD than

beech or oak forests. Despite the higher below-ground CWD stocks in the managed forests, the total

CWD stocks are more important in the unmanaged forests.   

Contributions of above-ground CWD to the N stocks of the forests are substantial in the beech-oak

forests,  but  not  in  the spruce forest.  Below-ground CWD stocks are  greater  than above-ground

CWD stocks in the spruce forest, but slight in comparison to the N stock of the forest floor and the

28



mineral soil.

It was assumed, that an elevated CWD stock in the unmanaged forests would increase the SOC

stocks in  the forest  floor  and the  mineral  soil.  However,  this  was not  confirmed  in this  study.

Management has no influence on the SOC stocks in the forest floor and the mineral soil. Despite

notable  C loss  as  DOC,  C from CWD is  mostly lost  to  the atmosphere as  CO2, before  it  can

contribute to other C pools. There were no differences in N stocks of the forest floor and the mineral

soil  between managed and unmanaged forests.

Consistent  differences  in  TT of  SOC exist  between managed and unmanaged forests  in  the  Oe

horizon. The enhanced CWD stocks in the unmanaged forests result in shorter TTs of SOC in the Oe

horizon possibly due to a change in the decomposing community that stimulates leaf litter decay.

Differences in radiocarbon signatures in the mineral soil are not consistent between studied forests

and cannot be attributed to management. This demonstrates that management impact on the SOC

stocks and TT of the mineral soil is small or non-existent. Time periods of decades are not sufficient

to result in relevant changes in SOC turnover in mineral soils. Whether longer time periods would

result in significant changes remains open. However, results suggest that an increase in SOC stocks

in unmanaged forests is not expected.

CWD is an important consistuent of forest biodiversity and seems to influence the decomposing

community of the soil. In regards to conservation efforts, creation of unmanaged forest and efforts

to augment CWD stocks in managed forests are thus of great importance. The potential of CWD to

increase SOC stocks of the soil is slight.  Managed forests are thus just as suitable as  C sinks as

unmanaged forests.
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Abstract

To study the decay of coarse woody debris (CWD) in forest ecosystems, it is necessary to determine

the time elapsed since tree death, which is difficult at advanced decay stages. Here, we compare two

methods for age determination of CWD logs,  dendrochronological cross-dating and radiocarbon

analysis  of  the  outermost  tree  ring.  The  methods  were  compared  using  samples  from logs  of

European beech, Norway spruce and Sessile oak decomposing in situ at three different forest sites.

For dendrochronological cross-dating, we prepared wood discs with diameters of 10-80 cm. For

radiocarbon analysis, cellulose was isolated from shavings of the outermost tree rings. There was an

overall  good  agreement  between  time  of  death  determined  by  the  two  methods  with  median

difference of one year. We found no increase in uncertainty with carbon density, despite an increased

nitrogen concentration in the extracted cellulose resulting from incomplete separation of chitin and

other organic nitrogen compounds. A correlation between time since tree death and carbon density

of wood was found for  beech and spruce,  but,  due to  the high natural  variability,  not  for oak.

Disappearance times, defined as the period until a piece of woody debris has been reduced to a size

when it is no longer considered as CWD, of 30 years (beech) and 90 years (spruce) were estimated.

The  uncertainty of  disappearance  times  results  mainly from huge  natural  variability in  carbon

density of CWD rather than uncertainty in the age determination.  The results  suggest that both

methods are suitable for age determination of CWD. 

Keywords: Radiocarbon, Coarse woody debris, CWD, dendrochronological cross-dating, cellulose 
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extraction, time of tree death

Introduction
Coarse woody debris (CWD) has several ecological functions (Harmon et al. 1986) as habitat for

insects,  fungi  and  mosses,  and  through its  role  in  the  nutrient  and carbon  (C)  cycle  of  forest

ecosystems. The decay rate of CWD is highly variable in dependence of exposure, tree species and

environmental  factors  (Harmon  et  al.  1986).  Residence  times  of  few decades  to  centuries  are

common in temperate forests (Rock et al. 2008). As long-term experiments on CWD decay are rare

(Stone  et  al.  1998),  chronosequence  approaches  are  often  used  to  estimate  residence  times

(Kueppers et al. 2004). One prerequisite for the estimation of decay is the age of CWD (i.e. the time

elapsed since death of the tree or branch) (Harmon et al. 1986). In case the tree death is linked to

distinct events like fire, storm or harvesting, historical records might be used to determine the time

of tree death, but usually more sophisticated methods are needed. Dendrochronological cross-dating

is  commonly used  for  the  determination  of  time  of  tree  death  of  CWD  (Daniels  et  al.  1997,

Lombardi et al. 2008, Castagneri et al. 2010). We know of only one study by Kueppers et al. (2004)

that used radiocarbon analysis.  

The bomb-radiocarbon approach makes use of the annual change of the atmospheric radiocarbon

signature triggered by nuclear weapon testing in  the 1950s and 60s  and subsequent  dilution or

uptake processes. Because of photosynthetic CO2 fixation the radiocarbon signatures of  tree rings

correlate with the respective atmospheric radiocarbon signatures  (Worbes  & Junk 1989). As the

annual rate of change of the atmospheric radiocarbon signature has been bigger than the current

measurement precision for the last decades, we can clearly distinguish the radiocarbon signature of

two  subsequent  years.  Radiocarbon  analysis  requires  only a  small  quantity  of  wood  from the

outermost tree ring. 

Dendrochronological cross-dating exploits the similarity in weather-dependent patterns of tree ring

width sequences or other growth ring characteristics in trees of the same species and from the same

climatic region (Schweingruber 1988). It has proved to be a reliable age determination technique.

This method can be difficult or even impossible at advanced decay stages, as decaying CWD loses

its stability and density and the formation of holes is notable (Harmon et al.  1986), making the

correct identification of the outermost tree ring difficult (Schweingruber 2007, Campbell & Laroque

2006). The combination of dendrochronology and radiocarbon analysis has been used to estimate

annual changes in the radiocarbon signature of CO2 in the atmosphere before the 1950s (Leavitt &

Bannister 2009).
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In this  study we compared radiocarbon analysis  with dendrochronological  cross-dating of wood

discs of European beech, Sessile oak and Norway spruce from three different study sites. We tested

the  suitability  of  both  methods  and  investigated  how  tree  ages  relate  to  C  density  of  CWD

calculated from C concentration and wood density. Disappearance times of CWD, defined as the

period until a piece of woody debris has been reduced by density loss and fractionation to a diameter

of less than 7 cm when it is no longer considered as CWD, were calculated for each of the tree

species.

Material and methods

Study sites

Samples were collected at three unmanaged forests in Bavaria, Germany: Grübel (49°07’ N 013°07’

E), Ludwigshain (49°55’ 011°48’ E) and Rohrberg (49°54’ N 009°26’ E). Grübel is a Norway spruce

(Picea abies L.) forest reserve situated in the Bavarian Forest at an altitude of 1250 m a.s.l.. Mean

annual air temperature is 3-4°C and mean annual precipitation is 1500 mm. The formerly managed

forest has been protected since 1978 and the CWD stock amounted to 12 t C ha-1 in 2010 (Krüger et

al. in prep). Ludwigshain is a beech-oak (Fagus sylvatica L., Quercus petraea (Matt.) Liebl.) forest

that has been unmanaged since 1913 and is well known for ancient oaks of 450 years. Mean annual

temperature is 7-8°C and precipitation accumulates to 650-750 mm a-1. Total above-ground CWD

stocks are 30 t C ha-1 in 2010 (Krüger et al. in prep). Rohrberg is a beech-oak forest that has been

unmanaged since 1928. The oaks are up to 600 year old. Mean annual air temperature ranges from

7-8°C and precipitation from 950-1100 mm a-1. The CWD stock was 24 t C ha-1 in 2010 (Krüger et

al. in prep).

Sampling procedures 

A total of 56 CWD logs of at least 20 cm in diameter were selected for analysis. For determining

CWD characteristics (wood density, C concentration), up to 10 wood samples per log were taken

with a power drill with a diameter of 2 cm. All wood shavings were collected and subsequently

dried at 60°C until constant mass. Wood density was calculated from dry mass and the volume of

the drill hole. Sub-samples were ground with a ball mill for C and N analysis (Elementar Vario EL,

Hanau, Germany). 

For radiocarbon analysis, we took samples of the outermost tree ring with a utility knife. The blade

was exchanged between two samplings to avoid cross-contamination. The samples were ground

before the cellulose extraction.  One tree segment  of each log was taken with a motor saw for
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dendrochronological cross-dating. 

Radiocarbon dating

Cellulose is commonly isolated from wood for isotope analysis (Gaudinski et al. 2005). While non-

structural wood compounds might cross tree ring boundaries, cellulose is synthesized with C fixed

in  the  year  of  ring  formation  (Mazany et  al.  1980).  Lignification  of  wood  tissue  occurs  after

cellulose  formation  (Fritts  1976).  We  thus  assume  that  contamination  with  lignin-containing

compounds has no or little impact on radiocarbon signatures. For cellulose extraction, we used a

method adapted from the Jayme-Wise protocol (Green 1963). Hereafter, 40-50 mg of wood was

processed for extraction of α-cellulose. The milled samples were processed in cuvettes with glass

fiber filters. Extractable wood substances were extracted with a 1:1 toluene-ethanol mixture in a

soxhlet  extractor.  Subsequently,  the  remaining samples  were  treated  with  a  CH3COOH-NaClO2

mixture and subsequently 5% NaOH solution at 80°C. Between extraction steps, the samples were

rinsed with a 15% NaCl solution. These extraction steps were repeated at least three times and until

the  remaining  sample  had  a  white  colour.  The  samples  were  then  rinsed  with  1%  HCl  and

subsequently with distilled water for a period of at least 12h. The cellulose was freeze-dried until

mass constancy. To assess the quality of cellulose, total C and N was measured with a with a CN

analyser (Elementar Vario EL, Hanau, Germany) by the Central Analytics of the Bayreuth Center of

Environmental and Ecological Research (BayCEER). Further, δ13C of the cellulose was measured

with a MAT 252 IRMS at the stable isotope lab of the Max Planck Institute for Biogeochemsitry in

Jena. Industrial cellulose (Sigma chemicals, St Louis, USA), chitin and chitinose (Acros organics,

New Jersey, USA) as well as Heidelberger Nullholz and the wood standards C-4 and C-5 from the

International  Atomic Energy Agency (IAEA) (Rozanski et  al.  1992) were used as standards for

radiocarbon analysis. The yield of cellulose is calculated from the difference of the original sample

weight and the weight of the extracted cellulose. 

Radiocarbon  signatures  of  cellulose  were  measured  by  accelerator  mass  spectrometry  (AMS).

Subsamples of 0.7 - 1.1 mg C were combusted in sealed quartz tubes with CuO as oxidizer and

silver wire for 2 hours at 900°C. The resulting CO2 was cryogenically purified from water and non-

condensable  compounds  and converted  to  graphite  targets  using  the  modified  sealed  tube  zinc

reduction method described by Xu et al. (2007). Radiocarbon data are expressed as Δ14C, which is

the per mil deviation from the 14C/12C ratio of oxalic acid standard in 1950. The sample 14C/12C ratio

has been corrected to a δ13C value of -25‰ to account for any mass dependent fractionation effects

(Stuiver  & Polach  1977).  Δ14C signatures  were  dated  to  calendar  years  using  the  CALIBomb
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Radiocarbon calibration online tool (Reimer et al. 2004). For post-bomb radiocarbon signatures,

two calendar years are possible.  The younger age was attributed to  the time of tree death.  The

cellulose extraction and sample combustion were processed at the laboratory of 14C analyses at the

Max Planck Institute for Biogeochemistry in Jena. Graphite targets were prepared at the Department

of Soil  Ecology at  the University of Bayreuth.  The AMS measurements were performed by the

Keck-CCAMS facility of the University of California, Irvine with a precision of 2-5‰.

Dendrochronological cross-dating

All  wood  segments  were  dried  prior  to  further  preparation.  Heavily  decomposed  wood  was

immersed in paraffin at 60°C to prevent rupture and breaking (Hall 1939). Less decomposed wood

was polished with  sandpaper  with granulation  of  100 grit.  Wet chalk  was used to  increase the

visibility of tree ring boundaries (Schweingruber, 1983). Ring widths were measured to the nearest

0.01 mm using a measuring device (LINTAB 6;  Rinntech,  Heidelberg,  Germany) with a  stereo

microscope (MZ 6; Leica, Wetzlar; Germany) and the TSAP-Win software package (Rinn 2003).

Tree ring widths were measured along two radii following the longest and shortest radius.

Site chronologies were compiled from 6-12 wood disks of living trees for each tree species and

study site,  in  order  to  build  up  reference  chronologies  for  the  CWD.  The  quality  of  the  site

chronologies were tested with the dplR package for R (Bunn 2008) using series inter-correlation

(Rbar), Expressed Population Signal (EPS) and Gleichläufigkeit (Glk). 

Tree ring sequences were measured along at least two radii at postions  with a surely identified

outermost tree ring and the smallest amount of major constraints including softness of wood or

holes. All  measurements were conducted at the Faculty of Forestry, University of Applied Science

Weihenstephan-Triesdorf. 

The  dating  of  tree  death  was  obtained  through  visual  cross-dating  of  CWD  samples  with  the

corresponding site chronology with the software Corina 1.1 β (The Cornell  Tree Ring Analysis

System). Additionally, the software was used to calculate correlation analyses based on student’s t-

test (t values), series inter-correlation (Rbar) as well as Gleichläufigkeit (Glk) to cross-date the tree

ring sequence with the site chronologies. All results that gave an end of the sequence set after 2009

were excluded. Based on what is known about the decay rate of the observed tree species (Rock et

al. 2008) as well as site history we also excluded all results that gave end dates before 1935. If

uncertainties on the correct date remained, the tree ring sequences were visually compared with

other sequences of CWD of the same tree species and the same study site. Precision of the method

depends on the number of overlapping years and by consequence the length of the individual tree
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ring sequences. 

Data analysis 

The C density of CWD is calculated from the density and the C concentration of CWD. Decay of

CWD  is  described  through  disappearance  time  defined  as  the  time  period  from tree  death  to

reduction in size to the point where the piece is no longer considered as CWD (less than 7 cm at the

largest  diameter).  Differences  between  tree  species  were  tested  with  a  Student’s  t-test  with  a

confidence interval of p<0.05. If not otherwise specified, calculations were performed with R 2.9.2

(R Development Core Team 2009).

Results

Properties of cellulose and radiocarbon dating

Fig. 2.1: Properties of extracted cellulose: Yields of cellulose extraction in % per tree species

(a) and carbon and nitrogen concentration of extracted cellulose in % (b).

We found cellulose yields, defined as mass-% of the original sample after extraction, of 17 – 38 %

for  the  different  wood  standards  with  a  good  reproducibility (data  not  shown).  Pure  industrial

cellulose had a recovery rate of 81.2 ± 0.3 % (SD, n=4). For the CWD samples, cellulose yields

ranged between 6 and 39 % (Fig  2.1a).  We found significant  differences  between tree species

(p<0.001), but no correlations with C density of CWD. 

Mean C concentration (± SD) in the extracted cellulose was lower in oak (39.5 ± 3.9 %) than in

beech (42.1 ± 0.7 %) and spruce (42.2 ± 0.6 %). In 6 out of 56 samples, the C concentration was
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below  40  %.  13  samples  contained  measurable  N  concentrations  (>0.05  %)  whereas  the  N

concentration of the remaining samples was below the detection limit  (Fig  2.1b). Mean δ13C of

cellulose was -23.2 ‰ ± 1.3 ‰ without significant differences between the three tree species. Δ14C

signatures of the outermost tree rings ranged between -34 and 660 ‰. Five samples were dated to

the time period before the bomb-peak. 51 samples could be attributed to calendar years between

1959 and 2006. 

Dendrochronological cross-dating

The length of the site chronologies was between 94 and 244 years. The Rbar values range between

0.45 and 0.65 and EPS between 0.82 and 0.93, therefore the reference chronologies provide good

data quality (Table 2.1). With respect to wood characteristics and tree age, between 43 and 286 rings

were measured per CWD segment. Fig. 2.2 shows samples of the wood anatomy at different stages

of decay and the tree species specific changes in CWD. Beech CWD becomes soft and tree rings

gradually less visible. Oak CWD is marked by the formation of holes and spruce CWD by cracks

along tree ring boundaries. 

Fig. 2.2: Samples of coarse woody debris of Sessile oak (a), European beech (b) and Norway

spruce (c) at different stages of decay.

Based on dendrochronological cross-dating, the investigated trees had died between 1942 and 2006.
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The distribution differed between the tree species: for beech the oldest CWD originated from 1981,

while four samples of oak and one sample of spruce were dated to the period prior to the bomb peak

in the 1950s. 

Comparison of radiocarbon and dendrochronological dating

We found  a  good  correlation  between  year  of  death  as  determined  by radiocarbon  dating  vs.

dendrochronological cross-dating (R²=0.96) (Fig. 2.3). The average difference between radiocarbon

and dendrochronological dating were 2.05 years with a median value of one year.  Radiocarbon

dating  revealed a  younger  time of  death  in  13 cases  and an older  death  year  in  17 cases.  No

differences between radiocarbon analysis and dendrochronological cross-dating were found for tree

species, study sites or C density of CWD. 

Fig.  2.3:  Time  of  tree  death  as  determined  by  dendrochronological  cross-dating

(dendrochronological time) and radiocarbon analysis of the uttermost year ring (radiocarbon

time) for  the  tree  species  European beech,  Sessile  oak  and Norway spruce.  Full  bullets

designate enhanced nitrogen concentration in the cellulose. 
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Table 2.1: Characteristics of site chronologies.

Study site Tree species Period Number of
trees

rbar EPS Glk[%]

Grübel Norway spruce 1759-2010 6 0.50 0.82 52

Ludwigshain European beech 1916-2009 12 0.51 0.91 63

Ludwigshain Sessile oak 1907-2009 8 0.65 0.93 64

Rohrberg European beech 1938-2009 7 0.45 0.84 68

Rohrberg Sessile oak 1848-2009 10 0.46 0.93 64

Table 2.2: Correlation between time of tree death and C density for the tree species European beech, Sessile oak and Norway spruce.

Tree species Method adjusted R² p n disappearance time
[a]

European beech average y=-15916.0+8.0x 0.61 <0.001 22 33

dendrochronoly y=-15760.0+8.0x 0.62 <0.001 22 33

radiocarbon y=-15976.0+8.1x 0.60 <0.001 22 32

Sessile oak average y=-2294.4+1.2x 0.08 0.16 16 169

dendrochronoly y=-2279.5+1.2x 0.07 0.16 16 171

radiocarbon y=-2074.1+1.1x 0.05 0.19 16 182

Norway spruce average y=-5104.7+2.7x 0.57 <0.001 16 92

dendrochronoly y=-4853.6+2.5x 0.55 <0.001 16 95

radiocarbon y=-5194.5+2.7x 0.59 <0.001 16 90



CWD density varied between 80 and 630 kg m-3 for beech, 140 and 480 kg m-3 for oak and 60 and

510 kg m-3 for spruce. C concentration ranged between 46 and 56 % for all species, resulting in C

densities of CWD of 29 to 307 kg C m-3. Positive correlations between average time of tree death

and C density were found for beech and spruce, but not for oak (Fig.  2.4). Differences in decay

functions  between  dendrochronological  data  and  radiocarbon  data  were  slight  (Table  2.2).

Disappearance times are estimated at 30 years for beech and about 90 years for spruce.

Fig. 2.4: Relation between time since tree death and C density of coarse woody debris for the

tree species European beech (a), Sessile oak (b) and Norway spruce (c).
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 Discussion

Properties of cellulose and constraints of radiocarbon analysis

The observed cellulose yields for CWD samples between 6 and 39 % were considerably lower than

the values reported for fresh wood samples of up to 68 % (Gaudinski et al. 2005). These differences

can be explained only partly by incomplete extraction due to the method, as we measured a recovery

rate  of  about  80% for  the  extraction  of  pure  cellulose.  Decay of  wood  usually results  in  the

preferential loss of cellulose and thus a relative increase of lignin, resins and waxes (Preston et al.

2006), which could explain the low cellulose yields in the CWD samples. The lowest yield was

found for oak CWD, likely for two reasons: (1) Live oak wood is known to have a smaller initial

cellulose  concentration  (ca.  40%)  than  beech  (43%)  and  spruce  (49%)  (Thygesen  et  al.  2005,

Pettersen 1984, Kollmann  & Fengel 1965, Fengel  & Wegener 1984); (2) Decomposition of oak

wood is  dominated by brown-rot  fungi,  which preferentially decompose cellulose while leaving

lignin mostly intact, whereas beech and spruce wood are known to be decomposed by white-rot

fungi, which decompose cellulose and lignin at a nearly equal rate (Leonowicz et al. 1999).

With an average of 41 %, the C concentration of the extracted cellulose is lower than the 44 % C of

pure cellulose polymer. Other methods of cellulose extraction do not have this problem, reporting C

concentration in the extracted cellulose closer to the expected values (Brendel et al.  1999). The

lower C concentrations in our measurements are most likely to be explained by a dilution effect:

Weighing of the glass fibre filters that we used, before and after the extraction procedure, indicate a

weight loss of the filters. As the filters are C-free, the addition of filter material to the samples

would  result  in  a  decrease  of  the  C  concentration  without  affecting  any  of  the  isotopic

measurements. The measured weight losses were big enough to explain the observed differences in

C concentration. We found  no correlation between  13C signatures and C concentration , affirming

that isotope measurements were not affected by a presumed contamination of the samples.

We speculate that chitin produced by fungi during the decay of CWD could explain the increased N

concentrations found in some of the samples. The treatment of chitin revealed that chitin is not at all

removed by the procedure we used (data not shown). The presence of chitin in wood samples is a

problem for age determination by radiocarbon analysis of CWD samples as chitin has a different

radiocarbon signature than cellulose of in the outermost tree ring. Undecayed wood contains only

small amounts of chitin (Jones & Worrall 1995). Because of increasing colonization by fungi both

the chitin and N concentration of CWD increases with decay (Holub et al. 2001). The increased

amount of chitin or other organic N compounds might make the extraction of cellulose less effective
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in heavily decayed CWD samples. The C:N ratio of 210 to 80 found in the cellulose would be

explained by a dilution of cellulose with about 3 to 8 % chitin. An increase in N concentration

during cellulose extraction is  commonly observed in most extraction methods (Gaudinski  et  al.

2005). As no N containing chemicals were utilized during sample preparation the N must originate

from the CWD sample. 

The within tree ring difference of δ13C of cellulose is typically 1 – 2 ‰ (Leavitt  & Long 1984).

Measured differences between samples are thus within natural variations of tree rings. CWD is less

depleted in δ13C than cellulose extracted from undecayed wood (Leavitt  & Danzer 1993).  With

increasing  decomposition  the  δ13C concentration  of  organic  material  increases  due  to  microbial

fractionation (Preston et al. 2009). Schleser et al. (1999) found a depletion of δ13C of cellulose for

thermally decayed wood corroborating the change of δ13C signatures of CWD due to decay.

The five CWD samples with negative Δ14C signatures, that correspond to calendar years before 

1955, belong to the tree species spruce and oak. The CWD logs must have resided in the forests for 

at least 65 years, which is common for CWD of spruce and oak (Holeska et al. 2006, Harmon et al. 

1986).  

Constraints of dendrochronological cross-dating

Dendrochronological studies of CWD are more challenging than studies of living trees. The changes

due to the decay of CWD affect the completeness of the outermost tree ring, the choice of radii

position and the visibility of the tree rings. With advancing decay, density and stability of CWD

decreases  (Harmon  et  al.  1986).  This  affects  the  correct  identification  of  tree  ring  boundaries

resulting in missing tree rings or incorrect tree ring widths. 

By extracting wood segments like disks instead of increment cores, the difficulties resulting from

decay were remediated to some extent. As a disadvantage, segments are larger and more difficult to

handle than core samples, but allow choosing the best suited radii after examination of the entire

section. Nonetheless, the significance of the correlation analysis was affected by decay. Calculated

algorithms are on the lower scale of what is commonly considered statistically significant for some

of the CWD measurements.  

We found the effects of decay on wood anatomy to be species-dependent. Samples of beech often

showed  symptoms  of  white-rot  decay  that  disintegrates  wood  structure  and  reduces  it  to  its

components  cellulose,  hemicelluloses  and lignin  (Schweingruber  2008).  Discoloration  of  wood,

often the first visible effect of decay, does not affect the identification of tree rings. At later stages of

decay, however, tree ring boundaries become difficult to see or even invisible. This process usually
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occurs from the outside to the inside, in consequence reducing the length of the usable sequence. In

spruce CWD, the formation of cracks along tree ring boundaries was often noted and restricted the

positioning of the recorded radii. Decay of oak CWD leads to the formation of holes, but it does not

affect the visibility of tree ring boundaries until advanced stages of decay.

While sequences are statistically compared with standardized methods, dendrochronological cross-

dating necessitates the restriction to a certain time interval. While such restrictions are based on

scientific observations and reliable accounts, they remain to some extent subjective and might differ

between users. 

Comparison of analysis methods and coarse woody debris carbon density

We found a good correlation between radiocarbon analysis and dendrochronological cross-dating

that was not affected by the state of decay, the tree species and the study sites. This indicates that

despite constraints, both methods are equally reliable techniques to estimate the year of tree death.

Radiocarbon analysis can be the favourable method for standing CWD that cannot be sampled by

motor saw and for CWD were the outermost tree ring is only intact on a small area or decay occurs

from the inner to the outer wood. Dendrochronological cross-dating is more suitable for CWD that

is  expected  to  have  slow decay rates,  as  found  in  CWD  of  decay resistant  tree  species  or  at

unfavourable study sites. 

Besides practicability, the decision to apply a method is based on factors like time and cost. Both

methods are time intensive and require special equipment. Their efficiency partially depends on the

number of samples, age as well as their diversity regarding geographical origin and tree species.

Each region and tree species requires an individual site or reference chronology that needs to be

compiled from trees of known age. The compilation of a site chronology requires a need to record a

certain  number  of  tree  ring  width  sequences  in  addition  to  the  CWD  samples.  This  is  more

worthwhile  the  more  samples  need  to  be  dated.  If  a  reference  chronology  is  existent,

dendrochronological cross-dating represents a cheaper way to date a large number of samples than

radiocarbon analysis. 

Age determination of tree rings by radiocarbon analysis is barely dependent on the geographical

region  and  the  tree  species.  In  mixed  forests  with  many tree  species,  classification  of  heavily

decayed CWD logs to tree species is problematic if wood characteristics are similar. In such cases,

radiocarbon analysis is an alternative method of age determination. Further radiocarbon analysis can

be more time efficient if the number of CWD samples is small.
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A correlation between time since tree death and C density of CWD was found for European beech

and  Norway spruce.  For  Sessile  oak  no  correlation  was  found.  Decay rates  can  greatly  vary

depending on the decomposition conditions and the contact of CWD to soil fungi (Holeska et al.

2008). Further, large branches or even parts of the stem of oak trees can die and decay while other

parts  of the trees are still  alive for many decades, resulting in a non-uniform year of death for

different parts of these trees (Ranius et al. 2009). In such a tree, some parts would already decay and

loose C, while new tree rings could still be formed in others. For this reason, decay rate of CWD

may vary within a tree.  Despite  differences of  up to  5 years  between radiocarbon analysis  and

dendrochronological cross-dating, both methods yield similar decay functions and disappearance

times  for  beech  and  spruce.  Overall,  the  variations  in  CWD  characteristics  cause  a  greater

uncertainty for the calculation of decay rates than the both studied methods of age determination.

Conclusions
Our results show that radiocarbon analysis and dendrochronological cross-dating revealed similar

year of tree death and are in most cases suitable for age determination of CWD. Both methods are

constrained by CWD decay, though we found these not to affect the quality of the dating procedure.

Radiocarbon analyses are less destructive and only require small samples. On the other hand, CWD

can only be radiocarbon dated for  the time period since the 1950s and the method is  thus  not

suitable for old CWD of species with long turnover times. Calculation of disappearance times was

possible for Norway spruce and European beech, but not for Sessile oak.
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Abstract
Woody debris  is  an important component in the carbon (C) cycle of forest  ecosystems, but the

release of dissolved organic carbon (DOC) and CO2 as influenced by tree species and decay class is

widely unknown.  A laboratory experiment  with  woody debris  of  European  beech,  Sessile  oak,

Norway spruce in three decay stages (fresh (DC-1), penetrable with a knife (DC-3), breakable with

fingers (DC-5)) was carried out over a period of 380 days. Quantity and quality of DOC in leachates

as well as CO2 production were measured in regular intervals. To test the influence of an easily

available C source on DOC and CO2 production, additional woody debris samples were treated with

a 600 mM glucose solution.  The pH, humification index and specific ultra-violet  absorption of

leachates were measured to describe DOC.

Woody debris lost between 1 and 15% of its initial C within 380 days. DOC contributed 3-54% to

the total C loss. Total C loss increased in the order spruce<oak<beech. At early decay stages, DOC

contributed most to C loss of oak. At DC-5, DOC contribution from beech and oak are of similar

range. DOC and CO2  production generally increased with decay class. The pH values of leachates

ranged between 4.18 and 5.61 and were lowest for oak and for samples at DC-5 of all tree species.

Humification  indices  and  specific  UV absorption  of  leachates  increased  with  decay class.  The

addition of glucose did not influence the quantity and quality of leached DOC or CO2 production.

Our results suggest that CO2 production is the main path of woody debris decay, but DOC leaching

is relevant as input to the soil especially at later decay stages of oak and beech.

Keywords: woody debris, tree species, CO2 production, DOC, glucose, wood decay, humification

index
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Introduction
Coarse woody debris can account for up to 23% of carbon (C) in above ground litter (Prescott  &

Laiho 2002). It thus plays an important role in the C cycle of forest ecosystems, though the fate of C

in the course of woody debris decay and its  influence on the C pool of the soil  are subject to

speculations (Trumbore  & Harden 1997, Strukelj  et al.  2012). The decay of woody debris takes

place through biological and chemical fragmentation, mineralization and leaching. Fragmentation

and  leaching  represent  C  fluxes  to  the  soil  (Harmon  et  al.  1986).  Basidiomycetes,  commonly

separated in white rot fungi and brown rot fungi, are strongly involved in the decay of woody debris

and respire much of the C pool (Käärik 1974, Swift 1977). Chambers et al. (2001) estimate that

respiration accounts for 76% of the total C loss from woody debris in the tropics over the whole

decomposition period. Leaching of DOC is another important path in the decay of woody debris

(Harmon  et  al.  1986).  Decomposition  products  (Spears  et  al.  2003)  or  exudates  from  wood

decomposing fungi (Fransson et al. 2004) induce changes in the characteristics of the mineral soil

(Klinka et al. 1995). Several studies have been effectuated to measure respiration rates from woody

debris (e.g., Chen et al. 2000, Chambers et al. 2001, Herrmann & Bauhus 2008) or DOC loss from

woody debris (e.g., Spears et al. 2003, Hafner et al. 2005, Kuehne et al. 2008). We know of only one

study that simultaneously measured both CO2 and DOC production (Mattson et al.  1987). They

found a CO2:DOC ratio of 12:1, but tree species had no effect on the ratio.

The decay rate of woody debris depends on abiotic factors, like temperature and wood moisture, and

biotic  factors  including  wood  characteristics  (Harmon  et  al.  1986).  Lignin  content,  N  and  P

concentration, C:N ratio, wood density, dry matter content, wood pH and concentration of wood

extractives are described as driving factors of wood decay (Weedon et  al.  2009, Fréschet et  al.

2012). These factors vary among common Central European tree species (Rock et al. 2008). DOC

from woody debris is made up of a mixture of different substances including soluble decomposition

products (e.g., Reid & Seifert 1982, Leisola et al. 1983, Song et al. 2012), wood extractives (e.g.

Hillis 1987, Scalbert et al. 1988, Scheffer 1966), dead microbial cells (Zsolnay 2003) and fungal

exudates (Fransson et al. 2004). The importance of DOC leaching is thought to increase with decay

class due to greater surface area of fragmented woody debris (Harmon et al. 1986). The amount of

water  soluble  compounds  per  mass  unit  wood  of  ground  woody  debris,  however,  decreases

(Wilhelm 1976, Yano et al. 2005) or remains constant (Rajala et al. 2012) with increasing decay

class. 

As analyses for specific substances in DOM are sophisticated, different proxies have been proposed
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as explaining parameters for decay stages and their implications for environmental processes. The

pH values of water extracts were found to predict leaf litter decomposability in a subarctic flora

(Cornelissen et al. 2006) and to correlate with decomposition rates of woody debris of different tree

species (Fréschet et al. 2012). The pH values of mineral soil underneath logs were reduced (Klinka

et al. 1995, Krzyszowska-Waitkus 2006). Further proxy parameters are the humificiation indices

(HIX) and the specific ultraviolet absorbance (SUVA) that are correlated with the complexity and

the aromaticity of the DOC solution (Weishaar et al. 2003). DOC with high HIX and SUVA values

seems to contribute more to C accumulation in the mineral soil than DOC with low values (Don &

Kalbitz, 2005).

Non-structural carbohydrates (NSC) are common constituents of heart- and sapwood and represent

easily available C sources for microorganisms. The concentration of NSC can be relatively high in

fresh  woody  debris,  but  as  in  plant  litter  its  concentration  decreases  rapidly  by  microbial

consumption (Berg, 2000). With rising decay of hemicelluloses and celluloses, other easily available

C sources arise in woody debris mainly through the activity of exoenzymes. To our knowledge, the

influence of additional C sources on the decay of woody debris at different decay stages has not

been studied yet. External C sources could be of relevance for the decay of woody debris because

throughfall represents a considerable input of easily available C under natural decay conditions in

forest ecosystems (van Hees et al. 2005). The effects of glucose addition on the decay of synthetic or

isolated cellulose, lignin or lignocellulose were investigated in several studies using pure cultures of

fungi. The availability of glucose decreases the amount of leachates and influences the quality of

lignin decay products (Leisola et al. 1984). Glucose can stimulate or repress the decomposition of

cellulose by white and brown rot fungi (Highley 1980, Highley 1987, Ritschkoff et al 1995). Under

laboratory conditions the glucose content of wood increases during enzymatic hydrolysis during the

initial decomposition step when up to 12% of the biomass is transformed to glucose (Giles et al.

2011). The presence of other decaying microorganisms might prevent the increase of soluble sugar

concentrations (Giles et al. 2012).

The goal of our study was to investigate the C loss of woody debris of common European tree

species at different decay stages through DOC and CO2 production at constant temperature under

laboratory conditions.  The following hypotheses  were tested:  (1)  DOC and CO2  production  are

different for European beech, Sessile oak and Norway spruce (2) DOC and CO2 production increase

with  increasing  decay  class,  (3)  humification  and  complexity  of  DOC  increase  while  pH  of

leachates decrease with increasing decay class. Further, we tested the addition of glucose on DOC

and CO2 production.
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Materials and methods

Study sites and sample preparation

The  woody  debris  samples  used  in  the  incubation  experiment  originate  from  the  forest  sites

Rohrberg (49°54’ N 009°26’ E) (European beech (Fagus sylvatica L.)),  Ludwigshain (49°55’ N

011°48’ E) (Sessile oak (Quercus petraea (Matt.) Liebl.)) and Grübel (49°07’ N 013°07’ E) (Norway

spruce (Picea abies L.)). Mean annual precipitation ranges from 760–1200 mm a-1 and mean annual

temperature from 3-8°C.

Table 3.1: Decay class (DC) characteristics of coarse woody debris (CWD).

Decay class            Characteristics

DC-1                       Recently dead, bark intact, small twigs and leafs, no visible signs of decomposition

DC-2                       Bark mostly remaining, no leafs, wood not penetrable by a knife

DC-3                       Bark mostly missing, wood partly penetrable with knife, visible discoloration

DC-4                       No bark, wood completely penetrable with knife, deformation and discoloration

DC-5                       Wood soft, breakable with fingers, advanced humification

All woody debris samples were taken in 2010 and attributed to decay classes following the criteria

in  Table  3.1.  All  samples  of  decay class  1  (DC-1)  were sawn off  in  2010 as  part  of  thinning

procedures. Woody debris of decay class 3 (DC-3) and decay class 5 (DC-5) resulted from natural

mortality and decayed under field conditions until sampling. One wood slice per tree species and

decay class from logs were saw off or a sample collected in case of loose woody debris. Samples of

DC-1 and DC-3 were cut into cubes with 3 cm length and dry weight of 10-15 g. Cubes without

bark and constituting of heartwood only were chosen. Material  of DC-5 was gently sieved and

pieces >2 mm were used for the incubation. Density of woody debris was determined from volume

measurements by water displacement (Table  3.2). Samples were wrapped in foil to prevent water

from soaking into the samples. C and N concentrations of ground subsamples from each sampled

tree were measured with a Vario Max CN element analyser (Elementar Analysensysteme GmbH,

Hanau, Germany) (Table 3.2). All woody debris samples were dried at 60°C for mass determination

and  subsequently  rewetted  by  immersion  in  deionised  water  for  24h.  The  wet  samples  were

preincubated on forest floor material of the same tree species at 30°C for 10 days to inoculate all

samples to wood decaying organisms.
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Table 3.2: Initial sample characteristics.

Tree species Decay class Density 

[g cm-3]

Gravimetric water
content

[%]

C content

[%]

N content

[%]

Beech DC-1 0.67 50 48 0.19

DC-3 0.36 160 49 0.16

DC-5 0.22 640 50 0.58

Oak DC-1 0.65 40 48 0.14

DC-3 0.47 60 49 0.17

DC-5 0.08 370 49 0.73

Spruce DC-1 0.36 90 50 0.01

DC-3 0.37 80 50 0.01

DC-5 0.17 540 53 0.50



Incubation and analysis

Twelve samples per decay class and tree species were incubated on Whatman ® VACUFLO vacuum

filtration units in 1 l airtight glass jars at 15°C in a dark climate chamber for 380 days. Between

measurements, the jars were kept open and parafilm was used to protect the woody debris samples

from drying while enabling oxygen supply. 

DOC was leached from woody debris every week by applying 25 ml of artificial rain with a pH of 6

and following composition: 1.0 μmol l-1 MnCl2, 9.0 μmol l-1 MgCl2, 1.5 μmol-1 K3PO4, 0. 2 μmol l-1

FeSO4, 1.0 μmol l-1 Al(NO3)3.H2O, 99.1 μmol l-1 CaS, 87.1 μmol l-1 NH4NO3, 20.0 μmol l-1 K2SO4,

18.0 μmol l-1 NaCl, 16.0 μmol l-1 Na2SO4. The solution was applied in two steps of 15 and 10 ml and

left to interact with woody debris for 5-10 min before being filtrated through a glass fiber prefilter

(Schleicher & Schuell GF92) and a 45 μm cellulose acetate membrane filter (Whatman OE67).

DOC samples  were frozen at  -18°C.  A composite  DOC sample  of  4-16 weeks with increasing

periodic intervals as the experiment advanced was created for each woody debris sample. DOC was

measured as non-purgable organic C (NPOC) with a multi N/C 2100 analyzer (analytikjena) by the

Analytical Chemistry of the Bayreuth Center of Ecology and Environmental Research (BayCEER).

The pH values were measured with a WTW pH315i sensor. Emission of DOC samples between 254

and 500 nm were recorded on a SFM 25 spectrometer (BIO-TEK Instruments). The humification

index (HIX) was calculated according to Zsolnay et al. (1999) by dividing the lower quarter (300-

345 nm) by the upper quarter (435-480 nm). UV absorption was measured with a UV spectrometer

(UV-1800 SHIMADZU) at a concentration of 10 mg l-1. Specific ultraviolet absorbance (SUVA254)

was calculated by dividing the absorbance at 254 nm by the DOC concentration and multiplying it

by 100 (Weishaar  et  al.  2003).  HIX and SUVA254 measured on the pooled samples  of the first

measurement period (days 1-28) and the last measurement period (days 270-380). 

Respiration rates were measured on a weekly basis, starting on the day after the DOC leaching.

They were calculated from the linear increase in CO2 in the glass jars from the difference of two

CO2 concentration measurements with a 24h time interval. CO2 concentration was measured as CH4

with a gaschromatograph (SRI 8610C) equipped with a flame ionization detector. Gas samples (30

μl) were taken from the headspace of the jars and then injected with a 50 μl syringe (Hamilton 1805

RN 50 μl BBL, needles: Hamilton ga2Gs/51mm). CO2 standards with the concentrations 380 ppm,

600 ppm, 1000 ppm, 3000 ppm and 10000 ppm were used for calibration. The mean precision of

CO2 measurement ranges from 4% (10000 ppm) to 8% (380 ppm). 

After 8 weeks, half the samples (n= 6 per tree species and decay class) were treated with 2 ml of a
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glucose  solution  per  week  with  a  concentration  of  600  mg  C  l-1 directly before  the  24h  CO2

measurement  interval.  The glucose-C concentration corresponds approximately to  the maximum

concentration of DOC in throughfall of Bavarian forests. 

Statistical analysis

We analyzed the effects of tree species and decay class on cumulative DOC and CO2 production,

pH-value, HIX and SUVA254 using non-parametric linear regression analysis. Differences between

glucose  and  control  were  tested  with  Student’s  t-test  with  a  significance  level  of  p<0.05.  All

statistical analysis was done with R 2.9.2 (R Development Core Team 2009).

Results

Tree species and decay class effects on CO2 production

The mean cumulative CO2 production of all tree species and decay stages varied between 1 and 9%

of the initial C over 380 days (Table  3.3). In case of spruce, differences in CO2 production were

rather small (1-3%) among the decay stages. The linear regression showed differences between tree

species and decay class and combinations thereof (R² = 0.82, p<0.001) Differences between decay

classes  are  more  important  than  between  tree  species  (Table  3.4).  For  beech  and  spruce,  CO2

production increased with decay class, while oak had a distinct pattern. In contrast to the other tree

species, DC-3 of oak produced less CO2 than DC-1. 

Regardless of tree species, we measured relatively constant CO2 production rates for DC-5 over the

course of the incubation (Fig. 3.1). In contrast, CO2 production of DC-1 and DC-3 were generally

highest in the first weeks and decreased thereafter. In particular, DC-3 of Norway spruce exhibited a

strong dynamic: 50% of the CO2 production occurred in the first 100 days of the experiment and

remained then at a low and constant level.

Tree species and decay class effects on DOC production

Mean  cumulative  DOC production  accumulated  to  0.1  and  1.5% of  the  initial  C  (Table  3.3).

Differences in DOC production among the three decay stages were very small for spruce (0.36-0.61)

and greatest for beech (0.11-1.56). The effect of tree species and decay class on DOC production

were significant (R²=0.85, p<0.001). The order of cumulative DOC production depended on the

decay class (Table 3.3):  DC-5 always had the highest DOC production rates and DC-1 had the

lowest production rates,  except  for oak.  The differences for DC-3 among the tree species were

small.
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Table 3.3: Results of regression analysis of tree species and decay class effects in comparison to oak at DC-1 for total C loss, cumulative DOC and CO2

production, mean humification index (HIX), mean specific ultra-violet absorption (SUVA254) and mean pH values. 

Oak - DC-1 Beech Spruce DC-3 DC-5 Beech - DC-3 Spruce - DC-

3

Beech - DC-

5

Spruce -

DC-5

Total C-loss factor 3.16 (0.43) -1.50 (0.61) -0.87 (0.61) -1.34 (0.61) 7.32 (0.61) 2.68 (0.86) -5.36 (0.86) 4.48 (0.86) 1.21 (0.86)

t-value 7.38 -2.49 -1.43 -2.21 12.09 3.13 -6.26 5.24 1.42

p-value <0.001 0.01 0.16 0.03 <0.001 0.002 <0.001 <0.001 0.16

Cumulative 

CO2 loss

factor 2.37 (0.40) -1.08 (0.56) -0.19 (0.56) -1.03 (0.56) 6.66 (0.56) 2.24 (0.79) -4.96 (0.79) 3.91 (0.79) 0.42 (0.79)

t-value 6.0 -1.9 -0.3 -1.8 11.9 2.8 -6.3 4.9 0.5

p-value <0.001 0.06 0.73 0.07 <0.001 0.006 <0.001 <0.001 0.59

Cumulative 

DOC loss

factor 0.79 (0.06) -0.43 (0.08) -0.67 (0.08) -0.30 (0.08) 0.66 (0.08) 0.44 (0.11) -0.41 (0.11) 0.57 (0.11) 0.79 (0.11)

t-value 14.0 -5.3 -8.4 -3.8 8.2 3.9 -3.6 5.1 7.0

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

HIX factor 5.33 (0.30) -1.61 (0.42) -1.05 (0.42) 2.58 (0.42) 3.53 (0.42) -5.03 (0.59) -1.78 (0.59) -2.29 (0.59) 2.22 (0.59)

t-value 18.0 -3.8 -2.5 6.2 8.4 -8.5 -3.0 -3.9 3.8

p-value <0.001 <0.001 0.014 <0.001 <0.001 <0.001 0.003 <0.001 <0.001

SUVA254 factor 0.35 (0.01) -0.09 (0.02) -0.15 (0.02) -0.04 (0.02) -0.04 (0.02) -0.06 (0.02) 0.03 (0.02) 0.02 (0.02) 0.15 (0.02)

t-value 31.4 -5.4 -9.2 -2.3 -2.8 -2.6 1.2 0.7 6.5

p-value <0.001 <0.001 <0.001 0.02 0.006 0.01 0.24 0.47 <0.001

pH factor 4.54 (0.05) 0.82 (0.08) 1.36 (0.08) 0.03 (0.08) 0.05 (0.08) -0.66 (0.11) -0.96 (0.11) -0.37 (0.11) -1.26 (0.11)

t-value 83.8 10.8 17.7 0.4 0.7 -6.1 -8.8 -3.4 -11.7

p-value <0.001 <0.001 <0.001 0.68 0.50 <0.001 <0.001 <0.001 <0.001



Table 3.4: Mean (± standard deviation) of DOC concentration, C loss as DOC in % initial C, pH (geometrical mean), humification index (HIX) and
specific ultra-violet absorption (SUVA254) from CWD leachates and cumulative C loss as CO2 and DOC of three tree species and three decay stages. 

Tree species Decay class DOC

[mg C l-1]

pH HIX SUVA 

[l mg-1 m-1]

Cum. C as CO2

 [%]

Cum. C as DOC

[%]

Beech DC-1 14.7 (4.4) 5.61 4.28 (1.70) 2.49 (1.59) 2.18 (0.20) 0.11 (0.02)

DC-3 23.2 (2.8) 5.44 4.58 (0.74) 2.34 (0.57) 5.05 (0.45) 0.38 (0.11)

DC-5 37.6 (5.4) 4.52 10.03 (2.01) 3.95 (0.25) 9.26 (0.78) 1.56 (0.31)

Oak DC-1 91.8 (18.5) 4.26 5.33 (2.86) 4.47 (0.65) 2.37 (0.44) 0.79 (0.21)

DC-3 49.5 (6.2) 4.39 7.91 (1.29) 3.85 (0.44) 1.33 (0.18) 0.48 (0.06)

DC-5 39.4 (9.9) 4.36 8.86 (1.58) 3.93 (0.47) 9.03 (0.49) 1.45 (0.33)

Spruce DC-1 22.8 (3.9) 5.27 3.72 (0.59) 3.28 (0.64) 1.29 (0.13) 0.36 (0.09)

DC-3 47.4 (5.9) 4.63 1.27 (0.65) 1.88 (0.91) 2.50 (0.19) 0.49 (0.20)

DC-5 19.2 (2.6) 4.18 5.47 (0.85) 3.23 (0.70) 3.00 (0.16) 0.61 (0.18)



Fig. 3.1: Weekly C loss as CO2 and as DOC for the samples (a) beech DC-1, (b) beech DC-3, (c)

beech DC-5, (d) oak DC-1, (e) oak DC-3, (f) oak DC-5, (g) spruce DC-1, (h) spruce DC-3, (i)

spruce DC-5
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Mean DOC concentrations ranged between 14.7 and 91.8 mg l-1 (Table  3.3). The dynamics were

similar for all tree species of the same decay class: DOC concentrations of DC-1 and DC-3 peaked

between days 90 and 270 and decreased thereafter (Fig.  3.2). The DOC concentrations of DC-5

strongly decreased during the first 100-150 days whereas the changes were small in the remaining

time.

The relative contribution of DOC leaching to total C loss was tree species dependant and varied

between 3 and 54% in single samples. In average, it was most important for oak at DC-3 (27%) and

DC-1 (25%) and was least important for beech at DC-3 (5%) and DC-1 (7%) (Table 3.4). The ratio

of DOC to CO2 production fluctuated over the duration of incubation and revealed different patterns

among the decay stages. For DC-1 and DC-3, the relative importance of DOC production increased

during the first 200-300 days and decreased thereafter. The cumulative CO2 and DOC production

were not correlated for DC-1 and DC-3. In terms of DC-5, the relative C loss by DOC leaching

dropped in the beginning and leveled off in the remaining time. The correlation between C loss via

DOC  leaching  and  CO2 production  of  DC-5  was  positive  and  significant  (adjusted  R²=0.84,

p<0.001, y=0.25+0.13x). 

Qualitative DOC parameters

Mean pH values of leachates ranged between 4.18 and 5.61, indicating mainly decreasing pH values

compared to the applied solution (pH 6.0) (Table 3.4). The decrease in pH was strongest for DC-5 of

all tree species (Fig. 3.2b). Increasing pH values >6.0 were only measured in single samples of

beech  leachates  of  DC-1  and  DC-3.  The  linear  regression  analysis  revealed  significant  effects

(R²=0.88, p<0.001) of tree species and decay class on pH values (Table 3.3). Differences between

tree species and decay stages became greater during the incubation. 

Average HIX and SUVA254 values were 5.71 and 3.27 l mg-1 m-1, respectively. We found significant

influences  of  decay stages  and  tree  species  (Table  3.3).  Both  HIX  and  SUVA254 values  were

generally greatest at DC-5. Differences in HIX between days 1-28 and days 270-380 were greater

than differences in SUVA254 (data not shown). 

Of the qualitative DOC parameters, cumulative CO2 production was better  correlated with HIX

between days  270-380 than days 1-28 (Table  3.5).  Weak correlations  were found between CO2

production  and  SUVA254 as  well  as  pH  values.  Cumulative  DOC  production  was  positively

correlated with pH values, HIX and SUVA (Table 3.5) in the initial (days 1-28) and final incubation

period (days 270-380). The best correlation between DOC production and parameters was found

with HIX between days 270-380. 
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Fig. 3.2: Dynamics of (a) DOC concentrations and (b) pH values of extracts of decay class 1 (DC-

1),  decay class  3  (DC-3)  and  decay class  5  (DC-5)  and  three  tree  species  over  380  days  of

incubation.

Effects of glucose addition on DOC and CO2 production

The glucose added up to 56.4 mg C per woody debris unit which corresponded to 6% of the mean

cumulative CO2 or 28% of the mean cumulative DOC production during the 380 days of incubation.

Despite the additional C source, glucose had no effect on CO2 and DOC production of any tree

species and decay class. Further, glucose addition had no significant effect on pH-value, HIX and

SUVA254 of leachates. 
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Table 3.5: Correlation between cumulative CO2 and DOC production and mean humification index (HIX), specific ultra-violet absorption (SUVA254)

and pH value during the beginning (days 1-28) and the end of the incubation (days 270-380). 

Days 1-28 Days 270-380

Adjusted R² p-value function Adjusted R² p-value function

CO2 : HIX 0.00 0.47 y=0.32+0.01x 0.36 <0.001 y=-0.10+0.18x

CO2 : SUVA254 0.04 <0.05 y=0.48-0.43x 0.01 0.17 y=0.63+1.17x

CO2 : ph 0.01 0.19 y=0.74-0.08x 0.05 <0.01 y=2.46-0.30x

DOC : HIX 0.28 <0.001 y=-0.02+0.02x 0.53 <0.001 y=-0.04+0.03x

DOC : SUVA254 0.17 <0.001 y=-0.03+0.33x 0.15 <0.001 y=-0.02+0.46x

DOC : pH 0.03 <0.05 y=0.31-0.05x 0.25 <0.001 y=0.52-0.08x

 



Discussion

Tree species effects on total carbon loss, CO2 and DOC production

We refer  to  total  C loss  as  sum of  cumulative CO2 and DOC production  during incubation as

fragmentation was not relevant in our study. Given the dominance of CO2 over DOC production, the

linear regression analysis revealed similar results for cumulative CO2 production and total C loss.

Mean total C loss of 4.7% of the initial C within 380 days is higher than the mean annual C loss of

2.6% under field conditions calculated from radiocarbon dated woody debris logs of the same tree

species (unpublished data). The elevated C loss under laboratory conditions can be attributed to

different factors including temperature, moisture and sample size (Boddy, 1983). The incubation

temperature is 7-10 K higher than mean annual temperatures at the study sites. Boddy (1983) found

respiration rates from beech twigs to more than double between 5 and 15°C. For woody roots, Q 10

values of 4 for the interval 5-10°C and of 2.4 for the interval 10-15°C have been found (Chen et al.

2000). Assuming these Q10 values to be similar for our investigated samples, C loss would be in the

same order as in the field despite varying decomposition factors and woody debris composition. 

On average, spruce had the smallest C loss while beech and oak had similar C losses, except for

DC-3 (see discussion below). In a review, decay rate constants under field conditions including all

decay stages were in the order beech>spruce>oak (Rock et al. 2008). The faster decay of oak in

comparison to spruce in our incubation experiment might be due to the experimental setup that

mixed inner and outer heartwood. While no differences in extractable contents for wood parts have

been described for spruce and beech, inner heartwood of oak has lower contents of extractable

substances  than  outer  heartwood  (Puech  et  al.  1999).  Extractable  substances  contribute  to  the

microbial  resistance  of  wood  (Scheffer  &  Cowling,  1966).  Under  natural  conditions,  inner

heartwood of oak often decays before the complete tree death resulting in hollow snags (Ranius et

al. 2009). The consideration of inner heartwood in this study might have led to an overestimation of

decay rates of oak at DC-1 in comparison to natural decay processes. We expect this overestimation

to be minor at more severe decay stages, when the largest portions of extractable substances have

been leached from inner and outer heartwood. 

In this study, DOC concentrations of 9 – 68 mg l-1 were lower compared to field measurements.

Under European beech logs, DOC concentrations ranged between 11 and 115 mg l-1 (Kahl 2008,

Kuehne 2008). In North American mixed broad-leaved stands, DOC concentrations varied between

76 and 180 mg l-1 (Mattson 1987, Hafner 2005) and in coniferous forests between 62 and 108 mg l -1

(Yavitt  & Fahey  1985,  Spears  et  al.  2003).  Coniferous  woody  debris  yields  lower  DOC

75



concentrations than deciduous wood other than beech than European beech. The same order was

found in our experiment as reported in literature. Different factors influence the release of DOC

from woody debris.  Differences in DOC leaching among tree species may result  from different

chemical and physical characteristics of woody debris as well as distinct fungal communities (Song

et al. 2011). DNA sequences indicate that a wide variety of different fungi contribute to decay at

different decay stages of woody debris (Rajala et al. 2012), reflecting the decline in resource quality.

Wood of broad-leaved trees is commonly decomposed by fungi that cause white rot while wood of

coniferous trees is mainly decomposed by brown rot fungi (Schmidt 2006). The great abundance of

white  rot  fungi  in  broad-leaved  wood  is  speculated  to  be  responsible  for  elevated  DOC

concentration  under  broad-leaved logs  as  the  decay products  of  lignin  are  water  soluble  (Kahl

2008). However, it does not explain the relatively low DOC concentrations under European beech

logs. Initial concentrations of extractive substances in wood might control DOC leaching in the

early phases of decay.  The order of DOC concentration at DC-1 corresponded to the amount of

extractable substances in fresh wood: broad-leaved wood generally contains more extractives than

coniferous wood and European beech with fresh wood of oak containing up to 10% of extractable

substances like tannins whereas spruce has a content of only 2.1% and beech contains 2.0% of

extractable substances (Rowe 1979). We assume that the differences between tree species in DOC

production decline with decay class as a result of missing extractives in older woody debris. The

contribution of DOC to total C loss for oak and spruce was higher than in other studies, while the

values for beech were in the same range. Mattson et al. (1987) found a CO2:DOC ratio of 12:1 for

woody debris after 6 years of decomposition. Spears et  al.  (2003) calculated that 5% of woody

debris is released as DOC over the whole decomposition period leading to a CO2:DOC ratio of 19:1.

Due to the small sample size in comparison to logs, the surface:volume ratios in the incubation is

increased  in  comparison  to  field  conditions.  This  also  increased  the  working  surface  of  water

leading to better leaching conditions (Harmon et al. 1986) and possibly an overestimation of the

CO2:DOC ratio of 6:1 in our study.

Decay class effects on DOC and CO2 production

DOC leaching was always highest for DC-5. For DC-1 and DC-3, no consistent pattern was found

for the three tree species. Our finding corresponds to the results of other studies. Kahl (2008) found

no influence of decay class and time since death on DOC production from beech logs under field

conditions. Kuehne et al. (2008) and Hafner et al. (2005) reported maximum DOC concentrations

for the most heavily decayed woody debris. On the other hand, Spears et al. (2003) reported high
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variation for heavily decayed woody debris and lower DOC concentrations than for less decayed

woody debris. In our study, the dynamics of DC-1 and DC-3 were marked by an early peak in CO2

production and a later peak in DOC production. The delayed increase of DOC production during the

incubation can partially be explained by an increase in moisture content of the woody debris sample

(data not shown), that might have increased the diffusion for soluble products. An initial peak in

respiration is typically found in litter decomposition studies and is explained by rapid consumption

of easily available C sources during the initial phase of microbial decay (Berg, 2000). The sample

preparation  included  cutting,  which  represents  a  form of  physical  fractionation  that  made  new

surfaces available for fungal colonization. On the other hand, fungal colonization of woody debris

was restricted during the course of incubation because the woody debris had no contact to soil. High

water contents could have limited the oxygen supply in the inner woody debris and thus the aerobic

respiration of fungi. As woody debris of DC-5 constitutes of strongly fragmented material, sample

preparation  had  likely  minor  influence  on  fungal  colonization.  The  initial  decrease  of  DOC

concentration of DC-5 might be explained by a depletion of soluble decay products accumulated in

the field prior  to  the incubation.  The higher surface:volume ratio  in  the incubation might  have

favored DOC leaching in comparison to field conditions. Yavitt and Fahey (1985) also found an

initial peak of DOC leaching from heavily decayed woody debris over the snow melt period. The

significant  correlation  between  DOC  and  CO2 loss  suggests  that  the  extracted  DOC  mainly

originates from decomposition processes rather than extractives. Our findings correspond with those

of Klotzbücher et al. (2011) for leaf litter that a close correlation between DOC and CO2 production

only exists at later decay stages.

Qualitative DOC parameters

DOC characteristics gradually changed during the 380 days of incubation. The dynamics were most

notable in the pH value of the extracts, pointing to an increase of hydrolysable organic groups. The

influence of the decomposer community on the pH of woody debris was described with brown rot

lowering the pH of woody debris to average values of 3.7 and white rot yielding more variable

results  (Koenigs,  1974).  A negative correlation between woody debris  pH and decay rates  was

described by Fréschet  et  al.  (2012).  Of the spectroscopic characteristics,  HIX revealed the best

correlation  with  C-loss.  Lignin  derived  compounds  have  higher  HIX  values  than  other

decomposition products (Don  & Kalbitz, 2005). Hence, at high HIX values lignin decomposition

controls DOC production during decomposition of leaf litter (Klotzbücher et al. 2011). The high

HIX values of DC-5 as well as the good correlation with C loss suggest that lignin decomposition is
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the most important process at later decay stages. High HIX and SUVA254 indicate increasing stability

and perhaps increasing importance for C accumulation in the mineral soil (Don & Kalbitz, 2005). It

also suggests that DOC from heavily decayed oak and beech woody debris could contribute more to

C accumulation in soils than DOC of younger decay stages. 

Effects of glucose on DOC and CO2 production

We found no effects of glucose on the DOC and CO2 production from CWD. To our knowledge, the

effect of additional light C sources decomposition of CWD has not been studied so far. Few studies

investigated the potential of C addition on the decay of isolated wood compounds by single fungal

species. These cannot represent the diversity of the fungal community in CWD or the interactions of

glucose with wood substrates in an arranged structure. Studies with soil showed that between 30 and

40% of glucose added to different substrate is immediately used for respiration and the remaining

part is used for biomass growth (van Hees et al., 2005). Leisola et al. (1984) suggest that glucose

inhibits the depolymerization of cellulose and result in a more effective usage of products of lignin

decomposition. The lack of significant differences in any investigated parameter between control

and treated samples indicates that glucose has no or only a slight effect on the decomposition of

CWD. Thus, throughfall that contains easily decomposable substrates from canopy leaching has

apparently no impact on decay of CWD.

Conclusions
Our study indicates that DOC and CO2 production vary among the three tree species and among

decay stages. Cumulative CO2 production and DOC leaching per mass unit are highest for heavily

decayed CWD. DOC concentrations in the leachates per volume of CWD, however, are often higher

for less decayed CWD. CO2 production is the most important pathway of C loss, but the production

of DOC significantly contributes to the decay of CWD. In the initial decay stages, extractives seem

to contribute to DOC production, while lignin derived compounds seem to be more important at

later decay stages. Up to 25% of the C from oak CWD is lost as DOC. This makes oak the tree

species  with  the  largest  potential  to  contribute  to  C  input  to  the  soil.  Heavily decayed  CWD

produces more stable DOC, which might contribute more to the C accumulation in the soil. Further

heavily decayed CWD also produces DOC with the lowest pH value, which might influence soil

acidity more  than  DOC from less  decayed CWD. The lack  of  significant  effects  from glucose

addition suggests that easily available C input with throughfall does not affect CWD decay.
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Abstract
Forest  management  may affect  the carbon (C) stocks  of  coarse woody debris  (CWD) and soil.

CWD represents a short  to  middle term C sink in  forest  ecosystems,  but  the formation of  soil

organic carbon (SOC) from CWD is still subject to speculation. The effects of forest management

on C stocks of CWD and soils were investigated in a Norway spruce and two European beech -

Sessile oak forests located in different climatic and geological regions of Bavaria, Germany. In the

unmanaged parts of the forests, wood was not harvested and CWD accumulated for about 40 to 100

years. C stocks of CWD, the forest floor and the mineral soil were inventoried. Turnover times

(TTs)  were  calculated  from  radiocarbon  signatures  with  a  non-steady  state  model  with  three

different C input pools for the forest floor and with a steady state model for the mineral soil. Above-

ground CWD stocks amounted to 11 Mg C ha-1 in the unmanaged spruce forest and to 23-30 Mg C

ha-1 in  the  unmanaged beech-oak forests,  whereas  CWD stocks  were 4.2-5.6 Mg C ha-1 in  the

managed forests. The mean disappearance time of CWD from spruce and oak was longer (70 years)

than of beech (30 years). Elevated CWD input did not affect the C stock of the forest floor and the

mineral soil in the unmanaged forests, indicating that CWD has no or little potential for soil  C

sequestration.  Elevated CWD input was compensated by faster turnover of organic C in the Oe

horizon, indicating a stimulation of leaf litter decay. In the Oa horizon and the mineral soil,  no

consistent patterns of radiocarbon signatures were found in all three investigated forests, suggesting

that ecosystem properties overshadow moderate forest management effects.

Keywords: soil  organic  carbon,  turnover  times,  coarse  woody debris,  radiocarbon,  forest  floor

turnover
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Introduction
There is  growing public and political  interest  in the carbon (C) sequestering potential  of forest

ecosystems. Forests contain 50% of the organic C in the terrestrial biosphere (Jandl et al. 2007) and

therefore  play  an  important  role  in  the  earth's  climate.  Management  practices  can  impact  the

sequestration of C in forests (Ballard 2000), including the sequestration of C in coarse woody debris

(CWD). In forests withdrawn from management, CWD stocks increase by <0.1 to 19 m³ ha-1 a-1

(Vandekerkhove  et  al. 2009).  CWD input  contributes  3-24% to total  above-ground litter  in  old

growth forests (Laiho & Prescott 1999) and represents a short to middle term C stock in forest

ecosystems (Laiho & Prescott 2004, Boulanger & Sirois 2006, Hagemann et al. 2009, Bradford et

al. 2009). CWD of tree species differ in their decay (Rock et al. 2008) and thus in their potential as

lasting C stocks. 

CWD is incorporated in many soil and forest models, but only in a highly generalized form (Cramer

et  al. 2001,  Parton  et  al. 1988,  Tuomi  et  al. 2011).  In  soil  models,  C  originating  from CWD

potentially contributes up to 10-60% of deep soil organic C stocks (Harden et al. 2000, Manies et al.

2005). Residues of CWD decomposition have the potential to accumulate in the mineral soil as

lignin residues from woody debris can persist in the soil for decades to centuries (Arantes  et al.

2012). However, an increase of C stocks in the soil due to CWD has not been reported so far.

The effects of forest management on soil C stock are hard to detect due to slow changes and high

spatial  variability  (Schöning  et  al. 2006,  Schrumpf  et  al. 2008,  Homann  et  al. 2008).  Forest

management influences the C input to the soil, but it does not inevitably modify the stabilization of

soil organic matter (SOM) (Jandl et al. 2007). SOM of the mineral soil is heterogeneous and is often

divided  into  chemical  or  physical  fractions  with  different  stability  and  turnover  times  (TTs)

(Trumbore 2000, Kögel-Knabner et al. 2008). In common procedures, SOM is fractionated in free

particulate  organic  matter  (fPOM),  occluded  particulate  organic  matter  (oPOM)  and  mineral

associated organic matter (MaOM). The fPOM fraction consists of visible plant residues (Wagai et

al. 2008)  from  partly  decomposed  below-ground  and  above-ground  litter.  As  an  easily

decomposable fraction with fast TT, it is often used as an early indicator for disturbances. Input of

CWD as fragmented material would result in an increase of the fPOM fraction (Crow et al. 2007).

The oPOM fraction contains highly fragmented plant debris (Wagai et al. 2008) and it is assumed to

respond to disturbance within decades or centuries (Hedde et al. 2008, Don et al. 2009). The MaOM

fraction has a low amount of plant-derived compounds and a high proportion of compounds derived

from microbial cells (Wagai et al. 2008, Miltner et al. 2011). CWD has the potential to contribute to
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all fractions through dissolved organic carbon (DOC) production. An increase in DOC underneath

CWD logs (Spears et al. 2003) has the potential to increase the soil organic carbon (SOC) stock as

DOC leached from CWD has the same stability as background organic matter from other sources

(Lajtha et al. 2005). 

Only the fast turning C pools have the ability to sequester high amounts of C in a relatively short

time period, whereas the recalcitrant C pool accumulated over thousands of years and turns over

very slowly (Hahn 2004). Radiocarbon signatures have been used to calculate the TT of SOM or to

detect changes in the SOM pools (Gaudinski  et al. 2000, Torn  et al. 1997). It thus represents a

powerful tool to investigate the fate of C from CWD in the soil  and to evaluate the impact of

management changes on TT of SOM.

This study was conducted to evaluate the influence of management practices on the C sequestering

potential of a forest in the time span of decades. The following aspects were investigated: (1) the C

stocks of CWD in managed and unmanaged forests, (2) the management effect on the C stocks in

the forest floor and the mineral soil and (3) the management effect on radiocarbon signature and the

TT of organic C in the forest floor and mineral soil. A new model approach was employed to assess

the TT of organic C in the forest floor with three different C input sources including fine woody

debris (FWD), CWD, and organic material from the Oi horizon.

Material and methods

Study sites and general concept

Managed and adjacent unmanaged forests were compared at three different study sites in Bavaria,

Germany: Ludwigshain, Rohrberg and Grübel. Each site represents a different geological region and

different micrometeorological conditions. Further, different tree species (European beech, Sessile

oak, Norway spruce) are dominant in each forest. 

Grübel (49°07’ N 013°07’ E) is a 56.3 ha Norway spruce (Picea abies L.) forest reserve situated at

1250 m a.s.l. Mean average temperature is 3-4°C and mean annual precipitations are 1500 mm. The

soil is a Podzol on gneiss with a highly variable forest floor. The pH-value is 3.1 in the upper 10 cm

of the mineral soil and increases to 4.4 in 50-100 cm soil depth. The even aged forest is about 260

years old and has been protected since 1978. Above-ground timber biomass is about 450 m³ ha -1 in

the unmanaged forest and 500 m³ ha-1 in the managed forest. Information of stand history is scarce;

no thinning procedures took place in the past 20 years in the managed forest. In the unmanaged

forest, single trees were cut due to bark beetle infestation. In most cases, the bark of the trees was

removed and the logs were left in the forest.

88



Ludwigshain (49°55’ N 011°48’ E) consists of 2.4 ha unmanaged beech-oak forest situated at an

altitude of 460 m a.s.l. Mean average temperature is 7-8°C, mean annual precipitations are 650-750

mm. The soil is a calcaric Luvisol and developed on Franconian Jura. Soil pH increases from 3.6 in

the top 10 cm of the mineral soil to 6.8 in 50-100 cm soil depth.  The forest has been protected since

1913, though high grade wood, especially oak, of trees that succumbed to natural mortality was

removed until the mid-1960s. The mean tree age is 370 years, with oak trees of up to 470 years. In

part of natural succession, dead oak trees were replaced by beech saplings, thereby increasing the

natural dominance of beech. Currently about 30% of the living trees in the unmanaged forest are

Sessile  oaks  (Quercus  petraea (Mattuschka)  Liebl.)  and  70%  are  European  beeches  (Fagus

sylvatica L.). Above-ground timber biomass is estimated at 350 m³ ha-1. The managed forest is a

125-year-old forest stand with 30 % European beech and 70 % Sessile oak. Above-ground timber

biomass is 400 m³ ha-1. Historical sources indicate permanent usage of the site as forest since human

colonization.  Reliable  forestry  records  are  available  for  the  past  20  years.  The  last  thinning

procedure was conducted 10 years prior to the study, when 337 m³ wood ha-1 were removed.

Rohrberg (49°54’ N 009°26’ E) is a 9.9 ha unmanaged beech-oak forest located in the Hochspessart

on Sandstone. The soil is a Cambisol with typical moder as dominant humus form. Soil pH values

increase from 3.0 in the top 10 cm of the mineral soil to 4.0 in 50-100 cm soil depth. Mean average

temperature is 7-8°C, mean annual precipitation is 950-1100 mm. The forest has been protected

since 1928. Mean stand age is 550 years with up 840-year-old oak trees. As beech is becoming more

dominant as part of natural succession, several dominant beech trees were cut in 2002 to maintain

oaks. All cut beeches remained in the forest. Currently, above-ground timber biomass is 300 m³ ha -1,

consisting of about 30% European beech and 70% Sessile oak. The site of the managed forest is

separated in two parts with a 100-year-old beech forest and a 65-year-old oak forest. Average tree

species distribution is 50 % European beech, 45 % Sessile oak and 5 % European larch (Larix

decidua Mill.).  Above-ground timber biomass is  estimated to  be 350 m³ ha-1.  The last  thinning

procedure with harvest of 106 m³ ha-1 wood took place three years prior to the study.

Above-ground coarse woody debris inventory

Within an area of 1 ha, above-ground woody debris, including logs, branches, snags and stumps

with a diameter > 7 cm, was completely inventoried as CWD in 2010. Each piece of CWD was

measured and attributed to a decay class (Table 4.1) following Goodburn & Lorimer (1998). CWD

volumes  were  calculated  from  multiple  measurements  of  length  and  diameters  using  volume

formulas under the assumption that CWD pieces are regular cones or cylinders (Bebber & Thomas
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2003). It is assumed that over- and underestimation of individual pieces levels out over the total

stock. 

Table 4.1: Decay class (DC) characteristics of coarse woody debris (CWD).

Decay class            Characteristics

        1                     Recently dead, bark intact, small twigs and leaves, no visible signs of decomposition

        2                     Bark mostly remaining, no leafs, wood not penetrable by a knife

        3                     Bark mostly missing, wood partly penetrable with knife, visible discoloration

        4                     No bark, wood completely penetrable with knife, deformation and discoloration

        5                     Wood soft, breakable with fingers, advanced humification

To investigate wood density and C concentration, samples were taken by drilling holes of known

volume and by collecting all shavings. The shavings were dried at 60°C until mass constancy. Sub-

samples were ground with a ball mill for further analysis. For conversion of CWD volumes to C

stocks,  site  specific  average wood densities  and C concentrations  were calculated for  each tree

species and decay class. The amount of C in a volume of CWD in kg C m -3 (hereafter C density)

was used as a unit to compare the C loss from CWD. This unit considers changes in density and C

concentration of CWD, but not loss of the initial wood volume. For calculation of CWD production

and  disappearance  time,  time  of  tree  death  was  determined  with  radiocarbon  analysis

dendrochronological cross-dating (Krüger et al., in prep.). 

Accumulation and disappearance time of coarse woody debris

CWD  accumulation  is  calculated  from  CWD  production  and  CWD  loss.  The  decadal  CWD

production is estimated from time of tree death. In accordance to decay classes, the time of tree

death distribution is extrapolated for the whole CWD stock. CWD stocks (m3 ha-1) with time of tree

death of up to 20 years for beech and up to 40 years for oak and spruce were used for calculation of

the decadal CWD production. To reconstruct CWD C production from age class distribution we

assume that  the  initial  C  concentration  and  wood  density correspond  to  undecomposed  wood.

Volume loss is assumed to play an inferior role in early stages of decay (Harmon et al. 1986).

Disappearance times are defined as the time period between death and decay of a tree or branch to

fractions < 7 cm in diameter. Disappearance times are calculated from dated CWD logs and their C

density. Yearly C losses from current C stocks are calculated assuming linear functions derived from

the disappearance times.
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Soil sampling

Within an area of 2 ha, 30 plots were measured at regular intervals in each of the three unmanaged

and managed forests. At each plot, the forest floor was sampled with a quadratic sampler of 20 cm

length. The forest floor was separated by horizon in Oi, Oe and Oa material.  Fine woody debris

(FWD), with a diameter of 0.2 - 7 cm, was separately collected as an additional component of the

forest floor. The upper 0-10 cm of the mineral soil was sampled with a core cutter (10 cm height,

8.6 cm diameter). At the same plot, the soil was sampled up to 1 m depth with a percussion drill and

separated by the depth intervals 10-20 cm, 20-50 cm and 50-100 cm. The samples were dried at

60°C until mass constancy. Samples were sieved (<2 mm), visible roots and stones sorted out and

weighted. A sub-sample of the fine earth material was ground with a ball mill for C analysis. The

bulk density was determined from additional samples taken with a core cutter and by correcting the

samples taken by percussion drill for compression.

Density fractionation

For density fractionation, a pooled sample per soil depth and each managed and unmanaged forest

was mixed from 30 sub-samples of equal dry mass. A procedure adapted from John et al. (2005) and

Schulze  et al. (2009) was used for density fractionation. Dry soil samples (<2 mm, 60°C) were

dispersed in sodium polytungsten (TC-Tungsten Compounds SPT-0) solution at densities of 1.6 g

cm-3 and 2.0 g cm-3. In the first fractionation step, 10 g of soil and 40 ml of SPT with a density of 1.6

g cm-3 were shaken for 60 min. The solution was centrifuged at 5085 g for 15 min (Varifuge® 3.2

RS Heraeus SEPATECH). The supernatant with particles was filtered through a 0.4 μm pre-washed

membrane filter  (IsoporeTM  membrane filter  HTTP04700, Millipore).  In the second fractionation

step, the pellet was treated with the same procedure with a 2.0 g cm -3 SPT solution. The supernatant

with  particles  constitutes  the  oPOM  fraction  and  the  pellet  contains  the  MaOM  fraction.  All

fractions were washed with de-ionized water until the conductivity of the solution was <10 μS,

subsequently dried at 60°C and ground with an agate mortar. Calcareous samples were treated with

0.6 mol HCl for 48 hours to remove all inorganic C. 

Chemical analysis

C analysis were conducted by the Chemical Analytics of the BayCEER or in the laboratory of the

Department of Soil Ecology at the University of Bayreuth with a CN analyser (Elementar Vario EL,

Hanau, Germany). Calcareous soil samples were decalcified by fumigation with concentrated HCl

prior to the C measurement. Soil pH was measured in a 0.01 CaCl2 solution (soil:solution ratio

1:2.5) with a WTW pH315i sensor.
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Radiocarbon signatures of forest floor, bulk mineral soil and density fractions were measured by

accelerator mass spectrometry (AMS). Sub-samples of 0.8 mg C were combusted in sealed quartz

tubes  with  CuO  as  oxidizer  and  silver  wire  for  2  hours  at  900°C.  The  resulting  CO2 was

cryogenically  purified  from  water  and  non  condensable  compounds  and  converted  to  graphite

targets using the modified sealed tube zinc reduction method described by Xu  et al. (2007). The

preparation  of  the  samples  took place  at  the  Department  of  Soil  Ecology at  the  University of

Bayreuth.  The radiocarbon signatures were measured by the Keck-CCAMS of the University of

California, Irvine using an AMS with a precision of 2-3‰. Radiocarbon data are expressed as Δ14C,

which is the per mil deviation from the  14C/12C ratio of oxalic acid standard in 1950. The sample

14C/12C ratio  has  been  corrected  to  a  δ13C value  of  -25‰ to  account  for  any mass  dependent

fractionation effects (Stuiver & Polach 1977).

Calculation of turnover time

The TT of C of each horizon or soil depth of the forest floor, mineral soil and density fraction was

calculated from its radiocarbon signature. We used non-steady state models for the forest floor and a

steady state model for the mineral soil. For the forest floor, input pools with different radiocarbon

signatures were considered. We assume that all input to the Oi horizon corresponds to fresh leaf

litter. The TT of C of the Oe horizon is estimated considering the input from the Oi horizon, FWD

and CWD. For the estimation of the TT of C in the Oa horizon, inputs from the Oe horizon and root

litter  are  considered.  For the  TT of  C in  the bulk  samples  of  the mineral  soil  and the density

fractions,  a  steady  state  model  was  used  following  Gaudinski  et  al. (2000).  The  radiocarbon

signatures of the forest floor, FWD and the mineral soil were measured and the average radiocarbon

signature of CWD stocks were estimated based on stand age and production time of CWD. For

modern radiocarbon signatures, two TT are possible. The calculations are explained in detail in the

Supporting information (S1).

Statistical analysis

All statistical analyses were performed with R 2.9.2 (R Development Core Team 2009) and Open

Office Calc 3.4.0 with the implemented SCO Evolutionary Algorithm to solve non-linear equations.

Differences  in  C stocks  between management  forms  were  tested  with  a  Student’s  t-test  with  a

confidence interval of p<0.05. Two-way ANOVAs were conducted to test the differences between

study sites. 
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Results

Carbon stocks of above-ground coarse woody debris

CWD accumulated to 64 (Grübel), 165 (Ludwigshain) and 132 (Rohrberg) m³ ha-1 in the unmanaged

forests and to about 30 m³ ha-1 in the managed forest. This corresponded to CWD stocks of 11 to 30

Mg C ha-1 in the unmanaged forests and about 5 Mg C ha-1 in the managed forests (Table 4.2). CWD

stocks in the unmanaged forests were thus 2-6 times higher than in managed forests. Irrespective of

forest management and tree species, most C was generally stored as decay stage 2 and 3. Up to 10 %

of the soil surface was covered with CWD in the unmanaged forests, whereas less than 1 % of the

soil was covered by CWD in the managed forests. 

The distribution of decay class (Table 4.2) was related to the pattern of age distribution in all forests

(Fig. 4.1). Assuming that age distribution of CWD stocks corresponded to CWD production, mean

annual CWD production ranged between 100 and 250 kg C ha-1 a-1 in the managed and between 230

and 1180 kg C ha-1 a-1 in the unmanaged forests on a decadal time scale (Table 4.3). The unmanged

forest at Grübel had a relatively small production rate similar to the managed forest at Ludwigshain

and  Rohrberg.  Ludwigshain  and  Rohrberg  showed  distinct  tree  species  patterns (Fig.  4.1):  at

Ludwigshain,  CWD production of oak and beech was in  a similar  range over  the last  decades

whereas at Rohrberg CWD production of beech was more than five times higher than oak. Similar

patterns but lower production rates were found in the unmanaged forests. 

We found significant differences in C density of CWD between tree species, decay classes and study

sites (p<0.001) (not shown). Despite the unequal distribution, CWD of beech or oak from Rohrberg

and  Ludwigshain  were  pooled  to  achieve  a  better  representation  of  the  decay  classes.  The

correlation between C density of CWD and time since tree death was best represented by a linear

function  for  beech  (adjusted  R²=0.61,  p<0.01,  y=279.1-8.6x)  and  spruce  (adjusted  R²=0.57,

p<0.001,  y=242.4-3.5x)  (Fig.  4.2a,  4.2c) whereas no correlation was found for  oak (Fig.  4.2b).

Disappearance times of 30 years for beech and 70 years for spruce were estimated. The times of tree

death of the dated oak CWD indicated that it can remain in forest for as long as spruce. For further

calculations, a disappearance time of 70 years was assumed for oak CWD. Mean annual C loss of

CWD, calculated from the disappearance time, ranged between 0.06 to 0.73 Mg C a-1 resulting in an

annual accumulation of 0.04 – 0.51 Mg C a-1 (Table 4.3). 
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Table 4.2: Carbon stocks in three unmanaged and managed forests in the above-ground coarse woody debris (CWD) separated in decay class (DC), the

forest floor including FWD and the mineral soil up to 1 m depth. Standard errors are given in parentheses.

Forest DC1 DC2 DC3 DC4

[Mg C ha-1]

DC5 Total CWD Forest floor Mineral

soil

Grübel managed 0.2 1.1 1.8 0.9 0.3 4.3 15.0 (1.2) 233 (16)

unmanaged 0.4 3.0 5.8 1.9 0.2 11.3 15.1 (1.5) 262 (21)

Ludwigshain managed 0.0 0.4 2.2 1.9 0.6 5.1 4.0 (0.9) 56 (5)

unmanaged 0.7 14.3 10.3 3.6 1.2 30.4 4.1 (0.7) 48 (3)

Rohrberg managed 0.0 2.6 1.8 0.9 0.3 5.6 8.0 (0.8) 115 (8)

unmanaged 3.4 5.1 11.1 3.2 0.4 23.2 8.0 (0.7) 112 (7)



Fig. 4.1: Age distribution of coarse woody debris (CWD) in m³ per decade for each species for (a)

unmanaged Grübel, (b) managed Grübel, (c) unmanaged Ludwigshain, (d) managed Ludwigshain,

(e) unmanaged Rohrberg, (f) managed Rohrberg.
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Fig. 4.2: Correlation between carbon density and time since tree death for lying logs with diameter

>20 cm for the tree species (a) European beech, (b) Sessile oak and (c) Norway spruce.
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Table 4.3: Model results for coarse woody debris production, loss and accumulation.

Forest CWD

production

CWD loss

[kg C ha-1 a-1]

CWD

accumulation

Grübel managed 100 60 40

unmanaged 230 160 70

Ludwigshain managed 200 100 100

unmanaged 1080 570 510

Rohrberg managed 250 130 120

unmanaged 1180 730 450

Carbon stocks of forest floor and mineral soil

C stocks in the forest floor including FWD ranged from 4.0 to 15.1 Mg C ha -1 (Table  4.2). No

significant differences between managed and unmanaged forests were found for any site. C stocks in

the Oi horizon were slightly lower in the managed forest at Rohrberg and Ludwigshain and slightly

higher at Grübel (Fig. 4.3). C stocks in the FWD ranged between 0.3-1.1 Mg C ha-1 and were higher

in the managed than in the unmanaged forests (Fig.  4.3). The C stock of the forest floor were 6

times lower than the C stock of CWD in the unmanaged forest of Ludwigshain and Rohrberg, but of

similar range in the unmanaged forest of Grübel. 

In the mineral soil, the SOC concentration decreased from 3.5-17.6% at 0-10 cm to 0.2-1.1% at 50-

100 cm soil  depth.  Differences  in  SOC concentration  were  greater  among the  study sites  than

between the management forms (Table 4.4). 

The SOC stocks up to 100 cm depth accumulated to 48-262 Mg C ha-1 (Table 4.2). No significant

differences between management forms were found. C Stocks were slightly lower in the unmanaged

forests at Ludwigshain and at Rohrberg than in the corresponding managed forests. At Grübel, SOC

stocks were slightly higher in the unmanaged than in the managed forest. C stocks in fine roots up to

1 m depth ranged from 3.4-13.4 Mg C ha-1 (data not shown). 

The percentage of the total C stock in the fPOM decreased with soil depth from 20-70 % at 0-10 cm

soil depth to 10-30 at 50-100 cm soil depth. The percentage of the total C stock in the MaOM

increased from 5-40 % at 0-10 cm soil depth to 50-85 % at 50-100 cm soil depth (Fig.4.4). The

percentage of C in oPOM showed no consistent pattern. A two-way ANOVA revealed significant
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influences of forest sites on the distribution (p<0.01), but no effects of management. C stocks in the

fPOM fractions were higher in the managed forests at Ludwigshain and Grübel and lower in the

managed forest at Rohrberg (Fig. 4.4). 

Fig.  4.3:  Carbon stocks  in  forest  floor  in  Mg  C  ha-1 for  (a)  unmanaged  Grübel,  (b)

unmanaged  Ludwigshain, (c)  unmanaged  Rohrberg,  (d)  managed  Grübel,  (e)  managed

Ludwigshain, (f) managed Rohrberg. 

Turnover times of carbon in the forest floor 

Radiocarbon signatures indicated mainly modern C in the Oi (40 – 82 ‰), Oe (65 – 137 ‰) horizons

of all study sites and in the Oa (110 - 128 ‰) horizon at Rohrberg, but more pre-bomb C in the Oa

(82 - 97 ‰) horizon at Grübel (Table  4.5). FWD had a radiocarbon signature of 126 - 154 ‰

indicating an age of  16-20 years  since photosynthetic  fixation.  In the Oe horizons,  radiocarbon

signatures were consistently lower in the unmanaged than in the managed forests at all study sites.

The difference was most pronounced in the combined Oe/Oa horizons at Ludwigshain.The TT of C

in the Oe horizon was calculated assuming different scenarios of C input from the leaf litter in the Oi

horizon, CWD and FWD (see Supporting Information S1). 
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Table 4.4: Soil characteristics, standard errors are given in parentheses.

Grübel - unmanaged Grübel - managed
Bulk 

density [g 

cm-3]

Fine earth 

[%]

pH SOC [%] N [%] Bulk 

density [g 

cm-3]

Fine earth 

[%]

pH SOC [%] N [%]

Oi 50.1 (0.2) 1.56 (0.08) 50.2 (0.7) 1.73 (0.07)
Oe 46.7 (0.5) 2.17 (0.06) 45.8 (0.9) 2.20 (0.07)
Oa 41.9 (0.8) 2.25 (0.05) 39.4 (1.4) 2.14 (0.08)
0-10 

cm

0.7 78 3.15 17.6 (2.0) 0.97 (0.12) 0.7 71 3.15 14.8 (1.5) 0.79 (0.08)

10-20

cm

1.1 56 3.42 8.5 (1.2) 0.46 (0.07) 1.1 69 3.38 6.9 (0.7) 0.35 (0.04)

20-50

cm

1.6 42 4 3.1 (0.3) 0.13 (0.01) 1.6 50 3.99 2.2 (0.2) 0.10 (0.01)

>50 

cm

1.8 48 4.4 1.1 (0.1) <0.05 1.8 47 4.42 0.8 (0.1) <0.05



Ludwigshain - unmanaged Ludwigshain - managed

Bulk density

[g cm-3]

Fine earth 

[%]

pH SOC [%] N [%] Bulk density

[g cm-3]

Fine earth 

[%]

pH SOC [%] N [%]

Oi 46.6 (0.3) 1.30 (0.03) 47.4 (0.2) 1.05 (0.02)
Oe/Oa 33.9 (1.5) 1.50 (0.05) 38.5 (0.7) 1.59 (0.04)
0-10 
cm

1.0 64 3.59 3.8 (0.2) 0.20 (0.01) 1.0 81 3.72 3.5 (0.2) 0.18 (0.01)

10-
20 
cm

1.0 54 3.85 1.5 (0.1) 0.09 (0.00) 1.0 49 4.08 1.8 (0.2) 0.09 (0.01)

20-
50 
cm

1.2 36 4.25 0.7 (0.0) 0.06 (0.00) 1.2 39 6.28 0.7 (0.1) 0.06 (0.00)

>50 
cm

1.7 22 6.75 0.3 (0.0) 0.04 (0.00) 1.7 38 6.88 0.3 (0.0) 0.04 (0.00)



Rohrberg - unmanaged Rohrberg - managed

Bulk 

density [g 

cm-3]

Fine earth 

[%]

pH SOC [%] N [%] Bulk 

density [g 

cm-3]

Fine earth 

[%]

pH SOC [%] N [%]

Oi 47.2 (0.2) 1.62 (0.04) 47.7 (0.2) 1.38 (0.05)
Oe 43.2 (0.8) 1.99 (0.05) 42.5 (1.3) 1.80 (0.05)
Oa 33.3 (1.6) 1.72 (0.08) 37.9 (1.5) 1.80´(0.07)
0-10 

cm

0.9 90 2.97 4.9 (0.3) 0.25 (0.01) 0.8 90 2.98 6.0 (0.5) 0.30 (0.03)

10-20

cm

1.0 84 3.3 3.3 (0.4) 0.16 (0.02) 1.0 77 3.29 2.8 (0.2) 0.13 (0.01)

20-50

cm

1.2 78 3.95 1.2 (0.1) 0.07 (0.01) 1.2 69 3.94 1.4 (0.1) 0.07 (0.00)

>50 

cm

1.6 76 3.98 0.2 (0.0) <0.05 1.6 71 3.91 0.2 (0.0) <0.05



Fig.  4.4: Stocks of  soil organic carbon in the three density fractions (fPOM, oPOM, MaOM) in four soil depths for three unmanaged and managed

forests. “Loss” indicates the amount of  soil organic lost during density fractionation for (a) unmanaged Grübel, (b) unmanaged Ludwigshain, (c)

unmanaged Rohrberg, (d) managed Grübel, (e) managed Ludwigshain, (f) managed Rohrberg.



With fragmented leaf litter from the Oi horizon as single C input, TTs of C in the Oe horizon varied

between 5.1 and 18.6 years. However, TTs of C in the Oe horizons were always shorter in the

unmanaged forests than in the managed forests. The difference was smallest at Rohrberg (5.1 vs, 6.2

years) followed by Grübel (7.9 vs. 10.0 years) and Ludwigshain (5.1 vs. 18.6 years). The proportion

of input to the Oe horizon from the Oi horizon (hOi) ranged between 10 and 40 %.

The simulated increase of CWD input (up to 10 % of CWD loss) resulted in longer TT of C in the

Oe horizon irrespective of management and site (Fig. 4.5a-c). The sole exception was the managed

forest Rohrberg, where the TT of C in the Oe horizon decreased from 6.2  to 5.6 years at a CWD

input of 10 %. The increase of CWD input resulted in a bigger difference in TT of C in the O e

horizon in the unmanaged than in the managed forest (Fig. 4.5d-f). The increase was most important

in the unmanaged Ludwigshain, where the TT of C in the Oe horizon increased from 5.1 to 10 years

with an input of 10 % CWD (Fig.  4.5b). The uncertainty from the radiocarbon signature of CWD

was slight. When the proportion of CWD input was less than 5 %, a variation of the radiocarbon

signature of CWD resulted in a difference of TT of less than one year. An increased input of CWD

resulted in a lower proportion of input from the O i horizon (hOi). At equal HCWD values or TT, the hOi

values in the managed and unmanaged forests did not correspond. After consideration of FWD as

input to the Oe horizon, the calculated TTs of C in the Oe horizon increased by 1.5 – 3.7 years.

Under all scenarios and at all study sites, TTs of the Oe horizon were faster in the unmanaged forests

at the same CWD input than in managed forests. TTs of C In the Oa horizon ranged from 55-80

years.  TTs of C in the Oa horizon in the unmanaged forests  are faster at  Grübel  and slower at

Rohrberg than in the managed forests. 

Turnover times of carbon in the mineral soil

The radiocarbon signature of SOC in bulk soil decreased consistently with soil depth in all forests

(Table 4.5). Accordingly, the TTs of SOC in bulk mineral soil range from 130-470 years in 0-10 cm

depth to 740-3900 years in 50-100 cm depth (Table  4.5). Differences among the study sites were

greater than between the management types.  Similar to the bulk soil,  radiocarbon signatures of

density fractions generally decreased with soil depth in the order fPOM>oPOM>MaOM. TTs in the

fPOM fraction were shorter (5-270 years) than in  the oPOM (160-3600 years) and the MaOM

fractions (125-4200 years) and decreased with soil depth. One exception is the fPOM fraction at

Ludwigshain where radiocarbon signatures and TT remained almost constant with increasing depth

at both the managed and unmanaged forests.
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Table 4.5: Radiocarbon signatures of bulk soil and density fractions of three unmanaged and managed forests Grübel, Ludwigshain and Rohrberg. The

turnover times expressed in years (given in parentheses) were calculated from radiocarbon signature with a steady state model. 

Grübel - unmanaged Grübel - managed

Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC

Oi 73 82

Oe 112 137

Oa 97 82

0-10 cm 11 (280) 13 (270) -85 (900) -152 

(1450)

31 (200) -25 (470) 36(190) -77 (840) -110 

(1100)

34 (200)

10-20 cm -113 

(1120)

-61 (710) -134 

(1300)

-198 

(1830)

-12 (390) -124 

(1210)

-32 (510) -109 

(1090)

-177 

(1660)

-27 (480)

20-50 cm -265 

(2400)

-100 

(1000)

-238 

(2200)

-317 

(2900)

-238 

(2180)

-29 (495) -254 

(2320)

-328 

(2950)

>50 cm -440 

(3900)

-368 

(3300)

-401 

(3600)

-479 

(4200)

-432 

(3850)

-302 

(2720)

-362 

(3240)

-458 

(4070)



Ludwigshain - unmanaged Ludwigshain - managed

Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC

Oi 41 46

Oe/Oa 65 134

0-10 cm 37 (190) 61 

(5/130)

41 

(1/165)

65 

(6/130)

92 

(10/90)

45 

(2/170)

64 

(5/130)

44 

(2/170)

32 (200) 101 

(11/80)

10-20 cm -2 (340) 38 (190) -60 (710) -46 (610) 38 (190) -5 (350) 16 (260) -26 (470) -48 (620) 63 

(5/130)

20-50 cm -58 (690) 98 

(11/80)

-59 (710) -115 

(1150)

-82 (880) 27 (220) -46 (610) -135 

(1300)

>50 cm -95 (980) 113 (170) -107 

(1070)

-294 

(2650)

-116 

(1150)

84 

(9/100)

-175 

(1640)

-278 

(2530)



Rohrberg - unmanaged Rohrberg - managed

Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC Bulk FPOM OPOM 

[Δ14C‰]

MAOM DOC

Oi 46 39.6

Oe 70 78.9

Oa 110 127.7

0-10 cm 24 (230) 77 

(8/100)

4 (310) -7 (370) 78 

(8/100)

62.0 

(5/130)

121.6 

(15/60)

46.8 

(2/160)

34.1 

(200)

102.8 

(11/80)

10-20 cm -28.6 

(290)

47.7 

(2/160)

8.5 (290) -11.6 

(390)

57.1 

(4/140)

35.7 

(190)

70.5 

(7/120)

11.7 

(280)

-11.3 

(390)

86.5 

(9/90)

20-50 cm -43.2 

(590)

23.1 

(230)

-37.5 

(550)

-59.2 

(700)

-42.4 

(580)

33.2 

(200)

-244.2 

(2230)

-33.3 

(520)

>50 cm -126.6 

(1240)

14.4 

(260)

-123.4 

(1210)

-185.1 

(1730)

-63.9 

(740)

31.7 

(200)

-33.3 

(520)

-130.4 

(1270)



Fig. 4.5:   Proportion of input to the Oe horizon from total C loss of the Oi horizon and from total coarse woody debris (CWD) loss in Grübel (a),

Ludwigshain (b) and Rohrberg (c) and turnover time (TT) of the Oe horizon for proportion of input of total CWD loss in Grübel (d), Ludwigshain (e)

and Rohrberg (f). The scenario with no consideration of fine woody debris (FWD) is shown in straight lines, the scenario with consideration of FWD is

shown in dashed lines. Black/grey lines give mean radiocarbon signature of CWD (mCWD), blue/green lines give the upper limit of radiocarbon signature

of CWD (mCWD+20 Δ14C ‰) and red/orange lines the lower limit of radiocarbon signature of CWD (mCWD-20 Δ14C ‰) in the unmanaged and managed

forests respectively.



 In the fPOM and MaOM fractions of Grübel and Rohrberg, the radiocarbon signature were lower in

the unmanaged forest than in the managed forest, but exhibited an opposite pattern at Ludwigshain.

At  all  forest  sites,  radiocarbon  signatures  of  the  oPOM  fraction  were  mostly  lower  in  the

unmanaged than the managed forest. Differences between management types were greatest in the

fPOM fraction across all study sites and soil depths with a median difference of 20 ‰, whereas the

median difference in the oPOM and the MaOM fraction was 11 ‰. 

Discussion

Stocks and turnover of coarse woody debris

CWD  stocks  of  132  and  165  m³  ha-1  in  the  unmanaged  oak-beech  forests  at  Rohrberg  and

Ludwigshain are in the same range as reported for European beech (50-200 m³ ha-1) and oak (70-160

m³ ha-1) forest reserves (Christensen et al. 2005). In the unmanaged spruce forest, the CWD stock of

64 m³ corresponds to the CWD stocks (27-131 m³ ha-1) of subalpine spruce forests withdrawn from

management (Motta et al. 2010, Holeksa 2001). The calculated accumulation rate of CWD of 2.8 m3

ha-1 a-1  in  the  unmanaged  beech-oak  forests  is  at  the  lower  end  of  the  scale  reported  by

Vandekerkhove et al. (2009) of 0.1 – 19 m³ ha-1 a-1, but above the median value of 1.6 m3 ha-1 a-1. In

the spruce forest, the accumulation rate is smaller, possibly because of the younger age structure of

the forest in comparison to the older beech-oak forests. CWD stocks of 30 m³ ha-1  in all managed

forests are higher than those reported for managed forests (about 6 m³ ha-1) in Germany (Baritz et al.

2000) or for mixed forests (21.5 m³ ha-1) in Switzerland (Weggler  et al. 2012). CWD stocks are

currently  increasing  in  managed  forests  due  to  management  measures  in  Bavaria  (oral

communication), though the accumulation rate is still smaller than in the unmanaged forests.

Disappearance times of CWD in the order beech < spruce < oak correspond to values in other

forests  of central  Europe (Rock et al. 2008). The high variability in disappearance time can be

attributed to the variation in abiotic and biotic factors that affect CWD on a punctual scale. The

variability is greater when CWD is partially in contact with the soil due to different colonization by

wood decomposing fungi. Despite the variability, a correlation between time since tree death and C

density was found for beech and spruce CWD. The lack for CWD of oak can be attributed to a high

variability in its wood chemistry (Puech  et al. 1999), partial dieback of stem and branches while

new tissue is being formed (Ranius  et al. 2009). Further, decay of logs and snags are different,

highlighting that TT of logs depend on whether it originated from a fallen snag or living tree. The

old age of individual trees with high C densities suggests that oak CWD has the potential to remain

for many decades in forests. This makes oak a suitable tree species to increase CWD stocks in

108



forests. Despite lower production rates than beech, oak can contribute more to total CWD stocks in

unmanaged and managed forests. Despite lower C stocks, the high proportion of beech CWD (75

%) at Rohrberg resulted in higher C losses compared to Ludwigshain. At Grübel, CWD production

is smaller than in the other investigated forests, however, as spruce decays within a similar time than

oak, the forest has the potential to accumulate high amounts of C in its CWD stocks. Relatively low

temperatures likely slow down the decay of CWD at Grübel, suggesting that not only the quality of

spruce CWD impacts its disappearance time but also climatic conditions. Q10 values of 2.7-3.4 for

CWD decomposition (Yatskov et al. 2003) would result in disappearance times that are about 50 %

longer given the difference in annual mean temperatures of 4 K between Grübel and the beech-oak

forests. 

Carbon stocks of the forest floor and mineral soil

C stocks of FWD in the forest floor are higher in the managed forests than in the unmanaged forests

at all study sites. The C stocks of FWD are in the same range or higher than mean FWD C stocks of

2.5 to 4.0 Mg ha-1 described in forests in the U.S (Woodall & Liknes 2008). In the managed forests,

the input and stock of FWD depends on the management procedures and the time period since the

last thinning (Vávřová  et al. 2009). As thinning procedures are conducted in regular intervals, a

sinus function was found suitable to model the changes of FWD production. 

Forest management did not affect the C stock of the O horizons. The lack of significant differences

between management forms indicates that CWD is either insignificant for the formation of organic

matter or management affects other factors (see below) which counterbalance the C input by CWD. 

The lack of significant differences in the C stock of the Oi horizon underpins that mortality of single

trees and differences in tree age have minor influence on litter production of the study sites. The

unmanaged forests  at  Ludwigshain  and Rohrberg have even slightly higher  C stocks  in  the  O i

horizon, suggesting similar litterfall in managed and unmanaged forests. Minor differences in the C

stocks  of  the  Oe or  Oa horizons  between  the  management  forms  can  be  attributed  to  natural

variability of the forest floor or incomplete separation of genetic horizons. Our results demonstrate

that CWD has no or little potential  to  increase the C stock of the forest  floor although the Oe

horizons contained considerable portions of FWD and CWD. The imprint of FWD and CWD is

further discernible through the radiocarbon signature and TT of the Oe horizons (see below). 

The SOC stocks in the mineral soil of our study sites were in the range of similar forests surveyed in

the Bavarian Soil Inventory (Wiesmeier et al. 2012). At Grübel, parts of the site consist of poorly

drained soils resulting in very high C stocks of 250 Mg C ha-1. 
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Differences between study sites are greater than between management forms. This indicates that

management had none or minor importance in comparison to tree species and abiotic factors. Our

study supports findings by Kahl et al. (2013) that C stocks of the mineral soil are not influenced by

the presence of CWD. 

Radiocarbon signatures and carbon turnover in the forest floor

Forest management has more effect on the forest floor than on the mineral soil (DeGryze  et al.

2004). Differences in radiocarbon signatures between management forms were notable for the Oe

and Oa horizons. In the Oi horizons, differences in radiocarbon signatures are within measurement

uncertainty. 

Many modeling approaches do not consider input to the Oe horizon other than Oi material (e.g.,

Gaudinski  et al. 2000, Schulze et al. 2009) though low radiocarbon signatures of the Oe horizon

have  been  attributed  to  the  presence  of  CWD  (Trumbore  &  Harden  1996).  We  found  that

consideration of CWD input can increase the calculated TT of the Oe horizon by up to 5 years.

Consideration of FWD input resulted in an increase of the calculated TT by up to 4 years. This

modeling  approach  displays  large  uncertainties  in  the  calculated  TTs  at  different  C  inputs  of

different radiocarbon signature. A C loss from the CWD stock by fragmentation of up to 5 % was

assumed as respiration and DOC leaching make up a the C loss of up to  95 % (Chen et al. 2000,

Olajuyigbe et al. 2012). We found that even a CWD input to the Oe horizon of 10 % of the annual C

loss from CWD is not sufficient to explain the differences in radiocarbon signatures between the

managed and unmanaged forests. Hence, the lower radiocarbon signatures of the Oe horizons in the

unmanaged forests can be attributed to faster decay of leaf litter. 

CWD has  the  capacity to  modify a  range of  soil  characteristics  including the heterogeneity of

organic compounds (Strukelj  et  al. 2012),  the pH value (Klinka  et  al. 1995) and the microbial

community of the soil (Rajala et al. 2012). A high abundances of CWD can increase the size of the

fungal community in the soil and result in a shift of the fungal:bacterial ratio (Brant  et al. 2006).

This  leads  to  a  better  utilization  of  phenol  and  oxalate  in  contrast  to  bacterially  dominated

communities with low capacity to degrade such compounds (Brant et al. 2006). The promotion of

the fungal community by CWD input might result in faster TTs of the Oe horizon in the unmanaged

forests. 

The influence of  CWD on the  radiocarbon signature and TT of  the  Oa horizon at  Grübel  and

Rohrberg seems to be of minor importance. It is likely that CWD almost completely decays in the

Oe horizon and thus contributes little to the buildup of the Oa horizon. TTs of 55-80 years in the Oa
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horizon are relatively slow and correspond to about half or twice the period since forest protection

at  Rohrberg  and  Grübel,  respectively.  The  time  since  a  relevant  additional  CWD  stock  has

accumulated  might  not  have  been sufficient  to  induce  significant  effects  on  the  decomposition

processes in the Oa horizon.

Radiocarbon signatures and carbon turnover in the mineral soil

Positive radiocarbon signatures of the bulk soil were only found in 0-10 cm soil depth, pointing to

large  inputs  of  modern  C.  In  greater  soil  depths,  negative  radiocarbon  signatures  display  the

dominance of pre-bomb C. The lowest radiocarbon signatures were found at  Grübel,  indicating

older C in the spruce forest than in the two beech-oak forests.

In the mineral soil,  we estimated TT of bulk SOC of 130-3900 years. This corresponds to or is

slightly higher  than  previous  studies  that  describe  TT of  SOC between  25  and  3570  years  in

temperate  forests  (Perruchoud 1999,  Hakkenberg 2009,  Schulze  et  al. 2009).  Given its  distinct

climatic conditions conditions, Grübel has very long TT in the deep soil depths. The radiocarbon

signatures of the bulk soil up to 10-20 cm indicates significant inputs of modern C at Ludwigshain

and Rohrberg.  In our study, inputs of modern C correspond to CWD inputs since management

change. This means that the method is suitable to identify differences due to human impact.

Differences between management forms were smaller than among the study sites, indicating that

site  conditions  and  tree  species  have  more  influence  on  TTs  than  forest  management.  As  the

differences  remain constant  with depth,  other  factors  overshadow forest  management  effects  or

management equally affects all soil depths through below-ground litter input.

The fPOM, oPOM and MaOM fractions represent C pools with different TT, degrees of degradation

and humification (Baisden et al. 2002, John et al. 2005). At Grübel, TT in all density fractions and

soil depths were at least 200 years. This makes management influences within decades improbable.

At Ludwigshain and Rohrberg, TT of the fPOM fraction is shorter than 250 years at all soil depth,

suggesting that elevated CWD input could potentially increase the TT at these study sites. While the

patterns are consistent across soil depths, they do not correspond on both study sites. They can thus

not be attributed to a management change. An elevated CWD input does thus not affect C stocks of

the soil within time periods of decades.
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Supplemental Information
This appendix describes the calculation of the turnover time (TT) of the organic horizons and the

mineral soil with non-steady state and steady state models. For all calculations, we used radiocarbon

data originating from dendrochronologically dated wood samples published by Stuiver et al. (1998)

and atmospheric radiocarbon data after 1959 published by Levin et al. (2008). The data cover the

time period between 1510 and 2009. For calculation of the radiocarbon signature of coarse woody

debris (CWD) that necessitate older radiocarbon data, the average radiocarbon signatures between

1510 and 1520 is used. 

All radiocarbon signatures are expressed as Fraction modern (Fm) for calculation. Fm is calculated

from measured Δ14C ‰ with the following conversion:

Fm=1+
Δ

14C ‰
1000  (1)

where Δ14C  ‰ is  the  ‰ from the  14C/12C ratio  of  oxalic  standard in  1950.  The samples  were

corrected to a δ13C value of -25 ‰ to account for mass-dependent fractionation effects (Stuiver &

Polach, 1977).

Radiocarbon signature of coarse woody debris

The  radiocarbon  signature  of  each  tree  ring  corresponds  to  the  radiocarbon  signature  of  the

atmosphere  of  the  year  it  was  formed  (Cain  &  Suess  1976).  Calculations  of  the  radiocarbon

signature of CWD are based on the assumption that biomass growth is constant each year (Sievänen

et al. 2000). The radiocarbon signature of an individual piece of CWD (FmiCWD) of the year 2009

can be calculated by integrating the radiocarbon signature of the atmosphere Fmatm  in each year t for

the interval between time of sapling and time of tree death under consideration of radioactive decay

in relation to 2009 divided by the duration of the interval calculated from the time of sapling (t sapling)

and time of tree death (tdeath) in years (a). For 14C, a half-time of 8267 years is assumed.  

FmiCWD(2010)=

∑
t sapling

t death

Fmatm( t)∗(1−
2009−t

8267
)

t death−t sapling  (2)

To simplify the model, the CWD stocks are grouped by time of death per decades. Time of sapling
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is derived from mean tree  age. A mean radiocarbon signature for the total CWD stock of a forest

(FmtCWD) is calculated in dependance of the C stock (SiCWD) of each group. SiCWD is derived from the

age distribution of current CWD stocks (see Fig. 4.1). The radiocarbon signature of the CWD stock

is calculated for the time period between 1910 and 2009 with the following formula:

Fm tCWD(2009)=
∑ Fm iCWD(2009)∗S iCWD(2009)

∑ S iCWD(2009) (3)

We  calculated  three  different  radiocarbon  signatures  to  estimate  the  sensibility  of  the  model

resulting from under- or over-estimation of the radiocarbon signature of CWD. To this end 0.02 was

added/substracted from all FmtCWD(t) values without consideration of the calendar year. An average

uncertainty of 0.02 was calculated by varying the mean tree age and the CWD production rates.  

Calculations of radiocarbon signatures of CWD range between 1.006 and 1.045 for the unmanaged

forests and between 1.045 and 1.135 for the managed forest in 2009 (Fig. 4.S.1). Differences are

mainly due to the stand age rather than the time of tree death of CWD or the disappearance times of

CWD.  This  results  in  differences  in  radiocarbon  signatures  between  unmanaged  and  managed

forests at Ludwigshain and Rohrberg. Radiocarbon signatures of CWD are not different between

managed and unmanaged forests at Grübel as the mean tree age is similar.

Figure  4.S.1:  Δ14C signature in  ‰ of total  coarse woody debris in the unmanaged and managed

forests Grübel, Ludwigshain and Rohrberg.
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Radiocarbon signature and turnover of carbon in the Oi horizon

As no data on past leaf litter input is available, we assume it to be produced at a constant rate and

have applied a steady state model to calculate the TT. Fresh leaf litter of beech and oak from the

year 2011 had a radiocarbon signature of 32.8 ± 9  ‰, which was close to the signature of the

atmosphere in the year 2010. Leaf litter input to the Oi horizon thus has a lag period (lp) of one year.

For Norway spruce a lag period (lp) of 6 years was assumed (Schulze et al.  2009). FmOi(t), the

modern fraction of the Oi horizon in the year t was calculated as follows:

FmOi ( t)=kOi∗Fmatm(t−lp)+(1−
1

TT Oi

−
1

8267
)∗FmOi (t−1)

(4)

where TTOi is the turnover time of the Oi horizon, and Fmatm(t-lg) is the radiocarbon signature of 

fresh leaf litter.

Radiocarbon signature, inputs and stocks of fine woody debris

A sinus function was used to model the regular increase and decrease in FWD input (IFWD) in a year t

resulting in an oscillating FWD input. For each managed forest, the year of the thinning procedure

was determined from forest records. The dimensionless variables x and y were used to fit the sinus

function in such way, that it had a maximum in the year of the last management procedure and that

intervals between maximums correspond to time periods that likely pass between years of higher

FWD input. The value z related to the FWD input measured for 2010 and represents the amplitude

of the sinus curve.

I FWD(t )=∣sin (
t
x
+ y )∣∗z

(5)

The decay of FWD is assumed to have a faster decay rate than CWD. According to CWD, a linear C

loss of FWD is assumed. The radiocarbon signature of FWD for the year 2010 was measured of one

mixed sample per study site. Radiocarbon signatures for previous years are modeled by assuming a

TT and a lag period of 8 years. The C stock of FWD in a year t (SFWD(t)) can be calculated by

combining the input (IFWD(t)) to and the loss (LFWD(t)) from the C stock:

S FWD(t)=S FWD( t−1)+ I FWD( t)−LFWD( t) (6)
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where the C loss from FWD is calculated as follows

LFWD(t)=
S FWD(t )

8 . (7)

Turnover of carbon in the Oe horizon (Grübel and Rohrberg) and the mixed Oe/Oa horizon 

(Ludwigshain)

Figure 4.S.2: Carbon input model for the organic layer.

For the Oe  horizon, three different input pools are considered: material from the Oi horizon, fine

woody debris (FWD) and coarse woody debris (CWD) (Fig.4.S.2). The model calculates the C stock

of the Oe horizon in the year t (SOe(t)) and the radiocarbon signature of the Oe  horizon (FmOe(t))

separately for the same TT (TTOe). For each input pool, L(t) is the total C loss and the value h is the

proportion of the total C loss that enters the Oe horizon. 

S Oe( t)=hOi∗LOi (t)+hFWD∗LFWD(t )+hCWD∗LCWD( t)+S Oe( t−1)∗(1−
1

TT Oe

)
(8)

FmOe (t)=(hOi∗SOi(t )∗FmOi(t)+hFWD∗S FWD(t)∗FmFWD(t)+hCWD∗S CWD(t )∗

∗FmCWD(t )+S Oe(t−1)∗(1−
1

TT Oe

∗
1

8267
))÷S Oe( t)

(9)

The value h is constant over time. For input from FWD, two different scenarios are calculated: (1) 

no input from FWD (hFWD=0) and (2) the proportion of input from FWD is equal to the proportion 

of input from the Oi horizon (hFWD=hOi). For CWD input, several scenarios with hCWD ranging from 

0-10 % were calculated. Additionally, a data point where the proportion of C input from CWD and 

C input from the Oi horizon are equal was calculated (hCWD=hOi).
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Turnover of carbon in the Oa horizon (Grübel and Rohrberg)

The TT of the Oa horizon (TTOa) was calculated with a non-steady state model. Two input pools

were identified: material from the Oe horizon and root litter. The C stock of the Oa  horizon (SOa(t))

and the radiocarbon signature of the Oa horizon (FmOa(t)) are calculated separately. The C stock in

the roots (Sr(t)) was measured as a fraction of the Oa horizon in 2009 (Rohrberg) or 2010 (Grübel),

but no radiocarbon signatures were measured. We assume that the radiocarbon signature of the roots

(Fmr)  corresponds  to  the  radiocarbon  signature  of  the  atmosphere  (Fmatm).  Two  scenarios  are

calculated: (1) no input from roots to the Oa horizon (hOa = 0) and (2) all C in roots goes into the Oa

horizon (hOa = 1). The proportion of the C stock of the Oe horizon (SOe) that flows into the Oa

horizon (hOe) is calculated following 

S Oa(t )=hOe∗S Oe(t )+hr∗S r(t)+SOa (t−1)∗(1−
1

TT Oa

)
(10)

FmOa (t )=

hOe∗S Oe(t )∗FmOe(t )+hr∗S r(t )∗Fmr(t )+S Oa(t−1)∗(1−
1

TT Oa

−
1

8267
)

SOa (t) (11)

Turnover of carbon in the mineral soil

A steady state model was used following Gaudinski et al. (2000) to calculate the radiocarbon 

signature (Fmsoil) and the turnover time (TTSoil) for the bulk samples of the mineral soil and the 

density fractions. The radiocarbon signature of the input corresponds to the radiocarbon signature of

the atmosphere (Fmatm). For modern radiocarbon signatures, two TT are possible.

Fmsoil (t)=k soil∗Fmatm( t)+(1−
1

TT soil

−
1

8267
)∗Fmsoil( t−1)

(12)
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